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FOREWORD

This is the 1996 (QA96) version of Guidance for Data Quality Assessment, EPA QA/G-9. The
Environmental Protection Agency (EPA) has developed the Data Quality Assessment (DQA) Process as an
important tool for project managers and planners to determine whether the type, quantity, and quality of dats
needed to support Agency decisions has been achieved. This guidance is the culmination of experiences in
the design and statistical analyses of environmental data in different Program Offices at the EPA. Many
elements of prior guidance, statistics, and scientific planning have been incorporated into this document.

This document provides general guidance to organizations on assessing data quality criteria and
performance specifications for decision making. This guidance assumes that an appropriate Quality System
has been established and that planning for data collection has been achieved using a scientifically-based
information collection strategy. An overview of the Agency's recommended data collection procedure, the
DQO Process, is included in this guidance in Chapter 1 and EPA QA/G-4.

Guidance for Data Quality Assessment is distinctly different from other guidance documents; it is
not intended to be read in a linear or continuous fashion. The intent of the document is for it to be used as a
"tool-box" of useful techniques in assessing the quality of data. The overall structure of the document will
enable the analyst to investigate many different problems using a systematic methodology. The methedology
consists of five steps that should be iterated between them as necessary:

() Review the Data Quality Objectives
(i1) Conduct a Preliminary Data Review
(i)  Select the Statistical Test

(iv)  Verify the Assumptions of the Test
) Draw Conclusions From the Data

This approach closely parallels the activities of a statistician analyzing a data set for the first time.
The five step procedure is not intended to be a definitive analysis of a project or problem, but provide an
initial assessment on the “reasonableness” of the data that have been generated. Sophisticated statistical
analysis is often not necessary unless special or unusual circumstances have been encountered in the
generation or collection of the data or the analysis is planned in detail before the data are collected. This
guidance is directed towards the analysis of relatively small data sets containing data that have been collected
in a relatively simple fashion The analysis of survey data containing large data sets or a complex sampling
scheme is best left for statistical experts.

This document is & product of the collaborative effort of many quality management professionals
throughout the EPA and the environmental community. It has been peer reviewed by the EPA Program
Offices, Regional Offices, and Laboratories. Many valuable comments and suggestions have been
incorporated to make it more useful, and additional suggestions to improve its effectiveness are sought. The
~ Quality Assurance Division has the Agency lead for the development of statistical quality assurance

techniques and future editions of this guidance will contain some of these recent developments.

This document is one of a series of quality management guidance documents that the EPA Quality

Assurance Division (QAD) has prepared to assist users in implementing the Agency-wide Quality System.
Other related documents currently available or planned include:
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| EPA QA/G-4  Guidance for The Data Quality Objectives Process
EPA QA/G-4D DEFT Software for the Data Quality Objectives Process |
EPA QA-G-4R Guidance for the Data Quality Objectives Process for Researchers (planned)
EPA QA/G-4S - Guidance for the Data Qﬁality Objectives Process (Superfund)
EPA QA/G-5  Guidance for Quality Assurance Project };Icms (draft)
EPA QA/G-5S Guidance on Sampling Plans (planned)

EPA QA/G-6  Guidance for the Preparation of Standard Operating Procedures (SOPs) for
Quality-Related Documents

EPA QA/G-9D Data Quality Evaluation Statistical Teols (DataQUEST)

~ The External Comment Draft EPA QA/G-5 should be available -April 1996, the Final Version of
EPA QA/G-4S should be available July 1996, and the External Comment Draft EPA QA/G-4R and
QA/G-SS should be available October 1996.

This document is intended to be & “living document” that will be updated annually to incorporate new
topics and revisions or refinements to existing procedures. Comments received on this 1996 version will be
considered for inclusion in subsequent versions. In addition, user-friendly PC-based software (EPA QA/G-
9D) to supplement this guidance is being developed and should be available from QAD in August 1996.

Please send your written comments on Guidance for Data Quality Assessment to:

Quality Assurance Division (8724)
Office of Research and Development
U.S. Environmental Protection Agency
401 M Street, SW

Washington, DC -20460

(202) 260-5763

FAX (202) 260-4346

E-mail: qad@cpamail.epa.gov
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INTRODUCTION

0.1 PURPOSE AND OVERVIEW

DataQualltyAsswsmmt(DQA)lsthcscxennﬁcandstaushcalcvaluahonofdatatodetammclf
data obtained from environmental data operations are of the right type, quality, and quantity to support their
intended use. This guidance demonstrates how to use DQA in evaluating environmental data sets and
illustrates how to apply some graphical and statistical tools for performing DQA. The guidance focuses
primarily on using DQA in environmental decision making; however, the tools presented for preliminary data
review and verifying statistical assumptions are useful whenever environmental data are used, regardless of
whether the data are used for decision making. ‘

DQA is built on a fundamental premise: data quality, as a concept, is meaningful only when it
relates to the intended use of the data. Data quality does not exist in a vacuum; one must know in what =~ -
context a data set is to be used in order to establish g relevant yardstick for judging whether or not the data set
is adequate. By using the DQA Process, one can answer two fundamental questions:

1. Can the decision (or estimate) be made with the desired confidence, given the quality of the data set?

2 How well can the sampling design be expected to perform over 8 wide range of possible outcomes?
If the same sampling design strategy is used again for a similar study, would the data be expected to
support the same intended use with the desired level of confidence, particularly if the measurement
results tumned out to be higher or lower than those observed in the current study?

The first question addresses the data user's immediate needs. For example, if the data provide
evidence strongly in favor of one course of action over another, then the decision maker can proceed knowing
that the decision will be supported by unambiguous data. If, however, the data do not show sufficiently
strong evidence to favor one alternative, then the data analysis alerts the decision maker to this uncertainty.
The decision maker now is in a position to make an informed choice about how to proceed (such as collect
more or different data before making the decision, or proceed with the decision despite the relatively high, but
acceptable, probability of drawing an erroneous conclusion).

The second question addresses the data user’s potential future needs. For example, if investigators
decide to use a certain sampling design at a different location from where the design was first used, they
should determine bow well the design can be expected to perform given that the outcomes and environmental
conditions of this sampling event will be different from those of the ariginal event. Because environmental
' conditions will vary from one location or time to another, theadeqmcyofthesamphngdwgnapproach
should be evaluated oveabmad range of possxbleomcomandcondmcms

. 02 DQA AND THE DATA LIFE CYCLE

: The data life cycle (depicted in Figure 0.2-1) comprises three steps: planning, implementation, and
assessment. During the planning phase, the Data Quality Objectives (DQO) Process (or some other
systematic planning procedure) is used to define quantitative and qualitative citeria for determining when,
where, and how many samples (measurements) to collect and a desired level of confidence. This information,
along with the sampling methods, analytical procedures, and appropriate quality assurance (QA) and quality
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control (QC) procedures, are documented in the Quality Assurance Project Plan (QAPP). Data are then
collected following the QAPP specifications. DQA completes the data life cycle by providing the assessment
needéd to determine if the planning objectives were achieved. During the assessment phase, the data are
validated and verified to ensure that the sampling and analysis protocols specified in the QAPP were
followed, and that the measurement systems performed in accordance with the criteria specified in the QAPP.
DQA then proceeds using the validated data set to determine if the quality of the data is satisfactory.

, » QUALITY ASBURANCE ABSEBSSEENT
Deda Quaiiy Objectves Process /"“""’. O //Evmoan
Quality Aesuranca Project Plan Davolopment
$ _ DATA VALIDATION/VERIFCATION
o Verty mossuremant
o Verily massursment procadures snd
IMPLEMENTATION ¥ ouTPuT
et e [ womenereom [
7 . INPUT
l k DATA QUALITY ATOESEMENT
’ * Revizer DQCO2 and daaign
» Sty e
ASSESSMENT o
Dsta Vialidation/Vestication - o Draw conciusions
Data Quality Assscsmert & pop—
[m:sbrswwumoumm/ _

Figure 0.2-1. DQA in the Context of the Data Life Cycle

03  THE 5STEPS OF THE DQA PROCESS

"The DQA Process involves five steps that begin with a review of the planning documentation and
end with an answer to the question posed during the planning phase of the study. These steps roughly
parallel the actions of an environmental statistician when analyzing a set of data. The five steps, which are
 described in detail in the remaining chapters of this guidance, m'ebncﬂysmnmmzedasfollows

L Review the Data Qualzty Objectives (DQ0s) andSampkngDaxgn Rev:ewtheDQOompmsto
assure that they are still applicable: If DQOs have not been developed, specify DQOs before
evaluating the data (e.g., for environmental decisions, define the statistical hypothesis and specify
tolerable limits on decision esrors; for estimation problems, define an acceptable confidence or
probability interval width). Review the sampling design and data collection documentation for
consistency with the DQOs.

2. Conduct a Preliminary Data Review: Review QA reports, calculate basic statistics, and generate
graphs of the data. Usethxsmformauontolcamaboutthesm:cuneofmcdataandxdmufypattems
relationships, or potential anomalies.
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3. Select the Statistical Tess: Sclectthsmostappropmtcproce&ne for summarizing and analyzing
the data, based on the review of the DQOs, the sampling design, and the preliminary data review.
Identify the key underlying assumptions that must hold for the statistical procedures to be valid.

4, Verify the Assumptions of the Statistical Tess: Evaluate whether the underlying assumptions hold,
or whether departures are acceptable, given the actual data and other information about the study.

5. Draw Conclusiors from the Data: Perform the calculations required for the statistical test and
document the inferences drawn as a result of these calculations. If the design is to be used again,
evaluate the performance of the sampling design.

These five steps are presented in a linear sequence, but the DQA process is by its very nature iterative. For
example, if the preliminary data review reveals patterns or anomalies in the data set that are inconsistent with
the DQOs, then some aspects of the study planning may have to be reconsidered in Step 1. Likewise, if the
underlying assumptions of the statistical test are not supported by the data, then previous steps of the DQA
process may have to be revisited. The strength of the DQA process is that it is designed to promote an
understanding of how well the data satisfy their intended use by progressing in a logical and efficient manner.

Nevertheless, it should be emphasized that the DQA process cannot absolutely prove that one has or
has not achieved the DQOs set forth during the planning phase of a study. This situation occurs because a
decision maker can never know the frue value of the item of interest. Data collection only provides the
investigators with an estimate of this, not its true value. Further, because analytical methods are not perfect,
they too can only provide an estimate of the true value of an eavironmental sample. Because investigators
make a decision based on estimated and not true values, they run the risk of making 8 wrong decision
(decision error) about the item of interest.

0.4 INTENDED AUDIENCE

This guidance is written for a broad audience of potential data users, data analysts, and data
generators. Data users (such as project managers, risk assessors, or principal investigators who are
* responsible for making decisions or producing estimates regarding environmental characteristics based on
environmental data) should find this guidance useful for understanding and directing the technical work of
others who produce and analyze data. Data analysts (such as quality assurance specialists, or any technical -
professional who is responsible for evaluating the quality of environmental data) should find this guidance to
be a convenient compendium of basic assessment tools. Data generators (such as analytical chemists, field
sampling specialists, or technical support staff responsible for collecting and analyzing environmental
samples and reporting the resulting data values) should find this guidance useful for understanding how their
workwﬂlbeusedandforprovxdmgafomdanmfm'mprovmgtheeﬁmmcyandeﬂ'ecuvmsofthedata
genuauonprom S

05  ORGANIZATION

This guidance presents background information and statistical tools for performing DQA. Each

- chapter corresponds to & step in the DQA Process and begins with an overview of the activities to be -
performed for that step. Following the overviews in Chapters 1, 2, 3, and 4, specific graphical or statistical
tools are described and step-by-step procedures are provided along with examples.
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0.6 ° SUPPLEMENTAL SOURCES

Many of the graphical and statistical tools presented in this guidance are also implemented in a user-
friendly, personal computer software program called DataQUEST (Data Quality Evaluation Statistical Tools,
EPA QA/G-9D). DataQUEST simplifies the implementation of DQA by automating many of the
recommended statistical tools. DataQUEST runs on most IBM-compatible personal computers using the
DOS operating system; see the DataQUEST User’s Guide for complete information on the minimum '
computer requirements.

The main references in this document are important works having application to environmental
sampling and interpretation of data; most of these references are widely available within the scientific and
environmental communities. The remaining references are either more detailed original academic articles or
are not as readily available to analysts. Two excellent Agency references for analyzing environmental data
are Guidance on the Statistical Analysis of Ground-Water Monitoring Data (EPA 1992a), a useful
compendium of statistical methods and procedures (many of which are incorporated in this document) for the
analysis of data generated by EPA’s Office of Solid Waste; and Scowt: A Data Analysis Program (EPA
1993b), a software program for analyzing multivariate data that includes methods for identifying multivariate
outliers, graphing the raw data, and dxsplaymg the results of principal component analysis.

07 SCOPE AND LIMITATIONS

This guidance is intended to be 2 convenient compendium of practical methods for the environmental
scientist and manager. It focuses on measurement data obtained through sampling and analysis of
contaminants in environmental media. Statistical nomenclature has been kept to the minimum and there are
some areas that will require the input of an environmental statistician for complete analysis. The intent of the
dwmnmtiswassistthenm-staﬁsﬁdmmmemiewmdmalysisofmvhmmmmdam

This document represexits the first edition of the DQA guidance, which will be followed by annual
-updates. Readers are encouraged to send their suggestions for improvements and additions to the U.S. EPA
Quality Assurance Division. (The address is given in the Foreword.) The annual updates will refine existing
sections, present new tools and procedures, andexpandthcscopeofapphcauontoaddmomltypaof
environmental problems.

Thlsﬁrstedmmnsmtmdedtoeova'mostofﬂxeometopmofDQAforregulatmyomnphance
decisions that involve spatially distributed contamination. Most of the tools will also be applicable to
sampling data from hazardous waste sites or facilities under Superfund or RCRA. Many of the tools are
generally applicable and useful for other types of problems as well. Future editions of this guidance will
addrwsmm&aoughlythcpmblmsmdmswm&edm&mﬂyungsmphngdamﬁommm
dynamic processes, such as effluent discharged to waterways and emissions dispersed in ambient air. Future
editions will also address other topics, amhasmalymgrwﬂts&mndmxmdaq)mmmtsandoﬂa
research studies, as well as environmental enforcement investigations.

Tmsgtndmuacphaﬁymtmmdedtowvawmnwpmthatmmpmmmmmsof
environmental protection. Forexample,ntdoanotadd:msthenmpataMmofmeysamphngmvolvmg
the administration of interviews or questicanaires to people. This document is not intended to substitute for
morethoroughu‘eannmtsofﬁmdamentalstausncalcomepts(asfomdmstandardtextbooks),nonsnt
intended to provide a forum for publishing original research (as found in scholarly journals).

EPA QA/G-9 . 0-4 QA%



CHAPTER 1

STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN
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Draw Conclusions From the Data
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Step 1: Review DQOs and Spling Design

i - © Translate the data user's objectives into & statemant of the peimary etatisicel hypothesia.
o i DQO= have not been developed, review sections 1.1.2 and 1.2, and Tabls 1.2-1,
then develop a statement of the hypothesis basad on the data use's objectives.
o I DQOs were developed, transiate them into a ctatement of the primary hypotheain.

o Translate the date user's objectives into Emite on Typs | o Typa Il decislon efrors.
@ i DQOs have not been developed, review section 1.1.3 and document the data

o If DQOs have not been developed, review section 1.1.1 and define thess objectives. -~ ||
‘e K DQOs were developed, review ths outputs from the DQO Process.

o K DQOs were developed, confim the mits on decision efrore.

o Revigw the sampling design and note any spoaai features or potential problems. -
o Review the sampiing design for any deviations (sections 1.1.4 and 1.3).
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CHAPTER1 |
STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN

1.1  OVERVIEW AND ACTIVITIES

The DQA Process begins by reviewing the key outputs from the planning phase of the data life cycle:
the Data Quality Objectives (DQOs), the Quality Assurance Project Plan (QAPP), and any associated
documents. The DQOs provide the context for understanding the purpose of the data collection effort and
establish the qualitative and quantitative criteria for assessing the quality of the data set for the intended use.
The sampling design (documented in the QAPP) provides important information about how to interpret the
data. By studying the sampling design, the analyst can gain an understanding of the assumptions under which
the design was developed, as well as the relationship between these assumptions and the DQOs. By
reviewing the methods by which the samples were collected, measured, and reported, the analyst prepares for
the preliminary data review and subsequent steps of the DQA Process. '

. Careful planning improves the representativeness and overall quality of a sampling design, the
effectiveness and efficiency with which the sampling and analysis plan is implemented, and the usefulness of
subsequent DQA efforts. Given the benefits of planning, the Agency has developed the DQO Process which
is a logical, systematic planning procedure based oa the scientific method. The DQO Process emphasizes the
planning and development of a sampling design to collect the right type, quality, and quantity of data needed
to support the decision. Using both the DQO Process and the DQA Process will help to ensure that the
decisions are suppoﬂedbydataofadcquatequahty; theDQOProessdo&ssoprospecnverandﬂwDQA
Process does so retrospectively

WhenDQOshavenotbemdcvelopeddmngthcplannmgphaseofthesmdy it is necessary to
develop statements of the data user's objectives prior to conducting DQA. The primary purpose of stating the
data user’s objectives prior to analyzing the data is to establish appropriate criteria for evaluating the quality
of the data with respect to their intended use. Analysts who are not familiar with the DQO Process should
refer to the Guidance for the Data Quality Objectives Process, EPA QA/G-4 (1994) a book on statistical
decision making usmgtsisofhypothws,owonsultastausuam

Themmndﬁofthxschaptaaddrssurecommendedacuwnsforpa'formmgthxsstepofDQAand
technical considerations that support these activities. The remainder of this section describes the
recommended activities; the first three of which will differ depending on whether DQOs have already been
developed for the study. Secumlstm’bwhowtoselectthenullandaltemauvehypothmsandsechon
13 presents a brief overview of different types of sampling designs.

1.11 Review Study Objectives

, In this activity, the objectives of the study are reviewed to provide context for analyzing the data. If s
planning process has been implemented before the data are collected, then this step reduces to reviewing the
documentation on the study objectives. If no planning process was used, the dats user should: -

8 Developaooncisedcﬁniﬁonoftheproblem(DQOProcwsStepl)andthedecision(DQOProcasStep

2) for which the data were collected. This should provide the fundamental reason for collecting the
environmental data and identify all potential actions that could result from the data analysis.
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8 ldmhfyxfanywsmmlmfomanomsmxssmg(DQOPromStepB) If so, either collect the missing
information before proceedmg,o:seledadxﬁ'amt approachtomolvmgﬂ:cdectsmn

Specnfythescaleofdemsxonmakmg(anymbpopulanonsofmm)andanybmmdanmonthcsmdy
(DQO Process Step 4) based on the sampling design. The scale of decision making is the smallest area
or time period to which the decision will apply. The sampling design and implementation may restrict
how small or how large this scale of decision making can be. '

112 Translate Objectives into Statistical Hypotheses

Inthlsactmty.tbsdamwsobjectxvamusedtodzvelopapreasestatcmmtoﬂhepnmmy
hypotheses to be tested using environmental data. A statement of the primary statistical hypotheses includes
a null hypothesis, which is a “baseline condition” that is presumed to be true in the absence of strong
evidence to the contrary, and an alternative hypothesis, which bears the burden of proof. In other words, the
baseline condition will be retained unless the alternative condition (the alternative hypothesis) is thought to be
true due to the preponderance of evidence. Ingcncral,suchhypothmconsistofthefollowingelanents:

apoptﬂaumpuamctaofmmchdsmbumefeamofthemmonmmtthatthedatausens
investigating;

a numerical value to which the parameter will be compared, such as aregulat@ or risk-based threshold
or a similar parameter from another place (¢.g., comparison to a reference site) or time (¢.g., comparison
to a prior time); and

& the relation (such as “is equal to” or lsgrwa'than”)thatspecxﬁsprecnselyhowtheparametermllbe
compared to the numerical value.

If DQOs were developed, the statement of hypotheses alreadyshouldbedocumcntedinthcoutputsofStch
of the DQO Process. If DQOs have not been developed, then the analyst should consult with the data user to
develop hypotheses that address the data user’s concerns. Section 1.2 describes in detail how to develop the
smm&ofhym&swmdmludmahﬂofoommwwmtaadhwo&mfwwmﬁldwmm

113 Develop Limits on Decmon Emrs

. ,Ttmgoalofthiswﬁvityistodevelopmmﬁicalpmbabﬂityﬁmitsthatacpr&sthcdatausds

' tolerance for committing false positive (Type I) or false negative (Type II) decision errors as 2 result of
uncertainty in the data. A false positive error occurs when the null hypothesis is rejected when it is true. A
false negative decision-error occurs when the null hypothesis is not rejected when it is false. If tolerable
decisionmratmwerenotstablishedpﬂottodataeoﬂecﬁon,thcnthedhtausa'should:

8 Spmxfythegraymgxmwhﬁethecmsequmofaﬁbemgahvedxmmmmmhnvdymma
(DQO Process Step 6). mgrayregmmsbomdedononesndcbythethmholdvaluemdontheotha

! Throughout this document, the term “primary hypotheses™ refers to the statistical hypotheses that correspond to the dats user's
decision. Other statistical hypotheses can be formulated to formally test the assumptions that underlic the specific calculations used to
test the primary hypotheses. See Chapter 3 fmmmphsofmunpﬂonsunder&ngpnmhypodmmdcm4 for examples
ofhowtomﬂ:mundaiymgmmpum -
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sndebythatpamnetﬁ'valuewhaetheconsequmofmahngafalsencgahve&cxsxonmoa'begmtobe

significant. Establish this boundary by evaluating the consequences of not rejecting the null hypothesis

when it is false and then place the edge of the gray region where these consequences are severe enough o

set a limit on the magnitude of this false negative decision error. Thcgrayregmmstheareabetweenthxs
" parameter value and the threshold value.

The width of the gray region represents one important aspect of the decision maker’s concern fordccision
‘errors. A more narrow gray region implies a desire to detect conclusively the condition when the true
parameter value is close to the threshold value (“close” relative to the variability in the data). Whea the
true value of the parameter falls within the gray region, the decision maker may face a high probability of
making a false negative decision error, because the data may not provide conclusive evidence for rejecting
the null hypothesis, even though it is false (i.., the data may be too variable to allow the decision maker
-torecogmzstha!;thebasehneoondmonls, in fact, not true).

8 Specify tolerable limits on the probability of committing false positive and false negative decision errors
(DQO Process Step 6) that reflect the decision maker's tolerable limits for making an incorrect decision.
Select & possible value of the parameter; then, choose a probability limit based on an evaluation of the
seriousness of the potential consequences of making the decision error if the true parameter value is
located at that point. At a minimum, the decision maker should specify a false positive decision error
limit at the threshold value (), and a false negative decision error limit at the other edge of the gray

region (B).

An example of the gray region and limits on the probability of committing both false positive and false
negative decision errors are contained in Box 1.1-1. '

If DQOs were developed for the study, the tolerable limits on decision errors will already have been
developed. These values can be transferred directly as outputs for this activity. In this case, the action level
is the threshold value; the false positive esror rate at the action level is the Type I'error rate or «; and the false
negative error rate at the other bound of the gray region is the Type II error rate or §.

114 Review Sampling Design

, Thegoa!ofthsachutyxsbfamﬂmnutbcandystmththemamfcahn&softhesampﬁngdsign
thatwasusedtogmatsthemvxronnmtaldm The overall type of sampling design and the manner in
wh&smplsmwﬂeddammw&mﬁmhkmwﬂphcem&ummdmmmhawme
data must be used and interpreted. Sechonl3prov1®sadd1honalmformaﬁonaboutsevea1dxﬁ'amttypes
" of sampling designs that are commonly used in environmental studies.

Rsﬁewthesampﬁngdsigndommenmﬁonwithmcdatausa’sobjecﬁvsinmind Look for design
~ features that support of contradict those objectives. For example, if the data user is interested in making 8
decision about the mean level of contamination in an effluent stream over time, then composite samples may
be an appropriate sampling approach. On the other hand, if the data user is looking for hot spots of
‘contamination at a hazardous waste site, compositing should only be used with caution, to avoid “averaging
away” hot spots. Also, look for potential problems in the implementation of the sampling design. For
example,vmfythateachpomtmspaoe(oxumc)hadanequalprobabmtyofbmgselectedfmasxmple
random sampling design. Small deviations from a sampling plan may have minimal effect on the conclusions
drawn from the data set. Significant or substantial deviations should be flagged and their potential effect
carefully considered throughout the entire DQA.
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~ Box 1.1-1: Example Applying the DQO Process Retrospectively

A waste incineration company was concemed that waste fly ash could contain hazardous leveis of cadmium
and should be disposed of in a RCRA landfill. As a result, eight composite samples each consisting of eight
grab samples were taken from each load of waste. The TCLP leachate from these samples were then

analyzed using a method specified in 40 CFR, Pt 261, App. Il. DQOs were not developed for this problem;
therefore, study objectives (sections 1.1.1 through 1.1.3) should be developed before the data are analyzed.

1.1.1  Review Study Objectives
| = Developa concise definition of the problem — The problem is defined above.
= |dentify if any essential information is missing — It does not appear than any essential information is missing.

s Specify the scale of decision making - Eachwastaloadnsampledseparatelyanddeassonsneedtobe
made for each load. Therefore, meecaleofdeasnon malongnanmdiwdualload

1.1.2 Translate Objectives into Statistical Hypotheses

Since composite samples were taken, the parameter of interest is the mean cadmium concentration. The
RCRA regulatory standard for cadmium in TCLP leachate is 1.0 mg/L. Therefore, the two hypotheses are
‘mean cadmium 2 1.0 mg/L" and *mean cadmium < 1.0 mgL_*

There are two possible decision errors 1) to decide the waste is hazardous (*mean > 1.0°) when it truly is :
not ("mean < 1.0%), and 2) to decide the waste I8 not hazardous ("mean < 1.0") when it truly is ("mean > 1.0").
The risk of deciding the fly ash is not hazardous when it truly is hazardous is more severe since potential
consequences of this decision error include risk to human health and the environment. Therefore, this error
will be labeled the false positive error and the other error will be the false negative error. As a result of this

| decision, the null hypothesis will be that the waste is hazardous ("mean cadmium 2 1.0 mg/L") and the
altemative hypothesis will be that the waste is not hazardous ("mean cadmium < 1.0 mg/L"). (See section 1.2
for more information on developing the null and altemative hypotheses.)

1.1.3  Develop Limits on Decision Errors

s Specify the gray region — The consequence of a false negative decigion error near the action level is
unnecessary resource expendituro The amount of data also influences the width of the gray region.
Therefore, for now, a gray region was set from .75 to 1.0 mg/L. This region could be revised depending on

the power of the hypothesis test. Dedision Performance Goal Diagram

s Specify tolerable imits on the - - 1
probability of committing a decision oo F
error — Consequences of a false '
positive error include risk to human
health and environment. Another
consequence for the landfil owners is
the risk of fines and imprisonment.
Therefore, the stringent imit of 0.05
was set on the probability of a false
positive decision error. Consequences
of a false negative error include
unnecessary expenditures so a limit of
0.20 was set on its probability. This
efror rate could be revised based on o1 -
the power of the hypothesis test. o

4 o8
a7 407
os | - o6
os 4 08
O-l. o 4 a4

03 - 4 03

Tolerable Probabiity of Deciding that
the Parameter Exceeds the Action Level

The results of this planning process 20

are summarized in the Decision
Performance Goal Diagram. True Mean Cadmium (mg/)
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12  DEVELOPING THE STATEMENT OF HYPOTHESES

The full statement of the statistical hypotheses has two major parts: the null hypothesis (H,) and the
alternative hypothesis (H,). In both parts, apopulatxonparamctaxscomparedtoelthaaﬁxedvalue(fora
one-sample test) or another population parameter (for a two-sample test). The population parameter is a
quantitative characteristic of the population that the data user wants to estimate using the data. In other
words, the parameter describes that feature of the population that the data user will evaluate when making the
decision. Examples of parameters are the population mean and median.

If the data user is interested in drawing inferences about only one population, then the null and
dtanaﬂvehypoth&samﬂbestamdmtummamlm&cmvdwofthepammwmmeﬁxed
threshold value. A common example of this one-sample problanmmvuonmental studies is when pollutant
lcvelsmaneﬂ]uents&eammcomparedtoamgulmryhmm If the data usex is interested in comparing two

populat:ons,thenthcmxllandaltemanvchypothwwmllbestatedmtamsthatcomparethctmevalueofone :

population parameter to the corresponding true parameter value of the other population. A common example
of this two-sample problem in environmental studies is when a potentially contaminated waste site is being
compared to a reference area using samples collected from the respective areas. In this situation, the
hypotheses often will be stated in terms of the difference between the two parameters.

Thedecisimmwhatshoddwnsﬁhﬂe&emﬂhypo&uismdwhﬂshmﬂdbethedmaﬁveb
sometimes difficult to ascertain. In many cases, this problem does not arise because the null and alternative
hypotheses are determined by specific regulation. However, when the null hypothesis is not specified by
regulation, it is necessary to make this determination. The test of hypothesis procedure prescribes that the
mull hypothesis is only rejected in favor of the alternative, provided theére is overwhelming evidence from the '
data that the null hypothesis is false. In other words, the null hypothesis is considered to be true unless the
data show conclusively that this is not so. Therefore, it is sometimes useful to choose the null and altemative -
hypothmmhghtofthsconsemmc&ofpmsxblymahnganmcorrectdeclsxonbetwemthenulland
alternative hypotheses. The true condition that occurs with the more severe decision exror (not what would be
decided in error based on the data) should be defined as the null hypothesis. For example, consider the two
decision errors: “decide a company does not comply with environmental regulations when it truly does™ and
“decide a company does comply with environmental regulations when it truly does not.” If the first decision
exror is copsidered the more severe decision error, then the true condition of this error, “the company does
comply with the regulations” should be defined as the null hypothesis. If the second decision esror is
conmda'edthcmm'eseve:edccxsmm,thend:cu'uecondmonofthxsm,“thecompanydo&notcomply
with the regulations” should be defined as the null hypothesis.

Andtamﬁvemethodfadeﬁnhgthemﬂhypothmisisbasedmhistmicalhfomaﬁom If a large
amount of information exists suggesting that one hypothesis is extremely likely, then this hypothesis should
be defined as the alternative hypothesis. In this case, a large amount of data may not be necessary to provide
overwhelming evidence that the other (null) hypothesis is false. For example, if the waste from an incinerator
was previously hazardous and the waste process has not changed, it may be more cost-effective to define the
alternative hypothesis as “the waste is hazardous™ and the null hypothesis as “the waste is not hazardous.”

Consider 8 data user who wants to know whether the true mean concentration () of atrazine in
gromdwata’atahazardouswastesxtsnsgreat&thmaﬂxedthmholdvaluec If the data user presumes
from prior information that the true mean concentration is at least C due possibly to some contamination
mcxdent.,thmthedatamustprowdz compelling evidence to reject that presumption, and the hypotheses can
be stated as follows:
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i Null Hypothesi eline Conditi Hy p2C;
' 'l'hetruemeanconcenn'auonofan'amcmground : _
| water is greater than or equal to the threshold versus
value C; versus :

| Altemative Hypothesis; _
| The true mean concentration of atrazine in ground
| water is less than the threshold value C

Ontheothahand,lfthcdatausapmm&ompnormfamahonthatthehwmeancomenﬂahomslss
than C due possibly to the fact that the ground water has not been contaminated in the past, then the data
must provide compelling evidence to reject that presumption, and the hypotheses can be stated as follows:

Narrative Statement of Hypotheses !
. -

| Null Hypothesis (Baseline Condition): He us<G
Themwmeaneonomanonofam:zemgmm ‘ _
' versus

water is less than or equal to the threshold -
| value C; versus .

Hy p>C

In stating the primary hypotheses, it is convenient to use standard statistical notation, as shown
throughout this document. However, the logic underlying the hypothesis always corresponds to the decision
of i mtexst to the data user. -

Table12~lmmmanmsomecommontypaofmrmmmtﬂdeammsmdthcmpondmg
hypotheses. In Table 1.2-1, the parameter is denoted using the symbol “8,” and the-difference between two
parameters is denoted using “®), - 8, where ©, represents the parameter of the first population and ©,
represents the parameter of the second population. The use of “6” is to avoid using the terms “population
mean” of “population median” repeatedly because the structure of the hypothesis test remains the same
regardless of the population parameter. The fixed threshold value is denoted “C,” and the difference between
two parameters is denoted “3,” (it is common to see the null hypothesis defined such that 8,= 0). If the data
user’s problem does not fall into one of the categaries described in Table 1.2-1, the problem and associated
hypothsamaybeofamaeoomphcatedfamandamusucmnshouldbeeonsxﬂted

. ijthcﬁrstoftbesixdecisionpmblmin'l'ablel.2-l,m1ysﬁmataof8thatmceed€cancast
doubt on the null hypothesis. This is called a one-tailed hypothesis test, because only parameter estimates on
one side of the threshold value can lead to rejection of the null hypothesis. The second, fourth, and fifth rows
of Table 1.2-1 are also examples of one-tailed hypothesis tests. The third and sixth rows of Table 1.2-1 are
examples of two-tailed tests, because estimates falling both below and above the null-hypothesis parameter
value can lead to rejection of the null hypothesis. Most hypotheses connected with environmental momtonng
are one-tailed because high pollutant levels canhmmhmansorecosystems.
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Teble 1.2-1. Commonly Used Statements of Statistical Hypotheses

i Compare environmental conditions to a fixed

§ threshold value, such as a regulatory standard o
i acceptable risk level; presume that the true '
¥ condition is less than the threshold value.

H,: 8<C

Hy: €>C

Comipare environmental conditions to a fixed
threshold value; presume that the true condition is
_pgreater than the threshold value.

H. 8<C

Compare environmental conditions to a fixed
threshold value; presume that the true condition is
equal to the threshold value and the data useris
concerned whenever conditions vary significantly
from this value.

Hy: 8#C

Compare envirmn@tgl,condiﬁom associated with
twodxffa'entpopulanmstoafﬁxedthtuholdvnlm

| fi; conditions associated with the two populanons are
| the same, the threshold value is 0.

Hy 8,-8,< 4§,

(Ho: 8,-8,50)

HA: ®l '®2> 60 :

(Hy ©,-8,>0)

| two different populations to a fixed threshold value
i (80) such as a regulatory standard or acceptable

 { risk level; presume that the true condition is greater
i than the threshold value. If it is presumed that

;J conditions assocmtedthhthetwopopulanonsue

the same, the threshold value is 0.

Hy: 8,-6,2 8,

(Hy: 8,-8,270)

H,: 8,-8,<8,

Hy ©,-8,<0)

i Compare environmental conditions associated with
| two different populations to a fixed threshold value
i (8,) such as a regulatory standard or acceptable
| risk level; presume that the true condition is equal
i to the threshold value. If it is presumed that :
condxhonsassomatedmththstwopopulanmsm
|_the same, the threshold valueis 0.
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l..3 DESIGNS FOR SAMPLING ENVIRONMENTAL MEDIA

Sampling designs provide the basis for how a set of samples may be analyzed. Different sampling
designs require different analysis techniques and different assessment procedures. There are two primary
types of sampling designs: authoritative (judgment) sampling and probability sampling. This secuon
dsc.nba some of the most common sampling designs.

13.1 Authontahve Sampling

With amhomanve (judgment) samphng,anexpathawng knowledge of the site (or proecss)
designates where and when samples are to be taken. This type of sampling should oaly be considered when
the objectives of the investigation are not of a statistical nature, for example, when the objective of a study is
to identify specific locations of leaks, or when the study is focused solely on the sampling locations .
themselves. Generally, conclusions drawn from authoritative samples apply only to the individual samples
and aggregation may result in severe bias and lead to highly erroneous conclusions. Judgmental sampling
also precludes the use of the sample for any purpose other than the original one. Thus if the data may be used
in further studies (e.g., for an estimate of variability in a later study), a probabilistic design should be used.

- When the study objectives involve estimation or decision making, some form of probability sampling:
is required. As described below, this does not preclude use of the expert's knowledge of the site or process in
designing a probability-based sampling plan; however, valid statistical inferences require that the plan
incorporate some form of randomization in choosing the sampling locations or sampling times. For example,
to determine maximum SO, emission from 8 boiler, thesamphngplanwouldmsomblyfows,orpmmostof
the weight on, periods of maximum or near-maximum boiler operation. Similarly, if a residential lot is being -
evaluated for contamination, then the sampling plan can take into consideration prior knowledge of
contaminated areas, by weighting such areas more heavily in the sample sclection and data analysis.

132  Probability Sampling

. Probability samples are samples in which every member of the target population (ie., every potential
sampling unit) has a known probability of being included in the sample. Prébability samples can be of
various types, but in some way, they all make use of randomization, which allows valid probability
statements to be made about the quality of estimates or hypothesis tests that are desived from the resultant
data,

One common misconception of probability sampling procedures is that these procedures preclude
the use of important prior information. Indeed, just the opposite is true. An efficient sampling design is one
that uses all available prior information to stratify the region and set appropriate probabilities of selection.
Another common misconception is that using a probability sampling design means allowing the possibility
that the sample points will not be distributed appropriately across the region. Howeve, if there is no prior
information regarding the areas most likely to be contaminated, a grid sampling scheme (a type of stratified
design) is usually recommended to ensure that the sampling points are dispersed across the region.

13.2.1 Simple Random Sampling

The simplest type of probability sample is the simple random sample where every possible sampling
unit in the target population has an equal chance of being selected. Simple random samples, like the other
samplw, can be either samples in time and/oz space and are often appropnate at an early stage of an
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investigation in which little is known about systematic variation within the site or process. All of the
sampling units should have equal volume or mass, and ideally be of the same shape if applicable. With a
simplerandomsample,tbeta'm “random” should not be interpreted to mean haphazard; rather, it has the

 explicit meaning of equiprobable selection. Simple random samples are generally developed through use of a
random number table or through computer generation of pseudo-random numbers.

1322 Sequential Random_Sampling

Usually, simple random samples have s fixed sample size, but some alternative approaches are
available, such as sequential random sampling, where the sample sizes are not fixed a priori. Rather, a
statistical test is performed afier each specimen's analysis (or after some minimum number have beea
analyzed). This s&ateywuldbeappﬁcablswhmsampﬁng and/or analysis is quite expensive, whea
information concerning sampling and/or measurement variability is lacking, when the characteristics of
interest are stable over the time frame of the sampling effort, or when the objecuve of the sampling effort is

to test a single specific hypothws
1323 Systematic Samples

In the case of spatial sampling, systematic sampling involves establishing a two~dimensional (cr in
some cases a three-dimensional) spatial grid and selecting a random starting location within one of the cells:
Sampling points in the other cells are located in a deterministic way relative to that starting point. In addition,
the orientation of the grid is sometimes chosen randomly and various types of systematic samples are
possible. For example, points may be arranged in a pattern of squares (rectangular grid sampling) o &
pattern of equilateral triangles (triangular grid sampling). The result of either approach is a simple pattern of -
equally spaced points at which sampling is to be performed.

: Systematic sampling designs have several advantages over random sampling and some of the other
types of probability sampling. They are generally easier to implement, for example. They are also preferred
when one of the objectives is to locate “hot spots™ within a site or otherwise map the pattern of
concentrations over & site. On the other hand, they should be used with caution whenever there is 8
possibility of some type of cyclical pattern in the waste site o process. Such a situation, combined with the
uniform pattern of sampling points, could very readily lead to biased results.

1.3.2.4 Stratified Samples -

- Another fype of probability sample is the stratified random sample, in which the site of process is.
divided into two or more nonoverlapping strata, sampling units are defined for each stratum, and separate
simple random samples are employed to select the units in each stratum. (If a systematic sample were
employed within each stratum, then the design would be referred to as a stratified systematic sample.) Strata
should be defined so that physical samples within a stratum are more similar to each other than to samples
from other strata. If so, 2 stratified random sample should result in more precise estimates of the overall
populauonpammaa'thmthosctbatwouldbeobtamedﬁ-omasxmplemndomsamplethhthesamemnnba
of sampling units. ‘

. Stratification is an accepted way to incorporate prior knowledge and professional judgment into a
probabilistic sampling design. Generally, units that are “alike” or anticipated to be “alike™ are placed
together in the same stratum. Units that are contiguous in space (e.g., similar depths) o time are often
grouped together into the same stratum, but characteristics other than spatial or temporal proximity can also
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be employed. Media, terrain characteristics, concentration levels, previous cleanup attempts, and
confounding contaminants can also be used as the basis for creating strata.

Advantages of stratified samples over random samples include their ability to ensure more uniform
coverage of the entire target population and, as noted above, their poteatial for achieving greater precision in
certain estimation problems. Even when imperfect information is used to form strata, the stratified random
sample will generally be more cost-effective than a simple random sample. A stratified design can also be
useful when there is interest in estimating or testing characteristics for subsets of the target population. - _
Because different sampling rates can be used in different strata, one can oversample in strata containing those
subareas of particular interest to ensure that they are represented in the sample. In general, statistical -
calculations for data gencrated via stratified samples are mare complex than for random samples, and certain
types of tests, for example, cannot be performed when stratified samples are employed. Therefore, a
stahshmanshouldbeconsdtedwhmmnﬁedsamphngnsused. S

- 1325 Compositing Phys:ca[ Samples

When analysis costs are large relative to sampling costs, cost-effective plans can sometimes be
achieved by compositing physical samples or specimens prior to analysis, assuming that there are no safety
hazards or potential biases (for example, the loss of volatile orgamc compounds from a matrix) associated
with such compositing. For the same total cost, compositing in this situation would allow a larger number of
sampling units to be selected than would be the case xfeomposmngwere not used. Composite samples
reflect a physical rather than a mathematical mechanism for averaging. Therefore, compositing should
generallybeavo:dedxfpopulauonparametusothuthanammarcofmta'm(eg_,pmhlworstandard
deviations).

Composite sampling is also useful when the analyses of composited samples arc tobe usedina
two-staged approach in which the composite-sample analyses are used solely as a screening méchanism to
identify if additional, separate analyses need to be performed. This situation might occur during an early
stageofastudythatseeksbloca&thoseueasthatdmavemmasedaﬁmhonduebpotenhaﬂyhghlwek
of one or more contaminants,

132.6 Other Sampling Designs

Adaptive sampling involves taking a sample and using the resulting information to design the next
stage of sampling. The process may continue through several addmonalromdsofsamphngandanalysns A
common application of adaptive sampling to environmental problems involves subdividing the region of -
interest into smaller units, taking a probability sample of these units, then sampling all units that border on
any unit with a concentration level greater than some specified level C. This process is continued until all
newly sampled units are below C. The field of adaptive sampling is currently undergoing active development
andcanbecxpectedtohaveasxmﬁcanhmpactonmwmnmmtal samplmg.

Rankedsetsamphng (RSS)uswthcavmlabxhty of an inexpensive surrogate measm‘anemwhenltxs
correlated with the more expensive measurement of interest. The method exploits this correlation to obtain a
sample which is more representative of the population that would be obtained by random sampling, thereby
leading to more precise estimates of population parameters than what would be obtained by random
sampling. RSS consists of creating n groups, each of size n (for a total of n? initial samples), then ranking the
surrogate from largest to smallest within each group. One sample from each group is then selected according
to a specified procedure and these n samples are analyzed for the more expensive measurement of interest.
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. CHAPTER 2

STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

THE DATA

QUALITY ASSESSMENT PROCESS

EPA QA/G-9

Review DQOs and Sampling Design N '
% — / CONDUCT PRELIMINARY DATA REVIEW
Conduct Preliminary Data Reviaw , Rapos
@ Ganerato statistical quantities and graphical
: representations that deacribe the data. Use thia
Information to leam about the structure of tho deia
Select the Statistical Test and identily any pattems or relationzhips. .
Verify the Assumptions -R .
' r + Caleuiate Basic Statistical Quartiliss
: \ . +Graph the Deta _
| Draw Conclusions From the Data
Tooks
- Statietical quartitieo
o Graphica! represeniations *

Step 2: 'Conduct 2 Preliminary Data Review-

Review quality assurancs reporta.

o Look for problems or anomalies in the implementation of the sampl@ colemn and
analysis proceduree. . .

o Examine QC dats for information to veniy assumplions undorlylng the Data Quality
Ob‘ed:vee. the Samﬂng end Analysig Plan, and the Quaily Assurance Project Piang.

Calculats the statistical quantities.

o Consider calculating appropriate percentiles (secﬁon 2219) -

o Select measures of central tendency (section 2.2.2) and dispareion (section 2.2.3).
o If the data involve two variables, calculate the cofrelation coefficient (section 2.2.4).

Display the data using graphical representations.

a  Select graphical representations (section 2.4) that dluminate the structure of the data set
and highlight assumptions undertying the Data Quality Objectives, the Sampling and
Analysis Plan, and the Quality Assurance Project-Plans.

o Ussa variety of graphical representations that axamine different features of the sat
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STEP 2: CONDUCK‘ A PRELIMINARY DATA REVIEW

EPA QA/G-9

I Statistical Quantities | Section | Directions | Example
§ Coefficient of Variation | 223 | Box224 | Box22-5
| Corrclation Coefficient | 224 | Box226 | Box226
| Interquartile Range 223 | Box224 | Box225
222 | Box222 | Box223 ||
222 | Box22-2 | Box22-3
222 | Box222 | Box223
221 | Box22-1 | Box22-1
223 | Box224 | Box2.2-5 |
223 | Box224 | Box22-5 |
223 | Box224 | Box22-5 |
I Graphical Representations | Section | Figure | Directions | Example |
I Box and Whisker Plot - | 233 |Figwe233 .|Box23-5 |[Box2.36
 Coded Scatter Plot. - 2373 | Figure 2.3-9 / |
Contour Plots 2393 | I
Autocorrelation Function 2382 |Figure23-13 | Box23-16 | Box23-17
Empirical Quantile-Quantile Plot | 23.7.4 |Box23-14 |Box23-14 [Box2.3-14
Frequency Plots 231 |Figure23-1 |Box23-1 |[Box23-2
h-Scatterplot 2393
Histogram 231 |Figwe23-2 |Box23-1 |Box23-2
Normal Probability Plot 236 |Box23-12 |Box23-11 |Box23-12
§ Parallel Coordinate Plot 2373 |Figwe23-10] =
Il Posting Plots 2391 |Figue23-14 | Box2.3-18 | Box2.3-18
|| Quantile Plot * - 235 |Figwe23-5 |Box23.9 |Box23-10
Ranked Data Plot 234 |Figwe234 |Box237 |Box23-8 u
Scatter Plot 2372 |Figure238 |Box23-13 |Box23-13 |
Scatter Plot Matrix 23.73 | Figure 2.3-11 j I
Stem-and-leaf Plot 232 |Box234 |Box23-3 '|Box234
Symbol Plots 23:92 | Figure23-15 | Box2.3-18 | Box2. 3-1su
ETimcHot 2338.1 | Figure2.3-12 | Box23-15_| Box2.3-15
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 CHAPTER 2
STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

21 OVERVIEW AND ACTIVITIES

In this step of the DQA Process, the analyst conducts a preliminary evaluation of the data set,
calculates some basic statistical quantities, and examines the data using graphical representations. A
preliminary data review should be performed whenever data are used, regardless of whether they are used to
support a decision, estimate a population parameter, or answer exploratory research questions. By reviewing
the data both numerically and graphically, one can learn the “structure” of the data and thereby identify
appropriate approaches and limitations for using the data. The DQA software DataQUEST (G-9D, 1996)
will perform all of these functions as well as more sophisticated statistical tests.

There are two main elements of preliminary data review: (1) basic statistical quantities (summary
statistics); and (2) graphical representations of the dats. Statistical quantities are functions of the data that
numerically describe the data set. Examples include a mean, median, percentile, range, and standard
deviation. They can be used to provide a-mental picture of the data and are useful for making inferences
concerning the population from which the data were drawn. Graphical representations are used to identify
patterns and relationships within the data, confirm or disprove hypotheses, and identify potential problems.
For example, a normal probability plotmayallowananalysttoqmcklydxscardanassmpuon of normality
and may identify potential outliers.

: Thepmhmmarydatamewstepmdsxgnedtomakethemalystfamﬂmmththcdat& The review
should identify anomalies that could indicate unexpected events that may influence the analysis of the data.
Thcana!ystmayknowwhattolookforbasedonthcanucxpateduseofthedatadoamwdmtheDam
Quality Objectives Process, the Quality Assurance Project Plan, and any associated documents. The results
ofthcmcwmthmmedmselectapmcedxmfortsungamnsucalhypothaatosuppmtthedatausa"s
decision.

2.1.1 Review Quality Assurance Reports

The first activity in conducting a preliminary data review is to review any relevant quality assurance
(QA) reports that describe the data collection and reporting process as it actually was implemented. These
QA reports provide valuable information about potential problems or anomalies in the dats set. Spec1ﬁc
items thatmaybehelpful include: '

3] Datsvahdanonrepatsthatdoammtthesampleooﬂecuon,hmdlmg,malym dataredusuon,and
: repm‘tmgptocedlmused,

o) thtyemtdmpats&omhbaa&maaﬁddstaﬁmsthatdoammkmcasmmtsystem
pafmmmcc,mcludmgdata&mnchecksampla,sphtsampla,spikedsampla, of any other internal
QC measures; and

© Technical systems reviews, performance cvaluatxon sudits, and audits of data quality, mcludmg data
from perfoxmance evaluation samples.
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When reviewing QA reports, particular attention should be paid to information that can be used to
check assumptions made in the Data Quality Objectives Process. Of great importance are apparent anomalies
in recorded data, missing values, deviations from standard operating procedures, and the use of nonstandard
data collection methodologies. '

23.2 Calculste Basic Statistical Quntities

" The goal of this activity is to summarize some basic quantitative characteristics of the data set using.
common statistical quantities. Some statistical quantities that are useful to the analyst include: number of
observations; measures of central tendency, such as a8 mean, median, or mode; measures of dispersion, such
as range, variance, standard deviation, coefficiént of variation, or interquartile range; measures of relative
standing, such as percentiles; measures of distribution symmetry or shape; and fheasures of association
between two or more variables, such as correlation. - These measures can then be used for description,
pommmicaﬁon.andtomthypothmisregardingthepopu!aﬁonfromwhichthedatawaédrawn. Section 2.2
provides detailed descriptions and examples of these statistical quantities.

The sample design may influence how the statistical quantities are computed. The formulas given in
this chapter are for simple random sampling, simple random sampling with composite samples, and
randomized systematic sampling, If a more complex design is used, such as a stratified design, then the
formulas may need to be adjusted.

2.13 Graph the Data

The goal of this step is to identify patterns and trends in the data that might go unnoticed using
purely numerical methods. Graphs can be used to identify these patterns and trends, to quickly coafirm or
disprove hypotheses, to discover new phenomens, to identify potential problems, and to suggest corrective
measures. In addition, some graphical representations can be used to record and store data compactly or to
convey information to others. Graphical representations include displays of individual data points, statistical
quantities, tempaoral data, spatial data, and two or more variables. Since no single graphical representation
will provide a complete picture of the data set, the analyst should choose different graphical techniques to
illuminate different features of the data. Section 2.3 provides descriptions and examples of common
‘graphical representations. : : '

. At a minimum, the analyst should choose 8 graphical representation of the individual data points and

~ a graphical representation of the statistical quantities. If the data set has a spatial or temporal component,

seleagmphiwlmpmﬁmsspedﬁsmtanpaﬂaspaﬁﬂdammaddiﬁmmmmadomt If the data
set consists of more than cae varisble, treat each variable individually before developing graphical :
representations for the multiple variables. If the sampling plan or suggested analysis methods rely ca any
a'iticalassmpﬁom,eonsidexwhmaparﬁculartypeofgraphmigh’tshedlightonthsvalidityoftha:
assumption. For example, if a small-sample study is strongly dependent on the assumption of normality, then '
~ anormal probability plot would be useful (section 2.3.6). _ :

The sampling design may influence what data may be included in each representation. Usually, the
graphical representations should be applied to each complete unit of randomization separately or each unit of

randomization should be represented with a different symbol. For example, the analyst could generate box
- plots foreachstranminswedofgmmﬁngoneboxplotthatincludstbcdgtaﬁ'omall.thestmta.
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2.2 STATISTICAL QUANTITIES
' --2.2.]1 Measures of Relative Standing

Sometimes the analyst is interested in knowing the relative position of one of several observations in
relation to all of the observations. Percentiles are one such measure of relative standing that may also be
useful for summarizing data. A percentile is the data value that is greater than or equal to a given percentage
of the data values. Stated in mathematical terms, the p* perceatile is the data value that is greater thanor -
equal to p% of the data values and is less than oz equal to (1-p)% of the data values. Therefore, if 'x' is the p®
percentile, then p% of the values in the data st are less than or equal to x, and (100-p)% of the values are
greater than or equal to x. A sample percentile may fall between a pair of observations. For example, the
75" percentile of a data set of 10 observations is not uniquely defined. Therefore, thaeareseva'almethods
fm'comptmngsampleperomhla,themostoommonofwhmh:sdwm‘bedeoxzz-l

Mpacmhlsmudlymwewedmtheqwm«ofthedam,thczs*,soﬁ,andﬁ*
percentiles. The 50 percentile is also called the sample median (section 2.2.2), and the 25 and 75*
percentile are used to estimate the dispersion of a data set (section 2.2.3). Also important for environmental
data are the 90%, 95%, and99*pmenh]ewha‘eadecxsxonmakuwouldliketobesmethat90%,95ﬁ:,
99%oftheeontammanonlevelsmbelowaﬁxednsklevel.

- Box 2.2.1: Directions for Calculaﬂng the Measure of Relative Standing (Percentiles)
with an Example

Let X, X, ..., X, represent the n data points. To compute the p® percentile, y{p), first kst the data from
smallest to largest and label these points X, 4y 32y . . .. {a, (80 that X{,, 8 the smallest, X ., is tha second
smallest, and X_,, is the largest). Lett=pH00, andmu!uplythelampleuzenbyt Divide the result into the
integer part and the fractional part, Le., let nt = j + g where j ia the integer part and g ie the fraction part. Then
the p™ percentile, y(p), Is calculated by:

Kg=0, Y(P)=(xm¢’$(|ou)a
otherwise, ¥P) = Xo s

Example: The 80™ and 9? percentile will be computed for the following 10 data points (ordered from smallest
to largest) : 4, 4 4,5,5,6,7,7,8, and 10 ppb.

- For the 85th pereenﬁet p/100 = 85/100= QSandnt =(10)(.05) = 9.5 = 9 + .5. Therefors, ] = 8 and
g=.5. Because g=.5» 0, ¥(85) = X, = Xoon= Xm,-mppm Thereforo. 10 ppm Is the 95° percentie
of the above data.

For the 80™ percentle, t = p/100 = 90/100= 95ndnt=(10)(9) ©. Thereforej=8 and g=0. Sinoeg-O
¥(80) = oqu(..,,vz (8 ¢+ 10¥2=9 ppm. |

A quantile is similar in concept to a percentile; however, a percentile represents a percentage whereas
a quantile represents a fraction. If'x' is the p* percentile, then at least p% of the values in the data set lie at or
‘below x, and at least (100-p)% of the values lic at or above x, whereas if x is the p/100 quantile of the data,
then the fraction p/100 of the data values lie at or below x and the fraction (1-p)/100 of the data values lic at
or above x. For example, the .95 quantile has the property that .95 of the observations lie at or below x and
.05 of the data lie at or above x. For the example in Box 2.2-1, 9ppmwouldbethe .95 quanhleanleppm
would be the .99 quantile of the data.
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223 Measures of Cenﬁ'aﬂ Tendency

Measures of central tendency characterize the center of a sample of data points. The three most
common estimates are the mean, median, and the mode. Dlrecnonsforcalculanngthaequanntlware '
contained in Box 2.2-2; examples are provided in Box 2.2-3.

Themostcommonlyusedmsmeofmecmterofasampleisthesamplemcan,dcnotedbyi This
estimate of the center of a sample can be thought of as the “center of gravity” of the sample. The sample
mean is an arithmetic average for simple sampling designs; however, for complex sampling designs, such as
stratification, the sample mean is a weighted arithmetic average. The sample mean is influenced by extreme
valum(largeorsmall)andnondetects(seesecﬁonllﬂ

Thesamplemedxan(X)mthesecmdmostpopularmeasweofthemofthedm Thxsvaluefalls
directly in the middle of the data when the measurements are ranked in order from smallest to largest. This
means that % of the data are smaller than the sample median and ¥; of the data are larger than the sample
median. The median is another name for the 50 percentile (section 2.2.1). Thcmednamsnotmﬂumcedby
exuemevalmandcaneasdybeusedmthzcaseofemsoreddata(mdawts)

. The third method of measuring the center of the data is the mode. Thesamplemodeisthevaluebf
the sample that occurs with the greatest frequency. Since this value may not always exist, or if it does it may
notbcun;'que,thisvalueistheleastcommonlyused. However, the mode is useful for qualitative data.

223 Measures of Dispersion

Measures of central tendency are more meaningful if accompanied by information on how the data
spread out from the center. Measures of dispersion in a data set include the range, variance, sample standard
deviation, coefficient of variation, and the interquartile range. Directions fmeomptmngthacmeasm&sare
given in Box 2.2-4; examples aregwentonZ-S

Theeasmtmcasm'eofd:spasxontocompmlsthesamplemge. Fmsmallsampls therangels

easymmterpretandmayadequatelytepmentthedxspusxmofthedat& Forlarge samples, the range is not
very informative because it only considers (and therefore is greaﬂymﬂumed) bye:dranevahm

Thcsamplevariancemeasmthcdispa'siqnﬁ'omthemeanofadataset. Alargesamplevariance
implies that there is a large spread among the data so that the data are not clustered around the mean. A small
sample variance implies that there is little spread among the data so that most of the data are near the mean.
The sample variance is affected by extreme values and by a large number of nondetects. ‘I'hcsamplestandard
dcvxahonxsthesqtmremotofthesamplevmmemdhasthesame\mntofmeasmasthcdan .

Thecoeﬁcmtofvamnon (CV)uamﬂ&smmethatallowsthecompansonofdnspmon
across several sets of data. .WCVuoﬁmusedmmwmmmmapphcanonsbecausevmabmty
_(expmsedasastandarddeviation)isoﬁmproporﬁonaltothcmm ’

Whenextranevalussarepment,themta‘qu’amlcrangemaybemorercpmmﬁ\?eofthe

dispersion of the data than the standard deviation. This statistical quantity does not depend on extreme
values and is therefore useful when the data include a large number of nondetects.
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Box 2.2-2: Directions for Calculating the Measures of Central Tendency
Let)(‘ Xa .- X% Fapresent the n data pointe.

Sample Mean: Thosamplemaanxnmesumofalmedatapomtsdiwdedbyttwtotainumberofdainpdnbs
(n):
- 1 R
X==Yx
R TR

Sample Median: The sample median (X) is the center of the deta when the measurements are ranked in
order from smallest to largest To compute the sample median, kst the data from smallest to largest and labs!
thess ;;ointsxu,, Xap - - -+ Koy (30 that X, is the smallest, X, ,, i8 the second smallest, and X, is the
largest). ' .

K the numbsr of data pointe is odd, then X- )Q[.;;urz)

' . X, +X
lfmenumbaofdata points is even, then X = —(=2) 3 (v +1)

Sample Mode: The mode'is the value of the eample that occurs with the greatest frequency. The mods may
not exdsg, of ¥ it does, it may not be unique. To find the mode, count the number of timee each valus occurs.
The sample mode is the value that occurs most frequently.

- — — -

[

Box 2.23: Example Calculations of the Méuum of Central Tendency

UangmedirechonsmBoxzz-Zandthofowng 10datapunb(inppm) 4,58,7,4,10,4, 5, 7 and 8,
mefonomngsanexamp!eofcompuungmewnplemean median, andm

Sample mean; _
E.4+5+6¢7+4;010¢4¢5¢7+8B_%)usppm

Thefefore‘ the sample mean is 6 ppm.

Sample median; Theordereddataam: 4,4,4, 5 5,6,7,7,8 and 10. Slmen=105wen the sample
median i

= X +X[1omo1) u X *X(G) J3+6

X-= = 5.5 ppm
Thus, the sample median iz 5.5 ppm.
Sample mode; Computing the numbar of imes each value occurs yieids:

éappwﬁ?aﬁmee.Sappeamzumes.Bappeanwme Tappeanzﬂmes.aappeala‘lﬁme and 10
appsears 1 ima.

Because the value of 4 ppmappiearsmemos;tﬁmw.it‘amemodaofmmw

. ==#‘ |
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Box 2.24: Directions for Calculating the Measures of Dispersion
Let X,, X,, ..., X, represent the n data points.

Sample Range: The sampie range (R) Is the difference between the largest value and the smallest value of
~ the sample, i.e., R = maxdmum - minimum. ‘

Sample Variance: To compute the sample véﬁanqe (8%), compute:
>x} - 0K
_

n.
s2 = 1

n-1
Sample Standard Deviation: The sample étandard deviation (s) is the square root of the sample variance, i.e.,

- (7

Coefficient of Variaﬁbn: The « coefficient of variation (CV) is the standard deviation divided by the sample mean
(section 2.2.2), i.e., CV =8/X. The CV is often expressed as a percentage. , : -

i Interquartile Range: Use the directions in section 2.2.1 to compute the 257 and 75 percentiles of the data
|
|

(¥(25) and y(75) respectively). The interquartie range (IQR) is the difference betwesn these values, i.e.,
IQR = y{75) - ¥{25). : C . : C '

Box 2.2-5: Exampls Calculations of the Measures of Disperslon

In this box, the directions in Box 2.2-4 and the following 10 data points (in ppm): 4, 5, 6, 7, 4, 10, 4, 5,7, and
* 8, are used to calculate the measures of dispersion. From Box 2.2-2, X = 6 ppm. '

Sample Range: R = maxdmum - ininjmum =10-4=6 ppm
Sample Variat:ace: B . _
(424524472487 - (445447488 450 (60F

2. 10 _ 0 .,
* —10-1._ 9 i

2

Sample Standard Deviation: s = g/s_z = V& = 2 ppm
Coefficient of Varigtion: CV = g /f = 2ppml5ppm = _;_ - 33% -

| Interquartie Range: Using the directions in section 2.2.1 to compute the 25" and 75" percenties of the data
. (¥(25) and y(75) respectively): Y(25) = X(z.4y= X3, =4 ppm and Y(75) = X(7.4) = X(0) =7 ppm. The
interquartle range (IQR) is the difference between these values: IQR =y(75)-y{(25)=7 -4 = 3 ppm
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2.2.4 Measures of Association

Data often include measurements of several characteristics (variables) for each sample point and
theremaybemtawtmknowmgthcmlahonshpmlcvdofassocmnmbctweeuhmotmomofth@se
variables. One of the most common measures of association is the correlation coefficient. Du'ectxomsandan
example for calculating a correlation coefficient are contained in Box 2.2-6.

_ The correlation coefficient measures t.he linear relationship between two variables. A linear
association implies that as one variable increases so does the other linearly, of as one variable decreases the
other increases linearly. Values of the correlation coefficient close to +1 (positive correlation) imply that as
one variable increases so does the other, the reverse holds for values close to -1. A value of +1 implies a
perfect positive linear correlation, i.c., all the data pairs lic on a straight line with a positive slope. A value of
-1 implies perfect negative linear correlation. Values close to 0 imply little correlation between the variables. .

The correlation coefficient does not imply cause and effect. The ana.lyst may say that the correlation
between two variables is high and the relationship is strong, but may not say that one variable causes the
other variable to increase or decrease without further evidence and strong statistical controls. The correlation
coefficient does not detect nonlinear relationships so it should be used only in conjunction with a scatter plot
(section 2.3.7.2). A scatter plot can be used to determine if the correlation coefficient is meaningful or if
some measure of nonlinear relationships should be used. The correlation coefficient can be significantly
changedbyc:muncvalumsoascattcrplotshouldbeusedﬁrsttoldcnnfysuchvalm

Box 2.2-8: Directions for Calculating the Corrrelation Coeﬂlclent wlith an Example

Let X, X, ... X,,representonevanableofthondatapomhudth,,Y, .. Y, represent a sacond variable of
the ndata pomts. ‘The Pearson correlation coefficient, r, between X and Y ks computed by. -

. 2 X3 Y,
. ;X,Y, _ il nl-l

1, &xro, (ir)*
-IEXf el HEY,

M Consldefﬁ'lefolovwngdataset(inppb) Sample 1 — arsenic (X) = 4.0, lead (Y) = 8.0; Sample 2 -
- arsenic =3.0, lead = 7.0; Samplea - arsenic = 2.0, lead = 7.0; and Sample 4 - - arsenic = 1.0, lead = 8.0.

Ex,uo, Er,azs, Zx,’-ao, EY,2=198, Ex,r, = (4x8) +...+ (1x6) = 73.
=l [ =1 . =1 7' el -

3 - (1028)

and 7 = . 4 -vz = 0.94§
30 - (10510)] (198 - (282_:28)]

Sincs ris close to 1, there i2 a strong lnear relationship between thesa two contaminants.
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23  GRAPHICAL REPRESENTATIONS
23.1 Histogram/Frequency Plots

- Two of the oldest methods for summarizing data distributions are the frequency plot (Figure 2.3-1)
and the histogram (Figure 2.3-2). Both the histogram and the frequency plot use the same basic principles to
display the data: dividing the data range into units, counting the number of points within the units, and -
displaying the data as the height or area within a bar graph. There are slight differences between the
histogram and the frequency plot. In the frequency plot, the relative hieight of the bars represents the relative
density of the data. In a histogram, the area within the bar represents the relative density of the data. The
difference between the two plots becomes more distinct when unequal box sizes are used.

0r 8r

8r

I §
Ll

. SO TS O

. | 1. [] | |
0o S5 10 15 W I 3B 3B O 0 8 0 8 22 23 BV I ©
 Figure 2.3-1. Example of a Frequency Plot Figure 2.3-2. Example of a Histogram

The histogram and &equmcyplotpmvidé-ammmofmingthcsymmeuyandvaﬂabiﬁtyofthc
data. If the data are symmetric, then the structure of these plots will be symmetric around a central point such
as amean. mmmmmplmmMMmmemmmme
of the skewness.

_ Dxmuonsforgmanhngahmtogmnandaﬁequmplotmmnedm&x23elandan
example is contained in Box 2.3-2. When plotting a histogram for a continuous variable (e.g., concentration),
it is necessary to decide on an endpoint convention; that is, what to do with cases that fall on the boundary of
abox. With discrete variables, (e.g., family size) the intervals can be centered in between the variables. For
the family size data, the intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on, 50 that the whole
numbers that relate to the family size can be centered within the box. The visual impression conveyed by a
hxsmgramou&equmcyplotcanbeqmtesmsxmcmthcchoweofm:uvalmdth The choice of the number
of intervals determines whether the histogram shows more detail for small sections of the data or whether the
_ data will be displayed more simply as & smooth overview of the distribution.
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~ Box23: Directions for Generating a Histogram and a Frequency Plot
Let X,, X3 oo 5 represent the n data pointe. To develop @ hrstogram ora frequency plot
STEP 1. Select mtafvals that cover the range of observations. If possible, these intervals should have equa

widths. A rule of thumb is to have between 7 to 11 intervals. If necessary, specify an endpoint
convention, i.e., what to do with cases that fall on interval endpointa.

"STEP 2. Compute the number of observations within each interval. Fof a frequency piot with equal interval
sizes, the number of observations represents the height of the boxes on the fraquency plot

STEP 3: Determine the horizontal axis based on the range of tha data’ The vertical axs for a frequency plot
is the number of observations. Thevaﬂcdwdsofhehishgmnbpasodon percentages.

STEP 4. For a histogram, edmpute the percentage of observations within each interval by @viding'ﬂw
number of obsarvations within each interval (Step 3) by the total number of abservations.

STEP 5. For & histogram, select a common unit that corresponds to the x-axis. . COmpdte the numbsar of
common units in each interval and divide the percentage of observations within each interval (Step
4) by this number This step is only necessary when the intervals (Step 1) are not of equal widthe.

STEP 6; Using boxes, plot the intarvals aganstmeresuhdStepSfmahhtpgmnwmmm agaana
the numbsr of observations in an interval (Step 2) foufroquencyplot

ﬂ , ' Box 2.3-2: Example of Ganefatlhg a Histogram and a Frequsncy Pbé

Consider the following 22 sampleg of a contaminant concentration (In ppm): 7.7, 17.4, 22.8, 35.5, 28.8,
7.2 19.1, <4, 7.2, <4, 156.2, 14.7, 14.9, 10.9, 12.4, 12.4,11.6, 14,7, 10.2, 5.; i6.5,end 8.2. :

STEP4: This data spans 0 - 40 ppm. Equally szed intervals of 5 ppm will be usad: 0 - 5 ppm; 5 - 10 ppm;
atc. The endpoint convention will be that values are placed in the highest interval containing the
value. For example, a valus of 5 ppm will be placed in the interval 5 - 10 ppm instead of 0 - 5 ppm.

STEP 2. The table below shows the number of obsarvations within each interve! defined in Step 1.

"STEP3: The horizontal axis for the data is from 0 to 40 ppm. The vertical axis for the frequency plot is from
0- 10andmevedwwfmmehmgmnﬁom0% 10%.

STEP 4: Thero are 22 observations total, 80 the numbaobsemﬁomnhmhhehblebﬁowwﬁbs
divided by 22. The resulte areshawnhcolumnaofmotablebelow

. STEP5: A common unit for this data is 1 ppm. In each interval thefe are 5 common units 8o the
percentage of observations (column 3 of the table below) should b divided by 5 (column 4).

STEP &: Thdftequenqplotisahawnk:ﬁgﬁm 2.3-1 and the histogram is ghown In Figure 2.3-2
#ofObo-  9%ofObs = %ofObs

Jnterval In Intejval m'_mm Ref DpM
0- Sppm 2 1.8
5-10 ppm 3 1360 27
10-15 ppm 8 36.38 7.3
15-20 ppm . 8 .27

20-25 ppm 1 455

25 - 230 ppm 9 4.55

30-35 ppm 0 0.00

35 - 40 ppm 1 455,
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232 Stem-and-Leaf Plot

The stem-and-leaf plot is used to show both the numerical values themselves and information about
the distribution of the data. It is a useful method for storing data in a compact form while, at the same time,
sorting the data from smallest to largest. A stem-and-leaf plot can be more useful in analyzing data than a
histogram because it not only allows a visualization of the data distribution, but enables the data to be
reconstrucied and lists the observations in the order of magnitude. However, the stem-and-leaf plot is one of
the more subjective visualization techniques because it requires the analyst to make some arbitrary choices
regarding a partitioning of the data. Therefore, this technique may require some practice or trial and error
before a useful plot can be created. As a result, the stem-and-leaf plot should caly be used to develop a
picture of the data and its characteristics. Directions for coastructing a stem-and-leaf plot are given in Box
23-3andancxamplenscontamedeox23-4

_ Eachobservanonmthestem and-leafploteonsxstoftwopam the stem of the observation and the
leaf. The stem is generally made up of the leading digit of the numerical values while the leaf is made up of
trailing digits in the order that corresponds to the order of magnitude from left to right. The stem is displayed

on the vertical axis and the data points make up the leaves. Changing the stem can be accomplished by
increasing or decreasing the digits that are used, dividing the groupings of one stem (i.e., all numbers which
starthththenumzml6canbedmdedmwm1ergmupmgs).m’mNuplymgﬂwdambyaoonsmmm
(i.c., multiply the data by 10 or 100). Nondctectscanbcplaoedmasmglem

A stem-and-leaf plot roughly displays the distribution of the data. For example, the stem-and-leaf
plot of normally distributed data is approximately bell shaped. Since the stem-and-leaf roughly displays the
distribution of the data, the plot may be used to evaluate whether the data are skewed or symmetric. The top -
half of the stem-and-leaf plot will be a mirror image of the bottom half of the stem-and-leaf plot for
symmetric data. Datathatareskcwedtothcleﬁwxllhavethebu]kofdatamthetopofthcplotandlwsdata
spreadoNoverthebottomoftheplot.

233 Bozx and Whisker Plot

~ A box and whisker plot or box plot (Figure 2.3-3) is a schematic
diagram useful for visualizing important statistical quantities of the data. Box
plots are useful in situations where it is not necessary or feasible to portray all '
the details of a distribution. Directions for generating a box and whiskers plot _l_
arccontmmdeox23-5 andanammplexsomtmnedeonBé ' '

Aboxandwhxskasplotnscomposedofamﬂalboxdwxdedbyahqe
and two lines extending out from the box called whiskers. The lengthofthe -
central box indicates the spread of the bulk of the data (the central 50%) while |
the length of the whiskers show how stretched the tails of the distribution are. :
The width of the box has no particular meaning; the plot can be made quite
narrow without affecting its visual impact. The sample median is displayed as &
line through the box and the sample mean is displayed using a ‘+’ sign. Any :
unusually small or large data points are displayed by a *** on the plot. A box o
and whiskers plot can be used to assess the symmetry of the data. If the '
dxsmbuuonlssymmcmcamhmtheboxnsdxvxdedmtwoequalhalvwbythe
median, the whiskers will be the same length and the number of extreme data Figure 2.3-3.
points will be distributed equally on either end of the plot. - Example of & Box and

Whisker Plot -
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Box 2.3.3: Directions for Generating & Stem and Leaf Plot

Let X,, X, ..., % represent the n data points. To develop a stem-and-eaf plot, complete the following steps:

STEP 1: Arrange the observatione in ascending order. The ordered data is usually labeled (from smallest to
largest) X1y X2y - Xar :

STEP 2 Choose either one or more of the leading digits to ba the stem values. As an axample, for the value 16,
1wuldbeuse§uhestemaitinheleadingdigit ’ . :

STEP 3: List the atem values from smallest to largest at the left (along @ vertical axds). Enter the leaf (the
remaining digits) values in order from lowest to highest to the right of the stem. Using the value 16 as an
mtampio,iﬂhﬁbmommenmeawﬂbemebat '

:

Box 2.34: Example of Generating a Stem and Leaf Plot

Consider ths following 22 samples of triflucrine (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 17.2 9.9, <4,7.2, <4, 15.2,
14.7, 14.9, 10.9, 12.4, 12.4, 118, 147, 10.2, 52,165,and 8.8,

STEP 1: Arrange the observations in @scending order: <4, <4,5.2,7.7, 8.8, 10.2, 10.9, 11.8, 12.4, 12.4, 14.7,
147, 14.9, 15.2, 18.5, 17.4, 17.7, 18.1,22.8, 28.8, 35.5.

] STEP2 Choose either one or more of the leading digits to be the stem values. For the above data, using the first
digit a8 the stem does not provide enough detai for analysis. Therefore, the first digit will be used as @
" stem; however, each stem will have two rows, one for the leaves 0 - 4, the other for the leaves 5 - 8.

STEP 3: List the stem values at the left (along a vertical axis) from smallest to largest. Enter the leaf (the
' remaining digits) values in order from lowest to highest to the right of the stem. The first digit of the data
was usad as the stem values; however, each stem value has two leaf rows.

0(0,1,2,3,4) |<4 <4

0(5.6.7,8,8) (527788 .

1(0,1.2.3,4) |02 0.8 1.8 2.4 2.4 47 47 49 i
1(5,6,7.8,8) |52 65747794

2(0,1,2,3,4) |28

2(5,6,7.8,9) |86

3(0,1,23,49) | -

3(5.6,7,8,8) |55

Note: if nondetacts are present, place them first in the ordered ist, using a symbol such as <L I muttiple detection
Eimits were used, place the nondetects In increasing order of detection imits, using symbols such as <L1, <2, etc.
| 1 the first stam extends from zero to @ value above the detection imit, then nondatects can be placed in thia interval,
| as shown in the example above. Otherwise, special intervals dedicatad to nondetects can be used.

EPA QA/G-9 - 23-4 QA%6



Box 2.3-8: Dlrecﬂons for Ganerating a Box and Whiskers P!oe

Set the vertica) scale of the plot based on the maximum end minimum valuge of the data set. Selecta
width for the box plot keeping in mind that the width i only a visualization tool. Labal the width w; the
horizanta! scale then ranges from -YAWY to ¥aW.

Compute the upper quartie (Q(.75), the 75% percentile) and the lower quartile (Q(.25), the 25%
. parcentile) using Box 2.2-1. Compute the sample mean and median uslng Box 2.2-2. Then, compute
the interquartio range (IQR) where IQR = Q(.75) - Q(.25).

Draw & box through points ( -¥W, Q(.75) ), (-KW, Q (25) ), ( ¥W, Q(25))and(‘éw Q(.75) ). Draw
& line from (KW, Q(.5)) to (-%WV, Q(.5)) and mark point (0, X -) with (¢).

STEP 41 Computs the uppef end of the top whisker by finding the largest data value X lssa than
Q(.75) + 1.5{ Q(.75) - Q(.25) ).- Draw & ne from (0, Q(.75)) to (0, X).

Computs the lower end of the botom whisker by finding the emaliest data value Y grsataf than
Q(.25) - 1.5( Q(.75) - Q(.25) ). Draw a fine from (0, Q(.25)) to (C, Y).

'STEPS: For all points X° > X, place an asterisk () at the point (0, X7).
For all poinis Y° < Y, place an asterisk (*) at the point (0, Y*).

. - - : |

J Box 2.3-8. Example of 2 Box and Whiskers Plot

Consnderﬂ\efouawingnsamplw of trifluoring (in ppm) bsted in order from amaliest to largest 4.0, 8.1, 8.8, 10.7,
10.8, 11.5, 11.8, 12.4, 12.4, 14.6, 14.7, 14.7, 16.5, 17, 17.5, 20.8, 20.8, 25.7, 25.9, 28.5, 320 and 35.5.

STEP i: The data ranges from 4.0 to 35.5 ppm. Thsamerangeofﬁ\avecﬁwm Arbitrarily, a width of 4 will
be usad for the horizonta aeda.

L STEP 2  Using the formulas in Box 2.2-2, the samp!o mean = 18.87 and the T -
! : median = 14.70. Using Box 2.2-1, Q(.75) = 20.8 and Q(.25) = 11.5. =
Therefore, QR = 20.8 - 11. 5=93 : :

»B: =
STEP 3. Inthe ﬁgure.aboxhasbeendmwnmrou.h points ( -2, 20.8), (-2, 11.5), om:
(2, 11.5), (2, 20.8). Afine has been drawn from (-2, 14.7 )to (2, 14.7), :
and the peint (0, 18.87) has bean marked with a '+’ gign. . B-
| STEP4: Q(.75)+ 1.5(8.3) 2 34.75. The closest data velue to this number, but less o- ]
than &, 8 32.0. Therefors, a Ene has been drawn in the figure from. oo N B
(0, 20.8) tc ( 0, 32.0). . B

Q(.25)- 1.5(9.3 ) =-2.45. The closest data velue to this number, but greater 107
thanit, iz 4.0. Therdom.a!neha@ndrawnhﬁmeﬂgurefrom

(0, 4) 0 (0, 11.5). _ 8:
. STEPS5: Thereis only 1 data value greater.than 32.01Mﬂchb355 Therefors, the 0-
i point ( 0, 35.5) has been marked with an asterisk. There are no data velues

less than 4.0,
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23.4 Ranked Data Plot

A ranked data plot is a useful graphical representation that is easy to construct, easy to interpret, and
makes no assumptions about a model for the data. The analyst does not have to make any arbitrary choices
regarding the data to construct a ranked data plot (such as cell sizes for a histogram). In addition, a ranked
data plot displays every data point; therefore, it is a graphical representation of the data instead of a summary
of the data. DxrecuonsfordcvelopmgarankeddataplotmgwmmBoxz3-7andanexamplelsgwenm
‘Box 2.3-8.

Arankeddataplotisaplotofth@dataﬁ‘omsmaﬂsttolm'gatatcvmlyspacedinmﬂs(ﬁgm
2.3-4). This graphical representation is very similar to the quantile plot described in section 2.3.5. A ranked
data plot is marginally easier to generate than a quantile plot; however, a ranked data plot does not contain as
much information as a quantile plot. Both plots can be used to determine the density of the data points and
theskcwnxsofthcdata,however,aqmntxleploteontamsmformahononthequamlsofthcdatawhma
rankeddataplotdoesnot. :

Data Valuu.
®
®
[ ]

o
o provvr Tl

o00®
ooo°°’°.

oooo"°..

SH\;M ‘ : - Largut
Figure 234, Example of a Ranked Data Plot

_ Arankeddataplotcanbeusedtodctamnethcdmsntyoftbcdatavalu&,ne if all the data values
are close to the center of the data with relatively few values in the tails or if there is a large amount of values
in one tail with the rest evenly distributed. The density of the data is displayed through the slope of the graph.
A large amount of data values has a flat slope, i.¢., the graph rises slowly. A small amount of data values has
a large slope, i.c., the graph rises quickly. Thus the analyst can determine where the data lie, cither evenly
distributed or in large clusters of points. In Figure 2.3-4, the data rises slowly up to a point where the slope
increases and the graph rises relatively quickly. This means that there is a large amount of small data values
and relatively fewlargedatavalw

Amkédda&plotcanbcusedwdetamimifthcdammskcwedaifthcymsymmcﬁc. A
ranked data plot of data that are skewed to the right extends more sharply at the top giving the graph a
convex shape. A ranked data plot of data that are skewed to the left increases sharply near the bottom giving
the graph a concave shape. If the data are symmetric, then the top portion of the graph will stretch to upper
right comer in the same way the bottom portion of the graph stretches to lower left, creating 8 s-shape. . .
Figure 2.3-4 shows a ranked data plot of data that are skewed to the right.
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Box 2.3-7: Directions for Generating a Ranked Data Plot

Let Xy, X, ..., X, represent the n data points. Let X,,, for =1 ton,
be the data listed in order from smallest to largest so that X,,(i=1)
is the smallest, X, (i = 2) is the second smallest, and X, (i=n)is -
the largest. To generate a ranked data plot, plot the ordered X ~ .
values at equally spaced intervals along the horizontal axis.

Box 2.3-8: Example of &mﬂw_a Ranked Data Plot

Consider the following 22 samples of triflourine (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 17.2 19.1,
49,72 4.0,15.2, 14.7, 14.9, 10.9, 12.4, 124, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9. The data
ksted in order from smallest to largest X, along with the ordered number of the observation (i) are:

L P41 1 Xy
1 40 i2 147
2 49 13 14.98
3 52 14 15.2
4 7.7 15 185
5 - 8.9 16 172
6 10.2 17 174
7 10.9 18 17.7
8 116 19 .. 191
9 124 20 228
10 124 21 286
11 14.7 2 355 -

Arankeddataplotofmisdataisapbtofthepain(l.)&.,). This plot is shown below.
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235 Quantile Plot

A quantile plot (Figure 2.3-5) is a graphical representation of the data that is easy to construct, easy
to interpret, and makes no assumptions about a model for the data. The analyst does not have to make any
arbitrary choices regarding the data to construct a quantile plot (such as cell sizes for a histogram). In
addmon,aquannleplotdlsplayseverydatapomt,thmfore,ltlsagraphlcalrepmentauonofthcdata
instead of a summary of the data.

Aquamileplotisagraphoftheqmnﬁlw(swtion2.2.l)ofthedata. The basic quantile plot is
visually identical to a ranked data plot except its horizontal axis varies from 0.0 to 1.0, with each point
plotted according to the fraction of the points it exceeds. This allows the addition of vertical lines indicating
the quartiles or, any other quantiles of interest. Duecuonsfordcvelopmgaqtmnhleplotaregventox
2.3-9 and an example is given in Box 2.3-10.

. ogl—— iInterquartiie Rangs  ~—~——

(7]
T

Lower Upper

Data Values
N

|t N

0 0.2 04 0.6 0.8 -1
| Fraction of Data (f-values)

Figure 2.3-5. Example of a Quantile Plot of Skewed Data

A quantile plot can be used to read the quantile information such as the median, quartiles, and the
interquartile range. In addition, the plot can be used to determine the density of the data points, e.g., are all
the data values close to the center with relatively few values in the tails or are there a large amount of values
in one tail with the rest evenly distributed? The density of the data is displayed through the slope of the
graph. A large amount of data values has a flat slope, i.e., the graph rises slowly. A small amount of data
values has a large slope, i.c., the graph rises quickly. A quantile plot can be used to determine if the data are
skewed or if they are symmetric. A quantile plot of data that are skewed to the right is steeper at the top right
than the bottom left, as in Figure 2.3-5. A quantile plot of data that are skewed to the left increases sharply
near the bottom left of the graph. If the data are symmetric then the top portion of the graph will stretch to
the upper right corner in the samé way the bottom portion of the graph stretches to the lower left, creating an
s-shape. _
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Box 2.3-9: Directions for Generating a Quantile Plot

Let X,, X, ..., X, represent the n data points. To obtain a quantile plot, let X, for
i = 1 to n, be the data listed in order from smallest to largest so that X ,,(i= 1) is
the smallest, X,,, (i = 2) is the second smalleet, and X, (i = n) is the largest. For
each i, compute the fraction £, = (i - 0.5)n. The quantile plot is a plot of the pairs

Box 2.3-10: Example of Generating a Quantile Plot

Consider the following 10 data points: 4 ppm, 5 ppm, 8 ppm, 7 ppm, 4 ppm, 10 ppm, 4 ppm, 5 ppm, 7 ppm,
and 8 ppm. The data ordered from smallest to largest, X,,,, are shown in the first column of the table below
and the ordered number for each obsaervation, |, is shown in the second column. The third column displays the
values {, for each i where ;= (i - 0.5)/n.

£

X A A Xy L

4 1 0.05 .6 6 0.55
4 2 0.15 7 4 065
4 3 0.25 7 8 0.75
5 -4 0.35 8 9 0.85
5 ] 045 . 10 10 0.95

The pairs (f, X, are then plotted to yield the following quantie plot

10

'] '

0o - 02 04 06 08 1
Fraction of Data (f-values)

Note that the graph curves upward; therefore, the data appear to be skewed to the right
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23.6 Normal Probabnhty Plot (Quantxle-Quantxle Plot)

Tha'earetwotypaofquannle-quannleplotsorq-qplots Thcﬁrsttype,ananpmcalquannlea _
quantile plot (section 2.3.7.4), involves plotting the quantiles of two data variables against each other. The
second type of a quantile-quantile plot, a thearetical quantile-quantile plot, involves graphing the quantiles of
a set of data against the quantiles of a specific distribution. The following discussion will focus on the most
common of these plots for environmental data, the normal probability plot (the normal g-q plot); however, the
discussion holds for other q-q plots. The normal probability plot is used to roughly determine how well the
data set is modeled by a normal distribution. Formal tests are contained in Chapter 4, section 2. Directions
for developing a normal probability plot are givea in Box 2.3-11 and an example is given in Box 2.3-12.

A normal probability plot is the graph of the quantiles of & data set against the quantiles of the
normal distribution using normal probability graph paper (Figure 2.3-6). If the graph is linear, the data may
be normally distributed. If the graph is not linear, the departures from linearity give important information
about how the data distribution deviates from a normal distribution.

: If the graph of the normal probability plot is not linear, the graph may be used to determine the
degree of symmetry (or asymmetry) displayed by the data. If the data are skewed to the right, the graph is
convex. If the data are skewed to the left, the graph is concave. If the data in the upper tail fall above and the
data in the lower tail fall below the quartile line, the data are too slender to be well modeled by a normal
distribution, i.e., there are fewer values in the tails of the data set than what is expected from a normal
distribution. If the data in the upper tail fall below and the data in the lower tail fall above the quartile line,
then the tails of the data are too heavy to be well modeled using a normal distributioa, i.e., there are more
values in the tails of the data than what is expected from a normal distribution. A normal probability plot can
be used to identify potential outliers. A data value (or a few data values) much larger or much smaller than
therwtwﬂlcausetheothadatavalmtobecompmsedmtothemxddleofthegmph,numngthemolmon.

Box 2.3-14: Directions for Construcﬁng a Normal Probabillity Plot
_Letx, Xa ot )grepresentﬂ\endatapomb. '

STEP 1: For each data value, oomputa the absoluts frequency, AF,. The absolute frequency is the number i
"of imes each value occure. For distinct values, the absolute frequencyis 1. For non-distinct )
observations, count the number of imes an observation occura. For example, consider the dats 1,
2, 3, 3. The absolute frequency of value 1 i 1 and the absolute frequency of value 218 4. The
absolutafrequedcyofvalueSbZaineosappeamZtimesinmedataeet :

STEP 2: Compute the cumulative frequencies, CF, The cumu!auve frequency is the number of data points
matarelesshanorequdtox.,i.e CF, = ZAF Usmgthedatagwenmstepz the

cumulative frequency for value 1 ke 1, the cumulaﬁve frequency for value 2 is 2 (1+1), and the
cumulative i’requency forvalue3is 4 (1¢1¢2)

STEP 3: Compute ¥, = 2”100 x (Cﬁ;) and plotihe paire (Y, X) using normal probabdity paper (Figure

2.3-6). Kfthe graph ofmesopamappfonmawyfomash'alghtlno then the data are probably
normally distributed. Otherwise, modatamaynotbenonnaﬂydmbtm

mﬂ
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STEP3: Thevalues Y, = 100 x (

n
these pairs (Y,, X) using normal probability paper is also shown below.

+1

Box 2.3-12: Example of Normal Probability Plot
Consider the following 15 data points: 5, 5, 6, 6, 8, 8, 9, 10, 10, 10, 10, 10, 12, 14, and 15.

STEP 1: Because the value 5 appears 2 times, its absolute frequency is 2. Similarly, the absolute frequency of 6 is
2,0f8is 2, of 9is 1, of 10is 5, etc. These values are shown in the second column of the table below.

STEP 2: The cumulative frequency of the data value 8 is 6 because there are 2 values of 5, 2 values .of 6,and 2
values of 8. The cumulative frequencies are shown in the 3™ column of the table.

F.
L Ytor each data point are shown in column 4 of the table below. A plot of

Individual Absolute Cumulative

i X, Frequency AF, Frequency CF, Y,
1 5 2 2 12.50
2 6 2 4 25.00
3 8 2 6 37.50
4 9 1 7 43.75
5 10 5 12 75.00
6 12 1 13 81.25
7 14 1 14 87.50
8 15 1 15 93.75

20

18

16

14 g

A
4
12
X
10 T
8
A
A

6 =

4

2
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Y
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Figure 2.3-6. Normal Probability Paper
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23.7 Plots for Two or More Variables

Data often consist of measurements of several characteristics (variables) for each sample point in the
data set. For example, a data set may consist of measurements of weight, sex, and age for each animal in a
- sample or may consist of daily temperature readings for several cities. In this case, graphs may be used to
compare and contrast different variables. For example, the analyst may wish to compare and contrast the
. temperature readings for different cities, or different sample points (each containing several variables) such
the height, weight, and sex across individuals in a study.

To compare and contrast individual data points, some special plots have been developed to display
multiple variables. These plots are discussed in section 2.3.7.1. To compare and contrast several variables,
collections of the single variable displays described in previous sections are useful. For example, the analyst -
" may generate box and whisker plots or histograms for each variable using the same axis for all of the
variables. Separate plots for each variable may be overlaid on one graph, such as overlaying quantile plots
for each variable on one graph. Another useful technique for comparing two variables is to place the stem
- and leaf plots back to back. In addition, some special plots have been developed to display two or more
~ variables. These plots are described in sections 2.3.7.2 through 2.3.7.4. : '

2.3.7.1 Plots for Individual Data Points

Since it is difficult to visualize data in more than 2 or 3 dimensions, most of the plots developed to
display multiple variables for individual data points involve representing each variable as a distinct piece of 2
two-dimensional figure. Some such plots include Profiles, Glyphs, and Stars (Figure 2.3-7). These graphical
representations start with a specific symbol to represent each data point, then modify the various features of '
the symbol in proportion to the magnitude of each variable. The proportion of the magnitude is determined
. by letting the minimumn value for each variable be of length 0, the maximum be of length 1. The remaining
values of each variable are then proportioned based on the magnitude of each value in relation to the

oy

Profilo Plot

Glyph Plot Star Plot

Figure 2.3-7. Example of Graphical Representatioas of -
Multiple Variables '

A profile plot starts with s line segment of a fixed length. Then lines spaced an equal distance apart
and extended perpendicular to the line segment represent each variable. A glyph plot uses a circle of fixed
radius. From the perimeter, parallel rays whose sizes are proportional to the magnitude of the variable extend
from the top half of the circle. A star plot starts with a point where rays spaced evenly around the circle
represent each variable and a polygon is then drawn around the outside edge of the rays.
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i3.71 Scatter Plot

For data sets consisting of paired observations where two or more continuous variables are measured

for each sampling point, a scatter plot is one of the most powerful tools for analyzing the relationship

between two or more variables. Scatter plots are easy to construct for two variables (Figure 2.3-8) and many
computer graphics packagw can construct 3-dimensional scatter plots. Du'ecuons for constructing a scatter

plot for two variables are given in Box 2.3-13 along with an example.
A scatter plot clearly shows the

relationship between two variables. Both
potential outliers from a single variable and or
potential outliers from the paired variables _ * x
may be identified on this plot. A scatter
plot also displays the correlation between
the two variables. Scatter plots of highly 2

linearly correlated variables cluster : >20f -
compactly around a straight line. In e y
addition, nonlinear patterns may be obvious wl = *

on a scatter plot. For example, consider two
variables where one variable is r W, e e

approximately equal to the square of the © % 2 n s s

other. A scatter plot of this data would _ Chromium VI (ppb)

display a u-shaped (parabolic) curve.
Another important feature that can be Figure 2.3-8. Example of a Scatter Plot
detected using a scatter plot is any -

clustering effect among the data.

Box 2.3-13: Directions for Generating a Scatter Plot and an Example

| LetX,, X,, ..., X, represent one variable of the n data points and let Y,, Yy, ..., Y, represent a second variable of
| the n data points. The paired data can be written as (X, Y)) fori= 1, ..., n. To construct a scatter plot, plot the
§ ﬁtstvariabledongmehonzontalmandﬂ\eseoondvanablealongﬂtevemedm Tt does not matter which
| vanableisplacedonwhlcha)ds.

| Example A scatter plot wil bedevelopedformedahbelow PCE values aredisplayedon the vertical axis and
i Chromium VI values are displayed on the horizontal axis of Figure 2.3-8.

PCE Chromium | PCE Chromium - PCE Chromium
| (pPb) V1 (ppb) (ppb) | Vi(ppb) - | (Ppb) V1 (ppb)
14.48 3768 | 223 0.77 | 4.14 2.38
37.21. 6.92 3.51 1.24 3.28 0.68
10.78 1.05 6.42 348 5.2 0.65 |
18.62 6.30 2.98 102§ | 402 0.68
7.44 143 3.04 1.15 6.30 1.93
37.84 6.38 1260 | . 544 8.2 3.48
13.59 5.07 3.58 249 1.32 273
4.31 3.56 7.72 3.01 7.73 ' 1.61
5.88 1.42
—
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2.3.7.3 Extensions of the Scatter Plot

It is easy to construct a 2-dimensional scatter plot by hand and many software packages can construct

a useful 3-dimensional scatter plot. However, with more than 3 variables, it is difficult to construct and

interpret a scatter plot. Therefore, several graphical representations have been developed that extend the idea

of a scatter plot for data consisting of 2 or more variables.

The simplest of these graphical

representations is a coded scatter plot.
In this case, all possible pairs of data are o -
given a code and plotted on one scatter s
plot. For example, consider a data set of » |
3 variables: variable A, variable B, and
variable C. Using the first variable to i‘
designate the horizontal axis, the analyst =
may choose to display the pairs (A, B) b
using an X, the pairs (A, C) using a Y, m p

%

oo ‘83:
and the pairs (B, C) using a Z on onc '@‘w*,, *

Chromium ve. PCE
Atrazine ve. PCE

Atrazine va. Chvomium vV

scatter plot. All of the information 0
described above for a scatter plot is also
available on a coded scatter plot.

0
(ppd)

20

However, this method assumes that the  gioyre 2.3-9. Example of a Coded Scatter Plot

ranges of the three variables are

comparableanddoanotpmwdcmformahonmthree—wayahxghamwwuonsbdwemthevmabls An

example of a coded scatter plot is given in Figure 2.3-9.

A parallel coordinate plot also extends the idea of a scatter plot to higher dimensions. The parallel
coordinates method employs a scheme where coordinate axes are drawn in parallel (instead of perpendicular).
Consider a sample point X consisting of values X, for variable 1, X,forvamblcz and so on up to X, for

variable p. A parallel coordinate plot

.

1 3 Ouim Veiuss for

is constructed by placing an axis for i
cach of the p variables parallel to 0
cach other and plotting X, oa axis 1,
X, on axis 2, and so on through X,
on axis p and joining these points
with a broken line. This method
contains all of the information

“W1

Ouin Valuss for

available on a scatter plot in addition o 1
to information on 3-way and higher
interactions (¢.g., clustering among
three variables). However, for p

10 11 12 13 14

variables one must construct (p+1)/2

parallel coordinate plots in order to . ) , —
display all possible pairs of variables. ()} 1 2 3 4 6 7 g Ve

:& & givl :ﬁ.;m ;};ﬂ%’ Figure 2.3-10. Example of a Parallel Coordinates Plot
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A scatter plot matrix is another useful method of extending scatter plots to higher dimensions. In
this case, a scatter plot is developed for all possible pairs of the variables which are then displayed in a matrix
format. This method is easy to implement and provides a concise method of displaying the individual scatter
plots. However, this method does not contain information on 3-way or higher interactions between variables.
An example of a scatter plot matrix is contained in Figure 2.3-11.

40 14 f
= +* 122 +
g¥f Tl + ¥
2 . & s I .
E e [ s
3 20F £
2 -+ ~ 8 =+
: L £’ %ﬁ T+
£ 4
o1} .3 +
v g i
0 L i . % 0 = n i .
0 10 20 30 40 0 10 20 30 40
40 r Chromium N (ppb) 14r Chromium IV (ppb)
) e )
= 12} -+
gf T} kg
> =
E e 8t -+
207 -+ W
. <
Gl :#_ -h_:t + ‘1 Ny
4 2}
rﬂr- e 0
o A 1 'y 0' - ' i i e 1 'l 1
0 2 4 6 8 10 12 14 ] 2 4 (] 8 10 12 14
Atrazine (ppb) Atrazine (ppb)

Figure 2.3-11. Example of a Matrix Scatter Plot

2.3.7.4 Empirical Quantile-Quantile Plot

An empirical quantile-quantile (q-q) plot involves plotting the quantiles (section 2.2.1) of two data
variables against each other. This plot is used to compare distributions of two or more variables; for
example, the analyst may wish to compare the distribution of lead and iron samples from a drinking water
well. This plot is similar in concept to the theoretical quantile-quantile plot and yields similar information in
regard to the distribution of two variables instead of the distribution of one variable in relation to a fixed
distribution. Directions for constructing an empirical q-q plot with an example are given in Box 2.3-14.

An empirical g-q plot is the graph of the quantiles of onc variable of a data set against the quantiles
of another variable of the data set. This plot is used to determine how well the distribution of the two
variables match. If the distributions are roughly the same, the graph is linear or close to linear. If the
distributions are not the same, than the graph is not linecar. Even if the graph is not linear, the departures from
linearity give important information about how the two data distributions differ. For example, a q-q plot can
be used to compare the tails of the two data distributions in the same manner a normal probability plot was
used to compare the tails of the data to the tails of a normal distribution. Inaddmon,potmualomhas(fmm
the paired data) may be identified on this graph. .
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Box 2.3-14: DlrocﬂonsfocConstmcﬂngm Empirical Q-Q Plot with an Example

Let X,, X,, ..., X, represent n data points of one variable and let Y,, Y,, ..., Y, represent a second variable of m
data points. Letx(,,.fotl=1bn beheﬁustvaﬂableistedho:d«fromsmaﬂestmlargestaomat&,,(i 1)
is the smallest, X, ,, (i = 2) is the second smallest, and X,,, (i = n) is the largest. LetY,,, fori=1ton, be the
seoondvambleistedhorderfromamaﬂesttolargestsomaw(.,(=1)sthesmaﬂest. Y(,,(n-z)nthe
secondamaﬂe&andY«.,(hm)umolargeat.

‘Hm=n: Ifmetwovadableehzvemesamonumbefofobwvaﬁom then an empirical g-q plot of the two
variables is simply a plot of the ordered values of the variables. Since n=m, replace m by n. A piot of the pairs

Krp Yoo Kiap Yiap <o Kiap Y(.,)itanempiﬂﬁl quantile-quantile plot.

fn>m: lfmetwovariableahaveadiﬂumtnumbaofobeuvaﬂom menmempquuanﬂo-quanﬂoplot
will consist of m (the smaller number) paire. Theunpuwdq—qpbtwimenboaplotdmoo‘defedealus

. against the interpolated X values. Fori=1,i=2, ..., i=m,letv=(n/m)i - 0.5) + 0.5 and separate the result

intou\eintagefpanandmefrachondpan.l.o letv-j*gwh«o]hmohtogerpanandgnmefracﬂonpart.
if 9 = 0, plot the pair (¥,), X;,). Otherwise, plot the pair (Y, (1-g)X;, * X1, ). Aplotofthesepamlsan

empirical quantile-quantile plot.

Example: Considef two sets of contaminant readings from two gseparate drinking water wells at the same site.
The data from well 1 are: 1.32, 3.26, 3.56, 4.02, 4.14, 5.22, 6.30, 7.72, 7.73, and 8.22. The data from well 2
are: 0.65, 0.68, 0.68, 1.42, 1.61, 1.93, 2.36, 2.49, 2.73, 3.01, 3.48, and 5.44. An empirical g-q plot will be
used to compare the distributions of these two wells. Since there are 10 observations in well 1, and 12
observations in well, the case for n » m will be used. Therefore, fori= 1, 2, ..., 10, compute:

=1 v - %(1-.5»5 = 1.1 -s0j=1and g=.1. Since g0, piot (1.32,(.8).65+(.1).68)=(1.32, 0.653)

=2 v= —i%(z‘—.syf.s'- 2.3 soj=2and g=.3. Since gs0, plot (3.26,(.7).68+(.3).68)=(3.26, 0.68)

23 v = :—3(3 -5)+5 = 3.5 soj=3andg=5. Since g+0, plot (3.56,(.5).68+(.5)1.42)=(3.56,1.05)

Continue this process fori =4, 5, 8, 7, 8, 9, and 10 to yield the following 10 data paire (1.32, 0.653), (3.28, -
0.68), (3.56, 1.05), (4.02, 1.553), (4.14, 1.898), (5.22, 2.373), (6.30, 2.562), (7.72, 2.87), (7.73, 3.339), and
(8.22, 5.244). These pairs are plotted below, along with the best fitting regression line.

10 -

.
4
s

8

s
5
<)

o

N

L4 6 8 10

Quantiles of Well 1
This graph indicates the variables behavo roughly the same since there are no substantial deviations from the
fitted fine.
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238 Plots for Temporal Data

Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal
component. For example, air monitoring measurements of a pollutant may be collected once a minute or once
a day; water quality monitoring measurements of & contaminant level may be collected weekly or monthly.

An analyst examining temporal data may be interested in the trends over time, correlation among time
pesiods, and cyclical patterns. Somegraphxcalrepmtahonsspwﬁctotanponldatamtheﬁmeplot,
correlogram, and variogram.

_ Datacoﬂectedﬁtregularﬁmeintavalsarecallcdﬁmesaia. Timesaiadatamaybcanalyzcd
using Box-Jenkins modeling and spectral analysis. Both of these methods require a large amount of data
ooﬂectedatregularmtervalsandmbeyoﬁtbcscopeofthxsgmdame Itlsreomnmendedthatthcmmted
reader consult a statistician.

The graphical representations presented in this section are recommended for all data that havea
temporal component regardless of whether formal statistical time series analysis will be used to analyze the
data. If the analyst uses a time series methodology, the graphical representations presented below will play
an important role in this analysis. If the analyst decides not to use time series methodologies, the graphical
repmentauonsdwmbedbelowwﬂlhclpxdmhfytanpmwlpaﬁunsthatneedmbemomtedformthc
analysis of the data.

The analyst examining temporal environmental data may be interested in seasonal trends, directional
trends, serial correlation, and stationarity. Seasonal trends are patterns in the data that repeat over time, ie.,
the data rise and fall regularly over one or more time periods. Seasonal trends may be large scale, such as a
yearly trend where the data show the same pattern of rising and falling over each year, or the trends may be
small scale, such as a daily trend where the data show the same pattern for each day. ‘Directional trends are
downward or upward trends in the data which is of importance to environmental applications where
contaminant levels may be increasing or decreasing. Serial correlation is a measure of the extent to which
successive observations are related. If successive observations are related, statistical quantities calculated
mthaﬁaccomhngforsmalomelaﬂonmaybebmsed. Finally, another item of interest for temporal data is
- stationarity (cyclical patterns). 'Stationary data look the same over all time periods. Directional trends and

_ increasing (or decreasing) variability among the data imply that the data are not stationary.

Temporal data are sometimes used in environmental applications in conjunction with a statistical
hypothesis test to determine if contaminant levels have changed. If the hypothesis test does not account for
temporal trends or seasonal variations, the data must achieve a “steady state™ before the hypothesis test may
be performed. 'I'hcrefore,thcdatamustbessenhaﬂythesameforcomparablcpmodsofhmebothbefm
and after the hypothesized time of change.

Sometimes multiple observations aretakﬁ:ineachﬁmepaiod. For example, the sampling design
may specify selecting 5 samples every Monday for 3 months. If this is the case, the time plot described in
section 2.3.8.1 may be used to display the data, display the mean weekly level, display a confidence interval
for each mean, or display a confidence interval for each mean with the individual data values. A time plot of
all the data can be used to determine if the variability for the different time periods changes. A time plot of
the means can be used to determine if the means are possibly changing between time periods. In addition,
each time period may be treated as a distinct variable and the methods of section 2.3.7 may be applied. '
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233.1 Time Plot

One of the simplest plots to generate that provides a large amount of information is a time plot. A
time plot is a plot of the data over time. This plot makes it easy to identify large-scale and small-scale trends
- over time. Small-scale trends show up on a time plot as fluctuations in smaller time periods. For example,
ozone levels over the course of one day typically rise until the afternoon, then decrease, and this process is
repeated every day. Larger scale trends, such as seasonal fluctuations, appear as regular rises and drops in
the graph. For example, ozoae levels tend to be higher in the summer than in the winter so ozone data tend to
show both a daily trend and a seasonal trend. A time plot can also show directional trends and increased
variability over time. Possible outliers may also be easily identified using a time plot.

0 § 10 15 20 25 30 35 40 45 50
Time : :

Figure 23.12. Example of a Time Plot Showing a Slight Downward Trend

A time plot (Figure 2.3-12) is constructed by numbering the observations in order by time. The time

ordering is plotted on the horizontal axis and the corresponding observation is plotted on the vertical axis.

The points plotted on a time plot may be joined by lines; however, it is recommended that the plotted points
not be connected to avoid creating a false sense of continuity. The scaling of the vertical axis of a time plot is
of some importance. A wider scale tends to emphasize large-scale trends, whereas a smaller scale tends to
emphasize small-scale trends. Using the ozone example above, a wide scale would emphasize the seasonal
component of the data, whereas a smaller scale would tend to emphasize the daily fluctuations. Directions for
consmxcnngaumeplotarecontamedeoxz}lSalongthhanammple. ‘

Box 2.3-15: Directions for Generating a Time Plot and an Example

Let Xy, X,, ..., X, represent n data points kisted in order by time, i.e., the subscript represents the ordered time
j intefval Aplotofﬂtepdmﬂ.&)baﬁmeplotofﬂ\bdata.

1 Example: ConsidermefolowingSOdairyohsetvaﬁom(idedhorderbyday) 10.05, 11.22, 15.9, 11.15, 1053
 13.33, 11.81, 14.78, 10.93, 10.31, 7.85, 10.11, 10.27, 14.25, 8.6, 9.18, 12.2, 9.52, 7.59, 10.33, 12.13, 11.31,

| 10.13,7.11, 672 8.97, 10.11, 772 9.57, 6.23 7.25, 8.89, 9.14, 12.34, 9.99, 11.26, 5.57, 9.55, 8.91, 7.11, 604

| 8.67,5.62, 599 5.78, 8.66, 58 6.8,7.7,8.87. Bylabelingday 1 as 1, dayzasz.andsoon.aumeplotb '

‘ oonsﬁuctedbyplotﬁng the pdm(l.)q)wherelrepresemsme number of the day and X, represents the concentration |
| level. A time plot of this data is shown in Figure 2.3-12. ’
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2382 Plot of the Autocorrelation Function (Correlogram)

Serial correlation is a measure of the extent to which successive observations are related. If
successive observations are related, cither the data must be transformed or this relationship must be
accounted for in the analysis of the data. The correlogram is a plot that is used to display serial correlation
when the data are collected at equally spaced time intervals. The autocorrelation function is a summary of the
serial correlations of data. The 1* autocorrelation coefficient (r,) is the correlation between points that are 1
time unit (k,) apart; the 2* autocarrelation coefficient (r,) is the correlation between points that are 2 time-
units (k,) apart; etc. A correlogram (Figure 2.3-13) is a plot of the sample autocorrelation coefficients in
which the values of k versus the values of , are displayed. Directions for constructing a correlogram are
contained in Box 2.3-16; example calculations are contained in Box 2.3-17. For large sample sizes, a
correlogram is tedious to construct by hand; therefore, soﬁwanclichataQUEST (QA/G-9D) should be used.

The correlogram is used for modeling

umesmwdataandmaybeusedtodetmnelf 125r

serial correlation is large enough to create ™

problems in the analysis of temporal data using arsh ™

other methodologies besides formal time series . .

methodologies. A quick method for determining | - 0S5} .

if serial correlation is large is to place horizontal | = o8] e

lines at +2/vV'n on the correlogram (shown as * x X m ®

dashed lines on Figure 2.3-13). Autocorrelation °r e X X * A

eoefﬁcxentsthatcxceedthxsvaluereqmreﬁmhcr 025} i j

investigation. _ C oosl ——

_ ° s 0 15 20 25 30
In application, the correlogram is only .

useful for data at equally spaced intervals. To  Figure 2.3-13. Example of a Correlogram
relax this restriction, a variogram may be used : o

instead. The variogram displays the same
mformauonasawnelogl'maweptthatthcdatamaybebasedmtmequaﬂyspacedumcmmﬂs For more
mformauonontheeonsuucnonanduswofthevmogram,consultastansucxm A

Box2.3-16 Dltecﬂonﬂoc(:onsweﬂng a Correlogram

; Letx, X, ... X..representmedatapomlsotderedbyhmefofequalyspeeedﬂmepomls Le., x,wascolectedat
| time 1, X,was collected at time 2, and so on. Toeonshuctacorrelogram first compute the sample autocofrelation
5 coeﬂiaents Sofork=0, 1, ..., compute r, where

_ rk=§- and g, = EX (n-k)A72

0 tok+1

Once the 1, have been computed, a correlogram is the graph (k, r,) fork=0, 1,...,andsoon. Asa
| approximation, compute up to approximately k = n/8. Also, note that r, = 1. Finally, place horizontal ines at +2/V/n.
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Box 2.3-17: Example Calculations for Generating a Correlogram

8am. Sam.. 1'0 am. 11am. 12am. 1pm. 2pm. 3pm.
16 14 12 9 10 7 7 5

g = za:X,X,-nfz=900-(8)(10)2=100
Cdel '

' 8
g = ‘EzX,X,-. - (n-1)X° = 744 - (T10p = 44

8
& = ,X;X:X:-z - (n-2)X* = 606 - (6)10)* = 6

&
g = Y XX_, - (n-3)X* = 481 - (5K10) = -19
' i 4
Forhlghervaluesofk,meregrefewreacﬁngsavaiauetooomputeg.sog.isnotmeaningful. k folows
0,06, r, = =22 = -0.19.
' 100

. Theoonelogramisshownbeliwv.

1
0.8
Y
04}
- 02
z 0
. -02 S
C04f
08|
038

-0.707

2 y
k.
(Hours)

i In this case, it appears that the observations are not serially correlated because all of the correlogram points are

I within the bounds of £2/VB (£0.707). In Figure 2.3-13, if k represents months, then the cormelogram shows a yearly

| correlation between data points since the points at k=12 and k=24 are out of the bounds of £2/vn. This comelation
will need to be accounted for when the data are analyzed. . :
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Table 2.3-1. Table for Calculating & Correlogram

|| Co L D e | % % | % %o | % I Lo ] e | e | e | e | a%e | X%
EEE 2% |

| 2 14 16 196 244
“ 3 | 2| 14| 18 144 188 192

4 o| 2| 4| 16 81 s08 | 128 144

5 |0] o] 22| 14| 8 100 90 120 140 | 160

8 7 jo.] o 12 14 16 4§ 70 83 84 08 412
| 7 7 7] 10 o| 12| 14| 49 40 70 83 84 908 112
“ 8 5 7| 7| 0| o) 2] 14| 16 35 50 a5 80 70 80 §
Totol | ] 1 808 | 481 80 |
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23.9 Plots for Spatial Data

The graphical representations of the preceding sections may be useful for exploring spatial data.
However, an analyst examining spatial data may be interested in the location of extreme values, overall
spatial trends, and the degree of continuity among neighboring locations. Graphical representations for
spatial data include postings, symbol plots, correlograms, h-scatter plots, and contour plots.

The graphical representations presented in this section are recommended for all spatial data
regardless of whether or not geostatistical methods will be used to analyze the data. The graphical
representations described below will help identify spatial patterns that need to be accounted for in the analysis
of the data. If the analyst uses geostatistical methods such as kriging 10 analyze the data, the graphical
representations presented below will play an important role in geostatistical analysis.

2.3.9.1 Posting Plots

A posting plot (Figure 2.3-14) is a map of data locations along with corresponding data values. Data
posting may reveal obvious errors in data location and identify data values that may be in error. The graph of
the sampling locations gives the analyst an idea of how the data were collected (i.c., the sampling design),
areas that may have been inaccessible, and areas of special interest to the decision maker which may have
been heavily sampled. It is often useful to mark the highest and lowest values of the data to see if there are
any obvious trends. If all of the highest concentrations fall in one region of the plot, the analyst may consider
some method such as post-stratifying the data (stratification after the data are collected and analyzed) to
account for this fact in the analysis. Directions for gcneraung a posting of the data (a posting plot) are
contained in Box 2.3-18.

128

108

Road

wa

Figure 2.3-14. Example of a Posting Plot
2.3.9.2 Symbol Plots
For large amounts of data, a posting plot may not be feasible and a symbol plot (Figure 2.3-15) may

be used. A symbol plot is basically the same as a posting plot of the data, except that instead of posting
individual data values, symbols are posted for ranges of the data values. For example. the symbol ‘0’ could
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represent all concentration levels less than 100 ppm, the symbol 1’ could represent all concentration levels
between 100 ppm and 200 ppm, etc. Directions for generating a symbol plot are contained in Box 2.3-18.

4

[

(7]

on 2.3-18: Dlrections for Generating aPosﬂng Pbtmd aSymbd Pl&
wnhanEnmpb

Onmriapoﬁmeaita.uotmlocaﬁondeaehsampla Ateaehbeaﬂon,mhdmmevdueofmm
point (a posting piot) or indicate by an appropriate symbol (a symbol piot) the data range witiiin which the
valus of the data point falls for that location, using one unique symbol per data range.

Example: The spatial data displayed in the table below containe both & location (Northing end Easting) snd o
coneenh'atonfsvd([c]) ThedatarangefrmAOb355soundsof5mdwoentngrnuplhedam.

Range .~ Symbo| Range W

0.0- 492 0 200-248

50- 29 1 25.0-20.9 5

10.0-14.9 2 300-3489 6’

15.0-10.9 3 35.0-39.9 7
Northing Easting {cl _ Symbol Northing Easting___fcl  Symbal

250 - 00 40
250 5.9 118
250 100 14.9
2BL 150 174
20.0 0.0 7.7
200 © S50 924
200 100 288
200 150 .7 -
i50 .00 i5.2
15.0 5.0 355
i50 0.0 14.7

150 150 165
€0 00 89
100 50 147
100 00 409
00 150 424
50 00 228
50 50 189
50 100 102,
50 150 52
00 50 4@
00 50 72

Thepoﬁngplotofhsdaiabdsphyodhmumz3-14mdmesymbdploth&mhﬁgurezs-15

NN GNWONNG
WO=2NEANNN - W
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2393 Other Spatial Graphical Representations

The two plots described in sections 2.3.9.1 and 2.3.9.2 provide information ca the location of
extreme values and spatial trends. The graphs below provide another item of interest to the data analyst,
- continuity of the spatial data. The graphical representations are not described in detail because they are used
more for preliminary geostatistical analysis. These graphical represeatatioas can be difficult to develop and
mterpret. Formoremformauononthxereprsmtanons,multastansncxm

_ Anh-sca&erplotlsaplotofallpossiblepwsofdatawhoselocahonsareseparatedbyaﬁxed
distance in a fixed direction (indexed by b). For example, a h-scatter plot could be based on all the pairs
whose locations are 1 meter apart in 8 southerly direction. A h-scatter plot is similar in appearance to a
scatter plot (section 2.3.7.2). The shape of the spread of the data in a h-scatter plot indicates the degree of
continuity among data values a certain distance apart in particular direction. If all the plotted values fall close
toaﬁxedhna,thmthedatavaluaatlocanonsscpmtedbyaﬁxeddlstamemsﬁxedlocat:onarevay
similar. 'As data values become less and less similar, the spread of the data around the fixed line increases
_outward. TbcMmalystmaywnstu&sevmlh-scaﬁaploummdxﬂmmsmmwaluatedw
change in continuity in a fixed direction. -

. A correlogram is a plot of the correlations of the h-scatter plots. Because the h-scatter plot only
displays the correlation between the pairs of date whose locations are separated by a fixed distance in a fixed
direction, it is useful to have a graphical representation of bow these carrelations change for different
separation distances in a fixed direction. The correlogram is such g plot which allows the analyst to evaluate
the change in continuity in a fixed direction as & functica of the distance between two points. A spatial
correlogram is similar in appearance to & temporal correlogram (section 2.3.8.2). The correlogram spans
opposite directions so that the correlogram with a fixed distance of due nosth is identical to the correlogram
with a fixed distance of due south.

Contour plots are used to reveal overall spatial trends in the dats by interpolating data values
between sample locations. Most contour procedures depend on the density of the grid covering the sampling
area (higher density grids usually provide more information than lower densities). A contour plot gives one
of the best overall pictures of the important spatial features. However, contouring often requires that the
actual fluctuations in the data values are smoothed so that many spatial features of the data may not be
visible. mmmmapshmndbemedmthothagrapmwmpmaumsofthedmmMmmwm

Judgunmttoadequatelymta'pratheﬁndmgs
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CHAPTER 3

STEP 3; SELECT THE STATISTICAL TEST

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

¥

-|Conduct Preliminary Data Review

SELECT THE STATISTICAL TEST

12

Wanmﬁﬁnm&ab«mm

data based on the prefminasy dats revisw,

Select the Statistical Test
& _ Activiea
Verify the Assumptions « Seloct Statistical Hypothzale Teet
& « identify Assumptions Undarlying Tet
Draw Conclusions From the Data Tooks -
* Hypothesis tests for s singls pogulation

< Hypothesis tests for comparing two poputations

Step 3: Select the Statistical Test

Select the statistical hypothesa test based on the data user's objectives and tha results of the

preliminary data review.

o [fthe problem involves oomparlng study results to a ﬁxed threshold, such asa reguiatory
standard, consider the hypothesis tests in section 3.2 .

o . f the problem involves comparing two populations, such as comparing data from two different
locations or processes, then consider the hypoihesatestsm gection 3.3.

Idonw the sssumpiions undarying the stawicd test
List the key undertying assumptions of the etatistical hypothesis test, such as distnbubond form,
dispersion, independence, or others as applicable. :

o  Nots any sensitive mumpﬂom where relatively small deviations could jeopardge the valdity of
the test results, .
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STEP 3: SELECT THE STATISTICAL TEST

Dlrechons

| Mean One-Sample t-Test 32.1.1 | Box3.2-1
" - Box 3.2-3
Wilcoxon Signed Rank Test 3.212 | Box3.2-§
' ' - | Box3.2.7
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¢ Two Means Two-Sample t-Test 33.1.1 | Box33-1
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Non-Parametric Wilcoxon Rank Sum Test 333.1 | Box3.3-7 |- Box3.3-8
Comparisoa of Two : Box 3.3-9
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3.2-1: Directions for a One-Sample t-Test foa' Snnple and Systananc Random Samplw
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3.2-2: An Example of a One-Sample t-Test for 8 Simple Random or Composite Sample ...... “ee..32-4
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3.3-1: Directions for the Student's Two-Sample t-Test (Equal Variances) - :

. for Simple and Systematic Random Samples ............. eecenaroes vereeees 3323
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CHAPTER 3 -
STEP 3: SELECT THE STATISTICAL TEST

3.1 OVERVIEW AND ACTIVITIES

This chapter provides information that the analyst can use in selecting an appropriate statistical
hypothesis test that will be used to draw conclusions from the data. A brief review of hypothesis testing is
contained in Chapter 1, “Developing DQOs Retrospectively.” There are two important outputs from this
step: (1) the test itself, and (2) the assumptions underlying the test that determine the validity of conclusions
drawn from the test results.

. This section describes the two primary activities in this step of the DQA Process. The remaining
sections in this chapter contain statistical tests that may be useful for analyzing environmental data. In the -
one-sample tests discussed in section 3.2, data from a population are compared with an absolute criterion
such as a regulatory threshold or action level. In the two-sample tests discussed in section 3.3, data from a
population are compared with data from another population (for example, an area expected to be
contaminated might be compared with a background area). For each statistical test, this chapter presents its
purpose, assumptions, limitations, robustness, and the sequence of steps required to apply the test.

The directions for each hypothesis test given in this chapter are for simple random sampling and
randomized systematic sampling designs, except where noted otherwise. If 8 more complex design is used
(such as a stratified design or a composite random sampling design) then different formulas are needed, some
of which are contained in this chapter. : :

3.1 Select Statistical Hypothesis Test

Ifaparﬁculart&thasbeenspeciﬁedcithaintthQOPrms,theQualityAssmnccProjectPlan,
or by the particular program or study, the analyst should use the results of the preliminary data review to
determine if this statistical test is legitimate for the data collected. If the test is not legitimate, the analyst °
shoulddoqmmswhythisparﬁaﬂarsmﬁsﬁcaltwtshmﬂdnotbeappuedtothcdmandthcnseleaa
different test, possibly after consultation with the decision maker. If a particular test has not been specified,
the analyst should select a statistical test based on the data user's objectives, preliminary data review, and
likely viable assumptions. : ' _ '

312 Identify Assumptions Underlying the Statistical Test

All statistical tests make assumptions about the data. Parametric tests assume the data have some
distributional form (e.g., the t-test assumes normal distribution), whereas nonparametric tests do not make
this assumption (e.g., the Wilcoxon test only assumes the data are symmetric but not necessarily normal).
However, both parametric and nonparametric tests may assume that the data are statistically independent o
that there are no trends in the data. While examining the data, the analyst should always list the underlying
assumptions of the statistical hypothesis test, such as distribution, dispersion, or others as applicable.

Another important feature of statistical wsts is their seasitivities (nonrobustness) to departures from
the assumptions. A statistical procedure is called robust if its performance is not seriously affected by

moderate deviations from its underlying assumptions. The analyst should note any sensitive assumptions
where relatively small deviations could jeopardize the validity of the test results,
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32 TESTS OF HYPOTHESES ABOUT A SINGLE POPULATION

A one-sample test involves the comparison of a population parameter (¢.g., a mean, percentile, or
variance) to a threshold value. Both the threshold value and the population parameter were specified during
Step 1: Review DQOs and Sampling Design. In & one-sample test, the threshold value is a fixed number that
does not vary. If the threshold value was estimated (and thaeforewmmnsvamblhty),none-sampletmtls
not appropriate. An example of a one-sample test would be to determine if 95% of all companies emitting
- sulfur dioxide into the air are below a fixed discharge level. For this example, the population parameteris a -
percentage (proportion) and the threshold value is 95% (.95). Another example is a common Superfund
problem that involves comparing the mean contaminant concentration to a risk-based standard. In this case,
the risk-based standard (which is fixed) is the threshold value and the statistical parameter is the true mean
contaminant concentration level of the site. However, comparing the mean concentration in an area to the
meancmcmmnmofamfmm(bmkmmd)wmndnotbeamc-samphmbecansethcnmn .
concentration in the reference area would need to be estimated.

- The statistical tests discussed in this section may be used to determine if © < 6, or 8 > 8, where 6
represents either the population mean, median, a percentile, or a proportion and 6, represents the threshold:
value. Sechm321¢sumtutswnwnmgthepopuhhmmsecuw322dmmwmumng
aproportlonorpaccntxle,andsecuon322dlswssatstsforamedxm

3.2.1 Tests for & Mean

o A population mean is 8 measure of the center of the population distribution. It is one of the most
-commonly used population parameters in statistical hypothesis testing because its distribution is well known
for large sample sizes. The hypotheses considered in this section are:

Casel: Hy p<C vs. Hy u>C;and
Case2: Hy u2C vs. Hy: p<C

whereCrepmentsagivmthmholdsmhasafegulatmylcveLandpd@tsthe(mw)mmcontamiham
~ level for the population. For example, C may represent the arsenic concentration level of concern. Then if
the mean of the population exceeds C, thsdatausﬁ’maywuhtotakem

Tbcmformatxonrequn'edfm'thxsm(deﬁnedetepl)mcluduthenullandaltamuvehypo!hm '
(either Case 1 or Case 2); the gray region, i.e., s value p, > C for Case 1 or a value u, <C for Case 2
repmenﬁngthcbmmdofthegrayregim;mefalseposiﬁveenm'mematC;dxefalsenegaﬁvearorratcpat
u,; and any additional limits on decision errors. It may be helpful to label any additional false positive error
limits as &, at C,, &, at C,, eic., and to label any additional false negative error limits as B, at p,, B, at p,, etc
For example, consider the following decision: daammcwhabathcmeaneonmmnamlevelatawastesnte :
is greater than 10 ppm. The null hypothesis is Hy: p 2 10 ppm and the alternative hypothesis is H,: u <10
ppm. A gray region has been set from 10 to 8 ppm, 2 false positive error rate of 5% has been set at 10 ppm,
and s false negative error rate of 10% has been set at 8 ppm. Thus, C = 10 ppm, p, = 8 ppm, « = 0.05, and
$=0.1. Ifanaddmonalfalsenegauvemmtewasset,fmammple,anmmteofl%at4ppm,then
B,=.0l and p, =4 ppm. :
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32.1.1 The One-Sample ¢-Test
PURPOSE

Given a random sample of size n (or 8 composite sample of size m, each composite consisting of k
aliquots), the one-sample t-test can be used to test hypotheses involving the mean () of the population from
which the sample was selected. .

ASSUMPTIONS AND THEIR VERIFICATION

The primary assumptions required for validity of the one-sample t-test are that of a random sample
(independence of the data values) and that the sample mean X is approximately normally distributed.
Because the sample mean and standard deviation are very sensitive to outliers, the t-test should be preceded
by a test for outliers (see section 4.4). -

Approximate normality of the sample mean follows from approximate normality of the data values.
In addition, the Central Limit Theorem states that the sample mean of a random sample from & population
with an unknown distribution will be approximately normally distributed provided the sample size is large.
This means that although the population distribution from which the data are drawn can be distinctly different
from the normal distribution, the distribution of the sample mean can still be approximately normal when the
sample size is relatively large. Although preliminary tests for normality of the data can and should be done
for small sample sizes, the conclusion that the sample does not follow a normal distribution does not
automatically invalidate the t-test, which is robust to moderate violations of the assumption of normality for
large sample sizes. - o '

LIMITATIONS AND ROBUSTNESS

The t-test is not robust to outliers because the sample mean and standard deviation are influenced
greatly by outliers. The Wilcoxon signed rank test (see section 3.2.1.2) is more robust, but is slightly less
powerful. This means that the Wilcoxon signed rank test is slightly less likely to reject the null hypothesis -
when it is false than the t-test.

The t-test has difficulty dealing with less-than values, ¢.g., values below the detection limit,
compared with tests based on ranks or proportions. Tests based on a proportion above a given threshold
(section 3.2.2) are more valid in such a case, if the threshold is above the detection limit. It is also possible to
substitute values for below detection-level data (e.g., ¥ the detection level) or to adjust the statistical
quantities to account for nondetects (e.g., Cohen's Method for normally or lognormally distributed data). See
Chapter 4 for more information ca dealing with data that are below the detection level.

SEQUENCE OF STEPS
Directions for éone’-saxixple t-test for 8 simple, systematic, and composite random samples are given

in Box 3.2-1 and an example is given in Box 3.2-2. Directions for a one-sample t-test for a stratified random
sample are given in Box 3.2-3 and an example is given in Box 3.2-4.
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STEP 1: -
STEPZ

STEP 3:

STEP &.

STEPE:

STEP 4:

Box 3.2-1: Directions fora One-Sample t-Test
for Simple and Systematic Random Samplss
with o7 without ComposttIng

" Let X, Xa . . -, X, represent the n data pointa. Theseeouldbeeshernmcﬂwdualsamp!asorncompouts
samples conssstng of k aliquote each. Thesse are the steps for e ono—camp!s t-test for Casa 1 (Hy L C)
modifications for Case 2 (H,: ¢ 2 C) are given in braces ().

Calkculate the sample mean X (section 2.2.2) and the atandard deviation 8 (secton 2.2.3).

. Uss Table A-1 oprpen&Atoﬁndlhecmedvduet.,aud\ that 100($-a)% of the t distribution

withn- 1degreesoffroedomesbebwt., For exampie, f & = 0.05 and n = 16, then n-1 = 15
and ¢, = 1.753.

Calculate the sample value ¢ = (X-C) / (s/yn) .
Compare t with t,o- '
1) Ift>ﬁun<-t,‘4}._menuihypomeshmayberejectad. Go to Step 8.

2) Ktrtafte ta thers is not enough evidence to reject the null hypothesie and the false -
negative efror rats should bs verified. Go to Step 5.

As tha null hypothesis (H,) was not rejectad, calculats either the power of the teet or the sample
8ize hecessary to achigve the fales positive and false negative error rates. To calculate the
power, assume that ths true values for the mean and standard deviation are those obtained in the
sample and use a sofiware package ke the Decision Emor Feasibiity Trial (DEFT) sofiware (EPA
G-4D, 1994) or the Data Quality Evaluation Statistical Toclbox (DataQUEST) software (QA/G-8D,
1986) to generate thepowefculve of thetest.

tfonlyonefalse negative error rate (B) habeenspoetﬁed(au,).ibpmbletoealculatemo
sample size which achieves the DQOs, assuming the tue mean and standard deviation are equal
tothe values estimated from the sample, instead ofalculaung the power of the test. To do this,

ol 2(21-3 1:£
calculate m = (O.S)z,-‘ where 2, ie the p® percentile of the standard
- . 1 * ) .
normal distribution (Table A-1 of Appendix A). Round m up to the hext integer. if m < n, the false
negative error rate has been satisfied. if m > n, the false negative efror rate has not been

The results ofthe test may b@:

1) the nul hypomesawastejectedandkswmmatmohue mean B less than C{greatef
than C};

2) the nul hypothesls waa not‘rejectad and the fébe.negaﬁve efror rate was satisfied and it
aeanamatthehue mean I8 greater than C {lees than C}; o¢

3) the nuf hypomesbumnotrejmdandmefabenegaﬁvommm not satisfiad
andaseemsmatmeuuemeanngrmmancueumanqbutconmmme
uncertandnoemesamplemwasbosmaﬂ.

| Report the results of the tess, the sample size, sample mean, standard deviation, ¢ and b

Nots: The wculaﬁg_ns for the t-test are the same for both simple rando_m or composite random sampiing.
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o e z e e
Box 3.2-2: An Example of a One-Sample t-Test
for a Simple Random or Composite Sample

Consider the following © random (of composite samples each of k aiquots) data pointa: 82.39 ppm, 103.43
ppm, 104.93 ppm, 105.52 ppm, 98.37 ppm, 113.23 ppm, 86.62 ppm, 81.72 ppm, and 108.21 ppm. This
data will be used to test the hypothesis: Hy: 1 < 85 ppm va. Hy: p > 85 ppm. The decision maker has
specified a 5% false positive decision error Emit (a) at 95 ppm (C), and a 20% false negative decision.efror
fimit.(8) at 105 ppm (i,)- ' ‘ '

STEP 1: In Boxes 2.3-3 and 2.3-5 of Chapter 2, it was found that

X = 9938 ppm and s = 1041 ppm.
'STEP2  Using Table A-1 of Appendix A, the critical value of the t distribution with 8 degrees of freedom is

togs = 1.86. ,
| smEpx:  roX-C B389 49
i sifn 10.41/,/9

STEP4: Because 1.26 » 1.86, there I8 not enough evidence to reject the null hypothesis and the false
: negative error rate should be verified.

STEPS5: Becausetherels only one false negative error rate, # is possible to use the sample size formula to '

determine if the error rats has been sgatisfied. Therefore,

m e St ng | ©0.5)z2,
(- -

E - 10411645 + 08420 4 5} o45) = 8049, Le. 0

(95 - 105)% . _
Notice that it is customary to round upwards when computing a sample size. Since m=n, the
false negative error rate has been satisfied.

STEP6B: The results of the hypothesis test were that the null hypothesis was not rejected but the false
negative efror rate was satisfied. Therefore, it seams that the true mean i3 less than 95 pom.
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Box 3.2-3: Directions for a One-Sample t-Test
for a Stratified Random Sample

Leth=1,2,3,.. LrepfesentmeLmtaandmrepmsont the sample size of stratum h. Thess steps are for
aonuamplothorCasg1(l-L, p < C); modifications for Cass 2 (Hy i 2 C) are given in braces ().

STEP1: Calculats the stratum weights (W,) by caleulating the proportion of the voluma in

stratum h, is the surface area of stratum h multipied by the depth of i
EV |
sampling in éuawm h.
_ _ Ex
STEP 2 For each stratum, eeJeulate the sample stratum mean X = and the sample stratum
Ry

standard efror sk = E (X"’ lk)z .
‘ A
STEP3:  Calculate overall mean Xﬂ. z WAX,, and variance s& = E Wik,

W1omy
. ' (’a')z |
STEP4:  Calculate the degress of fresdom (dof): dof = ———————.
L Wy
1 ni(n, - 1)

Use Table A-1 of Appendix A to find the critical velue t,, 80 that 100{1-x)% of the t dietribution
Mﬂ\mqabbvedegrmofﬁoedom_(roundodbmnmhighestmteger)bbdowt.,

Xy -C

STEPS5: Calculats the sample value: ¢ .=
' ' .f_g. .
STEP6: Comparetio ti, Ht> ta {t <%}, the nu hypothesis may be rejected. Goto Step 8. it s t,,
. {t ¢ 4.}, there i3 not enough evidence to reject the null hypothesis and mefabenegauveeno:
rateshouldbeveﬂﬂed. Goto Step7.

If the null hypothesis was not rejeded calculate edher the power of the test or the sample size
necessary to achieve the false mmve andfalse negative efror rates (see Steps Box 3.2-1).

The resulis of the tezt may ba:

1) ﬁ\enuﬂhypoﬁ\mm rejeaedeohmmaw\euuemeanslmmancmreaw
than C),

i) Mnu!hypoﬁmmnotrejededandmefamnegahvewofmmaa&ﬂedandvz
mmmewemmbgrmmmcommmq o7

3) the null hypomesbwas not rejected and the faise negaﬁvo eﬂorratewmnotsa‘bsﬁed
and it seems that the true mean is greater than C {less than C} but conclusions are
uncertain since the sample size was o0 small

Report the results of the test, 2s wel as the sample size, sample mean, and sample standard
deviation for each stratum, theestmatedt.medof andt...,. ,
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STEP 1:
STEPZ:

STEP 3

STEP 4

STEP 5:

STEP 6:
STEPT:

Bbx 3.24: An Example of a Ona-Sample t-Tast
for a Stratified Random Sample

Consider a stratified sample consisting of two strata where stratum 1 comprises 10% of the total site surface

area and stratum 2 comprises the other 80%, end 40 samples were collected from stratum 1, and 60 eamples
. ware collected from stratum 2. For stratum 1, the sample mean is 23 ppm and the sample standard deviation .

i3 18.2 ppm. For stratum 2, the sample mean is 35 ppm, and the sample standard deviation is 20.5 ppm.

This information will be used to test the null hypothesis that the gverall site mean is greater than or equal to 40

ppm, i.e., Hy p 2 40 ppm (Case 2). The decision maker has specified a 1%falsepos;uvedmon Emit () at

40 ppm and a 20% false negative decision esror imit (B) at 35 ppm (4,).

W, = 10/100 = 0.0, W, = 90/100 = 0.9,

From above, X, =23 ppm, X, = 35 ppm, 8, = 18.2, and 8, = 20.5. This information was
developed ueing the equations in step 2 of Box 3.2-3.

The estimated overal mean concentration i
L - - - . )
Xg = E WX, = WX + WX, = (.1)(23) + (9)(35) = 33.8 ppm.
Aol .
and the estimated overall variance i

2
2.3 sz% . (1P(82R | (.9P(2o§)1 - 576

40 60
The app(oﬁm_ate degrees of freedom (dof) ia:
. . 2 .
dof - 6 (5.76 - 608, ie, 61
W:s: (.1)’5(18.2)4 . (.9)%(20.5)*
hel nl(n, - 1)

(40739 (60)*59

Note how the degrees of freedom hae been roundo‘d'up to a whole number. Using Table A-1 of
Appendix A, the critical value . of the t distribution with 81 doﬂsappro:dmatdyzae.

’ Xe - C -
Calculate the sample value § = — . 338 40' = -2.58

J@Jm

Becauss -2.58 < -2.39 the null hypothesis may bs rejected.

Becausas the null hypothesis was rejected, & is concluded that the mean is prabably less than 40
ppm. In this example there le no nead to calculats the false negative rate as the null hypothesis
was rejected and 80 the chance of making a false negative error is Zefo by definition.
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33.1.2 The Wilcoxon Signed Rank (Gne-Sample) Test for the Mean

PURPOSE

Given armdomsampleofsizzn(ozcompositzsamplesizzn,eachcomnewnsisﬁngofk-
aliquots), the Wilcoxon signed rank test can be used to test hypotheses regarding the population mean or
median of the population from which the sample was selected. : o

ASSUMPTIONS AND THEIR VERIFICATION

The Wilcoxon signed rank test assumes that the data constitute a random sample from a symmetric
continuous population. (Symmetric means that the underlying population frequency curve is symmetric about
its mean/median.) Symm:tx‘yisal&sssningmtassumpﬁmthmnmmaﬁtysimeaﬂwmﬂdisuibuﬁmsm
symmetric, but some symmetric distributions are not normal. The mean and median are equal for a
symmetric distribution, so the null hypothesis can be stated in terms of either parameter. Tests for symmetry
can be devised which are based on the chi-squared distribution, or a test for normality may be used. If the
data are not symmetric, it may be possible to transform the data so that this assumption is satisfied. See -
Chapter 4 for more information on transformations and tests for symmetry.

LIMITATIONS AND ROBUSTNESS

Although symmetry is a weaker assumption than normality, it is nonetheless a strong assumption. If
the data are not approximately symmetric, this test should not be used. For large sample sizes (n > 50), the
-t-test is more robust to violations of its assumptions than the Wilcoxon signed rank test. For small sample
sizes, if the data are not approxirhately symmetric and are not normally distributed, this guidance
recommends consulting a statistician before selecting a statistical test or changing the population parameter
to the median and applying a different statistical test (section 3.2.3). '

The Wilcoxon signed rank test may produce misleading results if many data values are the same.
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical
power of the Wilcoxon test. Box 3.2-$ demonstrates the correct method used to break tied ranks. If possible,
results should be recorded with sufficient accuracy so that a large number of equal values do not occur.
Estimated concentrations should be reported for data below the detection limit, even if these estimates are
negative, as their relative magnitude to the rest of the data is of importance.

SEQUENCE OF STEPS
Directions for.theWilcoxonsignednnkt&stfonsimplerandomsampleandasystanaﬁcsimple_
random sample are given in Box 3.2-$ and an example is given in Box 3.2-6 for samples sizes smialler than

20. For sample sizes greater than 20, the large sample approximation to the Wilcoxon Signed Rank Test
should be used. Directions for this test are given in Box 3.2-7.
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x 3.2-5: Directions for the Wiicoxon Signed Rank Test -
for Simple and Systemgﬂc Random Samples

I Ty T D S B iy i

LetX,, X, ..., X, represent the n data points. The following describes the steps for applying the Wicoxon
signed rank test for both Case 1 (Hy # < C)andCase 2 (Hy 12 C)fora sample sze (n) less than 20. K the
sample size is greater than or equal to 20, use Box 3.2-7. '

STEP 1: I possible, assign values to any measurements below the detection imit. If this is not possible,
. - gssign the value “Datection Limit divided by 2° to each value. Then subtract C from each of the '
obsarvations X, to obtain the deviations ¢, = X, - C. If any of the deviations are zero delete them
and correspondingly reduce the sampie size .

STEP 2  Assign ranks from 1 to n based on ordering the absolute deviations |d] (i.e., magnitude of
differences ignaring the sign) from smallest to largest. The rank 1 is assigned to the smallest
valug, the rank 2 to the second smallest value, and so forth. If thers are ties, assign the average
of the ranks which would otherwise have been assigned to the tied observations.

STEP3: Calculate the signed rank for each observation. This signed rank ig equal to the rank i the
deviation d, is positive, or equal to the negative rank ¥ the deviation d, is negative.

STEP 4. For Cass 1, cakulate the sum R of the ranks with @ positive eign.

For Case 2, calculate the sum R of the ranks with a negative sign and take the absolute value of
this sum (i.e., ignore the negative sign). ,

STEP S: UseTableA-Boprpencﬁ(_Abﬂndmaquduew,
R 2 w,, the nul hypothesis may bs rejected. GoﬁoStep?

If R < w,, there is not enough evidence to i’eject the null hypothesis, and the false negative eror
rate will need to be verified. Ga to Step 8. '

STEP 8: K the null hypothesis (H,) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates using a software
package like the DEFT software (EPA G-4D, 1984) or the DataQUEST software (EPA G-4D,
1998). Calculate, . : '

M = M + (052,
(}llfc)z ' _
where z, is the pP percentde of the standard normal distribution (Table A-1 of Appendix A). Then

muliiply m by 1.18 to account for loss in efficiency and if this is number is greater than or equal to
n, the false negative error rate has been satisfied. '

STEP7: The resulte of the test may bet

1) the null hypothesis was rejected, and for Caso 1, k seems the trde mean ig greater than C or
for Case 2, k seemns the true mean is legs than C;’

2) ﬁlenuihypoﬁ\ahwaanotrejeded.mmnogaﬁvemmwmsaﬁsﬁed. and for Case 1,
) RmmwemmawmcotforCaseZ.ﬁmhoUuomeanbgreawmanc; of

3) the null hypothesis was not rejected, the falss negative eror rats was not satisfied, and for
Case 1, k seems the true mean is less than C or for Cass 2, k seems the true mean ia greater
than C but the condlusions are uncertain because the sample size was too smail.

i
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Box 3.2-8: An Example of the Wllcoxon Signed Rank Tast
for a Simpls Random Sample

Consider the following 10 data points: 874 ppb, 1044 ppb, 1083 ppb, 897 ppb, 879 ppb, 1161 ppb, 839 ppb,
824 ppb, 798 ppb, and one observation belovs the detection limit of 750 ppb. This data will bs used to test
the hypothesis: H, 1 2 1000 ppb ve. Hy: 14 < 1000 ppb (Case 2). The decision maker has specified a 10% .
false positive decision orrorEmtt(a)aMOOOppb(C) and a 20% false negative decision enorimct(mat

800 ppb ().

STEP1: Ass:gnhevalueé75ppb(750dwdedby2)tomedatapomtbdowmedetedlonimn.SUbtact
C (1000) from each of the n obsarvations X to obtain the deviations d, = X, - 1000. This is shown i
in row 2 of the table below.

X 974 1044 1093 897 879 1161 839 824 798 375
S d . <28 +44 +93 103 -121 ¢i81 -i61 -i76 -204 625

4l 28 44 ° 93 103 121 161 161 176 204 625
rank 1 2 - 3 4 5 85 65 8 9 10
srank -1 2 3 4 &5 "8 85 8 9 -0

STEP2:  Assign tanks from 1 to n based on ordenn' the absolute deviations |d] (magnitude ignoring any
negative sign) from smallest to largest The absolute deviations are listed in row 3 of the table
above. Note that the data have bean sorted (rearranged) for clarity so that the absoluts
deviations are ordered from emallest to largeet

The rank 1 i assigned to the smaliest valus, the rank 2 to the second smallest value, and 8o
forth. Observations 8 and 7 are ties, therefore, the average (6+7)/2 = 6.5 will be assigned to the
Moobsewaﬁons. Theranlmamahownk\rwm

STEP 3: Calwlatethe signed rank for each observation. This signed rank iz equal to the rank i the
: deviation d, is positive, or equal to the negative rank ¥ the deviation d, i3 negative. The signed
rank ks shown in row 5.

STEP 4: Bmﬁaeofhefomof&xenuﬂhypoﬂ:esh(m uz'iOOOppb),RismasumoftanhMm.
negative gigns. Since,-1¢-4+5¢85+-8+-0+-10=2435R=435. -

STEPS5: Because there are only 10 data points, Tab!eA-eoprpendxAhusedtoﬁndme criical value
w, where & = 0.10. For this example, Wy = 15. Therefore, since 43.5 > 15, thonul hypothesis
maybafojected.

STEPS8: Thenul hypothesb was rejectad wuh @ 10% significance leve! using the Wilcoxon signed rank
tea(w=15) Therefoce.itwou!deeunmatmou'ue meanlsbdow1000ppb :
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Box 3.2.7: Directions for the Large Sample Approximation
to the Wilcoxon Signed Rank Test
for Simple and Systematic Random Samples

Let X, X, .. X,,representmendatapomtawhemnngreawman oraquanozo Tha following describes
the stepa for apptymg the large sample approximation for the Wikcoxon signed rank test for both Caee 4
(Hy u<C)andCase2(Hy w2 C)

STEP 1: If possible, assign valuas to any measurements below the detection imit. If this i not possible,
assign the value “Detection Limit divided by 2° to each value. Then subtract C from each of the n
observations X, to obtain the deviations d, = X, - C. lfany of the dewahons are zero delete them
and cormrespandingly reduca the sample size n.

STEP 2.  Assign ranks from § to n based on ordering the abeolute dawaﬂom ld}] {i.e., magnitude of
differences ignering the sign) from smallest to largest The rank 1 is nsggned to the smallest
value, the rank 2 to the second smallest value, and so forth. f there are ties, assign the average
of the ranks which would otherwise have been assigned to the bed observations.

STEP3: Calculate the signed rank for each observation. This signed rank is equal to the rank ¥ the
deviation d, is positive, or equal to the negative rank if the deviation d, is negative.

STEP4: ForCase 1, calculate the sum R of the ranke with a positive sign. For Case 2, calculate the sum
R of the ranks with a negative sign and take the abeolute value of this sum (i.¢., ignore the

R_n(n+l)

H ‘negative eign). Then calculate: z = ' 4
C yn(n + 1}(2m + 124 _
STEPS5: Usa Table A1 of Appendix A to ﬁndﬂ:ecmmlvduez,.,suchﬂ\at 100{1-a)% of the normaj W

distribution is below z,,. For example, f a = 0.05, thenz, , = 1.645. K2 >z, the nul
hypothesis may be rejected. Iz » Z,, there is not enough evidence fo reject the null hypothesis.
Thaerefore, the falss negative emor rate will need to be verfied. '

STEP 6. K the null hypothesis (H,) wes not rejected, calculate either the poWar of the test or the sample
size necessary to achieve the false positive and faise negative error rates using a sofiware
package like the DEFT software (EPA G-4D, 1984) or the DataQUEST software (EPA G<4D,

1986). Calculate
s¥z,_ +2, ;
- -= _M_i + (0522,

wherez,nmep"'pofcenﬂeofmestandardnonndcﬁsuibubon (Table A-1 of Appandix A). Then
multiply m by 1.16 to account for less in efficiency andfﬂusva!uehgreaterman or equai to n,
mefalsenegaﬁveenorratehas been satisfied.

STEP7T: Tha resulis of the test may be:

1) the null hypothesis wae rejecied, and for Case 4, ﬁmmhetuemeanbgrmmanCu
for Case 2, it seema the true meaneleumanc

2) the null hmmmwm:qmmmnmewmmmmmwm
1, k seeme the true mean i less than C or for Case 2, it seems the true mean is greater than C;
or

Case 1, it seems the true mean is less than C or for Case 2, it seems the true mean is greater

3) the nuli hypothesis was not rejected, fhe fales negative emor raie was not satisfied, and for IJ

EPA QA/G-9 32-10 QA9%6



332 Tests for a Proportion or Percentile

This section considers hypotheses concerning population proportions and percentiles. A population
. proportion is the ratio of the number of clements of a population that has some specific characteristic to the
total number of elements. A population percentile represents the percentage of elements of a population
having values less than some threshold C. Thus, if x is the 95" percentile of a population, 95% of the
elements of the population have values less than C and 5% of the population have values greater than C.

. This section of the guidance covers the following hypothesis: Case 1: Hy: P <P, vs. H: P>P,
and Case2: Hy: P2 P, vs. Hy: P <P, where P is 2 proportion of the population, and P, represents a given
proportion (0 < P, < 1). Equivalent hypotheses written in terms of percentiles are H,;: the 100P* percentile is
C or larger for Case 1, and Hy;: the 100P* percentile is C or smaller for Case 2. For example, consider the
decision to determine whether the 95% percentile of a coatainer of waste is less than 1 mg/L cadmium. The
null hypothesis in this case is H,: the 95 percentile of cadmium is less than 1 mg/L. Now, instead of
considering the population to consist of differing levels of cadmium, consider the population to consist of a
binary variable that is ‘1’ if the cadmium level is above 1 mg/L ot is '0' if the level is below 1 mg/L. Inthis -
case, the hypothesis may be changed to a test for a proportion so that the null hypothesis becomes '
H,: P <.95 where P represents the propostion of 1's (cadmium levels gbove 1 mg/L) in the container of
waste, Thus, any hypothesis about the proportion of the site below a threshold can be converted to an-
equivalent hypothesis about percentiles. Therefore, only hypotheses about the proportion of the site below a
threshold will be discussed in this section. The information required for this test includes the null and
alternative hypotheses, the gray region, the false positive error rate « at P, the false negative error rate B at
P,, and any additional limits on decision errors. It may be belpful to label any additional false positive error
limits as &; at P, &, at Py, ¢tc., and any additional false negative ervor limits as §, at Py, B, at Py, ete. '

322.1 The One-Sample Proportion Test
PURPOSE

Givenarandomsambleofsizen,thcone—saﬁplepmporﬁonmmaybeusedtomthypothm :
regarding a population proportion or population percentile for a distribution from which the data were drawn.
. Note that for P=.5, this test is also called the Sign test. - :
' ASSUMPTIONS AND THEIR VERIFICATION

- Themlyasmmpﬁmnqtﬁmdfqrtheohe;umpbpmpaﬁmmistheassmpﬁmofamndom

sample. Tovaifythisassmpﬁm,mviewmbprwé&mmddoammﬁmusedwseleamegampﬁng
points and ascertain that proper randomization has beea used.

LIMITATIONS AND ROBUSTNESS

Sincetheonlyassmq)tionisthatofu_mndomsample,theproced\mm'evalidforqnyimderlying
distributional shape. mpmeedlmamdsombusttqmnﬁas,ulmgasthcydonotrepmentdm:ms.

SEQUENCE OF STEPS

Directions for the one-sample't@st for proportions for a simple random sample and a systematic
simple random sample are given in Box 3.2-8, an example is given in Box 3.2-9. -
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Box 3.2-8: Directions for the One&ampb Test for Proportions
for Simple and Systematic Random Samples

This box describes the stepe for applying the one-eample test for proportions for Casa 1 (H, P < Py)
modifications for Cage 2 (Hy P 2 P,) are given in bracee ().

STEP 1.  Given a random sample X;, X,, .. . , X, of measurements from the population, lst p (small p) denocte
the proportion of X's thai do not exceed C, L., p is the number (k) of sample points that are lesg
than orequalto C, cﬁvided bythesamplesizen.

STEP2 Compute np, and n{i-p). If both np and n{i-p) are greater than or equal to 5, use Steps 3 and 4.
Otherwiss, consult a statistician as analysis may be complaxt, -

p - Sln - P, p+ 3ln - P,
STEP 3. Calculate 2 = —————— forCagg8jor Z = ————————8 forCass 2.

‘/Po(l -P; ] . 1(1"’.,(1 -P; )‘m
STEP 4:  Use Table A-1 oprpendkAtoﬁndhecM@lvaluezwsuchmaHOOﬁ-a)% of the norme’
distribution i8 below 2,,. For example, fa = 005then2“,==1645
Kz >z, {2 < -z}, the nul hypothesis may be rejected. Go to Step 8.

Kz 3242 ¢ 20 there is not enough evidence to reject tha nul hypothesia. Therefore, the false
negative eor rate wil need to be verified. Go to Step 5.

STEP S: To calculats the power of the test, assume that the true values for the mean and standard deviation
. are thosa obtained in the sample and use a statistical softiware package ke the DEFT software
- (EPA G-4D, 1894) or the L-laQUEST software (EPA G-8D, 1996) to generate lhe powef curve of
. the test

if only one false negative afror rats (B) has been specified (at P,), it iz possible to calculats the
sample size which achieves the DQOs. To do this, calculate

[z,_ m(l P+ 2,4/PL=F,
Pﬂ

Kms<n, ﬂaefa.lsanegaﬁveenorratehasbeensaﬁsﬂed. Oﬂ'letwbe the falag negative eror rate has -
not baen satisfied. i

STEP 8:  Theresults of the test may be:
1) the nul hypothesis was rejectad and it seems that the proportion s greater than {less than} Py;

2) the null hypothesis was not rejected, the false negative efror rate wa satisfied, and i seema that
proportion is less than {greater than} P,; or

3) the nufl hypothesie was not rejectad, the false negative error rate was not eatisiled, and it would
mmpmpomonwalmman{greaﬁuman} P,, but the conclusions are uncertain bowueelhe

~ EPAQA/G-9 32-12 QA%



|

Box 3.29: An mpwdmomm Test for Propoaﬂons
for @ Simple Random Sample

-Consider 85 samples of which 19 samples have concentrations greater than the clean-up standard. This
- data will be used to test the null hypothesis Hy: P 2 20 va. H,: P <.20 (Case 2). The decision maker has
speuﬁedaS%falsepwﬁverato(a)fofP.= 2, andafabonegaWerata(B)otZO%forP, 0.15.

. STEP 1 From the data, the observed proportion (p) is p = 11/85 = ,1284

STEP 2 np= (85)(.1294) = 11 and n{1-p) = (85){1-.12084) = 74. Sincs both np and n(1-p) are greater
than or equal to 5, Steps 3 and 4 wil be usad.

STEP3: Becauss Ky P 2 .20, Case 2 formulas wil be used.

Sin - P, -
ga PSRy 24 e SBS -2 )0

XA J2Z-2)785

STEP 4 Using Table A-iof Appendix A, it was found thatz, o =2 = 1.645. Becausez ¢ -2, (i.6,,
-1.492 ¢ -1.845), the null hypothesis i3 not rejected go Step 5 wi! need to be completed.

STEPS:  To determins whether the test waa powetful enough, the sample size necessary to achieve the

DQOawascalculatedasfouowa
o | L6420 -2) + 104/ T5(0-.15) 15]",42218
15 -2 -

S0 423 samples ere required, many more then were actually taken.

STEPS:  The null hypothesis was not rejectad and the false negative efTor rate wes not eatisfied.
Therafore, i would seam the proportion is greater than 0.2, but this conclusion is uncertain
because the sample size is too amal. .

323 Tests for a Median

A population median () is another measure of the center of the population distribution. This
population parameter is less sensitive to extreme values and nondetects than the sample mean. Therefore,
this parameter is sometimes used instead of the mean when the data contain a large number of nondetects or
extremevalw Thehypoﬂm&mdaedmthmsecﬁmm

Casel: Hy p<C vs. HA g>C; and
_ Cass2: Hy 52 C vs. Hy g<C
whaeCrepmmtsafgivmthmholdsmhasare'gulhtmylgVell
' | ItmwathnohngthatthemedmnwthsSO*M&wtbcmﬁhodsdwmbedmswﬁmB22may -
be used to test hypotheses concerning the median by letting P, = 0.50. In this case, the one-sample test for
proportions is also called the Sign Test for a median. The Wilcoxon signed rank test (section 3.2.1.2) can
also be applied to a median in the same manner as it is applied to a mean. In addition, this test is more

powaﬁﬂthanthengnT&stforsymmemGdnsmbunons Tberefom,tth'dcoxonsxgnedranktstlsthe
preferred test for the median.
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33  TESTS FOR COMPARING TWO POPULATIONS

A two-sample test involves the comparison of two populatioiis'ofa “before and after” comparison.
In environmental applications, the two populations to be compared may be a potentially contaminated area
with a background area or conceatration levels from an upgradient and a downgradient well. The comparison
of the two populations may be based on a statistical parameter that characterizes the relative location (e.g., 8
mean of median), or it may be based on a distribution-free comparison of the two population distributions.
thsthaxdonotassmnemunda’lymgdxsmbtmms(eg.,malorlognormal)arecalleddxsmbmmn-ﬁ'eeor
nonparametric tests. These tests are often more useful for comparing two populations than those that assume
aspecnﬁcdxmbuhonbecausetheymakeImMgmtassmpuom Section 3.3.1 covers tests for
differences in the means of two populations. Seehon33200vastwtsford1ffmmﬂmpropmﬂonor
percentiles of two populations. Section 3.3.3 describes distribution-free compansons of two populations.
Section 3.3.4 describes tests for comparing two medians.

Often, a two-sample test involves the comparison of the difference of two population parameterstoa -
threshold value. For environmental applications, the threshold value is often zero, representing the case
where the data are used to determine which of the two population parameters is greater than the other. For
example, concentration levels from a Superfund site may be compared to a background site. Then, if the
Superfund site levels exceed the background levels, the site requires further investigation. A two-sample test
may also be used to compare readings from two instruments or two separate populations of people.

_ If the exact same sampling locations are used for both populations, then the two samples are not

independent. This case should be converted to a one-sample problem by applying the methods described in
section 3.2 to the differences between the two populations at the same location. For example, one could
compare contaminant levels from several wells after treatment to contaminant levels from the same wells
before treatment. The methods described in section 3.2 would then be applied to the differences between the
before and after treatment contaminant levels for each well.

331 Comparing Two Means

Let y, repmmtthcmeanofpopulauonlandp,rcpmentthcmeanofpopulauonz The
hypothessconsxdaedmthxssecuonm -

Case 1: Ho: By -My s O, vs. Hy: - p,>6,; and
Case 2: Ho: =128, vs. Hy: oy, -y <8,

An example of a two-sample test for population means is comparing the mean contaminant level at a
remediated Superfund site to a background site; in this case, 8, would be zero. Another example is a Record
ofDecxswnforaSupaﬁmdmtcwhxchspecnﬁmthatthsremedmﬁontechmquemustreducethcmcan
contaminant level by 50 ppm each year. Hm,eachyearwoddbeeonmdaedasepamtepopulahonand&
would be 50 ppm. ,

. Thcmfomaummnmdfmmmemlmludsmemnmddtunauvehypom(mma&selor
Case 2); the gray region (i.e., a value 8, > 8, for Case 1 or a value 8, < 8, for Case 2 representing the bound
ofthegrayrcglon),thefalseposxtwemrrateaatﬁ thefalsencgahvemmteﬁat&,,mdanyaddmonal
limits on decision errors. It may be helpful to label additional false positive error limits as @, at 8, &, at 8,,,
etc., and to label additional false negative error limits as P, at 8y,, B, at 8y, eic
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33.1.1 Student's Two-Sample ¢-Test (Equal Variances)
PURPOSE

Studcntstwo-samplet-tstcanbeusedwcompmtwopopulanonmembasedonthemdcpendent
random samples X;, X,, . . . , X, from the first population, and Y, Y,, . . ., Y, from the second population. -
Thlstmta.smmthevmabthtm (as expressed by the variance) of the two populations are approximately
equal. Ifthctwovanamarenotequal(atstlsdmmbedmsecuon‘%5),useSatterthwmtesttst(seeuon
3.3.1.2).

- ASSUMPTIONS AND THEIR VERIFICATION

' The principal assumption required for the two-sample t-test is that a random sample of size m (X,

X,, ..., X,) is drawn from population 1, and an independent random sample of size n (Y,, Y5, ..., Y ) is

drawn from population 2. Validity of the random sampling and independence assumptions should be
confirmed by reviewing the procedures used to select the sampling points.

The second assuinption required for the two-sample t-tests are that the sample means X (sample 1)
and Y (sample 2) are approximately normally distributed. If both m and n are large, one may make this
assumption without further verification. For small sample sizes, approximate normality of the sample means
can be checked by testing the normality of each of the two samples.

LIMITATIONS AND ROBUSTNESS
The two-sample t-test with equal variances is robust to violations of the assumptions of normality
and equality of variances. However, if the investigator has tested and rejected normality or equality of
variances, then nonparametric procedures may be applied. The t-test is not robust to outliers because sample
means and standard deviations are sensitive to outliers.
SEQUENCE OF STEPS

: Directions for the two-sample t-test forasxmplerandomsampleandasystcmanc simple random
samplearegwmmBoxBS 1 and an example in Box 3.3-2,

3.3.3.2 Satterthwaite's Two-Smpne e;'rm (Unequal Varisnces)

Satterthwaite's t-testshouldbeusedtocomparetwopopulauonmmnswhcnthevmam of the two
populatxonsmnotequa!. Itreqmmthcsamcassmnpuonsasthetwo-samplet-m(secuonB 3.1.1) except
the assumption of equal variances. :

DuecnmsfosSauathwmtest-mfowsmplemndmnsampleandasystanauc sunplerandom
- sample are given in Box 3.3-3 and an example in Box 3.34.
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' Box 3.3-1: Directions for the Students Two-Sample t-Test (Equal Varlanm)
: fos Simple and Systematic Random Samplss

This desenbeshestepehrapplymgmetwocamueussbfmdﬂefmbsnnenme population means
whenmeMopopulabonvanancesuooqualfo:Caaﬁ(t-l, u. i < G). Modifications for Case 2

(He p, - uzzﬁn)aregmnmparenﬂtm{}

STEP 1. Cak:ulate the sample mean X and the sample variance ,? for sample 1 and oornputn the sample
~mean Y and the sample variance 8, for sample 2.

STEP2: Use section 4.5 to determine if the variances of the two populations are equal. if the variances of
- the two populations are not equal, use Satterthwaite's t test (section 3.3.1.2). Otherwiss,
compute the pooled standard deviation

_ \[(m—l)s} s (n-1)s?
R R PY e

X-7-8,
STEP 3. Calculate ¢ = ————
' sEJllnH/m

Use Table A-1 of Appandix A to find the crilical value t._. such that 100{1-a)% of the t-distribution
with (m+n-2) degrees of freedom i3 below &,

Kt>ta i<t menulhypoﬂ\esismayborejemd. Go to Step 5.

tst,{ ¢ 1), thereie not enough evldencetorejectﬁxe nul hypotheab. Thergfore, the false
negative error rats will need to be verified. Go to Step 4. _ L

STEP 4: Toﬂwhtoﬁaepawofheb&éaumeﬁ:dhhovﬂuesfwmmmmdmm
deviation are those obtained in the sample and use a statistical software package fke the DEFT
software (EPA G-4D, 1994) or the DataQUEST software (EPA G-8D, 1996) to generate the
power curve of the two-sampile t-test if only one false negative error rate (B) has been specified
(at §,), it is possible to calculate the sample size which achieves the DQOs, assuming the true
mean andstandatddevsahonareequa\tnﬁevduesesﬂmatedfromﬁwsamp!e.hateadof
calculating mepowerofmnea Calculate _ H

o L 0 o 2%z 21.9°

m°=n +(025)éz_
(8 ‘8&2 1-¢
KEm’ smandn’ <n, mohbanegatveenmmhabeenm Ometma tho false negative
error rate has not been satisfied.

STEPS: The results of the test could bs:
1) &enuﬁhypoﬁes?amrejeded.'aﬁditmu,-u,>5,{pg-ug<5¢}:

2) the nut hypothesis was not rejected, the false negative ervor rate was satisfied, and it seems
Yy 93569{91 -y 2800

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and &
seeme W, - i, < B, i, - p,zM.MMwndusonbunmnbeeammesamphagem
too smal.
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Box 3.3-2: An Example of a Student's TwoSampls t-Test (Equal Varlances)
for Simple and Systematic Random Samples

Ata hawdouswaste site, area 1 (cleaned using an in-eftu methodology) wae compared with a simiar (but
relatively uneontammated) reference area, area 2. |f the in-eitu methodology worked, then the two eitee
should be spproximately equal in everage contaminant levels. If the methodology did not work, then area 1
should have a higher average than the reference area. Seven random samples were taken from area ¢, and
eight were taken from area 2. Because the contaminant concentrations in the two areas are sup

equal, the null hypothesis is Hy: 13, - 4 < 0 (Case 1). The falsa positive eror rate was set at 5% and the false
negative ervor rate was set at 20% (B) i the difference between the areas is 2.5 ppb.

STEP 1: Sample Mean le Vartan
. Area { 7.8 ppm 2.1 ppm?
Area 2 "~ 8.6ppm . 2.2 ppm?
STEP 2 Meﬁodsdescnbedhsecﬁon45waeusodhdebmmehatﬂmvaﬂanmwemnﬁaﬂy
: equal. Therefore, ,
SE a (7-1)2.1 %+ (8-1)2.2 s 1.4676
(7-1H+@3-1)
step3:  r= —15766°0 5708
l.4676J1/‘7+l/8 _

Table A-1 oprpendxAmusedtoﬁndhatﬂ\@cﬁﬁ&dvaluekmm(74-8-2)813 degrees
of freedom is 1.771.

Becausatst,,(la., 1.5798 2 1 771) there Is rict enough widenceto reject the null hypothesia.
Thefalsenegaﬁveemrratewilneedm be verified,

Assuming the true values for the mean and standard deviation are thosa obtained in the sample:
Iy o 2(L 4676’)(1 645 +0. 842)% - (025)1 6452 =4.938, Le. 5.

- @25~ -0)?
Because m’ < m (7) and n" < n (8), the fales negativa emmor rats has been eatisfied.

The null hypothesis was not rejectsd and the faise negative erTor rate was satisfied. Therefore, it
seemsmeteanodm’erencebetwmmetmmandmmm memodologywomedas
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STEP 1:

STEP 2

STEP 3:

STEP 5:

EPA QA/G-9

Box 3.3-3: Directions for Satterthwaite’s t-Tast (Unequal Variancas)
for Simple and Systematic Random Samples

This describas the stéps for applying the two-eampie t-test for differences between the population means for
Case 1 (Hy W, -1, < 8). Modifications for Case 2 (Hy 4 - Iy 2 8;) #re given in parentheses {).

Cdculita the sample mean Xand the sample variance e,"foc gample 1 and eorhputa the sample
mean Y and the sample variance 8, forsample 2. -

Using section 4.5, test whether the variances of the two populations are equal. If the variances

2 2
s s

of the two populations are not equal, computs: $\ = X . _Y_
: m . n

if the variances of the two populaﬁons'appear approximately equal, use Student's iwb-sample t-
test (section 3.3.1.1, Box 3.3-1).

X-Y-8,
T aE

Uss Table A-1 of Appendix A to find the critical value t,, such that 100(1-a)% of the t-distribution
with f degrees of freedom is below t,,, where

2

Calculate ¢ =

2 2
sy S
*.r
‘m R

fa

s; LS
mAm-1) n4n-1)

' (Round f down to the nearest integer.)

Ift>t,,{t<-t,4},ﬂ\enuihypomeshmayberejedad. GotoStebS.

Btstofle-to mefebnotonoughewdencotorejodmnuihypoﬁmandmefefore.me
false negative efror rate wi need to be verified. GomStepc% .

I the nuli hypothesis (H,) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates. To calculate the
power of the test, assumae that the true values for the mean and standard dgviation are those
obtained in the sample and use a statistical software package to generate the power curve of the
fwo-sample t-test. A simple method to check on statistical power does not exist

The results of the test could be:
1) ﬁwnuﬂhypohesis'warejedod,anditseemu,-uﬁ&.{u.-u;“&,}:

2) the null hypoﬁ\eslsm not rejected, the false negative srror rate was satisfied, and k eeems
Y- b s {1y - 9225\\} or

3) the null hypothess was not rejected, the false negative eror rate was not satisfied, and it
seems | - iy < 5q (18, - Yy 2 G}, but this conclusion is uncertain because the sample eize was
too small,
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Box 3.34: An Example of Satterthwalte's t-Test (Unequal Variances)
for Simpls and Systematic Random Samples .

At a hazardous wasts site, area 1 (cleaned using an in-eitu methodology) was compared with a similar (but
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites
should be approximately equal in average contaminant levele. If the methodology did not work, then erea 1
should have a higher average than the reference area. Seven random samples were taken from area 1, and
eight were taken from area 2. Becauss the contaminant concentrations in the two areas are supposedly
equal, the null hypothesis is Hy U4, - 1y s 0 (Case 1). The false positive arror rate wae eet at 5% and the falss
negative efror rate was eet at 20% (B) & the differance between the areas iz 2.5 ppb.

STEP 1: S Sample Mean ole Varian
Area 1 9.2 ppm . 1.3p
Area 2 8.1 ppm _ . 5.7 ppm?®

STEP 2: Using section 4.5, it was determined that the variances of the two populations were not equal,
and therefore using Satterthwaite's method ie appropviate:

Syg = 137 + 5.0/8 = 09477

sTEP3; ¢ =22261-0 _5.9
i 09477 -

Table A-1 was uesd with { degreses ofi‘reedom, where
= [1377 + 5.7/8)
13 5P
7%7-1) - 8%8-1)
(recall ﬂ\atfsroundeddowntomo nearest mtegef).toﬁndﬁ,.a‘l 812

= 10.307 (i.e., 10 degrees of freedom)

Becauss t >t (3.271 > 1.812), the null hypothesia may be rejected.

STEP 5: Because the null hypothesis was rejected, it would appear these is a difference between the two
_areas (area 1 being more contaminated than area 2, the reference area) and that the in-situ
methodology has not worked as intended.
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332 Companng Two Proportions or Percenﬁles

This section eonsxdmhypothmconmmgtwopopﬂahm propostions (ortwopopulatmm
pexcentiles); for example, one might use these tests to compare the proportion of children with elevated blood
lead in one urban area compared with the proportion of children with elevated blood lead in another area. The
populaﬁonproporhomstherahoofthen@aofelanmtsmasubsetofthctotalpopulahontothetotal
number of clements, where the subset has some specific characteristic that the rest of the elemenis donot. A
popdaﬂmpmmhlempmtsthcpmﬂgeofdmtsofapopulauonhamgvalumlwsthzmsome
-ihmholdvalwcc

Let P, reprsa:tthemleproporhonforpopulanml and P, repmmtthemwproporhonof
populauonz Thehypotlmw considered in this section are:

Case 1: Hy P, -P,< 8, vs. HA: _Pl-P,>8o;md

Case2: Hy P, -P,2 8, vs. Hy P,-P, <8,
An equivalent null hypothesis for Case 1, written in terms of percentiles, is Hy: the 100P,* percentile minus
the 100P,® percentile is C or larger, the reverse applying to Case 2. Since any hypothesis about the

proportion below a threshold can be converted to an equivalent hypothesis about percentiles (see section
322),thjsgmdamew1ﬂonlyconﬂderhypodmumamngpmpomam.

Themformauonreqmredforthxstwtmcludathenullmdaltﬁmtwehypothmm(enhaCaselor
Case 2); the gray region (i.e., a value 8, > &, for Case 1 or a value 8, <&, for Case 2, representing the bound
ofthegrayrchon),thefalsepmuvemormcaatb thefa]sencgauvemratcﬂatﬁ,,andanyaddmoml
limits on decision errors.

33.2.1 Two-Sample Test for Proportions

PURPOSE

ﬁctwo-samplewst.fmpmporﬁmémbeusedmwmparetwopraﬁmpmﬁls or
proportions and is based on an independent random sample of m (X, X,, . .. , X,) from the first population
and an independent random sample size n (Y), Y, . . . , Y,) from the second population.

ASSUMPTIONS AND THEIR VERIFICATION

The principal assumption is that of random sampling from the two populations.

LIMITA'I'IONSANDROBUSTNESS |

mtwo-samplctwtfm'pmporumsmvahd(mbust)formyunddymgdmﬁbmoml shapeandls
robust to outliers, providing they are not pure data errors.

SEQUENCE OF STEPS

Directions for a two-sample test for proportions for a simple random sample and a systematic simple
random sample are given in Box 3.3-5; an example is provided in Box 3.3-6.
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Box 3.3-5: Directions for a Two-Sample Test for Proportions
for Slmp&e and Systematic Random Samples

ThefoﬂomngdmbwmeaemfmappMngmwmmforpmporﬁonewam1(H, P, -P; < 0).
ModiﬁmonaforCasoZ(H, P, - P,zO)aregNenmbracea()

STEP 1: Given m random samples X;, X, . . . , X from the firet populahon and n samples from the
second population, Y,, Yz, ..., Yo let k, ba the number of pointe from sample 1 which exceed C,
and let k, be the number of poanta from sample 2 which exceed C. Calculate the sample
pfopomons p, = k/m and p, = kJn. Then calculate the pooled proportion

= (ky+k) / (m+n).

STEP 2 Compme mp,, M(1-p,), NPy, N(1-py). If all of these values are greater than or equal to 5,
continue. Otherwise, seek assistancs from & statistician es analysis i complicated.

STEP3:  Calculats z = (p, - P/ yp(} - p)(Uim + l/n)

Use Table A-1 of Appendix A to find the critical value z,, such that 100(1-a)% of the norma.-!
distribution is below 2, . Forexamplo,ﬂa=005menz.,=1645 '

lfz>z.4{z<-z.¢) menuﬂhypomesssmaybore;ected. Go to Step 5.

Kz 3 2,4 {2 ¢ 2,4}, there i3 not enough evidence to reject the nu! hypothesis. Therefors, the
false negative efror rate will need to be verified. Go to Stsp 4. _

STEP 4: Hmenuﬂhypoﬁ\es&s(mwanotrejmd.alculateeﬂhetﬁepowofhetedorhesamue
size necessary to achieve the false positive and false negative emor rates. if only one false
negative efror rate (B) has been specified &t P, - - P,, It is possible to calculate the sample sizes
that achisve the DQOs/(mummg the proportions are equal to the velues estimated from the
sample) instead of calculating the power of the test To do this, calculate

m°=n°= 4@, "#z"ﬂ)z'P(l - where .i’-'- ____P,'+Pz;
(P 'Pl)z

andz,lsmep‘"pereenﬂe of the standard normal distribution (Table A-1 oprpendxA) if both
mandnexoeedm the falsa negative error rate has been satisfied. Ifbothmandnarebelow
m mefalsonegauveerrormtehasnotbmaaﬁsﬂed.

If m’ ie bétween m and n, useasomwarepaekageikemeDEFTsoﬁware(EPAG—%D 1994) or
the DataQUEST software (EPA G-9D, 1996) to calculate the power of the test, assuming that

the true values for the proportions P, and P, are those obtained in the sample. If the estimated
power is below 1-B, the false negative eror rate has not bsen satisfied.

The resulis of the test could ba:

1) the nud hypoﬁ\esmmrejem and it seems the cﬁferancem proportions is greater than 0
{lees than 0);

2) thenuﬂhypohmwmnotre]edad.ﬁmfabenegaﬁvemovutemaaﬁsﬁed andltseems
the difference in proportions is less than or equal to 0 {greater than or equal to 0}; or

3) the null hypothesia wae not rejected, the falss negaﬁveerrormtawasnotsawied. and it
seems the differencs in pfopomonssleseﬂ\anomqualbomreawmanorequalto 03, butths
outcoms is uncertain bacause the sample eize was pfobablytoo small.
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Box 3,3-8: An Example of a Two-Sample Test for Proportions
for Simpls and Systematic Random Samples

At @ hazardous waste sits, investigators must determine whether an area suspected to be contaminated with
dioxin needs to be remediatad. The possibly contaminated area (area. 1) will be compared to a reference area
(area 2) to see if dioxin levels in area 1 are greater than dioxin levels in the reference area. An inexpansive

- surTogate probe was used to determine i each individual sample i8 either ‘contaminated,” l.e., over the health
‘standard of 4 ppb, of “clean,’ Le., less than the health standard of 1 ppb. The null hypothesis will bs that the
proportion or contaminant leveis in area 1 is less than or equal to the proportion in ares 2, or Hg: P, -P, < 0
(Case 1). The decision maker is willing to accept a false positive decision error rate of 10% (a) and a false-
negative decision error rate of 5% (B) when the difference in proportions between areas exceeds 0.10. A

. team collected 92 readings from area 1 (of which 12 were contaminated) and 80 from area 2, the reference
- area, (of which 10 were contaminated).

STEP 1: The sample proportion for area 1 i8 p, = 12/92 = 0.130, the sample proportion for area 2 i3
p, = 10/80 = 0.125, and the pooled proportion p = (12 ¢+ 10) 1{(92+80)= 0.128.

STEP 2: mp, = 12, m(1-p,) = 80, np, = 10, n(1-p,) 70. Because these values are greater than or equal
: to 5, continue to step 3. '

STEP 3: z = (0.130 - 0.125) / /0.128(1 - 0.128)(1/92 + 1/80) = 0.098
Table A-1 of Appendix A was used to find the critical value zo. = 1.282.

Because 2 » Z,4 (0.008 » 1.282), there is not enough evidence to reject the null hypothesis and
the false negative efror rate will need to bs verified. Go to Step 4.

. STEP 4: Because the null hypothesis (H,) was not rejected, calculats the sample size necessary to {
- achieve the false positive and falss negative error rates. Because only one false negative amor
rats (B = 0.05) has been epecified (at a difference of P, - P, = 0.1), it is possible to calculate the

sample sizes that achieve the DQOs, assuming the proportions are equal to the values estimated

from the sample: g _ ‘
m® = ne o HI222 1.64570.1275(1 -0.1275) 3812 (i.e., 382 samples)
| .1
where 01275 = P = 0115 + 0055
. 2

Becauss both mandnareleéthan m'.thefal_se negaﬁve'enormtehasnotbwaaﬁsﬁed

STEP 5: The null hypothesis wae not rejecied, and the false negative error rate was not eatisfied.
Therefors, & seems that there is no difference in proportions and that the contaminant
concentrations of the Investigated area and the reference area are probably the same. However,
this outcome Is uncertain because the sample sizes obtained were in all kelihood too small,

e A ety 1% bR e e e e i e ——
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333 Nonparametric Comparisons of Two Populations

. In many cases, assumptions on distributional characteristics are difficult to verify or difficult to
satisfy for both populations. In this case, several distribution-free test precedures are available that compare
the shape and location of the two distributions instead of & statistical parameter (such as a mean or median).
The statistical tests described below test the null hypothesis “H,: the distributions of population 1 and ’
population 2 are identical (or, the site is not more contaminated than background)” versus the alternative
- hypothesis “H,: part of the distribution of population 1 is located to the right of the distribution of
population 2 (or the site is more contaminated than background).” Because of the structure of the hypothesis
tests, the labeling of populations 1 and 2 is of importance. For most eavironmental applications, population
" 11is the area of interest (i.e., thcpotcnhallycontammawdarea)andpopulanonhstherefmm

Thmmmfomalsﬁhshcalparametzofmtustmthehypothm&stawdabove However the
concept of false positive and false ncgatxve error rates still applics.

3331 The Wilcoxon Rank Sum Test
'PURPOSE

The Wilcoxon rank sum test can be used to compare two population distributions based on m
independent random samples X, X, . . meromtheﬁrstpopulanon.andnmdepmdmtrmdomsamplw
Y, Y,...,Y, from the second populatxon. When applied with the Quantile test (section 3.3.3.2), the
combmedtstsaremostpowerﬁxl for dctecungn'uedxﬂ'm between two population distributions.

ASSUMPTIONS AND THEIR VERIFICATION

The validity of the random sampling and independence assumptions should be verified by review of
the procedures used to select the sampling points. The two underlying distributions are assumed to have the
sameshapemddmpasmn,sothatonedmmbunmdﬂmbysomeﬁxedamm(mummsedbya
constant) when compared to the other distribution. For large samples, to test whether both site distributions
have approximately the same shape, one can create and compare histograms for the samples.

LIMITATIONS AND ROBUSTNESS

TheWﬂcoxonsxpedmktmtmaypmdxmmmleadmgmultsxfmmydatavalmamethcsamc
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical -
power of the Wilcoxon rank sum test. Estimated concentrations should be reported for data below the
dctectxonhmxt,evmnfthmewumatwareneganve,becausethmrelauvemagnmxdetothcmofthedatans
of importance. An important advantage of the Wilcoxon rank sum test is its partial robustness to outliers,
because the analysis is canducted in terms of rankings of the observations. This limits the influence of
omhas,becauseagwendatapoxmcanbenomoreamuncthantheﬁrstm'hstmk

SEQUENCE OF STEPS

Du'ecuonsandanexamplefortheWilooxonranksumtstmgwmmBoxB 3-7and Box3.3-8.
However, if a relatively large number of samples have been taken, it is more efficient in terms of statistical
power to use a large sample approximation to the Wilcoxon rank sum test (Box 3.3-9) to obtain the critical
values of W.
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Box 3.3-7: Directions for the Wilcoxon Rank Sum Test
for Simple and Systematic Random Samples

Let X, X,, . . . , X, represent the m data points from population i end Y,, Y,, .. ., Y, repressnt the n data
points from population. 2 where both m and n are less than or equal to 10. For thia tast, the null hypothesin
will ba that there is no difference between the two populations. The altemative hypothesis will be that
population 1 is located to the right of population 2 for Case 1 or that population 2 i locatad to the nghtof
population 1 for Case 2. I either m of n i larger than 10, useBox33-9

STEP 1:  List and rank the measurements from both populations from smallest b largest, keeping track of
which population contributed each measurement The rank of 1 is assigned to the smallest
value, the rank of 2 to the second smallest value, and so forth. If there are ties, assign the
average of the ranks that would otherwise have been assigned to the tied observationa.

- STEP2: ForCass 1, calculate W as the sum of the ranks of the data from populaﬁoﬁ 2
For Case 2, calculate VW as the eum of the ranks of the data from population 1.

STEP3: Calculate Wy, = W - i’;i)

for Casa 1'of calculate Wy, = W - ﬂ’;iufowasez.

STEP 4: Use Tabls A-7 of Appandit A to find the critical value w,.
¥ W,y < W, the null hypothesis may be rejected. Go to Step 6.

f Wi> w,, there is not enough evidencs to reject the nul hypothesia. Therefore, the false
negative etror rata will need to be verified.- Go to Step 5. )

STEP 5. [Kthe null hypothesia (H,) was not rejected, calculate either tha power of the test or the sample
€Zo necessary to achisve the false positive and faise negative error rates using a software
package like the DEFT software (EPA G-4D, 1994) or the DataQUEST software (EPA G-8D,
1866). (Power calculations tend to be much mora difficult for nonparametric procedures than for
parametric procedurea.) if only one false negative esor rate (B) has been spacified (at 3,), Ris-
possible to calculate the sample size that achieves the DQOs, assuming the true mean and
standard deviation are equal to the values estimated from the sample, instead of calculating the .

i power of the test if m and n are large, calculate:

) 2%z 47 2
m°=n°=——£‘ + (025)22,
TRERC ‘

where 2, is the p® parcentile of the standard normal distribution (Table A-1 of Appendix A). Then,
multiply m® and n°® by 1.16 to account for loss in efficiency, and, f 1.16m° < m and 1.16n° < n, the
false negative efror rate hag been satisfied; i the values of m and n are otherwiss, the false ‘
negative error rate has not been satisfied.

STEPS:  The results of the test could bs:

1) the nui hypothesie was rejected, and & seems that population 1 is located to the right of
population 2 for Case 1 of that population 2 s located to the right of population 1 for Case 2.

2) the null hypoﬂ‘nesiem not rejected, mofalsenegaﬁve efTor rate was satisfied, end ik geemo
there i8 no difference between the two populations; or

J) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems there iz no differenca between the two populations, bu't this result is uncertain becauss the
sample ezes were probably too smail,
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Box 3.3-8: An Exampls of the Wllcoxon Rank Sum Test
for Simple and Systematic Random Samples

At a hazardous waste eite, area 1 (cleaned using an in-situ methodology) was compared with & simiar (but
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two eites.
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1
should have a higher average than the reference arez. The null hypothesis will ba that there is no difference
between the two areag. Sincs area 1 was previously contaminated, the aitemative hypothesis will bs that
contaminant levels in area 1 are larger (located to the right) than those in area 2 (Case 1). The falsa positive
efror rate was set at 5% and the false negative error rate was set at 20% (B) if the difference between the .
areas ia 2.5 ppb. Seven random samples were taken from area 1 and eight samples were taken from area 2:

SAread JArea2
17,23,26,5  16,20,5,4
13,13, 12 8,10,7,3

 STEP #: The data listed and ranked by size are (Area 1 denoted by °):.

Data (ppb): 3, 4, 5, 5° 7. 8, 10, 12, 13° 13° 16, 17°, 20, 23°, 26°
Rankc 1, 2,35,35° 5, 6, 7, 8, 8.5°05° 11, 12°, 13, 14°, 15°

STEP 2 W =sum of ranks from area2=_50.5
STEP3: W =50.5-88+ 125145

STEP 4: Using Tabls A-7 of Appendd( A, W.m = 13. Because Wyy b3 greater than Wm do not reject the -
nul hypotheaia.

STEPS: Thewmul hypothesnww not rejected and ﬂwould be eppropriate to calculats the probable power
of the test. Howaver, because the number of samples i3 small, extensive computer aimulations
are required in order to estimate the power of this test. Therefore, @ stzwimn ghould be
consulted. , .

The null hypothesis was not rejected. Therefore, it i ikely that there is no difference between the
mveﬂgated area and the referencs aree, aithough the statistical power is low due to the small

sample sizes involved.
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ﬁ "~ Box 3.3-8: Directlons for the Large Sample Approximation :

to the Wilcoxon Rank Sum Test :
for Simple and Systematic Random Samples

Let X, X, . . . , X repreaent the m data points from population 1and Y,, ¥, . . ., ¥, repressnt the n data
points from population 2 where both n and m ere greater than 40. The nut hypomeaswﬂ be that there is no
difference batween the two populations. . The alternative hypothesis will ba that population 1 ia larger than
population 2 for Case 1 or that population 2 ie larger than population 1 for Case 2.

STEP 1:  Ust end rank the measurements from both populations from smalleat to largest, keeping track of
which population contributed each measurement. The rank of 1 is assigned to the smallest
value, the rank of 2 to the second emallest value, and so forth. If there are ties, assign the
everage of the ranks that would otherwise have baen assigned to the tied observations.

STEP2  ForCase 1, calculats W as the sum of the ranks of the data from population 2.
For Case 2, calculats W as the sum of the ranks of the data from papulation 1.

 w- n(m+n+1) W_Q m(m+n+l)
STEP3: Caleulais 2 = 2 forCassfor gz = . 2 for Case 2.
‘ ' \/m(m+n4-l)/2 ‘/mn m+n+1)2
STEP4:  Use Table A-i oprpendxAioﬂndﬂlecmica!valuezusuchmat 100(10)% of the noma
distribution & balow z, .. :

HZ 32 o therehnotonough wldencetorejedms null hypothesis md the false negative smor
rate ehould ba verified. Go to Step 5.

2 < 2, the null hypathesis may ba rejected. Go to Step 8.

STEP 4: I the nufl hypothesis (H,) was not rejected, calculate either the power of the teat or the sample
- @Ze necessary to achieve the false posiiive and false negalive error rates using & statistical
goftware package. (Power calculations tend to be more difficult for nonparametric procedures
than for parametric procedures.) if only one false negative ermor rate (B) has been specifisd (at
. 8,), &t ia possible to calculate the sample size that achieves the DQOs, essuming the true mean
and standard deviation are equal to the valuea esuma!adfrommesamp!e. instead of calculating
the power of the test. Itmandnaxelarge,m!wiata:

; z'z(gl-e*'zn-é .2
m°®ap’a + (023)z.
' _ (61'60)2, : l

where z, 18 the p° percentie of the standard normal distribution (Tabls A-1 of Appendix A). Then,
multiply m® and n° by 1.16 to account for a loss in efficiency. If 1.16m° < m and 1.16n° < n, the .
false negative efror rate has been satisfied. Otherwise, the false negative error rate has not been

| STEPG: Tha resulis of the test could be: - L’

' ') mmntﬂhypoﬂieshwasreiedsd,anditmméipopulaﬁon1bgreawmanpomnz
! ?orCmiorMpopulaﬁanbgreatarmanpopulaﬁonﬂorCmZ. :

2) the nul hypoﬁmwasnotrejeddhofahomgahvcmmtsmsshﬁed.mdﬂmm
mmamdﬂumbdwmmhﬁOpopumons.w

3) the null hypothesis was notrejeded. the false negatwe efror rate waa not satisfied, and &
seams there is no difference betwesn the two populations, but this result is uncenam bacause the
sample sizes were probably too small. : 3
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3332 The Quantile Test

PURPOSE

The Quantile test can be used to compare two populations based on the independent random samples
X, X,, .. ., X, from the first population and Y, Y, . . ., Y, from the second populatiocn. When the Quantile
twtandtheWnlcoxonranksmntst(swum333l)amapphedtogethcr the combined tests are the most
powerful at detecting true differences betweea two populations.

ASSUMPTIONS AND THEIR VERIFICATION

The Quantile test assumes that the dats X, X, . . Xmareamndomsampleﬁ'ompoptﬂanonland
thedata Y, Y,,..., Y, axearandomsample&ompopulat:onZ and the two random samples are independent
of one another. Thevahdltyofthemndomsamphngmdmdcpendcmeassmpuonsxsassmedbyusmg
proper randomization procedures, either random number generators or tables of random numbers. The
primary verification required is to review the procedures used to select the sampling points. The two
- underlying distributions are assumed to have the same underlying dispersion (variance).

LIMITATIONS AND ROBUSTNESS

The Quantile test is not robust to outliers. In addition, the test assumes either a systematic (e.g., 8
triangular grid) or simple random sampling was employed. The Quantile test may not be used for stratified
designs. -

SEQUENCE OF STEPS

, TheQuannletwtnsdlﬁculttolmplcmentbyhnnd. Themfore,dxrechonsmnotmcludedmthxs
guidance. However, theDataQUEST soﬁware (EPA G-9D, 1996) can be used to conduct this test.

334 Comparing Two Medians

: Letp,repmaxtthemedxanofpopulanonlandp,tepmmtmemedmofpopulatxonz The
hypothmxseonsxdcxedmth:ssecuonm.

Casel: }Io: Hl"hsao vs. HA: ’l|°ﬁz>8°;m
Case2: Hy 1=tz 2 8 v8. Hy' iy -2 <8¢

Anmmpbofa%samplctestfwthedxﬁ'mccbetwemtwopopulaﬂmmdlmsweompmngthemedmn'
contammantlcvelataSmﬁmdmtetothcmsdxmofabackgroxmdsxtc In this case, 8, would be zero.

Thcmedxmmdmthesoﬁpewnle,md.muefae,thcmdhodsdam'bedmm332fa
pamﬂsmdpmpahmmaybeused&tsthmo&mmmng&edﬂambdeome&mby
letting P, =P, = 0.50. The Wilcoxon rank sum test (section 3.3.3.1) is also recommended for comparing two
medlans Thxst&stxsmompowwﬁﬂthanthosefozpmpaﬂonsfasymmdxsmb\mm
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CHAPTER 4

STEP 4: VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design| |. :
& ! VERIFY THE ASSUMPTIONS OF THE
STATISTICAL TEST
limi Data Review
Conduct Preliminary oV
‘ the undarlying assumptions of the statistics!
Select the Statistical Test W taet in ight of the evironmenta! data.
" Verify the Assumptions .C -
‘;  Parform Tests of Assumptions
o Detenmine Cormective Actions
Draw Conclusions From the Data 7
Tooke
> Teste of distributions} sssumptions
" = Tests for independonce and trendo
onhrdumam

Step 4: Verify the Assumptions of the Statistical Test

o Determine approach for verifying assumptions. '
o |dentify any strong graphical evidence from ths prefiminary datz review. i
o Review (or develop) the statistical modal forthe data. : B
a  Selact the tests for verifying assumptions.

] Petfonntsstsofassumpﬂora - ' i
Adjust for bias f warranted,
o Pedommeedanaﬁommwedmmm

o lf necessary, datermine coective actions.
) Detarmhowheﬂwdatahansfomaﬂomwicomctheptoblm
o [|f data are missing, explore the feaslbdily of using theoretical justification of
collecting new data. .
o  Consider robust procedures or nonparametric hypothesis tests.
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STEP 4: VERIFY TBE ASSUMPTIONS OF THE STATISTICAL TEST

N "Section | Directions | Example E
j Tests for | Shapiro Wilk W Test 422 |
m“gﬁf Fillbea' Statisti 423 ||
Coefficient of Veriation Test 424 | Box42-1 | Box42-1
- Skewness and Kurtosis Tests 425 |
Studentized Range Test 426 |Box422 | Box42-2
‘Geary's Test | 426 | Box42-3 | Box424
Goodness-of-Fit Tests 427 |
| Tests for Test of a Correlation Coefficicnt | 4322 | Box43.1 | Boxd43.l |
| Treads Mann-Kendall Test 4341 | Box433 | Box434 ﬂ
o 14342 | Box435. | Box436
| Tests for an Overall Monotonic Trend | 4343 | Box43-8 |
| Tests for Extreme Value Test 443 |Box44-1 | Box4.42 |
j Outliers Discordance Test 444 |Box443 | Boxda4 |
Rosner’s Test 445 |Box44-5 | Boxd4-6 |
| Walsh's Test 446 |Box44-7 |
Tests for Confidence Intervals for 8 Variance 45.1 Box 4.5:1 | Box4.5-1
Dispersion F-Test | 452 | Box452 | Box45-2
Bartlett’s Test 453 |Box453 | Box4.54
Levene’s Test = = 454. | Box4.5-5
Transformations | Logarithmic, Square Root, Inverse 46 | Box4.6-1
: _Sine, Box-Cox Transformations ,
Databelow | Substitution Methods . ' 471
Detection Limit  [= ) @ e Adjustment 4721 | Box47-1
Trimmed Mean 4722 | Box4.74
Winsorization 4723 | Box4.7-6
EPA QA/G-9
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. CHAPTER 4
STEP 4 VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST

4.1 OVERVIEW AND ACTIVITIES

In this step, the analyst should assess the validity of the statistical test chosen in step 3 by examining
its underlying assumptions in light of the newly generated environmental data. The principal thrust of this |
section is the determination of whether the data support the underlying assumptions necessary for the selected
m«ﬁm&ﬁmmmmeMmmsarypnm’mﬁmhasmsmalmﬂysu

TMsdewmimﬁonmbepafmmedqumﬁmﬁvdyusingstaﬁsﬁcdmalysisofdammwnﬁmox
reject the assumptions that accompany any statistical test. Almost always, however, the quantitative
techniques must be supported by qualitative judgments based on the underlying science and engineering
aspects of the study. Graphical representations of the data, such as those described in Chapter 2, can provide
important qualitative information about the reasonableness of the assumptions. Documentation of this step is
important, especially when subjective judgments play a pivotal role in accepting the results of the analysis.

: If the data support all of the key assumptions of the statistical test, then the DQA Process coatinues

to the next step, drawing conclusions from the data (Chapter 5). However, often one or more of the
assumptions will be called into question which may trigger a reevaluation of one of the previous steps. This
iteration in the DQA Process is an important check on the validity and practicality of the results.

4.1.1 Determine Approach for Veﬁfyhg Assumptions

In most cases, assumptions about distributional form, independence, and dispersion can be verified
formally using the statistical tests described in the technical sections in the remainder of this chapter,
although in some situations, information from the preliminary data review may serve as sufficiently strong
evidence to support the assumptions. As part of this activity, the analyst should identify methods to verify
that the type and quantity of data required to perform the desired test are available. The outputs of this

activity should include a list of the specific tests that will be used to verify the assumptions.

. The methods and approach chosen for assumption verification depend on the nature of the study and
its documentation. For example, if computer simulation was used to estimate the theoretical power of the
statistical test, then this simulation model should be the basis for evaluation of the effect of changes to

- assumptions using estimates calculated from the data to replace simulation values.

If it is not already part of the design documentation, the analyst may need to formulate a statistical
model that describes the data. In a statistical model, the data are conceptually decomposed into elements that
are assumed to be “fixed” (i.e., the component is either a constant but unknown feature of the population of is
controlled by experimentation) or “random” (i.¢., the component is an uncontrolled source of variation).
‘Which components are considered fixed and which are random is determined by the assumptions made for the
statistical test and by the inherent structure of the sampling design. The random components that represent -
thesomofuncontmlledvanatxoneo\ﬂdmcludescvaaltypwofmcasmunmtmaswellasotha :
sources such as temporal and/or spatial components. :

Inadditiontoidenﬁfyingthe.componemsthatmake.up an observation and specifying which are fixed
and which are random, the model should also define whether the various components behave in an additive or
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multiplicative fashion (or some combination). For exariiple, if temporal or spatial autocorrelations are
believed to be present, then the model needs to identify the autocorrelation structure (see section 2.3.8).

412 Perform Tests of Assumptions

For most statistical tests, investigators will need to assess the reasonableness of assumptions in
relation to the structure of the components making up an observation. For example, a t-test assumes that the
components, orms,areaddmve,mcommed,andnmmallydmmbmedmthhomogmsvmm
Basic assumptions that should be investigated include:

) Is it reasonable to assume that the errors (deviations from the model) are nonnally
distributed? If adequate data are available, then standard tests for normality can be
conducted (¢.g., the Shapiro-Wilk test or the Kolmogorov-Smirnov test).

(2)  Isit reasonable to assume that errors are uncorrelated? While it is natural to assume that
- analytical errors imbedded in measurements made on different sample units are independent,
other errors from other sources may not be independent. - If sample units are “too close
together,” either in time or space, independence may not hold. If the statistical test assumes
independence and this assumption is not correct, the proposed false positive and false
negative error rates (a and B) for the statistical test cannot be verified.

A3) Is it reasonable fo assume that errors are additive and have a constant variability? If
‘sufficient data are available, a plot of the relevant standard deviations versus mean
" concentrations may be used to discern if variability tends to increase with concentration
level. If so, transformations oft}@datamaymaketheaddxtwnyassmnpuonmoretmable

OmofthemostnmpoﬁMassmphmsmdalymg&emusmdprwe&mdsmbedhmnmm
there is no inherent bias (Systematic deviation from the true value) in the data. The general approach adopted
here is that if a long term bias is known to exist, then adjustment for this bias should be made. If bias is

mmt,thenthebasxceﬁ'ectlstoshxﬁthepowwm&assocxatedmthagwent:sttothenghtorleﬁ,
depending on the direction of the bias. ‘Thus substantial distortion of the nominal Type I (false positive) and
Type II (false negative) decision esror rates may occur.  In gencral, bias cannot be discerned by examination
of routine data; rather, appropriate and adequate QA data are needed, such as performance evaluation data. If

one chooses not to make adjustment for bias on the basis of such data, then one should, at a minimum,
' mhmwmmmsmasmmmndmepomﬂeﬂmoﬂbsbms

413 Determme Corrective Acuons

Somehmw&cassmphmsmdalmg&epnmmyshﬁshcdtwtmﬂnabesamﬁedmdmmetype '
of corrective action will be required before proceeding. In some cases, a transformation of the data will
correct a problem with distributional assumptions. In other cases, the data for verifying some key assumption
may not be available, and existing information may not support a theoretical justification of the validity of the
assumption. In this situation, it may benecessary to collect additional data to verify the assumptions. If the
assumptions underlying a hypothesis test are ot satisfied, and data transformations or other modifications do
not appear feasible, then it may be necessary to consider an alternative statistical test. These include robust
test procedures and nonparametric procedures. Robust test procedures involve modifying the parametric test
by using robust estimators. Formstame,asasubshhﬂsforat—twt,ahmmedmeanandltsassocxated
standarderror(swtxon472)m1ghtbeusedtofoxmat—typcstahshc -
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42  TESTS FOR DISTRIBUTIONAL ASSUMPTIONS

Many statistical tests and models are only appropriate for data that follow a particular distribution.
This section will aid in determining if a distributional assumption of a statistical test is satisfied, in particular,
the assumption of normality. Two of the most important distributions for tests involving environmental data
are the normal distribution and the lognormal distribution, both of which are discussed in this section. To test
1fthcdata;oﬂowadnsmbtmmothathanthenormaldxsm'blmmorthclogxnmaldxsmbunon,applytlmchl-
squaretwtdlswssedmseeuon427orconsultastatxstxaan.

There are many methods available for verifying the assumption of normality ranging from simple to
complex. This section discusses methods based on graphs, sample moments (kurtosis and skewness), sample
ranges, the Shapiro-Wilk test and closely related tests, and goodness-of-fit tests. Discussions for the simplest
tests contain step-by-step directions and examples based on the data in Table 4.2-1. These tests are
summarized in Table 4.2-2. Thxssecuonmdsmthacompmsonofthemtstobclptheamlystselectam
for normality.

Table 4.2-1. Data for Examples in Sechon 4.2

1,00 | 1175 [1045 [13.8 |i0. s4 | 11ss |11 |1023 [X71L7
| |s=1677

Theasmmphonofnormahtylsvuynmpmtantas1tlsthebas13forthemajmtyofstausucalmts
A normal, or Gaussian, distribution is one of the most common probability distributions in the analysis of
environmental data. A normal distribution is a reasonable model of the behavior of certain random
phenomena and can often be used to approximate other probability distributions. In addition, the Central
Limit Theorem and other limit theorems state that as the sample size gets large, some of the sample summary
_ statistics (e.g., the sample mean) behave as if they are a normally distributed variable. As a result, a common
assmnphonassoclatedmthparamcmctwtsorstanshcalmodelsmthatthemassomatedw:thdataorm
model follow a normal distribution. '

Thegmphofanmmnllydxsm‘butedrandomvmable, anormaluxrve,nsbell-shap«ed(seel-‘lgme ‘
42-l)w1ththeh1ghwtpomtlocatedatthemeanwhxchlsequaltothemedmn. Anormalcm'velssymmemc

03
o2}

0if

0 5 10 15 20 25

Figure 4.2-1. Graph of a Normal and Lognormal Distribution
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 about the mean, hence the part to the left of the mean is a mirror image of the part to the right. In
@mmmmmmgMgmemmmMpmmbemmaﬂydiSMbm

7 Environmental data commonly exhibit frequency distributions that are non-negative and skewed with
heavy or long right tails. Several standard parametric probability models have these properties, including the
Weibull, gamma, and lognormal distributions. The lognormal distribution (Figure 4.2-1) is a commonly used
distribution for modeling environmental contaminant data. The advantage to this distribution is that a simple
(logarithmic) transformation will transform a lognormal distribution into a normal distribution. Therefore,
the methods for testing for normality described in this section can be used to test for lognormality if a
logapthmxc transformation has been used.

Table 4.2-2. Tests for Normality

—
| Sample
Test | Section Size Recommended Use
Shapiro Wilk W |422 <50 | Highly recommended.
Test I
Filliben's 423 <100 | Highly recommended.
Statistic | ‘
Coefficient of 424 " Any | Only use to quickly
Variation Test : ) | discard an assumption of
: normality.
' Skewness and 425 '>50 | Useful for large sample
Kurtosis Tests - . sizes. -
|| Geary's Test 426 >50 | Useful when tables for
available.

“ 1426 < 1000 | Highly recommended
Range Test : (with some conditions). -
Chx-Square Test | 427 | Large | Useful for grouped data

distribution is known.

Lilliefors =~ | 427 >50 | Useful when tables for No
Kolmogorov- , o od:'u' tests are not
Smirnoff Test -

° The necessary sample size depends on the number ofgroups fonned when mplmtmg this test. Each
group should contain at least 5 obsa'vauom
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421 Graphical Methods

Graphical methods (section 2.3) present detailed information about data sets that may not be
apparent from a test statistic. Histograms, stem- and-leafplots,andnmmalprobablhtyplomaresome
gmphcalmethodsthatmuseﬁﬂfm’detammngwhethaamtdamfoﬂowanormﬂme Both'the
histogram and stem-and-leaf plot of a normal distribution are bell-shaped. The normal probability plot of a
normal distribution follows a straight line. For non-normally dism'bmeddata,tha'ewil]belarge'deviaﬁonsin
the tails or middle of a normal probability plot.

Using a plot to decide if the data are normally distributed involves making a subjective decision. For
extremely non-normal data, it is easy to make this determination; however, in many cases the decision is not
straightforward. Therefore, formal test procedures are usually necessary to test the assumption of normality.

422 Shapiro-Wilk Test for Normality (the W test)

One of the mostpowerﬁxltwts fornormahtyxstthtwtbyShapxmandek. This test is similar
to computing a correlation between the quantiles of the standard normal distribution and the ordered values of
a data set. If the normal probability plot is approximately linear (i.e., the data follow a normal curve), the test
statistic will be relatively high. If the normal probability plot contains significant curves, the test statistic will
be relatively low.

The W test is recommended in several EPA guidance documeats and in many statistical texts.
Tables of critical values for sample sizes up to 50 have been developed for determining the significance of the
test statistic. However, this test is difficult to compute by hand since it requires two different sets of tabled
values and a large number of summations and multiplications. Therefore, directions for implementing this
test are not given in this document, but the test is contained in the DataQUEST software package (QA/G-9D,
1996).

423 Extensnons of the Shapuro-Wilk Test (Filliben's Statistic)

BecausetheWtwtmayonlybeusedforsampleswlssthanorequaltoSO scva*alrelatedtsts
have been proposed. D'Agostino’s test for sample sizes between 50 and 1000 and Royston’s test for sample
sizes up to 2000 are two such tests that approximate some of the key quantities or parameters of the W test.

Another test related to the W test is the Filliben statistic, also called the probability plot correlation
coefficient. This test measures the linearity of the points on the normal probability plot. Similar to the W
test, if the normal probability plot is approximately linear (i.e., the data follow a normal curve), the
correlation coefficient will be relatively high. If the normal probability plot contains significant curves (i.e.,
the data do not follow a normal curve), the correlation coefficient will be relatively low. Although easier to
compute that the W test, the Filliben statistic is still difficult to compute by hand. Therefore, directions for -
implementing this test are not given in this guidance; however, it is contained in the DQA DataQUEST
software package (QA/G-9D, 1996).
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424 Coefficient of Variation

The coefficient of variation (CV) may be used to quickly determine whether of not the data follow a
normal curve by comparing the sample CV to 1. The use of the CV is oaly valid for some environmental
apphcwomfmedam:epmmtam-mgamemmmhasmnmmmms If the CV
is greater than 1, the data should not be modeled with a normal curve. However, this method should not be
used to conclude the opposite, i.c., do not conclude that the data can be modeled with a normal curve if the
CV is less than 1. Thstwtmwbcusedonlymeonjmcummthothmstahsucaltstsorwhmmphcal
repmwtahonsofthcdatamdxcatemdcpmﬁmnmahty Directions and an example of this
methodarecontmnedeox42—l

425 Coefficient of Skewnesleoefﬁcieng of Kurtosis Tests

Thcdegreeofsymmeﬂy(aa‘asymmﬁy)dxsphyedbyadaﬂsetlsmcasmedbythecoefﬁmmtof

skewness (g,). The coefficient of kurtosis, g,, measures the degree of flatness of a probability distribution
near its center. Several test methods have been proposed using these coefficients to test for normality. One
method tests for normality by adjusting the cocfficients of skewness and kurtosis to approximate a standard
normal distribution for sample sizes greater than 50. ’

Twoo’(hu'tm‘sbasedonthseeocﬁumtsmcludeacombmedtzstbasedmachl-squared(x’)
 distribution and Fisher’s cumulant test. Fisher's cumulant test computes the exact sampling distribution of g,
andg,,,tlwrefore,ltlsmorepowa'ﬁﬂthanprevnousmﬂhodswhlchassmnethatd;edxsm’btmonsofthetwo
coefficients are normal. Fisher's cumulant test requires a table of critical values, and these tests requirea
sample size of greater than 50. Tstsbasedonskewmsandhmosmaremelyusedasthcymdxﬂiaﬂtto
computeandlesspowerﬁllthanmanyaltemanvw

Box 4.2-1: Directions for the Coefficient of Varlation Test for
Environmental Data and an Example

Dirécﬁons
| , 1 —12 X7 12
STEP i: Calculate the coefficient of variation (CVE: CV = s /X = Lad

_E X,

N o

STEP 2 HCV>1.0, condudeﬂmatmedatamnotnomaﬂym Omenmse ﬁ\otadislnconduslve.

Example

Tﬁe following example demonstrates using the coefficlent of variation to determine that the data in Table 4.2-1
should not be modeled using a normal curve.

s _ 1677

STEP 1: Calculate the coeffcient of variation (CV): C¥' = = = = = 0.145

STEP 2= Since 0.145 1 1.0, the test is inconclusive.
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426 Range Tests

Almost. 100% of the area of a normal curve lies within £5 standard deviations from the mean and
tests for normality have been developed based on this fact. Two such tests, which are both simple to apply,
are the studentized range test and Geary's test. Both of these tests use a ratio of an estimate of the sample
range to the sample standard deviation. Very large and very small values of the ratio then imply that the data
are not well modeled by a normal curve.

a. The studentized range test (or w/s test). This test compares the range of the sample to the
sample standard deviation. Tables of critical values for sample sizes up to 1000 (Table A-2 of Appendix A)
are available for determining whether the absolute value of this ratio is significantly large. Directions for
implementing this method are given in Box 4.2-2 along with an example. The studentized range test does not
performwellxfthcdataareuymmetncandnfthctmlsofthcdataarehcavxathanthenmmaldxsmbuuon. In
- addition, this test may be sensitive to extreme values. Unfortunately, lognormally distributed data, which are
common in environmental applications, have these characteristics. If the data appear to be lognormally
distributed, then this test should not be used. Inmostcasa,thcsmdmnzedrangetwtpaformsaswellasthc
Shapiro-Wilk test and is much eamxtoapply

b. Geary's Test. Geary'st&stusutbcranoofthemeandcwahonofﬂwsampletothcsample
standard deviation. This ratio is then adjusted to approximate a standard normal distribution. Directions for
implementing this method are given in Box 4.2-3 and an example is given in Box 4.2-4. This test does not
perform as well as the Shapiro-Wilk test or the studentized range test. However, smceGeary'smtstansucxs
based on the normal distribution, critical values for all possible sample sizes are available.

—

Box 4.2-2: Directions for Studentized Range Test

and an Example
. STEP1: Calculate sample range (w) and sﬁmple standard deviation (s) using esction 2.2.3.
STEPZ  Compars % - M- to the criical values given in Table A-2 (labsled a and b).
It w/e falls outside the two critical values then the data do not follow a nommal curve.
i Example

The following example demonstiratee ihe uss of the studentized range test to datemuneﬂ the dawfrom Table
4.2-1 canbemodeledusnganonnalcuwe.

STEP1:  waX,,-Xq,=15.63-10.235540 ands = 1.677.

STEP2 wle=54/1.677 =3.22. The critical values given in Table A-2 are 2.51 and 3.875. Since 3.22
falle between these values, the assumption of normality is not rejected.
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Box 4.2-3: Diractions for Geary's Test

Calculete the 2ample meen X, the cample sum of squares (SSS), and the sum of abeolute
dsvigtions (SAD):

- 1 n ] (EXI)Z ] -
X=-3X, S5=3X'-L"—, and SAD = 3 |X;-X|
n o1 i1 n il
Calculate Geary's teet siatistic g = SAD
yn(SSS)
~ Test °a” for significance by computing Z = g—m. Here 0.7979 and 0.2123 are
02123/fn

constants usad to achieve normakty.

Usa.Table A-1 of Appendix A to find the critical value 2, , such that 100{1-a)% of the normal
distribution iz balow z,,. For axample, f a = 0.05, then 2,, = 1.845. Declare °a” to be
sufficiently sma or large (i.e., conclude the data are not normally distributed) if 21> 2, .

Box 4.24: Example of Gaary's Test

The following example demonétratsem uso of Geenys test to determine if the date from Table 4.2-1 can bs
modeled using a normal curve. _

il

- R R -
STEP1: X =131X = 11571, SAD = Y |X,-X| = 11694, and
. R o) =1
R
: Qxy
Sss =3 x2 - L 21364178 - 1338.88 = 25298
i=1 n
step2 a=AD_ . 1168 435
- JnSSS)  JT0(25298)
sreps g 013501919 oo

0.2123//10

|  STEP4  since 2l s 1.84 (5% significance level), there is not enough information to conclude that the
. data do not follow a norme! distribution.
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42.7 Goodness-of-Fit Tests

Goodness-of-fit tests are used to test whether data follow a specific distribution, i.., how “good” & |
specified distribution fits the data. In verifying assumptions of normality, one would compare the data to
normal distribution with a specified mean and variance.

a. Chi-square Test. One classic goodness-of-fit test is the chi-square test which involves breaking
medammgrmmsandwmpmngmegmmswmcmemdgroups&ommckmmdmmbuuon There
are no fixed methods for selecting these groups and this test also requires a large sample size since at least 5
observations per group are required to implement this test. In addition, the chi-square test does not have the
poweroftheShapxro-detstorsomeofthcothatstsnmbonedabove

b. Kolmogorov-Smirnoff (K-S) Test and Lllhefors K-S Test. Another goodness-of-fit test is the
Kolmogorov Smirnoff (K-S) test which also tests whether the data follow a specific distribution with known
parameters such as the mean and variance. This test requires that the sample size of the data be greater than
50. The Lilliefors K-S twtmaybeusedfortmhngxfthcdahmmmaﬂydxsmbmedwhmthesampleswe
is larger than 50 and the distribution parameters are estimated from the data. The Lilliefors K-S test is more
powerful than the chn-square test for large sample sizes and is recommended in several EPA guidance
‘documents.

428 Recommendations

- Analysts can perform tests for normality with samples as small as 3. Howeveg, the tests lack
statistical power for small sample size. Therefore, for small sample sizes, it is recommended that a
nonparametric statistical test (i.¢., one that does not assume a distributional form of the data) be selected
dunngStcp3oftheDQAProc&smordamavoxdmcmrealyassmmgmcdaQuemaﬂydxsmbmed
’whenthaelsslmplynotmoughmfoxmanontowstthxsassmpnon.

Ifthesample sxzelslssthanSO then this guidance recommends using the Shapiro-Wilk W test,
‘wherever practicable. TheShapnro-lekWtstxsoneofmostpowu'ﬁxltmts for normality and it is
recommendedmseveralEPAgmdanccastheprcfexredtstwbmthesamplcsxm:slssthanSO This test is
difficult to implement by hand but can be applied easily using the DQA DataQUEST software package
(QA/G-9D, 1996). If the Shapiro-Wilk W test is not feasible, then this guidance recommends using either
Filliben's statistic or the studentized range test. Filliben's statistic performs similarly to the Shapiro-Wilk
test. The studentized range is a simple test to perform; however, it is not applicable for non-symmetric dats
with large tails. If the data are not highly skewed and the tails are not significantly large (compared to a
normal distribution), the studentized range provides a simple and powerful test that can be calculated by
hand. All three of these tests are included in the DataQUEST software (QA/G-9D, 1996).

If the sample size is greater than 50, this guidance recommends using either the Filliben's statisticor
the studentized range test. Howevex, if critical values for these tests (for the specific sample size) are not
available, then this guidance recommends implementing either Geary's test or the Lilliefors Kolmogorov-
~Smirnoff test. Geary'ststlseasytoapplyandussstandardnormaltablwsxmﬂartoTableAel of Appendix
A and widely available in standard textbooks. Lilliefors Kolmogorov-Smimoff is more statistically powerful
but is also more difficult to apply and uses specialized tables not readily available.
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43  TESTS FOR TRENDS
43.1 Introduction

This section presents statistical tools for detecting and estimating trends in environmental data. The
detection and estimation of temporal or spatial trends are important for many environmental studies or
monitoring programs. In cases where temporal or spatial patterns are strong, simple procedures such as time
plots or linear regressicn over time can reveal trends. In more complex situations, sophisticated statistical

-models and procedures may be needed. For example, the detection of trends may be complicated by the
overlaying of long- and short-term trends, cyclical effects (e.g., seasonal or weekly systematic variations),
autocorrelations, or impulses o jumps (e.g., due to interventions or procedural changes).

The graphical representations of Chapter 2 are recommended as the first step to identify possible
trends. A plot of the data versus time is recommended for temporal dats, as it may reveal long-term trends
and may also show other major types of trends, such as cycles or impulses. A posting plot is recommended
forspaﬁaldatatorcveal"spaﬁaltrmdsstmhasmofhighcmnaﬁmamthatwueinaccssible.

For most of the statistical tools presented below, the focus is on monotonic long-term trends (ie., 8
trend that is exclusively increasing or decreasing, but not both), as well as other sources of systematic
variation, such as seasonality. The investigations of trend in this section are limited to ane-dimensional
domains, e.g., trends in a pollutant concentration over time. The current edition of this document does not
address spatial trends (with 2- and 3-dimensional domains) and trends over space and time (with 3- and 4-
dimensional domains), which may involve sophisticated geostatistical techniques such as kriging and require
the assistance of a statistician. Section 4.3.2 discusses estimating and testing for trends using regression
techniques. Section 4.3.3 discusses more robust trend estimation procedures, and section 4.3.4 discusses
hypothesis tests for detecting trends under several types of situations.

432 Regression-Based Methods for Estimating and Testing for Trends
4321 Estimating a Trend Using the Siope of the Regression Line

The classic procedures for assessing linear trends involve regression. Linear regression is a :
commonly used procedure in which calculations are performed on a data set containing pairs of observations
(X, Y), 5o as to obtain the slope and intercept of a ling that “best fits” the data. For temporal trends, the X;
values represent time and the Y; values represent the observations, such as contaminant concentrations. An
_ stimate-ofthemgnih:depfkmdcanbeobtainedbypafqmingamgrsdmoﬂheda&vmﬁm(a
some function of the data versus some functioa of time) and using the slope of the regression line as the
measure of the strength of the trend. ' ' '

Regression procedures are easy to apply; most scientific calculators will accept data entered as pairs
" and will calculate the slope and intercept of the best fitting line, as well as the correlation coefficient r (see
section 2.2.4). However, regression entails several limitations and assumptions. First of all, simple lincar
regression (the most commonly used method) is designed to detect linear relationships between two variables;
other types of regression models are generally needed to detect non-linear relationships such as cyclical or -
non-monotonic trends. Regression is very sensitive to extreme values (outliers), and presents difficulties in
handling data below the detection limit, which are commonly encountered in environmental studies.
Regression also relies on two key assumptions: normally distributed errors, and constant variance. It may be
difficult or burdensome to verify these assumptions in practice, so the accuracy of the slope estimate may be
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suspect. Moreover, the analyst must ensure that time plots of the data show no cyclical patterns, outlier tests
show no extreme data values, and data validation reports indicate that nearly all the measurements were
above detection limits. Because of these drawbacks, regression is not recommended as a general tool for
estimating and detecting trends, althoughntmaybeuseﬁxlmanmfomanmchandeasyscrmngtoolfor
tdenufymgsu'onghnea:tmnds

4322 Testing for Trends Using Regression Methods

The limitations and assumptions associated with estimating trends based on linear regression
"methods apply also to other regression-based statistical tests for detecting trends. Nonetheless, for situations
in which regression methods can be applied appropriately, there is a solid body of literature on hypothesis
testing using the concepts of statistical linear models as a basis for inferring the existence of temporal trends.
The methodology is complex and beyond the scope of this document.

For simple linear regression, the statistical test of whether the slope is significantly different from
‘zero is equivalent to testing if the correlation coefficient is significantly different from zero. Directions for
this test are given in Box 4.3-1 along with an example. This test assumes a linear relation between Y and X
mthmdependeﬂmmzllydxsmbuwdmmmdwmtamanwossanXandealua Censored
values (e.g., belowthedetecuon hmxt)andouthersmaymvahdatetbctwts

Box 4.3-1; Directions for the Test for a Correlation Coefficlent
: and an Example :
irection: | ‘
H STEP1:  Calculate the correlation coefficient,  (section 2.2 4)..
p

1 -72
B-2

STEP 3.  Use Table A-1 of Appendix A to find the critical value ¢, .4 such that 100(1-w/2)% of the t
distribution with n - 2 degrees of freedom i3 below t,,.. For axample, if @ = 0.10 &nd n = 17, then
ré-lz=15andi.¢81753 Condudematﬂ\aeoﬂdaﬁonbdgnﬂcanﬁydﬂferentfromzmﬂ

>z,d, _

Example: Consadefmefolowtngdahsd(lnppb) forSample‘i amnsc(X)thandlead(Y)wao for
Sample 2, arsanic is 3.0 and lead I8 7.0; for Sample 3, ersenic i82.0 and lead &8 7.0; andforSamp!oa
A amamcs‘lomudmeo

STEP2:  Calculate the t-value ¢ = '

STEP 1 in secion 2.2.4, the cormelation coefficient r for this data was calculated o be 0.849.
STEP2 o —o2e2 =426
1 - 09492
4 -2

S‘i’EP 3:  Using Table A-1 of Appendix A, t, ., = 2.820 for @ 10% lave! of significance and 4-2 = 2 degress
of freedom. Therefote, there appears to be a significant correlation between the two variablss
lead and arsenic.
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433 General Trend Estimation Methods
433.1 Sen's Slope Estimator

Sen’s Slope Estimate is a nonparametric alternative for estimating a slope. This approach involves

' _compuﬁngslopesforallthepairsofordinaltimcpointsandthenusingthcmedianofthseslop&asan
estimate of the overall slope. As such, it is insensitive to outliers and can handle a moderate aumber of
values below the detection limit and missing values. Assume that there are n time points (or n periods of
time), and let X, denote the data value for the i* time point. If there are no missing data, there will be n(n-1)/2
possible pairs of time points (i, j) in which i > . The slope for such a pair is called a pairwise slope, b;, and is
computed as b; = (X; - X)/ (i - j). Sen's slope estimator is then the median of the n(a-1)/2 pairwise slopes.

If there is no underlying trend, then 3 given X; is as likely to be above another X; as it is below.
Hence, if there is no underlying trend, there would be an approximately equal number of positive and negative
slopes, and thus the median would be near zero. Due to the number of calculations required, Sen’s estimator
is rarely calculated by hand and directions are not givea in this document. However, the estimator is
" contained in the DQA DataQUEST software package (QA/G-9D, 1996). ' '

4332 Seasonal Kendall Slope Estimator

If the data exhibit cyclic trends, then Sen's slope estimator can be modified to account for the cycles.
For example, if data are available for each month for a number of years, 12 separate sets of slopes would be
determined (one for each month of the year); similarly, if daily observations exhibit weekly cycles, seven sets -
of slopes would be determined, one for each day of the week. In these estimates, the above pairwise slope is
calculated for each time period and the median of all of the slopes is an estimator of the slope for 8 long-term
trend. This is known as the seasonal Kendall slope estimator. Because of the number of calculations
required, this estimator is rarely calculated by hand so directions are not given in this document. The
seasonal Kendall slope estimator is contained in the DataQUEST software package (QA/G-9D, 1996).

434 Hypothesis Tests for Detecting Trends'

 Most of the trend tests treated in this section involve the Mann-Kendall test or extensions of it. The
Mann-Kendall test does not assume any particular distributional form and accommodates trace values or
‘'values below the detection limit by assigning them a common value. The test can also be modified to deal
with multiple observations per time period and geneéralized to deal with multiple sampling locations and

43.4.1 One Observation per Time i’er_iod for One Sampling Location »

The Mann-Kendall test involves computing a statistic S, which is the difference between the number
of pairwise slopes (as described in 4.3.3.1) that are positive minus the number that are negative. IfSisa
large positive value, then there is evidence of an increasing trend in the data. If S is a large negative value,
then there is evidence of a decreasing trend in the data. The null hypothesis or baseline condition for this test
is that theré is no temporal trend in the data values, i.¢., “Hy: no trend”. The altemative condition or
hypothesis will usually be either “H,: upward trend” or “H,: downward trend.”

The basic Mann-Kendall trend test involves listing the observations in temporal order, and
computing all differences that may be formed between measurements and earlier measurements, as depicted
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in Box 4.3-2. The test statistic is the difference between the number of strictly positive differences and the
number of strictly negative differences. If there is an underlying upward trend, then these differences will
tend to be positive and a sufficiently large value of the test statistic will suggest the presence of an upward
trend. Differences of zero are not included in the test statistic (and should be avoided, if possible, by

. recording data to sufficient accuracy). The steps for conducting the Mann-Kendall test for small sample sizes
(i.e., less than 10) are contained in Box 4.3-3 and an example is contained in Box 4.3-4.

| For sample sizes greater than 10, a normal approximation to the Mann-Kendall test is quite accurate.
Directions for this approximation are contained in Box 4.3-5 and an example is given in Box 4.3-6. Tied
observations (i.e., when two or more measurements are equal) degrade the statistical power and should be
avonded, if possible, by recording the data to sufficient accuracy.

=1
Box 4.3-2: “Upper Triangular” Data for Baslc Mann-Kendall Trend Test
with a Single Measurement at Each Time Point ’
Data Table
Original Time t % t t AP . A ({time from earfiest to latest)
Measurements X, X, = X, X o X, X (actual values recorded)
X P35 A B D & S T &
X, XeXa Xe¥a .o Kk X%
Xaa | | XorXea  XXoa
Xt - ' ' XooXat
After performing the subtaéﬂ_on; thié table converis to:
Originad Tme . &, & % % R PR S Bofe #of-
Measuremente X, X; - X - X A & X, Differences Differences
, (>0) (<0)
. )(1 Yzq qu Y'm . s Y‘»gn Ym
- Xy . Ya Ya ver Yo Yg
X2 Youra Ve
‘x»! i ) ; : anu
NOTE: X-Y,=0 do not contribute to either total and are discarded. Total # >0 Total # <0 -
wherngaslgn (x,-x,) =+ ¢x, X“>0
£X-%=
- Jix %<0
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Box 4.3-3: Directlions for the Mann-Kendall Trend Tes& for Small Sample Sizes

' the sample size ie less than 10 and there i3 only one datum per time period, the Mann-Kendall Trend Test for
small sample sizes may be usad.

STEP 1. Ustthe data in the order collected over ima: X,, X,, ..., X,, where X i the datum at ime t. Assign a
: value of DL/2 to values reported as bslow the detection imit (DL). Construct 2 "Data Matrd¢® similar to
the top half of Box 4.3-2.

STEP 2: “Compute the sign of o possible differences as shown in the bottom portion of Box 4.3-2.

STEP 3: Compute the Mann-Kendall statistic S, which is the number of positive signs minue the number of
. negative signs in the ttia'ngular table: S = (number of + gigns) - (number of - signs).

STEP 4: Usa Tablé A-11 of Appendix A to determine the probability p using the sample size n and the absolute ]|
value of the statistic S. For example, it n=§ and S=8, p=0.042.

STEPS: For testing the null hypothesis of no trend against H, (upward trend), reject H,f S> 0 andif p < .
. -For testing the null hypothesis of no trend against H, (downward trend), reject H,¥S<Qanddfp <a.

' Box 4.34: An Example of Mann-Kendall Trend Test for Small Sample Slzes

Consider 5 measurements ordered by the time of their collection: 5, 8, 11, 8, and 10. This data will be used to test
the null hypothesis, H, no trend, versus the altemative hypothesis H, of an upward trend at an a = 0.05 significance
level. ) . '

STEP 1: The data Iisted in order by time are: 5, 8, 11, 8, 10. .

"STEP 2. A tiangular table (see Box 4.3-2) was used to construct the possible differences. The sum of signs of
the differences across the rows are shown in the columne 7 and 8. .

Time 1 2 3 4. 5 No.of+ No.of
Data 5 8 i1 8 10 Signs - Signe

5 & < % S 4 0
8 < ¢ ¢+ . 3 0
11 - - 0 2
8 - .. i 0

8 2

STEP3: Using the table above, S=8-2=6.
STEP4: From Table A-11 of Appendix Aforn =5 and S = 6, p = 0.147.

STEPS. SinceS>0butp=0.997 ¢ 0. 05, the nul hypothesis is not rejected. Therefore there is not enough
evidence to condlude that thers I8 an increasing trend in the data.
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if the sémp!e size ks 10 or more, @ normal approximation to the Mann-Kendall procedure'may be used.

STEP 1:
STEP 2:

STEP 4:

STEP 5:

STEP 6!

Box 4.3-5: Directions for the Mann-Kendall Procedure Using Normal Approximation

Complete stepe 1, 2, and 3 of Box 4.3-3.
Calculate the variance of S: V{S) = n—(n?il)g-z—n:ﬂ.
If ies occur, let g represent the number'of tied groups and W, represeni the number of data points in the

p” group. The variance of S is: {S) = 1;18 [n(n-l)(an_S) - 2 wp(wp-l)(pr+5)]
P

Calculate Z=—>—1 ifS>0.Z=0ifs=0.or z-5*1 — (S <0.
V(S)] 18]
Uss Table A-1 of Appendix A to find the cnhwl value Z,4 8uch that 100(1-a)% of the normal distribution

is below 2,,. .For example, f a=0.05 then Z,o=1.645.

For testing the hypothesis, H, (no trend) against 1) H, (an upward trend) - reject H, ¥ Z is greater than
2,4 OF 2) H, (2 downward trend) - reject He if Z < 0 and the absolute value of Z is greater than z,,.

A test for an upward trend with a=.05 will be based on the 11 weeldy measurements shown bslow.
STEP 4:

STEP 4:

STEP &:
STEPE6:

Box 4.3-8: An Example of Mann-Kendall Trend Test by Normal Approxlmat!on

Using Box 4.3-2, a triangular table was used to construct the possible differences. A zero has been used i
if the difference is Zero, & “+° sign ¥ the difference is positive, and a °-° sign i the difference is negative.

-5
¢¢‘¢¢¢¢¢¢¢mo

i 2 3 4 S 8 7 8 11 No. of No. of
9 19 11 S5 19 2 18 iz + Signg’ -Signg
0 0 - 1] % Iy Py
0 - 0 < ¢ &
- 0 -+ s &
'S + 'S s -
¢ S ¢

v e .‘00090'&“0
[ - IR ¢¢¢¢+ﬁ

(1] .

Mo s NROOD
N .
U'—BONU&OO.A.A.A

S = (sum of + signs) - (sum of - signs) = 35 - 13 = 22

There are several observations tied at 10 and 15. Thus, the formula for tied values will be used. In thie
formula, g=2, t,=4 for tied values of 10, and t,=2 for tied values of 15.

nS) = 1—18 [L1(11-1)(2(11)+5) - [4(8-1)(2(4)+5) + 2(2-1)(2(2)+5)]] = 155.33

Since S is posttive: Z = S . _ 2271 . 20 605

AO*  (15533)% 1246
From Table A-1 of ApPendix A, 2, o;=1.645.

H, & is the altenative of interest Therefore, since 1.605 is not greater than 1.645, H, is not rejected.
Therefore, there is not enough evidence to determine that there is an upward trend.

]
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4342 Mult:ple Observatmns per Time Period for One Sampling Location

Oﬁm,morethanoncsamplenscollectedfoxeachumzpmod 'Ihu'earetwowaystodcalmth
multiple observations per time period. One method is to compute a summary statistic, such as the median,
for each time period and to apply one of the Mann-Kendall trend tests of section 4.3.4.1 to the summary
statistic. Therefore, instead of using the individual data points in the triangular table, the summary statistic
wouldbeused. ThenthestcpsgwmmBox43-3and43-500lﬂdbcapphedtothcsummarystanst1cs

An alternative approach is to consider all the multiple observations within a given time penod as
being essentially equal (i.e., tied) values within that period. The S statistic is computed as before withn
being the total of all observations. The variance of the S statistic (previously calculated in step 2) is changed

3

VAR(S) = —l- n(n-1)(2n+5) - 2 WP(WP-I)(ZWP*.‘S) - Zl: uq(uq-l)(2u4+5) '
P e

5 |
ﬁ:w (,-1)(w, -2)2:4 (,-D(2,-2) fj w,(w,~1) 3 u (u-1)
s 22} + P20 g=1

9n(n- l)(n-2) 2n(n-1)

wheregrepmentsthcnmbaofuedms,w repmmtsthcnumbaofdatapomtsmthep group, h is
thenumberofumcpcnodswhxchconmnmulnpledata,andu,lsthesamplesxzsmtheq txmepenod :

: TheprecedxngvanancefomulaassummthatthcdaHarenotwrelated. Ifcorrelanonwnhmsmgle'
: umepcnodslsmpected,nmpmfmbletomsmmnrystansuc(eg.,themedxm)fo:eachtxmepenod
andtothenapplycxtherBox43e3orBoxéS-Stothcsmmarystansua '

43.43 Multiple Samphng Locations with Multiple Observatlons

: The preceding methods involve a single sampling locanon (stanon) However, envuonmentaldata
often consist of sets of data collected at several sampling locations (see Box 4.3-7). For example, data are
oﬁmsystcmancallycollectedatscva'alﬁxedsxtaonalakeornver,m‘w:thmareglonorbasm. The data
coﬂecﬂonplan(orexpmmmtaldwgn)nmstbesystanaﬁcmthcswsethatapproxxmatelythesame .
sampling times should be used at all locations. In this situation, it is desirable to express the results by an
overall regional summary statement across all sampling locations. However, there must be consistency in
behavioral characteristics across sites over time in order for a single summary statement to be valid across all
sampling locations. A useful plot to assess the consistency requirement is a single time plot (section 2.3.8.1)
ofmcmeasmemmm&omaﬂsmuomwhaeadxﬁ'amtsymbolmusedwmpmenteachsmuon

If the stations exhibit approxxmately steady trends in the same direction (upward or downward), with
comparable slopes, then a single summary statanent across stations is valid and this implies two relevant sets
of hypothm should be investigated:

Comparability of stations. H,: Similar dynamics affect all K stations vs. HA At least two stations
exhibit different dynamics.

Testmg for overall monotonic trend. H,°: Contaminant levcls do not change over time vs.
H,": There is an increasing (or decreasing) trend consistently exhibited across all stations.
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Therefore, the analyst must first test for homogeneity of stations, and theu, if homogeneity is confirmed, test
for an overall monotonic trend.

Ideally, the stations in Box 4.3-7 should have equal numbers. However, the numbers of observations
at the stations can differ slightly, because of isolated missing values, but the overall time periods spanned
must be similar. This guidance recommends that for less than 3 time periods, aneqtmlnumbetof
observations (a balanced design) is required. For 4 or more time periods, up to 1 missing value per sampling
location may be tolerated.

: a. One Observation per Time ._Period. When only one measurement is taken for each time period
for each station, a generalization of the Mann-Kendall statistic can be used to test the above hypotheses. This
procedure is described in Box 4.3-8.

b. Moultiple Observations per Time Period. If multiple measurements are taken at some times and
station, then the previous approaches are still applicable. However, the variance of the statistic S, must be
calculated using the equation for calculating V(S) given in section 4.3.4.2. Note that S, is computed for each
: station,son,w,,g,h,anduqareallstationaspeciﬁc. '

Box 4.3-7: Data for Multiple Times and Multiple Stations

Leti= 1, 2, ..., nrepresent time, k = 1, 2, ..., K represent sampling locations, and X,
represent the measurement at time i for location k. This data can be summarized in
matrix form, as shown below.

Stations

1 2 K

1 Xeq - Xa cee o X

Time ‘ . . .
n X Xe oo Xy

S, . S eee Sy

V(S,) - V(Sy) V(Sy)

& 4 N

where S, = Mann-Kendall statistic for station k (sé STEP 3, Bax 4.3-3),
V(S,) = variance for S statistic for station k (see STEP 2, Box 4.3-5), and

z,= S/\[VARGS,) , | | “
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Box 4.3-8; Testing for Comparabllity of Statlons and an Overall Monotonlc Trend

Leti=1, 2, ..., n represent ime, k = 1, 2, ..., K represent sampling locations, and X, repcesent the measurement
attimeifor loanon k Leta represent the sagmﬁwnce level for testing homogeneﬂy and a° represent the
slgmﬁmnce level for testing for an overall trend.

STEP 1:. Calculate the Mann—Kendaﬂ statistic S, and its variancs V(S,) for each of the K stations using the - “ |
methods of section 4.3.4.1, Box 4.3-5. '

STEP2  For each of the K stations, calculate Z, = Sk/‘/V(Sb).

- K
STEP3: Cakulatetheaverags Z = 3 Z,/K.
: k=l

T | 4
STEP4: Calulate the homogeneity chi-square statistc )& = 3, Z2 - K Z°.
’ kel ) )
STEPS: Using a chi-squared table (Table A-8 of Appendix A), find tha critical value for )¢ with (K-1) degrees
of freedom at an « significance level. For example, for a significance level of 5% and 5 degrees of
freedom, )5, = 11.07, Le., 11.07 i the cut point which puts 5% of the pfobabanym the upper tad of
a chi-square variable with 5 degrees of freedom. .

STEPS: K )E <)% k.1, there are comparable dynamice across stations at significance level . Go to Step 7. é
i x3 > 33 x. 1) the stations are not homogeneous (l.a., different dynamics at different stations) at the

significance level @. Therefore, individual a°4evel Mann-Kendal tests should be conducted at each
station usmgthomethoda presanted in section 4.3.4.4.

STEP?: Usmgadﬁ-squaredtablo(l’aﬂoA—SoprpmdxA).ﬁndmcﬁﬁwvalueforx’m1degréeof
' freedom at an q significance level.

| AED
then reject H,° and condluds that there is a exgmﬁmnt (upward or downward) monotonic trend

across all stations at significancs level @°. The gigns of the S, indicats whether increasing or
dec:easmg trends are pfesem. if

KZ sXm,

there is not significant evidencs &t the o' leve! of a monotonic irend across al stations. That I3, the
stations appsar appromawy stable over ﬁm@.

43.4.4 One Observation for One Station with Multiple Seasons

“Temporal data are often collected over extended periods of time. Within the time variable, data may
exhibit periodic cycles, which are patterns in the data that repeat over time (e.g., the data may rise and fall
regularly over the months in a year or the hours in a day). For example, temperature and humidity may
change with the season or month, and may affect enviroamental measurements. (For more information on
seasonal cycles, see section 2.3.8). In the following discussion, the term season represeats one time point in
* the periodic cycle, such as 8 month within 8 year or an hour within a day.
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If scasonal cycles are anticipated, then two approaches for testing for trends are the seasonal Kendall
test and Sen's test for, trends. The seasonal Kendall test may be used for large sample sizes, and Sen's test for
trends may be used for small sample sizes. If different seasons manifest similar slopes (rates of change) but
possibly different intercepts, then the Mann-Kendall technique of section 4.3.4.3 is applicable, replacing time
by year and replacing station by season.

The seasonal Kendall test, which is an extension of the Mann-Kendall test, involves cal¢ulating the
Mann-Kendall test statistic, S, and its variance separately for each “season” (¢.g., moath of the year, day of
the week). The sum of the S's and the sum of their variances are then used to form an overall test statistic
thatisassumedmbeappmximatelynormaﬂydisuibmdfcthrgesizzsampla

Fo.'dataatasmglc site, collected at multiple seasons within multiple years, the techniques of -
sect:on4343canbeapphedtotwtforhomogene:tyofnmettmdsacrossseasom The methodology
follows Boxes 4.3-7 and 4.3-8 exactly except that “station” is replaced by “season” and the inferences refer
to seasons. '

435 A Discussion on Tests for Trends

This section discusses some further considerations for choosing among the many tests for trends. All
ofthenonparameu'ictrendtmtsandaﬁmamuscordinalﬁme(ranks)ratha'thancardinaltimc(acmalﬁme :
values, such as month, day or hour) and this restricts the interpretation of measured trends. All of the Mann-
Kendall (MK) Trend Tests presented are based on certain pairwise differences in measurements at different.
time points. The only information about these differences that is used in the MK calculatioas is their signs
(i.c., whether they are positive or negative) and therefore are generalizations of the sign test. MK calculations
are relatively casy and simply involve counting the number of cases in which X; ,; exceeds X, and the number
of cases in which X exceeds X;., ;. Infoxmahomabodmngmmdmofthmedlﬁ'munosmedbym
methodsandthlscanadverselyaﬁ'ectthestansucalpowerwhmonlyhmxtedammtsofdamyeavaﬂable ,

Tha‘cm,howeva,mnpmamcmamcthodsbasedmmksthatmkwmmhmagmmdamtoaccom)t
and still retains the benefit of robustness to outliers. These procedures can be thought of as replacing the data
by their ranks and then conducting parametric analyses. These include the Wilcoxon rank sum test and its

many generalizations. Thesemethodsaremmemxstanttoomha'sthanpmmMcmcthods 8 point can be
nommmmanethanthesmallestoslargstvalm.

_ Rank-bmedmethodg%mhmkeﬁxﬂausedmemfmnmmthedammmmhod;mw
as robust with respect to outliers as the sign and MK tests. They are, however, more statistically powerful
than the sign test and MK methods; the Wilcoxon test being a case in point. If the data are random samples
from normal distributions with equal variances, then the sign test requires approximately 1.225 times as
manyobservanonsasthsWﬂcoxonmksummwachxcveagweupowcntagwmsagmﬁcance level. This
kind of tradeoff between power and robustness exemplifies the analyst's evaluation process leading to the
selection of the best statistical procedure forthean‘rentsnmahon. Further stanshcaltmtswﬂlbedevelopd
in future editions of this guidance. _
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44 OUTLIERS
44.1 Background

Outliers are measurements that are extremely large or small relative to the rest of the data and,
therefore, are suspected of misrepresenting the population from which they were collected. Outliers may
result from transcription ezrors, data-coding erors, or measurement system problems such as instrument
breakdown. However, cutliers may also represeat true extreme values of a distribution (for instance, hot
spots) and indicate more variability in the population than was expected. Not removing true outliers and
removing false outliers both lead to a distortion of estimates of population parameters.

' Statistical outlier tests give the analyst probabilistic evidence that an extreme value (potential outlier)
does not “fit” with the distribution of the remainder of the data and is therefore a statistical outlier. These
tests should only be used to Identify data points that require further investigation. The tests alone cannot
determine whether a statistical outlier should be discarded or corrected within'a data set; this decision should
be based on judgmental or scieatific grounds..

‘There are 5 steps involved in treating extreme values or outliers:

1: Identify extreme values that may be potential outliers;

2. Apply statistical test; N _
3. Scientifically review statistical outliers and decide on their disposition;
4. Conduct data analyses with and without statistical outliers; and

5. Document the entire process.

Potential outliers may be identified through the graphical representations of Chapter 2 (step 1 above).
Graphs such as the box and whisker plot, ranked data plot, normal probability plot, and time plot can all be
used to identify observations that are much larger or smaller than the rest of the data. ‘If potential outliers are
idcntiﬁed,thenex’tstepistoapplyoneofthestaﬁsﬁcaltwtsdsm’bedinthefoﬂowingse'eﬁons. Section

4.4.2 provides recommendations on selecting & statxstxcal test for outliers.

. If a data point is found to be an cutlier, the analyst may either: 1) correct the data point; 2) discard
the data point from analysis; or 3) use the data point in all analyses. This decision should be basedon -
scientific reasoning in addition fo the results of the statistical test. For instance, data points containing
transcription errors should be corrected, whereas data points collected while an instrument was -
malfunctioning may be discarded. One should never discard an outlier based solely on a statistical test.
Instead, the decision to discard an outlier should be based on some scientific or quality assurance basis. v
Discarding an outlier from a data set should be done with extreme caution, particularly for environmental data
sets, which often contain legitimate extreme values. If an outlier is discarded from the data set, all statistical
analysis of the data should be applied to both the full and truncated data set so that the effect of discarding
observations may be assessed. If scientific reasoning does not explain the outlier, it should not be discarded

If any data points are found to be statistical outliers through the use of a statistical test, this
information will need to be documented along with the analysis of the data set, regardless of whether any data
points are discarded. If no data points are discarded, document the identification of any “statistical” outliers
by documenting the statistical test performed and the possible scientific reasons investigated. If any data -
points are discarded, document each data point, the statistical test performed, the scientific reason for
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dxscardmg ea:hdatapoml,andtheeﬂ'ectontheam!ysuofdelmngthedatapomts This information is
. critical for effective peer review.

442 Selection of a Statistical Test
‘There are several statistical tests for determining whether or not one or more observations are

statistical cutliers. Step by step directions for implementing some of these tests are described im sections
4.4.3 through 4.4.6. Section 4.4.7 describes statistical tests for multivariate outliers.

rm

J Saxflple o _ Assumes -Multiple Data-
Size Test Section | Normality | Outliers | QUEST
n< 25 | Extreme Value Test 443 Yes NofYes Yes
n < 50 .} Discordance Test 444 Yes No Yes
D225 |Roser'sTest | 445 |  Yes © Yes Yes

‘0250 | Walsh's Test 446 No . Yes Yes i

Table 4.4-1. Recommendations for Selecting a Statistical Test for Outliers

If the data are normally distributed, this guidance recommends applying Rosner’s test (Box 4.4-5)
when the sample size is greater than 25 and the Extreme Value test (Box 4.4-1) when the sample size is less
than 25. If only one outlier is suspected, thea the Discordance test (Box 4.4-3) may be substituted for either
of these tests. If the data are not normally distributed, or if the data cannot be transformed so that the
uamfomeddamammmaﬂydmbmed,mmthcmalystshouldmmaapplyamnpammemm(suchas
Walsh‘stmthox44~7)oa'consultastanstlc1an. '

443 Extreme Vaiue Test (Di;on's Test)

Dixon's Extreme Value test can be used to test for statistical outliers when the sample size is less
than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data
(case 1) and extreme values that sre much larger than the rest of the data (case 2). This test assumes that the
data without the suspected outlier are normally distributed; therefore, it is necessary to perform a test for
normality on the data without the suspected outlier before applying this test. If the data are not normally
distributed, either transform the data, apply a different test, or consult a statistician. Directions for the
Extreme Value test are contained in Box 4.4-1; an example of this test is contained in Box 4.4-2. The
Extreme Value test is contained in the DQA DataQUEST software package (QA/G-9D, 1996).

.-Thisgddamerecommwdsmhgthis-wstwhmonlybneomﬁabaspededhmc'dat& Ifmoré
than one outlier is suspected, the Extreme Value test may lead to masking where two or more outliers close in

value “hide” one another. Therefore, if the analyst decides to use the Extreme Value test for multiple outliers,
apply the test to the least extreme value first. '
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Box 4.4-1: Directions for the Extreme Value Test
(Dixon's Tesd)

STEP 1: Let X oy K2y - - - )g,', represent the data ordered from smallest to largest. Check that the data
without the suspect outlier are normally distributed, using one of the methods of section 4.2. If
normality fals, either transform the data or apply a different outfier test.

STEP 2 - X.,i3a Potential Qutfier (case 1): Computs the teat statiatic C, where

X, - X X3 - Xy '
C=20_ M g3:n57 C= L1 "W forigcnsi3,
Xy = Xy Ka-ny =~ Xy

X, - X - - Xy~ & -
C=—®_ "M qgenc10, C= —C "M qor4¢n¢25.
Xa-n ~ Xy %o = Xy

STEP 3: - K C excesds the critical value from Table A-3 of Appendix A for the specified significance level a,
X1, 18 an outlier and should be further investigated.

STEP4:  X,I8a Potential Qutfief (case 2): qompummewammc.whm
_ ' X.-X._. X, -X _
C = 2t ;l) ford3sne?, C= B D gorq1cn¢13,
X = Xy _X(a) - Xa '
X, -X__ X -X.
€= 706D torgenci0, C = B —D goriqcnc25
Xy ~ X Xy ~ Xy

X« 8 an outlier and should be further investigated.

Ey—y P p——————————————r e

Box 4.4-2: An Exampls of the Extreme Value Test '
(Dixon's Test) - : -

The data in order of magnitude from smallest to largest aré; 82.39, 86.62, 91.72, 98.37.'103.46, 104.93, \
105.52, 108.21, 113.23, and 150.55 ppm. Becauss the largest value (150.55) is much larger than the other
values, it ie suspected that this data point might bs an outiies. .

" STEPS: if C exceeds the critical value from Table A-3 oprpen@(Aformespedﬁedsigniﬁaneolevda.

STEP 1: A normal probability plot of the data shows that there is no reason to suspect that the data (without
© the extreme value) are not normally distributed. The studentized range test (section 4.2.6) also
showa that there i3 no reason to suspect that the data are not normally distributed. Therefore, the
Extreme Valuo test may be used to determine i the largest data value is an outlier. '

sTep 4 € = Xm) = Xia-ny 15055 - 11323 _ 3732 _ 50,

X, - X5 15055 - 8662 6393

STEPS. SinceC= 0.584 > 0.477 (from Tabls A-3 of Appendix A with n=10), thera is evidence that X, 8
_ an outller at a 5% significancs leve! and should be further investigated.
.
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444 Discordance Test

The Discordance test can be used to test if one extreme value is an outlier. This test considess two
cases: 1) where the extreme value (potential outlier) is the smallest value of the data set, and 2) where the
extreme value (potential cutlier) is the largest value of the data set. The Discordance test assumes that the
data are normally distributed; therefore, it is necessary to perform a test for normality before applying this
test. If the data are not normally distributed either transform the data, apply a different test, or consult a
statistician. Note that the test assumes that the data without the outlier are normally distributed; therefore,
the test for normality should be performed without the suspected outlier. Directions and an example of the
Discordance test are contained in Box 4.4-3 and 4.4-4, respectively. Tnbch-4oprpendmAcontaxns
mhcalvalusfoa'thxstmtfotnsso

Box 44-3: Divections for the Discordance Test

Lt X1y Keap - - - » Xu) represent the data ordered from smallest to largest. Check that the data
without the suspect outlier are normally distributed, using one of the methods of section 4.2. ¥
~ normality fails, either transform the data or apply a different outfier test.

Compute the sample mean, X (section 2.2.2), and the sample standard deviation, & (section 2.2.3).
Ifmemmimumvaluexmisasuspededouﬂier perform Steps 3 and 4. lfthemaxnmumvaluex(,,,
Is a suspected outlier, perform Steps 5 and &.

X- Xy
. [£X1,ks 2 Potential Outfier (case {): Compute the test statistic D = ————=

s
. D exceeds the critical value from Table A4, X,,, 8 an outlier and should ba further investigated.

' . . X, - X
If X, ., s 2 Potential Outfier (case 2): Compute the test statistic D = —-——

s
: If D exceeds the critical value from Tabie A<, X« i® an outlier and should be further investigated.

= -
[ —— ———

Box 4.44: An Example of the Discordance Test

The ordered data are 82.39, 86.82; 91.72, £8.37, 103.46, 104.93, 105.52, 108.21; 143.23, and 150.55 ppm.
Because the largest valus of this data set (1 50.55)_ia much larger than the rest,  may be an outfier.

STEP 1: A normal probability plot of the data shows that there is no reason to suspect that the data (without
the extreme velue) are not normally distiibuted. The studentized range test (section 4.2.6) also
shows that there i8 no reason to suspect that the data are not normally distributed. Thersfore, the
Discordance test may be used to determine if the largest data value is an outlier.

STEP2: X=104.5ppm and s = 18.922 ppm.

Xy = X _ 15055 - 104.50
s 1892

STEP 6: . Since D =2.43 > 2.41 (from Tab'e A4 of Appendix A with n = 10), there is evidence that X, Is an
outfier at a 5% significance level and should bae further investigated.

ymeom— e ——— o
— — ———

STEP5S. D = = 2.43
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445 Rosner's Tut

' Apmm@ct@stdevelopedbykmcanbeusedtodaeduptolOomhetsforsamplcsxmonS
or more. This test assumes that the data are normally distributed; therefore, it is necessary to perform a test .
for normality before applying this test. If the data are not normally distributed either transform the data,
apply a different test, or consult a statistician. - Note that the test assumes that the data without the outlier are
normally distributed; therefore, the test for normality may be performed without the suspected outlier.
Directions for Rosnex's test are contained in Box 4.4-5 and an example is contained in Box 4.4-6. This test is.
also contained in the DQA DataQUEST software package (QA/G-9D, 1996).

Rosner’s test is not as easy to apply as the preceding tests. To apply Rosner’s test, first determine an
upper limit r, on the number of outliess (r, < 10), then order the r, extreme values from most extreme to least
extreme. Rosner’s test statistic is then based on the sample mean and sample standard deviation computed
without the r = r, extreme values. If this test statistic is greater than the critical value given in Table A-5 of
Appendix A, there are r, outliers. Otherwise, the test is performed again without the r =1, - 1 extreme values.
This process is repeated until either Rosner’s test statistic is greater than the critical value orr=0.

Box 4.4-5: Directions for Rosner's Test for Outilers

STEP 1. LetX,X,.. X,. represent the ordered data points. By inspaction, ldenufythe madmum
number of powble outliers, r, Check that the data are nonnany distributed, using one of the
methods of section 42.

STEP 2 Computs the sample mean X, and the samplo standard deviation, g, for af the data. Laba!
, these values X'°’ and s'°), respactively. Determine the observation farthest from X°? and labs!
this observation ¥, Delete y°' from the data and compute the sample mean, labsled X*’, and
the sample standard deviation; labeled &'*’. Then determine the observation farthest from X'’
and label this observation ¥ '), Delets ¥'* and compute X?’ and &'?’, Continue this process
until r, extreme values have been eiminated.

In summary, after the above process the analyét should have
30 (1) - ' THrp-1 -1 -1
(X%, 5, yO); [X‘ L s, y O] L, (X070, 5D, YD) where

| X(” = ;—;E"» s(” = [-;-%(x -x(0)2) 2, éndy‘"lsmefanhestva!ue
Jel

from J't‘ ) (Nots, the above formulas for?"and &' assume that the data have been
renumbered after each observation is deleted.)

n_ g(r-.‘l)| :

and compare
g(r-D pa

. S (r~
STEP 3: Totestifmereare'routﬁemhﬂ\edata,eompute: R = Iy

R.to A In Table A-5 of Appendix A. IfR, > A, conclude that there are r outiiers.

Firet, test if there ara r, outliers (compare R, |t° A l). If not, test if there are r,- 1 outiiers
(compare R, . to 2., l). I not, test if there are 1,- 2 6utﬁem. and continue, unti either itis
determined that there are a certain number of outliers or that there are no outiiers at ai.
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STEP ¢:

STEP 2.

STEP 3:

EPA QA/G-9

Box 44-8: An Exampls of Rogner’s Test for Outilers

Consider the folowing 32 data points (in ppm) isted in order from smallest to largest 2.07, 40.55,
84.15, 88.41, 88.84, 100.54, 115.37, 121.10, 122.08, 125.84, 129.47, 131.80, 148.08, 163.88,
166.77, 171.91, 178.23, 181.64, 185.47, 187.64, 183.73, 189.74, 200.43, 213.20, 223.14,
225,12, 232.72, 233.21, 239.87, 251.12, 275.38, and 385.67.

A normal probability plot of the data shows that there I8 no reason to suspect that the data
(without the suspect outliers) are not normaly distributed. In addition, this graph identified four
potential outliers: 2.07, 40.55, 275.36, and 385.67. Therefore, Rosner's test will be applied to see
if there are 4 or fawer (r, = 4) outliers.

First the sample mean and sample standard deviation were computed for the entire data set (X -
and ). Using subtraction; it was found that 395.67 was the farthest data point from X, so

y™ = 305.87. Then 395.67 was deleted from the data and the sample mean, X', and the sample -
standard deviation, 8™, were computed. Using subtraction, & was found that 2.07 was the farthest
value from XV. This value was then dropped from the data and the process was repeated again
on 40. 55 to yiekd X2, 2, and y® and X™, s”, and y™. These values are summarized below.

ix0_ g
0 169.923 75.133 395.67
1 162640 63872 207
‘2 "167.983 57460  40.55
3 172387 53.099 27536

To app!yRosner‘ste& ﬁnﬁmnmaryhoiastﬂhereamd ouﬁembycompu‘hng

R, = ch‘) - _°)| |275.36 - 172. 387[
sA 53.099
andcompanngR,,?oA.lnTableA—Soprpen&Awrﬂmzsz. Sinco R, = 1.838 2 A, =2.89,
there are not 4 autliers in the data sst. Therefare, it will next be tested « there are 3 outliers by
computing _ ll
@ -xO -
R, = ly | _ |4055 l67991ﬂ 2.218
s@ 57.460 .
and comparing R,m'&ln Table A-Swith n = 32. Since R; =2.218 z'A,=2.91.there aranot 3
outiiers in the data set Therefore, i wil next be tested if there ere 2 outliers by computing
s ) 63.872

and comparing R, to A, in Table A-5 with n = 32. Since R,=2.514 2 A; =2.92, there are not 2
outliers in the data set. Therefore, it will next be tested i there is 1 outlier by computing :

L 939

o ® - FO _ 39567 - 169.923] _ 5 005
1 o) 75.133 ‘

and comparing R, to A, in Table A-S with n = 32. Since R, =3.005 > A= 2.94, there is evidence
at a 5% significance level that there is 1outfier in the data eet Therefore, observation 355.67 is a

statistical outiier and should be further investigated.
tl______ : _
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4.4.6 Walsh's Tests

TwononparameﬂmtstswaedcvelopedbyWalshwddeamnluplcmnhmmadataset. The first
test by Walsh requires a large sample size: n > 220 for a significance level of @ = 0.05 and n > 60 for a
significance level of @ = 0.10. The secoad test by Walsh assumes the data are symmetric but has no
restrictions on the sample size; howeve, this test is difficult to compuie by hand. Both of these tests may be
used whenever the dats are not normally distributed. Directions for the first test by Walsh for large sample
sizes are given in Box 4.4-7. BoﬁofWalsh‘stﬁtsarecontmmdmmeDQADataQUESTsoﬁwmpackage
(QA/G-9D, 1996)

Box 4.4-7: Directions for Walsh's Test for Large Sample Sizes

STEP 10 Let X1y Kap - - . » Xu) fEPresent the data ordered from smalsst to largest. if n < 80, do not
apply this test lf60¢ns220 then g = 0.10. Ifn>220 then @& = 0.05. Identify the number of
possiblg outiiers, r. Note that r can equal 9.

STEPZ Compute ¢ = 2, k =7 + ¢, b2 = lx,and a = 3 +b¢(cbzb’:/(c
. L |

STEP3:  Ther smallest points are outliers (with a a% level of significance) if
Xy ~(L+a)x, ¢ ax,, <0
STEFP 4: Tho rlargest pomts are outfiers (with a a% level of mgmﬁmnee} g
F(ae1-) -( “’)x(n -7 + aXoy-n > 0 -

if both of the lnequaﬁﬁes are true, then both amak and Iarge outfiers are indicated.

44.7 Multivariate Outliers

Multivariate analysis, such as factor analysis and principal components analysis, involves the
analysis of several variables simultaneously. Outliers in multivariate analysis are then values that are
extreme in relationship to either one or more variables. As the number of variables increases, identifying
potential outliers using graphical representations becomes more difficult. In addition, special procedures are
required to test for multivariate outliers. Details of these procedures are beyond the scope of this guidance.
However, procedures for testing for multivariate outliers are contained in the software package Scout
developed by the EPA's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV)
and statistical textbooks on multivariate analysis. .
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45  TESTS FOR DISPERSIONS

Many statistical tests make assumptions on the dispersion (as measured by variance) of data; this
section considers some of the most commonly used statistical tests for variance assumptions. Section 4.5.1
contains the methodology for constructing a confidence interval for a single variance estimate from a sample.
Section 4.5.2 deals with the equality of two variances, a key assumption for the validity of a two-sample
t-test. Section 4.5.3 describes Bartlett’s test and section 4.5.4 describes Levene’s test. These two tests verify
the assumption that two or more variances are equal, a requirement for a standard two-sample t-test, for ‘
example. The analyst should be aware that many statistical tests only require the assumption of approximate
equahtyand&ﬁmanyof&wetw&mmnvahdml&sgmsmethﬂmvmmmdetmmned. '

45.1 Conﬁdence Intervals for a Single Variance

This section discusses confidence intervals for a single variance or standard deviation for analysts
interested in the precision of variance estimates. This information may be necessary for performing a
sensitivity analysis of the statistical test or analysis method. The method described in Box 4.5-1 can be used
to find a two-sided 100(1-2)% confidence interval. The upper end point of a two-sided 100(1-¢)%
confidence interval is a 100(1-e/2)% upper confidence limit, and the lower end point of a two-sided
100(1-a)% confidence interval is a 100(1-e/2)% lower confidence limit. For example, the upper end point
of a 90% confidence interval is a 95% upper confidence limit and the lower end point is a 95% lower
confidence limit. Since the standard deviation is the square root of the variance, a confidence interval for the
variance can be converted to a confidence interval for the standard deviation by taking the square roots of the .
endpoints of the interval. This confidence interval assumes that the data constitute a random sample from a
normally distributed population and ¢ can be highly sensitive to outliers and to departures from normahty

452 The F-Test for the Equality of Two Variances

An F-test may be used to test whether the true underlying variances of two populations are equal.
Usually the F-test is employed as a preliminary test, before conducting the two-sample t-test for the equality
of two means. The assumptions underlying the F-test are that the two samples are independent random
samples from two underlying normal populations: The F-test for equality of variances is highly sensitive to
departures from normality. Directions for implementing an F-test with an example are given in Box 4.5-2.

453 Bartlett's Test for the Equality of Two or More Variances

Bartlett's test is a means of testing whether two or more population variances of normal distributions
are equal. In the case of only two variances, Bartlett's test is equivalent to the F-test. Often in practice
unequal variances and non-normality occur together and Bartlett's test is itself sensitive to departures from
normality. With long-tailed distributions, the test too often rejects equality (homogeneity) of the variances. -

Bartlett's test requires the calculation of the variance for each sample, then calculation of a statistic
associated with the logarithm of these variances. This statistic is compared to tables and if it exceeds the
tabulated value, the conclusion is that the variances differ as a complete set. It does not mean that one is
significantly different from the others, nor that one or more are larger (smaller) than the rest. It simply
implies the variances are unequal as a group. Directions for Bartlett's test are given in Box 4.5-3 and an
example is given in Box 4.5-4. : )
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Box 4.5-1: Directions for Constructing Confidence Intervals and
Confidencs lel& for the Sample Varlance and stnndard Daviation
with an Example
Directions: Let X,, X, . . ., X represent the n data pointa.

. STEP 1: Calculate the sample variancs 8? (esction 2.2.3).
STEP 2 Fora1w10)%%!ﬂmmDMWTMMdW&Amﬁndmemﬂs
LandUsuchthatL =) oend U=, d,M(n-1)dwreeaofﬁwdom(doﬂ '

- 2 - 2
STEP3: A 100(1-c)% confidence interval for the true underlying variance ls: % Ill)’ P tlj)’ .

A 100(1-a1)% confidence interve! for the true standard deviation is: J (n 2)‘ \l (n (lj)’ '
: Ten samples were analyzed fo; lsad: 46.4, 46.1.‘ 45.8, 47, 46.1, 45.9, 45.8, 46.9, 45.2, 45 ppb.

Using section 2.2.3, s? = 0.288. ,

Using Table A-8 of Appendix A and 8 dof, L = X'z = X' uas = 18.02 and U = 3 geqy = X = 2.70. -

A 95% confidencs interval for the variance is: (10- 1)0‘286_ (1o-1) 0'286
19.02 2.70

A 95% confidence interval for the standard deviation ia: J0.14 =.374 10 ,/0.95=.975.
Box &.5—2 Dlrec(hns foz Calculating an F-Test to Compara _ .

Two\laﬂmmwlﬂmnﬁxample

or 0.4 t0 0.95.

Ditections: LetX,, X,, .. .. X represent the m data points from population 1 andY,, Y,, . . ., Y, represent the
n data points from population 2. TomtfonnanF-_tast.proeeed_asfolom .

_ STEP4:  Caloulate the sample variances e,? (for the XCa) and ,? (for the Y's ) (section 2.2.3).

values. fF=F,thenlstk=m-iandq=n-1. fF=F,thenletk=n-1andq=m-1.

STEP 3: Usahg TableM oprm-n@Aoi’the.F distribution, find the cutoff U = : fieallt Q. HF>U,
conclude that the variances of the iwo populations are not the same..

Example: Manganese eoneentrauonswefe cofiected from 2 wolls. ThedaiaareWe!lX. §0, 73, 244, and
202 ppm; and Wel Y: 272, 171, 32, 250, and 53 ppm. AnFMwEbeusedbdetefmmetfﬂ\evarianoesof
the two wells are equal,

STEP 1:  ForWei X, s, =9078. ForWeElY e =12125.

f
i
]
!
STEP 2.  Calculate the variance ratioe Fy = s,%/e,? and F, = 8,%fs,. LetF equal the larger of these two l
!
|
|
!
|
|
|
f

STEP2  Fr=s,s= 007612455 = 0.745, F, = a.ks,2 = 12445 / 9076 = 1.334. Since, Fy > Fy,
F Fe=1334,k=5-1=4andq=4-1=3. _

Using Table A-8 of Appendix A of the F distribution with @ = 0.05, L =1, 550 4, 3) = 15.1. Since
1.334 < 15.1, there is no evidence that the variability of the two wells is different.
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Box 4.53 Dltecﬂons for Barﬂetrs Test

Consider k groupe with a sample size of n, for each group. Let N represent the total number of samples, i.e.,
ltN=n,¢n¢...+n, Forexampls, cons:deftwoweﬂswhefe4sampleshavebeentakenfromwea1and
3samp!eshavebe_entakenfromweﬂ2. Inthis case, k=2,n,24,n,=3,andN=4+3=7,

STEP 1: For each of the k groups, calculate the sample vaﬁances, & (secﬁon 22. 3).

STEP2:  Compute the pooled variance across grou'pa: s: = m E (n ,- l)s,

' &
STEP3:  Computethetestsiatsic: TS = (N - b) In(s)) - 3 (n,-1) In(s?)
=1

where °In° stands for natura logarithms.

STEP 4: Using a chi-squared table (Table A-8 of Appendix A), find the critical value for )¢ with (k-1)
degrees of freedom at a predetermined significance level. For axample, for a significance leve! of
5% and 5 degrees of freedom, x? = 11.1. If the calculated value (TS) i greater than the
tabulated value, conclude that the variances are not equal at that significance level.

"y

Box 4.5-4: An Example of Bartlett's Test _
Manganese concentrations were collectad from 6 welis over a 4 month period. The data are shown in the following
table. Before analyzing the data, & is important to determine ¥ the variances of the six wells are equaﬁ Bartlett's test
will be used to makae this determination.

STEP 1:  For each of the 6 wells, the sample means and variances were calculated. These are shown in the

botiom rows of the table below.

Sampling Date ' Wel i Well 2 Well 3 Wel 4 Well 5 Well 8
January 1 ' 50 27 ' -
February 1 73 : - 17 68
March 1 244 48 32 4 - 48 991 {
Ap 1 202 77 53 3940 54 54
n (N=17) 4 2 4 -2 2 3
E! _ 14225 - '61.50 132 1987 51.00. 371.00
8 9076.37 480.49 12455 7628243 17.98 288348

STEP 2: s? ~-1s 4-1)9076 +...+(3-1)576696) = 75183727
» (N_k) E(. )o} = osl@-) - +3-1)576696]

STEPZ: TS = (17-6) In(751837.27) - [ (4-1)In(9076) + ... + (3-1)&(238343)] = 43.16

STEP 4. The critical X2 value with 6 - 1 = 5 degrees of freedom et the 5% élgntﬁcance level i3 11.1 (from Table A-8
- . of Appendix A). Since 43.16 Is larger than 11.4, Ezscondudedmatmesuvanancea (&,...,)are not
homogeneous at the 5% s:gmﬁanee level
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45.4 Levene's Test for the Equality of Two or More Variances

Levene's test provides an alternative to Bartlett's test for homogeneity of variance (testing for
differences among the dispersions of several groups). Levene's test is less sensitive to departures from
normality than Bartlett's test and has greater power than Bartlett's for non-normal data. In addition, Levene's
test.has power nearly as great as Bartlett's test for normally distributed data. However, Levene's test is more
difficult to apply than Bartlett's test since it involves applying an analysis of variance (ANOVA) to the
absolute deviations from ihe group means. Dueetxonsandanexampleochvmcstxtamcontamedeox
4.5-5 and Box 4.5-6, mpecuvely

Box 4,5-8: Directions j?or Levene's Test
Consider k groups with a sample éize of n, for the ith group. Let N répr'esent the total number of samples, i.e., let
N=n,+n,+...+n, Forexample, consider two wells where 4 samples have been taken from well 1 and 3
sampleshavebeentakenfromweﬂz. In thie cass, k= 2.n,=4 n=3,andN=4+3=7,
STEP1: For each of the k groups, calculate the group mean, X \ (secﬁon 2.2.2), L.e., calculate:

i 2%* a_ixy, =—ixk,-

”ll° ' Py st

STEP 2 Compute the absoluts residuals z, ng -X I where )‘q represents the j° value of the group
For each of the k groups, calculate the means, Z, of these residuals, i.e., calculate: '

z = — LS Zyp zz"—izuv

.1
LY - M Byt

M
3
W)

3 [
Alsomlculateﬁmovemﬂmeanrwdudu zﬂlz 2 ng% 2.
el je1 iol

STEP 3: COmputn the fo!owing suma of equares for the abaolute residugis:

& 2 -
SSrora = EEZ SSerours = E— - = @nd SSerpor = SSrora -
el fo1 R fol ﬁ, N’
SSgrours- ' ‘
&S‘Gmm/(k-l)

STEP4: Compute f =

rror! V-8

STEPS: Using Table A-9 of Appen& A, find the critical value of the F-distribution with (k-1) numerator degrees
of freedom, (N-k) denominator degrees of freedom, and a desired level of significance (a). For example, |
if a = 0.05, the numerator degroes of freedom ia 5, and the denominator degrees of freedom ia 18, then
using TableA-a F = 2.77. If{i= greater than F, reject the assumpuom of equal veriances. .
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Box 4.5-8: An Example of Levene's Test

"Four months of data on arsenic concentration were collected from six welle at @ Suparfund site. This data satis’
shown in the table below. Before analyzing this data, it is important to determine if the variances of the six wells are
equal. Levene's test will ba used to make this determination.

STEP 1: Thogroupmeanforeachwe&(i.)isshownhﬁmlastrowofheﬁb!ebdow.

g | | ~ Amsenic Concentration (ppm)
Month Wel 1 Wel2  Wel3  Weld  Wel5 wel8 |
1 2280 2.00 20 784 24.80 0.34
2 3.09 1.25 100.4 9.30 1.30 478
3 35.70 7.80 45 25.90 0.75 2.85
4 4.18 52.00 25 '2.00 27.00 1.20
Group Means . X,316.47 - X,;=1576 X,=208 X =11.28 X;=1348 X =2.29
——

STEP 2. To compute the absoluts residuals z; in each wel, the value 16.47 wil bé.subtmded from Wel 1 data,
15.76 from Wel 2 data, 29.6 from Well 3 data, 11.26 from Well 4 data, 13.49 from Wei 5 data, and 2.29
from Well 6 data. The resulting values areshownhmefo&owmgub!owmmenwwea means (Z) and

the total mean 2.
[—————— g‘ ‘
Residua Arsenic Concentration (ppm)
Month Wel 9 Wel 2 Well 3 Well4d = Weli5 Well 8

9 6.43 1378 278 342 11.41 195 |
2 13.38 14.59 79.8 1.8 12.12 249 B
3 19.23 7.8 25.4 14,84 12.74 0.58
4 12.29 36.24 27.1 9.26 13.51 1.09

| Residual Means  Z,712.83 Z,18.92 =389 - Z=7. Z,=12.48

Tota!ResidualMeanzs(116)(12.83¢181263994»732”246#152)=1536 i H

STEP3: The sum of squares are: SSor, = 6300.89, SS,.q,s = 3522.80, and SSgeeoq = 2777.99.

/(k-l) 35229/(6-1)
MR/(N L) T 2777 99/(24 -6)

STEP5: UsmgTableA—@o?Appendb(A.moFstahsﬁcfofSand18degreeaoffroedomvwﬁ1a 0.0582.77.
Since =4.58 exceads F =2.77, the assumption of equal variances should be rejected.

STEP4 f = = 456
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46  TRANSFORMATIONS

Most statistical tests and procedures contain assumptions sbout the data to which they will be
applied. For example, some common assumptions are that the data arc normally distributed; variance
components of a statistical model are additive; two independent data sets have equal variance; and a data set
has no trends over time or space. If the data do not satisfy such assumptions, then the results of a statistical
procedure or test may be biased or incorrect. Fortunately, data that do not satisfy statistical assumptions may
often be converted or transformed mathematically into a form that allows standard statistical tests to perform.
adequately.

461 Typesof Data Transformations

Anymathumucalﬁmcuonthatns apphedtocvaypomtmadatasetrscalledau'amformauon.
Some commonly used transformations include:

Logarithmic (Log X or Ln X): This transformation may be used when the original measurement data
follow a lognormal distribution or when the variance at each level of the data is proportional to the
squareofthcmeanofthedatapomts at that level. For example, if the variance of data collected

- around 50 ppm is approximately 250, but the variance of data collected arcund 100ppm is
approximately 1000, then a logarithmic transformation may be useful. This situation is often
characterized by having a constant coefficient of variation (ratio of standard deviation to mean) over
all possible data values.

‘The logarithmic base (for example, either natural or base 10) needs to be consistent throughout the
analysis. If some of the original values are zero, it is customary to add a small quantity to make the
data value non-zero as the logarithm of zero does not exist. The size of the small quantity depends
on the magnitude of the non-zero data and the consequences of potentially erroneous inference from
the resulting transformed data. As a working point, a value of one tenth the smallest non-zero value
could be selected. It does not matter whether a natural (In) or base 10 (log) transformation is used

because the two transformations are related by the expression In(X) = 2.303 log(X). Directions for
applying a logarithmic transformation with an example are given in Box 4.6-1.

Square Root (vX): This transformation may be used whea dealing with small whole numbers, such
as bacteriological counts, or the occurrence of rare events, such as violations of a standard over the
course of a year. The underlying assumption is that the original data follow a Poisson-like '
distribution in which case the mean and variance of the data are equal. It should be noted that the
squareroottransformanonovmmectswhmve:ysmallvaluwandwosappearmtheongmaldata.
In these cases, yX+1 is often used as a transformation.

Inverse Sine ( Arcsine A?: This transformation may be used for bmomml proportions based on
count data to achieve stability in variance. The resulting transformed data are expressed in radians
(angular degrees). Special tablm must be used to transform the propoa‘bons into degrees.

Box-Cox Transformations: This transformation is a complex power transt'ormnhon that takes the -
original data and raises each data observation to the power lambda (). A logarithmic transformation
is a special case of the Box-Cox transformation. The rationale is to find A such that the transformed
data have the best possible additive medel for the variance structure, the errors are normally
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distributed, and the variance is as constant as possible over all possible concentration values. The
Maximum Likelihood technique is used to find A such that the residual error from fitting the
theorized model is minimized. In practice, the exact value of A is often rounded to a convenient value
foreascmmtuprdauon(formmple,l=-llwouldbemmdedto -1 as it would then have the
interpretation of a reciprocal transform). One of the drawbacks of the Box-Cox transformation is the
difficulty in physically mtcxpretmgthetransformeddata.

462 Reasons for Data Transformations

: By transforming the data, assumptions that are not satisfied in the original data can be satisfied by
the transformed data. For instance, a right-skewed distribution can be transformed to be approximately
Gaussian (normal) by using a logarithmic or square-root transformation. Then the normal-theory procedures
can be applied to the transformed data. Ifdat.amlogno:maﬂydxsmbuted,theuapplyprocedmato
logarithms of the data. However, selecting the correct transformation may be difficult. If standard
transformations do not apply, it is suggested that the data user consult a statistician.

Another important use of transformations is in the interpretation of data collected under conditions
leading to an Analysis of Variance (ANOVA). Some of the key assumptions needed for analysis (for
example, additivity of variance components) may only be satisfied if the data are transformed suitably. The
selection of a suitable transformation depends oa the structure of the data collection design; however, the
interpretation of the transformed data remains an issue.

. While transformations are useful for dealing with data that do not satisfy statistical assumptions,

they can also be used for various other purposes. For example, transformations are useful for consolidating
data that may be spread out or that have several extreme values. In addition, transformations can be used to
derive a linear relationship between two variables, so that linear regression analysis can be applied. They can
also be used to efficiently estimate quantities such as the mean and variance of a lognormal distribution.
Transformauonsmayalsomaketheanalysxsofdataeasxabychangmgthescalemtoonsthatlsmose
familiar or easier to work wnh.

‘Once the data have been transformed, all statistical analysis must be performed on the transformed
data. No attempt should be made to transform the data back to the original form because this can lead to
biased estimates. For example, estimating quantities such as means, variances, confidence limits, and
regression coefficients in the transformed scale typically leads to biased estimates when transformed back
into original scale. However, it may be difficult to understand or apply results of statistical analysis
expressed in the transformed scale. Therefore, if the transformed data do not give noticeable benefits to the
analysis, it is better to use the original data. Tha‘e:snopomtmworhngwlthu'ansformeddataunlssnadds '

value to the analysis.
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Box 4.8-1: Directions for Transforming Data and an Example
Let X,, X, ..., X, represent the n data points. To apply a transformation, simply apply the transforming

function to each data point When & transformation ia implemented to make the data satisfy some statistical
assumption, & will nead to be verified that the transformed data satisfy this assumption.

A'logarithmic transformation ks particularly useful for poliution data. Poliution data are often skewed, thus the
" log-transformed data will tend to be symmetric. Conaider the data set shown below with 15 data pointe. The
frequency plot of this data (bslow) shows that the data are possibly lognomally distributed. if any analysis 1
performed with thie data assumes normality, then the data may be logarithmically transformed to achieve
normality. The transformed data are shown in column 2. A frequency plot of the transformed data (below)
shows that the transformed data appear to bs normally distributed.

Observed Transformed Observed Transformed
X - X X - jn(X)
0.22 - - <151 1 0.47 - 0.78
3.48 - 1.25 0.67 - 0.40
6.67 - 1.90 0.75 - 0.2¢
253 - 0.93 : 0.60 - .51
1.41 - 0.10 0.8¢ - .01
0.33 - <1.41 : ' 0.80 - 0.1
1.64 - 0.50 0.26 - -1.35
1.37 - 0.31
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47  VALUES BELOW DETECTION LIMITS

Data generated from chemical analysis may fall below the detection limit (DL) of the analytical
procedure. These measurement data are generally described as not detected, or nondetects, (rather than as
zero or not present) and the appropriate limit of detection is usually reported. In cases where measurement
data are described as not detected, the concentration of the chemical is unknown although it lies somewhere
between zero and the detection limit. Data that includes both detected and non-detected results are called
censored data in the statistical literature. ’

There are a variety of ways to cvaluétz data that include values below the detection limit. However,
there are no general procedures that are applicable in all cases. Some general guidelines are presented in
Table 4.7-1. Although these guidelines are usually adequate, they should be implemented cautiously.

' Percentage of
Nondetects Section Statistical Analysis Method

<15% 47.1 Replace nondetects with DL/2,

DL, or a very small number.
15% - 50% 472 | Trimmed mean, Cohen's
: adjustment, Winsorized mean
and standard deviation.

>50%-90% 473 Use tests for proporuons
| (section 3.2.2)

Tabie 4.7-1. Guidelines for Analyzing Data with Nondetects

Allof&esuggwtedprwedxmfmmalynngdahmthmndcwcmdcpmdontheamomtofdam
below the detection limit. For relatively small amounts below detection limit values, replacing the nondetects
mthasmaﬂnmberandproceedmgmththeusualmalysxsmaybesausfactory For moderate amounts of
data below the detection limit, a more detailed adjustment is appropriate. In situations where relatively large
amounts of data below the detection limit exist, one may need only to-consider whether the chemical was
" detected as above some level or not. The interpretation of small, moderate, and large amounts of data below
the DL is subjective. Table 4.7-1 provides percentages to assist the user in evaluating their particular
situation. However, 1tshouldberecogmzedthatthmeperccntag&sarenothnrdandfastnﬂﬁ but should be
based on judgement. _

In addition to the percentage of samples below the detection fimit, sample size influences which
procedures should be used to evaluate the data. Fosexamplc,thecasewherelsampleoutofhsnotdetected
should be treated differently from the case where 25 samples out of 100 are not detected. Therefore, this
gmdamesuggwsthatthedataanalysteonsr.xltastausucmnforthemostappropnatewaytocvaluatedam
containing valuas below the detecuon level.
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4.7.1  Less than 15% Nondetects - Substitution Methods

If a small proportion of the observations are not detected, these may be replaced with a small :
- number, usually the detection limit divided by 2 (DL/2), and the usual analysis performed. As a guideline, if
15% or fewer of the values are not detected, replace them with the method detection limit divided by two and
- proceed with the appropriate analysis using these modified values. If simple substitution of values below the
detection limit is proposed when more than 15% of the values are reported as not detected, consider using
nonparametncmcthodsoutstofpropatxonstomalyuthcdata. If a more accurate method is to be
consxdaed,seeCohmsMethod(secuon4721)

472 Between 15-50% Nondetects
| 4.7.2.1 Cohen's Method

Cohen's method provides adjusted estimates of the sample mean and standard deviation that accounts -
_ for data below the detection level. The adjusted estimates are based on the statistical technique of maximum
likelihood estimation of the mean and variance so that the fact that the nondetects are below the limit of _
detection but may not be zero is accounted for. The adjusted mean and standard deviation can then be used in
the parametric tests described in Chapter 3 (e.g., the one sample t-test of section 3.2.1.1). However, if more
than 50% of the observations are not detected, Cohen's method should not be used. In addition, this method

. requires that the data without the nondetects be normally distributed and the detection limit is always the
same. Directions for Cohen's method are contained in Box 4.7-1; an example is given in Box 4.7-2.

Box 4.7-1: Dlrections for Cohen'’s Mathod

Let X,, X, - . ., X, represent the n data points with the first m valuee representing the data points above the
detection mit (DL). Thus, there are (n-m) data points are below the DL

l STEP1:  Compute the sampie mean X, from thodataabove the detection Emit Xd = = EX
l' .
STEP 2: Computa the sample variance % from the data abovs the detedlon Emit

Fo-ife)

m=-1

2
%4 "

: 2
-F s

STEP3: Compute h = (B=7) andyn-—‘-—
n - (X,-DLy’

STEP4:  Use handy in Table A-10 of Appendit A to determine . bemnple.ﬁ‘hao.éandvuo.so.

then A = 0.6713. If the exact value of h andy do not appaas in the table, use double Enear
interpolation (Box 4.7-3) to estimate A.

| STEPS:  Estimate the comected sample mean, X, end sample variance, &, to account for the data below
_— the detection imit, as folows: X = X, - (X, - DL) and s = s} + L(X, - DL)*.
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Box 4.7-2; AnExampleofCohensMemod ‘

Sulfate concentratione were measured fdr 24 data points. The detection Emit was 1,450 mg/L and 3 of the 24

- values wera below the detection level. The 24 values are 1850, 1760, < 1450 (ND), 1710,.1575, 1475, 1780,
1790, 1780, < 1450 (ND), 1790, 1800, < 1450 (ND), 1800, 1840, 1820, 1860, 1780, 1760, 1800, 1800,

1770, 1790, 1780mgIL COhenaMeﬂ\odwiBbeusedtoadjustmesamplemeanforusem at—tastto
determine if the mean is greater than 1600 mg/..

‘STEP 1:  The sampie mean of the m = 21 values above the detection level ia Xd = 17719
STEP2:  The sample variance of the 21 quantified values s &2 = 8503.69,
STEP 3: h =(24-21)24 = 0.125 and y = 8593.69/(1771.9- 14-50)2' = 0.083

STEP 4: Table A-70 of Appendix A was used forh = 0.925 and v = 0.083 to find the value of A. Since the
: table does not contain these entries exadly double linear interpolation was used o estimate -
2 =0.14988 (sea Box 4.7-3).

The eorrected sample mean and standard deviétion are then estimated as follows:
X = 1771 9 0.14986(1771.9 - 1450) 1723 66 and

= 8593.60 + 0.14986(1771.9 -1450)% = 24122.12

Box 47-3: Double Linear Inteipolation

The details of the double Enear interpolation are provided to assist in the use of Table A-10 of Appandit A

The desired value for 4 conesponds to y = 0.083 and, h = 0.125 from Box 4.7-2, Step 3. The values from
Table A-10 for interpolatation are:

h=0:10 h=0.145

Y
0.05 0.11431 0.17935
010 - 0.11804 0.18479

Thera are 0.05 units betwesn 0.10 and 0.15 on the h-scale and 0.025 units between 0.10 and 0.125.
Therefore, the value of interest ies (0.025/0.05)100% = 50% of the distance along the Interval between 0.10
and 0.15. To Enearly Interpolate between tabulated values on the h axis for y = 0.05, the range between the
values must be calculated, 0.17935 - 0.11431 = 0.06504; the value that is 50% of the distance along the
range must be computed, 0.06504 x 0.50 = 0.03252: and then that value mustbeaddedtomelowerpomt
on the tabulated values, 0.11431 < 0.03252 = 0.14683. Similarly for y = 0.10, 0.18479 - 0.41804 = 0.05675,
0.08675 1 0.50 = 0.033375, and 0.11804 + 0.033375 = 0.151415.

Onmev-amthereareﬂosshnﬂsbetweenDOSandOO&:iandthereareOOSunthbétween005and010.

The value of interest (0.083) kies (0.033/0.05 x 100) = Se%ofmedislaneealongthelntewalbeMeenoos
and 0.10, so 0.141415 - 0.14683 = 0.004585, 0.004585 ° 0.66 = 0.0030261. There!ore

4 =0.14683 + 0.0030261 = 0.14886.
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4.72.2 Trimmed Mean

Trimming discards the data in the tails of a data set in order to develop an unbiased estimate of the
population mean. For environmental data, nondetects usually occur in the left tail of the data so trimming the
data can be used to adjust the data set to account for nondetects when estimating a mean. Developing a '
100p% trimmed mean involves trimming p% of the data in both the lower and the upper tail. Note that p
must be between 0 and .5 since p represeats the portion deleted in both the upper and the lower tail. After np
of the largest values and np of the smallest values are trimmed, there are n(1-2p) data values remaining.
Therefore, the proportion trimmed is dependent on the total sample size (n) since a reasonable amount of
samples must remain for analysis. For approximately symmetric distributions, 8 25% trimmed mean (the
midmean) is a good estimator of the population mean. However, environmental data are often skewed (noa-
symmetric) and in these cases a 15% trimmed mean performance may be a good estimator of the population
mean. It is also possible to trim the data only to replace the nondetects. For example, if 3% of the dataare
below the detection limit, a 3% trimmed mean could be used to estimate the population mean. Directions for
developmgammmedmeanarecontamedeoxé7-4andanexamplelsgwentox47-5 Atnmmed
vanancexsrarcly calculated and is of limited use.

Box 4.7<4: Directions for Developlng a Trimmed Mean

Let X, X, ..., X, represent the n data points. To develop & 100p% tnmmed_mean (0<p<0.5)..

STEP 1: Let t represent the integer part of the product np. For example, p = .25 and no 17,
np = (.25417) = 4.25, o t = 4. _

STEP2:  Delete the t smallest valuea of the data est and the t largest values of the data set.

STEP3:  Computs the arithmetic mean of the remaining n - 2t values: X =

" This value is the estimats of the population mean.

Boa 6.7-6 An Exampls of the Tllmmed Meaﬁ ‘

Suﬁateeoncentabonawaemmuredfoﬁédatmpohﬁ. The detection Emit was 1 450mgfLand3oﬂhe24 ;
values were below this imit. The 24 values Ssted in order from smallest to largest are: < 1450 (ND), < 1450
(ND),.< 1450 (ND), 1475, 1575, 1710, 1760, 1769, 1770, 1780, 1780, 1780, 1780, 17980, 1780, 1780, 1800,

* 1800, 1800, 1820, 1840, 1850, 1860, 1800 mgA. A 15% trimmed meanwmbeusedbdwdopaneumam
ﬂ of the population mean matamunafofme:inondm _

STEP1 Since np = (24}{. 15)836 to3.

STEP2 The 3 emallest values oﬂhe data set and the 3 largest values ofthe data sst were deleted. The
new data setie: 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1789, 1780, 1790, 1790,
1790, 1800, 1800, 1800, 1820, 1840 moll - ,

STEP 3. Computs the arithmetic mean of ihéfemainhg -2t valuea:

X o —L (1475 + ... + 1840) = 175556
T %-00) b

_ Therefore, the 15% trimmed mean ia 1755.58 mgAL, which Is an estimate of the population mean.
e
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47323 Winsorized Mean and Stmadard Deviation

Winsorizing replaces data in the tails of s data set with the next most extreme data valve. For
environmental data, nondetects usually occur in the left tail of the data. Therefore, winsorizing can be used to
adjust the data set to account for nondetects. The mean and standard deviation can then be computed on the
new data set.’ D:recuonsi‘orwmsmnngdata(andremmgthesamplesue)azeoontamedeox4‘7—6and
anmmplexsgwentox47=7

STEP 1:

STEP 2:
H | STEPS:

STEP 4:

_ 7 Box 4.7-8: Directions for Developing a Winsosized
_ Mean and Standard Devlation

LetX,X,..
Emit (DL), and hence n-m below the DL

. X,, represent the n data points and m represant the number of data points above the detection
List the datain orderfrom emallest to largest, hduding nondetects. Label these points X4,
Kzpe + » Xny (50 that X I8 the smalest, X(,, Is the second smallest, and X, is the largest).
Replace the n-m nondetects with ), , and replace the n-m largest values with Xin-my
Using the revised data set, compute the sa_:mple mean, X, and the sample standard deviation, g:

L Q. xh - nt’

T § d s= (8L

X ~ ;X, and s pr

The Winsorized mean X ,, Is equal to X. The Winsarized standard deviation is s"-'(—;_n(;—ﬂﬁ
) -p -

STEP 1

- STEP 2.

STEP 4:

Sulfate concentratione were measured for 24 data points. The detection imit was 1,450 mg/L and 3 of the 24 [
values were below the detection level. The 24 values fisted in order from smallest to fargest are: < 1450 (ND),
< 1450 (ND), < 1450 (ND), 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790,
1720, 1800, 1800, 1800, 1820, 1840, 1850, 1860, 1900 mpA- '

STEP3: Forthe new data set, X = 1731 mg/L and o = 128.52 mgAL

- The Winsorized mean X, = 1731 mgA.. The Winsorized sample standard deviation is:

Box 4.7-7: An Example of a Winsorized
Mean and Standard Deviation

Thedataabove are already listed from emallest to largest. Therearen-24 samples, 21 above DL,
and n-m=3 nondetocts. .

The 3 nondetecte were replaced with X, andﬁleslargestvalueswererepiacedwmx( The
resulting data set ie; 1475, 1475, 1475, 1475 1575, 1710, 1760, 1760, 1770, 1780, 1780 1780,
1780, 1790, 1790, 1790, 1800, 1800, 1800, 1820, 1840, 1840, 1840, 1840 mgA.

_ 128.52Q24-1)

= 17388
v 2@n-26-1 3
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4.73 Greater than 50% Nondetects - Test of Proportions |

'If more than 50% of the data are below the detection limit but at least 10% of the observations are
quantified, tests of proportions may be used to test hypotheses using the data. Thus, if the parameter of
interest is a mean, consider switching the parameter of interest to some percentile greater than the percent of
data below the detection limit. For example, if 67% of the data are below the DL, consider switching the
~ parameter of interest to the 75* percentile. Then the method described in 3.2.2 can be applied to test the
hypothesis concerning the 75% percentile. It is important to note that the tests of proportions may not be
applicable for composite samples. In this case, the data analyst should consultastausnman before

proceeding with analysis.
If very few quantified values are found, a method based on the Poisson distribution may be used as

an alterative approach. However, with a large propartion of nondetects in the data, the data analyst should
consult with a statistician before proceeding with analysis.
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CHAPTER §

STEP 5: DRAW CONCLUSIONS FROM THE DATA

THE DATA QUALITY ASSESSMENT; PROCESS

Review DQO® and Sampling Design
DRAW CONCLUSIONS FROM THE DA
Conduct Preliminary Data Revievs | NS FROM THE DATA
g Pumoss -
' - Conduct the hypothesis teet and Inferpret the resuiis
Select the Statistical Test inthe contaxt of the data user's objactives.
! |
Verify the Assumptions
» Parform the Statisticel Hypothoaio Test
: + Evabusta Performenco of 8o S2mpling Dezign
Draw Conclugions From the Data
Tooln
o leguss in hypothogls testing rekxted to understanding
and communicating the teet recults

ﬂ : Step 5: Draw Conclusions from the Dats

o Perform the calculations for the statistical hypothesis test
o Petform the calculations and document them clearty.
a Hmomaﬂumouﬁatareprmﬁhmeda!ampsdomﬂwwculatonswahand
without the questionabla data. . -

) Evaluata the statistical test results and draw condusaone. :
if the aul hypothesie i rejected, then draw the conclusions and document the andyas
'a i the nuB hypothesis is not rejected, verify whether the tolerable Emits on false negative
- decision errore have been satisfled. If so, draw conclusions and document the analysis;
not, determine correciive actions, ¥ any.
o . Interpret the resulte of the test

o Evaluais the performance of the eampﬁng design & the design mnbe used again.
@ Evaluate the statistical power of the design over the full range of parameter values;
consul 2 statistician az necessayy.
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CHAPTER §
STEP S: DRAW CONCLUSIONS FROM THE DATA

51  OVERVIEW AND ACTIVITIES

In this final step of the DQA Process, the analyst performs the statistical hypothesis test and draws
conclusions that address the data user’s objectives. This step represents the culmination of the planning,
implementation, and assessment phases of the data operations. The data user’s planning objectives will have'
bmmwcwed(adcvelopedre&ospecuvdy)andthesmphngdsxgnmxmdempl Reports on the
implementation of the sampling scheme will have been reviewed and a preliminary picture of the sampling
results developed in Step 2. In light of the information gained in Step 2, the statistical test will have been
selected in Step 3. To ensure that the chosen statistical methods are valid, the key underlying assumptions of
the statistical test will have been verified in Step 4. Consequently, all of the activities conducted up to this
pomtshodda:smethattbecaluﬂahonspafmmcdonthedatasetmdthecomluswnsdrawnhcremStep5
address the data user's needs in a scientifically defensible manner. This chapter describes the main activities
~ that should be conducted during this step. The actual procedures for implementing some commonly used
statistical tests are described in Step 3, Select the Statistical Test.

5.1.1 Perform the Statistical Hypothesis Test

The goal of this activity is to conduct the statistical hypothesis test. Step-by-step directions for
several commonly used statistical tests are described in Chapter 3. The calculations for the test should be
clearly documented and easily verifiable. In addition, the documentation of the results of the test should be
understandable so that the results can be communicated effectively to those who may bold a stake in the
resulting decision. Ifwmpma'soﬁwmuusedwpafomthccalmhnms,ensmthatmeprowdmam
adequately documemed, particularly if algorithms havebemdevelopedandoodedspemﬁcally fortheproject

‘The analyst should always mtscbestprofasxoml Judgmmtwhcnperformmgthecalmlauons
For instance, if outliers or anomalies are present in the data set, the calculations should be performed both
withandwithoutthequwﬁonablcdatatoseewhateﬁ'edthcymayhavt;onthcmﬂts.

812 Draw Study Conclusions

Thegoalofthnsacumymwmmhmthemultsofthestansucalhypoﬂmumsothatthedam
usa'maydrawaeonclusxonﬁ'omthedam. Themultsofthestansucalhypothwsmmllbeexthﬁ"

- (8) reject the null hypothesis, in whxch case the analyst is conca‘ned about a pmsﬂale false positive -
decxsxon €IToT;, of

(b) fail to reject the null kypothesis, in whu:h case the malyst is concerned about & possxble false
negative decision error. .

hcase(a),thedatahavepmwdedthcewdmceneededmrejeathenuﬂhypothmu so the decision
can be made with sufficient confidence and without further analysis. This is because the statistical test based
on the classical hypothesis testing philosophy, which is the approach described in prior chapters, inherently
" controls the false positive decision error rate within the data user's tolerable limits, provxdedthattbe
undeslying assumptxons of thew:thavebemvenﬁedoonecdy .

EPA QA/G-Q 51-1 - QA96



Inme(b),thedatadonotpmvndcsﬁﬁicxentewdemetorejectthenullhypothws,amdthedatamust
be analyzed further to determine whether the data user’s tolerable limits on false negative d.ecxsxonerrors have
been satisfied. One of two possible conditions may prevail:

(¢)) The data do not support rejecting the null hypothesis and the false negative decision error
limits were satisfied. In this case, the conclusion is drawn in favor of the null hypothesis,
since the probability of committing a false negative decision error is believed to be
sufficiently small in the context of the current study (see section 5.2).

) The data do not support rejecting the null hypothesis, and the false negative decision error
limits were not satisfied. In this case, the statistical test was not powerful enough to satisfy
the data user's performance criteria. The data user may choose to tolerate a higher false
‘negative decision error rate than previously specified and draw the conclusion in favor of the
null hypothesis, or instead take some form of corrective acuon,suchasobtaxmng additional
data before dmwmgaeomlusxonandmahngadecxsum. '

thnthetmtfmlstorqectthenuﬂhypothws,themostthmoughpmcedmefmvaifyingwhétha’thcfalsc :
negative decision error limits have been satisfied is to compute the estimated power of the statistical test,
using the variability observed in the data. Comptmngthepowa'ofthestausucalt&aaaossthcﬁdlrangeof
possible parameter values can be complicated and usually requires specialized software. Power calculations
are also necessary for evaluating the performance of a sampling design. Thus, power calculations will be
discussed further in section 5.1.3.

' A simpler method can be used for checking the performance of the statistical test. Using an estimate-
of variance obtained from the actual data or upper 95% confidence limit on variance, the sample size required
to satisfy the data user’s objectives can be calculated retrospectively. If this theoretical sample size is less
than or equal to the number of samples actually taken, then the test is sufficiently powerful. If the required
number of samples is greater than the number actually collected, then additional 'samples would be required to
satisfy the data user’s performance criteria for the statistical test. An example of this method is contained in
Box 5.1-1. The equations required to perform these calculations have been provided in the detailed step-by-.
stepinstructionsfoxeachhypothmiststpro@neianaptaS. :

513 Evaluate Perfomance of the Sampling Dmm

Ifthcsamphngdwgmstobeusedagmn,extha‘malatﬁ'phaseoftheamentsmdy«masxmﬂar
study, the analyst will be interested in evaluating the overall performance of the design. To evaluate the
samphngdwgn,theanalystpaformsastansucalpoweanalysxsthatdsaibathesumatedpowerofthc
statistical test over the range of possible parameter values. The power of a statistical test is the probability of
rejecting the null hypothesis when the null hypothesis is false. 'l‘heesumatedpowa'lscanpmedfonll
parameter values under the alternative hypothesis to create a power curve. A power analysis helps the analyst
evaluatetheadequacyofthcsamphngdmlgnwhmthempam“lwhamtlwwcxmtyoftheacuon
level (which may not have been the outcome of the current study). In this manner, thcanalystmaydetermme
howweﬂastahshcdtmtpefomedmdmpm&xspafommmththaofotham

The calculations required to perform a powa' analysis can be relatively complicated, depending on
the complexity of the sampling design and statistical test selected. Box 5.1.2 illustrates power calculations

for a test of a single proportion, which is one of the simpler cases. A further discussion of power curves
(pcrformancc curves) is contained in the Guidance for Data Quahty Objectw@s (EPA QA/G-4, 1994).
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Box 8.1-1: checking Adeqﬁaacy of Samplé Sizs for 2 One-
Sample t-Test for Simple Random Sampling

InBox3&zmeeno-eamplet-testwasusedtotastmehypommmus95ppmva.HAu>95ppm DQOe
speaﬁedmatmeteetahouldimttmefabopos;hvoenormteto5%mdﬂ\ofalsanegauvemrratetozo%ﬂme
true mean were 105 ppm. A random sample of size n = 9 had sample mean X = §8.38 ppm and standard deviation
8= 10.41 ppm. The null hypothesis was not rejected. Assuming that the true value of the standard deviation wae
equa!toﬂssampleeshmateﬂﬁ ppm, itwasfoundmatawnploozeofswouldboroquue¢wiuchvaﬁdatedme_
samp!eszeonwhnchhadachaaﬂybeenuaed.

The distribution of the sample standard deviation is skawed\mm a long right tad. kK foliows thatthe chancas are
greater than 50% that the sample standard deviation will underestimate the true standard deviation. In such a case
i makes sensa to build in some conservatism, for exampla, by using an upper 80% confidence kmit for g in step 5 of
Box 3.3-1. Using Boxes 4.6-1 and 4.6-2 and n - 1 = 8 degrees of freedom. it is found that U 3.49, so that an
_uppér 80% confidence Emit for the true standard deviation b _

sd[(n -1)7U] = 1041,/8/3.49 = 15.76

Using thie value for e in StepSofBoxas-'i or Box 3.3-2 leads to the sample size estimate of 7. Hence, & samplo
size of at least 17 should be used to be 80% sure of achieving the DQOe. Since it is generally dasirabie to avoid the
need for-additional sampling, it is advisable to conservatively estimate sample size in the first place. In cases where
DQOs depend ona variance estimate, this conservatism e achieved by intentionally overestimating the variancs.

Box 5.-2: Example of Power Calculations for the OneSampl@ Test ori’ 2 Single Proportion

Thnboxﬁustatespowefwculaﬂomformetestomez 20v:. HA P < .20, with a false positive error rate of 5%
when P=.20 presented in Boxes 3.3-9 and 3.3-10. The power of the test will bs calculated assuming P, = .15 and
before any data are available. Since nP, and n{1-P,) both exceed 4, the sample size i large enough for the normal
approximation, andmewmnbewnedoutasmstepa:!andd of Boxt 3.3-8.

STEP 1: Determine the general conditions for re]edon of the null hypothm In this cass, the null hypothess ]
rejected ¥ the sample proportion s sufficiently smaller than P,. (Clearly, & sample proportion above P,
mnnotwstdoubton H,.) Bysteps 3 and 4 of Box 3.3-9 and 3.3-10, H, i3 rejected ¥

P+ Sin-P,
‘/ TNEN

Heropsthesamplepmpolﬂon Q, =1 - Py, nis the sample size, and 2, , i the critical value such that
100(1-cx)% of the.standard normal dshibuhon Is below 2, ,. This inequality Is frue #

p+3in < Py- z,_q/P;QUn.

STEP2: Determine the specific conditions for rejection of the null hypothesis i P, (=1-Q,) is the true value of th@
proporiion P. The same operations as are used in step 3 of Box 3.3-9 are performed on both sides of
the above inequality. However, P, is replaced by P, since it is assumed that P, is the tius proporiion.
These operations make the normal appraximation applicable. Hence, rejection occurs &

p+Sin-P Py -P -z P0Mn  20-.15 - 1645[‘—2)(3)13 055
fPiOs P.0\/n (T (BI85

STEP 3: Find the probability of rejection if P, is the true proportion. By the same reasoning that led to the testin
. steps 3 and 4 of Boxes 3.3-2 and 3.3-10, the quantity on the left-hand side of the above inequality i & ‘
standard normal variable. Hence the power at P, = .15 (Le., the probabdity of rejection of H, when .15 i3 |
the true proportion) is the probability that & standard normal variable is less than -0.55. In this cass, the

; probability is approximately 0.3 (using the last ine from Table 1 of Appencix A) which is fairly smafl.

< —zl-s
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52 . INTERPRETING AND COMMUNICATING THE TEST RESULTS

Sometimes difficulties may arise in interpreting or explaining the results of a statistical test. One
reason for such difficulties may stem from inconsistencies in terminology; another may be due to a lack of
understanding of some of the basic notions underlying hypothesis tests. As an example, in explaining the
results to a data user, an analyst may use different terminology than that appearing in this guidance. For
instance, rather than saying that the null hypothesis was or was not rejected, analysts may report the result of
a test by saying that their computer output shows a p-value of 0.12. What does this mean? Similar problems
of interpretation may occur whea the data user attempts to understand the practical significance of the test
results or to explain the test results to others. The following paragraphs touch on some of the philosophical
issues related to hypothesis testing which may help in understanding and communicating the test results. -

52.1° Interpretation of p—V&lues

The classical approach for performing hypothesis tests is to prespecify the significance level of the
‘test, i.e., the Type I decision error rate @. This rate is used to define the decision rule associated with the
hypothesis test. For instance, in testing whether the population mean p exceeds a threshold level (e.g., 100
ppm), the test statistic may depend on X, an estimate of p. Obtaining an estimate X that is greater than 100 -
ppm may occur simply by chance even if the true mean y is less than or equal to 100; however, if X is “much
hrgu”thmlooppm,thmtha'emonlyasmaﬂchamethatthemﬂhypothmuﬂo(ps100ppm)1strue :
Hence the decision rule might take the form “reject H,, if X exceeds 100 + C”, where C is a positive quantity
that dépends on -(and on the variability of X). If this condition is met, then the result of the statistical test is
reported as “reject Hy'™; othawse,thcmultlsrcponedas“donotrqwt}l,” (See Box 3.3-2 for an example
of a t-test.) ’

An altemnative way of reporting the result of a statistical test is to report its p-value, which is defined
as the probability, assuming the null hypothesis to be true, of observing a test result at least as extreme as
- that found in the sample. Many statistical software packages report p-values, rather than adopting the
classical approach of using a prespecified Type I esror rate. In the above example, for instance, the p-value
would be the probability of observing a sample mean as large as X (or larger) if in fact the true mean was
equal to 100 ppm.: Obviously, in making 8 decision based on the p-value, one should reject Hy when p is
small and not reject it if p is large. Thus the relationship between p-values and the classical hypothesis
testing approach is that one rejects H, if the p-value associated with the test result is less than @. Kfithedats
user had chosen the Type I esror rate as 0.05 a prior! and the analyst reported & p-value of 0.12, then the data
usawouldmponthemnﬂtas“dnnotrqedthenullhypothsm,”dthcp-valuehadbemrcportedas003
_thenthatpasonwmﬂdieponthemultm“rejwtthenuﬂhypothsm An advantage of reporting p-values is
that they provide a measure of the strength of evidence for or against the null hypothesis, which allows data
users to establish their own Type I erros rates. The significance level can be interpreted as that p-value ()
that divides “do not reject Hy” from “reject Ho.”

522 “Accepting” vs. “Failing to Re;ec&” the Null Hypothws

Asnotedmthepmgraphsabove,theclmsxcalappmachtohypotbwstwungmultsmoneoftwo
conclusions: “reject H,” (called a significant result) or “do not reject H,” (a nonsignificant result). In the
latter case one might be tempted to equate “do not reject H,” with “accept H,,.” This terminology is not
recommended, however, because of the philosophy underlying the classical testing procedure. This
philosophy places the burden of proof on the alternative hypothiesis, that is, the null hypothesis is rejected
only if the evidence furnished by the data convinces us that the alternative hypothesis is the more likely state
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of nature. If a nonsignificant result is obtained, it provides evidence that the null hypothesis could
sufficiently account for the observed data, but it does not imply that the hypothesis is the only hypothesis that
could be supported by the data. In other words, a highly nonsignificant result (.., a p-value of 0.80) may
indicate that the null hypothesis provides a reasonable model for explaining the data, but it does not
necessarily imply that the null hypothesis is true. It may, for example, simply indicate that the sample size
was not large enough to establish convincingly that the alternative hypothesis was more likely. When the
phrase “accept H,” is encountered, it must be considered as “accepted with the preceding caveats.”

623 Statistical Significance va. Practical Significance

There is an important distinction between these two concepts. Stansucalsxgmﬁcancesxmplyrefa's
tothcmwtofﬂwhypothmmm Was the null hypothesis rejected?. The likelihood of achieving &
statistically significant result depends oa the true value of the population parameter being tested (for
example, y), how much that value deviates from the value hypothesized under the null hypothesis (for
example, ), and on the sample size. This dependence on (s - p) is depicted by the power curve associated
with the test (section 3.1.3). A steep power curve can be achieved by using a large sample size, this means
that there will be 8 high likelihood of detecting even a small difference. On the other hand, if small sample
sizes are used, the power curve will be less steep, meaning that only a very large difference betweea p and p,
will be detectable with high probability. Hence, suppose one obtains a statistically significant result but has
no knowledge of the power of the test. Then it is possible, in the case of the steep power curve, that one may
be declaring significance (claiming p > p,, for example) when the actual difference, from a practical
standpoint, may be inconsequential. Or, mtbecaseoftheslowlymmmgpowume,onemayno&ﬁnda
significant result even though a “large” difference between p and p, exists. Neither of these situations is
desirable: in the former case, there has been an excess of resources expended, whereas in the latter case, &
Typeﬂezrornslikclyandhasoccmred.

Btmhowhrgeadﬁmbdweenthcpmmmandthenuu va!ucmofrcal importance? This
relates to the concept of practical significance. Ideally, this question is asked and answered as part of the
. DQO process during the planning phase of the study. Knowing the magnitude of the difference that is
regardedasbcmgofpmhcalsxgmﬁcamemmpmdmngthcdwgnmgebmuseth:sallowsme,tothc
extent that prior information permits, to determine a sampling plan of type and size that will make the '
magnitude of that difference commensurate with a difference that can be detected with high probability.
From a purely statistical design perspective, this can be considered to be main purpose of the DQO process.
With such planning, the likelihood of encountering cither of the undesirable situations mentioned in the pricr
paragraph can be reduced. BoxSZ-lommnsanexampleofastahsucallysxgmﬁcantbmfmly

mconsequenha.l dxﬁ'amce.
52, 4} Impact of Biss on Test Rnults

Bias is defined as the difference between the expected value of a statistic and a population parameter.
It is relevant when the statistic of interest (e.g., a sample average X) is io be used as an estimate of the
parameter (e.g., the population mean p). For example, the population parameter of interest may be the
average concentration of diokin within the given bounds of a hazardous waste site, and the statistic might be
the sample average as obtained from & random sample of points within those bounds. The expected value of
a statistic can be interpreted as supposing one repeatedly implemented the particular sampling desiga s very
large number of times and calculated the statistic of interest in each case. The average of the statistic's
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Box 5.2-1: Example of a Comparisoa of Two Varlancas
which is Statistically but not Practically Slgnificant

The quality contral (QC) program associated with @ measurament eyatem provides important information on i
performance and also yields data which should ba taken into account in some statistical analyses. The QC program
should include QC check samples, i.e., samplee of known composition and concentration which are run atregular
frequencies. The term precision refers to the consistency of @ measurement method in repeated applications under |
fixed conditions. Precision iz usually equated with a standard deviation. For many purposes, the appropriate B
standard deviation is one which results from applying the system to the same eample over a long period of ime.

Thie example concerns two methods for measuring ozone in ambient eif, an approved method and a new
candidate method. Both methods are used.once per week on & weeldy basis for three months. Based on 13
analyses with each method of the mid-range QC check gample at 100 ppb, the null hypothesis of the equality of the |
two variances will be tested with a false positive etror rate of 5% or lesg. (If the variances are equal, then the g
|| standard deviations are equal.) Method 1 had a sample mean of 80 ppb and a standard deviation of 4 ppb.
Method 2 had a mean of 80 ppb and a standard deviation of 8 ppb. The Shapiro-Wilks test did not reject the
assumption of normality for either method. Applying the F-test of Box 4.5-2, the F ratio is 84> = 2. Using 12
degrees of freedom for both the numerator and denominator, the F ratio must exceed 3.28 in order to reject the
hypothesis of equal variances (Table A-9 of Appendix A). Since 4 > 3.28, the hypothesis of equal variances iz
rejected, and it is concluded that method 1 is significantly more precise than method 2 .

. In an industrialized urban environment, the true azone levels at @ fixed location and time of day are known to vary
over a period of months with a coefficient of variation of at least 100%. This means that the ratio of the standard i
deviation (SD) to the mean at a given location is at least 1. For @ mean of 100 ppb, the standard deviation over time !
for fue azone values at the location would bs at least 100 ppb. Relative to thia degree of variabiity, a difference ;
between measurement error standard deviatione of 4 or 8 ppb is negfigible. The overall variancs, incorporating the
true process variability and measurement efor, is obtained by adding the individual variances. For instance, i

measurement arror standard deviation is 8 ppb, then the total variance ia (100 ppb)X 100 ppb) + (8 ppbX8 ppb).

Taking the square root of the variance gives & correaponding total standard deviation of 100.32 ppb. Fora :
| measurement armror standard deviation of 4 ppb, the total standard deviation would be 100.08 ppb. From a practical
standpoint, the difference in precision between the two methods is lnsigmﬁmt for the given application, dspﬁe the
finding that there is a statistically significant difference between the variances of the two methods.

values would then be regarded as its expected value. Let E deriote the expected value of X and denote the
relationship between the expected value and the parameter, p, as E = p + b where b is the bias. For instance;
if the bias occurred due to incomplete recovery of an analyte (and no adjustment is made), then

b = (R-100)11/100, where R denotes the percent recovery. Bias may also occur for other reasons, such as lack
of coverage of the entire target population (e.g., if caly the drums within & storage site that are easily
accessible are eligible for inclusion in the sample, then inferences to the entire group of drums may be
biased). Moreover, in cases of incomplete coverage, the magnitude and direction of the bias may be -
unknown. Anexamplcmvolvmgcompansonofthebmssoftwomeasmunmtmctho&xscontamedm
Box52-2

Intheconte:dofhypothwstsung,thenmpactofbmscanbeqmtescvaremsomecircumstancs
This can be illustrated by comparing the power curve of a test when bias is not present with a power curve for
the same test when bias is present. The basic influence of bias is to shift the former “no bias” curve to the
* right or left, depending on the direction of the bias. lfthebnasnsconstant,thmtheseeondmewxllbean
exact translation of the former curve; if not, there will be 8 change in the shape of the second curve in addition
to the translation. ' If the existence of the bias is unknown, then the former power.curve will be regarded as the
curve that determines the properties of the test when in fact the second curve will be the one that actually
represents the test's power. Fora:ample,mF:gmeSZ-lwhenthemvalueoftheparameta'ls120 the “no
bias” power is 0.72 but the true power (the biased power) is only 0.14, a substantial difference.
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Box 8.2-2: Example of a Comparison of Two Blases

This axample is a continuation of the azone meagurement comparison deacribed In Box 5.2-1, LetX end sy denote
the sample mean and standard deviation of measurement method 1 applied to the QC check sample, and let Y and
sydenotemesamplemeanandstandarddawauonofmeﬂwdz Thenx=BOppb 8, =4 ppb,Y=80ppbande, =
8ppb The estimated biasee are X - T = 80 - 100 = -20 ppb for method 4, and ¥ - T = 80-100 = 10 ppb for method
2, since 100 ppb is the rue value T. That is, method 1 ssems to underestimats by 20 ppb, and method 2 eeems to
underestimate by 10 ppb. Let y, and y, be the underlying mean concentrations for measurement methods 1 and 2
applied to the QC check sample. These means comrespond to the average results which would obtain by applying
each method a large numbee'oftmestolhe QC check sample, overalongpenodofﬁme

A two-gample t-test (Boxee 3.3-1 and 3.3-3) can be used to test for a significant dﬂ'efence between thess two
biases. In this case, a two-tailed test of the null hypothesia H,' u, - b, = 0 against the altemnative H,: p, -, » O i
appropiiate, because there iz no @ prion reason (in advance of data colléction) to suspect that one measurement
method is guperior to the other. (In general, hypotheses should not be talored to data.) Nots that the difference

batween the two biases is the same ss the difference (J, - ;) between the two underlying meana of the .
meas&_:rement methode. ‘The test will be done to Emit the false positive error rate to 5% & the two meanse ars equal.

STEP4: X=80ppb,8y=4 ppb.?=90ppb.s,‘=appu

STEP 2. From Box 5.2-1, R is known that the methods have ugmﬁcanﬂy different variances, 80 that
Sattherthwaite's {-test should bs used. Therefore,

L 3- 2 2 'z-
Sg © ﬁﬁl L8 o
m n \N13 13

L |
i Lol | .[41

STEP3: f =
R 1 .5 — +

| mim-1) n:@m-1) 132 12 132 12

Rounding downtothe nearestintegefgvesf: 17. Foratwo-taﬂedteaﬁ'aecnhwvaéuem
R rer = tors = 2.110, from Table A-1 oprpen&(A

= 17.65.

step4 ¢=X_-Y . 80 - % s -4.032
- Se . 248 -

STEP 5: Foram-taiedte@;-compa're It] with t,q = 2.91. Since 4.032 > 2,44, reject the null hypothesis and
concluds that there is a significant differencs between the two method bizses, mfavorofmeﬁ\odz

This box Hlustrates a situation involving two measurement methods where one method is more precizs, but also
more biased, than the other. I no adjustment for bias s made, then for many purpoees, the lsse biased, more
variable method is preferabls. However, proper bias adjustment can make both methods unbiased, so that the
more precise method bacomes the preferred method. Such adjustments can be based on QC check sample
results, if the QC check samples are regarded as representative of enwonmenu samples lnvoMng sufficienty
similar analytes and maﬁioes.
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Figure 5.2-1. Illustration of Unbiased versus Biased Power Curves

. Since bias is not impacted by changing the sample size, while the precision of estimates and the
power of tests increases with sample size, the relative importance of bias becomes more pronounced whea the
sample size increases (i.c., when one makes the power curve steeper). Similarly, if the same magnitude of
bias exists for two different sites, then the impact on testing errors will be more severe for the site having the
smaller inherent variability in the characteristic of interest (i.c., when bias represents a larger portion of total
variability). )

To minimize the effects of bias: identify and document sources of potential bias; adopt measurement
procedures (including specimen collection, handling, and analysis procedures) that minimize the potential for
bias; make a concerted effort to quannfybxas whenever possible; andmakc appropriate compensation for
bias when possible.

525 Quantity vs. Quality of Data

The above conclusions imply that, if compensation for bias cannot be made and if statistically-
based decisions are to be made, then there will be situations in which serious consideration should be given
-to using an imprecise (and perhaps relatively inexpensive) chemical method having negligible bias as
compared to using a very precise method that has even a moderate degree of bias. The tradeoff favoring the
xmprecxsemethodlsespecmﬂyrclcvantwhmthcmhamtvmabxhtymthcpoptﬂahonmvaylargerclauveto
the random measurement error.

Forcxample,supposcamcaneomenu'anonfoungcnspamlarea(sxtc)xsofmtautandthatthc
coefficient of variation (CV) characterizing the site's variability is 100%. Let method A denote an imprecise
method, with measurement-error CV of 40%, and let method B denote a highly precise method, with
measurement-error CV of 5%. The overall variability, or total variability, can essentially be regarded as the
sum of the spatial variability and the measurement variability. These are obtained from the individual CVs in

EPA QA/G-9 52.5 QA9



the form of variances. As CV equals standard deviation divided by mean, it follows that the site standard
‘deviation is then the CV times the mean. Thus, for the site, the variance is 1.00? x mean?; for method A, the
variance is 0.40% x mean?; and for method B, the variance is 0.05% x mean?. The overall variability whea
using method A is then (1.00? x mean?) + (0.40° x mean®) = 1.16 x mean?, and when using method B, the
variance is (1.00? x mean?) + (0.05% x mean®) = 1.0025 mean®. It follows that the overall CV when using
each method is then (1.077 x mean) / mean = 107. 7%formethodA,and(l 001 x mean) / mean = 100.1%
for method B. .

Nowconsidm'asamplconSspecimensﬁ'omthesite. 'I'heprecisionoftbésamplemancanthmhe
characterized by the relative standard error (RSE) of the mean (which for the simple random sample situation
is simply the overall CV divided by the square root of the sample size). For Method A, RSE = 21.54%; for
method B, RSE =20.02%. Now suppose that the imprecise method (Method A) is unbiased, while the
precise method (Method B) has a 10% bias (e.g., an analyte percent recovery of 90%). An overall measure of
e:rorthatreﬂectshowwellthcsamplcmcansumatsthesxtemeannstherelanvcmo&mcansquaxedm
_(RRMSE) '

RRWE= (RB)2+M |

where RB denotes the relative bias (RB = 0 for Method A since it is unbiased and RB = £10% for Method B
since it is biased) and RSE is as defined above. The overall error in the estimation of the population mean
(the RRMSE) would then be 21.54% for Method A and 22.38% for Mcthod B. If the relative bias for -
Method B was 15% rather than 10%, then the RRMSE for Method A would be 21.54% and the RRMSE for
Method B would be 25.02%, so the method difference is even more pronounced. While the above illustration
lsportrayedmtctmsofwt:manonofamcanbasedonasmplcnndomsample,tbsbaslcoonceptsapply

more generally.

This example serves to illustrate that a method that may be considered preferable from a chemical
point of view (e.g., 85 or 90% recovery, 5% relative standard deviation [RSD]) may not perform as well in a
statistical application as a method with less bias and greater imprecision (e.g., zero bias, 40% RSD),
especially when the inherent site variability is large relative to the measurement-error RSD.

52.6 “Proof of Safety”™ vs. “Proof of Hazard”™

- Because of the basic hypothesis testing philosophy, the null hypothesis is generally specified in terms
of the status guo (e.g., no change or action will take place if null hypothesis is not rejected). Also, since the
classical approach exercises direct control over the Type I error rate, this rate is generally associated with the
error of most concern (for further discussion of this point, see section 1.2). One difficulty, therefore, may be -
obtaining a consensus on which error should be of most concern. It is not unlikely that the Agency's
viewpoint in this regard will differ from the viewpoint of the regulated party. In using this philosophy, the
Agency’s ideal approach is not only to set up the direction of the hypothesis in such 8 way that controlling the
Type I error protects the health and environment but also to set it up in & way. that encourages quality (high
. precision and accuracy) and minimizes expenditure of resources in situations where decisions are relatively
“easy” (e.g., all observations are far from the threshold level of intesest).

In some cases, how one formulates the hypothesis testing problem can lead to very different sampling
requirements. For instance, following remediation activities at a hazardous waste site, one may seck o
answer “Is the site clean?” Suppose one attempts to address this question by comparing & mean level from
samples taken after the remediation with a threshold level (chosen to reflect “safety”). If the threshold level is
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nearbar.kgm\mdlcvelsthatmxghthaveaustedmthcabsmceofthecomammanomthenltmaybevay
difficult (i.e., require enormous sample sizes) to “prove” that the site is “safe.” This is because the
concentmnonsmdtmg&omcvcnahxghlyeﬁimammedmnonundaamhcmsmwmﬂdm&be
expected to deviate greatly from such a threshold. A better approach for dealing with this problem may be to
compmthcranedmtcdsxtethhamfm(‘ﬁmconmmmnted")sm assmngthatsuchasxtecanbe :
determined.

To avoid excessive expense in collecting and analyzing samples for. a contaminant, compromises will
sometimes be necessary. For instance, suppose that a significance level of 0.05 is to be used; however, the -
affordable sample size may be expected to yield & test with power of only 0.40 at some specified parameter
value chosen to have practical significance (see section 5.2.3). One possible way that compromise may be
made in such a situation is to relax the significance level, for instance, using @ =0.10, 0.15, or 0.20. By
relaxing this false positive rate, a higher power (i.e., a lower false negative rate f) can be achieved. An
argument can be made, for example, that one should develop sampling plans and determine sample sizes in
such a way that both the Type I and Type II exrors are treated simultaneously and in a balanced manner (for
example, designing to achieve @ = P = 0.15) instead of using the traditional approach of fixing the Type I
exvor rate at 0.05 or 0.01 and letting P be determined by the sample size. This approach of treating the Type I
andTypeIIa'rorssxmultaneouslylstakmmﬂwDQOPrmsandnlsrecommmdedthatsevaaldxﬂ'm '
scenanosofaandpbemthxgatedbeforeadecxsnononspecxﬁcvaluﬁforamdﬂareselected.
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TABLE A-1: CRITICAL VALUES OF STUDENT"S ¢ DISTRIBUTION

i l-&
Degrees of
Freedom .70 75 .80 85 90 95 975 99 995
1 0727 | 1000 | 1376 | 1.963 | 3.078 | 6314 | 12.706 | 31.821 | 63.657
2 0617 | 0816 | 1061 | 138 | 1.88 | 2920 | 4.303 6.965 9.925
3 0584 | 0.765 | 0978 | 1250 | 1.638 | 2353 | 3.182 | 4.541 5.841
4 0569 | 0741 ] 0941 | 1.190 | 1.533 | 2.132 | 2.776 3.747 4.604
5 0.559 10727 ) 0920 | 1.156 | 1.476 | 2.015 | 2.571 3.365 4.032
6 0553 | 0.718 | 0906 | 1.134 | 1.440 | 1943 | 2.447 3.143 3.707
7 0549 | 0711 ] 0896 | 1.119 ] 1415 | 1.895 | 2.365 2.998 3.499
£ 8 0546 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 2.896 3.355
i 9 0543 | 0703 ] 0883 | 1.100 §.1.383 | 1.833 | 2.262 2.821 3.250
: 10 0542 | 0700 | 0879 | 1.093 | 1372 | 1.812 | 2.228 | 2.764 3.169
i 11 0540 | 0697 | 0876 | 1.088 ] 1.363 | 1.796 | 2.201 2718 3.106
12 0539 ] 0695 0873 | 1.083 | 1356 | 1.782 | 2.179 | 2681 3.055
13 0538 | 0694 | 0870 | 1.079 | 1350 | 1.771 2160 | 2650 3.012
" 14 0537 ] 0692 | 0868 | 1.076 | 1.345 | 1.761 2.145 2.624 2977
15 05361 0691 | 0866 ] 1074 | 134 1.753 | 2.131 2.602 2.947
16 0.535] 0690 | 0.865] 1071 | 1.337 | 1746 | 2.120 2.583 2.921
17 0534 ] 0689 | 0863 | 1.069 | 1333 | 1.740 | 2.110 | 2.567 2.898
18 0534 | 0688 | 0862 | 1.067 | 1.330 | 1.734 | 2.101 2.552 2.878
19 0533 | 0688 | 0861 | 1.066 | 1.328 | 1.729 | 2.093 2.539 2.861
20 0.533 | 0687 | 0860 | 1.064 | 1.325 | 1.725 | 2.086 2.528 2.845
21 0532 ] 068 | 0859 | 1063 | 1.323 | 1.721 2080 | 2.518 2.831
22 0.532 | 0686 | 0858 | 1.061 | 1.321 | 1.717 | 2074 | 2.508 2819
23 0532 ] 0685 | 0858 | 1060 | 1319 ] 1.714 | 2.069 | 2.500 2.807
24 0531 | 0685 | 0.857 | 1.059 | 1318 | 1.711 2.064 2492 2.797
25 0531 | 0684 | 0856 | 1.058 } 1.316 | 1.708 | 2.060 | 2.485 2.787
g 26 . 0531} 0684 | 085 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 2.779
27 0531 0684 | 0855 | 1.057 | 1.314 | 1.703 | 2.052 | 2473 2.771
28 0530 0683 | 0855 1056 ] 1.313 | 1.701 | 2.048 | 2.467 2.763
29 0530 ] 0683 | 0854 | 1.055] 1311 | 1699 | 2.045 2.462 2.756
30 0.530 0.683 0.854 | 1.055 | 1310 | 1.697 | 2.042 | 2457 2.750
40 -0.529 ] 0681 | 0851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 2.704
60 0527} 0679 | 0848 | 1.046 | 1.296 | 1.671 2000 | 239 2.660
i 120 0526 | 0677 | 0845 | 1041} 1.289 | 1.658 | 1.980 } 2358 2.617
1 ® 0524 | 0674 | 0842 ] 1036 | 1.282 | 1.645 1.960 2.326 2.576

Note Thclastmw of the table (~ degrees of freedom) gwathccnncml values fonstandardnmmaldxsuﬂnman @),
e&.l\m=zm-1645
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TABLE A-2: CRITICAL VALUES FOR THE STUDENTIZED RANGE TEST

R a b a b a b
3 1.737 ~ 2000 1.758 1999 1.782 1.997
* 4 1.87 2.445 198 2429 204 2409 &
5 2.02 2.803 215 2753 - 222 2712 )
6 2.15 3.095 228 3012 237 2.949
7 2.26 3.338 240 3222 249 3.143
8 235 3.543 250 3399 2.59 3.308
9 244 3.720 2.59 - 3.552 "2.68 3.449
10 2.51 3.875 267 3685 - 2.76 3.57
11 2.58 4012 2.74 3.80 284 3.68
12 - 264 4.134 280 3.91 2.90 ~3.78
13 2.70 4.244 2.86 400 296 387
14 2.75 4.34 292 4.09 - 3.02 3.95
15 2.80 4.44 297 417 3.07. 4.02
16 2.84 4,52 301 4.24 3.12 4.09
17 2.88. 4.60 3.06 431 317 415
18 2.92 4.67 3.10 4.37 321 421
19 2.96 474 314 443 3.25 4.27
20. 2.99 4.80 3.18 4.49 3.29 432
25 3.15 506 3.34 4.71 345 4.53
30 3.27 5.26 347 489 3.59 4.70
35 3.38 542 3.58 504 3.70 4.84
40 347 5.56 3.67 5.16 3.79 4.96

3.55-

3.62
3.69
3.75
3.80
3.85

3.90
3.94
3.99
4.02
4.06 °

4.10
4.38
4.59
5.13
5.57

5.67

5.77
5.86
5.94
6.01
'6.07

6.13
6.18
.6.23
6.27
6.32

6.36
6.64
6.84
7.42

7.80

543
5.57
573

5.78
5.82

618'

6.39

5.51.
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TABLE A-3: CRITICAL VALUES FOR THE EXTREME VALUE TEST

. (DIXON'S TEST)
Level of Significance &
n 0.10 0.05 0.01
~
3 0.886 0.941 0988 |
4 0.679 0.765 0889 |
5 0.557 - 0.642 0780  §
6 0.482 0.560 0.698
7 0.434 0.507 0.637
8 0.479 0.554 0683 |
9 0.441 0.512 0635 f
10 10.409 0.477 0597 |
1l 0.517 0.576 0679 |
12 0.490 0.546 0.642
13 0.467 0.521 0.615
| 14 0.492 0.546 0641 |
15 0.472 0.525 0616 |
16 0.454 0.507 0.595 |
17 0438 0.490 0577 |
18 0.424 0.475 0561 |
19 0412 0.462 0.547
20 0.401 0.450 0.535
21 0.391 0.440 0.524
22 0.382 0.430 0.514
23 10374 0421 . 0505
0.367 0413 0.497
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TABLE A-4: CRITICAL VALUES FOR DISCORDANCE TEST

—_ i —
Level of Significance &
B 0.01 0.05 E
3 1.155 1153 |
4 1.492 1.463
5 1.749 1672 |
6 1.944 1822 |
7 2.097 1.938
8 2.221 2.032
9 2323 2.110
10 2410 2.176
11 . 2.485 2234
12 2.550 2,285
13 2,607 2331
14 2,659 2371
15 | 2705 2.409
16 2,747 2.443
17 2785 2475
18 2.821 2.504
19 2.854 2.532
20 2.884 2.557
21 2912 2.580
22 2939 - 2,603
23 2.963 2.624
.24 2.987 2.644
25 3.009 2,663
26 3.029 2681
27 3.049 2.698
28 3.068 2714
29 3.085 2.730
30 3103 | 2745
31 3119 | .2759
- 3.135 2773

EPA QA/G-9
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Level of Significance &

0.01

0.05

- 2.857

2.786
2.799
2.811
2.823
2.835
2.846

2.866

2.877
2.887
2.896
2.905
2914 #
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TABLE A-S: APPROXIMATE CRITICAL VALUES A, FOR ROSNER'S TEST

& E
n ¢ ! 805 j 0.01 F P 0.05 0.01
25 1 |28 | 314 1 |29 {327 1 | 303 | 337
; 2 | 28 ; 2 | 29213325 2 | 301 | 336
‘ 3| 278 3 | 291 | 324 3 1300 | 334
4 | 276 4 | 289 | 3.22 4 | 299 | 333
s | 273 5 {288 |32 5 | 298 | 332
10 | 2.59- 10 | 278 | 3.09 10 | 291 { 3.24
26 1 | 284 . 1 {2951 329 1 | 304 | 338
2 | 282 . 2 | 294 | 327 2 | 303 | 337
3 |28 3 | 2921|325 3 1301 | 336
4 | 278 4 [ 291 (324 4 (300 { 334
5 | 276 s | 289|322 5 |29 | 333
10 | 2.62 10 | 2.80 | 3.1 10 | 292 | 325
27 1 | 286 34 |11 | 297 | 330 41 1 1305 {339
2 | 284 2 | 295 | 329 2 | 304 | 338
! 3 {28 3 | 294 ] 327 3 | 303 | 337
4 | 280 | 4 | 292 | 325 4 | 301 |33
5 | 278 s | 291 | 324 5 | 300 | 334
10 | 2.65 10 | 282 | 3.14 10 | 294 | 3.27
28 1 | 288 35 | 1 | 298| 332 42 1 | 308 '
2 {286 2 | 297 | 3.30 2 ) 305
3 | 284 3 |295 1329 3 1304
4 | 282 4 | 294 | 327 4 | 3.03
5 | 280 5 1292 ] 325 5 | 301
10 | 2.68 10 | 284 | 3.16 10 | 2.95
1 ] 289 1 ]299 | 333 § 43 1 | 307
2 | 288 2 | 298 | 332§ 2 | 306
3 | 286 3 1297 ]33 § 3 | 305
4 | 284 4 | 29532 B 4 | 304
5 {282 S | 294 | 327 § 5 | 303
10 | 2.71 10| 286 | 3.18 | 10 | 2.97
1 129t 1 | 300|334 § 44 I | 308
2 | 289 2 299|333 | 2 | 307
3. | 288 3 1298|332 3 | 306
4 12386 4 {297 | 330 § 4 | 305
S | 284 5 | 295|329 | 5 ] 304
10 | 2.73 10 | 288 | 3.20 10 | 2.98
1 {29 1 | 301 {336 | 45 1 | 3.09
2 {291 2 1300 | 3.34 | : 2 | 308
3 | 289 3 1299|333 § 3 | 307
4 | 288 4 | 298 | 332 4 | 306
5 | 286 5 | 297 ]330 5 | 305
10 | 276 10 | 291 { 3.22 10 | 2.99
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TABLE A-S: APPROXIMATE CRITICAL VALUES A, FOR ROSNER'S TEST

0.05

3.26
3.25
3.25
3.24
3.24
3.21

3.31
3.30
3.30
3.29
3.29
3.26

3.35
3.34
3.34
3.34
333
3.31

3.38
3.38
338
337
3.37
3.35

3.52
3.51
3.51
351
3.51
3.50

3.61
3.60
3.60
3.60
3.60
3.59
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TABLE A-6: QUANTILES OF THE WILCOXON SIGNED RANKS TEST

B Vg
4 0 0
5 0 1
6 0 3
7 1 4
8 2 6
9 4 9
10 6 11
11 8 14
12 10 18
13 13 22
14 16 26
15 20 31
16 24 36
17 28 42
18 33 48
19 38 54
20 44 61
A-9
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TABLE A-7: CRITICAL VALUES FOR THE RANK-SUM TEST - € = 0.0§
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TABLE A-8: PERCENTILES OF THE CHI-SQUARE DISTRIBUTION

.005 010 .025 .050 100 | 900 | 950 | .975 | 890 .995

1 0.0'393 | 0.0°157 | 0.0°982 | 0.0'393 | 00158 | 271 384 | 502 663} 788
o2 0.0100 | ™ 0.0201 0.0506 0.103 0.211 461 599 ] 738 921]1060°
3 0072 0O.115 0216 | 0352 0584 | 625 | 781 9351 11.34 | 12.84
4 0.207 0297 0.484 om 1064 | 778 | 949 11.14 | 1328 | 1486

0831 | 1145 1.61 924 | 11.07 | 12.83 | 1509 | 16.75
1.24 1.64 220 | 1064 | 1259 | 1445 | 1681 | 1855
1.69 217 2.83 | 1202 | '14.07 | 1601 | 1848 | 20.28
2.18 273 349 | 1336} 1551 | 17.53 | 20.09 | 21.96

2.70 3.33 4.17 | 1468 | 1692 | 1902 | 21.67 | 23.59 ﬁ :

3. 25 3.94 487 | 1599 | 1831 | 2048 | 23.21 | 25.19
3.82 .57 5581 1728 ] 1968 | 21.92 | 24.73 | 26.76 E
4.40 523 6.30 | 1855 | 21.03 | 2334 | 26.22 | 28.30
5.01 5.89 7.04 | 1981 | 2236 | 24.74 | 27.69 | 29.82
363 657 779 | 2106 | 2368 | 2612 | 29.14 | 31.32

6.26 .1.26 855 | 2231 ) 2500 | 27.49 | 30.58 | 32.80 |,
691§ 796 9.31 | 23.54 } 26.30 ) 28.85 | 32.00 | 34.27
7.56 8.67 1009 § 24.77 | 27.59 | 30.19 | 33.41 | 35.72
8231 939 10.86 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16
891 10.12 1165 | 27 20 30.14 | 32.85 | 36.19 | 3858

9.59 10.85 1244 | 2841 | 31.41 | 3417
1028 | 1159 13.24 | 29.62 | 32.67 | 3548
10.98 12.34 1404 | 3081 | 33.92 | 3678
1169 | 13.09 1485 | 32,01 | 3517 | 38.08
12.40 1385 | 1566 | 3320 { 3642 | 3936

13.12 14.61 1647 | 3438 ) 3765 ] 4065
13.34 15.38 17.29- | 3556 | 38.89 | 41.92
14.57 16.15 18.11 | 36.74 | 40.11 | 43.19
1531 16.93 1894 | 3792 | 41.34 | 44.46
16.05 17.71 19.77 | 39.09 | 4256 | 45.72

16.79 18.49 2060 | 40.26 | 43.77 | 46.98
24.43 26.51 29.05 | 51.81 | 55.76 | 59.34
3236 34.76 3769 | 63.17 | 67.50 | 71.42
4048 |  43.19 46.46 | 74.40 | 79.08 | 83.30.

48.76 51.74 5333 | 8553 ] 90.53 [ 9502 1004 | 1042
57.15 60.39 6428 | 9658 | 1019 | 1066 | 1123 | 1163
65.65 69.13 7329 | 1076 § 113.1 | 1181 ) 124.1 | 1283

74.22 7793 ] 8236 ] 11851 1243 | 1296 | 1358 | 1402

EPA QA/G-9 A-1l QA6



TABLE A-9: PERCENTILES OF THE F DISTRIBUTION

1 .50 1.¢c0 .50 § -0.7% 1.82 1891 194 198 200 203 2.04 207 202 2.12 2.13 2.15 217 2.18 2.20
S0 399 PS5 f 336 33.8 372 1 382 389 39.4 599 602 60.7 612 8L.7 620 623 62.8 63.1 633
.93 161 200 216 223 230 234 237 " 23% 241 242 244 248 2481 . 249 250 | 252 | 253 234
973 648 809 854 | 900 | 922 937 248 957 63 | | 969 77 983 93 97 1001 1010 | 1014 1018
99 4032 5000 | 3403 3623 3764 3839 3928 3981 6022 6036 6106 6137 6209 8235 8261 6313 6339 6366
2 .30 0.667 1.00 .13 1.21 123 1.28 130 132 1.3 134 136 138 | 139 1.40 141 1.43- 1.43 1.44
80 8.53 2.00 9.16 9.24 229 233 233 237 938 239 241 9.42 244 945 9.46 9.47 2.48 9.49
935 18.5 19.0 192 1922 1923 193 §. 194 1924 19.4 194 194 194 19.4 19.3 19.5 19.3 19.9 193
273 383 390 392 322 393 393 | . 394 394 394 394 394 394 394 393 395 | - 393 3%.9 393
99 98.3 $9.0 $9.2 $9.2 9.3 .99.3 99.4 99.4 9.4 99.4 $9.4 99.4 99.4 99.5 99.5 99.5 99.3 99.3
3 3 0.385 | 0.881 1.00 165 |- L10 1.13 1.3 1.16 1.17 5.18 1.20 1.21 1.23 1.23 1.24 1.25 1.26 1.27
£0 334 || 346 339 334 | - 331 3.28 3273 323 3.29 323 3.22 5.20 3.18 3.18 3.17 3.13 5.14 3.13
95 10.3 ‘233 228 2.12 .08 394 § 889 8.85 B.81 8. 8.74 B.70 8.66 3.64 8.62 8.57 8.33 8.33
2175 174 16.0 15.4 13.1 149 14.7 14.6 149 14.3 14.4 14.3 143. 142 | - 141 14.1 14.0 139 139
9 34.1 308 29.3 28.7 §  28. 3 279 27.7 37.3 7.3 22.2 27.1 269 26.7 26.6 26.3 26.3 26.2 26.3
4 .50 0.34% | 0.828 0.941 1.00 104 1.06 1.08 1.09 1.10 1.11 1.13 114 113 1.16 1.16 1.18 |- lLi18 1.19
$0 4.34 432 41% 418 4.03 4.01 3.98 395 394 39 390 387 384 383 3.8 3. 178 3.76
93 7.7 .94 8.39 6.39 6.26 6.16 8.00 6.04 600 | 598 591 536 5.80 sy 371 3.89 366 363
73 122 10.6 998 | 960 2.36 9.20 9.07 398 8.90 8.84 3.7 8.66 8.36 8.31 8.46 836 831 8.26
99 212 18.0 16.7 16.0 13.3 152 150 | 148 14.7 14.5 84.4 142 14.0 -13.9 13.8. 13.7 136 13.3
99 T4.1 61.2 36.3 33.4 317 50.3 49.7 49.0 48.3 48.1 47.4 468 | 461 43.8 45.4 44.7 44.4 44.1
3 .50 0528 [ 0759 [ 0.207.[ 0533 1.09 1.02 1.04 L.03 '1.086 1.07 § - 1.09 i.10 .11 1.12 112 .14 L14 113
20 4.06 i 362 332 3.43 340 337  3.34 332 339 3.7 3.24 3. 3.19 3.17 3.14 312 34
23 861 5.7 341 5.19 35.03 4.93 4.88 4.82 4.1 4.74 4.68 4.62 4.56 4.93 4.50 4.43 4.40 437
s 10.0 3.43 776 7.3° 7.13 5.98 6.83 6.76 6.68 6.62 6.32 .43 633 6.28 .23 6.12 6.07 6.02
L ‘16.3 133 12.1 1.4 11.0 10.7 10.3 103 102 10.1 .89 9.72 9.93 9.47 9238 92.20 2.1 2.02
$99 47.2 37.1 33.2 31.1 29.8 28.8 28.2 i ¢ X 27.2 269 26.4 25.9 23.4 23.1 24.9 24.3 24.1 23.8
e 50] 0515 | 0780 | oess | o9az | oo | 00| o2 | 03| wos| nos| nes i vo7 | nos| 109| wro| x| 112 L2’
90| 378) 246]| 329 sa8| a1 | 305) 301 | 298} 296| 298| 290] 287) 28¢] 282 280 ) 276 | 27 Y
93 399 5.14 476 4.33 439 4.28 4.21 413 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.74 3.70 3.67
973 8814 726 6.60 A3 | 399 5.82 3.70 3.60 3.52 3.46 337 3.27 317 3.12 5.07 496 490 4.85
99 228 10.9 .78 9.03 8715 | 847 8.26 8.10 798 1.87 7.72 7.56 7.40 731 .23 7.06 697 6.88
K. 38.9 27.0 3.7 21.9 208 200 ] 193 190 18.7 184 18.0 176 | . 171 169 16.7 16.2 16.0 13.7
EPA QA/G-9 A-12 QA%



TABLE A-9: PERCENTILES OF THE F DISTRIBUTEON

rome—m = e s
Degrem Dagw of Fresdom for Numeratar
Freodom
for
Denom- | 2 3 4 S [ 7 8 9 10 12 13 20 24
tnater .
. 7 .50 1 0306 § .0767 | 0.874 0926 | 0960 | 0.983 1.00 1.01 1.02 1.03 1.04 1.05 1.07 1.07 1.08 1.09 1.10 1.10
S0 339 | 3.26 3.07 296 238 283 2.78 2.73 27 2.70 267 2,63 2.59 2.58 2.56 231 2.49 2.47
23 339§ 474 438 4.32 397 '3 87 3.7 n 368 3.64 3.37 3N 3.44 341 | 338 330 i 3.23
973 807 | 634 3.89 3.52 529 3.12 499 4.90 4.82 4.76 467 | 4ST | 447 4.42 4.36 423 420 4.14
99 122 | 933 8.45 7.33 7.46 7.19 6.99 684 § 672 6.62 6.47 631 6.16 6.07 3.99 5.8 3.74 3.63
.$99 29.2 21.7 18.8 17.2 16.2 15.3 15.0 14.6 34.3 14.1 13.7 133 12.9 12.7 12.3 12.1 11.9 1.7
8 30 ] 0492 ) 0757 | 0360 | 0213 § 0548 | 0971 | 0988 1.00 1.01 102§ .1.03 1.04 105 1 1.08 1.07 1.08 108 - 109
0 346 | 3n 292 231 2B 267 262 2.59 2.36 2.34 2.50 246 | 242 2.40 238 234 232 229
: 93 332§ 4.46 4.07 3.84 369-§ 338 350 3447 339 338 328 322 3.3 312 3.08 301 297 293
975 137 6.0 5.42 3.03 4.82 4.65 433 443 436 430 420 4.10 4.00 3.93 3.89 378 3N 3.67
: 99 113 )] 863 7.39 7.01 6.63 637 6.18 6.03 3911 581 367 | 3592 336 3.28 3.20 5.03 493 4.86
599 254 |- 18.3 13.8 14.4 13.3 12.9 124 § 120 ] 118 11.3 1.2 | 108 10.3 103 10.1 9.73 9.33 ' 9.33
9 30| 0494 | 0749 | 0832 | 0SC5 | 0939 | 0952 | 0978 § 059 1.00 1.01 1.01 1.03 1.04 1.0 1.08 1.07 1.07 1.08
20 336 | 3.01 281 | 269 2461 235 | - 251 247 | 244 242 | 238 2340 230 ). 228 2.23 221 2.18 216
93 3.2 | 426 386 38 348 337 32 3 3.8 334 | 307] 301 294 250 2.86 17 278 2.7
973 7.31 .7 3.08 4.72 4.48 432 4.20 410 | 403 396 3.87 3.77 367 361 | . 3.36 348 339 33
. 59 106 | 802 6.99 6.42 605 § 3580 | 361 347 $.35 5.26 3.31 496 481 4.73 4.63 448 440 431
.999 229 |. 164 §3.9 32.6 11.7 15.1 10.7 10.4 10.1 9.89 9.57 9.24 8.90 8.72 3.33 8.19 8.00 7.81
10 .30 § 0.490.) 0.743 | 0.843 | 0599 | 0932 § 0.954.|] 0971 | 0983 | 0992 1.00 1.01 1.02 1.03 1.04 1.03 1.06 1.06 1.07
20 3201 292 2.73 261 2.52 246 241.| 238 | 235 232 228 224 220 218 | . 216 a1 208 2.06
93 496 | 4.10 amn 348 | 333 323 3.14 3.07 302 298 291 2.84 2 2.74 2.70 262 238 234"
973 694 |- 3.46 483 447 424 1 4074 395 383 37 372 362 3352 342 3.37 3.31 3.20 3.4 3.08
K2 100 7.36 635 -3.99 3.64 339§ s.a0 3.06 494 483 {. 4N 436, 441 433 4.23 4.08 4.00 3N
599 21.0 14.9 12.6 313 10.3 9.93 9.52 9.20 8.96 8.73 8.45 8.13 7.80 7.64 7.47 7.12 6.94 6.76
12 50 ) 0484 | 0735 ] 0835 || 0888 || 0921 | 0943 | 0959 { 0972 | 0981 0.989 1.00 . 1.0 | 102 1.03 1.03 1.0 ‘1.03 1.66
20 3.8 | a8t 2618 248 239 233 228 224 o 2.19 2.18 2.50 2,06 204 ) .201 1.96 1.9 1.20
93 493 | 3.89 349 3.26 3t 3.00 291 283 2.80 273 269 262 234 2391 2.47 238 | 234 2.30
973 6.39 5.10 447 4.12 3.89 n 3461 3.5 344 337 3.28 318 3.07 3.02 2.96 283 2.7 2.72
$9 933 | 693 395 3.41 3.08 482 464 4.50 439 430 4.16 401 3.86 3.78 .70 3.34 345 336
599 18.6 13.0 10.8 2.63 8.89 8.38 8.00 7.70 7.48 7.29 7.00 6.71 6.40 6.23 6.09 3.76 3.59 3.42
13 50 | 0478 | 0726 | 0326 | 0878 | 0911 | 0933 | 0949 | 0560 | 0970 | 0977 | 0989 1.00 101 1.02 1.02 1.03 1.04 1.05
20 307 27 249 236 227 221 216 2.12 209 2.06 2,02 197] 192 1.90 1.87 | . 132 1.7 1.76
93 434 | 368 3.2¢9 365 220 2.79 27 2.64 2.39 2.34 248 2.40 233 229 3.23 2.16 211 2.07.
975 | 820 | 4T 4.13 3.80 3.8 341 329 320 3.12 3.06 296 2.86 2.76 2.70 2.64 2.52 2.46 2.40
9 868 | 636 3.42 489 | 436 432 4.14 4.00 3.89 3.80 367 3.52 337 | 329 321 3.0 296 2.87
939 166 113 934 8.23 7.57 709 | 674 647 ) 626 6.08 581 3.34 523 ) s.io0 4.93 464 4.48 431
EPA QA/G-9 A-13 QA%6



TABLE A-9: PERCENTILES OF TIHIE F DISTRIBUTION

Degroes of Frosdom for Numeretor

10

0.966
1.94

277

EPA QA/G-9 A-14 QA96



TABLE A-10: VALUES OF THE PARAMETER £ FOR COHEN'S ESTEKATES
ADJUSTING FOR NONDETECTED VALUES

? 00 |.010100 ' .020400 .030902 041583 .052507 .063625 .074953 .08649 -09824 .11020 -.17342. 24268
) .05 010551 .021294 .032225 .043350 .054670 .065159 .077909 .08983 .10197 .11431 .17925 25033
10 1010950 022082 .033398 .044902 .056596 .068483 .080563 .09285 .10334 .11804 .18479 25741
A5 1011310 022798 .034466 .046318 .058356 070536 .083009 09563 .10845 .12148 .18985 26405
20 011642 .023459 .035453 .047829 059990 .072539 .085280 .09822 .11135 .12469 .19460 27031
25 011952 024076 .036377 .048858 .061522 074372 .087413 .10085 .11408 .12772 .19910 27626
30 |.012243 .024658 .037249 .050018 .062969 .076106 .089433 .10295 .11667 .13059 20338 2819
35 |012520 .025211 .038077 . .051120 .064343 077736 091355 .10515 .11914 .13333 20747 2873
40 1012784 025738 .038866 .052173 .065660 .079332 093193 .10725 .12150 13595 21129 292
45 1013036 026243 .039624 .053182 .066921 080845 .094958 .10926 .12377 .13847 21517 29765
50 1.013279 026728 .040352 .054153 .068135 082301 .096657 .11121 .12595 .140%0 21882 3025
55 |.013513 027196 .041054 .055089 .069306 .083708 .098298 .11208 .12806 .14325 22225 30725
60 013739 027849 .041733 .055995 .070439 .085068 .099887 .11490 .13011 .14552 22578 31184
.65 |.013958 .028087 .042391 .056874 .071538 .086388 .10143 .11666 .13209 .14773 22910 31630
.70 .014171 028513 .043030 .057726 .072503 .087670 .10292 .11837 .13402 .14987 23234 32065
H .75 .014378 029927 043652 .058556 .073643 .088917 .10438 .12004 .13590 .15196 23530 32489
| .80 014579 029330 .044258 .059364 074655 .090133 .10580 .12167 .13775 .15400 23858 3291 !
85 014773 029723 .044848 060153 .075642 .091319 .10719 .12225 .13932 .135%9 24158 33307}
90 | 014967 030107 .045425 .060923 075606 .092477 .10854 .12480 .14126 .15793 24452 33703
95 [015154 .030483 .045989 .061676 .077549 .093611 .10987 .12632 .14297 .15983 34740 34091
1.00-].015338 ) 25022 34471

.65
70

a5
.80
85
80

E'.% 44112 5490 6656 7925 9314 1085 1255 1448 1668 1924 2.607 3.803
1.00

39276 4904 8967 7129 3408 9826 1.141 1327 1528 1770 2421 3.575
39670 4976 6051 TS5 8517 9950 1135 1337 1345 1788 2443 3.601

41008 5114 6213 7412 879 1019 1182 1368 1577 1826 2486 3654
41555 5180 €291 7500 8832 1030 1195 1380 1593 1841 2507 367

42050 5245 6367 .7390 $932 1042 1207 1394 1608 1.851 2328 3.705 ||

43122 5370 6515 TI81 9127 1066 1232 1422 1639 1892 2568 3.7%4
43622 5430 6586 7844 922 1074 1244 1435 1653 1508 2588 3.779

A4592 5548 6724 8005 9406 - 1.095 . 1287 1461 1882 - 1540 2.626 3827

EPA QA/G-9 ' A-15 QA%



TABLE A-11: PROBABILITIES FOR THE SMALL-SAMPLE MANN-KENDALL TEST FOR TREND

EPA QA/G-9 A-16 - QA%6



