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Chapter 40

Geostatistical Sampling Designs
for Hazardous Waste Sites

George T. Flatman and Angelo A. Yfantis

This chapter discusses field sampling design for environmental sites and hazardous waste
sites with respect to random variable sampling theory, Gy’s sampling theory, and geostatis-
tical (kriging) sampling theory. The literature often presents these sampling methods as an
adversarial “either/or” philosophy; this chapter emphasizes when each should be used with
a cooperative “both/and” philosophy. The intrasample variances, biases, or corvelations
must be taken care of by the use of Gy’s sampling theory for both independent random vari-
able sampling and analysis and correlated random variable sampling and analysis. The
deciding factors in the choice of sampling design and analysis are not just intersample vari-
ances, biases, or correlations but also the discreteness of the waste under investigation,
remediation as a unit, and the relative cost of samples versus the cost of remediation.

NVIRONMENTAL SAMPLING is a multidisciplinary science. It requires chemists,

media experts, risk assessors, and even statisticians. The sampling design is

an integral part of the experimental design and data analysis, and most
importantly, the data analysis cannot recover more information than the samples
contain. Thus the statistician needs to be on the project from its inception. Optimal
environmental sampling requires consideration of at least three branches of statis-
tics. Classical random variable statistics (1) are needed in quality assurance (QA)
and in the analysis of data that are reasonably independent (little or no process, spa-
tial, or chronological correlation). Gy's theory of sampling (2) is needed for the def-
inition of correctness for the “field sample” {determination of amount (mass or vol-
ume) sampled] and any samples taken in heterogeneous media (almost all
environmental samples). Geostatistics, and its most used form, kriging (3), is
needed for field sites with a spatial structure. The choice of sampling designs—
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780 PRINCIPLES OF ENVIRONMENTAL SAMPLING

when to use classical random design or kriging’s regular grid design—is a difficult
decision. Even statisticians differ on such a question. This chapter discusses the sta-
tistical rules that enter into the decision. The decision depends on specifics of the
site and remediation plan as well as statistical aspects. For example, Gy’s theory
must be used to take a correct sample for either random vanable statistics (sampling
or analysis) or geostatistics (sampling or analysis).

When 1 discussed the role of statistics in sampling design with a manager of a
chemical laboratory, the manager confided in me that his statistician’s recommen-
dations were always illogical and irrational and contradicted common sense. We did
not have time to discuss specifics, but I suspect the advice he received was also poor
statistically because it confused the use of random variable statistics with the use of
spatial statistics. If the correct branch of statistics has been chosen, statistical
requirements can be explained from statistical theory in a logical and reasonable
manner that does not defy common sense. It is important in a multidisciplinary
project for all to be comfortable with the soundness of the decisions. Statisticians
should be asked to explain the staristical requirements they recommend until all feel
comfortable with the design.

Random Variable Statistics

A random variable has both magnitude and probability, It may come from a sym-
metric distribution such as normal or uniform, or from a skewed distribution such
as lognormal or Poisson. Chemical environmental data sets are often assumed log-
normal, and radioactive data sets are often assumed Poisson. Because both distribu-
tions are positively skewed, the estimate of the mean based on few samples has a
higher probability of being underestimated than the mean of a normal distribution
or any symmetric distribution with a strong central tendency. Random errors as
monitored by QA are often assumed normal. The branch of statistics that deals with
random variables gives us the statistical inferences that have tools for QA. Random
variables provide measures of central tendency (such as mean, median, and mode),
dispersion (such as range and standard deviation), and statistical inference (such as
confidence intervals, prediction intervals, and tolerance intervals).

The mean and standard deviation are the statistics usually sought by a sam-
pling campaign; they are sufficient statistics (i.e., completely define the distribution)
for the normal distribution. The mean of any distribution becomes normal as the
number of samples, n, becomes large. This property justifies the use of confidence
intervals for the mean if, and only if, n is large enough (n > 16 for a symmetric dis-
ribution, and n > 50 for a skewed distribution). However, if the number of samples
is much fewer than 50 samples from the typical environmental distibution in a con-
fidence interval, then these limits are not to be trusted. Either knowledge of the dis-
tribution or transformation to normality is required for statistical inference about the
variable, its distribution, or future samples. A listing of means and standard devia-
tions or intervals, without investigating the distribution, is misleading and has the
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potential of inviting wrong decisions because the readers will assume normality.
Nonparametric intervals and tests are available, but they lack power. For example,
the critical values for one-sided intervals for probabilites (1 — a) of 0.95 and 0.99
using the Tchebycheff inequality are 4.472 (square root of 20) and 10.000 instead of
the standard normal distribution values of 1.64 and 2.33. Most regulators will
cringe at 4 or 10 in a compliance hypothesis test. Another consideration is that ran-
dom variable sampling design requires rigorous definitions of the population and
sampling unit, so that the design can give each sampling unit an equal probability of
being chosen. This requirement will be discussed further.

Population Defined

In environmental samples, population is not as obvious or as well-defined a term as
it is in statistical textbooks (e.g., all the cards in a deck, or the two sides of a coin).
In site evaluation, the most obvious population is the waste site as a whole, but the
usual site has more than one population of interest. It may have population(s) of
plume(s) and background population(s). The population of interest is the popula-
tion(s) of the plume(s). Waste plumes seldom honor property boundaries or travel
in politically defined shapes such as city blocks. Thus the populations of interest are
the plume(s) and the background, not a mixture of these. To average all the samples
from the site would give an estimate of a mean from a mixture of populations, a
“fruit salad” of plume(s) and background(s). If the location and extent of the plume
or background are not known, but a map of mean conrtours (isopleths or isarithmic
lines) is wanted for multiple remediations, then this situation would require geosta-
tistical sampling and analysis. If the waste to be evaluated is well-defined and con-
fined, such as liquid waste stored in 55-gallon drums or a waste pile on a tarp that
will be disposed of as a unit, then the population of interest is the drum or pile and
therefore classical statistics (a mean value) will be adequate for the decision.

Sampling Unit Defined

For textbook statistics, a sampling unit is a draw of a card or a flip of a coin, but for
an environmental sampling the unit is complicated by natural variation (e.g., media
heterogeneity or pollutant characteristics) and sampling tool variation and biases
(4. In laboratory QA the unit may be the contents of every ith vial in the queue of
the analyzing instrument. At an environmental site, the “sampling unit” is ambigu-
ously used to refer to both the sample and the sample support. The sample is much
smaller in volume or mass than the sample support, but if it is representative, it has
approximately the same concentrations of the pollutant or the same values of some
measured characteristic. The sample, simple or composite, is a small critical mass
that is taken from the sample support for measurement. The sample support is the
" larger volume or mass of in situ media that is to be represented by the measure of
the sample. The sampling support is often the same volume as the remediation unit.
These two units are determined by the goal of the sampling campaign or the reme-
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diation option(s), but they must meet the requirements of Gy’s theory of sampling
and geostatistics, which are each discussed in subsequent sections of this chaprter.
The extractable mass or volume (field sample) cannot be dictated by the size of the
sampling tool or the size of the official container. It should be determined by the
heterogeneity of the media in accord with Gy’s theory. Differing amounts of media
of interest, because they are ambiguously called “sample”, should be identified by
size and use. The analysis sample (i.e., aliquot or split), used in its entirety by the
chemist for analysis, has a mass less than that of the preparation sample, which has
a mass less than or equal to that of the field sample. Each change of scale or reduc-
tion of sample mass must pass Gy’s requirements (see the subsection Analytical
Error). The name of the sample is unimportant, but the change of mass is impor-
tant. Any change in volume (mass) must be checked using a monogram made up for
the current site. Extraction(s) for the field sample from the in situ sample support
(i.e., sampling unit) must satisfy both Gy’s theory requirements and geostatistical
requirements.

Dealing with Correlation in Practice

In theory, the difference between an independent random variable and a random
variable correlated in time or space is clear, but this difference is not so clear in prac-
tice. In practice, most environmental samples are correlated in either time or space,
and possibly in both time and space, yet a random sampling or analysis is done.
Even the analyses of the samples in the queue of a mass spectrometer (MS) are cor-
related somewhat in tdme, but this correlation is weak enough and the QA samples
are spaced far enough apart that the correlation can be ignored. Correlation in space
or time can be taken into account by slightly more complicated formulas in random
variable statistics; Gilbert (5) gives relevant sediment and groundwater examples of
how correlated sample units require more samples to be taken (larger n) than if the
observations were independent. The critical criterion for using a spatial sampling
and data analysis is the management decision or need to see a contour (isopleth)
map of the pollutant location as well as concentration (these are kriging results) in
place of a list or histogram of chemical analyses with a confidence interval about an
estimate of some mean (random variable output).

Pierre Gy’s Sampling Theory

Pierre Gy is a mining engineer and Francis Pitard is a chemist. Both men have had
brilliant careers in process and mining quality control. Pitard has written a two-
volume work (2) that captures and communicates their experiences in the sampling
of heterogeneous media. These volumes are valuable for environmental sampling of
soils or sediments. Pitard organizes the taking of “correct” samples with correct sam-
pling tools, according to seven “errors”. The emphasis on correct samples and tools
is analogous to the emphasis from the U.S. Environmental Protection Agency (EPA)
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on representative samples. Because of the potential of one, some, or all seven of
these errors to erode the correctness or the representativeness of an environmental
sample, this chapter will refer to them as “variances” to stress their additivity for a
component-of-variance model. “Variance” emphasizes the intrinsic nature of these
errors or biases in heterogeneous material sampling, in contrast to the negative con-
notations of these terms in the vernacular (“error” as a careless mistake; “bias” as an
intentional dishonesty). Variance, error, and bias are technical terms that describe dif-
fering problems with different solutions. An “error variance” is often thought of as
symmetric with a mean (expectation) of zero and as reducible by taking more sam-
ples; a “bias variance” is one-sided (e.g., always too high or too low) and is reducible
not by taking more samples but only through a correct sampling design. The sym-
metry or one-sidedness must be carefully thought out and often field-tested for all
potential variance in any sampling design and QA plan.

This theory sounds like any QA plan talking about errors, but it refers to a dif-
ferent type of error and needs to be discussed in its own part of the QA plan. Specif-
ically, it deals with intrasample error {errors within the sample) rather than inter-
sample error (errors berween samples). The various components of variance of this
sampling theory sound trivially obvious when pointed out, but they are easily over-
looked in the stress of formulating a QA or sampling plan. Leaving them out can be
disastrous for QA and data quality objectives. Even though these sources of varia-
tion sometimes are obvious and trivial, they must be taken into account in every
environmental sampling plan.

The Fundamental Error

This component of variance is a natural property of heterogeneous material. It is not
an error in the sense of an avoidable mistake; however, if the sample planner does
not take it into consideration it will generate unnecessary (avoidable) variance in the
laboratory analyses. The variance is caused by the range of particle sizes in the
medium and the fact that often only certain sized particles contain the pollutant of
interest. This situation is illustrated in Figure 1; the shaded or lined particles are
assumed to contain or carry the pollutant, and the other particles are the heteroge-
neous medium. Thus the chemical analysis depends on two values: the number of
solid particles (percentage composition), and their concentration. This dependence
adds another variance term or component of variance (percentage composition) to
the analytic variance. The magnitude of this error is small in a fine or homogeneous
soil or sediment but becomes larger as the medium becomes more heterogeneous in
particle size and particle affinity for the pollutant of interest. This fundamental com-
ponent of variance can be reduced by increasing the mass of the sample or by reduc-
ing the particle size of the sampling material by appropriate digestion.

To maintain the original level of accuracy, the sample material must always be
reduced in maximum particle size before being reduced in mass or volume (split or
aliquot). The mass of a sample required for a given relative variance [relative stan-
dard deviation (RSD) squared] can be read from Pitard’s nomograms as a functon of
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Figure 1. Heterogeneous material: fundamental error. (Reproduced with permission from reference 2,
Vol 1. Copyright 1989 CRC Press.)

various physical properties, the most important one being maximum particle size of
the medium (6). This relationship will be directly applicable to waste monitoring if
the pollutants of interest are heavy metals, but the application to volatile chemicals
or semivolatile chemicals remains to be developed. The EPA has a very readable doc-
ument on this subject that presents an example nomogram for soil properties (7).
The extension of Gy’s theory to volatile chemicals and semivolatile chemicals is a
very important but as yet undeveloped part of environmental sampling.

Grouping and Segregation Ervor

There is potential for this variance in any heterogeneous media. The grouping and
segregation error develops through movement of samples through processing, han-
dling, shipping, or mixing. The heterogeneity may be in density or size (also adhe-
sion, cohesion, magnetism, affinity for moisture, and angle of repose of crystalline
structure) so that the particles come together by groups during any movement or
vibration. Figure 2 illustrates this type of error for the pile at the end of a conveyer
~ bele. If the black particles contain the pollutant of interest, then a sample from the
right side of the pile will be biased high and a sample from the left side will be
biased low. In taking a sample of a waste stream or pile, the potential variance can be
minimized by sampling along the gradient of grouping and segregation. For soil,
gravel, or sediment being carried on a conveyor belt, the gradient of grouping and
segregation would be across the belt orthogonal to the direction of motion, and thus
a correct sample would be a rectangular (not a trapezoidal) section oriented across
the belt. Sampling a pile, a truck, or a railroad car of waste in a correct manner is
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Figure 2. Grouping and segregation error. (Reproduced with permission from reference 2, Vol. 1.
Copyright 1989 CRC Press.)

very difficult because of this component of variance. The correct time to sample is
before the pile is built or the truck or railroad car is loaded. In sample preparation,
Pitard suggests that the pouring of the well-mixed material from the V-blender, espe-
cially if the particulate material is allowed free fall of any distance, can undo (defear)
the blending (8). Aliquoting increases this error. The general rule is that as aliquot size
decreases, the variance increases. Theoretically, as the size of the aliquot approaches
the size of the grains of the sample, this error grows larger without bounds. The corol-
lary to this theorem is the fact that the chemist, aliquoting to get the relatively small
amount of material (analytical sample) actually required for the analysis, can tum the
analytic equipment into a random number generator if the sample material has not
been ground to the required fineness and aliquoted correctly.

Spatial and Periodic Errors

These error sources could be periodic and/or spatial structures on the scale of the
extracted sample or the sample support (the in situ area or volume represented by
the sample). If they were of a larger scale they would be studied by a time series
analysis or a geostatistical analysis, but they are not of interest, and the decision sta-
tistic is the mean of the unit and not the means of the subunits. In the preceding
discussion of classical statistics, the 55-gallon drum was assigned to a classical sta-
tistical analysis instead of a geostatistical analysis, even though there may have been
a structure in concentration in the vertical dimension of the drum. No one wants a
contour map of the concentration of pollutant inside of a drum because the drum
will be remediated (disposed of) as a unit. However, this gradient cannot be ignored;
instead it must be representatively sampled by sampling each layer proportional to
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its volume. This sampling is accomplished by the choice of sampling tools. To min-
imize the microspatial variance, a “composite liquid waste sampler” (COLIWASA)
must be used. The name of the sampling tool tells an important principle. Com-
positing is an important tool in random variable statistics to save chemical analysis
costs, but in spatial statistics it is used to ensure that the sample is representative of
the in situ sample support. Subsample compositing is physically doing the same
thing that statistical averaging does to the numerical values of replicate samples,
except compositing loses the information about the variance or standard deviation,
with the benefit of saving the cost of (n — 1) chemical analyses. These are two quite
different and important uses of compositing.

Increment Delimitation and Extraction Errors

These two variances arise from the interaction of a sampling tool with the hetero-
geneity of the media sampled. The circles in Figures 3 and 4 can represent the cut-
ting edge of a plugging or coring device descending on the media to take a soil or
sediment plug or core. In Figure 3, taking the shaded area of the larger particles
would be the correct sample, but if the larger particles are hard compared to the
softer interstitial material, the tool will not cut through the harder particles to give
the desired correct sample. Rather, the large hard particles will be pushed out of the
sample if their centers of gravity lie outside the corer, as illustrated by the white par-

Figure 3. Increment delimitation error. (Reproduced with permission from reference 2, Vol. 2.
: Copyright 1989 CRC Press.)
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Figure 4. Increment extraction ervor. (Reproduced with permission from reference 2, Vol. 2.
Copyright 1989 CRC Press.)

ticles in Figure 4. If their centers of gravity fall within the corer as illustrated by the
shaded particles in Figure 4, then the particles in their entirety will be included in
the sample. Either case is incorrect, but the two cases tend to average out. It is
important to distinguish these two concepts: (1) the delimitation ervor is the varia-
tion caused by the inability to cut through all the heterogeneous media and take the
part included in the circle of the coring or plugging device, and (2) the extraction
ervor is the variation caused by taking or pushing out of the way the whole hard par-
ticle as a function of whether its center of gravity falls in or out of the circle of the
corer or plugger If the cylinder could be cut out exactly by a laser and then taken
out intact by levitation as in science fiction, these two errors could be avoided.
Today's solution to these problems is to have a corer or plugger that is at least two or
three times the diameter of the largest particle size.

Analytical Error

The EPA and the American Chemical Society have published many excellent papers,
proceedings, and books on this interdisciplinary subject. Therefore, to avoid dupli-
cation, we wish to speak only to the chemist’s method of abstracting a much smaller
sample (analytical sample) from the prepared sample. This step, because of the
smallness of the mass of the analytical sample compared to the mass of the sample
from which it comes, is the sample most apt to incur an unacceptable magnitude of
Gy's fundamental error. If the analytical sample is taken by sticking a spatula ran-
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domly into the top of the material in the bottle and taking out the desired amount,
such a sample is a grab sample and not an aliquot or split; the chemical analysis is
very apt to give a value that is incorrect for Gy's theory and unrepresentative for reg-
ulatory use.

For an example of the grinding and splitting or aliquoting needed to acquire a
correct and representative analytical sample, the critical path (A>B—C—D—E)
should be traced through Figure 5, a nomogram adapted from references 2 (Vol. 1)
and 7. (Grinding cannot be done, however, for volatile and semivolatile pollutants or
to the media for a leach test.) First the nomogram must be made for the specific site
(e.g., particle sizes and particle characteristics). The horizontal or x-axis is the sam-
ple weight in grams, and the vertical or y-axis is the RSD of the fundamental error;
both axes are in log scale. In the center of the nomogram is a family of linear graphs
that introduces the third variable, maximum particle size. Each particle size has its
own line, and each line represents one and only one particle size.

The two ways to reduce the y-axis intercept, the RSD of the fundamental error,
are: (1) to take a line with smaller particle size from the family of graphs, or (2) to
take a larger weight of sample on the x-axis. First, in the family of linear graphs, the
top line of the family represents the largest particle size, namely 75 mm, and inter-
cepts the largest RSD on the y-axis. The next lower line is 25.4 mm, and so on down
to the line with the lowest RSD, which is for a particle size of 0.2 mm. The 0.2-mm
line is probably representative of QA internal standards, in contrast with Super-
fund’s definition of soil as <2 mm and the definition from the Resource Conserva-
tion and Recovery Act (RCRA) of soil as <9 mm. These disparities in sizes might
explain some of the bench chemist’s problems with increasing variance or RSD (e.g.,
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Figure 5. Maximum particle size: preparation error. (Adapted from reference 2, Vol. 1, and
reference 7.)
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square root of relative variance) as samples come from QA internal standards, Super-
fund samples, and RCRA samples. Second, each graph has a negative slope, which
shows that as the mass of sample on the horizontal axis for a given particle size
increases, the relative variance intercepted on the y-axis decreases. The horizontal
line labeled 15% RSD represents the target accuracy or maximum acceptable RSD. 1f
the maximum particle size of the material of interest is measured empirically to be
75 mm, and the pollutant of interest is one that can be pulverized or grown without
loss, such as a heavy metal (Pb), then from the intersection of the horizontal line of
maximum RSD = 15% and the downward sloping line of particle size 75 mm, the
necessary minimum sample weight can be read on the horizontal or x-axis as 100 g.
Thus the field technician or scientist must take a sample or composite subsamples
so that a field sample of 100 g or more is obtained.

If the chemist is going to take an aliquot of 1 g for the analysis (analytical sam-
ple), then the preparation procedure must follow a path such as A-»B-»C—D—E
in Figure 5. To maintain the accuracy of the 100 g of field sample whose maximum
particle size is 75 mm, the digestion process must first grind and then split. Grind-
ing reduces particle size and splitting reduces the mass of the sample. Grinding is
going down on the nomogram from A to B representing pulverizing from a maxi-
mum particle size of 75 mm to a particle size of 25.4 mm, and aliquoting or splitting
is moving to the left along the 25.4-mm line on the nomogram from B to C, repre-
senting aliquoting or splitting the sample of 100 g to a sample of 10 g. The new crit-
ical mass due to the particle reduction or the location of C on the new smaller parti-
cle line is the last integer weight tick line that intersects the new particle line just
below the 15% relative error line. The amount of information in the 100 g of mate-
rial of maximum particle size 25.4 mm at B appears to have an order of magnitude
(axes in log scale) decrease in RSD. This apparent decrease is not true, because vari-
ance of an extracted sample is not reduced by grinding, or information is not created
by digestion, but it does mean that now we can split the sample mass down to the
new critical mass (10 g) on the current line (25.4-mm line) and still have the origi-
nal RSD of the 100-g sample, namely 15%. A nomogram path has no lower RSD
than its highest point (in this example, point A). Again, more digestion moves the
sample from C on the 25.4-mm line to D on the 6.35-mm line. No information is
created by grinding, but now the information in 100 g of 75-mm particles, namely
15% RSD, can be carried by a new critical mass of only 1 g as splitting or aliquoting
moves us along the 6.35-mm line to E,

The process makes sense if the would-be user remembers that grinding reduces
the critical mass needed to carry the same RSD and that the aliquoting or splitting
removes only the unneeded mass. One might well ask, “Why the broken path?
Wouldn't it be easier to grind all the way in one step and then split?” Yes, it would
be simpler, but it would require the grinding of a larger mass of sample; the stepwise
path minimizes the mass of material digested. In the interest of minimizing grinding
or preparation, Pitard suggests sieving the material so the part less than the new
maximum particle size falls through, and then grinding only the part that did not fall
through, remembering to recombine the two.
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This process sounds a little complicated because it is complicated, but with
particle size analyses of the media of interest and with statistically guided prepara-
tion (pulverizing and splitting or aliquoting), a correct and representative analytical
sample can be prepared for the chemical analysis.

Spatial Variable Statistics

The old adage that a chain is as strong as its weakest link implies that the prudent
blacksmith will strengthen the weakest link and try to make all links equally strong.
The application to environmental sampling is that error variances are a chain: the
analytical variance, the sampling and handling variance, and the field variance are
links. The goal of quality improvement is to make the sum of the variances as small
as possible, and the cost-effective way to minimize this sum is to spend more
resources on the variance link that is improved most cheaply. Because of diminish-
ing returns in variance reduction, the optimal variance to reduce is often the biggest
one. The field sampling variance is often the appropriate link or variance to reduce.
Variance reduction is most obviously accomplished by taking more samples, but if
sampling or analytic costs are high, increasing samples may be too expensive. In
many cases, the field sampling variance is economically reduced by going from a
random to a spatial variable sampling design.

The term geostatistics was coined by Matheron (9} to describe the study of
regionalized or spatially correlated variables. In the past 20 years, the geostatstical
literature has grown enormously, and many significant developments in theory and
methodology have been presented. The practice of geostatistics has also spread from
its original applications in the mining industry to such fields as soil science, forestry,
meteorology, and environmental science.

The geostatistical methods described in this chapter, namely semivariograms
and ordinary kriging, represent two of the approaches available to us, and we
selected them primarily to illustrate geostatistical concepts and their implications for
sampling programs. A discussion of the pros and cons of altermnate approaches, such
as generalized covariance and universal kriging, is beyond the scope of this chapter.
More extensive treatments of the subject can be found in references 3 and 10.

Random or Spatial Variables

Most field sampling plans are based on random variable statistics and assume that
the sample observations are independent and identically distributed (1ID). However,
field samples are usually spatially correlated. Correlation is a statistical measurement
of the intuitive physical fact that samples taken close together are more similar in
value than samples taken farther apart. Neglecting this correlation can make the sta-
tistics, tests, and sampling procedures that assume independence (1ID) inappropri-
ate (11, 12); using this correlation makes the statistics, tests, and sampling proce-
dures of spatial statistics more appropriate and powerful. A truly random variable is
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completely described by its probability distribution. Samples are used to estimate
this distribution and to estimate statistical descriptors such as mean, median, and
standard deviation. In addition, spatial variables must be described by a measure of
the correlation between each value and the values at nearby locations. Samples can
be used to estimate the spatial correlation function and are frequently used to esti-
mate localized mean values for remediation units or exposure units.

Localized mean estimates are often displayed in the form of isopleths or con-
tour maps. A practical rule for the investigator is that if a contour map is a desired or
even a plausible end product of a proposed study, geostatistical methods should be
considered.

The implications for the design of a sampling program can be significant.
Although random sampling is appropriate for random variables, Olea (13) demon-
strated that the most effective sampling pattern for local estimation of spatial vari-
ables is the regular grid. Yfantis (14) evaluated triangular, square, and hexagonal
grids. Also, geostatistical studies commonly use a multiphase approach, and the first
sampling phase is oriented primarily toward estimaring the spatial correlation (15).

Semivariograms for Quantifying Spatial Correlation

One way in which spatial correlation can be measured and displayed is by a semi-
variogram, or graph of the type shown in Figure 6. The dots are the empirical semi-
variogram representing experimental values computed from sample data; the fitted
curve is a theoretical semivariogram or an estimation of a spatial correlation function

Cq

i
I
I
|
|
|
l

Co |« Range of Correlation >

T Distance in Lags (h)-axis

Figure 6. A typical semivariogram. (Reproduced from reference 16. Copyright 1988 American
Chemical Society,)

|
|
|
|



792 PRINCIPLES OF ENVIRONMENTAL SAMPLING

assumed to be characteristic of the sampled area. The horizontal axis, called the lag
axis, is the distance between points in linear units such as meters or kilometers; the
vertical axis, called the gamma axis, is the variance of differences in pollution units
squared, such as parts per million squared. The experimental points are computed
by averaging data grouped into distance class intervals. Variance is a function of lag.
The rising nature of the points and curve follows the principle of sampling that
states the variance or difference between observations increases as the distance
between their locations increases.

Sill and Range of Correlation. Figure 6 is typical of many semivariograms of
chemical concentrations in the environment; the rise in variance has an upper
bound known as the sill. When the variance reaches the sill, sample locadons are far
enough apart to make the samples independent. The distance on the lag axis at
which the semivariogram’s curve reaches the sill is the range of corvelation. This dis-
tance is important to the sampling plan, the estimation of pollution over the area
under investigation, and the interpolation error. The range of correlation explains a
practical relationship between spatial variables and random variables; random vari-
ables are field samples that are farther apart than the range of correlation, and spatial
variables are field samples closer together than the range of correlation. This range of
correlation is important for choosing the correct analysis; if a classical random vari-
able statistic is wanted, such as the mean or variance, then one type of sampling
design that would ensure spatial independence of the samples would be any sys-
tematic random design requiring tha all samples are at least the range of correlation
apart {17). If a contour map of polluticn isopleths or interpolation variance is
wanted, then as the sampling locations get closer together, the local interpolation
error decreases. Depending on the information wanted and the spacing of the sam-
ple locations, either random or spatial variance statistical analysis can be used on
field samples.

Variance Model. In Figure 6, on the vertical axis of the fitted model the variance
has two components, Cj, and C,. The C; component of the variance is the measure
of structural variation and has the characteristic of increasing variance between sam-
ple observations as the distance between sample locations increases. The C,, com-
ponent of the variance combines random variance factors, such as sampling and
analytical error, along with any unmeasured spatial variance that may exist at dis-
tances smaller than the sampling interval; C, is constant for all lags. The relationship
of C, to the need for compositing samples and the relationship of C, to the distance
berween sample locations will be discussed in a later section.

Anisotropy and Directional Semivariograms. The variance structure, as
measured by the semivariogram, is often different in the range of correlation in dif-
ferent directions. This condition is called anisotropy and must be measured by direc-
tional semivariograms. Directional semivariograms are computed experimentally by
grouping sample pairs into directional classes, or windows, as well as into distance
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classes. The directional ranges of correlation can change the geometry of the sam-
pling grid and the orientation of the grid. Often, not enough preliminary data are
available to compute directional semivariograms, and thus the sampling design
must work with only an omnidirectional range of correlation. However, an omni-
directional range of correlation and a sampling design from it honor the variance—
covariance structure more than conventional random variable methods that con-
sider only a scalar variance.

Kriging for Surface Estimation

Kriging is a linear-weighted average interpolation technique used in geostatistics to
estimate unknown points or blocks from surrounding sample data. By assuming
that the spatial correlation function inferred from the experimental semivariogram
is representative of the points to be estimated as well as those sampled, the inter-
polation error (kriging error or kriging standard deviation) associated with any esti-
mate that is a linear-weighted average of sample values can be computed. The krig-
ing algorithm computes the set of sample weights that minimize the interpolation
error.

Kriging software usually offers both punctual and block output options. Punc-
tual kriging treats the input values as located at points and output estimates as values
at points. Block kriging estimates the output for an area or volume (called block) by
averaging multiple points estimated over that area or volume. This difference is
determined in the sampling and becomes important in the data analysis (see the
subsection Sample Support and Estimation Blocks).

Kriging has a number of characteristics of a desirable estimation method: sam-
ple weights can be adjusted for anisotropy; samples in correlated clusters can be
down-weighted; the degree of smoothing increases as the random component (C,)
of the semivariogram model increases; and, when the semivariogram model is com-
pletely random (C; = 0), the kriging estimator becomes the sample mean, as in
independent random sample statistics.

Spatial Outliers

Spatial oudiers can be found by examining a geographical plot of the data; they may
fit into a random variable histogram of all the data very well. In other words, a spa-
tial outlier is a sample value that does not agree in magnitude with the values of its
neighboring samples, especially the samples within a range of correlation. For exam-
ple, a high (polluted) value in a low (background) neighborhood might be a spatial
outlier but not a random variable outlier because the high value agrees with other
polluted values. Once these outliers are identified, their location descriptions
should be looked up in the sampling diary. If they are obviously from different
sources that do not have the same correlation structure, they should be excluded
from the semivariogram evaluation. The question of whether to include a spatial
outlier in the final local estimate of concentration must be answered on a case-by-



794 PRINCIPLES OF ENVIRONMENTAL SAMPLING

case basis. This matter involves the investigator's judgment, just as in the case of
random variables.

The following discussion exemplifies an analysis of spatial outliers. Investigat-
ing the data from a city-wide sampling campaign for Pb, exploratory data analysts
showed an empirical semivariogram with a range of correlation of at least 6 miles
and two hot spots that were one order of magnitude higher in concentration than
the rest of the data. The data set was printed out on a geographical plot that showed
the two hot spots to be in sharp contradiction to their individual local neighbor-
hoods, that is, every neighboring point and every point one neighbor out was at
least one order of magnitude lower in concentration. The geographical map that
identified the freeway system and the data showed that both points seemed very
close to the freeways. In checking the sample log book this conclusion was con-
firmed; one of the aberrant samples was taken under a freeway overpass and the
other at a freeway on-ramp. Freeway Pb is said to have a range of about 500 feet.
Thus, because the two points represented a different source of Pb and had a much
shorter range, they were excluded from the semivariogram computations. However,
what was to be done with them in the kriging and mapping? If they were included
in the kriging, they would spread their high values over circular areas of 6 miles in
radius. This representation would be grossly untrue because the outliers are known
to have a different source and a shorter range of cormrelation. The mapping would
show a large area needing remediation that, in fact, did not need remediation. Nev-
ertheless, the values had been found, and users of the map (risk assessors) needed
to know of the hot spots. The compromise was to krige and contour the Pb concen-
trations of the other samples onto a kriging map and then just print the magnitude
of such outliers at their respective locations on the map.

Spatial Soil Sampling

The growing number and complexity of toxic chemicals and hazardous waste sites
call for a new statistical technique for monitoring with more efficient sampling
designs and more precise data analysis. Geostaristics is a promising tool for these
needs. This section traces the logic sequence of geostatistical analysis and then
draws together the implications of geostatistical sampling design for soil pollution
monitoring. Geostatistical sampling design has at least two phases: (1) the survey or
. the preliminary sampling to find the extent of the plume and to estimate a semivar-
iogram, and (2) the census to take as many samples as needed to estimate the sur-
face within the desired accuracy as calculated from the semivariogram model.

Sample Support and Estimation Blocks

The basic assumption of geostatistical sampling is to define and assign area or vol-
ume to all inputs and outputs. In monitoring for environmental protection, the spa-
tial quantities to be defined and assigned are the sampling unit (area or volume), the
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remediation unit, and the exposure unit. Geostatisticians call the sampling unit the
sample support. The sampling unit or support is ambiguous: it is used to refer to
both the amount of medium extracted for the sample and the in situ area or volume
represented by the sample. The context usually identifies whether the extracted sup-
port or the in situ support is meant. The remediation unit is determined by the
method of remediation, and the exposure unit is determined by the risk assessor.
For example, an appropriate remediation block might be a volume 250 ft long, 16 ft
wide, and 0.5 ft thick, because this amount was the minimum volume to move eco-
nomically. The shape is dictated by the up and back pass of a bulldozer with an 8-ft
blade that scrapes up one truckload of contaminated soil. Sample unit, remediation
unit, and exposure unit need to be defined (18) and then incorporated by a geostat-
istician into the sampling plan.

The critical mass of a correct sample should be calculated as previously
explained (see the subsection Analytical Error). The spatial variance of the sampling
unit should be measured by taking “t00 many” equally spaced samples in several
units in an exploratory sampling trip to the site. If the sampling unit is larger in spa-
tial variance (a large spatial variance can be encountered in a small area), then the
field samples design will have to use composite samples. In spatial compositing the
geometry as well as the mass of the subsamples (samples to be composited) is
important. The general rule is that subsamples should be equally spaced on the
sampling unit. For example, if four subsamples can be afforded, then one should be
taken from each quarter of the in situ support. Each subsample for the compositing
should be a correct sample (see the subsection Analytical Error). All samples for all
analyses, even eye-balling, should have the same representativeness, which for com-
posite samples means the same number of subsamples. The composite field sample,
just like any other average, has a variance divided by the number of subsamples.
Homoscedasticity (equality of variances) is a requirement for every data analysis even
when eye-balling the data. If the quantity to be estimated (e.g., remediation or expo-
sure unit) equals the sampling unit, punctual kriging analysis may be used because
there is no change of scale or support. If the desired area or volume of estimation is
larger than the sampling unit, block kriging will have to be used.

Survey or Semivariogram Sampling

In a multiphase sampling program using spatial statistics, the primary goal in the
initial exploratory sampling is the collection of enough data to compute an empiri-
cal semivariogram and to determine the extent of the plume. These goals may con-
flict if limited resources are available. Widely spaced samples are needed to define
extent, and closely spaced samples are often needed for semivariogram analysis.
Approaches to this problem include regular grids (i.e., radial, square, or rectangu-
lar), transects, and combinations.

Burgess et al. (19) suggested transect sampling for variogram input, and this
idea led to very good variograms in agricultural applications. However, in pollution
monitoring, transects alone have given very noisy variograms. This result is probably
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due to intrinsic noise in pollution data, which is often highly skewed and contains
high coefficients of variation. A combination exploratory grid, consisting of a grid of
square sampling units having extended transects in the directions of the major axis
and minor axis of the estimated plume (20, is illustrated in Figure 7. Prior informa-
tion may be used to select the best grid orientation. For example, if the plume to be
investigated was made by aerial deposition from an identifiable source, then wind
roses can be examined for wind direction and magnitude, and topographic maps
can be examined for natural barriers. Only the relatively regular grid concept is
important in Figure 7; the orientation is site-specific.

If the extent of the plume must be found, and funds are limited, then the tran-
sect samples should be variably spaced closer together at the grid center and farther
apart at the grid extremes. The purpose of this sampling is to capture the correldtion
structure of the plume. Inhabited areas have a high occurrence of disturbed sam-
pling sites and local pollution from secondary sources, which are only stochastic
noise to the semivariogram’s calculation. Therefore, this noise should be avoided by
this sampling. For example, aerially deposited smelter Pb should not be mixed with
auto Pb by taking samples along the freeways. The samples from the semivariogram
sampling can be pooled with the secondary mapping samples if they have the same
Ssupport.

However, the semivariogram sampling often is the sampling that tests for the
need for more compositing. If the support is changed between the samplings and
we wish to pool the samples for analysis, then the change in support must be cor-
rected before pooling. The sampling team must be aware of the need to keep all
samples on the same support. When compositing, the same number and mass of
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Figure 7. An exploratory grid design. (Reproduced from reference 16. Copyright 1988 American
Chemical Society.)
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subsamples and the same spacing or geometry must be maintained. When the sam-
pled locations must move from the regular grid to avoid cultural improvements or
natural barriers, then the spatial analysis program is corrected for this movement by
the true coordinates of the new sample locations; however, no easy method is avail-
able for the program to correct for change of support. If the microvariation could be
sampled and the support established before the semivariogram sampling, then a
complex statistical problem could be avoided in the pooling of samples for the spa-
tial analysis.

Some samples should be taken close together (in the scale of the sampling
unit) to determine the need for composite samples. This sampling can be combined
with field duplicates for quality analysis and control. Gy's fundamental error and
compositing become more important as coring volumes decrease. These microvaria-
tion samples should be taken at a distance of a few multiples of the core’s diameter
apart. The distance between sample locations or grid unit’s length needs to be est-
mated from the sample unit of interest (e.g., residential yard, city block, or square
mile section) and the desired output unit (e.g., remediation unit, that is, the mini-
mum volume of surface soil to be removed). The optimum exploratory sampling
distance is a proper fraction of these measurements, but it is often determined by
money available for sampling.

Census or Sampling for Map Making

In spatial statistics, the goal of secondary sampling is to uniformly cover the area in
question with a density of samples sufficient to contour the plume with an accept-
able error of interpolation. This sample coverage is accomplished by using the direc-
tional semivariograms to determine the orientation, shape, and size of the grid cell.
Independent random variable statistics, in which the number of samples is com-
puted, differs from spatial statistics, in which orientation, shape, and size of the grid
are calculated and the number of samples is determined from the number of grid
cells needed to cover the area.

If the directional semivariograms have a marked difference in their respective
ranges of correlation, then the optimum cell geometry is not a square but a rectan-
gle with the longer side in the direction of the longer range of correlation, and the
ratio of the sides should be the ratio of the ranges of correlation. Thus the grid cell
sides are of equal correlation or kriging (interpolation) variances rather than equal
distance. This characteristic will save a lot of samples while retaining the same accu-
racy in both directions.

Boundary. For secondary sampling, the extent of the sampling grid must first be
chosen. The sampling grid must extend beyond the suspected plume or area in
question. The area in question must be bounded by sampling locations to avoid
extrapolation in the kriging estimation algorithm for contouring. Extrapolation,
which is estimating a value from data on only one side of the location of the point to
be estimated, is likely to lead to unrealistically high or low values. 1f an action level
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has been set and a part of the plume has been adequately proven to be above or
below the acting level, then that part of the plume need not be resampled. The sam-
pling may be guided more by population areas or critical receptors than by the
actual plume. The goals of the sampling must be written, and the areas of interest,
action levels, and action areas (sampling unit, remediation unit, and exposure unit)
must be defined before the optimum grid design can be made.

Compositing Samples Reduces Nugget. The next step in secondary sampling
is choosing the sample support (21). If a residential yard is the sampling unit, then
the ideal sampling process would be to take the entre yard, blend it to homogene-
ity, and remove the appropriate number of aliquots or splits to meet the volume
needed by the laboratory for analysis. However, because few residents would donate
their whole yard to science, and laboratory mixing equipment such as V-blenders or
ball mills cannot homogenize so large a volume, this sampling unit must be repre-
sented by a few symmerrically laid out subsamples composited together. The num-
ber of subsamples is a compromise between the size of the microvariance and the
amount of time and money allowed for the digestion of the subsamples. The sub-
samples are laid out symmetrically because a structural or spatial correlation may
exist.

The mixing of the subsamples to achieve homogeneity is essential for com-
positing. If the medium is water, then the task is relatively easy; for soils or sedi-
ments, the task is difficult. Aliquots or splits should be taken after the mixing to
make the final sample more representative. If a large nugget (e.g., C, > 0.3 relative
variance) persists after Gy's critical mass calculations and compositing within the
support, then the relative sizes of the field sampling and the laboratory analysis
errors must be identified. The analysis of some pollutants has an analytical error that
overwhelms the field sampling error and accounts for approximately all the semivar-
iogram nugget.

The minimum volume at each step and especially the aliquot used by the
chemical analyst in the lab must exceed the critical mass referred to in Gy’s theory
(see the section Pierre Gy’s Sampling Theory).

Grid Unit Length or Distance Between Sample Locations. The range of
correlations, the nugget (Cy), and the sampling budget determine the grid unit
length, or the distance between sample locations. This length determination was dis-
cussed in mathematical detail by Yfantis et al. (14). Figure 8 shows the graphs of
interpolation variance as a function of the ratio of grid spacing to range of correlation
for a family of semivariograms. The model variograms each have relative C; and C,
so that their sum equals 100%. The variograms differ only in the fraction of the sill
(Co + C)) represented by the nugget component (C) and the structure (C,). If the
semivariogram has a big nugget like the top graph of C;, = 10% and C,, = 90%, then
diminishing returns (the curve has less rapid vertical drop and becomes more hori-
zontal) start and increase if the sample distance is less than two-thirds of the range
of correlation. For a very low nugget, such as the lowest graph (C, = 100% and Co
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Figure 8. Diminishing information for additional samples. (Reproduced from reference 16. Copyright
1988 American Chemical Society.)

= 0%), diminishing returns do not start and increase until the sampling distance is
less than one-half of the range of correlation. The general rule is that for smaller
nuggets (C,), the distance between sampling points on the sampling grid gets
smaller. The grid should be laid out with no vertices unsampled. If this design
exceeds budget, then the whole grid size should be adjusted, not just certain ver-
tices left unsampled as in systematic random sampling,

Some real-world examples can clarify how the magnitude of the nugget (Cp
and the range of correlation determine the optimum cell size or distance between
samples. One Pb smelter had a nugget of about 40% and a range of correlation of
3200 ft. In Figure 8, the family of diminishing return curves and the graph (for C,
= 40%) indicates by observation and judgment that the point of diminishing
returns is between one-third (33.3%) and one-fourth (25%) of the range of correla-
tion, or 29% for the sake of argument. The sampling distance should not be less
than 29% x 3200 ft, or 928 ft. Expressed as a function of money, the sampling dis-
tance should be the shortest affordable distance in keeping with the toxicity of the
pollutant, but not less than 928 ft berween samples. In contrast, a second Pb
smelter had a semivariogram with a nugget of zero (0) and a range of correlation of
2400 ft. In Figure 8, the curve of diminishing returns for C,, = 0 indicates by obser-
vation and judgment that the point of diminishing returns is berween one-fourth
(25%) and one-fifth (20%) of the range of correlation, or 22.5% for the sake of argu-
ment. In this case, the sampling distance should not be less than 22.5% x 2400 ft,
or 540 ft. Expressed as a function of money, the sampling distance should be the
shortest affordable distance in keeping with the toxicity of the pollutant, but not less
than 540 ft. If the funding is adequate and the pollutants are of extreme toxicity,
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then the distance indicated by the point of diminishing returns should be used in
minimum interpolation variance. If there is less money and the pollutant is less
toxic, then a longer distance should be used for the grid cell’s side. The directional
semivariograms should orient the sampling grid.

The Pb smelters mentioned previously worked well with an east-west and
north-south grid because the plume was formed by 80 years of aerial deposition. A
third set of data, dioxin along a highway, gave a readable semivariogram in a direc-
tion of 13 degrees from east to west. This discovery took much searching because
we started with the default directions (0, 45, 90, 135 degrees) of the semivariogram
software; these default semivariograms showed no structure [pure nugget semivari-
ograms (C, = 100%)]. After we discovered the semivariogram at 13 degrees the rea-
son became obvious, because the road that was the wansport of the pollutant ran at
that angle and so should any sampling grid.

In the field, some vertices cannot be sampled because of man-made improve-
ments or natural barriers, but these vertices must be sampled as closely as possible,
and the actual coordinates should be used in the spatial analysis program.

Grid Orientation and Shape Versus Anisotropy. If the ranges of correlation
are extremely different on the directional semivariograms, then the correlation
structure is anisotropic. Optimum sampling patterns reflect this anisotropy. For
example, the sides of a rectangular grid would be in the same ratio as the ranges of
correlation for the corresponding directional semivariograms. This ratio was
explained in detail by David (22), and a sampling design for logarithmic anisotropy
was derived by Barnes (23). Anisotropy is a frequent occurrence, but often the
semivariogram sampling gathers too few samples to measure it. Thus, more sam-
ples may be used cost-effectively in the semivariogram sampling in order to save
samples in the larger census (or mapping) sampling by identifying and taking
advantage of anisotropy.

Use of the triangular grid as opposed to the rectangular grid has been dis-
cussed (13, 14). If the nugget is large (C, >> C)), little is gained by the triangular
grid. Also, the wmiangular grid makes taking advantage of anisotropy more difficult. If
a triangular grid is chosen, a theodolite, which is a surveying instrument, is not
needed in the field; instead every other row of samples must be offset by one-half of
a grid length. In practice, this action is easier than it sounds and almost as easy as
the wraditional square grid.

Beyond Anisotropy

Numerous additional geostatistical consideradons affect environmental sampling,
These considerations include spatial drift or trend, multivariate analysis, mixed or
overlapping populations, concentration-dependent variances, and specification of
confidence limits. Geostatistical techniques have been developed over the years to
deal with these various problems, but an adequate discussion is beyond the scope of
this chapter.
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“Atlas of Cancer Mortality in the United States, 1970-92" Presenter Susan Devesa, NCI

“Evaluating Disease Cluster Alarms” Presenter Martin Kulldorff, NCi

Break - Conference Area Foyer 245-300pm

TRAINING SESSION I-A - (continued) 300-445pm
SESSION 1] - Raleigh/Drake Rooms . . . 300-445pm

Representativeness in Statistics and Quality Assurance Chair John Warren, ORD

Presenters John Warren, ORD, and Maicolm J Bertoni, RTI

ROUNDTABLE DISCUSSIONS 445-6 00pm

GROUP A - Georgian/Elizabethan Rooms
Statistics & Health Facilitators Ruth Allen, NCI, and Elizabeth Margosches, OPPTS

GROUP B - Raliegh/Drake Rooms
Quality Assurance Faciluator John Warren, ORD

GROUP C - Grand Ballroom, Section B
Statistical Research Facilnators Barry Nussbaum, OPPE, and Larry Cox, ORD

GROUP D - Hilliard Room
Risk & Uncertainty Facilitator- Barnes Johnson, OSWER
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Wednesday, April 2, 1997

SESSION Il - Georgian/Elizabethan Rooms - . 845-10-15am
How Severe Is It? Charr  ElizabethMargosches, OPPTS
“Toxic Severity for a Useful and Understandable Benchmark Dose”  Presenter Linda Teuschler, ORD
“Severity Analysis Using Ridits” Presenter Mary Marion, OPPTS

SESSION 1V - Raleigh/Drake Rooms 845-1015am

Exposure Assessment  Chair John Fox, OW
“Interpreting Data from a National Survey of Protozoan in Drinking-Water Sources”
Presenter. John Fox, OW
“Relationshiups Between Dioxins in Soul, Air, Ash, and Emissions from a Municipal Solid Waste Incinerator
Emutting Large Amounts of Dioxins”
Presenter Matthew Lorber, ORD
“Statistical Modeling of Dioxin Concentration Data from Sediment Cores "
Presenter Paul Pinsky, ORD

Break - Conference Area Foyer 10 15-10 30 am

PANEL DISCUSSION - Grand Ballroom, Section B . 10 30am- 12 00 pm
EPA Cooperative Agreements Chair Barry Nussbaum, OPPE
Part:c:pais arry Cox, ORD, Peter Guttorp, University of Washi, ton G P Pati, Pennsyflgvama State LUrg\;.ersny {: ) 3 4 J'( e
Q ! 4 A %&gﬁ ks !
Uww O W O\Sh' r\;ﬁ‘tm Lunch Brea " 32165 00-115 p;l it
ny y et Savie

TRAINING SESSION 1-B - Georgian/Elizabethan Rooms 115-445pm

EnvrionmentaiStars for S-PLUS: Software for Environmental Statistics

Presenters: Steven Millard, PSI, and Nagara; Neerchal, Unwersity of Maryland Baltimore Campus

TRAINING SESSION 2 - Raleigh/Drake Rooms . . . 115-330pm

Spatial Statistics Sampling Chair George Flatman, EPA, Las Vegas

"Spatial Sample Design” Presenter Evan Englund, EPA, Las Vegas

“Skewed Frequency Distributions” Presenter. George Flatman, EPA, Las Vegas

Break - Conference Area Foyer 2.15-2 30 pm

TRAINING SESSION 1-B (continued) 230-445pm
TRAINING SESSION 2 - (continued) 230-330pm
SESSION V - Raleigh/Drake Rooms . 330-445pm

Applications of Statistical Calibration Techniques in Analyzing Environmental Data
Charr Bimal Sinha, University of Maryland Baltimore Campus (UMBC)
“Confidence Regions and Tests in a Calibration Problem™
Presenter Thomas Mathew, UMBC

MIN]I SESSION A - Hilliard Room . 445-530pm
Water Quality & Fishy Statistics Chair/Presenter Henry Kahn, OW
“Recent Developments in the Estimation of US Fish Consumption™

MINI SESSION B - Georgian/Elizabethan Rooms 445-545pm
Statistics and the Internet Chair/Presenter Chapman Gleason, OPPE
“Using the Web and other Networking Technologies in Support SAS for the Enterprise”
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Wednesday, April 2, 1997 (continued)

RECEPTION & POSTER PRESENTATIONS - Capitol Room . 530-645pm

Pesticide Residue Monitoring Data
Presenter Edward Brandt, EAB, OPP, OPPTS

A Master Sampling Frame for the Collection of Non-Agricultural Pesticide Usage Data
Presenter: Alan R. Goozner, EAB, OPF, OPPTS

The National Air Quality and Emissions Trends Report, 1995
Presenter- David Mintz, OAR

Thursday, April 3, 1997

SESSION VI - Grand Ballroom, SectionB . . . .. . 845-1015am
Statistics of Measurement in Analytical Cllemlstry
Chair Henry Kahn, OW
“A Two Component Model for Error in Analytical Chemistry and Issues of Detection and
Quantification™
Presenter. David M Rocke, Director, Center for Statistics in Science and Technology,
University of California, Davis
“Estimation of Precision of Low Concentration Chemical Analytical Measurements and
Establishment of Detection and Quantification Limits”
Presenters: Henry Kahn, OW, Kathleen Stralka and Raphael Kuznetsovski, SAIC

Break -Conference Area Foyer .. 10 15-10 45 am
CLOSING SESSION - Grand Ballroom, Section B .. 10 45-12 30 pm
Featured Speaker. Daniel B. Carr, School of Information Teclmology and Engineering, George Mason

University
“Staustical Graphics for Environmental Applications Developments and Challenges ™

Bus to EPA Headquarters leaves at 1:30 pm
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TRAINING SESSION 1-A & B: EnvironmentalStats for S-PLUS:
Software for Environmental Statistics
(1-A) Tuesday, April 1, and (1B) Wednesday, April 2, 1:15 - 4:45 pm

Title: EnvironmentalStats for S-PLUS: Software for Environmental Statistics
Author: Steven P. Millard, Ph.D., Probability Statistics & Information (PSI)

Presenters:  Steven Millard, PSI, and Nagaraj Neerchal, Department of Mathematics and
Statistics, University of Maryland Baltimore Campus

Abstract

S-PLUS is a premier statistics and graphics software package that is rapidly being adopted by
practitioners in fields ranging from pharmaceuticals to finance. ENVIRONMENTAL STATS for S-
PLUS is a new S-PLUS module designed specifically for environmental statistics. Developed over the
past three years, it covers all the major statistical methods found in the environmental monitoring
literature and includes an extensively detailed hypertext help system to guide you through the
background and application of each method. This training course will cover basic ideas in sampling
design and statistical methods for environmental monitoring and risk assessment, including methods of
random sampling, probability distributions, hypothesis tests and confidence intervals, prediction and
tolerance intervals, and methods for dealing with Type I left-censored ("'below-detection-limit") data.
Concepts will be illustrated with data sets taken from current regulatory guidance documents.



SESSION I - Cancer Statistics, Epidemiology and Genetics
Tuesday, April 1, 1:15 - 2:45 pm

Title: Atlas of Cancer Mortality in the United States, 1970-92

Authors: Susan S. Devesa, Ph.D., Dan J. Grauman, M.A., William J. Blot, Ph.D.*, Robert
N. Hoover, M.D., and Joseph F. Fraumeni, Jr., M.D., Epidemiology and
Biostatistics Program, Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Bethesda, MD 20892

*Currently with the International Epidemiology Institute, Ltd., Rockville, MD 20850

Presenter: Susan Devesa, NCI

Abstract

The study of geographic variation in cancer rates may provide clues to the role of environmental or
lifestyle factors that may affect cancer risk. The maps themselves cannot provide information about the
causes of cancer or its clustering, but they can raise hypotheses about potential causative influences.
Earlier atlases showed substantial geographic variations in cancer mortality rates among whites and
nonwhites in the United States and stimulated subsequent studies which identified relevant exposures
and risk factors. For some cancers mortality rates have not changed greatly over time, whereas
substantial increase or decreases have been observed for other cancers. This atlas updates the maps
through 1992, presenting for the first time, data specifically for blacks. During the 23-year study period
1970-92, more than 8.5 million whites and 1.0 million blacks died due to cancer. The national annual
age-adjusted mortality rate per 100,000 person-years for all cancers combined ranged from 135 among
white females to 292 among black males. A total of 40 cancers (including all forms combined) were
considered. Some examples of maps from the new atlas will be presented. The patterns of cancer in the
United States, some of which have changed over time, may provide additional leads for the evaluation of
the determinants of cancer among American men and women.

JNEL, Jan 1995 Hreads



SESSION I: Cancer Statistics, Epidemiology and Genetics
Tuesday, April 1, 1:15 - 2:45 pm

Title: Evaluating Disease Cluster Alarms

Author/Presenter:  Martin Kulldorff, Epidemiology and Biostatistics Program, National
Cancer Institute

Abstract

During the last few decades, there have been a considerable number of geographical disease cluster
alarms in different parts of the United States. Many are given considerable media attention, and, for
natural reasons, there is a considerable amount of worry in the local communities affected. As regards
the cause of the clusters, the environment is often a prime suspect.

Before moving into a full-scale epidemiological and environmental investigation, though, it makes sense
to find out whether the observed number of cases actually represents a statistically significant excess or
not. We cannot simply compare the disease rate inside and outside of the cluster area, since we then
have a problem of pre-selection bias. In this talk we will review and illustrate a couple of mutually
complimentary methods that can be used to work around that bias, one of which is the spatial scan
statistic. A number of applications will be given.
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SESSION II - Representativeness in Statistics and Quality Assurance
Tuesday, April 1, 3:00 -4:45 pm

Title: Representativeness in Statistics and Quality Assurance
Author: John Warren, Quality Assurance Division, Office of Research and Development
(ORD)

Presenters:  John Warren, ORD, and Malcolm J. Bertoni, Research Triangle Institute (RTI)

rac'

The concept of “representativeness” is quite clear to a statistician, especially in the context of survey
sampling with respect to a well-defined frame. The concept is considerably less clear when the context
is environmental sampling because the homogeneity of sampled media and physical environment from
which the sample is drawn must be considered.

The session will explore the differing concepts of “representativeness” as used (and possibly abused) by
the environmental community, include a discussion of Gy's theory of sampling as a possible solution,
and finally engage the attendees in a free and frank discussion of further aspects of the concept.



SESSION III - How Severe Is It?
Wednesday, April 2, 8:45 - 10:15 am

Title: Toxic Severity for a Useful and Understandable Benchmark Dose

Authors: Linda Teuschler and Richard C. Hertzberg, Ecological Exposure Research
Division, Office of Research and Development, Cincinnati, OH

Presenter: Linda Teuschler, ORD

Abstract

Regression on ordered categories of toxic severity is recommended in order to address two criticisms of
EPA’s risk assessment procedures for noncancer effects. The first criticism is that presenting risk only
as probability does not consider the impact of the event. Second, the goal of the benchmark dose is
vaguely defined, in part because it focuses on one effect from one study. By including all reported
effects into the regression procedure and tracking the toxic severity, one ends up with a benchmark dose
that closely follows the definition of the Reference Dose. In addition, by keeping distinct the effects of
different severity, categorical regression allows for a definition of a benchmark dose that satisfies both a
low specified risk of minor effects and an even lower specified risk of major effects.



SESSION III - How Severe Is It?
Wednesday, April 2, 8:45 - 10:15 am
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Title: Severity Analysis Using Ridits

Author/Presenter: Mary Marion, Health Effects Division, Office of Prevention, Pesticides,
and Toxic Substances

Abstract

The United States Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic
Substances, Office of Pesticide Programs has been given the task of reviewing chemical registrant data
and analyses, some of which use the statistical technique of ridits. The technique of ridit analysis used in
severity analysis was studied for its feasibility for use at the Agency.

Two toxicological data sets chosen were that of one study evaluating the severity of
glomerulonephropathy in male rat kidneys with dose increments of the chemical being reviewed and
another of mononuclear cell leukemia, also in male rats.

The mathematical theory behind this technique will be presented. This is a continuation of a paper
presented in 1995 at the poster session of the SUGI 21 Conference held in Chicago, Illinois.



SESSION IV - Exposure Assessment
Wednesday, April 2, 8:45 - 10:15 am

Title: Interpreting Data from a National Survey of Protozoan Pathogens in
Drinking-water Sources

Author/Presenter: John F. Fox, Engineering and Analysis Division, Office of Water

Abstract

In 1997-98, EPA and participating water treatment systems will conduct a nationwide sampling program
to assess protozoa (Giardia and Cryptosporidium) in drinking-water sources (untreated, raw water) and,
at a smaller number of systems, in the treated drinking water. Several hundred participating treatment
plants will each submit one sample per month for 12-18 months. The chief objective of the protozoan
sampling program is to characterize the nationwide distribution of protozoan concentrations in source
water, with the treatment plant as the unit of sampling, in particular the distribution of plant mean,
median, and 90th percentile concentrations. A related problem is to characterize the variability and
distribution over time of concentrations at one plant. This presentation will discuss opportunities and
challenges in developing appropriate point and interval estimates from these data to achieve national-
level characterizations of protozoan concentrations in raw and treated water. About one year remains
before interim analysis of data. We welcome suggestions regarding data analysis and interpretation!



SESSION IV - Exposure Assessment
Wednesday, April 2, 8:45 - 10:15 am

Title: Relationships Between Dioxins in Soil, Air, Ash, and Emissions from a Municipal
Solid Waste Incinerator Emitting Large Amounts of Dioxins

Author: Matthew Lorber, National Center for Environmental Assessment (NCEA), Office
of Research and Development (ORD)

Presenters:  Matthew Lorber and Paul Pinsky, NCEA, ORD

Abstract

Environmental measurements including air concentrations and soil concentrations of dioxins were taken
in the vicinity of a municipal solid waste incinerator emitting large amounts of dioxins. Also available
were two separate stack tests measuring concentrations and amounts of dioxins being emitted, and
concentrations in combuster ash. An “incinerator signature,” defined as the profile of the 17 toxic dioxin
and furan congeners where each is described in proportion to total dioxins, was found in the ash and in
subsets of the other two matrices. The profiles in all media were also examined using principal
component analysis to determine what features best distinguished the profiles in each media. This study
also investigated the relationship of dioxin soil concentration as a function of distance from the
incinerator, and determined an urban background soil concentration, further from the incinerator, as
compared to elevated soi! concentrations near the incinerator. A background urban air concentration was
determined and compared to measurements of elevated air concentrations, which also had the signature
profile.



SESSION IV - Exposure Assessment
Wednesday, April 2, 8:45 - 10:15 am

Title: Statistical Modeling of Dioxin Concentration Data from Sediment Cores

Authors: Paul F. Pinsky and David Cleverly, National Center for Environmental
Assessment, Office of Research and Development (ORD)

Presenter: Paul Pinsky, ORD

Abstract

Evidence from several sources suggests that emissions of dioxins into the environment began to stabilize
in the 60's or 70's and have been declining since the 70's or 80's. One of the most important of these
sources is the historical record from sediment cores in U.S. lakes. Recently, a joint EPA and DOE study
measured levels of dioxins and coplanar PCB's in the sediment core of 11 U.S. lakes. Samples from
different sediment layers were dated, effectively transforming the data from each lake from a spatial
series to a time series. The resulting data base consists of a large number of time series (11 lakes times
30 concentrations of related chemicals) with each time series being relatively short (5 to 11 time points).
In this session, we will describe a modeling strategy for these data and interpret the modeling results
with the aim of summarizing overall trends as well as identifying any trends specific to certain lakes or
chemicals.



PANEL DISCUSSION
Wednesday, April 2, 10:30 am - Noon

Title: EPA Cooperative Agreements
Author/Chair: Barry Nussbaum, Office of Policy, Planning and Evaluation

Participants: Larry Cox, Office of Research and Development, Peter Guttorp, University of
Washington, and G.P. Patil, Penn State University

racl

This panel discussion will feature investigators from two of the major cooperative agreements on
environmental statistics. The panel will discuss the use of cooperative agreements such as these to
encourage statistical research on theoretical and applied environmental topics. There will be general
comments by EPA on how to get tasks funded and work initiated. Then professors from two of the
universities with such agreements will discuss their side of the equation: how they operate under the
agreement and what they do. Included will be the vision for future work and applications. The panel
will also have time for a hopefully lively question and answer period.



TRAINING SESSION 2 - Spatial Statistics Sampling
Wednesday, April 2, 1:15 - 3:30 pm

Title: Spatial Sample Design

Author/Presenter: Evan Englund, National Exposure Research Laboratory, Office of
Research and Development, Las Vegas

Abstract

Spatial samples, in addition to having number, referred to by classical statisticians as sample size, also
have sample support or sample volume or mass. QUAMS, thanks to Dean Neptune, represents this
concept by sample unit, remediation unit, and exposure unit. The support, since it cannot be analyzed
chemically in total, must be represented by a composite sample in which the subsamples survey the in
situ sample unit. The definitions and methods of obtaining spatial representativeness will be presented
verbally (many “real world” examples and few equations). The relationships of support size and change
of support to spatial variance and regularization of semivariograms for correct varicography will be
explained. The methodological “rules of thumb” for spatial sample design will be enumerated, clarified,
and organized.



TRAINING SESSION 2 - Spatial Statistics Sampling
Wednesday, April 2, 1:15 - 3:30 pm

Title: Skewed Frequency Distributions

Author/Presenter: George Flatman, National Exposure Research Laboratory, Office of
Research and Development, Las Vegas

Abstract

The frequency distribution of both random variables and spatial variables has the ubiquitous problem of
skewness for data interpreters and decision makers. Presenting the mean of a skewed distribution is
disinformation to all data interpreters or managers (RPM or OSC) if they assume normality. The
appropriate model for skewed frequency distributions may be a mixture (plume mixed with background)
model rather than one lognormal model. When does a simplifying model become an over simplification?
The mixture model does a better job at explaining most waste sites. Methods of separation, such as QQ-
plots and robust methods, will be discussed. The various methods of evaluating a lognormal mean will
be evaluated and illustrated by real world data and by virtual (simulated) data. The number of questions
will exceed the number of answers.



SESSION V - Applications of Statistical Calibration
Techniques in Analyzing Environmental Data
Wednesday, April 2, 3:30 - 4:45 pm

Title: Confidence Regions and Tests in a Calibration Problem

Author/Presenter: Thomas Mathew, Department of Mathematics and Statistics, University of
Maryland Baltimore County

Abstract

Consider a univariate normally distributed response variable related to a univariate explanatory variable
through the usual linear regression model. Suppose independent observations are available on the
response variable corresponding to known values of the explanatory variable. Now consider another
observation on the response variable, corresponding to an unknown value of the explanatory variable.
The problem of calibration or inverse regression deals with statistical inference on this unknown
parameter. The data on the response variable, corresponding to known values of the explanatory variable
is referred to as calibration data. We will address the problem of constructing confidence regions and
hypotheses tests for the unknown value of the explanatory variable. Two types of problems will be
studied: the calibration data is used to construct confidence regions and to test for a single unknown
value of the explanatory variable, or for a sequence of unknown values of the explanatory variable. The
computational aspects and the practical implementation of our procedures will be illustrated in detail by
applying them to some chemical and environmental data.



MINI SESSION A - Water Quality and Fishy Statistics
Wednesday, April 2, 4:45 - 5:30 pm

Title: Recent Developments in the Estimation of U.S. Fish Consumption

Authors: Henry D. Kahn and Helen Jacobs, Environmental Analysis Division, Office of Water,
Kathleen Stralka, Science Applications International Corporation

Presenter: Henry Kahn, OW

Abstract

Estimates of U.S. per capita fish consumption play a key role in a number of Environmental Protection
Agency program decisions. In particular, exposure estimates used in determining water quality criteria
and related standards are based, in part, on estimates of the amount of fish consumed and contamination
levels in the fish. This presentation will report on estimates of fish consumption based on recent work
with the USDA’s combined 1989, 1990, and 1991 Continuing Survey of Food Intake by Individuals
(CSFII). These estimates reflect adjustments based on USDA's Recipe file which provides the amount of
fish in combination foods and changes in the habitat designations (freshwater/estuarine and marine) for
certain species of fish.



MINI SESSION B - Statistics and the Internet
Wednesday, April 2, 4:45 - 5:45 pm

Title: Using the Web and Other Networking Technologies in Supporting SAS for the
Enterprise
Authors: Chapman Gleason, Center for Environmental Statistics, Office of Policy, Planning

and Evaluation, and John Shirey, Enterprise Technology Services Division, Office
of Administration and Resource Management

Presenter: Chapman Gleason, CES, OPPE

Abstract

The Environmental Protection Agency (EPA) has just begun an Enterprise Computing Offer (ECO) with
SAS Institute. The EPA SAS ECO provides 21 SAS products (base, AF, Assist, ETS, Connect, FSP,
Graph, Share, Tutor, Stat, IML, Insight, Lab, Access for Oracle, Access for ODBC, CPE, GIS, QC,
Toolkit) on several desktop operating systems (Windows, Windows 95, Windows NT, MacOS, SunOS,
Digital Unix, OSF1, HP/UX, DG/UX) in EPA. This product mix will allow SAS users to design and
develop client/server SAS applications and provide EPA scientists and policy analysts with better
desktop scientific, data management, and statistical software. This session describes EPA’s
implementation strategy to support SAS across a heterogeneous LAN/WAN computing environment
consisting of more than 300 Novell servers and LANs running IPX protocol, Windows PCs on Novell
LANSs running TCP/IP and IPX protocols, Unix workstations and servers (running TCP/IP protocol), and
an IBM mainframe housed at the National Computer Center located in Research Triangle Park, North
Carolina. All the computers are accessible via SAS from the Desktop using TCP/IP protocol. The
session will include discussion of how EPA:

1) Prepared custom installation instructions for SAS on EPA’s Novell LANs which run Networked
MS Windows.

2) Pkziped the SAS Windows Installation CD-ROM and set up an FTP Server for SAS to distribute
SAS to users on Novell’s LANS.

3) Designed and implemented a Lotus Notes Mail-In Data Base and billing strategy to keep track of
the user population.

4) Implemented a SAS Listserver, called EPASAS-L, to allow users to share SAS technical
problems and solutions.

5) Designed an Internal SAS Web using a Lotus Notes InterNotes server and Data Base which
replicates and publishes to the Web each hour. This Lotus Notes Data Base is replicated to each
EPA Region allowing SAS users at remote sites to document their implementation of SAS
products, SAS applications, and SAS code and share it with other EPA SAS users.

6) Implemented a mail user-ID for the SAS Notes DB, so that users without Notes Clients can mail
a document (including Graphics) to a user-ID called epasas Web@epamail.epa.gov was, and the
document will automatically be published to the EPA SAS Web.

7 Implemented the SAS and Lotus Notes Interface allowing SAS programs to write to the
SAS/Web via SAS clients on remote Systems.

15



(continued)

MINI SESSION B - Statistics and the Internet
Wednesday, April 2, 4:45 - 5:45 pm

Abstract (continued)

One of the benefits of client/server computing and the popularization of Internet protocols has been the
rapid development of the World Wide Web (WWW). However, HTML development has languished
because of single file names being required in HTML “home pages.” One product that has overcome
that barrier and EPA has used to implement its SAS Web is a Lotus Notes InterNotes Server. An
InterNotes Server is a Notes server that runs under Windows NT Advanced Server and has the HTTP
demon running as an NT service. The InterNotes Server takes a Notes Data Base and converts the Notes
Documents into HTML documents and publishes the Notes Views as HTML links to the Notes
Documents. EPA has used this capability to save SAS users and developers the learning curve while
learning HTML, which is both tedious and time consuming. InterNotes also allows a “macro” level of
integration of keeping track of hundreds of HTML file names which are prevalent on Unix systems.



POSTER SESSION
Wednesday, April 2, 5:30 - 6:30 pm

Title: Pesticide Residue Monitoring Data

Author/Presenter: Ed Brandt, Economic Analysis Branch, Office of Pesticide Programs

Abstract

The Government Performance and Results Act requires all government agencies to connect the process
of planning, budgeting, and accountability. This paper addresses the issues concerning pesticide residue
monitoring data. Using National residue data from 1992 to 1995, the paper analyzes the consistency
between different residue monitoring programs, identifies gaps in the development of national estimates
of dietary exposure, and suggests approaches to better sampling strategies in the future to improve
overall dietary exposure estimates.



POSTER SESSION
Wednesday, April 2, 5:30 - 6:30 pm

Title: A Master Sampling Frame for the Collection of Non-Agricultural
Pesticide Usage Data
Author/Presenter: Alan R. Goozner, Economic Analysis Branch, Biological and Economic

Analysis Division, Office of Pesticides Programs

Abstract

The EPA recently conducted the 1993 Certified Commercial Pesticide Applicator Survey. The survey
was conducted at considerable cost. Much of the time involvement was the construction of a sampling
frame. As a follow-on to this experience, several questions arose: Could a master sampling frame be
constructed that would allow quicker, more efficient replication of a similar survey? Would it allow
surveying more specialized aspects of the applicator population? EPA statisticians are encouraged to
offer their insights and opinions as to the feasibility of the idea.

Should the EPA offer seed money to have this frame constructed in the Private sector? Would private
sector research companies use such a frame? Would they pay for samples drawn from such a frame?
Would the frame facilitate more research into the aspects of non-agricultural pesticide usage that would
otherwise not be done? At a minimum, should the EPA more fully investigate the feasibility of frame
construction and usability?



POSTER SESSION
Wednesday, April 2, 5:30 - 6:30 pm

Title: The National Air Quality and Emissions Trends Report, 1995

Author/Presenter: David Mintz, Office of Air Quality Planning and Standards, Office of Air
and Radiation

Abstract

This twenty-third annual report documenting air pollution trends in the United States was released by
Administrator Carol Browner at a major press conference on December 17, 1996. The report provides
information on those pollutants for which National Ambient Air Quality Standards have been
established. These pollutants are carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO,), ozone (O;),
particulate matter whose aerodynamic size is less than or equal to 10 microns (PM-10), and sulfur
dioxide (SO,).

While the report focuses on national trends in air quality concentrations and emissions for these criteria
pollutants, it also features information on related topics. These include visibility, air toxics,
nonattainment areas, urban area trends, reformulated gasoline, and Photochemical Assessment
Monitoring Stations (PAMS).



SESSION VI - Statistics of Measurement in Analytical Chemistry
Thursday, April 3, 8:45 - 10:15 am

Title: Estimation of Precision of Low Concentration Chemical Analytical
Measurements and Establishment of Detection and Quantification Limits

Authors: Henry D. Kahn, Chief, Statistical Analysis Section, Office of Water, and Kathleen
Stralka, Statistician, Science Applications International Corporation (SAIC)

Presenter: Henry Kahn, EPA, and Kathleen Stralka, SAIC

Abstract

Estimates of precision of low concentration chemical analytical measurements are critical to establishing
detection and quantification levels. This presentation will consider estimates of precision based on the
EPA procedure for determining a “Method Detection Limit” and the Rocke-Lorenzato model. The
methods will be illustrated using some inductively coupled plasma - mass spectroscopy data and
applications to establishing detection and quantification levels will be discussed.



SESSION VI - Statistics of Measurement in Analytical Chemistry
Thursday, April 3, 8:45 - 10:15 am

Title: A Two Component Model for Error in Analytical Chemistry and Issues of
Detection and Quantification

Author/Presenter: David M. Rocke, Director, Center for Statistics in Science and
Technology, University of California - Davis

Abstract

A new model for measurement error in analytical chemistry will be presented. A commonly used model
that assumes the standard deviation of analytical error increases proportionally with the concentration of
the analyte cannot be used for very low concentrations. For measurements of near zero amounts, the
standard deviation is often assumed to be constant, which does not apply to larger quantities. Neither
model applies across the full range of concentrations of an analyte. The new model contains two error
components, one additive and one multiplicative, and exhibits sensible behavior at both low and high
concentration levels. The use of the model with maximum likelihood estimation and application to some
gas chromatography/mass-spectrometry and atomic absorption spectroscopy data will be described.
Implications for detection and quantification will be discussed.
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FEATURED SPEAKER
Thursday, April 3, 10:45 am - 12:30 pm

Title: Statistical Graphics for Environmental Applications: Developments and
Challenges

Author/Presenter: Daniel B. Carr, School of Information Technology and Engineering,
George Mason University

Abstract

Development of statistical graphics for environmental applications is a many faceted challenge. In the
first part of this session, recently developed templates for communicating environmental summaries to
broad audiences will be presented. The templates address issues such as converting tables to plots,
linking statistical summaries and maps, and representing metadata to provide an appropriate basis for
interpretation. Also,a JAVA implementation that enables user manipulation in a low-resolution
dynamic web environment will be described. The second part of the session will focus on graphics
challenge areas. For example, one challenge area involves working with massive data sets. An example
uses the gridding of breeding bird prevalence data to a continental U.S. EMAP grid to raise issues about
global gridding of satellite imagery. The second challenge area concerns visualizing statistical and
ecological models and their impact on a specific analysis. Recent developments in environmental
graphics provide important new capabilities, but some deep challenges remain.

22
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A Guide to Restaurants in Metro Richmond
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DOWNTOWN

« Allies American Grill. The Richmond Mamott, 500
East Broad Street, 643-3400. B/L/D/WB. Steaks, sal-
ads, pasta, sandwiches. Open 7 days s week: Break-
fast: 6:30a.m.-1 la.m Lunch: 11 a.m.-2p.m. Dinner. §
p.m.-10p.m Sunday Brunch Buffet: 7a.m.-noon.
$3.50-516.95.

« Apollo Itallan Restaurant: 703 East Broad Street,
649-7070. Italian LJ/D. Take out. Lunch, dinner, Mon-
day-Friday: 9a.m.-8p.m.; Saturday: 10a.m.-8p.m.
Closed Sunday. $2-$16. No max group size.

* Becky's: 100 E. Cary Street, 643-9736. B/L+. South-
em style cooking including homemade soups, sand-
wiches. Breakfast and lunch: 7a.m.-3p.m. Drinks and
Inte fare only from 3p.m.-10:30p m. Take out avail-
able. $3 50-54.95.

« Bill's Barbecue: 700 E. Main Street, 643-9857. B/LS
D. Famous pork barbecue, strawberry pie, hmeades.
Soup and salad bar. Open 7 days a week. Breakfast:
7a.m.-10.30a.m.; lunch/dinner: till 9p.m. $1.50-$5.
Maximum group size: 180 (call in advance).

¢ Blue Point Seafood Restaurant: 550 East Grace
Street, 783-8138. Seafood. L/D. Fresh seafood flown
from Boston, pasta, mixed gnll. Lunch: $4.95-§11.25;
dinner: $8 95-517. Calering for pnivate parties, recep-
tions; max. group size. 60; 1,000 with use of arached
Sixth Street Marketplace. Lunch and dinner Monday-
Saturday, 11:30a.m.-4p.m. and 4p.m.-9p.m. Open Sun-
days for adjacent Carpenter Center performances or
other large events downtown. Children's menu.

« Cafe Olé: - 2 North 6th Street, 225-8226. Mexican.
B/L/D. Califormia-style burntos, quesadillas & taco
salads. Breakfast. Monday-Fnday, 8a.m-10-30a.m.
Lunch. Monday-Tuesday, 11:30a.m.-3:30p.m. Lunch/
Dinner. Wednesday-Thursday, 11:30a.m.-7.30p m.
Closed Sarurday-Sunday. Breakfast from $3, Lunch/
Dinner from $5.

Casablanca: 6 East Grace Street, 648-2040. Standard
American Fare L/D. Sandwiches, salads, burgers.
Open 7 days a week. Lunch: 11a.m.-2a m. Amplc por-
uons, pool table. $5-58.

* Chez Foushee 203 North Foushee Street, 648-3225
Eclectic B/L/D. Monday-Friday. Continental break-
fast 9a m -11a m. Lunch: 11a.m -3p.m Dinner Tapas
bar- 4p m -9p.m. Soups, sandwiches, prepared salads
and tapas menus, also boxed lunch, full-service cater-
ing & pnvate parties, weddings, corporate meetngs.
$3-510

« China Gourmet. 204 East Grace Strect, 788-8888
Chinese Lunch only. Monday-Fnday, 11a.m -6p m.,
Saturday, Noon-5p.m. Closed Sun. Average check $5.
Maximum group size: 25. Reservations required for
party of 10 or more.

* Cross Roads Restaurant & Lounge: 217 West Clay
Street, 643-2060. French/Cajun D/WB. Deep South-
em/New Orleans Jazz & Blues. Dinner: Wednesday-
Sunday. S5p.m.-9p.m. Sunday Brunch; 1)a.m.-2p.m.
Closed Monday-Tucsday. Dinner $5-$15; children &
sentor specials. Maximum group size. 85. Live Jazz
Show 9p.m.-2a.m. Tuesday-Saturday Chnsuian Jazz,
2p.m -6p.m. Sunday. Reservations recommended.

* DJ's Fresh Garden Cafe: 701 East Franklin Street,
643-6592. Deli/Bakery. B/L. Hot lunch specials, cater-
ing for parties, cookies, cakes. Monday-Fniday, 7a.m.-
4p.m. Closed Satrday-Sunday. Breakfast $1-$3, Lunch
$3.89-84.65. Max group size: 42.

* The French Quarters Restaurant: 421 East Franklin
Street, 643-1268. Freach L/D/WB. Continental French
cuisine Open 7 days a week. Lunch' Monday-Fnday,
11:30a.m.-2p.m. Dinner: 5:30p.m.-10p.m., Saturday,
till 11p.m. Sunday Brunch: 11:30a.m.-2p.m. Lunch
$3.95-511.50, Dinner $12.95-$24.95. Max group size
17S. Reservations recommended.
» Fu Kim: 515 East Main Street, 780-2999. Chinese/
Viemamese. Lunch only. Monday-Saturday, 1la.m.-
2p.m. Closed Sunday. $1-$5.

« Homemades by Suzanne: 10 South 6th Street, 775-
2117. Boxed Lunches/Bakery/Deli. B/L. Homemade
breads, salads, soups & desserts, delivery available. Con-
tnental Breakfast, Lunch: Monday-Friday 9a.m.-3p.m.
Closed Samrday-Sunday. Breakfast $1.50-$3.50. Lunch
$6.25-58.50.

« J.P. Crowder's Dell: 305 Brook Road, 648-2565.
BBQ/Deli/Home Coaking B/L. Take out, country
Smithfield hams, sandwiches. Monday-Saturday,
6:30a.m.-4p.m.

o Just Willie's Cafe: 6 North 6th Street, 643-9330.
Home Cooking. Fresh turkey, baked ham, homemade
chicken salad, soup. Lunch only. Monday-Fnday,
11a.m.-3p.m. Closed Saturday-Sunday. $2.50-$4.95
Max group size: 10.

» Lemaire Restaurant: - The Jefferson Hotel, Franklin
& Adams Streets, 788-8000 ext. 6366 - Regional/VA.
B/L/D/WB. Richmond's only AAA 5-Diamond Res-
taurant. Upscale, 7 pnivate dining rooms, extensive
wines. Breakfast/buffet: Monday-Frniday 6:30a.m.-
10a.m., Saturday-Sunday till 11a.m. Lunch: Monday-
Friday, Noon-2p.m. Dinner: Monday-Saturday,
$.30a.m.-10p.m. Breakfast $10, chuldren §7.95, Lunch
$14, children $9.95, Dinner $34, children $18. Maxi-
mum group size: 75. Reservations recommended.

« Linden Row [on; 100 East Franklin Street, 783-7000,
Southern Cuisine B/L/D/WB. Open 7 days a week,
Chef's specials, steaks, pastas, fish, exceptional
crabcakes; also patio dining at this antebetlum land-
mark, a propenty of the National Trust for Histonc Pres-
ervation. Continental breakfast. Monday-Fnday, 7a.m.-
10:30a.m., Saturday, 7:30a.m.-10.30a.m. Lunch: Mon-

day-Sunday, 11:30a.m.-2:30p.m. Dinner: Monday-
Sunday, §:30p.m.-10p.m. Sunday Brunch: 11:30a.m.-
2:30p.m .Breakfast: $4.25-55.95, Lunch $6.25-§12.95,
Dinner $14.95-$22.95. Reservations recommended.

« Nick's: 707 East Main Street, 644-1212. Home Cook-
ing B/L.Boxed lunches, catering, lowfat/fat free menu
available. Breakfast: Monday-Friday 6:30a.m.-
2:30p.m. Lunch: Monday-Friday, 102.m.-2:30p.m.
Closed Saturday-Sunday. $2.50-$4.50.

+ Ocean Restaurant: 414 East Main Street, 649-3456.
Home Cooking. B/L. Breakfast: Monday-Friday,
7a.m.-} la.m. Lunch: Monday-Friday, 1 1am.-2:30p.m.
Closed Saturday-Sunday. Breakfast $1.25-52.99,
Lunch §1.25-§3.95. Maximum group size: 25.

* Padow’s Hams & Deli: - 1110 East Main Street,
648-4267. Deli. B/L. Specualizing in Smuthfield coun-
try. honey glazed & spiral sliced hams in-store & mail
onder, plus sandwiches, prepared salads, soups, take-
out and eat-in. Monday-Friday, 7a.m.-Sp.m. Closed
Saturday-Sunday. Breakfast from $1; lunch from
$2.50.

* The Pavilion; Crowne Plaza Hotel, 555 Canal Street,
788-0900. B/L/D/WB. Steaks, pasta, crab cake plat-
ter (§17.95) Open 7 days a weck: Breakfast, 6a.m.-
11a.m., Sunday Buffet till 10:3Ca.m. Lunch, 11a.m..
2p.m. Dinner, Sp.m -10p.m. Breakfast to $10 Lunch
$3.95-511.95. Dinner $7.95-518.95. Banquet facili-
ties available.

* Penny Lane Pub & Restaurant - 207 North Sev-
enth Street, 780-1682. L/D. Authentic Bntish style pub
known for fish and chips, steak and kidney pie, hearty
fare. Lunch: Monday-Friday, 11a.m.-2p.m. Dinner:
Monday-Saturdy from S p.m. Lunch to §10. Dinner:
$6.95-$17.95.

¢ Perly’s Restaurant: 111 East Grace Street, 649-
2779. Home Cooking/Deli B/L. Breakfest: Monday-
Fnday 7a.m.-11a.m. Lunch: 11a.m -3pm Closed Sat-
urday-Sunday. Breakfast $1.50-$4.50. Lunch $2.75-
$6.85. Max group size 8.

* Mr. Beauregard's Thal Room: 103 East Cary Street,
644-2328. Thal/American culsine. L/D. Formal/casual
dimng. Lunch (Thai & Amencan fare): Monday-Sat-
urday, 1lam.-2:30p.m. Dinner (Tha: cuisine): Mon-
day-Thursday, 4:30p.m.-11p.m., Fnday-Saturday,
4:30p.m.-12p.m. Sunday, 4:30p.m.-9p.m. Lunch: §5-
$10. Dinner: §9-$15. Max group size 190.

» Plerces Pitt Bar-B-Que - 1116 East Main Street,
643-0427. BBO Lunch only. Boxed lunches, cater-
ing, outdoor open pitt BBQ, featuning hand-chopped
pork, nbs, chicken; also sanwichcs, salads Available
for moming, afternoon or evening meetings, parties
Lunch: Monday-Friday, 10:30a m.-4:30p m. Closed
Saturday-Sunday. $2-$8. Max group size 75

* The Red Door: 314 East Grace Street, 649-1588.
Greek/ltalian/American L/D. Daily homemade foods
& bread, daily specials. Lunch: Monday-Saturday,
10a.m.-Sp.m. Dinner, Mondsy-Saturday, Sp.m.-8p.m
Closed Sunday. $1.50-§7.25. Maximum group size 75.
¢ Saigon Restaurant: 903 West Grace Street, 355-
6633. Vietnamese L/D. Lunch. Monday-Friday,
1la.m.-2p.m. Dinner, Monday-Friday,5p.m.-
10:30p.m. Saturday, Noon-10p.m. Closed Sunday
Lunch §3.75, Dinner $4.95-$10.95. Maximum group
size 48.

o Steve's Restaurant. | 10 North Sth Street, 649-3460.
B/L. Homemade specials, Italian dishes, comed beef
and cabbage. Monday-Fniday. Breakfast and lunch:
7a.m.-2.45p.m. $2.99-85.50.

* 3rd Street Diner: 218 East Main Street, 788-4750
B/L/D. Open 24 hours Basic fare in double-decker
diner: burgers, fnes, daily specials and greek specials.
Breakfast served all day. Pnces from about $2.
*TJ.'s: The Jefferson Hotel, East Franklin and Adams
Streets, 788-2000. L/D/WB. Lunch and dinner: Mon-
Sat §1a.m.-2a.m. Dinner from 5 pm Lite menu, en-
trees, salads, sandwiches, pasia, chicken, steaks. $6-
$17. Sunday Champagne Brunch (reservations re-
quired) at $28.95 per person is from 10:30a.m.-2p.m.
* Tony's Bar-Be-Que - 207 North Third Street, 644-
8544, B/L. All homemade fare, sandwiches, chicken
filler, BBQ. Breakfast and lunch: Monday-Saturday,
6am-4pm $199-$399 Closed Sunday
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» Ukrop's Fresh Express: 10th & Main Street Streets,
648-5633. B/L. Deli Sandwiches, salads, soups, chips,
plus “heart healthy” items. Eat in or carry out. Mon-
day-Friday. Breakfast: 7a.m.-10a.m. Lunch. 10a.m -
3:30p.m. $.99-54.99. Maximum group size 30.

* Vie de France: James Center, 105] East Cary Street,
780-0748. B/L. 7:30a.m.-4:30p.m. Monday-Fnday.
Sandwiches, soups, salads, muffins, bagels. Cafetena
style/self-serve. Sit in or carry out. $.99-$5.99.

« Wall Street Deli: 100 Nosth 8th Street, 643-3354 Del.
B/L. Classic deli serving subs & sandwiches, comed becef,
pastram prepared in house, New York bagels. Monday-
Fnday, 7a.m.-3p.m. Closed Saturday-Sunday. $3-§7.
Maxmum size 38,

*Winnie's Carlbbean Cuisine - 200 East Main Street,
649-4974. Carribean. L/D. St. Lucisn owncr/chef 1s
known for her hot and spicy jerk chicken, conk frit-
ters, crab cakes and tasty Caribbean lemonade, plus
tunch and dinner specials. Tropical decor, bnght col-
ors, reggae music. Lunch: Monday-Fnday, 11a.m.-
3p.m. Dinner: Sp.m.-9:30p.m. Saturday (dinner only),
6p.m.-10:30p.m. Lunch $4.50-§7.99. Dinner $5.50-
$12.99. Closed Sunday, but will open for large groups
with prior arrangement.

CHURCH HILL

* Annabel Lee Riverboat: 4400 East Main Street,
644-5700. Variery. Riverboat cruise & bufTet-style
dining with live entertainment & commentary; lunch/
brunch/dinner & plantation crwses available. Lunch, Tues
day Plantation Cruise 10a.m.-5:30p.m., Wednesday-
Fnday, Noon-2p m, Saturday ! la m -1p.m. Dinner
Wednesday-Thursday, 7p.m -9:30p.m., Friday-Satur-
day, 7:30p.m -10:30p m. Sunday, 6p.m -8:30p.m.
Closed Monday. Lunch $17.95, children $9.95, Din-
ner $24.95, children $11.95. Max group size 350.

* The Hill Cafe. 2800 East Broad Street, 648-0360
B/L/D/WB. Diverse menu including lobster, prime
rib, salads, burgers, bumtos and quesadillas Break-
fast: Monday-Friday, 7a m.-3p.m. Lunch: Monday-Fn-
day, 11a m.-3p.m. Dinner: Tuesday-Sunday, $'30p.m.-
2am Saturday and Sunday Brunch: 10-30a.m.-
3:30p.m. Lunch $4.95-86.95. Dinner: §5.95-$15.95.
Can accommodate large groups.

* Miilie's Diner: 2603 East Main Street, 643-5512.
L/D/WB. Globally inspired eclectic menu featuring
*fusion” cuisine Menu changes monthly. Lunch: Tues-
day-Friday, 11a.m.-2:30p.m. Dinner: Tuesday-Satur-
day, $:30p.m -10:30p.m. Sunday dinner till 9p m. Sat-
urday brunch: 10 a.m.-3p m., Sunday brunch 9a.m -
3p.m. Lunch $6-$10. Dinner $14.95-521.95.

* Mr. Patrick Henry's Inn: 2300 East Broad Street,
644-1322. Continental, L/D. Warm and woody inside
of this 1850s row house converted to an inn and res-
taurant. Garden dining, soups, salads, entrees, chefs
specials. Lunch: Monday-Friday, 11:30a.m.-2:30p.m.
Dinner: Monday-Saturday, 5:30p.m.-9:30p.m. Lunch:
$6-$12. Dinner: $18-$23.

* Poe's Pub: 2706 East Main Street, 648-2120. L/D.
Irish pub atmosphere, best known for its catfish and
ribs, Casual dining. $2.95-$15.95. Open 7 days a week
for lunch and dinner from 11 am.-2 a.m.

SHOCKOE SLIP

* The Berkeley Hotel Dining Room: 1200 East Cary
Street, 780-1300 B/L/D. American, European, voted
one of Richmond's best restaurant experiences, exten-
sive wine list, many from Virginia. Breakfast:7a.m.-
10:30a.m. Lunch: 11:30a.m-2p.m. Dinner: 6p.m.-10
p-m. Breakfast and lunch: $2.50-$13.50 Dinner:$17.
Maximum group size: 20.

* LaGrotta Restaurant: 12th & East Cary Streets,
644-2466. ltalian L/D, Voted Best Lunch Spot by Style
Weekly & voted ****1/2 stars by Richmond Times-
Dispatch Lunch: Monday-Friday, 11:30a.m.-2:30p.m.
Dinner, Monday-Thursday, 5:30p.m -10p.m., Friday-
Saturday, 5:30p.m.-11p.m., Sunday Sp.m.-9p.m.
Lunch $6.95-$8.95, Dinner $9.95-$18.95. Max group
size: 130,

* Nana Zush!: 1309 East Cary Street, 225-8801.Japa-
nese L/D. Sushi bar and & la carte, terriyaki, tempura
dishes. Lunch; Monday-Friday, 11:302.m.-2p.m. Din-
ner: Monday-Saturday, 5:30p.m.-10p.m. Lunch $4.95-
$9.50. Dinner $6-S12. .

* Peking Pavillon: 1302 East Cary Street, 649-8888.
Chinese L/D/WB. Northem Chinese cuisine. Lunch:
Sunday-Friday, 11:30a.m.-2:15p.m. Dinner, Sunday-
Fridey, 5p.m -9:45p.m., Saturday, Sp.m.-10:45p.m.
Sunday Brunch. Lunch $4-37, Dinner $7-$14. Max
group size 200,

* Richbrav Brewing Co. and Restaurant: 1214 East
Cary Street, 644-3018. L/D. Virginia's original
microbrewery and only microbrewery restuarant. All
beer is made on premesis. Open 7 days a week. Two
floors featunng full service restaurant downstairs and
bar with pool and darts upstairs. Menu includes fish
and chips, pastas, chef's specials, catch of the day,
soups, salads, sanwiches. $3.95-$15. Lunch:
11:30a.m.-4p.m. Dinner from 4 p.m. Children's menu.
Large groups accomodated.

o Sam Miller's Warehonse: 1210 East Cary Street,
644-546S. Seafood/Regional VA B/L/D. Breakfast:
10a.m.-5p.m. Lunch: 1la.m.-5p.m. Dinner: Sp.m.-
11p.m. Breakfast $5.95-$12.9$, Lunch $5-$12, Din-
ner $11.95-522.95. Bus parking available. Max group
size: 178,

» Skipjack Tavern & Comedy Club: 109 South 12th
Street, 644-0848. L/D. Open 7 days a week. Restau-
rant features raw bar with clams, oysters and crab legs
from owner's Chicoteague oyster farm; plus fish and
chips, sandwiches and traditional entrees. Lunch/din-
ner: 11:30a.m.-2am. $5.95-$16.95. Two seatings for
weekend Comedy Club. Call for reservations and in-

formation.

* The Slip at Shockoe: 11 South 12th Street, 643-3313.
Home Cooking/Soul Food. B/L/D. Lunch & dinner buf-
fet, saled bar, sandwiches, beer, wine, mixed beverages.
Breakfast: Monday-Friday, 7a.m.-11a.m. Lunch: Mon-
day-Friday, 11e.m.-3:30p.m. Dinner buffet: Friday,
5p.m -9:30p.m., Sunday, 6p.m.-9:30p m. Closed Sat-
urday. Breakfast § 99-$3.99, Lunch $1.49-$4 99, Din-
ner $3.95-$8.95. Max group size 125 Dancing Thurs-
day-Ssturday, 9p m.-2a.m., Sunday, 9p.m.-la.m Happy
Hour Friday, Sp.m.-9p.m.

The Tobacco Company Restavrant: 1201 East Cary
Street, 782-9431, Continental L/D/WB. Seafood &
VA specialties, historic landmark known for prime rib
with seconds on the house, live entertainment nightly.
Lunch' Monday-Saturday 11:30a.m.-2:30p.m. Dinner:
Monday-Friday $:30p.m.-10:30p.m., Saturday, 5p.m.-
11p.m., Sunday, 5:30p.m.-10p.m. Sunday Brunch,
10:30a.m.-2:30p.m. Lunch $2.99-$9.95, children
$2.99-$6, Dinner $13.95-526.95, children $2.99-$10.
Max group size 100. Space for catered receptions up
to 300.

SHOCKOE BOTTOM

¢ Awful Arthur's Seafood Co.: 101 North 18th Street,
643-1700. Seafood/Regional/VA L/D. Fresh seafood,
rawbar with oysters, clams, crablegs, shrimp & craw-
fish, dasly specials, theme mights. Lunch-Dinner: Mon-
day-Friday, 11:30a.m.-2a.m., Saturday, Noon-2a.m.,
Sunday, 4p.m.-2a.m. Lunch $5-$8, Dinner $9-§15.

» Sea Breeze Cafe: 3 South 15th Street, 649-8516.
Caribbean. L/D. Hot and spicy island food; known
for conk fritters and mango shnmp. Lunch: Tuesday-
Friday, 11:30-2:30p.m. Dinner: Tuesday-Friday,
5:30p.m.-2a.m. Saturday and Sunday Sp.m.-2a.m.
Lunch $3.75-$7.50. Dinner $5-$14. Can accomodate
large groups with advance notice.

* The Bottom Line Tap & Grill: 1800 East Main
Street, 644-5944. American LJ/D. Sandwiches/Pub
Grub, best selection of bottied beer in Bottom. Lunch:
Monday-Saturday, Noon-2p.m. Dinner: Monday-Sat-
urday, 5p.m.-2a.m. Closed Sunday. Lunch-Dinner $5-
$10. Max group size 6.

* Bottoms Up Plxza: 1700 Dock Street, 644-4400
Pizza L/D. Gourmet pizza, 2 open-air decks, voted
best pizza 7 years running. Monday-Wednesday,
11:30a.m.-11pm, Thursday 11:30am-midnight, Fri
11:30a.m.-2a.m., Saturday, Noon-2a.m., Sunday,
Noon-midnight. $5-12. Max group size 300.

» Calypso Cafe: 1718 East Franklin Street, 225-9776.
Caribbean. L/D/WB. Also seafood, steaks & vegetar-
ian, Caribbean theme (Jimmy Buffet & rum runners),
catering, parties, one of city's largest rooftop open sir
decks. Lunch: Monday-Sunday, 11a.m.-3p.m. Dinner:
Monday-Sunday, 4p.m.-10p.m. Plus, Sunday Brunch.
Lunch $5-$8, Dinner $6-$12. Max group size 12.

* Castle Thunder: 1726 East Main Street, 648-3038.
L/D. Extensive sandwich menu, new outdoor dining
deck on Main Street. Open seven days a week, 11:30
am.-2a.m. $4.95-$6.95. Maximum group size: 150.
¢ Chaplin's Grill: 2001 East Franklin Street, 643-
7520. Pasta, steaks, Cajun shrimp. Friday-Saturday,
10p.m.-2a.m.

* Chetti's Cow and Clam Tavern: 21 N. 17th St. 644-
4310. Seafood. Dinner only. Oldest bar in the Bot-
tom. Shellfish, pasta and steaks served informally.
Home of the famous "Moister Oyster” - shucked oys-
ter, cocktail sauce with a shooter of beer on the side.
Dinner: Tuesday-Saturday, Sp.m.-2a.m. Closed Sun-
day and Monday. $3.25-$15.95. 1/2 price specials on
Tuesday. Large groups OK with notice.

* Cobblestone Brewery & Pub: 110 North | 8th Street,
644-2739. Cajun. New Orleans. Jamaican, steaks.

* The Frog and the Redneck: 1423 East Cary Street,
648-3764. Modern American Regional Dinner only.
Consistently rated as one of Southeast's finest restau-
rants and winner of many awards for excellence. Fea-
tures great local products including seafood, meats and
veggies Celebrity chefJimmy Snead cooked with Julia
Childs on "In Julia's Kitchen with Master Chefs.” Din-
ner: Monday-Friday, 5:30p.m.-10p.m. Saturday, Spm.-
10:30p.m. Will accomodate large groups with advance
notice.

* Goodfellas: 1722 East Main Street, 643-5022. Pro-
gressive rocknroll with state of the art sound system
and house D.J. Paul. Wednesday-Saturday: Sp.m.-
2am.



« The Hard Shell: 1411 East Cary Street, 644-5341.
Seafood. L/D. Seafood spot with lobster bar, steak,
diverse menu. Lunch: Monday-Saturday, 11:30-
2:30p.m. Dinner: Monday-Saturday, 5:30-10:30.
gt:s;: sundays. Lunch $4.25-$6.95. Dinner $12.95-
* Havana '59: 16 North 17th Street, 649-2822 Cu-
ban/Caribbean. Dinner only. The ultimate in theatri-
cal dining. Cuban cuisine in a re-created 1950s Ha-
vana streetscape. Cagar smoking, rooftop dance floor,
great fresh juices. 4:30p.m -closing $8-20
¢« Homer's Real Sports Grill: 14 North 18th Street,
643-2222. American. Two laser disc video screens
Hearty food including fried chicken, Buffalo wings,
meatloaf. Dinner: Monday-Friday, 4p.m.-2a m Lunch/
Dinner: Saturday and Sunday, 12p m.-2am.
+ Johnson'’s Grill: 1802 E. Franklin St., 648-9788
Soul Food No smoking or alcohol Open Monday-
Fnday. Breakfast 6a.m.-11a.m. Lunch 1lam-lp.m
Closed Saturday-Sunday Breakfast $3.95, Lunch $4-
$6.50. Max group size 5S.
* Main Street Gril); 1700 East Main Strect, 644-3969
Vegetarian/American Grill L/D/WB. Grill by day,
vegetarian by night. Open Tuesday-Sunday. Breakfast:
7 a.m -1 la.m., Lunch 11a.m.-2.30p.m. Dinner: 6p.m -
12p.m. (vegetarian cuisine). Casual dimng Break-
fast to $S; lunch and dinner around $7.95.
« Marks; 1707 East Franklin Street, 649-1079, Amer:-
can L/D. Sandwiches, homemade chips, pool table,
live music on weekends. Lunch/Dinner Monday,
11:30a.m.-8p.m. Tuesday-Friday, 11:302.m.-2a.m.
Saturday, 5p.m.-2a.m.
« Medley's: 1701 East Main Street, 648-2313 Cayun/
Creole. L/ID/WB. News Orleans-style Cajun & Blues
Bar. Lunch: Monday-Saturday, Noon-3p.m Brunch
Sunday, Noon-3p.m. Dinner: Monday-Saturday, 6p.m-
11p.m. Appetizers only Monday-Saturday, 3p.m.-
6p.m., 1 1p.m.-2a.m. Lunch $5.95, Dinner §12.95, Ap-
petizers $4.50-$7.50.
» Moondance Saloon and Restaurant: 9 North 17th
Street, 788-6666. Southwestern. Dinner only. Cuban
chef, blackboard menu, great drinks. Dinner Tues-
day-Saturday, 6p.m.-11p.m. plus afterhours sand-
wiches till 1a.m. Altemative music night on Monday
from 9p.m. featuning college bands and a limited menu
$6-$14.95.
o None Such Place: 1721 East Franklin Street, 644-
0832. Regional/VA Traditional VA cuisine using fresh
ingredients & classic culinary techniques, housed i
oldest commercial building in Richmond. Lunch-
Monday-Saturday, 11:30am-3pm, Dinner: Monday-
Saturday, from 5:30pm. Closed Sunday Lunch $5.95,
Dinner entrees $11.50.$20.95 Max group size 80-100.
o Rack-n-Roll Cafe: 1713 East Main Street, 644-1204
American grill. Sports bar atmosphere with pool tables,
darts, foozeball. Lunch-Dinner: Monday-Wednesday,
11:30a.m.-midnight. Thursday-Friday, 11:30am -
2a.m. Dinner: Seturday-Sunday, 6p.m -2a m Lunch
$4.50-$6.50. Dinner $6.50. Maximum group size 300.
« River City Diner: 1712 East Main Street, 644-9418.
American Diner Food with flar, breakfast anytime.
Tuesday-Wednesday, 8a.m.-2a.m., Thursday-Fnday,
8a.m.-4a.m., Saturday, 24 hours until Sunday 3p.m
Closed Monday. Average check $6.25.
 Rock Bottom Pizza: 13 North 17th Street, 225-1382.
Pizza. 70s atmosphere. Wednesday, 9p m -2a m.,
Thursday-Saturday, 6p.m.-28.m. Closed Sunday-Tues-
day. Max group size 30.
« Shotz: 4 North 18th Street, 649-7468. Deli/Pizza
Fresh cooked pizza & subs, bar crowd after 10p.m,
parties, 21 & over only. Dunner Monday-Satur-
day, Sp.m.-2a.m_Closed Sunday. Dinner $5. Maximum

group size 20.

« Southern Sugar & Spices: 2116 East Main Street,
788-4566. Southern B/L/D. Real, down-home south-
em cooking including fried chicken, lyver and onions,
meatloaf, fish, pork chops. Monday-Saturday. Break-
fast: 9a.m.-11a.m. Lunch: 1 1a.m 4p.m. Dinner 4p.m -
9p.m. Breakfast: to $5. Lunch §5-58. Dinner. $9-516.
« Star of Indla: 1703 East Franklin Street, 648-5470
Indian. L/D/WB. Lunch- Monday-Saturday,
11:30a.m.-2:30p.m. Dinner: Monday-Thursday 5p.m -
10p.m., Saturday, Sp.m.-11p.m. Lunch buffet week-
days, $5.95. Dinner $7.50-513. Sunday brunch $7.95
o Sunset Grill' 1814 East Main Street, 643-2926. Surf
& Turf L/D. Capitahzes on neighborhood meat mar-
ket. Chicken, burgers, steaks every which way. Lunch:
only in spring & summer months on large outdoor
patio. Dinner: Thursday-Saturday, 8p.m-la.m Lunch
$4-6. Dinner: $5-512 Closed Sunday-Wednesday.
o Surf Side Grill: 1714 East Franklin Street, 644-8704
Seafood Beach-fresh seafood Lunch-Dinner: Mon-
day-Friday, 118.m.-10p.m. Dinner: Saturday, 4p m -
2a.m. Closed Sunday. Lunch $4.95-$8.95. Dinner
$8.99-$17.99. Lunch-Dinner children $4.25.
Publisher asnomes no responsibilusy for the eccuracy of informanon
contained herein and advises coneacting restaurants directly eo

rm (nformation about hours of pnices, loranon,

confl operanon, 3
| merus, ete. For more information on RICHMOND call (804) 782-
2777




In Search of . . .

Environmental Statistician

The United Nations has an opening for an environmental statistician. Salary is $108,000.
For information contact the UN web site:  http:\www.un.org

Press “general information” and then

Enter “UN employment”
United Nations contact person is Patricia Nicolos, (212) 963-5783.

This information was provided by EPA contact, Kathleen Hogan, (202) 260-9349.
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Reward: Contact Barry Nussbaum




EPA rweLrry assvaL cosrenesce s
ESVIRONMESTAL STATISTICS
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STATISTICS FOR THE
FUTURE April 1-3, 1997

RICHMOND, VA Site of the Twelfth Annual
EPA Conference on Environmental Statistics.
“Thought the EPA Conference was supposed to
come to town last year,” mused a Richmond
resident. Well, we didn’t make it then, but
we’re back and looking for a big turncut at
this year’s conference. Personnel from EPA
and other Federal and state agencies will
gather south of the Mason-Dixon Line for a
two-an- a-half-day conference. The theme
STATISTICSFORTHEFUTURE. Theprogram,
focusing on relevant applications of
Statistics in government programs and how to
enhance statistical support, will feature
hands-on  training  sessions and
opportunities to learn about new statistical
techniques and software. There will be
sessions on health statistics, detection
limits, water quality, and the use of
statistics in Quality Assurance.

The conference’s real, underlying
benefit to you is the opportunity to
exchange with others involved in similar
programs, with related problems, and on a
one-to-one level. Informal sessions, such
as the Poster/Technology Session and
Roundtable Discussions, provide an
atmosphere for sharing information, solving
problems, and building a network.

There is plenty of opportunity to ger
involved. Check out the “Cail for Your
PARTICIPATION” ad in this Special Preview
Edition. There is no limit to how much
involvement and fun you can have, And, from
winter weather predictions, you’ll want to
cut loose and enjoy springtime in the old
South at the EPA statistics conference.
THE CONFERENCE IS BACK. Y'ALL COME.

SPECIAL FEATURES
" Wo Registration Foo

Transportation Provided from EPA
HNesdquerters

082208 RRRARES
Costs within Government Per Diem
[ I X XXX XXX XXX
Fulfills Qualifications as Training

COEBLRNBNNBEDOIBES

A Message from the Chairman

WOW, what a year it has been. I'm sure
I'm not alone in saying that I've never seen
a set of furloughs and travel restrictions
that affected us as severely as last year.
But a funny thing happened on the way to
no forum. You may recall that despite all
our money saving techniquas, we had to
forgo our annual conference on statistics.
In order to capitilize on the plans already in
progress by some of the professorial types
who were developing tutorial sesisons, we
decided to hold these training sessions in
Washington and RTP. This avoided travel
costs and travel restrictions for the
attendees from our two major locations.
We didn’t intend to shut out regional and
laboratory folks at other locations, but we
had to do the best we could under unusual
circumstances. So what happened? We
didn’t just salvage some sessions, we
actually leamed that there was a real
demand for this training, and a good bit of
response came from people who normally
didn’t attend the annual conference.
Imagine my surprise to hear “new”
participants asking why they weren‘t on
the list. They had heard about the
conference from a colleague down the hall.

So we are applying what we leamned.
FIRST, | have personally arranged that the
govemment will not stop this year.
SECOND, we are still employing our cost
reduction methods to make the travel more
palatable to attendees. TH/RD, and most
importanty, we are combining the
conference with enriched training in
Richmond on April 1-3, 1997 {no fooling!).
FOURTH, we are adding separate training
sessions in the late spring. We think we
may have hit on the best of both worlds
with this scheme. But it really depends on
your participation to make it a real
succass. So, jump on the band wagon,
and participate!l Write a paper, present a
poster, serve on a panel, and be active. |
look forward to seeing you in Richmond.

One last dilemma: If we had to postpone
last year's conference, is this the 12th
annusal conference on statistics, the 13th
annuel conference on statistics, or the
12th almost annual conference on
statistics?; and was Grover Cleveland
really the 22nd and the 24th President all
by himself? i you can help me with any of
this, please cali, write, fax, e-mail, etc.
Thanks. BARRY NUSSBAUM

Emphasis on Training

Response to the series of statistical
training programs offered last spring in
DC and RTP was tremendous. Courses
in Regression Diagnostics, Information
Visualization, and SAS Applications
attracted a large and varied audience.
Positive feedback on the training
programs has led to a greater emphasis
on training opportunities at this year’s
conference as well as training courses to
be offered in the late spring and/or early
summer of next year.

The Conference offers a variety of
training features, such as:

V'V Abstracts of all Papers Presented at the
Conference

¥V Training Programs Designed Specifically
Jor EPA Statistical Needs

vV Information from Current Publications in
Environmental Statistics and Information
Science

vV Informal Discussions with Other
Statistiticians to Focus on Specific Problems
and Probable Solutions

Train for the Future In Statistics

CALL FOR YQUR
PARTICIPATION

(YOU are the coufmnce)

UNCLE SAM and your EPA co-workers can
benefit from your experience. . . be a
participant in this year’s conference. We
invite you to:

<0 Make a Presentation

=0 Chair a Session

<D Preyent a Poster

<0 Moderate a Roundiable

Diseussion

<0 Becoms a Member of the

Conference Planning Committe

OR. . . you may have another idea!

Whatever you would like to do, name i1,
and contact BARRY NUSSBAUM NOW!
by phone at (202) 260-1493 or by fax at

(202) 2604968 or by e-mafl at




WHY ATTEND

> Learn latest developments in environmental
statistics

> Share what YOU are doing

» Meet other colleagues

> Present a poster; make a presentation

» See demonstrations of the latest statistical

programs

Get answers to statistical problems

Build team spirit

Receive training in new software, statistical
methods, computers

Build a network of statistical and information
specialists for the FUTURE

WHO WILL BE THERE

EPA statisticians and survey specialists

EPA developers and users of environmental
information and statistics

EPA policy and decision makers

State and local government environmental
information developers and users

University experts and students

Special Guest Speakers

YOU

v v v

REGISTRATION

FOR THE TWELFTH ANNUAL EPA CONFERENCE ON
ENVIRONMENTAL STATISTICS
RICHMOND, VA APRLL 1-3, 1997

Complete registration packets will be mailed on
JANUARY 31, 1997

Is your mailing information correct?
Did we miss someone? Do you want to add a
colleague to the list?

Contact MARCIA GARDNER

SRA TECHNOLOGIES, INC.
Phone (703) 205-8547, fax (703) 205-6260 or
E-mail: MARCIA.GARDNER@sratech.com
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Question 1. How large does a group have to be to show health effects from arsenic exposure
between 10 and 50 ng/1?

The 1960's Taiwan Epidemiological study studied people exposed to arsenic in drinking
water beginning in 1900. Wells ranged from 0.01 to 1.82 ppm (10-1,820 ppb or ug/).

Doctors physically examined 40,421 people out of 103,154 in 37 villages.
728 cases of skin cancer, 153 histologically confirmed.
72% had hyperkeratosis and 90% had hyperpigmentation.

The control group of 7,500, had an age distribution similar to the study population.
Arsenic ranged from non-detect to 0.017 mg/l (17 ppb or ug/l). No skin cancer,
hyperkeratosis or hyperpigmentation in the control population. The expected number of
skin cancer cases, using the skin cancer rate for Singapore Chinese from 1968-1977 is a
little less than 3. Using this as the expected prevalence, the probability of observing no
cancer cases is 0.07.

EPA’s drinking water criteria is 50 ug/l or 50 ppb. The Taiwan study identified a
NOAEL (No observed adverse effects level) of 0.8 ng/kg/day, and a corresponding
concentration in drinking water of 10 ug/l.

Question 2: How many infants should be in each concentration range, for a study of sulfates?

The Center for Disease Control (CDC) is proposing to study 1,000 babies exposed to
sulfate in their drinking water and compare them against 250 babies not exposed to
sulfate. They haven’t identified the babies nor the exposure concentration ranges yet.
Sulfates cause a laxative effect.above 1,000 mg/l, and EPA’s proposed drinking water
criteria is 500 mg/l, a level at which sulfates aren’t expected to be a problem.

CDC’s Sample Size Calculations for the planned study are attached.

In 1995 CDC studied 276 infants, and found 39 cases of diarrhea, with a median of 264
mg/l, and a range of 0-1271 mg/l. Non-cases had a median of 260 mg/l, and a range of 0
to 2787 mg/l. However, as seen by the attached graph, there were very few infants being
exposed to 500 mg/l or higher.

Question 3: Are 100 participants, divided into 0, 500, 800, and 1200 mg/I (40 per -group) enough
to establish a dose that-causes diarrhea?

In 1994, 4 volunteers drank water with 0, 400, 600, 800, 1000, and 1200 mg/1 sulfate at
48 hours. In a follow up study six people drank 1200 mg/l sulfate for six-days and drdn t
report diarrhea.

From Irene Dooley 202/260-9531 SAmisclepi-stat pwr -



Sample Size Calculations’

et £ a7l

- Unexposed: | Disease ’ Sample Size

Confidence .Power Exposed | inExposed { Risk Ratio Unexposed Exposed Towl
95% 80% 14 13% 15 345 1,381 1,726

" » « “ 16 250 1,001 1,251

* " 15 * 1.5 332 1,662 1,994

" " “ " 1.6 24] 1,205 1,446

* " 1:6 “ | ) 324 1,943 2,267

" , * " 1.6 235 1,409 1,644

! Using Epilnfo (Version 5 01b DOS) sample size calculations for unmatched cohort and cross-sectional studies (Exposed and
Nonexposed).

45

40

36 1

Mean = 363 mg/L

301 Median = 264 mg/L
P Range* = 0 to 1327 mg/L
g 20 * One water sample (2787 mg/L) is omitted
8
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Sulfate Level (mg/L)

Figure 3. Frequency Distribution of Sulfate Concentration for All Water
Samples Submitted: June-October, 1995 (N=172)
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SEER*Stat

The SEER*Stat system 1s a statistical package for the analysis of SEER and other cancer
databases. SEER*Stat provides a graphical user interface for the production of the following
staustics and stauistical tests.

Frequencies

Percentages

Crude (non-adjusted) rates with standard errors and confidence intervals

Age-adjusted rates with standard errors and confidence intervals

Trends over ime as percent changes, from crude or age-adjusted rates

Trends over ume as estimated annual percent changes, from crude or age-adjusted rates, with
confidence tntervals

Comparison of estimated annual percent changes with zero

¢ Comparnison of two estimated annual percent changes with one another

SEER Web Site -

Home Page URL: hitp.//www-seer.ims.nci.nih.gov/

The SEER web site contains a vartety of information about the SEER program.

Topics areas include:

e News
About SEER
Publications
Online Systems
Online Data
Scientific Systems
Registries
Other Links

Online Systems
Cancer Query System (CANQUES) on the Web

CANQUES on the Web 1s an nteractive system with a Java interface that allows the user to access
a vanety of pre-calculated cancer statistics. There are currently 1n excess of 7.8 million pre-
calculated statistics available. CANQUES performs no calculations and contains statistics that
were created by the SEER Program for their routine reporting and the Cancer Statistics Review,
1973-1993 You must have a Java enabled browser to use the system and the most recent release of
that browser 1s recommended.

Type of statistics include:

SEER Incidence Rates

SEER Incidence Trends

U.S. Mortality Trends

SEER Median Age at Diagnosis

U.S. Mortality Median Age at Death

NHL and Kapost's Sarcoma in San Francisco
SEER Relative Survival

CoLt \/ww(eouzf for cdx &Q\‘O\



Online Data

SEER Incidence Data - The February 1996 submission of the SEER Incidence database 1s avatlable in
public use text format as self-extracting DOS executables. This data 1s for the nine standard registries and it
covers diagnosis years 1973-1993. (Password encrypted, requires completion of Public Use Data
Agreement to extract data. Public Use Data Agreement 1s available via internet.)

Population Data for the SEER Registries - The populations for the nine standard SEER registries, to be used
in conjunction with the above data, are available as self-extracting DOS executables. This data 1s stored in
text format and contains populations for 1973-1993 by individual registry and also by the counties defining
each registry.

United States Population Data - County level populations for each state in the U.S. are available as self-
extracting DOS executables. Each state file contains county populations by year, 1973-1993 A file
containing total United States populations 1s also available All files are stored in text format.

Scientific Systems
Portable Survival System

The analysis of patient survival plays an integral part in determiming many aspects of cancer
prevenuon, control and treatment and 1s an important part in the interpretation of cancer statistics.
Since survival statistics play such an important role 1n the analysis of cancer data, the NCI
previously developed a system which generated survival staustics for researchers. This system 1s
the NCI's Mainframe Survival System which has been 1n use for over 25 years. A researcher must
have access to and a working knowledge of the NIH IBM mainframe system. This places a
limitation on the accessibihity of the system. Also, repetitive mainframe usage costs are an 1ssue
where a single analysis may cost hundreds of dollars depending on the requested parameters.

Information Management Services, Inc., 1n consultation with the Cancer Statistics Branch of the
National Cancer I[nstitute, has developed a new, expanded and portable version of the Mainframe
Survival System called the Portable Survival System (PSS). The PSS 1s a Microsoft Windows-
based application which provides more access and greater ease in generating survival statistics
than its mainframe counterpart. The PSS retains all the features of the Mainframe Survival System
with several additional features The PSS can be installed on most PCs with access to a CD-ROM
drive

The NCI and IMS are currently in the process of integrating the PSS with the SEER*Stat system to
provide a single application for calculating a wide variety of cancer-related statistics.

The PSS 15 available on CD-ROM and may be ordered by mailing or faxing a completed Public
Use Data Agreement form (available from the SEER Web site) to the NCI.



Applying Gy's Theory of Sampling
to Problems of Representativeness in
Environmental Field Investigations

Malcolm J. Bertoni

Center for Environmental Measurements and Quality Assurance
Research Triangle Institute

Some Questions to be Answered

= Why consider Gy's Theory of Sampling?

= What are the main concepts of Gy's
Theory?

= How does Gy's Theory help address
representativeness?

» What are some limitations and questions
when applying Gy's theory to
environmental field investigations?

= How can I use this information to improve
my lot?




Why consider Gy's Theory of
Sampling?

= Provides a theoretical and practical link
between statistical sampling concepts and
physical sample collection protocols

= Helps clarify the relationships between
sampling units, sample support, and the
scale of inference

» Provides a more sound scientific basis for

making measurements/observations of
sampling units

What's the origin of Gy's Theory?

= Pierre Gy, a French mining engineer,
developed the theory in the late 1950s
through 1970s

s Addresses the estimation of mineral content
in ore
= Combines concepts from statistics, physics,

geology
= Has been applied to environmental
sampling by Pitard, Ramsey, others




Main Concepts from Gy's Theory

= Types of sampling lots

= Types of heterogeneity

= (Classification of errors

= Principles of correct sampling
= Methods for reducing errors

Types of Sampling Lots
O
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Types of Heterogeneity

= Short-Range (random fluctuations)
— Constitution heterogeneity
e How many constituents are in the material?
= Distribution heterogeneity
e How are the constituents distributed?
= Long-Range
e Non-random trends, patterns
= Periodic
e Cyclic changes

(A)M:ks e Ik

Constitution Heterogeneity
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How does Gy measure heterogeneity?

= Based on analysis of particles or fragments;
extends to groups of particles of fragments

= Interested in the fraction of material having
a particular property of interest ("critical
content"), expressed as a percent of mass

= Heterogeneity defined in relation to the
critical analyte




Heterogeneity of a Particle

Y - [—
rmalize with repect to average mass of critical analyte:
. _ Lo, - aJMN,
1
a M,
where:  a. = concentration of particle
a, = average concentration of lot
M, = mass of particle

M, = mass of entire lot
N; = number of particles in entire lot

Heterogeneity of a Group

where:
_ [an - aL] MnN n

aM,

h

n

a, = concentration of a group of particles
M, = mass of a group of particles
N_ = number of groups of particles



Definition of Constitution Heterogeneity

(CH)
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DH is defined in terms of
possible groupings...
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Constant Factor of Constitution
Heterogeneity (IH,)

CH, is theoretical; it’s difficult to estimate,
partly due to large N term.

Multiplying by the average mass per
fragment, [M, / N¢], eliminates the need to
estimate Np:

IH; = CH; [M, / N{]

Constant Factor of Constitution
Heterogeneity (IH;)

IH, is more practical; can be estimated from
observable qualities and measures:

IH, = Cd*

where  C = the sampling constant, calculated
from several material parameters such as
liberation, shape, mineralogical factors;
d = particle diameter.



Why such concern over
Heterogeneity?

= Another measure of variability in a
population

= Key to understanding and controlling errors
in environmental measurements

= Foundation for understanding and applying
correct sampling principles

Gy's Classification of Errors

Fundamental
error
Short.renge

Grouping and selection emror
segregation error
Long-range | Continuous
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Types of Errors

= Short-range selection error (CE1)

= Fundamental error (FE)

= Grouping and segregation error (GE)
= Long-range fluctuation error (CE2)
= Periodic fluctuation error (CE3)
= Delimitation error (DE)
= [ncrement extraction error (EE)
= Preparation error (PE)

Fundamental Error (FE)

= Caused by constitution heterogeneity

= Can be estimated a priori by studying
properties of critical analyte and matrix to
be sampled

= Main drivers are:
— qualities of heterogeneity
— particle size
-mass of the sample




Fundamental Error (FE)

] _1_] I,

FE? = _1_
Ms ML

where M, = mass of the sample, assuming Mg << M,

Consequently:

Grouping and Segregation Error
(GSE)

= Grouping error introduced when fragments
are not selected one at a time (always!)

= Segregation error introduced when
fragments are not randomly distributed
(Distribution heterogeneity)

= Reduce GSE by:
— generating a sample by taking many increments
- homogenizing the material when possible

- selecting random locations for increment
extraction



Gy's Theory helps statisticians:

= Choose a sample mass (support) to satisfy
FE design constraint for a given particle
size and sampling constant

= Reduce FE and/or sample mass through
grinding to reduce particle size

» Reduce GSE by specifying, for example,
that "10 to 30 increments shall be taken to
form a sample”

Delimitation Error

» [ntroduced when incorrect shape and
orientation for sample increment is selected
= design fault
- equipment selection/specification fault

= Correct shapes:

e zero dimension -- unit

¢ one dimension -- slice

¢ two dimensions -- cylinder

e three dimensions -- sphere or cube




Examples of 1D Delimitations

Top View of Stream

Examples of 2D Delimitations

Tube
Sampler S

— f—

The Material

Crosseclo ‘ ]




Extraction Error

= [ntroduced when material is imperfectly
extracted in relation to the correct
delimitation

— implementation fault

- equipment selection/specification fault
= Can result in systematic or random error
= Many environmental sampling tools

introduce both delimitation and extraction
errors

Extraction Error Example

Cross Section Views of Sampling Spoons

Flat bottom with
Rounded Flat bottom, side walls

bottom no side walls

Slice of material scooped from elongated pile




Some limitations and questions

= Gy's Theory based on particle
characteristics; environmental sampling
often involves media that don't translate
well to this model

= Not clear how some chemical

contamination applies (e.g., sticky stuff that
adheres to particles?)

= s the average characteristic of the sample

always what the investigator wants to
know?

How can I use this to improve my lot?

= Design the right measurement protocols
(correct delimitation)

= Study the matrix you're sampling
= Increase the mass of the sample
= Take more increments for each sample

= Reduce particle size through grinding
(if OK for the material/contaminant)

= Specify correct subsampling protocols
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(1] From: Alan Goozner at DCOPP7 12/27/96 8:55AM (5369 bytes: 85 1n)
To: melko@juno.com at IN
Subject: Master Sampling Frame for Non-Agrcultural Pesticide Research
----------------------------------- Forwarded -----==--ceeemcc e
From: Alan Goozner at DCOPP7 12/19/96 7:57AM (5121 bytes: 85 1n)
To: chlorine-news@igc.apc.org at IN
cc: PEPI LACAYO at X400, BARRY NUSSBAUM at X400, MATTHEW LEOPARD at X400,
Alan Goozner, Rob Esworthy, Edward Brandt
Subject: Master Sampling Frame for Non-Agrcultural Pesticide Research
------------------------------- Message Contents -----------—ccecrccccccncaccaa—-
The EPA and the USDA historically have divided its
responsibilities for collection of pesticide usage
data where the USDA conducts surveys of farmers for
agricultural pesticide usage and the EPA conducts
specialized surveys of non-agricultural pesticide usage.

In the past, the EPA conducted the National Home and Garden
Pesticide Usage Survey and more recently the Certified
Commercial Pesticide Usage Survey. These two surveys were
National in scope and cost the Government over a million
dollars each to complete.

The EPA is not very well suited for the collection of data.
The Office of Pesticide Programs does not have a
professional data collection staff and needs to contract out
this act1v1ty whenever a study is conducted. This requires
competing in the private sector for a statistical
contractor, the clearance of an information collection
request through OMB and preparation of a report that must
clear many hurdles before being released to the public.

And, by the time the report reaches print, the data can be
as much as 2-3 years old.

Needless to say, the private sector can do a much better,
more efficient and more timely job in collecting data on .
pesticide usage.

In support of this need, the EPA may be in a position to
facilitate the collection of more and better pesticide usage
data for non-agricultural sites. The idea is to construct a
master sampling frame for non-agricultural pesticide usage
sample surveys.

If a frame can be constructed and maintained by the EPA, the
private sector can request samples from this list to conduct
specialized surveys of interest with the intent to share any
data with the EPA. The exact consistency of the frame is
yet to be determined but it may be composed of two major
components of the applicator population: A) Certified
Applicators and B) Homeowners.

Experience in conducting the Certified Commercial Pesticide
Applicator Survey at the EPA shows that state lists are

out of date. Many applicators on state lists have not
renewed their license or are no longer actively applying
pesticides. If these lists can be cleaned up and screened
for certain characteristics that the industry may need to
zero in on for future data collection efforts, a highly
efficient sampling frame can be constructed. For example,
if a National list of pesticide applicators can be



constructed with certain known demographic characteristics

and pesticide usage characteristics by types of application
work and chemicals used, stratified random samples can

zero in to target specific areas of interest for research.

The cost of constructing such a master sampling frame would
be prohibitive for any one private organization
contemplating a National data collection effort. But, the
statistics developed would be more accurate and reliable
from a statistical stand point.

The question is: Is this a good idea?

If such a sampling frame was constructed, would your
organization use it to collect more/better data on pesticide
usage? If used, would it result in a savings in your market
research budget? Would it enable better and safer
introduction of pesticide products? Would producing more
reliable data support the goal of overall pesticide exposure
reduction?

You reply and further discussion is encouraged. If there is
enough industry support, I am willing to propose this to EPA
management in the Pesticides Office as a project. You may
want to communicate what specific non-agricultural pesticide
usage data collection efforts are underway or being
contemplated that may lend itself to using such a master
sampling frame. Would use of such a sampling frame result
in reduced costs for your organization? How much of a
savings would this be on an annual basis?

You may reply directly to:
Goozner.Alan@epamail.epa.gov

Alan R. Goozner, Statistician
USEPA, OPPTS/OPP/BEAD/EAB



Estimating Dietary Exposure to Pesticide Residues
Table of contents

Author Ed Brandt, Economist
Abstract:
Statement of problem and approach

a. Increased need for measures of aggregate exposure
b Limitations of existing residue monitoring programs
c. Government Performance and Results Act of 1993 requires quantitative measures

to define goals and objectives

Suggested measurements for the goal of safe food related to Pesticides

a. Current measures have examined impacts as an indicator of outcomes since so
many factors in addition to pesticide exposures influence national health statitics.

b. The following table provides a schematic of the types of measures proposed for
each effect level.

c. Defining a measure of average annual dietary exposure

d. Basis for estimating average residue per sample

Findings of Statistical analyses

a. Descriptive Summaries of residues by pesticide and crop

b. There is general agreement in the priority ranking between PDP and FDA data for
both chemicals and crops, i.e., same chemicals and crops rank the highest with
respect to residue exposure.

c Chemicals not included in either PDP or FDA account for 70% of agricultural

pesticide active ingredient use, but much of the poundage is represented by

herbicides and fumigants which would normally not be found.

Correlation between PDP and FDA average residue per sample

e. Correlation among crops within PDP and within FDA ( correlation matrix is
in appendices)

e

Suggestions to improve existing programs to estimate national dietary exposure

a. Decrease sample sizes for pesticide residues that can be predicted from
historical data of residues and pesticide use
b. Base sample sizes to reduce existing weighted estimation errors. Weight

estimation error range by risk (amount/toxicity/endpoint of concern).
Future work

Appendicies
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Estimating Dietary Exposure to Pesticide Residues

Ed Brandt, Economist
Economic Analysis Branch
Office of Pesticide Programs 7503W

April 2, 1997 : EPA Statisticians Conference Poster session

Abstract: Several new laws have increased the need to estimate aggregate dietary
exposures. The Food Protection and Quality Act (FQPA) requires the examination of
aggregate exposures for pesticides likely to have additive effects (common modes of
action). The Government Performance and Results Act (GPRA) requires all government
agencies to reformat the budgeting process to connect measures of program outputs to
eventual environmental outcomes . Methodology and results to date are reported
concerning the consistency between two major residue monitoring programs, critical data
gaps and approaches to future data collection.

Statement of problem and approach

a. Increased need for measures of aggregate exposure

i.

The importance of a consistent set of residue estimates across pesticides
has grown with the passage of FQPA. Previously, decision making for a
pesticide focused on whether the residues for the individual pesticide are
acceptable.

The need for a national data base on residue data was recommended by the
National Academy of Sciences but funding for development has not yet
been received.

b. Limitations of existing residue monitoring programs

Two major residue monitoring programs are with USDA and FDA The
USDA's Pesticide Data Program (PDP) was implemented in May 1991, to
provide data on pesticide residues in food to support exposure analyses
conducted by EPA in the registration of pesticides.

(1)  Principal goal is to measure food safety for vulnerable populations
(2) 1992 to 1995 for selected crops and pesticides -(15 crops and 65
pesticides by 1995) for high consumption to infants and children



and potentially riskier pesticides based on existing tox/exposure
data

(3)  capture residues most related to actual consumption, i e, oranges
include pulp only. The skin is excluded

(4)  probability based sample selection at the latest point of distribution.

ii. FDA residue monitoring includes a Surveillance and a Compliance
program. Surveillance data not specifically targeted toward known
problems of misuse so it tends to be more representative than the
Compliance data program which does target producers with past problems.

iii. The Surveillance program has limitations when used to estimate dietary
exposure.

(1)  Primary role is prevention of illegal residues (over tolerance or no
tolerance). The watchdog role limits the flexibility to optimize
sampling for estimating dietary exposure alone

(2)  Program limited by need to seize shipment in 24 hours if found to
be violative. Limits ability to measure residues downstream in the
distribution system (post harvest applications) since grower
identify is lost.

(3)  Monitoring programs designed primarily for enforcement (to ensure
the absence of illegal residues) results in small sample sizes on
important commodities of high dietary consumption.

(4)  Some chemicals not picked up by multi residue methods are
omitted altogether because of the incremental costs of inclusion.

C. Government Performance and Results Act of 1993 requires quantitative measures
to define goals and objectives

i Programs must develop plans which connect program outputs to
objectives.

5. Suggested measurements for the goal of safe food related to Pesticides

a. Current measures have examined impacts as an indicator of outcomes since so
many factors in addition to pesticide exposures influence national health statitics.

b. The following table provides a schematic of the types of measures proposed for
each effect level.



Effect level Items to measure Measures

Outcomes cancer(s), neurotoxic effects, endocrine national health
disruption, other toxic effects statistics
Impacts dietary exposure - residues on food residue levels

percent detects
pesticide use

Outputs New registrations number and type
Review of existing registrations

c. Defining a measure of average annual dietary exposure
i Limit analysis to vanability of an annual national average that is appropriate
for lifetime assessments. Not appropriate for an acute or subchronic
analysis. '
ii. Expected exposure for a residue for chemical x on crop y is a function of
the probability of detection multiplied by probability of residue level given
detection.

(D 2 = avg residue per sample*dietary consumption
& serops

avg. residue= Prob (any detectable residue on crop x)*Expected
residue given detect

iii. These two variables can be combined into a single distribution of the
expected residue per sample. Thus, given 1,000 samples of chemical x on
crop y, there is an expected residue per sample and a probability
distribution of the sample mean.

d Basis for estimating average residue per sample

i The mean and variance of the sampling distribution could be determined
by knowing the probability of detection ( binomial distribution on detects)
with a log normal distribution of residues (log normal fits residue data the
best, consistent with the constant degradation function modeled by a log
normal.

ii. One would expect that percent detect would correlate with percent crop
treated, but this is not the case. Other factors, such as time of application,



pesticide formulation with stickers and adherents, degradation rates,
weather etc. are thought to be important too. More work is needed on the
factors which most affect probability of detection.

There are several alternative ways used to calculate the estimation error of
the true residue amount per sample.

(1)  From probability of detection and residue distribution given
detection. A problem with this approach is that these two variables
are not independent. Percent detect is significantly correlated to the
residue level and is not correlated with the percent of use

(2) Based on variance of average residue per sample over time.
Estimating standard error by sample size and average residue level
for each year. Estimated mean is weighted by sample size for each
year using a weighted variance estimate.

(3)  Calculating percentiles, or in the case of only four years of data
analyzed, the range of average residue per sample.

6. Findings of Statistical analyses

a. Descriptive Summaries of residues by pesticide and crop

ii.

Method 2 and 3 have been calculated but only method 3 is used to
construct a table of ranges.

(D It is easier to understand , does not require assumptions about
homogeneity of variances and distribution form, and is closest to
existing methods for estimating upper ranges of residue.

(2)  Tables are provided in the appendix which summarizes the
estimation of average residue per sample per crop.

Analysis of variance indicates that compared to the variance in residue
levels among chemicals and crops, there is not a significant difference
between years for the same chemical and crop. This makes pooling data
across years more appealing to do.



Average residue is further adjusted by a scaler, the average intake per year
for infants and children and again for women of childbearing age. Since
these tables are rather lengthy, information is summarized again
aggregating on either chemical or crop Variance estimates at an aggregate
level have not yet been attempted.

There is general agreement in the priority ranking between PDP and FDA data for
both chemicals and crops, i.e., same chemicals and crops rank the highest with
respect to residue exposure.

ii.

Differences do exist because of food preparation and sampling as well as
timing of sampling. for example, FDA residues for citrus are higher than
for PDP, because FDA includes the skin. PDP residues are significantly
higher for pesticides that are applied during long term storage (root crops
for example)

Post harvest treatments account for exposure far in excess of the pounds
applied relative to other crops. The majority of post harvest applications
are used to treat fungal diseases on tree fruits and vegetables. Insecticides
are used post harvest for grain storage. Growth regulators are applied to
stored root crops (potatoes) to prevent sprouting.

Chemicals not included in either PDP or FDA account for 70% of agricultural
pesticide active ingredient use, but much of the poundage is represented by
herbicides and fumigants which would normally not be found.

ii.

The quantity of pesticide use, in Ibs active ingredient, has little relation to
dietary exposure

Fungicides and Insecticides account for most of residues yet Herbicides
have the highest use. Harvest aids and growth regulators also account for
high residue levels but the number of pesticides in this category is small.

Correlation between PDP and FDA average residue per sample

The number of observations (or cases) is defined as pesticides which have
PDP and FDA residue data for same crop and sample size exceeds 100
The 100 sample limit is the general rule of thumb used by residue
chemistry.

Intercept set to zero to estimate ratio of PDP to FDA. This reduces the
loss of one degree of freedom for the intercept estimate as well as more



iii.

directly measures the ratio of residues- or multiple between the two.

Key factors affecting estimated ratio of PDP to FDA residue

(a)
(b)
(©)

Portion of product sampled (edible vs. total)

Time of sample collection- including late post harvest

applications that occur later in the retail distribution chain

pesticide action, disposition of residues, and systemic

activity which results in plant uptake of the pesticide.

Estimated Ratio of Residues between PDP and FDA

Fungicides Only
FUNGICIDES |Estimated [Signif|R Square |Cases|Factors affecting multiple
ratio flevel (obs)
PDP/FDA
APPLES 1.65] 0.01 82% 6|2 post harvest pesticides- extreme pts
BANANA 0.04] 0.02 100% 2]FDA includes peel; PDP does not
|CELERY 007] 025] 57%| 3lextreme points- little correlation
EARROT 17.32] 0.27 53% 3jextreme points- little correlation
IGREEN BEANS 015 o002 9% 3
IGRAPES 032] 0.16] 43%| 5
_ILETTUCE 014] 0.14 95% 2
ORANGES 0.04] 0.01 100% 2|[FDA includes skin, PDP pulp only
PEACHES 2.70] 003 71% Slgost harvest pesticide use
POTATOES 2.36] 0.00] 100% 3|post harvest pesticide use
Insecticides Only
INSECTICIDES]| ratio Signifi R [Cases|Possible explanations
Square
APPLES 445 0.00 64%] 19 to be determined
BROCCOLI 0.28] 0.02] . 69% 6 to be determined
CELERY 1.83] 0.03 75% 5 to be determined
CARROT 0.53] 0.06 55% 6 to be determined
G REEN 3.12] 0.01 65% 8 to be determined
BEANS
GRAPEFRUIT 0.02] 0.17 68% 3 portion of fruit sampled
GRAPES 2201 0.04] 45% 9 to be determined




INSECTICIDES|ratio  [Signifi [R |Cases{Possible explanations
Square
LETTUCE 0.77] 0.00 97% 2 to be determined
ORANGES 0.03] 0.00 95%| 10 portion of fruit sampled
PEACHES 1.23| 0.00 89%| 14 to be determined|
POTATOES 1.87] 0.02 54% 8 to be determinedl
SPINACH 6.43| 0.00f 100% 9 to be determined|
WHEAT 048] 000] 94%[ 5 to be determined)
High residue outliers
Fungicides
Crop Both PDP and FDA PDP only FDA only
Apples Thiabendazole,
Diphenylamine

Banana Thiabendazole

Celery CHLOROTHALONIL DICLORAN

Grapes Captan Iprodione

and
Vincozolin

Green beans Chilorthalonil

Lettuce Iprodione '

Oranges Thiabendazole

Potatoes Thiabendazole

Peaches Iprodione and Dicloran Captan

Carrots Iprodione Pentachlorbiphenyl

phenol PCB
Insecticides
Crop Both PDP and FDA | PDP only FDA Only
Apples Propargite Azinphos methyl
and carbaryl




Crop Both PDP and FDA | PDP only FDA Only
Oranges Carbaryl methidathion and
chlorpyrifos

wheat malathion and

chlorpyrifos
spinach permethrin
Potatoes DOT Carbofuran
Peaches Carbaryl Azinphos methyl

Phosmet and

Parathion
Lettuce Permethrin
Grapes Dimethoate, Parathion

omethoate

Grapefruit Ethion Dicofol
Green beans Acephate Endosulfan
Carrots Diazinon DDT
Celery Acephate and

permethrin
Broccoli Permethrin Methamidophos

e. Correlation among crops within PDP and within FDA ( correlation matrix is

in appendices)

Multivariate clustering remains to be done but based on a visual
examination of the correlation matrix, the following crops have high
correlations and appear to cluster.

(1) apples, grapefruit, oranges, bananas, broccoli
(2) peaches carrots grapes

(3) lettuce spinach

(4) potatoes oranges



(5) Crops that do not correlate with any other crop
(a) Celery
(b) wheat
(c) sweetcorn
(d) processed peas

. Crops within FDA based on 20 crops examined
(1)  Crops that appear to cluster

(@) Tomatoes apples string beans peas cantaloupe
sweet pepper hot peppers carrots

(b) .apple pear grapes potato orange cantaloupe
(c) peach cherry

(2) Crops that do not cluster

(a) Catfish
(b) wheat
(c) strawberries
7. Suggestions to improve existing programs to estimate national dietary exposure
a. Decrease sample sizes for pesticide residues that can be predicted from

historical data of residues and pesticide use
b. Base sample sizes to reduce existing weighted estimation errors. Weight
estimation error range by risk (amount/toxicity/endpoint of concern).
8. Future work

a. Developing "synthetic estimates” for pesticides/crop combinations with limited or
no data

i Model residue measurements as influenced by portion of the food sampled,
time of sampling, decay rate of pesticide and metabolites, when applied,
systemic pesticides which are taken up by the plant, and extent and changes
in pesticide use

i. Identify cases for which estimates cannot be made or are statistically weak



iii. Evaluate the robustness of aggregate measures to identify significant
changes or trends in the level of pesticide residues for a given set of
chronic effects, i.e., cancer, neurotoxic, etc.

b. Additional sources toi nclude
i Total diet study
ii. USDA's monitoring of meat milk and eggs
iii. state monitoring

C. Estimating sampling variance - individually and in aggregate for common
mechanisms

d. Clustering and other multivariate techniques to identify plausible
interrelationships of huge data sets

e. Developing relationships between pesticide use parameters, crop and
pesticide chemical/physical properties to improve regualtion of pesticides

Appendice

a. Crops listed in order of estimated dietary pesticide consumption of
children and women of child bearing age- FDA and PDP

b. Pesticides listed in order of estimated dietary pesticide consumption of
children and women of child bearing age- FDA and PDP

c. Agricultural pesticides not included in PDP or FDA from 1992 to 1995:

10



Mathematical Geology

Volume 26, Number 3, April 1994

Contents

ARTICLES
Spectral Simulation of Multivariable Stationary Random Functions Using
Covariance Fourier Transforms
E. Pardo-Iguzquiza and M. Chica-Olmo

The Integral of the Semivariogram: A Powerful Method for Adjusting
the Semivariogram in Geostatistics
Fréderick Delay and Ghislain de Marsily

Postenior Identification of Histograms Conditional to Local Data
André G. Journel and Wenlong Xu

Estimation of Background Levels of Contaminants
Anita Singh, Ashok K. Singh, and George Flatman

Comparative Performance of Indicator Algorithms for Modeling
Conditional Probability Distribution Functions
P. Goovaerts '

BOOK REVIEW

Principles of Mathematical Geology by"A. B. Vistelus
Reviewed by C. John Mann

LETTERS TO THE EDITOR
Comments on ‘‘Cumulative Semivariogram Models of Regionalized
Variables™ and **Standard Cumulative Scmivanograms of
Stationary Stochastic Processes and Regional Correlation®
by Zekai Sen
Donald E. Myers

Reply to Comments by Donald E Myers
Zekar Sen

323

361

389

413

117




Mathemaucal Gealogy, Vol 26, No 3, 1994

Estimation of Background Levels of Contaminants

Anita Singh,? Ashok K. Singh,® and George Flatman®

Sumples frum huzardows wasie site imvesnganiony frequenth come from two or more stansical
populations Assessmeni of background  levels of comanunants can be a ugnificant problem The
problem is being invesitgated at the U S Environmental Protection Agencv’s Environmenial Mon-
woring Svsiems Laboratory i Las Vegay This paper describes a siansnical approach for assessing
bachground levels from a dataser The elevated rvalues that mav be avsoctaied with a plume or
contanunated area of the sie are separaied from lower values that are assumed to represent
background levels 11 would be desirable 10 separate the imo populavons etther spanally by Knging
the data or chronolugically by a nme senes analvsis, provided an adequate number of samples
were properly collected 1n space andfor tme  Unforwnately, quite ofien the duta are too few in
number or o0 mmproperly designed to supporit either spanal or nme series analvsis Regulatoas
nprcally call for nothing more than the mean und siandard deviation of the background disirihution
This paper provides a robust probubilisic approach for ganmng this informavon from poorly col-
lected data that are not suable for above-mennoned alternauve approaches We assume thut the
wie has some areas unaffecied by the mdusirial acnvun. and that a subset of the given sample s
from this clean part of the sue We can think of this mulinanate data set as comng from two or
mare populutions the background population  and the comaminated pupulattons (with varing
degrees of comanunaiton} Usng robust M-estumators we develop a procedure 1o classify the sample
into component populattons We derive robust sumuliuneous confidence ellipsoids 1o establish back-
ground contarminguion levels Some sumidaied as well as real examples from Superfund sue inves-
nganons are included 1o lustiate these procedures The method presented here 1s quite general
and 15 surtable for many geological and hological applications

KEY WORDS: robust M-esumators. influence function, background esumation, robust confidence
hmits, separation of mixed sample

INTRODUCTION

The United States Environmental Protection Agency (U S. EPA) encounters the
staustical problem of mixed samples from two or more populations in Resource
Conservation and Reclamation Act (RCRA) and Superfund Amendment and

'Received 23 June 1993, accepied S November 1993
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Reauthorization Act (SARA) Evaluation and Remediation. This problem 1s being
considered at U.S. EPA's Environmental Monitoring and Systems Laboratory
at Las Vegas (EMSL-LV). This paper presents a solution from a probability
distribution-based method. A sample of concentration values of contaminants
from a Superfund site can be thought of as a mixed sample of background
concentration values plus the concentration values from a plume or plumes At
first glance, a statistical analyst could think that the mixed sample from a Su-
perfund site could be separated spatially by a Knging analysis However. these
statistical techniques need data obtained using appropnate staustical designs
Unfortunately, regulatory life is not simple. Often only oo few samples or
improperly spaced data for spatial or ume series analysis are available and the
required regulatory information is only the mean and standard deviation of the
distribution(s). This paper provides a robust probabilistic approach for gaining
this information from data that are inadequate for above-mentioned alternative
approaches.

The occurrence of mixture samples from two or more normal (lognormal)
populations has been well recogmzed in several applied areas of interest such
as biology, geology, medicine, reliability, and environmental science Several
classical partitioning methods are available in statistical literature. Sinclair (1976)
used normal prabability plots for graphical partitioning of mixture samples in
mineral exploration studies. Holgersson and Jomer (1978) gave a good review
of vanous methods including graphical, maximum likehihood (MLE}. nonlinear
least squares, and method of moments. Fowlkes (1979) performed exicnsive
simulations to compare several graphical methods including the usual histogram
method, the normal probability Q-Q plot. and the empirical cumulative distn-
bution function. The ability of these classical and graphical methods to 1denufy
mixtures in samples is doubtful, especially if discordant observations are also
present in these samples. Moreover, the detecuon of these mixtures becomes
extremely difficult in the presence of overlap among the component populations.
Campbell (1984) used robust methods to study the effect of anomalies on mixture
models. Recently Fleischauer and Korte (1990) used the point of mflecuion of
the normal probability plot to obtain an estimate of threshold background level
contamination.

The graphical display. unarguably, 1s one of the most powerful diagnoste
tools 1n the hands of a researcher. However. a subjective estimate ol the point
of inflection obtained by looking at these graphs ts questionable. especially when
more than two component populations are present. The overlap among the com-
poncnt populations generally masks the point of inficcion Moreover. the anom-
alous obscrvations (1f any) and the presence of several (unknown) component
populations can distort the Q-Q plot to such an extent that the resulting inflection
point cstimatcs may not be rchable. If one wants to use the Q-Q plots as o
partitioning method. @ stepwise procedure 1s desirable The proposed stepwise



Background Levels of Contaminants 363

procedure requires construction of a Q-Q plot at each step. Populations with
higher concentration levels will be identified first. Each step identifies a sample
from a different population. In this article, we propose robust procedures to
partition a given mixture sample into its component populations. Data-appraised
robust confidence limits for the individual observations placed on the same
Q-Q plot produce a more precise estimate of the cutoff point between two
adjacent populations This reduces the subjectivity involved in choosing the
infiection point from the graph. Several simulated as well as real-lfe examplcs
have been discussed to illustrate these procedures. The mathematical formulation
1s given in the second section, the third section has all the examples, and finally,
there is a summary of our conclusions and recommendations.

MATHEMATICAL FORMULATION

The density function fy,(x) of a mixture population with (g + 1) unknown
component populations 1s given by

X

fulx) = ;;0 p.fi(x; u,; 0) (n
where ¢ = 1. and f(x. u,, 0,) 1s the density function of the :th population IJ,.
assumed to be normally (or lognormally) distnbuted with unknown mecan and
standard deviation (SD) g, and o, respectively, and p, 1s the unknown mixture
proportion for 1.+ = 0, 1.2, ..., g, with Ep, = 1. Throughout the rest of
the aricle, 1t has been assumed that the researcher has performed a suitable data
transformation to achieve normality or near-normality (e g.. log-transformation
for positively skewed data) before proceeding with the following algonthm.
Given a sample x;, x,, . . . , x, of size n from this mixture model, the objective
is to resolve it into its component populations, 1.e., find n, = 0 such that n,
observations belong to I, with £¥_, n, + ng = n. Here np = 0 1s the number
of extreme unusual observations which stand alone and do not belong 10 any of
the given (g + 1) populations. The subsample of size n, then can be used 10
estimate the parameters of population I1, and its proportion p,, «+ = 0. 1. .
g. The normal probability Q-Q plot 1s generally used to get an 1dea about g.
the number of populations present. However. inevitable overlap among the
component populations and/or the presence of anomalous observations gencrally
distort the Q-Q plot significantly, resulting in masking of some of the componcnt
populations, especially those populations which have lower concentration levels
Traditionally. theoretical quantiles from a standard normal distnbution are plot-
ted along the x-axis in a typical Q-Q plot. However, in this article. we usc the
theoretical quantiles from N(x, s) for the classical Q-Q plot and the theoreucal
quantiles from N(x*. v*) for the robust Q-Q plot. here v s the sample mean
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s the sample standard deviation, and x*, s*, (defined later 1n this paper), rep-
resent their robust versions, respectively.

The imtial step in the process is to idenuify nz = 0 highly contaminated
observations, which stand alone by themselves on a normal probability plot.
These observations may require individual treatment and/or further invesugation
and should not be included in the subsequent partiioning of the underlying
mixture sample. Due to masking effects, the exclusion of these observations
from subsequent analysis may be required to identify intermediate populations.
This does not mean at all that these observations have been thrown away. The
new Q-Q plot will be drawn using the remaining n — ng observations. This
Q-Q plot will reveal if any representative samples from populations with higher
concentrations, namely [I,, I1, _, etc. are present. Robust confidence limits for
the individual observation x, drawn on these Q-Q plots provide an objective
(rather than subjective) estimate of the cut-off point between two adjacent pop-
ulations. The process 1s repeated until all of the observations have been classified
into the vanous component populations. Each time a population 1s 1dentfied, a
new Q-Q plot with the new robust limits 1s drawn using only the unclassified
observauons. This process provides a good estimate of the number of remaining
populations that need to be identified. At each step, these robust limits corre-
spond to the most dominant population present at that step. If there 1s such a
population present, then this population may be idenufied first, using these
robust limits as the estimates of its cutoff points from the adjacent populations.
The separation between two populations 1s probably most difficult in the pres-
ence of overlap. The overlapping populations (if any) should be 1dentified in
the very end. All these i1deas have been explained by means of several examples
presented 1n the following section.

Here, Il represents the background population and I1,; ¢« = 1,2, ..., ¢
represents contaminated parts of the site with varying degrees of contamination
levels in ascending order of magnitude, with II, representing the population with
highest contamination levels. A recently proposed redescending PROP (Singh,

1994) influence function used here to idenufy the discordant observations 1s
given by

¥(d)

(I lfd < (I“
= dy exp (—=(d — d,)) if d > d, (2)

where dj 1s the (o) 100% cntical value of the distribution of d7 = (x, — %)%/
s? which 1s distnbuted as an (n — 1)*B(1/72. (n — 2)/2)/n. wherc n here rep-
resents the number of observations used in the computation of ¥ and s

It should be noticed that the number of observations used will be updated
cach time the process 1s repeated. For the imial neration all of the n observauons
will be used. neat - — n, will be used. and then the remaming n ~ n, of
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observations classified 1nto I1, will be used, and so on. Each observation 1s
assigned some weight according to its extremeness in either of the two tails of
the distribution. These weights provide a very effective way of obtaining esti-
mates of the degrees of freedom needed to compute the individual robust con-
fidence limits at each step. The resulting M-estimators for a given sample are:

x* = Lw, (d)x/Lw,(d),

and

5 *2

wy (d) (x, = x*)v (3)
wl(dl) = d’(d:)/dn O)-_,(d,) = [wl(d:)lz

v = Lw,(d) — 1. The robustified distances d*2 = (x, — x*)*/s** follow a
VB(1/2, (v — 1)/2)/(v + 1) distnibution. The two-sided robust limits for the
individual observation x, are given by the following probability statement-

P(LTL = x, = UTL) = | - q, =12, ..n (4)

where LTL = x* — s*d* and UTL = x* + s*d¥, x* and s* are given by
(3), and d*? is the (a) 100% critical value from the distnbution of d*2. The
one-sided (I — «) 100% robust limit for individual x, can be obtained similarly
The index i runs over the number of observations used in a typical step. Once
the ng extreme observations have been identified and removed from the data
set, new Q-Q plot using the rest of the n — n observations 1s drawn It should
be emphasized that the limits used here are for the individual observations X,
and riot for the population mean u, as 1s sometimes done in practice For ex-
ample, in the context of background level estimation, individual observations
are being compared (and not the population mean p)to these threshold limits.
Therefore, these limits should be computed using the appropriate interval. A
brief description of the various intervals and limits is given in Singh and No-
cenno (1993).

The robust limits given by (4) when drawn on the same probabulity plot
provide a good imual estimate of the cutoff point between the adjacent popu-
lations. An estimate of the cutoff point c, between populauons T1, and I, .
will be obtained first from this Q-Q plot. All of the unclassified observations
X 2 ¢, (not including the n; extreme observations) will be used 10 obtain the
robust interval /, = (LTL,,UTL,) for the gth population I1,. All of the unclas-
sified observations belonging to this interval will be declared as coming from
Il . Next, all the observations x > LTL, will be dcleted from the subsequent
partitioning and a new Q-Q plot with the new robust limits will be obtaincd
using the remaining observations An cstimate of C, - . the cutoff point between
populations TI, _, and I, .,. will be obtained from this plot. All unclassificd

¢ -
observations x = ¢, , will bc used 10 obtain the robust boundanies given by

<
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ly-y = (LTL,_ 1w UTL, _,) for the (g — 1)th population II, _,. All obscrvations
belonging 1o I, _, will be declared as coming from I1, _,. In case of any overlap
between I, _, and I, i.e., when LTL, = UTL,_,, observations in the range
(LTL,,UTL, _ ) can be assigned to either of the two populations T'IL, or I, _,.
However, the PROP influence function (2) used in the denvation of the robust
limits given by (4) minimizes the overlap between the estimates for the two
adjacent populations by down-weighing the extreme observations appropriately
in either of the two tails of the distribution of the underlying populations. More-
over, when the two adjacent populations have disjoint boundanes, the obser-
vations (1f any) belonging to this unclaimed region (LTL,,UTL, . ,) should be
assigned to their nearest neighbor.

This process will be repeated as many times as required untl all of the
observations have been classified into their respective populations. At the final
step, the threshold values for the background population I1, will be estimated.
The remaining unclassified observations will be used to estimate UTL,,, which
Is given by the one-sided probability statement:

Pix, < UTLy)) = | -

where UTL, can be obtained using (4) by replacing o with 2 * ¢

Observations smaller than UTLy will be declared as coming from II,. As
before, if there is overlap between Ilpand I, 1e.. LTL, < UTL,, then obser-
vations 1n the overlapping range (LTL,. UTLy) can be assigned to either of the
two populations I1; or IT;,. Once the boundanes for the varous component
populations have been established, the complete classification procedure can
now be descnbed in various steps as follows:

I. First of all, identfy all of the extreme observations n; = 0 These will
not be used 1n any of the subsequent partitioning of the underlying sample.

2. Next define a, = no. of observations e the overlapping region
(LTL,,UTL, _ ) between populations I, _ rand I, witha, _, = 0 of these €IT, _ |
anda,, = Qof these ell,, i = 1,2, ... | g.and b, = no of observations ¢ the
unclaimed region (UTL, _,, LTL,) between populations I,_, and I,. with b, ,
> 0 of these €Il, and b, _,, = 0 of these ell, ;.1 =1.2. .8

3. Identify all of the non-overlapping observations eIl, Then i, = (no. of
non-overlapping observations < UTLy) + ay, + b, ,

4. In general, the number of observations ell, 1s given by n, = (no. of
non-overlapping observations e/)) + a,ta, ., +b,+ b, ., where: =
1.2, (g -1 . .

3. Idenufy all of the non-overlapping observations ll, Thenn, = (no of
non-overlapping observations > LTLy) + a,  + b,

6 Once. the number (g + 1) of populattons present. and the respective
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subsample sizesn,, i =0, 1, . . . » & have been estimated, the (g + 1) population
proportions are estimated using the following formula:

P,=n,/(n—n5), i=0.l, .. 8

7. Finally, using these n, observations, the robust estimates of the param-
eters of population I, i = 0, 1, . .., g will be obtained using (3).

In order to illustrate the proposed statistical procedure, we now present
some simulated as well as real examples.

EXAMPLES AND DISCUSSION

The procedure descnibed here has been applied to two simulated datasets
as well as a real dataset from the Sacramento Army Depot Superfund Site from
Region 9 EPA. There were six pnmary contaminants at the Sacramento Army
Depot Superfund Site: Cadmium (Cd), Chromium (Cr), Copper (Cu). Lead
(Pb), Nickel (Ni): and Zinc (Zn). A total of 45 samples were analyzed for the
above contaminants, six from uncontaminated regions of the site; which will be
referred to as the site-specific background sample; and 39 from contaminated
regions of the site. Moreover, the procedure outlined here has been used on a
simulated data set representing a sample from a mixture of two lognormal pop-
ulations. Three simulated data sets and the Sacramento Army Depot Superfund
Site data set are given in the Appendix. In the following. all letters with * as 4
Superscript represent robust estimates, else, they are the classical maximum
likelihood estimates (MLEs). All the computations have been done using the
statistical software package SCOUT developed by the Lockheed Environmental
Systems & Technologies Company (LESAT) for the U.S EPA.

Example 1. A mixture sample of size 100 was generated from two rea-
sonably separated normal populations with 90% (pi = 0.9) observations coming
from a normal population I1y with mean 10 and SD 3 ~ N(10, 3) and 10% ( p,
= 0.1) observations coming from II, ~ N(27, 8). Observations for the first
sample ranged from 2.485 to 18.598, whereas observations for the second sam-
ple ranged from 9.489 10 43.998. indicating some overlap between the two
populations. This is the data set no I, given in the Appendix The normal
probability Q-Q plots for the whole data set with the classical and the robust
hmits placed on them are given in Figs. la and b, respectively. From both
graphs, 1t 1s obvious that there are two populations present. The upper robust
himit 15.99 for the domunating population I, provides an estimate of the cutof
point ¢, between the two populations (Fig. 1b). Next. using all observations >
¢,. the 95% robust one-sided lower boundary for the population 1, with -higher
concentrations 1s given by LTL, = 17.5 (Fig. 1¢) Therefore. all of the obser-
vations greater than L7L, are classified as coming from IT; Using the remaiming
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unclassified observations (smaller than 17.5). the Q-Q plot with the robust limits
placed on it is shown in Fig. 1d. From this figure. it is obvious that there is
only one population left. The 95% one-sided robust upper boundary UTL, =
13.84 for I, is given in Fig. le. All observations less than 13.84 are classified
as coming from Il,. Observations in the range (UTL,. LTL,) will be assigned
to their nearest neighbor. Thus the observation 16.107 (the only observation in
this range with b, = 1) will be assigned to II,. Two observations from II,.
namely, 16.107 and 18.598 are misclassified into I1,, and one observation 9.489
of IT; has been misclassified into IL,. All of the relevant estimates of the pop-
ulation parameters after the final classification are summarized in Table 1.
Example 2. In this simulated example, we consider a three population
mixture model with ten observations from an N (20, 4) population, 100 from an
N(0.1) population, and 30 from an N(5. 1). Moreover. in order to show the
extent of distortion of the Q-Q plot by the presence of extreme observations.
two extreme observations from an N(100,10) are also included in this mixed
sample. This is data set no. 2 in the Appendix. The classical and the robust
Q-Q plots using all of theel42 opservations are given in. Figs 2a and b, re-
spectively. Both graphs idenfify the two extreme obscrvations. Moreover. both
graphs give indications of the presence of a sample from a population with
higher concentrations (observations no. 1-10). However. due to the large vari-
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Table 1
Popn. 95% Limits a,. b, n, P, x* i x s
I, UTL; = 13.84 bay = 5 89 .89 991 2.36 9.78 2.59
11, LTL, = 17.50 by, =1 I 1 30.71 840  30.71 8.40

ation in the data set, the intermediate population is masked in Fig. 2a, whereas,
Fig. 2b gives a clear indication of the presence of at least three populations.
Figures 2c and d represent the same graphs after removal of the two ny = 2
extreme observations. From Fig. 2c, one can wrongly conclude that there are
two populations present with observation no. 118 = 6.67 as the inflection point.
However, this is not the case here, as is obvious from Fig. 2d. Using observation
no. 10 as the cutoff ¢, = 16.41 between populations I, and IT,, the classical
as well as the robust (same) lower boundary for population IT, is given in Fig.
2e. All observations greater than L7L, = 13.85 will be classified into I1,. A
new Q-Q plot using the remaining unclassified observations is given in Fig. 2f.
which leads to ¢, = 2.34 as the cutoff point between populations I1, and I1,,. It
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should be noticed that the robust procedure used here has produced the same
cutoff point of 2.34 between populations I, and II;, as can be seen from Fig.
2b, d, and f. Using all unclassified observations =2.34, the two-sided 95%
robust boundary for population II, is (3.16, 6.26), as given in Fig. 2g. Next all
observations less than 3.16 have been used to draw the robust Q-Q plot, given
in Fig. 2h. From this graph it is obvious that there is only one population Il
left at this stage. Using these observations, the 95% robust upper boundary for
the background population is given by UTL, = 1.485. All observations less
than this threshold will be classified into the background population I1;. Once
the boundaries have been set, observations in the overlapping and the unclaimed
regions have been classified according to rules described above. All of the
relevant statistics using the final classification are summarized in Table II.

Example 3. In this example, we consider the data set from a Superfund
Site with six samples known to come from the background population (obser-
vauons 33-38). As mentioned earlier, the site was sampled for six contaminants,
but the results for cadmium concentrations alone are included in this article.
The data for the 45 collected samples (background samples included) 1s given
in data set no. 3 in the Appendix.

The average site-specific background level of a contaminant plays an im-
portant role in remediation decisions. As such, the estimation of the average
site-specific background of a contaminant is an important problem. We now
show the results obtained by using the proposed procedure on Cadmium con-
centrations. The classical as well as the robust Q-Q plots for cadmium are given
in Figs. 3a and b, respectively. From these figures, 1t is obvious that observation
nos. 15, 9, 22, and 21 represent extremely contaminated samples and should
be treated individually. From Fig. 3b, there is a clear indication of the presence
of at least three populations. Figure 3c represents the robust Q-Q plot after
removal of these ng = 4 extremes, which also indicates the presence of at least
three populations. Using ¢; = 260.27 (observation no. 19 after the removal of
extremes) as the cutoff point between populations II, and Il;, all observations
greater than ¢, will be used to estimate the parameters of II;, the population
with high concentrations. Figure 3d indicates that these observations are from

Table I1
]| 95% Limus a, b, n, P, x* 5* - N s
1y UTL, = | 48 bg, =5 98 7 -003 0 8% -0 07 097
11, LTL, = 3 16 by, =1 32 23 471 0 81 459 1 06
UTL, = 626 by =1
U, LTL, =138 by, =0 10 07 2145 186 235 18

|
1Jd
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a single population. The one-sided lower 95% boundary for this population 1s
LTL; = 205.91 as given in Fig. 3e.

A new robust Q-Q plot using only the unclassified observations 1s given
in Fig. 3f. There is a clear indication of the presence of three more populations.
The robust boundary (109.166, 131.623) given in Fig. 3g for the intermediate
population II, is obtained using the top 12 observations of Fig. 3f, with ¢, =
111.60 as the cutoff point. Observation nos. 2, 4, and 5 (with b, = 3) of Fig.
3g belong to the unclaimed region (UTL,. LTL) and will be assigned to appro-

k
1
1174 [958 UTL ke 11 6423 sy
A ]
Awmpytony @00
*Sunduwd Doviatien |s 0.89¢3 .
11} ()]
"
3
l [ &]]
a1y
‘™,
168
10 r?ﬂ 39 en 60
Comtrol Ot (individesd Chuorvutiond

Fig. 3k. Cd conc for a superfund site-robust chan-known background conc

Table 111 \
1 95% Limts a. b, n, . v ™ 1 )
1L, UTL, = 12 31 — 9 22 1 Q2 0 86 8 66 KA
i1, LTL, = 21 56 b.,=1 10 24 31 45 555 3278 719
UTL, = 41.32
1, LTL, = 109 2 by =2 | 27 120 39 63 128 07 I8 11
UTL, = 131 6
I, LTL, = 2059 by =1 ] 27 019 150 R2 0y 150 X2

ny - —_ 4 - .- -~ —




Background Levels of Contaminants 383

pnate populations using the nearest neighbor technique (see Table [II). Next, a
new Robust Q-Q plot using only the remaining unclassified observations is given
in Fig. 3h, giving a clear indication of the presence of two populations with the
cutoff point ¢, = 22.05 (observation no. 12 in Fig. 3h). The 95% robust bound-
ary = (21.576, 41.319) for population IT), using the top ten observations of
Fig. 3h, is given in Fig. 3i, with one observation belonging to the unclaimed
region (UTL,, LTL,), with b, = 1. Finally, using the last nine observations, .
the 95% upper threshold value for the background level contamination 1s UTL,
= 12.308 as can be seen in Fig. 3;. However, in this case, six samples from
the background were also available. The robust 95% upper boundary using these
six background samples is given in Fig. 3k. The values in Figs. 3j and k are 1n
close agreement, establishing the correctness and validity of the procedure de-
scribed in this article. All relevant statistics after the final classification have
been summarized in Table III.

Example 4. In this example. we consider a simulated data set (given 1n
the Appendix) which consists of a mixwure sample from two lognormal popu-
lations with some overlap. A sample of size 20 1s obtained from a log N(O. 1)
population and a sample of ten 1s generated from a log N(4,'2). We use this
example to show the effectiveness of the proposed robust procedure 1n decom-
posing the mixture into component populations The classical Q-Q plots of the
untransformed and the log-transformed data are given in Figs. 4a and b. re-
spectively. From Fig. 4a, it can be concluded that the sample is from a single
positively skewed population with observation no. 22 as an extreme observation.
This may lead the user to take the log-transformation  From Fig. 4b. one can
conclude that the mixture sample comes from a lognormal distribution with
observation no. 22 to be shightly discordant. The corresponding robust Q-Q plot
before and after the log-transformation are given by Figs. 4c and d, respectively
Figure 4c suggests that there are more than one population present. Figure 4d
clearly separates the two underlying log-normal populations with cutoff point ¢,
= 1.61. All of the relevant statistics are summarized as follows in Table IV.

CONCLUSIONS AND.RECOMMENDATIONS

The proposed robust procedure works quite effectively in classifying a
mixture sample into its component populations. In all of the cxamples discussed
here, the procedure described here classified the observations correctly into their
respective populations. When the data represent a mixture from lognormal pop-
ulations. the procedure based upon the classical MLE estimates may identify
some of these observations as anomalous However, the robust procedure de-
scnbed here gives an indication that there s more than one population present
(c.g . see Fig dc) This in tum. forces the user to venly the distnbutional
assumptions It 1s assumed that the user has some fanmibanty with symmetnc
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, Table IV
Popn 95% Limuts a, b, n, P. ™ 5* 1 )
I, UTL, = 1 143 - 18 06 0242 0563 0 187 0 643
11, LIL, =1419 - 12 04 3503 1 324 3 688 1 58

and skewed distnbutions. It 1s the user’s responsibility 1o achieve near-normality
(or at least symmetry) for each of the component populations before using the
procedure descnbed here. The robust procedure descrnibed here works quite
effecuvely in decomposing a mixture sample 1nto its component lognormal pop-
ulations as well (see Fig. 4d). The stepwise procedure described here combines
the natural separation between the component populations. The sample from the
Sacramento Army Depot Superfund Site included a known site-specific back-
ground sample This, however. 15 not the case for many Superfund sites The
proposed statistical procedure will be a very useful tool for esumation of site-
specific background for such Superfund sites.
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APPENDIX

Dataser 1

Normal muxture generated from populations N(10. 3) and N(27. &) .90
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1050, 1195. 1016, 11 09. 735. 11 01. 1026. 1206. 16 11. 12 03. |2 62
1029 14 63. 11 65. 13 13.793. 8 18. 11 11.795 8§15, 14 20.7 99,13 3],
963, 882 8420732, 1859. 797. 643, 1339 339 740, 1273 8 59
T334 834, 57183829, 1199 1123526 94 712 1485 11 0N
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10 11, 11.01,9.57, 11 01, 12.25, 7.93, 4.48, 9.13, 6.58. 13.89, 6.70. 12 04.
7.69, 10.84, 9.13, 6.84, 10.33, 33.38, 23.49, 30.01, 37.23, 37.66. 31 27.
34.94, 9.48, 31.08, 43.99.

Dataser 2:

Normal mixture with ten observations from N (20, 4), 100 from N(O. 1).
30 from a N(5. 1), and two extreme observations from N(100. 10) 18 12.
16.60. 27.60, 23.27, 29.80. 18.24, 24 .40, 23.04, 16.98, 16.41. 1 77. 2 38,
-022, -0.35, -0.40, 1.00, —0.01, —0.16, 1.44, —1.03, —1.84. 0.94.
-031, —103, 1.19, —0.14, —1.42, —0.89, —0.23, 0.18, -0 96, —0.17.
006, 1.62, —0.03, -0.25,0.30, 2.48, —0.02, 1.23.0.10, 1.13, -0.69, 0 72,
—0.86.011,116.075,027, -1.40,0.29, —0.52,2.47, 1.01, 1 89. —0 8.
020. -0.66, —1 05, —0.10. 1.44, 0.72, 0.33, 1.06. 048, —069. —0 48.
-1 13, =067, 0.12, -0 15, -0.10, —2.54, 0.25, —=2.04, 055. —1.32.
—009.051,0.06,154.081. —1.65, —0.39, —0.01.0.41. -0 51. -0 60.
1 24, —1.48. 0.51, 0 13. 0.93, -2.17, 0.63, —0.39. —1.37, 1 17. =1 29.
-010, 0.30. 084. -0 11. 1.66, —0.66, —0.50. —087. —1 59, —0.69.
—201,416,397,418,371,4.55,3.45,5.62,6.67.425,4.76,524.5 78.
523.6.20. 118,562, 4.51,5.35,4.34,4.77, 6.07,. 4 24. 4 26. 377. 5 16.
4 07.546.3.80.550.4.84. 123.76, 117.61.

Daiaser 3.

Cadmium concentrations from the Sacramento Army Depot Superfund Site
26 20. 27 55, 445 01. 30 77. 486.31, 513.79, 112 81, 159.30. 1300. 6 68.
3372, 3501, 10.99, 22 05. 830 94. 125.07, 40.84. 345 52, 384 80. 183 04.
2300, 1500. 260.27, 32.09. 166.16, 31.68, 12.39. 614 53. 639.52, 116 24.
11943, 111.60, 1029, 1.68, 3.34, 10.47, 11.74. 10 32, 122 30. 283 03.
265.08. 125 49, 131.06, 47.90, 119.34.

Dataset 4:

Mixture of 20 observations from lognormal N(0, 1) and 10 from lognormal
N4, 2) 05300, 2.7538. 3 2237, 0.2871, 1.2915, 1 5795. 2 0817. | 0633.
0 7486. 0 8284. 1 3252. 1 6477, 12311, 2 6518. 0 7258. 52913, | 9187.
10 3898. 0 5373. 14311. 332.1949, 988.3606, 19 3491. 9 3424, 9 2353
88 1362. 56 3981. 115 9378. 27.8464, 34.4647
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Representativeness in Statistics
“and Quality Assurance

John Warren

Quality Assurance Division
Oftfice of Research & Development
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Representativeness Influences:

Data aggregation.

o Merging data sets having similar Quality
Assurance protocols collected using probabilistic
sampling frames

o Merging data sets having a probability basis with
similar data with a non-probabilistic basis



Representativeness Influences:

Hypothesis testing.

o Comparing data sets with different extraction
methods and different sample matrices

o Comparing data sets having both within and
between differences in the setting of the m1n1mum
det&ctlon levels and data editing



Factors Influencing Representativeness

Sample Selection' Technique:

o Probabilistic: | |
- - Systematic with SRS
- Composite with SRS

- Adaptive with any other

0 ’Non-probabiliStic:
- Judgmental
- “Found data”



Factors Influencing Representativeness

Sample Analysis Methodology.

o Intra/Inter laboratory differences
- 0 Method equivalence problems
o Heterogeneous sample matrices
o Variation in Quality Control
- Calibration frequencies
- - Detection levels |
- Laboratory protocols
- Extraction efficiencies



Statisticians Are Little Help

A Dictionary of Statistical Terms
F.H.C. Marriott, 1990 International Statistical Institute

In the widest sense, a sample which 1s
representative of the population. Some confusion arises according to
whether ‘representativeness’ is regarded as meaning ‘selected by
some process which gives all samples an equal chance of appearing
to represent the population’; or, alternatively, whether 1t means
‘typical in respect of certain characteristics, however chosen’. On
the whole, it seems best to confine the word ‘representative’ to
samples that turn out to be so, however chosen, rather than apply it
to those with the objective of being representative.



Kruskal and Mosteller : 1979

Three papers 1n International Statistical Review
“Representative Sampling” commonly applied to:

O 00 ~J O\ Wi B W R =

. as a “seal of approval”

. to denote “absence of selective forces”

. as a “miniature of the population”

. as being a “typical or ideal case”

. to denote “coverage of a population”

. as a “vague term to be made more precise”
. as a “specific sampling method”

. as “permitting good estimation”

as “good enough for a particular purpose”



“Seal of approval”

No explanation provided of what prdcess was used
to go from target population to sampled population

Use of “représenta—ti‘ve” is to convince the reader to
have faith in the reported results and therefore the
truthfulness of the conclusions o



“Absence of selective forces”

Used to imply that the sampling method used
deliberately excluded selective forces that might
over-represent some sub-population

Highlyl vulnerable to personal bias in elimination
methodology:



“Miniature of the population”

Implies that every nuance of the population 1s
reflected in the sample i.e. identical frequency
distributions for sample and population.

In practice, it is obvious this cannot be acheived



“‘Typical or ideal case’,’

~ Inevitably only a single Spécimen from the
population has been selected

~ Tremendous possibility of bias but the implication is
that an “ideal specimen” has been selected without
- true definition of whether this implies “average”,
“worst case”, or “best case”



“Coverage of the population”

The implication is that the sample selected has a
wide range across the population. ‘At least one
example from each class or potential partition
(stratum) has been collected but the appropriate
weighting factors not made available.



“Vague term to be made more precise”

The word “representativeness” is used as a promise
of things to come from a more detailed (not |
specified) technical consideration of the problem.
The use of the term is intended to give permission to
discuss a problem without getting sidetracked by

~ technical details



“Specific sampling method”

This is the use of “representative sampling” when

- really the true kind of sampling has been deemed by
~ the author to be too complex for the audience’s

- comprehension. The intent of the author:

~ understanding by the majority, over-riding the true
comprehension of the minority. (often statisticians)



 “Permitting good estimation”

The connotation that because some sample can be
labeled “representative” it will therefore allow for
satisfactory estimation without the necessity of
defining what this actually implies.



" “Good enough for a particular purpose”

This is the use of a sample to 1llustrate a particular
theory or hypothesis. It is a variation on the concept
of using a sample size 1 in that a counter-example
(non-random sample) can be enough to prove a case.



Representativeness as an Indicator

Data Quality Indicators: PARCC

Precision

Accuracy (really Bias)
Representativeness
Comparability
Completeness



PARCC: Representativeness

o Qualitative measure

o Open to individual 1nterpretat10n
o Depends on media homogeneity
o Difficult to ensure

o Often demands many samples

o Needs expert opinion



- PARCC: Comparability

- 0 Qualitative measure
o Expresses a degree o

f confidence

o Requires same variables of interest
o Needs units convertible to a standard
o Requires similar analytical procedures

o Needs compatible ru

es for data editing

o Requires similar sampling frames
0 Needs meaningful temporal limits
o Requires expert opinion



PARCC: Completeness

o Quantitative

o Influence depends on sample de&gn
o If unbiased - loss of power

o If biased - loss of validity

o Needs expert opinion



" PARCC are Interrelated

Representativeness

LN

Completeness = — Comparability




Regulatory use of Representativeness

Essentially never defined

Water (40 CFR 403) “...samples should bé_ representative of
daily conditions”

Air (40 CFR 51) “ .'.'.sele'cted on the basis of spatial and
climatological (temporal) representativeness”

" TSCA (40 CFR 763) ..at locations representatlve of the air enterlng
| the abatement site”

RCRA (40 CFR 260) “...a sample of a universe or whole which can be
| expected to exhibit the average properties of the
universe or whole”



~ Potentially Promising Areas

o Composite statistics & area of support |
-0 Combining environmental information

o Applying Gy’s theory of sampling



Composite Statistics & Area of Support

o Interpretation of “support”

~ e.g. Linkage of long-term exposure risk

| (10*sq meters) with remediation technology
(10° sq meters) with sampled area

(10° sq meters) with physical sample

(10' sq meters) with sample analysis

(107 sq meters) with .

e.g. geophysical/ geostatlstlcal (kriging)

Englund & Flatman.: Spatial Statisz‘i‘cs Sampling



Composite Statistics & Area of Support

o Literature and information on composite sampling
+ Statistical Methods for Environmental
- Pollution Monitoring (R.O. Gilbert)

Handbook of Statistics vol 12, Chapter 4
(G. Lovison, S.D. Gore, & G.P. Patil)

+ Erivirohmental and Ecological Statistics
(Special Edition, G.P. Patil, editor)

+ Guidance on Sampling (QA/G-55)
(Under development by QAD)



Combining Environmental Information

o Literature and information on data combining:
+ Encountered Data, ...and Weighted Distributions
(G.P. Patil) 1991, Environmetrics 2, 377-423

-+ Using Found Data to Augment a Probability Sample
(J.M. Overton, T.C. Young & W.S. Overton,
1993 Envir. Mon. & Assess 26, 65-83

+ Combining Environmental Information I & II
(L.H. Cox & W.W. Piegorsch) |
1996, Environmetrics 7, 299- 324

+ Guidance on Sampling (QA/G-5S)
(Under development by QAD)



- Encountered Data, Statistical Ecology, Environmental
Statistics, and Weighted Distribution Methods

o Weighted diStributions used to account for observer bias due
to being unable to actually observe an event or sample value

~olfan observation (X) has a probability Ox of being obsefved
~ then the observed pdf is the true pdf Weighted by 1-0x

‘0 Regard the problem as one of modelhng when samples are
- drawn without a proper frame

o The paper contains some theoretical properties of weight
functions together with some applications



Using Found Data to Augment a Probability Sample

o If the variable-of interest is in both found and probability
based samples, then use a pseudo-random sample approach
“and combine the data in the manner of a stratified sample

o If not, use a stratified calibration approach - form a predictor
equation for found data by regressing variable of interest on
the known frame attributes. Then for the probability based
sample, use the prediction equation and the frame attributes
to predict new variables of interest

o Extensive example on streams from the National Surface
- Water Survey
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Combining Environmental Information I & 11

o Two c‘onsécutive papers, the first being an overview with
potential areas for research, the second considering various
-applications to epldemlology and toxicology

o The overview includes kriging, non-detect prt)bléms, and
- application to truncated spatial data - :

o Overview also includes the mathematical aspects of
combining p-values (the works-of R.A. Fisher, and
T. Mathew, B. Sinha, & L. Zhou)

~o Examples include passive smoking and dose-response



