United States Environmental Protection Agency # OSWER9200630390 NTIS No P890-921100 # Health Effects Assessment Summary Tables Third Quarter FY - 1990 #### DISCLAIMER This report is intended for internal U.S. Environmental Protection Agency distribution only. The information contained herein has been taken from final documents prepared by the Office of Health and Environmental Assessment for the Office of Solid Waste and Emergency Response, Washington, DC and the Office of Air Quality Planning and Standards, Research Triangle Park, NC. These documents were reviewed in accordance with Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. # TABLE OF CONTENTS | | Page | |--|------| | INTRODUCTION | 1 | | WHAT'S NEW IN THE THIRD QUARTER HEAST | 4 | | USER'S GUIDE: CHEMICAL TOXICITY | 9 | | HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE A: SUBCHRONIC AND CHRONIC TOXICITY (OTHER THAN CARCINOGENICITY) | A-1 | | HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY | B-1 | | USER'S GUIDE: RADIONUCLIDE CARCINOGENICITY | C-1 | | HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY | C-8 | | REFERENCES FOR TABLES A | D-1 | | REFERENCES FOR TABLES B | D-88 | #### INTRODUCTION This document is the third quarter update of the Health Effects Assessment Summary Tables (HEAST) prepared by EPA's Environmental Criteria and Assessment Office in Cincinnati, OH for use at both Superfund and RCRA (Resource Conservation and Recovery Act) sites. Previously, the HEAST contained only chemicals commonly found at Superfund sites. Beginning with this quarter, the document will also include chemicals commonly found at RCRA sites as identified by the Office of Solid Waste's Technical Assessment Branch. By including chemicals identified by OSW, the Agency will conserve resources, enhance the completeness of HEAST tables and assist in promoting consistency within the Office Solid Waste and Emergency Response. Also acknowledged are the contributions of the Office of Radiation Programs, who provide Table C of the HEAST on radionuclides. This update completely replaces the previous edition of this document. Chemicals considered are those for which Health Effects Assessment Documents, Health and Environmental Effects Profiles, Health and Environmental Effects Documents, Health Assessment documents or Air Quality Criteria Documents have been prepared by ECAO. Radionuclides considered are those believed to be most commonly encountered at Superfund sites. This report is an excellent "pointer" system to identify current literature or changes in assessment criteria for many chemicals of interest to the Superfund program. It is important to remember that the numbers in these tables alone tell one very little about the adverse effects of a chemical or the quality of evidence on which toxicity criteria are based. Original assessment documents must be consulted by risk assessors in order for them to fully appreciate the strengths and limitations of a specific data base. Original source documents will allow for the most complete characterization of potential toxicity associated with the range of exposure pathways generally evaluated at Superfund and RCRA sites. The HEAST is structured to point the user to these sources. We recognize that at any one time there may be multiple Agency documents or data bases that present conflicting values or assessments on a specific chemical. For this reason the following hierarchy of sources is recommended in evaluating chemical toxicity for Superfund sites: - 1. The Agency's Integrated Risk Information System (IRIS) and cited references. This data base is updated monthly but may still have data gaps. Call IRIS USER Support at 513/569-7254 (FTS 684-7254) for further information. - 2. The Health Effects Assessment Summary Tables (HEAST) and cited references. Limited copies of the HEAST are available for EPA Superfund staff, States Superfund programs and other Federal agencies working on Superfund sites and EPA contractors working for the EPA Superfund program. If you fall into one of these groups you can call the Toxics Integration Branch (202) 475-9490 to be put on the mailing list. EPA's Office of Solid Waste (OSW) requests that their users (i.e. OSW staff, contractors, State solid waste programs) call Susan Griffin of the Office of Solid Waste at (202) 382-6392 to obtain copies. Regional OSW staff are reminded that copies of the HEAST are sent to all Regional libraries. Users of the HEAST in EPA's Office of Air and Radiation and state air programs should call Fred Hauchman of EPA's Office of Air Quality Planning and Standards at (919) 541-5339. All others must purchase the document from: National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 The NTIS order number to receive all of the quarters for FY90 is PB-90-921100. The order number to receive the Third Quarter HEAST only is PB-90-921103. There is a charge to receive this from NTIS. 3. Consultation with EPA staff (ECAO's Chemical Mixtures Assessment Branch at 513/569-7300; FTS 684-7300). 4. <u>Do not consul</u>t either the toxicity tables (Appendix A) in the Superfund Public Health Evaluation Manual (SPHEM, U.S. EPA, 1986) or the September 1988 Public Health Risk Evaluation Data Base (PHRED) as these sources are likely to contain numerous values that have since become out-of-date. Most cited Agency references (e.g., HEAs, HEEPs, HEEDs, etc.), are (or will soon be) available through the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 (703/487-4650 or 800/336-4700). Carcinogen Assessment Group (CAG) Profiles cited in Table B are available through RCRA docket (800/424-9346). Questions regarding the contents of the HEAST (e.g., chemicals not covered, pending RfDs) should be directed to EPA's Environmental Criteria and Assessment Office in Cincinnati, OH at (513)569-7300. 0618h -3- 07/18/90 ## WHAT'S NEW IN THE THIRD QUARTER FY90 HEAST #### **GENERIC ISSUES:** No changes in format have been introduced in the third quarter FY90 update of the HEA Summary Tables (HEAST). Beginning with this quarter this document will also include chemicals commonly found at RCRA sites as identified by the Office of Solid Waste Technical Assessment Branch. (See chemical specific information for Tables A and B.) Please note that the RfD Work Group has decided to change the terminology "inhalation Reference Dose" to "Reference concentration (RfC)". The Risk Assessment Council has reviewed and approved this proposal on 07/02/90. Next quarter, HEAST will be changed in order to reflect the RfC terminology. For this quarter, inhalation Reference Dose will remain reported as such. Slope factors and unit risk values for approximately 40 additional nuclides, including radioisotopes of actinium, bismith, nickel, protactinium, neptunium, radium, thorium and others, have been added to Table C. With the exception of minor word changes, the text of the User's Guide for Section C remains the same as presented in the combined first and second Quarterly Update. RfD and CRAVE Workgroup status reports dated 06/30/90 were used in this update of the Tables. # CHEMICAL-SPECIFIC CHANGES TO TABLE A: OTHER THAN CARCINOGENICITY The following chemicals are new entries to Table A (at the request of OSW): Aldicarb Aluminum phosphide Barium cvanide Bis (2-chloro-isopropyl) ether Calcium cvanide Carbon disulfide Chlorine cvanide Chlorobenzilate Copper cyanide Cyanogen Cyanogen bromide 2.4-Dichlorophenoxy acetic acid (2.4-D) Dimethyl phthalate Di-n-octyl phthalate Formic acid Hydrogen sulfide Methanol Nitric oxide Phenylmercuric acetate Potassium cyanide Potassium silver cyanide Pronamide Selenourea Silver Silver cyanide Strychnine 1,2,4,5-Tetrachlorobenzene Tetraethyl dithiopyrophosphate Tetraethyl lead 2,4,5-Trichlorophenoxy propionic acid (silvex) Zinc cyanide Zinc phosphide #### **Aramite** A footnote was added to indicate that this chemical is under review by the oral RfD Workgroup. #### Atrazine A different study, also by Ciba-Geigy, is now the basis for the assessment of oral toxicity. The chronic oral RFD did not change, but the footnote was changed to indicate that the RFD is verified and available on IRIS. #### Barium The footnote was changed to indicate that a new oral RfD was verified on 06/21/90 and IRIS will be changed. #### Boron The footnote was changed to indicate that the chronic oral RfD is verified and available on IRIS. #### Bromomethane The chronic inhalation RfD incorrectly appeared as 6E-2; it has now been corrected to 6E-3. The chronic oral RfD has been corrected to 1.4E-3, which is how it appears on IRIS. The subchronic oral RfD has been modified accordingly. #### <u>Chloroacetaldehyde</u> A footnote has been added to indicate that this chemical's assessment of oral toxicity is currently not under discussion. #### Chlorodibromomethane This chemical is also listed in a separate entry as dibromochloro-methane; therefore, chlorodibromomethane and corresponding references have been removed. IRIS lists this chemical as dibromochloromethane. #### 1,2-c-Dichloroethylene Oral RfD values are now available for this chemical. The chronic oral RfD derived by the Workgroup has been verified and is pending input into IRIS. 2.4-Dimethylphenol Oral RfD values are now available for this chemical. The chronic oral RfD derived by the Workgroup has been verified and is pending input into IRIS. 4.6-Dinitro-o-cresol A footnote has been added to indicate that this chemical is currently not under discussion. 2,4-Dinitrophenol Oral RfD values are now available for this chemical. The chronic oral RfD derived by the Workgroup has been verified and is available on IRIS. #### Disulfoton This chemical is a new entry from a
recently finalized HEED. Fluoranthene This chemical was erroneously listed as fluoroethene; the error has been corrected. n-Hexane Data regarding inhalation has been changed since a new inhalation RFD has been verified based on a human epidemiological study. The chronic inhalation RFD is pending input into IRIS. Manganese A footnote was added to indicate that this chemical's oral risk assessment is under review by the Workgroup. Mercury, inorganic Data regarding inhalation has been changed since a new inhalation RfD has been verified based on several occupational studies. The chronic inhalation RfD is pending input into IRIS. <u>Methoxychlor</u> A footnote was added to indicate that this chemical is under review by the oral RfD Workgroup. Methyl bromide This entry and the corresponding references have been deleted since the chemical is already listed under bromomethane, which is the name that appears on IRIS. Methyl ethyl ketone A footnote was added to indicate that this chemical's chronic oral RfD, while still available on IRIS, is being reconsidered by the Workgroup. The inhalation RfD has recently been verified, pending input into IRIS. Nickel A footnote was added to indicate that this chemical's chronic oral RFD, while still available on IRIS, is being reconsidered by the Workgroup. #### Nitrobenzene A footnote was added to indicate that although the chronic oral RfD is being reconsidered by the Workgroup it is still available on IRIS. The expression of the inhalation RfD as a dose in terms of mg/kg/day was removed to reflect derivation by the newer interim methodology. #### Nitrogen dioxide This chemical is a new entry from a recently finalized HEED. The inhalation RfD is under review by the RfD Workgroup. The oral RfD, which is an RfD for nitrogen dioxide-N derived by analogy to nitrate-N, is verified and available on IRIS. #### Phosphine A footnote was added to indicate that the chronic oral RfD is verified and is available on IRIS. #### Propylene glycol monomethyl ether A recent inhalation assessment verified a chronic RfD of 7E-1 using the new methodology. This RfD is pending input into IRIS. The new relevant information was added to this entry. ## **Selenium** The footnote was changed to indicate that the oral RfD for selenium is verified but not yet available on IRIS. ## Styrene A footnote was added to indicate that the chronic oral RfD, while still available on IRIS, is being reconsidered by the Workgroup. #### Toluene The footnote for the chronic oral RfD was changed to indicate that a new value was verified on 06/20/90 and IRIS will be changed. #### 1.1.1-Trichloroethane A footnote was added to indicate that the chronic oral RfD, while still available on IRIS, is being reconsidered by the Workgroup. # CHEMICAL-SPECIFIC CHANGES TO TABLE B: CARCINOGENICITY The following chemicals are new entries to Table B (at the request of OSW): DDD DDE 1,2-Dibromo-3-chloropropane Diethylstilesterol 7,12-Dimethylbenz(a)antracene 1,4-Dioxane Heptachlor epoxide 3-Methylcholanthracene N-nitrospyrrolidine 1,1,1,2-Tetrachloroethane #### Benzotrichloride The footnotes were changed to indicate that the classification and oral slope factor have both been verified. The quantitative risk estimate for inhalation route is currently under review. Decabromodiphenyl oxide The footnote was changed to indicate that the Group C classification is verified and is available on IRIS. #### 1,3-Dichloropropene A footnote was added to indicate that quantitative risk estimates, derived since the EPA Group was verified, have not been verified. #### Direct Black 38 A footnote was added to indicate that this chemical's assessment is under review by CRAVE Workgroup. #### Direct Blue 6 A footnote was added to indicate that this chemical's assessment is under review by CRAVE Workgroup. #### Direct Brown 95 A footnote was added to indicate that this chemical's assessment is under review by CRAVE Workgroup. ### Formaldehyde A footnote was added to indicate that this oral slope factor, calculated in a CAG profile, has not been reviewed by the CRAVE Workgroup. #### Methyl Ethyl Ketone The footnote was changed to indicate that the Group D classification is verified and is available on IRIS. #### Selenium Sulfide A footnote was added to indicate that this chemical's assessment is verified; input into IRIS is pending. #### Styrene The footnote was changed to indicate that this chemical's assessment is now under review by CRAVE. #### 2,4,6-Trichlorophenol The footnote was changed to indicate that oral and inhalation slope factors are available on IRIS. #### Vinyl chloride The footnote was changed to indicate that oral and inhalation slope factors have been verified, but input into IRIS is pending. 0618h -8- 07/18/90 #### USER'S GUIDE: CHEMICAL TOXICITY The Health Effects Assessment Summary Tables A & B summarize reference doses (RfDs) for toxicity from subchronic and chronic inhalation and oral exposure (Table A) and slope factors and unit risk values for carcinogenicity based on lifetime inhalation and oral exposure (Table B). A more complete discussion of how Superfund develops and considers the toxicity assessment in hazardous waste sites is presented in Chapter 7 of Risk Assessment Guidance for Superfund: Human Health Evaluation Manual Part A. The chemicals included in the tables are the subjects of final documents of Health Effects Assessment documents (HEAs), Health and Environmental Effects Profiles (HEEPs), Health and Environmental Effects Documents (HEEDs), Health Assessment Documents (HADs) and Air Quality Criteria Documents (AQCDs). The information in HEA Summary Tables A and B is excerpted from the HEAs, HEEPs, HEEDs, HADs and AQCDs, and expanded and updated quarterly to include chemicals addressed in HEAs, HEEDs, HADs and AQCDs that have been finalized since the last update and to bring existing values into conformity with more recent EPA assessments, especially RfD or CRAVE Work Group verifications. The references listed for each chemical in the Reference column and References section represent not only the study or studies that are the basis for the RfD, slope factor or unit risk, but also the U.S. EPA reference that is the source of the Agency analysis or risk assessment values and the IRIS citation for values verified by the RfD or CRAVE work group. Verified values are indicated in the tables by a footnote. 0618h -9- 07/18/90 The following documents cited in this section may be obtained from their respective sources: From the Center for Environmental Research Information (513)569-7562. Risk Assessment Guidance: Volume 1, Human Health Evaluation Manual, Part A. EPA/540/1-89/002. Air Quality Criteria Documents. from the National Technical Information Service (NTIS) (703)487-4780. Interim Methods for Development of Inhalation Reference Doses. EPA/600/8-88/006F. Order number PB90-145723. The price is \$31.00. # Table A: Subchronic and Chronic Toxicity (other than Carcinogenicity) The RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of the daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a portion of the lifetime, in the case of a subchronic RfD (designated "RfD_S" in Table A and formerly called AIS), or during the lifetime, in the case of a chronic RfD (designated "RfD" in Table A and formerly called AIC). The RfD values are listed in Table A in the column under "Reference Dose." The RfD is derived by dividing the NOAEL (or LOAEL if a suitable NOAEL is not available) for subchronic or chronic exposure by an uncertainty factor (UF) times a modifying factor (MF): # $RFD = \frac{NOAEL \text{ or } LOAEL}{UF \times MF}$ In Table A, the NOAEL or LOAEL that is the basis for the RfD value is listed under "Exposure." When a NOAEL or LOAEL is reported in terms of exposure concentration and schedule, the calculated mg/kg/day dose is given in parentheses. The species in which the NOAEL or LOAEL was determined and the 0618h -10- 07/24/90 effect of concern are also described, and the reference for the study is presented. The effect of concern listed is that associated with the chemical and not with the dose listed. In the "Exposure," "Effect of Concern" and "Reference" columns, information for the inhalation route is given first, separated from information for the oral route by a semicolon or slash. The uncertainty factor used in calculating the RfD reflects scientific judgment regarding the various types of data used to estimate RfD values. An uncertainty factor of 10 is usually used to account for variations in human sensitivity when extrapolating from valid human studies involving subchronic (for RfD_S) or long-term (for RfD) exposure of average, healthy subjects. An additional 10-fold factor is usually used for each of the following extrapolations: from long-term animal studies to the case of humans, from a LOAEL to a NOAEL, and from subchronic studies to a chronic RfD. In order to reflect professional assessment of the uncertainties of the study and data base not explicitly addressed by the above uncertainty factors (e.g., completeness of the overall data base), an additional uncertainty factor or modifying factor ranging from greater than 0 to less than or equal to 10 is applied. The default value for this modifying factor is 1. A subchronic RfD is usually derived, if not previously derived in health effects documents that originally addressed the chemical, for chemicals for which a chronic RfD is presented in Table A. The subchronic RfD is derived in either of two ways. If an uncertainty factor to expand from subchronic to chronic exposure was used in the derivation of the chronic RfD, the subchronic RfD is derived from the same benchmark dose without application of the uncertainty factor to expand from subchronic to chronic exposure. 0618h -11- 07/18/90 If, however, the chronic RfD was derived without use of an
uncertainty factor to expand from subchronic to chronic exposure, the chronic RfD is adopted as the subchronic RfD. Table A lists the uncertainty factor and modifying factor, multiplied together to form a single factor, under the heading "Uncertainty Factor." For example, the uncertainty factor of 500 listed for the chronic oral RfD for cyanide reflects an uncertainty factor of 100 and a modifying factor of 5; the uncertainty factor of 100 listed for the subchronic oral RfD for bromomethane reflects an uncertainty factor of 100 and a modifying factor of 1. RfD values are specific for the route of exposure for which they are listed on Table A. In the few instances where an oral RfD has been extrapolated from inhalation data, the extrapolation is indicated by footnoting the value. The interim methods for the derivation of inhalation RfDs were adopted by the Agency in 1988. These methods are different from those used for oral RfDs because of (1) the dynamics of the respiratory system and its diversity across species, and (2) differences in the physicochemical properties of contaminants (such as the size and shape of a particle or whether the contaminant is an aerosol or a gas). Parameters such as deposition, clearance mechanisms and the physicochemical properties of the inhaled agent are considered in the determination of the effective dose delivered to the target organ. Additional information concerning this methodology can be found in "Interim Methods for Development of Inhalation Reference Doses" (U.S. EPA, 1989, EPA/600/8-88/066F). An RfD value calculated using this interim methodology is generally reported as a concentration in air 0618h -12- 07/18/90 (mg/m^3) , although it may be converted to a corresponding inhaled dose (mg/kg/day) by dividing by 70 kg (an assumed human body weight) and multiplying by 20 m^3/day (an assumed human inhalation rate). Inhalation RfD values reported in HEAs and early HEEDs that were finalized prior to the implementation of the interim methods were calculated using methods similar in concept to those used for oral RfDs, and the values are reported both as a concentration in air (in mg/m³ for continuous, 24 hours/day exposure) and as a corresponding inhaled dose (in mg/kg/day). RfD values for oral exposure are reported as mg/kg/day. An oral RfD value can be converted to a corresponding concentration in drinking water, assuming human body weight of 70 kg and water consumption of 2 ½/day, as follows: mg/2 in water = $$\frac{\text{oral RfD (in mg/kg/day)} \times 70 \text{ kg}}{2 \text{ 2/day}}$$ The RfD is used as a reference point for gauging the potential effects of other doses. Usually, doses that are less than the RfD are not likely to be associated with health risks. As the frequency of exposures exceeding the RfD increases and as the size of the excess increases, the probability increases that adverse health effects may be observed in a human population. Nonetheless, a clear distinction that would categorize all doses below the RfD as "acceptable" (risk-free) and all doses in excess of the RfD as "unacceptable" (causing adverse effects) cannot be made. In addition, RfD values, and particularly those with limitations in the quality or quantity of supporting data, are subject to change as additional information becomes available. When RfD values are listed for chemicals that are carcinogens, the entry under "Effect of Concern" in Table A will list cancer and will refer to 0618h -13- 07/18/90 Table B if additional information concerning carcinogenicity is available in that table. RfD values that have been derived for carcinogens are based on noncancer endpoints only and should not be assumed to be protective against carcinogenicity. ## Table B: Carcinogenicity In assessing the carcinogenic potential of a chemical, the Human Health Assessment Group (HHAG) of the U.S. EPA classifies the chemical into one of the following groups, according to the weight of evidence from epidemiological studies and animal studies: - Group A Human Carcinogen (sufficient evidence of carcinogenicity in humans) - Group B Probable Human Carcinogen (B1 limited evidence of carcinogenicity in humans; B2 - sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans) - Group C Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data) - Group D Not Classifiable as to Human Carcinogenicity (inadequate or no evidence) - Group E Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies). These classifications are shown under "EPA Group" on Table B. Quantitative carcinogenic risk assessments are performed for chemicals in Groups A and B, and on a case-by-case basis for chemicals in Group C. Cancer slope factors (formerly called cancer potency factors in the Superfund Public Health Evaluation Manual) are estimated through the use of mathematical extrapolation models, most commonly the linearized multistage model, for estimating the largest possible linear slope (within the 95% confidence limit) at low extrapolated doses that is consistent with the data. The slope factor or risk is characterized as an upper-bound estimate, i.e., the true risk to humans, while not identifiable, is not likely to exceed the upper-bound estimate and in fact may be lower. Quantitative carcinogenic estimates listed in Table B include the following: slope factor = risk per unit dose = risk per mg/kg/day route-specific unit risk for inhalation exposure = risk per concentration unit in air = risk per $\mu g/m^3$ Unit risk estimates for inhalation and oral exposure can be calculated by dividing the appropriate slope factor by 70 kg and multiplying by the inhalation rate (20 m^3/day) or the water consumption rate (2 ℓ/day), respectively, for risk associated with unit concentration in air or water. Hence. risk per $$\mu g/m^3$$ (air) = slope factor (risk per mg/kg/day) x $\frac{1}{70~kg}$ x 20 m³/day x 10⁻³ (mg/ μ g) risk per μ g/L (water) = slope factor (risk per mg/kg/day) x $\frac{1}{70~kg}$ x 2 L/day x 10⁻³ (mg/ μ g) Quantitative estimates of carcinogenic risk are listed under "Unit Risk [slope factor]" in Table B. Information on the study and data set used for estimation of the slope factor is given in the other columns of Table B. In the "Exposure" and "Reference" columns, information for the inhalation route is given first, separated from information for the oral route by a semicolon or slash. Quantitative carcinogenic estimates are specific for the route of exposure for which they are listed on Table B. Footnotes are used in Table B to indicate those instances in which the values for inhalation or oral exposure are based on extrapolation from another route of exposure. 0618h -15- 07/18/90 To estimate risk-specific concentrations in air from the unit risk in air as presented in Table B, the specified level of risk is divided by the unit risk for air. Hence the air concentration (in $\mu g/m^3$) corresponding to an upper-bound increased lifetime cancer risk of 1×10^{-5} is calculated as follows: $$\mu g/m^3$$ in air = $\frac{1 \times 10^{-5}}{\text{unit risk in } (\mu g/m^3)^{-1}}$ To estimate risk-specific concentrations in drinking water from the oral slope factor values presented in Table B, the specified level of risk is multiplied by 70 kg and divided by the slope factor and by 2 1 /day. Hence, the water concentration corresponding to an upper-bound increased lifetime cancer risk of 1 x10 $^{-5}$ is calculated as follows: mg/2 in water = $$\frac{1x10^{-5}x70 \text{ kg}}{\text{slope factor in } (\text{mg/kg/day})^{-1} \times 2 \text{ 2/day}}$$ | | Exposure | Specie | s | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | | |---|--|------------|--------|--|---|-------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | Acenaphthene
subchronic (RfD _S) | NA; 175 mg/kg/day by
gavage for 90 days | NA | mouse | NA; hepatotoxicity | ND | 6E-1 | NA | 300 | U.S. EPA, 1989 | | | chronic (RfD) | NA; 175 mg/kg/day by
gavage for 90 days | NA . | mouse | NA; hepatotoxicity | ND | 6E-2J | NA | 3000 | U.S. EPA, 1989 | | | Acenaphthylene | | | DATA I | NADEQUATE FOR QUANTII | ATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | | Acephate
subchronic (RfD _S) | NA; 2 ppm in the diet
for 13 weeks (0.135
mg/kg/day) | NA | rat | NA; inhibition of brain AChase | ND | 4E-3 | NA | 30 | U.S. EPA, 1990/
Chevron Chem.
Co., 1989;
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 2 ppm in the diet
for 13 weeks (0.135
mg/kg/day) | NA | rat | NA; inhibition of brain AChase (also see Table B) | ND | 4E -3 a | NA | 30 | U.S. EPA, 1987/
Chevron Chem.
Co., 1989;
U.S. EPA, 1984,
1989 | | | Acetone
subchronic (RfD _S) | NA; 100 mg/kg/day
for 90 days by
gavage | NA | rat | NA; increased
liver and kidney
weight, nephro-
toxicity | ND | NA | NA | 100 | U.S. EPA, 1988/
U.S. EPA, 1986,
1988, 1990 | | | chronic (RFD) | NA; 100 mg/kg/day
for 90 days by
gavage | NA | rat | NA; increased
liver and kidney
weight, nephro-
toxicity | ND | 1E-1 a .1 | NA | 1000 | U.S. EPA, 1988/
U.S. EPA, 1986,
1988, 1990 | | | Acetone cyanohydrin
subchronic (RfD _S) | 10.1 ppm (35.2 mg/m ³)
6 hours/day, 5 days/week
for 14 weeks (4.0
mg/kg/
day); 10.8 mg CN/kg/day
for 104 weeks from diet
treated with HCN | rat | rat | CNS signs; body
weight, thyroid an
CNS effects | 1E-1 (4E-2)
nd | 7E-2 ⁿ | 100 | 500 | Blank and Thake
1984; U.S. EPA,
1988/Howard and
Hanzal, 1955;
U.S. EPA,
1985a,b, 1988 | | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty | <u>Factor</u> | Reference | | |--|---|------------|-------|---|--|---------------------|-------------|---------------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral [| Inhalation
mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | 10.1 ppm (35.2 mg/m ³) 6 hours/day, 5 days/week for 14 weeks (4.0 mg/kg/day); 10.8 mg CN/kg/day for 104 weeks from diet treated with HCN | rat | rat | CNS signs; body
weight, thyroid and
CNS effects | 1E-1 (4E-2) | 7E-2 ⁿ | 100 | 500 | Blank and Thake
1984; U.S. EPA,
1988/Howard and
Hanzal, 1955;
U.S. EPA,
1985a,b, 1988 | | | Acetonitrile
subchronic (RfD _s) | 100 ppm (168 mg/m ³)
6 hours/day, 65/92
days (39.0 mg/kg/day);
100 ppm (168 mg/m ³)
6 hours/day, 65/92 days
(19.3 mg/kg/day) | mouse | mouse | elevated relative
liver weight;
elevated relative
liver weight | 5E-1 (1E-1) | 6E-2 | 300 | 300 | Coate, 1983;
U.S. EPA, 1987/
Coate, 1983;
U.S. EPA, 1987,
1990 | | | chronic (RfD) | 100 ppm (168 mg/m ³)
6 hours/day, 65/92 days
(39.0 mg/kg/day); 100
ppm (168 mg/m ³) 6
hours/day, 65/92 days
(19.3 mg/kg/day) | mouse | mouse | decreased RBC counts and hemato-crit and hepatic lesions; decreased RBC counts and hematocrit and hepatic lesions | 5E-2 (1E-2) | 6E-3b, z | 3000 | 3000 | Coate, 1983;
U.S. EPA, 1987/
Coate, 1983;
U.S. EPA,
1987, 1990 | | | Acetophenone
subchronic (RfD _S) | 0.007 mg/m ³ continuously for 70 days (0.0045 mg/kg/day); 10,000 ppm diet (8450 ppm, correcting for volatilization) for 17 weeks (423 mg/kg/day) | rat | rat | congestion of cardiac vessels and liver dys-trophy, reduced albumin/globulin ratio; none observed | 2E -4(5E-5) | 1E+0 | 100 | 300 | Imasheva, 1966;
U.S. EPA, 1987/
Hagan et al.,
1967; U.S. EPA,
1990 | | | chronic (RfD) | 0.007 mg/m ³ continuously for 70 days (0.0045 mg/kg/day); 10,000 ppm diet (8450 ppm, correcting for volatilization) for 17 weeks (423 mg/kg/day) | rat | rat | congestion of cardiac vessels and liver dys-trophy, reduced albumin/globulin ratio; none observed | 2E-5(5E-6) | 1E-1 a | 1000 | 3000 | Imasheva, 1966;
U.S. EPA, 1987/
Hagan et al.,
1967; U.S. EPA,
1990 | | | Acrolein
subchronic (RfD _S) | 0.4 ppm, 6 hours/day,
5 days/week for 62 days;
NA | rat | NA | pulmonary function
and lung composi-
tion; NA | 1E-3 | ND | 300 | NA | Costa et al.,
1986; Kutzman,
1981, 1985;
U.S. EPA, 1987/
U.S. EPA, 1987 | | | | Exposure | Spec 16 | | Effect of Concern | Reference D | | <u>Uncertainty</u> | Factor | | | |--|---|------------|--------|---|---|-----------------------|--------------------|--------|---|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | · Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | 0.4 ppm, 6 hours/day,
5 days/week for 62 days;
NA | rat | NA | pulmonary function
and lung composi-
tion; NA (also see
Table B) | | ND | 3000 | NA | Costa et al.,
1986; Kutzman,
1981, 1985;
U.S. EPA, 1987,
1989/U.S. EPA,
1987 | | | Acrylamide
subchronic (RfO _S) | NA; 0.2 mg/kg/day in the drinking water for 90 days | NA | rat | NA; nerve damage | ND | 2E - 3 | MA | 100 | U.S. EPA, 1990/
Burek et al.,
1980; U.S. EPA,
1985; U.S. EPA,
1990 | | | chronic (RfD) | NA; 0.2 mg/kg/day in the drinking water for 90 days | NA | rat | NA; nerve damage
(also see
Table B) | ND | 2E -4a | NA | 1000 | U.S. EPA, 1990/
Burek et al.,
1980; U.S. EPA,
1985; U.S. EPA,
1990 | | | Acrylic acid
subchronic (RfD _s) | NA; 83 mg/kg/day in the water for 3 months | NA | rat | NA; reduced
body weight,
altered organ
weights | ND | 8E - 1 | NA | 100 | U.S. EPA, 1984/
DePass et al.,
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 83 mg/kg/day in the
water for 3 months | NA | rat | NA; reduced
body weight,
altered organ
weights | ND | 8E - 2 a | NA | 1000 | U.S. EPA, 1984/
DePass et al.,
U.S. EPA, 1984,
1990 | | | Adiponitrile | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | τ | | | U.S. EPA, 1987 | | | Alachlor
subchronic (RfD _S) | NA; 1 mg/kg/day by
gavage for 1 year | NA | dog | NA; hemolytic
anemia, hemo-
siderosis
(also see Table B) | ND | 1E-2 | NA | 100 | U.S. EPA, 1990/
Monsanto
Company, 1984;
U.S. EPA, 1984;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 1 mg/kg/day by
gavage for 1 year | NA | dog | NA; hemolytic
anemia, hemo-
siderosis | ND | 1E-2ª | NA | 100 | U.S. EPA, 1990/
Monsanto
Company, 1984;
U.S. EPA, 1984;
U.S. EPA, 1990 | | | 0059h | | | | A-3 | | | | | 07/12/90 | | 0059h | | Exposure | Spec 1 | | Effect of Concern | | Reference Dose | | <u>Factor</u> | Reference | | |--|---|------------|--------|--|---|---------------------|------------|---------------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | Aldicarb
subchronic (RfD _S) | NA; 0.25 mg/kg/day of aldicarb sulfoxide in diet for 3-6 months | NA | rat | NA; cholinesterase | e ND | 1.3E-3 | NA | 100 | NA/Well and
Carpenter, 1968
U.S. EPA, 1990 | | | chronic (RfD) | NA; 0.25 mg/kg/day of
aldicarb sulfoxide in
diet for 3-6 months | NA | rat | NA; cholinesterase
inhibition | e ND | 1.3E-3 ^z | NA | 100 | NA/Well and
Carpenter, 1968
U.S. EPA, 1990 | | | Aldrin
subchronic (RfD _s) | NA; 0.5 ppm in diet
for 2 years (0.025
mg/kg/day) | NA | rat | NA; liver lesions | ND | 3E-5 | NA | 1000 | NA/Fitzhugh,
et al., 1964;
U.S. EPA, 1990,
1987 | | | chronic (RfD) | NA; 0.5 ppm in diet
for 2 years (0.025
mg/kg/day) | NA | rat | NA; liver lesions
(also see Table
B) | ND | 3E -5 a | NA | 1000 | NA/Fitzhugh
et al., 1964;
U.S. EPA, 1990,
1987 | | | Allidochlor | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | Т | | | U.S. EPA, 1984 | | | Allyl alcohol
subchronic (RfD _s) | NA; 50 ppm in the drinking water for 15 weeks (4.8 mg/kg/day) | NA | rat | NA; liver and
kidney | ND | 5E-2 | NA | 100 | U.S. EPA, 1985,
1990/ Carpamini
et al., 1978;
U.S. EPA, 1985,
1990 | | | chronic (RfD) | NA; 50 ppm in the
drinking water for 15
weeks (4.8 mg/kg/day) | NA | rat | NA; liver and kidney | ND | 5E - 3 a | MA | 1000 | U.S. EPA, 1985,
1990/ Carpamini
et al., 1978;
U.S. EPA, 1985,
1990 | | | Allyl chloride (3-chlo
subchronic (RfO _s) | ropropene)
occupational; NA | human | NA | liver; NA | ND | 2E -3b | NA | 100 | U.S. EPA, 1983/
ACGIH, 1980;
U.S. EPA, 1983 | | | chronic (RfD) | occupational; NA | human | NA | liver; NA
(also see
Table B) | ND | 2E-3p | NA | 100 | U.S. EPA, 1983/
ACGIH, 1980;
U.S. EPA, 1983 | | # Update: י, 1990 | | Exposure | Species | Effect of Concern | Reference Dose | | Uncertainty Factor | | | | |--|---|---------------|--|---|---------------------|--------------------|------|---|--| | Compound | Inhalation; Oral | Inhalation Or | al Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | | Aluminum | | DA | TA INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | (T | | | U.S. EPA, 1987 | | | Aluminum phosphide
subchronic (RfD _s) | NA; 0.51 mg phosphine/kg
fumigated chow for 2
years (0.25 mg phosphine/
kg/day) (0.043 mg
aluminum phosphine/kg/day | | t NA; body weight a
clinical paramete | | 4E -4 | NA | 100 | NA/Hackenburg
1972; U.S. EPA,
1990 | | | chronic (RfD) | NA; 0.51 mg phosphine/kg
fumigated chow for 2
years (0.25 mg phosphine/
kg/day) (0.043 mg
aluminum phosphine/kg/day | | t NA; body weight a
clinical paramete | | 4E -4 a | NA | 100 | NA/Hackenburg
1972; U.S. EPA,
1990 | | | Ametryn
subchronic (RfD _s) | NA; 10 mg/kg/day, 6
days/week for 13 weeks
by gavage | NA ra | t NA; liver | ND | 9E-2 | NA | 100 | U.S. EPA, 1990/
Ciba-Geigy,
1961; U.S. EPA,
1984, 1990 | | | chronic
(RfD) | NA; 10 mg/kg/day, 6
days/week for 13 weeks
by gavage | NA ra | t NA; liver | ND | 9E -3a | NA | 1000 | U.S. EPA, 1990/
C1ba-Ge1gy,
1961; U.S. EPA,
1984, 1990 | | | l-Amino-2-naphtol and
l-Amino-2-naphtol hydro | ochloride | DA | TA INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1986 | | | m-Aminophenol
subchronic (RfD _S) | NA; 1300 ppm in the
diet for 13 weeks (65
mg/kg/day) | NA ra | t NA; thyroid and
body weight | ND | 7E-1 | NA | 100 | NA/Re et al.,
1984; U.S. EPA,
1985 | | | chronic (RfD) | NA; 1300 ppm in the
diet for 13 weeks (65
mg/kg/day) | NA ra | t NA; thyroid and
body weight | ND | 7E -2 | NA | 1000 | NA/Re et al.,
1984; U.S. EPA,
1985 | | | o-Aminophenol | | DA | TA INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | т | | | U.S. EPA, 1985 | | | p-Aminophenol | | DA | TA INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1985 | | | 4-Aminopyridine
subchronic (RfD _S) | NA; 3 ppm in diet
for 90 days (0.15
mg/kg/day) | NA ra | t NA; increased liv
(males) and brain
weight (females) | | 2E -4 | NA | 1000 | U.S. EPA, 1989/
Kohn, 1968; U.S
EPA, 1980, 1989 | | Update: 1990 | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Reference D
Inhalation
[mg/m ³ (mg/kg/day)] | Oral | <u>Uncertain</u>
Inhalatio | | Referènce
Inhalation/Oral | |--|---|----------------------|-------|--|--|---|-------------------------------|--------|---| | chronic (RfD) | NA; 3 ppm in diet
for 90 days (0.15
mg/kg/day) | NA | rat | NA; increased liver
(males) and brain
weight (females) | r ND | 2E - 5 9 | NA | 10,000 | U.S. EPA, 1989/
Kohn, 1968; U.S.
EPA, 1980, 1989 | | Ammonia
subchronic (RfD _S) | 0.36 mg/m ³ continuous;
9934 mg/1 in drinking
water | human | human | odor threshold;
taste threshold | 0.36 ^c | 34 mg/£
in drinkir
water ^d | none
ng | none | Carson et al.,
1981; U.S. EPA,
1987/Campbell
et al., 1958;
U.S. EPA, 1981,
1987; WHO, 1986 | | chronic (RfD) | 0.36 mg/m ³ continuous;
34 mg/æ in drinking
water | human | human | odor threshold;
taste threshold | 0.36 ^c ·g | 34 mg/t
in drinkir
water ^d | none
ag | none | Carson et al.,
1981; U.S. EPA,
1987/Campbell
et al., 1958;
U.S. EPA, 1981,
1987; WHO, 1986 | | Anthracene
subchronic (RfD _s) | NA; 1000 mg/kg/day
by gavage for 90 days | NA | mouse | NA; No effects | ND | 3E+0 | NA | 300 | U.S. EPA, 1987/
U.S. EPA, 1989 | | chronic (RfD _s) | NA; 1000 mg/kg/day
by gavage for 90 days | NA | mouse | NA; No effects | ND | 3E-1 j ,1 | NA | 3000 | U.S. EPA, 1987/
U.S. EPA, 1989 | | Antimony
subchronic (RfD _S) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 4E-4 | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1990 | | chronic (RfD) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 4E-4a | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985,
1990 | | Antimony pentoxide
subchronic (RfD _S) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Bs/kg/day,
0.46 mg Sb ₂ O ₅ kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 5E-4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1990 | | 0059h | | | | A-6 | | | | | 07/12/90 | | | Exposure | Spec 1 | es | Effect of Concern | Reference D | ose | Uncertainty | Factor | Reference | | |--|---|------------|-----|---|---|--------------------|-------------|--------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day, 0.46 mg Sb/05 kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 5E-4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985,
1987, 1990 | | | Antimony potassium
tartrate | | | | | | | | | | | | subchronic (RfD _S) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day,
0.93 mg SbK tartrate/
kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 9E -4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day,
0.93 mg SbK tartrate/
kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 9E -4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987,
1990 | | | Antimony tetroxide
subchronic (RfD _S) | NA; 5 ppm Sb from anti-
mony potassium tartrate
in drinking water, life-
time (0.35 mg Sb/kg/day,
0.44 mg Sb ₂ O ₄ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 4E-4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1990 | | | chron1c (RfD) | NA; 5 ppm Sb from anti-
mony potassium tartrate
in drinking water, life-
time (0.35 mg Sb/kg/day,
0.44 mg Sb ₂ O ₄ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 4E-4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985,
1987, 1990 | | | Antimony trioxide
subchronic (RfD _S) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day,
0.42 mg Sb ₂ O ₃ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 4E-4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1990 | | Update: , 1990 | | Exposure | Spec 1e | ·s | Effect of Concern | Reference (|)ose | Uncertainty Factor | | Reference | |--|---|------------|-------|--|---|---------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RFD) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day, 0.42 mg Sb ₂ O ₃ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 4E -4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985,
1987, 1990 | | Aramite
subchronic (RfD _s) | NA; 500 ppm in diet
for 52 weeks (12.5
mg/kg/day) | NA | dog | NA; degenerative
liver effect | ND | 16-1 | NA | 100 | U.S. EPA, 1989/
Oser and Oser,
1960 | | chronic (RFD) | NA; 100 ppm in
diet for 104 weeks
(5 mg/kg/day) | NA | rat | NA; increased
liver weight
(also see Table B | ND
) | 5E-2 9 | NA | 100 | U.S. EPA, 1989/
Popper et al.,
1960; Oser and
Oser, 1962 | | Arsenic
subchronic (RfD _S) | NA; l µg/kg/day | NA | human | NA; keratosis and
hyperpigmentation | ND | 1E-3 | NA | 1 | U.S. EPA, 1984/
Tseng, 1977 | | chronic (RfD) | NA; l μg/kg/day | NA | human | cancer; keratosis
and hyperpigmenta
tion (also see
Table B) | | 1E-3 9 | NA | 1 | U.S. EPA, 1984/
Tseng, 1977 | | Atrazine
subchronic (RfD _S) | NA; 10 ppm in the diet,
2-generation study
(0.5 mg/kg/day) | NA | rat | NA; decreased
body weight of
pups | ND | 5E-3 | NA | 100 | U.S. EPA, 1990/
C1ba-Ge1gy,
1987; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 10 ppm in the diet,
2-generation study
(0.5 mg/kg/day) | NA | rat | NA; decreased
body weight of
pups | ND | 5E-3 a | NA | 100 | U.S. EPA, 1990/
C1ba-Ge1gy,
1987; U.S. EPA,
1984, 1990 | | | Exposure | Spec 1e | | Effect of Concern | Reference D | | Uncertainty Factor | | Reference | |--|--|------------|--------|--|---|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | Oral |
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | 0ra1 | Inhalation/Oral | | Bartum
subchronic (RfD _S) | 1.15 mg BaCO ₃ /m ³ (0.80 mg Ba/m ³) 4 hours/day for 4 months (0.14 mg Ba/kg/day); 100 ppm Ba from BaCl ₂ (5.1 mg Ba/kg/day) in drinking water for <16 months | rat | rat | fetotoxicity;
increased blood
pressure | 5E-3 (1E-3) ^{bb} | 5E - 2 | 100 | 100 | Tarasenko et
al., 1977;
U.S. EPA, 1984/
Perry et al.,
1983; U.S. EPA,
1990 | | chronic (RfD) | 1.15 mg BaCO ₃ /m ³ (0.80 mg/Ba/m ³) 4 hours/day for 4 months (0.14 mg Ba/kg/day); 100 ppm Ba from BaCl ₂ (5.1 mg Ba/kg/day) in drinking water for ≤16 months | rat | rat | fetotoxicity;
increased blood
pressure | 5E-4 (1E-4)bb | 5E -2ff | 1000 | 100 | Tarasenko et
al., 1977;
U.S. EPA, 1984/
Perry et al.,
1983; U.S. EPA,
1984, 1985,
1990 | | Barium cyanide
subchronic (RfD _s) | NA; 10 ppm barium in
drinking water for up
to 16 months, equivalent
to barium cyanide at
7 mg/kg/day | NA | rat | NA; hypertension | ND | 7E-2 | NA | 100 | NA/Perry et al.
1983; U.S. EPA,
1990 | | chronic (RfD) | NA; 10 ppm barium in
drinking water for up
to 16 months, equivalent
to barium cyanide at
7 mg/kg/day | NA | rat | NA; hypertension | ND | 7E-2 ^z | NA | 100 | NA/Perry et al.
1983; U.S. EPA,
1990 | | Benefin
subchronic (RfD _s) | NA; 25 mg/kg/day in the
diet for i year | NA | dog | NA; hematological
effects | ND | 3E-1 | NA | 100 | U.S. EPA, 1990/
Ell Lilly Co.,
1972; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 25 mg/kg/day in the
diet for 1 year | NA | dog | NA; hematological
effects | ND | 3E-1 a | NA | 100 | U.S. EPA, 1990/
Eli Lilly Co.,
1972; U.S. EPA,
1984, 1990 | | Benzal chloride | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | Ţ | | | U.S. EPA, 1985 | Update: 'e, 1990 | Compound | Exposure
Inhalation; Oral | <u>Specte</u>
Inhalation | | Effect of Concern
Inhalation; Oral | Reference D Inhalation [mg/m³ (mg/kg/day)] | Oral | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Oral | |--|--|-----------------------------|-------------|---|--|---------------|---------------------------|----------------|---| | Benzaldehyde
subchronic (RfO _s) | NA; 200 mg/kg/day by
gavage 5 days/week for
13 weeks | NA | rat | NA; kidney,
forestomach | ND | 1E+0 | NA | 100 | U.S. EPA, 1990/
Kluwe et al.,
1983; U.S. EPA,
1985, 1990 | | chronic (RfD) | NA; 200 mg/kg/day by
gavage 5 days/week for
13 weeks | NA | rat | NA; kidney,
forestomach | ND | 1E-1a | NA | 1000 | U.S. EPA, 1990/
Kluwe et al.,
1983; U.S. EPA,
1985, 1990 | | Benzaldehyde cyanohydr | 1n | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1988 | | Benzidine
subchronic (RfD _s) | NA; 160 ppm benzidine
dihydrochloride in
drinking water for
33 months
(27.2 mg/kg/day) | NA | mouse | NA; brain cell
and liver cell
changes | ND | 3E-3 | NA | 1000 | U.S. EPA, 1987/
Littlefield
et al., 1983;
U.S. EPA, 1990 | | chronic (RfD) | NA; 160 ppm benzidine dihydrochloride in drinking water for 33 months (27.2 mg/kg/day) | NA | mouse | NA; brain cell
and liver cell
changes (also
see Table B) | ND | 3E-3 a | NA | 1000 | U.S. EPA, 1987/
Littlefield
et al., 1983;
U.S. EPA, 1990 | | denzoic acid
subchronic (RfD _s) | NA; per capita daily
dietary intake of
benzoic acid equiva-
lent to 312 mg/day | NA | human | NA; irritation,
malaise | ND | 4E+O | NA | 1 | U.S. EPA, 1987/
FASEB, 1973;
U.S. EPA, 1987 | | chronic (RfD) | NA; per capita daily
dietary intake of
benzoic acid equiva- | NA | human | NA; irritation,
malaise | ND | 4E+0ª | NA | 1 | U.S. EPA, 1987/
FASEB, 1973;
U.S. EPA, | | Benzyl Alcohol
subchronic (RfD _s) | lent to 312 mg/day NA; 200 mg/kg by gavage 5 days/week for 13 weeks (143 mg/kg/day) | NA | rat | NA; decrease in
body weight | ND | 1E+O | NA | 1000 | 1987, 1990
U.S. EPA, 1989/
NTP, 1988; U.S.
EPA, 1989 | | chronic (RfD) | NA; 400 mg/kg by
gavage 5 days/week
for 103 weeks
(286 mg/kg/day) | NA | rat | NA; hyperplasia of the epithelium of the forestomach | | 3E-1 | NA | 1000 | U.S. EPA, 1989/
NTP, 1988; U.S.
EPA, 1989 | | 0059h | | | | A-10 | | | | | 07/12/90 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty Factor | | Reference | |--|---|------------|---------------|--|---|-----------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Beryllium
subchronic (RfD _S) | NA; 5 ppm in drinking
water for lifetime
(0.54 mg/kg/day) | NA | rat | NA; none observed | ND | 5E-3 | NA | 100 | U.S. EPA, 1987/
Schroeder and
Mitchener, 1975;
U.S. EPA, 1990 | | chronic (RfD) | NA; 5 ppm in drinking
water for lifetime
(0.54 mg/kg/day) | NA | rat | NA; none observed
(also see Table B) | ND | 5E - 3 a | NA | 100 | U.S. EPA, 1987/
Schroeder and
Mitchener, 1975;
U.S. EPA, 1990 | | 1,1'-Biphenyl subchronic (RfD _S) | NA; 0.1% in the diet
for 700 days (50 mg/kg/
day) | NA | rat | NA; k1dney
damage | ND | 5E-2 | NA | 1000 | NA/Ambrose
et al., 1960;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 0.1% in the diet
for 700 days (50 mg/kg/
day) | NA | rat | NA; kidney
damage | ND | 5E -2ª | NA | 1000 | NA/Ambrose
et al., 1960;
U.S. EPA, 1984,
1990 | | 8is(2-chloroisopropyl)
subchronic (RfD _S) | ether
NA; 400 ppm in diet for
up to 104 weeks
(35.8 mg/kg/day) | NA | mouse | NA; decrease in he
globin and possibl
erythrocyte destru
tion | e | 4E -2 | NA | 1000 | NA/M1tsumor1 et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) | NA; 400 ppm in diet for
up to 104 weeks
(35.8 mg/kg/day) | NA | mouse | NA; decrease in he globin and possible erythrocyte destrution | e | 4E-2ª | NA | 1000 | NA/Mitsumori et
al., 1979; U.S.
EPA, 1990 | | Bis(2-ethylhexyl) phti
subchronic (RfD _S) | nalate
NA; 0.04% of diet for
i year (19 mg/kg/day) | NA | guinea
pig | NA; increased
relative liver
weight | ND | 2E -2 | NA | 1000 | U.S. EPA, 1987/
Carpenter
et al., 1953;
U.S. EPA, 1990 | | chronic (RfD) | NA; 0.04% of diet for
1 year (19 mg/kg/day) | NA | guinea
pig | NA; increased
relative liver
weight (also see
Table B) | ND | 2E – 2ª | NA | 1000 | U.S. EPA, 1987/
Carpenter
et al., 1953;
U.S. EPA, 1990 | | | Exposure | Species | | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | | |--|--|------------|--------------------|---------------------------------------|---|---------------------|--------------------|-------|--|--| | Compound | Inhalation; Oral | Inhalation | on Oral Inhalation | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | Bisphenol A
subchronic (RfD _s) | NA; O-1000 ppm for
18 weeks, 2 generations
(NOAEL 750 ppm =
62 mg/kg/day) | NA | rat | NA; reduced body
weight | ND | 6E-1 | NA | 100 | U.S. EPA, 1988/
U.S. EPA, 1984,
1988, 1990 | | | chronic (RfD) | NA; O, 1000, 2000 ppm
(1000 ppm = 50 mg/kg/day) | NA
) | rat | NA; reduced body
weight | ND | 5E - 2ª | NA | 1,000 | U.S. EPA, 1988a
NTP, 1982;
U.S. EPA,
1988, 1990 | | | Boron
subchronic (RfD _s) | NA; 350 ppm in diet
(8.75 mg/kg/day) for
2 years | NA | dog | NA; testicular
lesions | ND | 9E-2 | NA | 100 | U.S. EPA, 1987/
Weir and
Fisher, 1972;
U.S. EPA, 1987 | | | chronic (RfD) | NA; 350 ppm in diet
(8.75 mg/kg/day) for
2 years | NA | dog | NA; testicular
lesions | ND | 9E-2 a | NA | 100 | U.S. EPA, 1987/
Weir and
Fisher, 1972;
U.S. EPA, 1987 | | | Brominated dibenzo-p-d
and dibenzofurans | lioxins | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA,
1985a,b, 1986 | | | Bromoacetone | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1986 | | | Bromochloroethane | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1985 | | | Bromodichloromethane
subchronic (RfD _s) | NA; 25 mg/day by gavage
5 days/week for 102
weeks (17.9 mg/kg/day) | NA | mouse | NA; renal cytome | aly ND | 2E-2 | NA | 1000 | U.S. EPA, 1987/
NTP, 1986/
U.S. EPA, 1990 | | | cbronic (RfD) | NA; 25 mg/day by gavage
5 days/week for 102
weeks (17.9 mg/kg/day) | NA | mouse | NA, renal cytome
(also see Table I | galy ND
 } | 2E - 2 a | NA | 1000 | U.S. EPA, 1987,
NTP, 1986;
U.S. EPA, 1990 | | | Bromoform
subchronic (RfD _S) | NA; 25 mg/kg by gavage
5 days/week for 13 weeks
(17.9 mg/kg/day) | NA | rat | NA; liver effect | s ND | 2E - 1 | NA | 100 | U.S. EPA, 1987,
NTP, 1988;
U.S. EPA, 1989
1990 | | | Compound | <u>Exposure</u>
Inhalation; Oral |
Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Reference Dose Inhalation Oral | | Uncertainty Factor
Inhalation Oral | | | |--|--|----------------------|---------|--|---------------------------------|-------------------|---------------------------------------|------|---| | • | · | | | · | [mg/m ³ (mg/kg/day)] | (mg/kg/day) | | | | | chronic (RfD) | NA; 25 mg/kg by gavage
5 days/week for 13 weeks
(17.9 mg/kg/day) | NA | rat | NA; liver effects
(also see Table B) | ND | 2E - 2 a | NA | 1000 | U.S. EPA, 1987/
NTP, 1988;
U.S. EPA, 1989,
1990 | | Bromomethane
subchronic (RfD _S) | 26.6 ppm (103 mg/m³)
7.5 hours/day, 4 days/
week for 8 months (HEC=
18 mg/m³); 2 mg/kg
5 days/week for 13 weeks
(1.4 mg/kg/day) | rabbit | rat | neurotoxicity;
hyperplasia
of forestomach
epithellum | 6E -2 | 1.4E-2 | 300 | 100 | Russo et al.,
1984/Danse et
al., 1984;
U.S. EPA, 1987 | | chronic (RfD) | 26.6 ppm (103 mg/m ³)
7.5 hours/day, 4 days/
week for 8 months (HEC=
18 mg/m ³); 2 mg/kg
5 days/week for 13
weeks (1.4 mg/kg/day) | rabbit | rat | neurotoxicity;
hyperplasia of
forestomach
epithelium | 6E-3J | 1.4E-3 a,1 | 3000 | 1000 | Russo et al.,
1984/Danse
et al., 1984;
U.S. EPA, 1986,
1987, 1990 | | 4-Bromophenyl phenyl e | ther | | DATA II | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | τ | | | U.S. EPA, 1986 | | Bromophos
subchronic (RfD _s) | NA; 5 mg/kg/day in the
diet for 3 generations | NA | rat | NA; depression
of plasma and
liver cholin-
esterase | ND | 5E-2 | NA | 100 | U.S. EPA, 1986/
Leuschner
et al., 1967;
U.S. EPA, 1986 | | chronic (RfD) | NA; 5 mg/kg/day in the diet for 3 generations | NA | rat | NA; depression
of plasma and
liver cholin-
esterase (also see
Table B) | ND | 5E-3 | NA | 1000 | U.S. EPA, 1986/
Leuschner
et al., 1967;
U.S. EPA, 1986 | | Bromoxynii
subchronic (RfD _s) | NA; 100 ppm in the diet
for 2 years (5 mg/kg/
day) | NA | rat | NA; no adverse
effects | ND | 2E-2 | NA | 300 | U.S. EPA, 1990/
Union Carbide,
1982; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 100 ppm in the diet
for 2 years (5 mg/kg/
day) | NA | rat | NA; no adverse
effects | ND | 2E -2 a | NA | 300 | U.S. EPA, 1990/
Union Carbide,
1982; U.S. EPA,
1984, 1990 | | | Exposure | Specie | s | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | | |--|--|------------|--------|---|---|---------------|--------------------|------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | Bromoxynil octanoate subchronic (RfD _S) | NA; 100 ppm in the diet
for 2 years (5 mg/kg/
day) | NA | rat | NA; no adverse
effects | ND | 2E -2 | NA | 300 | U.S. EPA, 1990/
Union Carbide,
1982; U.S. EPA,
1984, 1990 | | | chronic (RfD) | NA; 100 ppm in the diet
for 2 years (5 mg/kg/
day) | NA | rat | NA; no adverse
effects | ND | 2E - 2ª | NA | 300 | U.S. EPA, 1990/
Union Carbide,
1982; U.S. EPA,
1984, 1990 | | | Busan 77 | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | | Busan 90 | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | | 1-Butanol (n-Butanol)
Subchronic (RfD _S) | NA; 125 mg/kg/day by
gavage for 13 weeks | NA | rat | NA; effects
on erythrocyte | ND | 1E+0 | ND | 100 | U.S. EPA, 1989/
U.S. EPA, 1986,
1989, 1990 | | | chronic (RfD) | NA; 125 mg/kg/day by
gavage for 13 weeks | NA | rat | NA; effects
on erythrocyte | ND | 1E-1 a | ND | 1000 | U.S. EPA, 1989/
U.S. EPA, 1986,
1989, 1990 | | | Butylate
subchronic (RfD _S) | NA; 5 mg/kg/day by
gavage for 12 months | NA | dog | NA; liver
effects | ND | SE-2 | NA | 100 | U.S. EPA, 1984/
Stauffer Chem.
Co., 1987; U.S.
EPA, 1984, 1990 | | | chronic (RfD) | NA; 5 mg/kg/day by
gavage for 12 months | NA | dog | NA; liver
effects | ND | 5E - 2ª | NA | 100 | U.S. EPA, 1984/
Stauffer Chem.
Co., 1987; U.S.
EPA, 1984, 1989
1990 | | | Butyl benzyl phthalate
subchronic (RfD _S) | NA; 0.28% of diet
for 26 weeks (159
mg/kg/day) | NA | rat | NA; effects on bo
weight gain, test
liver, kidney | | 2E+0 | NA | 100 | U.S. EPA, 1987,
1989/NTP, 1985;
U.S. EPA, 1986,
1987, 1989, 199 | | | | <u> </u> | Spec 1 es | | Effect of Concern | <u>R</u> eference | Reference Dose | | Factor | Reference | | |--|---|------------|--------|---|--|--|------------|---------------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 0.28% of diet
for 26 weeks (159
mg/kg/day) | NA | rat | NA; effects on body
weight gain, testes
liver, kidney
(also see Table B) | | 2E-1 a | NA | 1000 | U.S. EPA, 1987,
1989/NTP, 1985;
U.S. EPA, 1986,
1987, 1989, 199 | | | -Butylchloride | | | DATA 1 | INADEQUATE FOR QUANTITA | TIVE RISK ASSESSME | NT | | | U.S. EPA, 1988/
U.S. EPA, 1988 | | | utyrolactone, gamma | | | DATA 1 | INADEQUATE FOR QUANTITA | TIVE RISK ASSESSME | NT | | | U.S. EPA, 1984/
U.S. EPA, 1984/ | | | acodylic acid
subchronic (RfD _s) | NA; 184 mg/kg cacodylic
acid in diet for 90 days
(9.2 mg/kg/day) | NA | rat | NA; none | ND | 3E-2cc | NA | 300 | U.S. EPA, 1989/
Nees, 1968;
U.S. EPA, 1989 | | | chronic (RfD) | NA; 184 mg/kg cacodyllc
acid in diet for 90 days
(9.2 mg/kg/day) | NA | rat | NA; none | ND | 3E_3 g, cc | NA | 3000 | U.S. EPA, 1989/
Nees, 1968;
U.S. EPA, 1989 | | | admium
subchronic (RfO _S) | NA; NA | NA | NA | cancer; NA | ND | NDh | NA | NÁ | U.S. EPA, 1984/
U.S. EPA, 1984 | | | chronic (RfD) | NA; NA | NA | human | cancer (see Table B
renal damage |); ND | 1E-3 (food) ^a
5E-4 (water) | ,1 NA | 10 | U.S. EPA, 1984/
U.S. EPA, 1988,
1990 | | | alcium cyanide
subchronic (RfD _S) | NA; 10.8 mg/kg/day
fum1gated cyanide in
food for 2 years
(19.1 mg calcium
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects and
myelin degeneration | | 4E-2 ⁿ | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | | chronic (RfD) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(19.1 mg calcium
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects and
myelin degeneration | | 4E-2a,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | | aprolactam
subchronic (RfD _S) | NA; 0.1% diet 90 days
(50 mg/kg/day) | NA | rat | NA; renal effects | ND | 5E-1 | NA | 100 | U.S. EPA, 1988/
Powers et al.,
1984; U.S. EPA,
1988 | | | | Exposure | Specie | | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | | |--|--|------------|------|--|---|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 1000 ppm for 3
generations
(50 mg/kg/day) | NA | rat | NA; reduced body
weight | ND | 5E - 1 a | NA | 100 | U.S. EPA, 1988a/
Serota et al.,
1984; U.S. EPA,
1988, 1990 | | | Captafol
subchronic (RfD _S) | NA; 2 mg/kg/day in
capsules for 12 months | NA | dog | NA; kidney and
bladder effects | ND | 2E-3 | NA | 1000 | U.S. EPA, 1990/
Ortho-Chevron
Chemical Co.,
1985; U.S. EPA,
1984, 1990 | | | chronic (RfD) | NA; 2 mg/kg/day in
capsules for 12 months | NA | dog | NA; kidney and
bladder effects
(also see Table 8 | ND
) | 2E -3 a | NA | 1000 | U.S. EPA, 1990/
Ortho-Chevron
Chemical Co.,
1985; U.S. EPA,
1984, 1990 | | | Captan
subchronic (RfD _S) | NA; 12.5 mg/kg/day in
the diet (multi-
generation) | NA | rat | NA; decreased
body weight | ND | 16-1 | NA | 100 | U.S. EPA, 1990/
Stauffer Chem.
Co., 1982;
Chevron Chem.
Co., 1982; U.S.
EPA, 1984, 1990 | | | chronic (RfD) | NA; 12.5 mg/kg/day in
the diet (multi-
generation) | NA | rat | NA; decreased
body weight | ND | 1E-1 a | NA | 100 | U.S. EPA, 1990/
Stauffer Chem.
Co., 1982;
Chevron Chem.
Co., 1982; U.S.
EPA, 1984, 1990 | | | Carbaryl
subchronic (RfD _s) | NA; 200 ppm in the diet
for 2 years (9.6 mg/kg/
day) | NA | rat | NA; kidney
and
and liver
toxicity | ND | 1E-1 | NA | 100 | U.S. EPA, 1990/
Carpenter et
al., 1961; U.S.
EPA, 1984, 1990 | | | chronic (RfD) | NA; 200 ppm in the diet
for 2 years (9.6 mg/kg/
day) | NA | rat | NA; kidney and
and liver
toxicity | ND | 1E-1 a | NA | 100 | U.S. EPA, 1990/
Carpenter et
al., 1961; U.S.
EPA, 1984, 1990 | | | | Exposure | Species | | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | |--|--|------------|--------|--|---|---------------------|--------------------|------|--| | Compound | | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Carbofuran
subchronic (RfD _s) | NA; 0.5 mg/kg/day in
the diet for 1 year | NA | dog | NA; hematolog-
ical, testicular
and uterine
effects | ND | 5E-3 | NA | 100 | U.S. EPA, 1990/
FMC Corp., 1983;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; O.5 mg/kg/day in
the diet for 1 year | NA | dog | NA; hematolog-
ical, testicular
and uterine
effects | ND | 5E - 3 a | NA | 100 | U.S. EPA, 1990/
FMC Corp., 1983;
U.S. EPA, 1984,
1990 | | Carbon disulfide
subchronic (RfD _s) | NA; 20 ppm (62.3 mg/m³) inhalation 6 hours/day during pregnancy and before breeding (1.6 m³/day breathing rate and 0.5 absorption factor used to calculate dose of 11.0 mg/kg/day) | NA | rabbit | NA; fetal toxicity
malformation | r; ND | 1E-1 | NA | 100 | NA/Hardin et
al., 1981; U.S.
EPA, 1990 | | chronic (RfD) | NA; 20 ppm (62.3 mg/m³) inhalation 6 hours/day during pregnancy and before breeding (1.6 m³/day breathing rate and 0.5 absorption factor used to calculate dose of 11.0 mg/kg/day) | NA | rabbit | NA; fetal toxicity
malformation | r; 1E-2 1 | 1E-1 b. z | NA | 100 | NA/Hard1n et
al., 1981; U.S.
EPA, 1990 | | Carbon tetrachloride
subchronic (RfD _S) | NA; 1 mg/day, 5 days/
week for 12 weeks
(0.71 mg/kg/day) | NA | rat | NA; liver lesions | ND | 7E-3 | NA | 100 | U.S. EPA, 1984/
Bruckner et al.,
1986; U.S. EPA,
1990 | | chronic (RfD) | NA; 1 mg/day, 5 days/
week for 12 weeks
(0.71 mg/kg/day) | NA | rat | NA; liver lesions
(also see Table B) | ND | 7E_4a | NA | 1000 | U.S. EPA, 1984/
Bruckner et al.,
1986; U.S. EPA,
1990 | | Chloral
subchronic (RfD _S) | NA; 15.7 mg/kg/day
from drinking water | NA | mouse | NA; hepatotoxicity | y ND | 2E-2 | NA | 1000 | U.S. EPA, 1988/
Sanders et al.,
1982; U.S. EPA,
1988 | | | | | | | | | | | | |---|--|-----------------------|--------|--|---------------------------------|-----------------|--------------------------|------------------|--| | Compound | Exposure Inhalation: Oral | Spec 1e
Inhalation | | Effect of Concern | Reference D | ose
Oral | Uncertaint
Inhalation | y Factor
Oral | Reference
Inhalation/Oral | | Compound | imalation; oral | Inna lat ion | Urai | Inhalation; Oral | [mg/m ³ (mg/kg/day)] | | Tuna tat ton | Ulai | Tima lat lum/ul a | | chronic (RfD) | NA; 15.7 mg/kg/day
from drinking water | NA | mouse | NA; hepatotoxicity
(also see Table B) | ND | 2E-3a | NA | 10,000 | U.S. EPA, 1988/
Sanders et al.,
1982; U.S. EPA,
1988, 1990 | | Chlordane
subchronic (RfD _S) | NA; 1 ppm in diet for
130 weeks (0.045
mg/kg/day) | NA | rat | NA; liver necrosis | ND | 6E-5 | NA | 1000 | U.S. EPA, 1988/
Velsicol
Chemical Corp.,
1983; U.S. EPA,
1990 | | chronic (RfD) | NA; 1 ppm in diet for
130 weeks (0.045
mg/kg/day) | NA | rat | NA; liver necrosis
(also see Table B) | | 6E -5 a | NA | 1000 | U.S. EPA, 1988/
Velsicol
Chemical Corp.,
1983; U.S. EPA,
1990 | | Chlorine cyanide
subchronic (RfD _S) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(25.3 mg chlorine
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 5E - 2 | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(25.3 mg chlorine
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 5E-2 a,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | Chloroacetaldehyde | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | PŢ | | | U.S. EPA, 1988 | | Chloroacetic acid
subchronic (RfD _s) | NA; 30 mg/kg, 5 days/
week for 13 weeks
(21.4 mg/kg/day) | NA | rat | NA; myocarditis | ND | 2E - 2 | NA | 1000 | U.S. EPA, 1988/
IRDC, 1982;
U.S. EPA, 1988 | | chronic (RfD) | NA; 30 mg/kg, 5 days/
week for 13 weeks
(21.4 mg/kg/day) | NA | rat | NA; myocarditis | ND | 2E - 3 | NA | 10,000 | U.S. EPA, 1988/
IRDC, 1982;
U.S. EPA, 1988 | | 2-Chloroaniline | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | T (SEE TABLE | B) | | U.S. EPA, 1987 | | 3-Chloroaniline | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | T (SEE TABLE | 8) | | U.S. EPA, 1987 | | 0059h | | | | A-18 | | | <u> </u> | | 07/12/90 | | | Exposure | Specie | S | Effect of Concern | Reference C | lose | Uncertainty | Factor | <u>Reference</u> | | |--|--|------------|--------|--|---|----------------|-------------|--------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | 4-Chloroaniline
(p-Chloroaniline)
subchronic (RfD _S) | NA; 250 ppm in diet | NA | rat | NA; proliferative | ND | 4E-3 | NA | 3000 | U.S. EPA, 1987/ | | | | for 78 weeks (12.5
mg/kg/day) | | | lestons of the spleen | | | | | NCI, 1979; U.S.
EPA, 1990 | | | chronic (RfD) | NA; 250 ppm in diet
for 78 weeks (12.5
mg/kg/day) | NA | rat | NA; proliferative
lesions of the
spleen (also
see Table B) | ND | 4E – 3ª | NA | 3000 | U.S. EPA, 1987/
NCI, 1979; U.S.
EPA, 1990 | | | Chlorobenzene
subchronic (RfD _s) | 75 ppm (345 mg/m³)
7 hours/day, 5 days/
week for 120 days
(53 mg/kg/day);
27.3 mg/kg/day by
capsule for 90 days | rat | dog | liver and kidney
effects; liver and
kidney effects | 2E-1 (5E-2)
1 | 2E-1 | 1000 | 100 | Dilley, 1977;
U.S. EPA, 1984/
Monsanto, 1967;
U.S. EPA, 1985,
1989, 1990 | | | chronic (RfD) | 75 ppm (345 mg/m³) 7 hours/day, 5 days/ week for 120 days (53 mg/kg/day); 27.3 mg/kg/day by capsule for 90 days | rat | dog | liver and kidney
effects; liver and
kidney effects
(also see Table B) | | 2E -2 a | 10,000 | 1000 | Dilley, 1977;
U.S. EPA, 1984/
Monsanto, 1967;
U.S. EPA, 1985,
1989, 1990 | | | Chlorobenzilate
subchronic (RfD _S) | NA; 5 mg/kg/day in
starch suspension by
gastric intubation for
13 days during gestation
period | NA | rabbit | NA; decreased stoo
quantity, food
consumption and
weight gain;
hyperirritability | ol ND | 2E -2 | NA | 300 | NA/C1ba-Ge1gy
Corp., 1984a;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 5 mg/kg/day in
starch suspension by
gastric intubation for
13 days during gestation
period | NA | rabbit | NA; decreased stood quantity, food consumption and weight gain; hyperirritability | ON ND | 2E -2 a | NA | 300 | NA/C1ba-Ge1gy
Corp., 1984a;
U.S. EPA, 1990 | | | p-Chlorobenzoic acid
subchronic (RfD _s) | NA; 0.2% in diet for
5 months (173.3
mg/kg/day) | NA | rat | NA; none observed | ND | 2E+0 | NA | 100 | U.S. EPA, 1987/
Kleckebusch
et al., 1960;
U.S. EPA, 1987 | | Update: 'e, 1990 , | | Exposure | Spec | | Effect of Concern | Reference D | | Uncertainty | | Reference | |---|--|-----------|---------|--|---|---------------------|-------------|------|--| | Compound | Inhalation; Oral | Inhalatio | on Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 0.2% in diet for 5 months (173.3 mg/kg/day) | NA | rat | NA; none observed | ND | 2E-1 | NA | 1000 | U.S. EPA, 1987/
Kieckebusch
et al., 1960;
U.S. EPA, 1987 | | 4-Chlorobenzotrifluoria | ie | | | | | | | | | | subchronic (RfD _S) | NA; 15 mg/kg/day by
gavage daily for 90
days | NA | rat | NA; renal tubular
degeneration | ND | 2E-1 | NA | 100 | U.S. EPA, 1988/
Hooker Chemical
Co., 1981;
U.S. EPA, 1988 | | chronic (RfD) | NA; 15 mg/kg/day by
gavage daily for 90
days | NA | rat | NA; renal
tubular
degeneration | ND | 2E -2 | NA | 1000 | U.S. EPA, 1988/
Hooker Chemical
Co., 1981;
U.S. EPA, 1988 | | 2-Chloro-1,3-butadiene
(Chloroprene)
subchronic (RfD _S) | 10 ppm, 6 hours/day,
5 days/week for 2 years
(36 mg/m ³); NA | rat | NA | alopecia, retarded
growth; NA | I 1E-1(4E-2) | 2E-2b.q | 100 | NA | Du Pont, 1985;
U.S. EPA, 1989/
U.S. EPA, 1989 | | chronic (RfD) | 10 ppm, 6 hours/day,
5 days/week for 2 years
(36 mg/m ³); NA | rat | NA | alopecia, retarded
growth; NA | I 1E-1(4E-2) | 5E-5p·d | 100 | NA | Du Pont, 1985;
U.S. EPA, 1989/
U.S. EPA, 1989 | | 1-Chlorobutane
subchronic (RfD _S) | NA; 120 mg/kg, 5 days/
week for 13 weeks by
gavage (86 mg/kg/day) | NA | rat | NA; CNS and
hematopoletic
effects | ND | 9E-1 | NA | 100 | U.S. EPA, 1988/
NTP, 1986;
U.S. EPA, 1988 | | chronic (RfD) | NA; 60 mg/kg, 5 days/
week for 103 weeks by
gavage (43 mg/kg/day) | NA | rat | NA; mortality,
CNS and hemato-
logic effects | ND | 4E-11 | NA | 100 | U.S. EPA, 1988/
NTP, 1986;
U.S. EPA, 1988 | | 2-Chlorobutane | | | DATA I | NADEQUATE FOR QUANTII | TATIVE RISK ASSESSMEN | 171 | | | U.S. EPA, 1988/
U.S. EPA, 1988 | | Chlorocyclopentadiene | | | DATA I | NADEQUATE FOR QUANTII | ATIVE RISK ASSESSMEN | I _T 1 | | | U.S. EPA, 1988 | | Chlorodibromomethane (s | ce Dibromochloromethane) | | | | | | | | | | p-Chloro-m-cresol
subchronic (RfD _S) | NA; 200 mg/kg/day for
28 days | NA | rat | NA; decrease in
weight gain | ND | 2E+0 | NA | 100 | U.S. EPA, 1988/
Madsen et al.,
1986; U.S. EPA,
1988 | | 0059h | | | | A-20 | | | | | 07/12/90 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncer tainty | | Reference | |---|--|------------|--------|--|--------------------------------|---------------|--------------|-------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation [mg/m³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1988/
U.S. EPA, 1988 | | Chloroform
subchronic (RfD _s) | NA; 15 mg/kg, 6 days/
week for 7.5 years
(12.9 mg/kg/day) | NA | dog | NA; liver lesions | ND | 1E-2 | NA | 1000 | U.S. EPA, 1988/
Heywood et al.,
1979; U.S. EPA,
1990 | | chronic (RfD) | NA; 15 mg/kg, 6 days/
week for 7.5 years
(12.9 mg/kg/day) | NA | dog | NA; liver lesions
(also see Table B | ND
) | 1E-2ª | NA | 1000 | U.S. EPA, 1988/
Heywood et al.,
1979; U.S. EPA,
1990 | | m-Chloronitrobenzene | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1985 | | Chlorophenol, 3- and 4 |) - | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | 2-Chlorophenol subchronic (RfD _S) | NA; 50 ppm in drinking
water from weaning
through birth of first
litter (5 mg/kg/day) | NA | rat | NA; reproductive effects | ND | 5E-3 | NA | 1000 | U.S. EPA,
1987a,b/Exon and
Koeller, 1982;
U.S. EPA,
1987a,b, 1990 | | chronic (RfD) | NA; 50 ppm in drinking
water from weaning
through birth of first
litter (5 mg/kg/day) | NA | rat | NA; reproductive effects | ND | 5E-3 a | NA | 1000 | U.S. EPA,
1987a,b/Exon and
Koeller, 1982;
U.S. EPA,
1987a,b, 1990 | | Chloroprene (see 2-Chl | oro-1,3-butadiene) | | | | | | | | | | 2-Chloropropane
subchronic (RfD _s) | 250 ppm (803 mg/m ³),
6 hours/day, 5 days/
weeks for 4 weeks
(91.4 mg/kg/day); NA | rat | NA | liver effects; NA | 3E+O (9E-1) | ND | 100 | NA | Gage, 1970;
U.S. EPA, 1987/
U.S. EPA, 1987 | | chronic (RfD) | 250 ppm (803 mg/m ³),
6 hours/day, 5 days/
weeks for 4 weeks
(91.4 mg/kg/day); NA | rat | NA | liver effects; NA | 3E-1 (9E-2) | ND | 1000 | NA | Gage, 1970;
U.S. EPA, 1987/
U.S. EPA, 1987 | | 3-Chloropropene (see A | illyl chloride) | | | | | | | | | | 0059h | | | | A-21 | | | | | 07/12/90 | | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Reference [
Inhalation
[mg/m³ (mg/kg/day)] | Orai | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | |---|---|----------------------|-------------|---|--|----------------|----------------------------------|----------------|--| | Chlorotoluenes. m- and | 1 0- | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | | <u> </u> | | U.S. EPA, 1985 | | | · • | | | | | | | | | | o-Chlorotoluene
subchronic | NA; 20 mg/kg/day by
gavage for 103 or
104 days | NA | rat | NA; decreased body
weight gain | , NA | 2E-1 | NA | 100 | U.S. EPA, 1990/
G1bson et al.,
1974; U.S. EPA
1990 | | chronic (RfD) | NA; 20 mg/kg/day by
gavage for 103 or
104 days | NA | rat | NA; decreased bod
weight gain | , NA | 2E -2ª | NA | 1000 | U.S. EPA, 1990/
Gibson et al.,
1974; U.S. EPA
1990 | | Chlorpyrtfos
subchronic (RfD _S) | NA; 0.03 mg/kg/day by
capsule for 20 days or
0.1 mg/kg/day for 9 days | NA | human | NA; decreased
plasma cholin-
esterase | ND | 3E-3 | NA | 10 | U.S. EPA, 1990/
Dow Chemical
Co., 1972; U.S.
EPA, 1984, 1990 | | chronic (RfD) | NA; 0.03 mg/kg/day by
capsule for 20 days or
0.1 mg/kg/day for 9 days | NA | human | NA; decreased
plasma cholin-
esterase | ND | 3E -3 a | NA | 10 | U.S. EPA, 1990/
Bow Chemical
Co., 1972; U.S.
EPA, 1984, 1990 | | Chlorpyrifos-methyl
subchronic (RfD _S) | NA; 3-generation study
in rats, 2-year study
in dogs | NA | rat,
dog | NA; reduced
fertility in
rats, liver
effects in dogs | ND | 1E-2 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 3-generation study
in rats, 2-year study
in dogs | NA | rat,
dog | NA; reduced
fertility in
rats, liver
effects in dogs | ND | 16-29 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Chlorthalonil
subchronic (RfO _s) | NA; 60 ppm in the diet
for 2 years (1.5 mg/kg/
day) | NA | dog | NA; kidney
lesions | ND | 1.5E-2 | NA | 100 | U.S. EPA, 1990/
Diamond Shamrock
Chem. Co., 1970
U.S. EPA, 1990 | | chronic (RfD) | NA; 60 ppm in the diet
for 2 years (1.5 mg/kg/
day) | NA | dog | NA; kidney
lesions
(also see Table B | ND | 1.5E-2ª | NA | 100 | U.S. EPA, 1990/
Diamond Shamroci
Chem. Co., 1970
U.S. EPA, 1990 | | | Exposure | Specie | • c | Effect of Concern | Referen <u>ce D</u> | ose | Uncertainty | <u>Factor</u> | <u>Reference</u> | |--|---|------------|------------|--|---|-----------------------|--------------------|---------------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Chlorthiophos
subchronic (RfO _S) | NA; 1.6 ppm in the diet
for 2 years (0.08 mg/
kg/day) | NA | rat | NA; no effect
on erthrocyte
cholinesterase | ND | 8E-4 | NA | 100 | U.S. EPA, 1986/
Worthing and
Walker, 1983;
U.S. EPA, 1986 | | chronic (RfD) | NA; 1.6 ppm in the diet
for 2 years (0.08 mg/
kg/day) | NA | rat | NA; no effect
on erthrocyte
cholinesterase | ND | 8E -4 | NA | 100 | U.S. EPA, 1986/
Worthing and
Walker, 1983;
U.S. EPA, 1986 | | Chromium (III)
subchronic (RfD _S) | NA; 5% Cr ₂ O ₃ in diet
5 days/week for 90 days
(14O0 mg Cr/kg/day) | NA | rat | NA; hepatotoxicity | ND | 1E+1 | NA | 100 | U.S. EPA, 1984/
Ivankovic and
Preussman, 1975
U.S. EPA, 1984 | | chronic (RfD) | NA; 5% Cr ₂ O ₃ in diet
5 days/week for 600
feedings (1468 mg
Cr/kg/day) | NA | rat | NA; hepatotoxicity | , ND | 1E+0ª | NA | 1000 | U.S. EPA, 1984/
Ivankovic and
Preussman, 1975
U.S. EPA, 1984,
1990 | | Chromium (VI)
subchronic (RfD _s) | NA; 25 ppm Cr VI in
drinking water for l
year (2.4 mg/kg/day) | NA | rat | cancer; not define | ed ND | 2E -2 | NA | 100 | U.S. EPA, 1984/
MacKenzie et
al., 1958; U.S.
EPA, 1984 | | chronic (RfD) | NA; 25 ppm Cr VI in
drinking water for l
year (2.4 mg/kg/day) | NA | rat | cancer (see
Table B); not
defined | ND | 5E -3 a | NA | 500 | U.S. EPA, 1984/
MacKenzie et
al., 1958; U.S.
EPA, 1984, 1990 | | Chrysene | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1984 | | Copper
subchronic (RfD _S) | NA; 5.3 mg, single
dose | NA | human | NA; local GI
irritation | ND | 1.3 mg/1 ^k | NA NA | NA | U.S. EPA, 1984/
U.S. EPA, 1987 | | chronic (RfD) | NA; NA | NA | human | NA; local GI
irritation | ND | 1.3 mg/ l | NA NA | NA | U.S. EPA, 1984/
U.S. EPA, 1987 | | | Exposure | Spec 1e | 25 | Effect of Concern | Reference D | | <u>Uncertainty</u> | <u>Factor</u> | Reference | |--|--|------------|-----|---|---
---------------------|--------------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Copper cyanide
subchronic (RfD _S) | NA; 5 mg/kg/day by
gavage for 90 days | NA | rat | NA; decreased body
and organ weights,
histopathologic
alterations in liv
and kidney | | 5E -2 | NA | 100 | NA/U.S. EPA,
1986, 1990 | | chronic (RfD) | NA; 5 mg/kg/day by
gavage for 90 days | NA | rat | NA; decreased body
and organ weights,
histopathologic
alterations in liv
and kidney | | 5E-3 a | NA | 1000 | NA/U.S. EPA,
1986, 1990 | | m-Cresol
subchronic (RfD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
- | 5E-1 | NA | 100 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | chronic (RfD) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
)- | 5E-2 ª | NA | 1000 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | o-Cresol
subchronic (RfD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
)- | SE-1 | NA | 100 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | | Exposure | Species | | Effect of Concern | Reference (| | Uncertainty Factor | | Reference | |--|---|------------|------|--|--------------------------------|--------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation [mg/m³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
)- | 5E-2 a | NA | 1000 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | p-Cresol
subchronic (RfD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | D- | 5E-1 | NA | 100 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | chronic (RfD) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND | 5E -2 a | NA | 1000 | U.S. EPA, 1984,
1985/Micro-
biological
Associates,
1986; Toxicity
Research Labora
tories, 1987;
U.S. EPA, 1990 | | Cumene
subchronic (RfD _s) | 105.1 ppm (517 mg/m ³)
for 6 hrs/day, 5
days/wk for 4 weeks;
110 mg/kg/day for
194 days | rat | rat | CNS involvement,
nasal irritation;
renal | , 9E-2 | 4E-1 | 1000 | 300 | Monsanto Compan
1986; U.S. EPA,
1987, 1990/
Wolfe, 1956;
U.S. EPA, 1990 | | chronic (RfD) | 105.1 ppm (517 mg/m ³)
for 6 hrs/day, 5
days/wk for 4 weeks;
110 mg/kg for 194 days | rat | rat | CNS involvement, nasal irritation; renal | 9E-3J | 4E -2 ^a | 10,000 | 3000 | Monsanto Compan
1986; U.S. EPA,
1987, 1990/
Wolfe et al.,
1956; U.S.
EPA, 1987, 1990 | | | | | | | | | | | | |---|---|------------|------|---|---|----------------------|-------------|------|--| | | Exposure | Spec 16 | | Effect of Concern | Reference D | | Uncertainty | | Reference | | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Cyanazine
subchronic (RfD _S) | NA; 25 ppm in the diet
for 1 year (0.625 g/kg/
day) | NA | dog | NA; body weight
loss, hemato-
logic and clin-
ical chemistry
parameters | ND | 2E - 3 | NA | 300 | U.S. EPA, 1990/
Shell Chem. Co.
1986; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 25 ppm in the diet
for 1 year (0.625 g/kg/
day) | NA | dog | NA; body weight
loss, hemato-
logic and clin-
ical chemistry
parameters | ND | 2E-3 a | NA | 300 | U.S. EPA, 1990/
Shell Chem. Co.
1986; U.S. EPA,
1984, 1990 | | Cyanide
subchronic (RfD _s) | NA; 10.8 mg CN/kg/day
for 104 weeks from
diet treated with HCN | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 2E-2 | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 10.8 mg CN/kg/day
for 104 weeks from
diet treated with HCN | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 2E -2ª | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1990 | | Cyanogen
subchronic (RfD _S) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(21.6 mg Cyanogen/
kg/day) | NA | rat | NA; weight loss,
thyroid effects
myelin degeneratio | ND
on | 4E-2 ⁿ | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(21.6 mg Cyanogen/
kg/day) | NA | rat | NA; weight loss,
thyroid effects
myelin degeneratio | ND
on | 4 _{E-2} a,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | Cyanogen bromide subchronic (RfD _S) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(4.4 mg Cyanogen
bromide/kg/day) | NA | rat | NA; weight loss,
thyroid effects
myelin degeneratio | ND
On | 9E-2 n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | nnsah | | | | A-26 | | | | | 07/12/90 | | | Exposure | Specie | 5 | Effect of Concern | Reference C | ose | Uncertainty | | Reference | |--|--|------------|--------|--|---|---------------------|--------------------|-------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(4.4 mg Cyanogen
bromide/kg/day) | NA | rat | NA; weight loss,
thyroid effects
myelin degeneration | NA
on | gE-2a,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | Cyc loate | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | 179 | | | U.S. EPA, 1984 | | Cyc lohexano l | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1985 | | Cyclohexylamine
subchronic (RfD _S) | NA; 600 ppm cyclohexy-
lamine•HCl in diet
for 90 days (30 mg/kg/
day cyclohexylamine) | NA | rat | NA; reduced body
weight | ND | 3E-1 | NA | 100 | U.S. EPA, 1987/
Gaunt et al.,
1974; U.S. EPA,
1987 | | chronic | NA; 600 ppm cyclohexy-
lamine•HCl in diet for
2 years (18 mg/kg/day
cyclohexylamine) | NA | rat | NA; testicular
effects | ND | 2E - 1 a | NA | 100 | U.S. EPA, 1987/
Gaunt et al.,
1976; U.S. EPA,
1987, 1990 | | Cyclopentadiene
subchronic (RfD _S) | 250 ppm (676 mg/m ³)
for 135, 7-hour expo-
sures in 194 days
(87.3 mg/kg/day); NA | rat | NA | liver and kidney
lesions; NA | 3E+O (9E-1) | ND | 100 | NA | Dow, 1987;
U.S. EPA, 1987/
U.S. EPA, 1987 | | chronic (RfD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | | Dacthal (DCPA)
subchronic (RfD _s) | NA; 1000 ppm in the in the diet for 2 years (50 mg/kg/day) | NA | rat | NA; kidney and adrenal weights | ND | 5E-1 | NA | 100 | U.S. EPA, 1990/
Diamond Shamrock
Co., 1963;
U.S. EPA, 1984,
1990 | | chronic (RfO) | NA; 1000 ppm in the in the diet for 2 years (50 mg/kg/day) | NA | rat | NA; kidney and adrenal weights | ND | 5E-1a | NA | 100 | U.S. EPA, 1990/
Diamond Shamrock
Co., 1963; U.S.
EPA, 1984, 1990 | | Dalapon (sodium salt)
subchronic (RfD _{s.}) | NA; 15 mg/kg/day in the
diet for 2 years | NA | rat | NA; increased relative kidney weight | ND | 3E -2 | NA | 300 | U.S. EPA, 1990/
Paynter et al.,
1960; U.S. EPA,
1984, 1990 | | 0059h | | | | A-27 | | | | | 07/12/90 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | <u>Factor</u> | Reference | |--|--|------------|-----|--|---|---------------
--------------------|---------------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 15 mg/kg/day in the
diet for 2 years | NA | rat | NA; increased
relative kidney
weight | ND | 3E -2ª | NA | 300 | U.S. EPA, 1990/
Paynter et al.,
1960; U.S. EPA,
1984, 1990 | | 2,4-DB
subchronic (RfD _s) | NA; 8 mg/kg/day in the
diet for 90 days | NA | dog | NA; internal hemorrhage, mortality | ND | 8E - 2 | NA | 100 | U.S. EPA, 1990/
Rhodia Inc.,
1969; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 8 mg/kg/day in the
diet for 90 days | NA | dog | NA; internal hemorrhage, mortality | ND | 8E - 3ª | NA | 1000 | U.S. EPA, 1990/
Rhodia Inc.,
1969; U.S. EPA,
1984, 1990 | | DDT
subchronic (RfD _s) | NA; 1 ppm in diet for
27 weeks (0.05 mg/kg/day) | NA | rat | NA; liver lesions | ND | 5E-4 | NA | 100 | U.S. EPA, 1984/
Laug et al.,
1950; U.S. EPA,
1990 | | chronic (RFD) | NA; 1 ppm in diet for
27 weeks (0.05 mg/kg/day) | NA | rat | NA; liver lesions
(also see Table B | | 5E-4ª | NA | 100 | U.S. EPA, 1984/
Laug et al.,
1950; U.S. EPA,
1988, 1990 | | Decabromodiphenyl ether
(Decabromodiphenyl oxid
subchronic (RfD _S) | | NA | rat | NA; liver
enlargement | ND | 1E-2 | NA | 100 | U.S. EPA, 1987/
Kociba et al.,
1975; Norris
et al., 1973,
1975; U.S. EPA,
1987; U.S. EPA, | | chronic (RfD) | NA; 1.0 mg/kg/day in
the diet for 2 years | NA | rat | NA; liver
enlargement (also
see Table B) | ND | 1E-2 a | NA | 100 | U.S. EPA, 1987/
Kociba et al.,
1975; Norris et
al., 1973, 1975
U.S. EPA, 1987;
U.S. EPA, 1990 | | Compound | <u>Exposure</u>
Inhalation: Oral | Specie
Inhalation | | Effect of Concern
Inhalation: Oral | Reference D | ose
Oral | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Oral | |--|---|----------------------|---------|---|---------------------------------|----------------|---------------------------|----------------|---| | | | | | | [mg/m ³ (mg/kg/day)] | (mg/kg/day) | | | | | Diazinon
subchronic (RfD _S) | NA; 1.0 ppm (0.09 mg/kg/
day) in the diet for
35-42 days | NA | rat | NA; inhibition of plasma chol-inesterase activity | ND | 9E -4 | NA | 100 | U.S. EPA, 1984/
Davies and
Holub, 1979,
1980a,b;
U.S. EPA, 1984 | | chronic (RfD) | NA; 1.0 ppm (0.09 mg/kg/
day) in the diet for
35-42 days | NA | rat | NA; inhibition
of plasma chol-
inesterase
activity | ND | 9E -4 9 | NA | 100 | U.S. EPA, 1984/
Davies and
Holub, 1979,
1980a,b;
U.S. EPA, 1984 | | Dibenzofuran | | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | lŢ1 | | | U.S. EPA, 1987 | | 1.4-Dibromobenzene
subchronic (RfD _s) | NA; 10 mg/kg/day þy
gavage for 45 or 90
days | NA | rat | NA; liver weight
and liver enzymes | ND | 16-1 | NA | 100 | U.S. EPA, 1990/
Carlson and
Tardiff, 1977;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 10 mg/kg/day by
gavage for 45 or 90
days | NA | rat | NA; liver weight
and liver enzymes | ND | 1E-2 a | NA | 1000 | U.S. EPA, 1990/
Carlson and
Tard1ff, 1977;
U.S. EPA, 1984,
1990 | | Dibromochloromethane
subchronic (RfD _s) | NA; 30 mg/kg/day by
gavage, 5 days/week for
13 weeks (21 mg/kg/day) | NA | rat | NA; liver
lesions | ND | 2E-1 | NA | 100 | U.S. EPA, 1990/
NTP, 1985;
U.S. EPA, 1985,
1989, 1990 | | chronic (RfD) | NA; 30 mg/kg/day by
gavage, 5 days/week for
13 weeks (21 mg/kg/day) | NA | rat | NA; liver
lesions
(also see Table B | ND
) | 2E-2ª | NA | 1000 | U.S. EPA, 1990/
NTP, 1985;
U.S. EPA, 1985,
1989, 1990 | | Di-n-butyl phthalate
subchronic (RfD _S) | NA; 0.25% of diet
for 52 weeks
(125 mg/kg/day)
(89 mg/kg/day) | NA | rat | NA; mortality | ND | 1E+0 | NA | 100 | U.S. EPA, 1987/
Smith, 1953;
U.S. EPA, 1987 | Update: 'e, 1990 | | Exposure | Specie | ς . | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | | Reference | |--|--|---------------|------|--|---|---------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | · · · · · · · · · · · · · · · · · · · | NA; 0.25% of diet
for 52 weeks
(125 mg/kg/day) | NA | rat | NA; mortality ¹ | ND | 1E-1ª | NA | 1000 | U.S. EPA, 1987/
Smith, 1953;
U.S. EPA, 1987
1990 | | ,, | 290 mg/m ³ 7 hours/day,
5 days/week for up to 7
months (44 mg/kg/day);
125 mg/kg/day, 5 days/
week for 13 weeks | rat | rat | decreased body
weight gain; live
effects (also see
Table B) | 2E+O (4E-1) | 9E-1 | 100 | 100 | Hollingsworth
et al., 1958;
U.S. EPA, 1987/
NTP, 1985; U.S.
EPA, 1987, 1990 | | chronic (RfD) | 290 mg/m ³ 7 hours/day,
5 days/week for up to 7
months (44 mg/kg/day);
125 mg/kg/day, 5 days/
week for 13 weeks
(89 mg/kg/day) | rat | rat | decreased body
weight gain;
liver effects
(also see
Table 8) | 2E-1 (4E-2) | 9E-2 a ,1 | 1000 | 1000 | Hollingsworth
et al., 1958;
U.S. EPA, 1987/
NTP, 1985; U.S.
EPA, 1987, 1990 | | 1,4-Dichlorobenzene
(p-dichlorobenzene)
subchronic (RfD _S) | 75 ppm (454.6 mg/m ³)
5 hours/day, 5 days/week
for 76 weeks; NA | rat | NA | liver and kidney
effects; NA | 7E-1 | ND | 100 | NA | R11ey et al.,
1980/U.S. EPA,
1987 | | chronic (RFD) | 75 ppm (454.6 mg/m³)
5 hours/day, 5 days/week
for 76 weeks; NA | rat | NA | liver and kidney
effects (also see
Table B) | 7E-1 3 | ND | 100 | NA | Riley et al.,
1980/U.S. EPA,
1987 | | Dichlorobutenes | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT (CANCER: S | SEE TABLE B) | | U.S. EPA, 1987 | | Dichlorodifluoromethane
subchronic (RfD _S) | (F-12) 4136 mg/m ³ , 8 hours/ day, 5 days/week for 6 weeks (482.3 mg/kg/ day); 90 mg/kg/day for 90 days | guinea
pig | dog | lung and liver
lesions; none | 2E+0 (5E-1) | 9E-1 | 1000 | 100 | Prendergast
et al., 1967;
U.S. EPA, 1987;
Clayton, 1967;
U.S. EPA, 1987 | | chronic (RfD) | 4136 mg/m ³ , 8 hours/
day, 5 days/week for
6 weeks (482.3 mg/kg/
day); 15 mg/kg/day
for 2 years | guinea
pig | rat | lung and liver
lesions; depresse
body weight gain | 2E-1 (5E-2)
d | 2E-1 a | 10,000 | 100 | Prendergast
et al., 1967;
U.S. EPA, 1987,
Sherman, 1974;
U.S. EPA, 1982
1987, 1990 | 'e, 1990 Update: | Exposure | Specie | s | Effect of Concern | Reference D | ose | | | Reference | |--|---|---
---|---|--|--|--|--| | Inhalation; Oral | | | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation/Oral | | 500 ppm (2025 mg/m³)
6 hours/day, 5 days/week
for 13 weeks
(138 mg/kg/
day); 500 ppm (2025
mg/m³) 6 hours/day,
5 days/week for 13 weeks | cat | rat | kidney damage; none | 5E+0 (1E+0) | 1E+O | 100 | 100 | Hofmann et al.,
1971; U.S. EPA,
1984/Hofmann
et al., 1971;
U.S. EPA, 1983,
1984 | | 500 ppm (2025 mg/m³)
6 hours/day, 5 days/week
for 13 weeks (138 mg/kg/
day); 500 ppm (2025
mg/m³) 6 hours/day,
5 days/week for 13 weeks
(mg/kg/day) | cat | rat | kidney damage; none
(also see Table B) | s 5E-1 (1E-1) | 16-19 | 1000 | 1000 | Hofmann et al.,
1971; U.S. EPA,
1984/Hofmann
et al., 1971;
U.S. EPA, 1983,
1984 | | NA; 50 ppm in drinking
water for 2 years
(9 mg/kg/day) | NA | rat | NA; liver lesions | ND | 9E-3 | NA | 1000 | U.S. EPA, 1984/
Quast et al.,
1983; U.S. EPA,
1988, 1990 | | NA; 50 ppm in drinking
water for 2 years
(9 mg/kg/day) | NA | rat | NA; liver lesions
(also see Table B) | ND | 9E-3Z | NA | 1000 | U.S. EPA, 1984/
Quast et al.,
1983; U.S. EPA,
1988, 1990 | | NA; gavage for 90 days
(32 mg/kg/day) | NA | rat | NA; decreased hematocrit and hemoglobin | ND | 16-1 | NA | 300 | U.S. EPA, 1984/
McCauley et al.
n.d.; U.S. EPA,
1984, 1990 | | NA; gavage for 90 days
(32 mg/kg/day) | NA | rat | NA; decreased
hematocrit and
hemoglobin | ND | 16-23 | NA | 3000 | U.S. EPA, 1984/
McCauley et al.
n.d.; U.S. EPA,
1984, 1990 | | NA; O.1 mg/1 in
drinking water for 90
days (17 mg/kg/day) | NA | mouse | NA; increased serum alkaline phosphatase | ND | 2E-1 | NA | 100 | U.S. EPA, 1984,
Barnes et al.,
1985; U.S. EPA,
1990 | | NA; O.1 mg/% in
drinking water for 90
days (17 mg/kg/day) | NA | mouse | NA; increased
serum alkaline
phosphatase | ND | 2E-2ª | NA | 1000 | U.S. EPA, 1984,
Barnes et al.,
1985; U.S. EPA
1990 | | | 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (mg/kg/day) NA; 50 ppm in drinking water for 2 years (9 mg/kg/day) NA; 50 ppm in drinking water for 2 years (9 mg/kg/day) NA; gavage for 90 days (32 mg/kg/day) NA; gavage for 90 days (32 mg/kg/day) NA; Qavage for 90 days (32 mg/kg/day) NA; O.1 mg/1 in drinking water for 90 days (17 mg/kg/day) NA; O.1 mg/1 in drinking water for 90 | Inhalation; Oral Inhalation 500 ppm (2025 mg/m³) cat 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks 500 ppm (2025 mg/m³) cat 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (mg/kg/day) NA; 50 ppm in drinking NA water for 2 years (9 mg/kg/day) NA; gavage for 90 days NA (32 mg/kg/day) NA; gavage for 90 days NA (32 mg/kg/day) NA; O.1 mg/l in drinking water for 90 days (17 mg/kg/day) NA; O.1 mg/l in | Inhalation; Oral Inhalation Oral 500 ppm (2025 mg/m³) cat rat 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks 500 ppm (2025 mg/m³) cat rat 6 hours/day, 5 days/week for 13 weeks (138 mg/kg/ day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (mg/kg/day) NA; 50 ppm in drinking NA rat water for 2 years (9 mg/kg/day) NA; 50 ppm in drinking NA rat water for 2 years (9 mg/kg/day) NA; gavage for 90 days NA rat (32 mg/kg/day) NA; gavage for 90 days NA rat NA; gavage for 90 days NA rat (32 mg/kg/day) NA; O.1 mg/a in NA mouse drinking water for 90 days (17 mg/kg/day) NA; O.1 mg/a in NA mouse NA; O.1 mg/a in NA mouse | Inhalation; Oral Inhalation Oral Inhalation; Oral (500 ppm (2025 mg/m³) cat rat kidney damage; none for 13 weeks (138 mg/kg/day); 500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (500 ppm (2025 mg/m³) 6 hours/day, 5 days/week for 13 weeks (500 ppm 10 drinking NA rat NA; liver lesions water for 2 years (9 mg/kg/day) NA; 50 ppm in drinking NA rat NA; liver lesions (also see Table B) NA; gavage for 90 days NA rat NA; decreased hematocrit and hemoglobin NA; gavage for 90 days NA rat NA; decreased hematocrit and hemoglobin NA; gavage for 90 days NA rat NA; decreased hematocrit and hemoglobin NA; gavage for 90 days NA rat NA; decreased hematocrit and hemoglobin NA; O.1 mg/s in NA mouse NA; increased serum alkaline phosphatase | Inhalation; Oral Inhalation Oral Inhalation; Inhalat | Inhalation; Oral Inhalation Oral Inhalation; Inhalat | Inhalation; Oral Inhalation Oral Inhalation; Oral Inhalation; Oral Inhalation; Oral Inhalation; Oral Inhalation Oral Inhalation; Inhalatio | Inhalation; Oral Inhalation Oral Inhalation; Inhalation | | | Exposure | Specie | ς. | Effect of Concern | Reference | | Uncertainty | | Reference | |--|--|------------|--------|--|---|-------------------|--------------------|-------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | 2,4-Dichlorophenol subchronic (RfD _S) | NA; 3 ppm in drinking
water for 2 generations
(0.3 mg/kg/day) | NA | rat | NA; immune functio | n ND | 3E - 3 | NA | 100 | U.S. EPA,
1987a,b/Exon and
Koller, 1985;
U.S. EPA,
1987a,b, 1990 | | chronic (RfD) | NA; 3 ppm in drinking
water for 2 generations
(0.3 mg/kg/day) | NA | rat | NA; 1mmune functio | n ND | 3E - 3ª | NA | 100 | U.S. EPA,
1987a,b/Exon and
Koller, 1985;
U.S. EPA, 1986
1987a,b, 1990 | | Dichlorophenol, 2,3-, 3
2,6-, 3,4- and 3,5- | 2,5-, | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | NT | | | U.S. EPA, 1987 | | 2,4-Dichlorophenoxy
acetic acid (2,4-D)
subchronic (RfD _S) | NA; 1.0 mg/kg/day in
diet for 91 days | NA | rat | NA; hematologic
hepatic and renal
toxicity | ND | 1E-2 | NA | 100 | NA/Dow Chemical
Co., 1983; U.S.
EPA, 1990 | | chronic (RfD) | NA; 1.0 mg/kg/day in
diet for 91 days | NA | rat | NA; hematologic
hepatic and renal
toxicity | ND | 1E-2 ^z | NA | 100 | NA/Dow Chemical
Co., 1983; U.S.
EPA, 1990 | | Dichloroprop | | • | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | PTM | | | U.S. EPA, 1984 | | Dichloropropanes (1,1- | , 1,2-, 1,3-, 2,2-) | | DATA 1 | INADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | NT (also see | Table B) | | U.S. EPA, 1985 | | 1,3-Dichloropropene (T
subchronic (RfD _s) | elone II) 10 ppm (45.4 mg/m ³) 6 hours/day, 5 days/week for 13 weeks; 3 mg/kg/ day in the diet for 90 days | rat | rat | degeneration chang
in nasal mucosa;
increased organ wo | | 3E-3 | 100 | 1000 | Stott et al.,
1982; U.S. EPA,
1989/Dow
Chemical Co.,
1973; U.S. EPA
1989, 1990 | | chronic (RfD) | 10 ppm (45.4 mg/m ³);
6 hours/day, 5 days/week
for 13 weeks; 3 mg/kg/da
in the diet for 90 days | rat
y | rat | degenerative chang
in nasal mucosa;
increased organ
weights (also see
Table B) | | 3E -4 a | 100 1 | 0,000 | Stott et al.,
1982; U.S. EPA
1989/Dow
Chemical Co.,
1973; U.S. EPA
1989, 1990 | Update: 'e, 1990 | | Exposure | Specie | · S | Effect of Concern | Reference <u>C</u> | ose | Uncertainty | <u>Factor</u> | Reference | |--|--|------------|------------|---|---|---------------------|-------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | Dicyclopentadiene
subchronic (RfD _S) | l ppm (5.4 mg/m³),
6 hours/day, 5 days/
week for 90 days (0.61
mg/kg/day); 690 ppm in
diet for 3 generations
(32 mg/kg/day for males) | rat | rat | kidney dysfunction
none | ; 2E-3 (6E-4) | 3E-1 | 1000 | 100 | Dodd et al.,
1982; U.S. EPA,
1987/Litton
Bionetics, 1980
U.S. EPA, 1987 | | chronic (RfD) | <pre>1 ppm (5.4 mg/m³), 6 hours/day, 5 days/ week for 90 days (0.61 mg/kg/day); 690 ppm in diet for 3 generations (32 mg/kg/day for males)</pre> | rat | rat | kidney dysfunction
none | ; 2E-4 (6E-5) | 3E-2 | 10,000 | 1000 | Dodd et al.,
1982;U.S. EPA,
1987/Litton
Bionetics, 1980
U.S. EPA, 1987 | | Dieldrin
subchronic (RfD _S) | NA; O.1 ppm in diet for
2 years (0.005 mg/kg/day | NA
) | rat | NA; liver lesions | ND | 5E-5 | NA | 100 | U.S. EPA, 1987/
Walker et al.,
1969; U.S. EPA,
1990 | | chronic (RfD) | NA; 0.1 ppm in diet for
2 years (0.005 mg/kg/day | NA
) | rat | NA; liver lesions
(Cancer: see
Table B) | ND | 5E-5 a | NA | 100 | U.S. EPA, 1987/
Walker et al.,
1969; U.S. EPA,
1990 | | N,N-Diethylaniline | | | DATA I | NADEQUATE FOR QUANTII | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1987 | | Diethylene glycol
monoethyl ether
subchronic (RfD _S) | NA; diet provided 500
mg/kg/day for 90 days | NA | rat | NA; impaired renal
function, increase
testes weight | | 5E+O | NA | 100 | U.S. EPA, 1984/
Hall et
al.,
1966; U.S. EPA,
1984 | | chronic (RfD) | NA; 0.2% in drinking water (200 mg/kg/day) for 2 years | NA | rat | NA; kidney histo-
pathology | ND | 2E+0 | NA | 100 | U.S. EPA, 1984/
Smyth et al.,
1964; U.S. EPA,
1984 | | Diethylformamide
subchronic (RfD _S) | NA; 546 µg/day (1.56
mg/kg/day) in diet x
5 days/week for 73 weeks | NA | rat | NA; no effect | ND | 1.16-1 | NA | 100 | U.S. EPA, 1986/
Argus et al.,
1965; U.S. EPA,
1986 | | 0059h | | | | A-33 | | | | | 07/12/90 | | | Eveneure | Specie | c | Effect of Concern | Reference D | ose | Uncertainty | | Reference | |---|--|------------|------|--|---|---------------|--------------------|--------|---| | Compound | Exposure Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Ora1 | Inhalation/Oral | | chronic (RfD) | NA; 546 µg/day (1.56
mg/kg/day) in diet x
5 days/week for 73 weeks | NA | rat | NA; no effect | ND | 1.18-1 | NA | 100 | U.S. EPA, 1986/
Argus et al.,
1965; U.S. EPA,
1986 | | 1,2-Diethylhydrazine | | | DATA | INADEQUATE FOR QUANT | ITATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | Diethyl-p-nitrophenyl
phosphate
(paraoxon) | | | DATA | INADEQUATE FOR QUANT | ITATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1989 | | Diethyl phthalate
subchronic (RfD _s) | NA; 1% in diet for
16 weeks
(750 mg/kg/day) | NA | rat | NA; reduced
terminal body
weight | ND | 8E+0 | NA | 100 | U.S. EPA, 1987/
Brown et al.,
1978; U.S. EPA,
1987 | | chronic (RfD) | NA; 1% in diet for
16 weeks
(750 mg/kg/day) | NA | rat | NA; reduced
terminal body
weight | ND . | 8E-1 a | NA | 1000 | U.S. EPA, 1987/
Brown et al.,
1978; U.S. EPA,
1987, 1990 | | Dimethoate
subchronic (RfD _s) | NA; 1 ppm (0.05 mg/kg/
day) in diet for 2 years | NA | rat | NA; brain chol-
inesterase
inhibition | ND | 2E-4 | NA | 300 | U.S. EPA, 1985/
American
Cyanimid Co.,
1986; U.S.
EPA, 1990 | | chronic (RfD) | NA; 1 ppm (0.05 mg/kg/
day) in diet for 2 years | NA
; | rat | NA; brain chol-
inesterase
inhibition | ND | 2E -4ª | NA | 300 | U.S. EPA, 1985,
American
Cyanimid Co.,
1986; U.S. EPA
1990 | | N,N-Dimethylaniline
subchronic (RfD _S) | NA; 31.25 mg/kg/day by
gavage x 5/7 days for
13 weeks | NA | rat | NA; splenomegaly
and splenic
hemosiderosis | , ND | 2E-2 | NA | 1000 | U.S. EPA, 1986,
Abdo et al.,
1984; U.S. EPA
1990 | | chronic (RfD) | NA; 31.25 mg/kg/day by
gavage x 5/7 days for
13 weeks | NA | rat | NA; splenomegaly
and splenic
hemosiderosis | y ND | 2E-3ª | NA | 10,000 | U.S. EPA, 1986
Abdo et al.,
1984; U.S. EPA
1990 | | | | | | A-34 | | | * | | 07/12/90 | | | Exposure | Specie | ς. | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | | Reference | |---|--|------------|--------|--|--|-------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | N,N-Dimethylformamide
subchronic (RfD _S) | NA; 540 ppm (96 mg/kg/
day) in diet for 119
days | NA | mouse | NA; increased
liver weight | ND | 1E+0 | NA | 100 | U.S. EPA, 1986/
Becci et al.,
1983; U.S. EPA,
1986 | | chronic (RfD) | NA; 540 ppm (96 mg/kg/
day) in diet for 119
days | NA | mouse | NA; increased
liver weight | ND | 1E-1 | NA | 1000 | U.S. EPA, 1986/
Becc1 et al.,
1983; U.S. EPA,
1986 | | •
Dimethylphenols (2,3-, | 2,5-) | | DATA I | NADEQUATE FOR QUANTITA
(Cancer: see Ta | TIVE RISK ASSESSMEN
ble B) | ıT | | | U.S. EPA, 1986 | | 2,4-Dimethylphenol subchronic (RfD _s) | NA; 50 mg/kg/day by
gavage for 90 days | NA | mouse | NA; neurological
signs and hemato-
logical changes | ND | 2E-1 | NA | 300 | U.S. EPA, 1986/
American Bio-
genics, 1989;
U.S. EPA, 1986,
1990 | | chronic (RfD) | NA; 50 mg/kg/day by
gavage for 90 days | NA | mouse | NA; neurological
signs and hemato-
logical changes | ND | 2E-2J | NA | 3000 | U.S. EPA, 1986/
American Bio-
genics, 1989;
U.S. EPA, 1986,
1990 | | 2,6-Dimethylphenol subchronic (RfD _s) | NA; O.6 mg/kg/day for
8 months | NA | rat | NA; effects on blood pressure, weight gain and histological appear ance of several org | | 6E-3 | NA | 100 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1990 | | chronic (RfD) | NA; 0.6 mg/kg/day for
8 months | NA | rat | NA; effects on
blood pressure,
weight gain and
histological appear
ance of several orç | | 6E-4 ^a | NA | 1000 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1990 | | | Exposure | Spec | 1es | Effect of Concern | Reference D | ose | Uncertainty | <u>Fac</u> tor | Reference | |--|--|-----------|--------|---|---|-------------------|--------------------|----------------|--| | Compound | Inhalation; Oral | Inhalatio | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | 3,4-Dimethylphenol subchronic (RfD _S) | NA; 1.4 mg/kg/day
for 8 months | NA | rat | NA; reduced growth
internal lesions | , ND | 1E-2 | NA | 100 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1990 | | chronic (RfD) | NA; 1.4 mg/kg/day
for 8 months | NA | rat | NA; reduced growth
internal lesions | , ND | 1E-3 ^a | NA | 1000 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1990 | | Dimethyl phthalate
subchronic (RfO _S) | NA; 1000 mg/kg/day
in diet for 2 years | NA | rat | NA; minor effect o
growth; some nephr
tic involvement | | 16+0 | NA | 100 | NA/Lehman, 1955
U.S. EPA, 1987 | | chronic (RfD) | NA; 1000 mg/kg/day
in diet for 2 years | NA | rat | NA; minor effect o
growth; some nephr
tic involvement | | 1E+09 | NA | 100 | NA/Lehman, 1955;
U.S. EPA, 1987 | | Dimethyl terephthalate
subchronic (RfD _S) | NA; 2500 ppm
(125 mg/kg/day) in
diet for 103 weeks | NA | rat | NA; chronic
kidney inflam-
mation | ND | 1E-1 | NA | 1000 | U.S. EPA, 1984/
NCI, 1979;
U.S. EPA, 1990 | | chronic (RFD) | NA; 2500 ppm
(125 mg/kg/day) in
diet for 103 weeks | NA | rat | NA; chronic
kidney inflam-
mation | ND | 1E-1 a | NA | 1000 | U.S. EPA, 1984/
NCI, 1979;
U.S. EPA, 1990 | | N,N-Dimethylurea | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1984 | | m-Dinitrobenzene
subchronic (RfD _S) | NA; 3 ppm (0.40 mg/kg/
day) in drinking water
for 16 weeks | NA | rat | NA; increased splenic weight | ND | 1E-3 | NA | 300 | U.S. EPA, 1985/
Cody et al.,
1981; U.S. EPA,
1990 | | chronic (RfD) | NA; 3 ppm (0.40 mg/kg/
day) in drinking water
for 16 weeks | NA | rat | NA; increased splenic weight | ND | 1E-4ª | NA | 3000 | U.S. EPA, 1985/
Cody et al.,
1981; U.S. EPA,
1990 | Update: e, 1990 | • | Exposure | Spec 1e | | Effect of Concern | Reference D | | Uncertainty | | Reference | |--|---|------------|--------|---|---|---------------|-------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Ora | | Dinitrobenzenes (o-, p
subchronic (RfD _S) | o-)
NA; 3 ppm (0.40 mg/kg/
day) in drinking water
for 16 weeks | NA | rat | NA; increased splenic weight | ND | 4E-3 | NA | 100 | U.S. EPA, 1985,
Cody et al.,
1981; U.S. EPA,
1985 | | chronic (RfD) | NA; 3 ppm (0.40 mg/kg/
day) in drinking water
for 16 weeks | NA | rat | NA; increased splenic weight | ND | 4E-4 | NA | 1000 | U.S. EPA, 1985.
Cody et al.,
1981; U.S. EPA
1985 | | 2,6-Dinitro-p-cresol | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | 4,6-Dinitro-o-cresol | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | PTI | | | U.S. EPA, 1986
U.S. EPA, 1986 | | 2,4-Dinitrophenol
subchronic (RfD _s) | NA; 2 mg/kg/day, thera-
peutic use | NA | human | NA; cataract | ND | 2E - 3 | NA | 1000 | U.S. EPA, 1990.
Horner, 1942;
U.S. EPA, 1984
1990 | | chronic (RfD) | NA; 2 mg/kg/day, thera-
peutic use | NA | human | NA; cataract | ND | 2E-3 a | NA | 1000 | U.S. EPA, 1990,
Horner, 1942;
U.S. EPA, 1984
1990 | | Dinitrophenols (2,3-; | 2,5-; 2,6-; 3,5-) | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | łT | | | U.S. EPA, 1984 | | Oinitrotoluenes (2,3-; | 2,4-; 2,5-; 2,6-; 3,4-) | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT (Cancer: s | ee Table B) | | U.S. EPA, 1986 | | Di-n-octyl phthalate
subchronic (RfD _s) | NA; 175 mg/kg/day in
diet for 7-12 months | NA | rat |
NA; elevated kidr
and liver weights
increased SGOT ar
SGPT | ; | 2E -2 | NA | 1000 | NA/Piekacz,
1971; U.S. EPA
1987 | | chronic (RfD) | NA; 175 mg/kg/day in
diet for 7-12 months | NA | rat | NA; elevated kidr
and liver weights
increased SGOT ar
SGPT | ; · | 2E - 2 | NA | 1000 | NA/Piekacz,
1971; U.S. EPA,
1987 | | Dinoseb
subchronic (RfD _s) | NA; 1 mg/kg/day in diet
for 29 weeks | NA | rat | NA; decreased
fetal weight | ND | JE-3pp | NA | 1000 | U.S. EPA, 1984,
Dow Chemical
Co., 1981;
U.S. EPA, 1990 | | 0059h | | | | A-37 | | | | | 07/12/90 | | | Exposure | Specie | <u>s</u> _ | Effect of Concern | Reference D | | <u>Uncertainty</u> | | Reference | |--|--|------------|------------|--|---|-----------------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | <pre>Inhalation [mg/m³ (mg/kg/day)]</pre> | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 1 mg/kg/day in diet
for 29 weeks | NA | rat | NA; decreased
fetal weight | ND | 1 Ε_3 a ,1,bb | NA NA | 1000 | U.S. EPA, 1984/
Dow Chemical
Co., 1981;
U.S. EPA, 1990 | | ,N-Diphenylamine
subchronic (RfD _S) | NA: 0.0170 (2.5 mg/kg/
day) in diet for 2 years | NA | dog | NA; decreased
body weight
gain and
increased liver
and kidney
weights | ND | 2.5E-2 | NA | 100 | U.S. EPA, 1985/
Thomas et al.,
1967; U.S. EPA,
1990 | | chronic (RfD) | NA: 0.0170 (2.5 mg/kg/
day) in diet for 2 years | NA | dog | NA; decreased body weight gain and increased liver and kidney weights (also see Table B) | ND | 2.5E-2ª | NA | 100 | U.S. EPA, 1985/
Thomas et al.,
1967; U.S. EPA,
1990 | | irect Lightfast Blue | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | isulfoton
subchronic (RfD _S) | NA; 0.8 ppm in diet for
2 years (0.04 mg/kg/day) | NA | rat | NA; cholinesteras
inhibition, optic
nerve degeneratio | | 4E -5 | NA | 1000 | U.S. EPA, 1990a
Mobay chemical,
1985; U.S. EPA
1990a,b | | chronic (RfD) | NA; 0.8 ppm in diet for
2 years (0.04 mg/kg/day) | NA | rat | NA; cholinesteras
inhibition, optic
nerve degeneratio | | 4E-5a | NA | 1000 | U.S. EPA, 1990a
Mobay chemical,
1985; U.S. EPA,
1990a,b | | ndosulfan
subchronic (RfD _S) | NA; 3 ppm in diet in
2-generation reproduc-
tive study
(0.15 mg/kg/day) | NA | rat | NA; mild kidney
lesions | ND | 2E-4 | NA | 1000 | U.S. EPA, 1987/
Huntington
Research Center
1984; U.S. EPA,
1987, 1990 | | chronic (RFD) | NA: 3 ppm in diet in
2-generation reproduc-
tive study
(0.15 mg/kg/day) | NA | rat | NA; mild kidney
lesions | ND | 5E - 5 a | NA | 3000 | U.S. EPA, 1987/
Huntington
Research Center
1984; U.S. EPA,
1987, 1990 | | | Exposure | Specie | s | Effect of Concern | Reference (| | <u>Uncertainty</u> | | Reference | |---|---|------------|--------|--|---|---------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral (| Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Endothall subchronic (RFD _S) | NA; 100 ppm disodium endothall in the diet for 2 years (2 mg endothall ion/kg/day) | NA | dog | NA; stomach effect | ND | 2E-2 | NA | 100 | U.S. EPA, 1989/
Keller, 1965;
Pennwalt Agchem,
n.d; U.S. EPA,
1989, 1990 | | chronic (RfD) | NA; 100 ppm disodium endothall in the diet for 2 years (2 mg endothall ion/kg/day) | NA | dog | NA; stomach effect | ND | 2E-2 a | NA | 100 | U.S. EPA, 1989/
Keller, 1965;
Pennwalt Agchem,
n.d.; U.S. EPA,
1989, 1990 | | Endrin
subchronic (RfD _S) | NA; 1 ppm in diet for
18 months
(0.045 mg/kg/day) | NA | dog | NA; increased
relative organ
weights | ND | 5E- 4 | NA | 100 | U.S. EPA, 1987/
Treon et al.,
1955; U.S. EPA,
1985, 1987,
1990 | | chronic (RfD) | NA; 1 ppm in diet for
>2 years
(0.025 mg/kg/day) | NA | dog | NA; convulsions and liver lesions | ND | 3E-4 a | NA | 100 | U.S. EPA, 1987/
CBI; U.S. EPA,
1985, 1987,
1990 | | Epichlorohydrin
subchronic (RfD _S) | 5 ppm, 6 hours/day,
5 days/week for 87-88
days (HEC=0.25 mg/m ³);
10 ppm (37.8 mg/m ³),
6 hours/day, 5 days/week
for 136 weeks | mouse | rat | nasal turbinate
injury; kidney dama | 3E - 3
age | 2E -2 | 100 | 100 | Quast et al.,
1979/Laskin et
al., 1980; U.S.
EPA, 1984, 1990 | | chronic (RfD) | 5 ppm, 6 hours/day,
5 days/week for 87-88
days (HEC=0.25 mg/m ³);
10 ppm (37.8 mg/m ³),
6 hours/day, 5 days/week
for 136 weeks | mouse | rat | nasal turbinate
injury; kidney dama
(also see Table B) | 3E-4Ĵ
age | 2E-3 a ,b | 1000 | 1000 | Quast et al.,
1979/Laskin et
al., 1980; U.S.
EPA, 1984, 1990 | | EPTC (see S-Ethyl dip | ropylthiocarbamate) | | | | | | | | | | Ethoprop | | | DATA I | NADEQUATE FOR QUANTITA | ATIVE RISK ASSESSMEI | IT | | | U.S. EPA, 1984 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty | Factor | Reference | |--|--|------------|---------|--|---|---------------|-------------|--------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | 2-Ethoxyethanol subchronic (RfD _s) | 10 ppm (37 mg/m ³) 6 hours/day on days 6-15 of gestation (6.8 mg/kg/day); 50 µ£ (46.6 mg/kg/day) on days 1-21 of gestation | rat | rat | fetotoxicity;
fetotoxicity | 2E-1 (7E-2)bb | 5E-1bb | 100 | 100 | Doe, 1984;
U.S. EPA, 1984/
Stenger et al.,
1971; U.S. EPA,
1984 | | chronic (RfD) | 100 ppm (369 mg/m³) 6 hours/day, 5 days/ week for 13 weeks (49.9 mg/kg/day) 500 mg/kg 5 days/week for 103 weeks (357 mg/kg/day) | rat | rat | altered hemotology
reduced body weigh
(also see Table B) | t | 4E-1 | 1000 | 1000 | Barbee et al.,
1984; U.S. EPA,
1984/Melnick,
1984; U.S. EPA,
1985 | | 2-Ethoxyethanol acetate
subchronic (RfD _s) | NA; 50 ppm (30.1 mg/kg)
x 6 hours/day on gesta-
tional day 6-18 | NA | rat | NA; decreased ossification | ND | 3E-16.66 | NA | 100 | U.S. EPA, 1985/
Union Carbide,
1984; U.S. EPA,
1985 | | chronic (RfD) | NA; 50 ppm (30.1 mg/kg)
x 6 hours/day on gesta-
tional day 6-18 | NA | rat | NA; decreased ossification | ND | 3E-1b,bb | NA | 100 | U.S. EPA, 1985/
Union Carbide,
1984; U.S. EPA,
1985 | | 2-Ethoxyethanol esters
2-ethoxyethanol acryl
2-ethoxyethyl methacr
2-ethoxyethanol phosp
2-ethoxyethyl dodecan | ylate,
hated, | | DATA II | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1985 | | Ethyl acetate
subchronic (RfD _S) | NA; 900 mg/kg/day by
gavage for 90 days | NA | rat | NA; mortality,
body weight
loss | ND | 9E+0 | NA | 100 | U.S. EPA, 1990/
U.S. EPA,
1986a,b, 1990 | | chronic (RfD) | NA; 900 mg/kg/day by
gavage for 90 days | NA | rat | NA; mortality,
body weight loss
(also see Table B) | ND | 9E-1 a | NA | 1000 | U.S. EPA, 1990/
U.S. EPA,
1986a,b, 1990 | Update: e, 1990 | | Exposure | Specie | s | Effect of Concern | Reference (| | Uncertainty | | Reference | |--|--|------------|------|--|---|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | n-Ethylaniline | | | DATA | INADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1986 | | Ethylbenzene
subchronic (RFD _S) | NA; 136 mg/kg 5
days/week for 182
days (97.1 mg/kg/day) | NA | rat | NA; hepatotoxicity
and nephrotoxicity | | 1E+0 | NA | 100 | U.S. EPA, 1984/
Wolf et al.,
1956; U.S. EPA,
1984, 1986, 1990 | | chronic (RfD) | NA; 136 mg/kg 5
days/week for 182
days (97.1 mg/kg/day) | NA | rat | NA; hepatotoxicity and nephrotoxicity | ND 1 | 1E-1 a | NA | 1000 | U.S. EPA, 1984/
Wolf et al.,
1956; U.S. EPA,
1984, 1986, 1990 | | Ethyl chloride | | | DATA | INADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | S-Ethyl dipropylthioca
subchronic (RfD _S) | rbamate
NA; 50 ppm in diet for
2 generations (2.5 mg/
kg/day) | NA | rat | NA; degenerative cardiomyopathy | ND | 2.5E-2 | NA | 100 | U.S. EPA, 1984/
PPG
Industries,
1986; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 50 ppm in diet for
2 generations (2.5 mg/
kg/day) | NA | rat | NA; degenerative cardiomyopathy | ND | 2.5E-2ª | NA | 100 | U.S. EPA, 1984/
PPG Industries,
1986; U.S. EPA,
1984, 1990 | | Ethylene cyanohydrin
subchronic (RfD _S) | NA; 30 mg/kg/day in
drinking water for
90 days | NA | rat | NA; decreased hear
and brain weights | t ND | 3E-1 | NA | 100 | U.S. EPA, 1988/
Sauerhoff
et al., 1976;
U.S. EPA, 1988 | | chronic (RfD) | NA; 30 mg/kg/day in
drinking water for
90 days | NA | rat | NA; decreased hear
and brain weights | t ND | 3E-1 | NA | 100 | U.S. EPA, 1988/
Sauerhoff
et al., 1976;
U.S. EPA, 1988 | Update: 3, 1990 | | Exposure | Specie | • | Effect of Concern | Reference D | ose _ | Uncertainty | <u>Factor</u> | Reference | |--|---|------------|------|--|---|--------|-------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Ethylenediamine
subchronic (RfD _S) | 59 ppm (145 mg/m³) 7 hours/day, 5 days/week for 30 days (25.8 mg/kg/ day); 3-month dietary study with 50 mg/kg/day ethylenediamine dihydro- chloride (22.6 mg ethylenediamine/kg/day) | rat | rat | death, kidney
and liver
lesions; liver
and hematologic
changes | 1E+O (3E-1) | 2E-1 | 160 | 100 | Pozzan1 and
Carpenter, 1954;
U.S. EPA, 1988/
Yang et al.,
1983; U.S. EPA,
1988 | | chronic (RfD) | NA; 3-month dietary
study with 50 mg/kg/day
ethylenediamine dihydro-
chloride (22.6 mg
ethylenediamine/kg/day) | NA | rat | NA; liver and
hematologic
changes | ND | 2E-2 | NA | 1000 | U.S. EPA, 1988/
Yang et al.,
1983; U.S. EPA,
1988 | | Ethylene glycol
subchronic (RfD _S) | NA; 200 mg/kg/day in
developmental toxicity | NA | rat | NA; fetotox1c1ty | ND | 5£+0pp | NA | 100 | U.S. EPA, 1987/
Maronpot
et al., 1983;
U.S. EPA,
1987a, 1990 | | chronic (RfD) | NA; 200 mg/kg/day in
2-year dietary study | NA | rat | NA; mortality,
liver and kidney
effects | ND | 2E+0ª | NA | 100 | U.S. EPA, 1987/
DePass et al.,
1986a; U.S. EPA,
1987a, 1990 | | Ethylene glycol
monobutyl ether
subchronic (RfD _S) | 25 ppm (121 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(16 mg/kg/day); NA | rat | NA | altered hematolog
NA | y; 6E-1 (2E-1) | ND | 100 | NA | Dodd et al.,
1983/U.S. EPA,
1984 | | chronic (RfD) | 25 ppm (121 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(16 mg/kg/day); NA | rat | NA | altered hematolog
NA | y; 6E-2 (2E-2) | ND | 1000 | NA | Dodd et al.,
1983/U.S. EPA,
1984 | | Ethylene thiourea | | | DATA | INADEQUATE FOR QUANTI
(also see | TATIVE RISK ASSESSME
Table B) | NTG | | | U.S. EPA, 1984 | | | Exposure | Spec 1e | s | Effect of Concern | Reference D | ose | Uncertainty Factor | | | | |--|---|------------|---------|--|---|---------------|--------------------|------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | Ethyl ether subchronic (RfD _s) | NA; 500 mg/kg/day for
90 days | NA | rat | NA; liver effects | ND | 5E+O | NA | 100 | U.S. EPA, 1987/
American
Biogenics Corp.
1986; U.S. EPA,
1987 | | | chronic (RfD) | NA; 500 mg/kg/day for
90 days | NA | rat | NA; liver effects | ND | 5E-1 J | NA | 1000 | U.S. EPA, 1987/
American
Biogenics Corp.
1986; U.S. EPA,
1987 | | | Ethyl methacrylate
subchronic (RfD _s) | NA; 65 ppm (7.5 mg/kg/day) methyl methacrylate x 114.5/100.13 (molecular weight ratio) in drinking water for 2 years | NA | rat | NA; increased
kidney weight | ND | 9E-2 | NA | 100 | U.S. EPA, 1986/
Borzelleca
et al., 1964;
U.S. EPA, 1986 | | | chronic (RfD) | NA; 65 ppm (7.5 mg/kg/day) methyl methacrylate x 114.5/100.13 (molec-ular weight ratio) in drinking water for 2 years | NA | rat | NA; increased
kidney weight
(also see Table B | ND | 9E-2 9 | NA | 100 | U.S. EPA, 1986/
Borzelleca
et al., 1964;
U.S. EPA, 1986 | | | Ethy,1 toluene (o-, p , | m-) | | DATA II | NADEQUATE FOR QUANTIT | TATIVE RISK ASSESSMEN | т | | | U.S. EPA, 1984 | | | 4-Ethyl-o-xylene | | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | Т | | | U.S. EPA, 1984 | | | fluoranthene
subchronic (RfD _s) | NA; 125 mg/kg/day by
gavage for 90 days | NA | mouse | NA; nephropathy,
liver weight chang
hematological chan | | 4E-1 | NA | 300 | U.S. EPA, 1988 | | | chronic (RfD) | NA; 125 mg/kg/day by
gavage for 90 days | NA | mouse | NA; nephropathy,
liver weight chan
hematological chan | | 4E-2Ĵ | NA | 3000 | U.S. EPA, 198B | | | | Exposure | Specie | | Effect of Concern | Reference [| ose | Uncertainty Factor | | Reference | |---|--|------------|-------|---|---|---------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Ora1 | Inhalation/Oral | | fluorene
subchronic (RfD _S) | NA; 125 mg/kg/day by
gavage for 13 weeks | NA | mouse | NA; hematological
changes (decreased
RBC) | ND | 4E-1 | NA | 300 | U.S. EPA, 1989 | | chronic (RfD) | NA; 125 mg/kg/day by
gavage for 13 weeks | NA | mouse | NA; hematological
changes (decreased
RBC) | ND | 4E-2Ĵ | NA | 3000 | U.S. EPA, 1989 | | Fluorides
subchronic (RFD _S) | NA; 0.06 mg fluoride/kg/
day in drinking water | NA | human | NA: dental fluoros
at higher levels | 1s ND | 6E-2 | NA | 1 | U.S. EPA, 1989/
Hodge, 1950;
U.S. EPA, 1989,
1990 | | chronic (RfD _s) | NA; 0.06 mg fluorlde/kg/
day in drinking water | NA | human | NA: dental fluoros
at higher levels | 1s ND | 6E - 2ª | NA | 1 | U.S. EPA, 1989/
Hodge, 1950;
U.S. EPA, 1989,
1990 | | Fluridone
subchronic (RfD _S) | NA; 200 ppm in the diet
for 2 years (8 mg/kg/
day) | NA | rat | NA; kidney and tes | tes ND | 8E -2 | NA | 100 | U.S. EPA, 1990/
Eli Lilly and
Co., 1980;
U.S. EPA, 1984
1990 | | chronic (RfD) | NA; 200 ppm in the diet
for 2 years (8 mg/kg/
day) | NA | rat | NA; kidney and and testes | ND | 8E -2ª | NA | 100 | U.S. EPA, 1990/
Eli Lilly and
Co., 1980;
U.S. EPA, 1984
1990 | | Folpet
subchronic (RfD _S) | NA; 10 mg/kg/day in
capsules for 1 year | NA | dog | NA; body weight
gain, blood
chemistry | ND | 1E-1 | NA | 100 | U.S. EPA, 1990/
Chevron Chemica
Corp., 1986;
U.S. EPA, 1984,
1990 | | | Exposure | Specte | s | Effect of Concern | Reference | Dose | Uncertainty Factor | | Reference | | |---|--|------------|--------|---|---|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 10 mg/kg/day in
capsules for 1 year | NA | dog | NA; body weight
gain, blood
chemistry
(also see Table B) | ND | 1E-1 a | NA | 100 | U.S. EPA, 1990/
Chevron Chemical
Corp., 1986;
U.S. EPA, 1984,
1990 | | | Formaldehyde cyanohydi | -in | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | NT | | | U.S. EPA, 1988 | | | formic acid
subchronic (RfD _s) | NA; 0.2% in drinking
water (200 mg/kg/day),
several generation study | NA | rat | NA; decreased grow | oth ND | 2E+0 | NA | 100 | NA/Malorny,
1969; U.S. EPA,
1990 | | | chronic (RfD) | NA; 0.2% in drinking
water (200 mg/kg/day),
several generation study | NA | rat | NA; decreased gro | rth ND | 2E+0 a | NA | 100 | NA/Malorny,
1969; U.S. EPA,
1990 | | | Furan
subchronic (RfD _S) | NA; 2 mg/kg, 5 days/week
for 13 weeks (1.4
mg/kg/day) | NA | mouse | NA; hepatic lesion | ns ND | 1E-2 | NA | 100 | U.S. EPA, 1987/
SRI, 1982;
U.S. EPA, 1987 | | | chronic (RfD) | NA; 2 mg/kg, 5 days/week
for 13 weeks (1.4
mg/kg/day) | NA | mouse | NA; hepatic lesion | ns ND | 1E-3 a | NA | 1000 | U.S. EPA, 1987/
SRI, 1982; U.S.
EPA, 1987, 1990 | | | furfural
subchronic (RfD _S) | 20 ppm (77 mg/m ³), 6 hours/day, 5 days/week for 13 weeks (13 mg/kg/day); 11 mg/kg, 5 days/week for 13 weeks (7.9 mg/kg/day) | hamster | rat | olfactory degeneration; hepatotoxic | | 3E-2 | 100 | 300 | Feron et al.,
1979; U.S. EPA,
1988/SRI, 1981;
U.S. EPA, 1990 | | | chronic (RfD) | 20 ppm
(77 mg/m ³), 6 hours/day, 5 days week for 13 weeks (13 mg/kg/day); 11 mg/kg, 5 days/week for 13 weeks (7.9 mg/kg/day) | hamster | rat | olfactory degeneration; hepatotoxic | | 3E -3ª | 1000 | 3000 | Feron et al.,
1979; U.S. EPA,
1988/SRI, 1981;
U.S. EPA, 1990 | | | | Exposure | Spec 1e | s | Effect of Concern | Reference | Dose | Uncertainty | <u>Factor</u> | Reference | | |---|---|------------|--------|---|---|----------------|-------------|---------------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | 0ra1 | Inhalation | Oral | Inhalation/Oral | | | Glyc1daldehyde
subchronic (RfD _S) | 10 ppm (29 mg/m ³), 4
hours/day, 5 days/week
for 12 weeks (HEC, 3.5
mg/m ³); 1.1 mg/kg/day | rat | rat | decreased body we
and kidney effect:
decreased body we
and kidney effect: | s:
lght | 4E-3 | 300 | 300 | Hine et al.,
1961; U.S. EPA,
1989/Hine et
al., 1961; U.S.
EPA, 1989, 1990 | | | chronic (RfD _s) | 10 ppm (29 mg/m ³), 4
hours/day, 5 days/week
for 12 weeks (HEC, 3.5
mg/m ³); 1.1 mg/kg/day | rat | rat | decreased body we
and kidney effect:
decreased body we
and kidney effect:
(also see Table B | s;
lght
s | 4E -4 a | 3000 | 3000 | Hine et al.,
1961; U.S. EPA,
1989/Hine et
al., 1961; U.S.
EPA, 1989, 1990 | | | Heptachlor
subchronic (RfO _S) | NA; 3 ppm in diet for
2 years (0.15 mg/kg/day) | NA | rat | NA; increased live
weight | er ND | 5E -4 | NA | 300 | U.S. EPA, 1987/
Velsicol
Chemical, 1955;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 3 ppm in diet for
2 years (0.15 mg/kg/day) | NA | rat | NA; increased live
weight (also see
Table B) | er ND | 5E -4 a | NA | 300 | U.S. EPA, 1987/
Velsicol
Chemical, 1955;
U.S. EPA, 1990 | | | n-Heptane | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1989/
U.S. EPA, 1989 | | | Hexabromobenzene
subchronic (RfD _S) | NA; 40 ppm in the diet
for 12 weeks
(2 mg/kg/day) | NA | rat | NA; induced
carboxylesterase
activity | ND | 2E - 2 | NA | 100 | U.S. EPA, 1990/
Mendoza et al.,
1977; U.S. EPA,
1984, 1990 | | | chronic (RfD) | NA; 40 ppm in the diet
for 12 weeks
(2 mg/kg/day) | NA | rat | NA; induced carboxylesterase activity | ND | 2E -3ª | NA | 1000 | U.S. EPA, 1990/
Mendoza et al.,
1977; U.S. EPA,
1984, 1990 | | | Hexachlorobenzene
subchronic (RfD _S) | NA; 1.6 ppm in diet for
130 weeks (0.08 mg/kg/
day) | NA | rat | NA; liver and hem
tologic effects | a- ND | 8E -4 | NA | 100 | U.S. EPA, 1984/
Arnold et al.,
1985; U.S. EPA,
1990 | | | | Exposure | Specie | <u> </u> | Effect of Concern | Reference (| | Uncertainty | | Reference | |---|--|------------|----------|--|---|---------------------|-------------|----------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Ora1
 | Inhalation/Ora | | chronic (RfD) | NA; 1.6 ppm in diet for
130 weeks (0.08 mg/kg/
day) | NA | rat | NA; liver and hema
tologic effects
(also see Table B) | - ND | 8E-4ª | NA | 100 | U.S. EPA, 1984
Arnold et al.,
1985; U.S. EPA
1990 | | exachlorobutadiene
subchronic (RfD _S) | NA; 2-year dietary
study (0.2 mg/kg/day) | NA | rat | NA; kidney toxicit | y ND | 2E -3 | NA | 100 | U.S. EPA, 1984
Kociba et al.,
1977; U.S. EPA
1990 | | chronic (RfD) | NA; 2-year dietary
study (0.2 mg/kg/day) | NA | rat | NA; kidney toxicit
(Cancer: see
Table B) | y ND | 2E – 3ª | NA | 100 | U.S. EPA, 1984
Kociba et al.,
1977; U.S. EPA
1990 | | dexachlorocyclohexane,
gamma (Lindane)
subchronic (RfD _S) | NA; 4 ppm in diet for
12 weeks (0.33 mg/kg/
day) | NA | rat | NA; liver and and kidney toxicit | ND
Y | 3E-3 | NA | 100 | U.S. EPA, 1984
Zoecon Corp.,
1983; U.S. EPA
1990 | | chronic (RfD) | NA; 4 ppm in diet for
12 weeks (0.33 mg/kg
day) | NA | rat | NA; liver and
kidney toxicity
(Cancer: see
Table B) | ND | 3E-4 ^a | NA | 1000 | U.S. EPA, 1984
Zoecon Corp.,
1983; U.S. EPA
1990 | | Hexachlorocyclopentadie
subchronic (RfD _S) | ene O.15 ppm (1.67 mg/m ³) 6 hours/day, 5 days/ week for 13 weeks (0.2 mg/kg/day); 10 mg/kg, 5 days/week for 13 weeks (7.1 mg/kg/day) | rat | rat | respiratory tract
lesions; fore-
stomach lesions | 7E-4 (2E-4) | 7E-2 | 100 | 100 | Battelle
Northwest
Laboratories,
1984; U.S. EPA
1984/SRI, 1981
Abdo et al.,
1984; U.S. EPA
1990 | | chronic (RfD) | O.15 ppm (1.67 mg/m ³) 6 hours/day, 5 days/ week for 13 weeks (0.2 mg/kg/day); 10 mg/kg, 5 days/week for 13 weeks (7.1 mg/kg/day) | rat | rat | respiratory tract
lesions; fore-
stomach lesions | 7E-5 (2E-5) | 7E -3ª | 1,000 | 1,000 | Battelle
Northwest
Laboratories,
1984; U.S. EPA
1984/SRI, 1981
Abdo et al.,
1984; U.S. EPA
1990 | | | | | | Ā_A7 | | | | | 07/ | Update: , 1990 | | Exposure | Specie | s | Effect of Conc <u>ern</u> | <u>Reference (</u> | ose | Uncertainty | | Reference | | |--|---|------------|--------|--|---|---------------------|-------------|--------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | Hexachloroethane
subchronic (RfD _s) | NA; 16-week dietary
study (1 mg/kg/day) | NA | rat | NA; kidney degener
tion | a- ND | 1E-2 | NA | 100 | U.S. EPA, 1987/
Gorzinski et
al., 1985; U.S.
EPA, 1989, 1990 | | | chronic (RfD) | NA; 16-week dietary
study (1 mg/kg/day) | NA | rat | NA; kidney degener
tion (also see
Table B) | a- ND | 1E-3ª | NA | 1000 | U.S. EPA, 1987/
Gorzinski et
al., 1985; U.S.
EPA, 1989, 1990 | | | Hexachlorophene
subchronic (RfD _s) | NA; 30 ppm in the diet
for 13 weeks (0.75 mg/
kg/day) | NA | dog | NA; nervous
system effects
(also see
Table B) | ND | 3E - 3 | NA | 300 | U.S. EPA, 1990/
Nationwide Chem
Corp. 1974; U.S
EPA, 1986, 1990
1990 | | | chronic (RfD) | NA; 30 ppm in the diet
for 13 weeks (0.75 mg/
kg/day) | NA | dog | NA; nervous
system effects
(also see
Table B) | ND | 3E -4ª | NA | 3000 | U.S. EPA, 1990/
Nationwide Chem
Corp. 1974; U.S
EPA, 1986, 1990 | | | Hexamethylenediamine | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1985 | | | N-Hexane
subchronic (RfD _S) | 73 mg/m ³ TWA for 1-12
years (occupational);
570 mg/kg/day | human | rat | neurotoxicity;
neuropathy or
testicular atrophy | 2E-1 | 6E-1 | 300 | 1000 | Sanagi et al.,
1980; U.S. EPA,
1990/Krasavage
et al., 1980;
U.S. EPA, 1989 | | | chronic (RfD) | 73 mg/m ³ TWA for 1-12
years (occupational);
570 mg/kg/day | human | rat | neurotoxicity;
neuropathy or
testicular atroph | 2E-1 3 | 6E-1 | 300 | 10,000 | Sanag1 et al.,
1980; U.S. EPA,
1990/Krasavage
et al., 1980;
U.S. EPA, 1989 | | | 2-Hexanone | | | DATA 1 | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1989 | | | Hydrogen sulfide
subchronic (RfD _S) | NA; 3.1 mg/kg/day in
dried greens for 105
days | NA | p1g | NA; GI disturbanç | e ND | 3E -2 | NA | 100 | NA/Watterau et
al., 1964-1965;
U.S. EPA, 1990 | | 08/01/90 | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty | factor | Reference | |---|---|------------|--------|--|---|-----------------|-------------|---------------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 3.1 mg/kg/day in
dried greens for 105
days | NA | pig | NA; GI disturbance | 9E-43 | 3E -3ª | NA | 1000 | NA/Watterau et
al., 1964-1965;
U.S. EPA, 1990 | | p-Hydroquinone
subchronic (RfO _s) | NA; 300 mg/day for 3-5 months (4.29 mg/kg/day) | NA | human | NA; hematological
effects | ND | 4E-1 | NA | 10 | U.S. EPA, 1987/
Carlson and
Brewer, 1953;
U.S. EPA, 1987 | | chronic (RfD) | NA; 300 mg/day for 3-5 months (4.29 mg/kg/day) | NA | human | NA; hematological
effects | ND | 4E-2 | NA | 100 | U.S. EPA, 1987/
Carlson and
Brewer, 1953;
U.S. EPA, 1987 | | Iron | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1984 | | Isobutyl alcohol
suchronic (RfD _S) | NA; 316 mg/kg/day in the
diet for 13 weeks | NA | rat
 NA; hypoactivity
and ataxia | ND | 3E+0 | NA | 100 | U.S. EPA, 1986a
U.S. EPA,
1986a,b, 1990 | | chronic (RfD) | NA; 316 mg/kg/day in the
diet for 13 weeks | NA | rat | NA; hypoactivity
and ataxia | ND | 3E - 1 a | NA | 1000 | U.S. EPA, 1986a
U.S. EPA,
1986a,b, 1990 | | Isophorone
subchronic (RfD _S) | NA; 90-day oral
(capsules) study
(150 mg/kg/day) | NA | dog | NA; kidney lesions | s ND | 2E+0 | NA | 100 | U.S. EPA, 1987/
Rohm and Haas,
1972; NTP, 1986
U.S. EPA, 1990 | | chronic (RfD) | NA; 90-day oral
(capsules) study
(150 mg/kg/day) | NA | dog | NA; kidney lesions
(Cancer: see
Table B) | s ND | 2E-1 a | NA | 1000 | U.S. EPA, 1987/
Rohm and Haas,
1972; NTP, 1986
U.S. EPA, 1990 | | Isopropalin
subchronic (RfD _S) | NA; 250 ppm in the diet
for 90 days (15 mg/kg/
day) | NA | rat | NA; hematological
effects, altered
organ weights | ND | 1.5E-1 | NA | 100 | U.S. EPA, 1990/
Eli Lilly Co.,
1985; U.S. EPA,
1984, 1990 | | | Exposure | <u>Species</u> | | Effect of Concern | Reference D | ose | Uncertainty Factor | | Reference | | |--|---|----------------|--------|--|---|---------|--------------------|-------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Ora | | | chronic (RfD) | NA; 250 ppm in the diet
for 90 days (15 mg/kg/
day) | NA | rat | NA; hematological
effects, altered
organ weights | ND | 1.5E-2ª | NA | 1000 | U.S. EPA, 1990/
Eli Lilly Co.,
1985; U.S. EPA,
1984, 1990 | | | actonitrile | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1988 | | | Lead
subchronic (RFD _S) | NA; NA | NA | NA | NA; NA | NDP | ND | NA | NA | U.S. EPA, 1984,
1986/U.S. EPA,
1984, 1986 | | | chronic (RfD) | NA; NA | NA | NA | CNS effects;
CNS effects
(also see Table B | NDP
) | PDM | NA | NA | U.S. EPA, 1984,
1986/U.S. EPA,
1984, 1986 | | | Lead alkyls: tetrabutyl
tetraethyl, tetramethyl
tetrapropyl, triethyl,
trimethyl, tripropyl,
trimethylethyl,
dimethylethyl,
methyltriethyl
subchronic (RfD _S) | | NA | rat | NA; liver and
neuronal damage | ND | 1E-6 | NA | 1000 | U.S. EPA, 1985/
Schepers, 1964
U.S. EPA, 1985 | | | chronic (RfD) | NA; 0.00017 mg/kg/day
by gavage for 20 weeks | NA | rat | NA; liver and
neuronal damage | ND | 1E-7* | NA 1 | 0,000 | U.S. EPA, 1985,
Schepers, 1964
U.S. EPA, 1985 | | | Lindane (see Hexachlord | ocyclohexane, gamma) | | | | | | | | | | | Linuron
subchronic (RfD _S) | NA; 25 ppm in the diet
for 2 years (0.625 mg/
kg/day) | NA | dog | NA; hematological | ND | 2E-3 | NA | 300 | U.S. EPA, 1990.
Du Pont de
Nemours and Co
1962; U.S. EPA
1984, 1990 | | | chronic (RfD) | NA; 25 ppm in the diet
for 2 years (0.625 mg/
kg/day) | NA | dog | NA; hematological
(also see Table E | | 2E-3a,u | NA | 300 | U.S. EPA, 1990.
Du Pont de
Nemours and Co
1962; U.S. EPA
1984, 1990 | | | | Exposure | Specie | S | Effect of Concern | Reference D | ose | Uncertainty Factor | | | | |--|--|------------|-------|---|-----------------------------------|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Ora1 | Inhalation/Oral | | | Malathion
subchronic (RfD _S) | NA; 16 mg/day in cap-
sules for 47 days
(0.23 mg/kg/day) | NA | human | NA; hematological | ND | 2E-2 | NA | 10 | U.S. EPA, 1990/
Moeller and
Rider, 1962;
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 16 mg/day in cap-
sules for 47 days
(0.23 mg/kg/day) | NA | human | NA; hematological | ND | 2E - 2 a | NA | 10 | U.S. EPA, 1990/
Moeller and
Rider, 1962;
U.S. EPA, 1984,
1990 | | | Maleic anhydride
subchronic (RfO _s) | NA; 10 mg/kg/day in the
diet for 2 years | NA | rat | NA; kidney lesions | s ND | 1E-1 | NA | 100 | U.S. EPA, 1990/
Jessup et al.,
1982; Preache,
1983; U.S. EPA,
1986, 1990 | | | chronic (RfD) | NA; 10 mg/kg/day in the
diet for 2 years | NA | rat | NA; kidney lesion:
(also see Table B | | JE-Jg | NA | 100 | U.S. EPA, 1990/
Jessup et al.,
1982; Preache,
1983; U.S. EPA,
1986, 1990 | | | Maleic hydrazide
subchronic (RfD _S) | NA; 1% in diet for
28 months (500 mg/kg/
day) | NA | rat | NA; altered kidne
function | y ND | 5 E-1 | NA | 1000 | U.S. EPA, 1989/
Van der Haljden
et al., 1981;
U.S. EPA, 1989,
1990 | | | chronic(RfD) | NA; 1% in diet for
28 months (500 mg/kg/
day) | NA | rat | NA; altered kidner
function | y ND | 5E-1 a | NA | 1000 | U.S. EPA, 1989/
Van der Haljden
et al., 1981;
U.S. EPA, 1989,
1990 | | | | Exposure | Specie | !S | Effect of Concern | Reference D | lose | Uncertainty | Factor | Reference | |---|--|------------|--------|--|---|-------------------|-------------|--------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Malononitrile
subchronic (RfD _S) | NA; 0.25 mg/kg/day by
gavage 6 days/week for
120 days | NA | rat | NA; liver and spleen | ND | 2E-4 | NA | 1000 | U.S. EPA, 1986/
Panov et al.,
1972; U.S. EPA,
1986 | | chronic (RfD) | NA; 0.25 mg/kg/day by
gavage 6 days/week for
120 days | NA | rat | NA; liver and
spleen
(also see
Table B) | ND | 2E-59 | NA | 1000 | U.S. EPA, 1986/
Panov et al.,
1972; U.S. EPA,
1986 | | Mancozeb
subchronic (RfD _S) | NA; 50 ppm in the diet
for 90 weeks (2.9 mg/kg
day) | NA | rat | NA; goitrogenic
effects | ND | 3E - 2 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 50 ppm in the diet
for 90 weeks (2.9 mg/kg
day) | NA | rat | NA; goitrogenic
effects | ND | 3E - 2 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Maneb
subchronic (RfD _S) | NA; 300 ppm in diet for
6 months (5 mg/kg/day) | NA | monkey | NA; increased
thyroid weight | ND | 5E-2 | NA | 100 | U.S. EPA, 1984/
Rohm and Haas
Co., 1977; Mane
Data Task Force
1986; U.S. EPA,
1984, 1990 | | chronic (RfD) | NA; 300 ppm in diet for 6 months (5 mg/kg/day) | NA | monkey | NA; increased
thyroid weight | ND | 5E-2 ^a | NA | 100 | U.S. EPA, 1984/
Rohm and Haas
Co., 1977; Mane
Data Task Force
1986; U.S. EPA,
1984, 1990 | | Manganese
subchronic (RfD _S) | 0.3 mg/m ³ occupational (2.1 mg/day); 1050 ppm Mn from Mn ₃ 0 ₄ from day 1 of gestation through 224 days of age (52.5 mg Mn/kg/day) | human | rat | CNS; reproductive | e 1E-3(3E-4) | 5 E-1 | 100 | 100 | Saric et al.,
1977; U.S. EPA,
1984a,b/Laskey
et al., 1982;
U.S. EPA,
1984a,b | | | Exposure | Spect | es | Effect of Concern | Reference D | | <u>Uncertainty</u> | | Reference | |--|--|------------|-----|---|--------------------------------|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation [mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | 0.3 mg/m ³ occupational
(2.1 mg/day); 1 mg
MnCl ₂ •4 H ₂ O/2 for >2
years (22 mg Mn/kg/day
day) in drinking water | human | rat | CNS; CNS ¹ | 1E-3(3E-4) | 2E-13 | 100 | 100 | Saric et al.,
1977; U.S. EPA,
1984/Leung
et al., 1981;
Lai et al.,
1982; U.S. EPA,
1984a,b | | MCPA (see 2-Methyl-4- | -chlorophenoxyacetic acid) | | | | | | | | | | MCPB (see 4-(2-Methy) | 1-4-chlorophenoxy)butyric | acid) | | | | | | | | | MCPP (see 2-(2-Methy | l-4-chlorophenoxy)propioni | c acid) | | | | | | | | | Mephosfolan
subchronic (RfD _S) | NA; 1.25 ppm in the diet
for 17 weeks (0.09 mg/
kg/day) | : NA | rat | NA; liver and kidney
weights, reduced
plasma, RBC and
brain cholinesterase
activities | ND | 9E-4 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 1.25 ppm in the diet
for 17 weeks (0.09 mg/
kg/day) | L NA | rat | NA; liver and kidney weights, reduced plasma, RBC and brain cholinesterase activities | ND | 9E-5 | NA | 1000 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Mercury, inorganic
subchronic (RfD _S) | O.009 mg/m ³ , several occupational
studies; several oral and parenteral studies in the Brown Norway rat | human | rat | neurotoxicity;
kidney effects | 3E -4 | 3E -4 | 30 | 1000 | fawer et al., 1987; Pakiivi and Toulonen, 1989; Pikiivi and Hanninen, 1989; Pikiivi, 1989; U.S. EPA, 1984, 1990/ Fitzhugh et al., 1950; Dru et al., 1978; Bernaudie et al., 1981; Andres, 1984; U.S. EPA, 1987 | | | Exposure | Specie | , | Effect of Concern | Reference D | ose | Uncertainty | | <u>Reference</u> | |---|---|------------|----------|---|-----------------------------------|----------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | O.009 mg/m ³ , several occupational studies; several oral and parenteral studies in the Brown Norway rat | human | rat | neurotoxicity;
kidney effects | 3E-4J | 3E-4Ĵ | 30 | 1000 | Fawer et al., 1987; Pakiivi and Toulonen, 1989; Pikiivi and Hanninen, 1989; Pikiivi,, 1989; U.S. EPA, 1984, 1990/ Fitzhugh et al., 1950; Dru et al., 1978; Bernaudin et al., 1981; Andres, 1984; U.S. EPA, 1987 | | Merphos
subchronic (RfO _s) | NA; O.1 mg/kg/day in capsules for 3 months | NA | hen | NA; ataxia,
delayed neuro-
toxicity | ND | 3E-4 | NA | 300 | U.S. EPA, 1990/
Abou-Donta
et al., 1980;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; O.1 mg/kg/day in capsules for 3 months | NA | hen | NA; ataxia,
delayed neuro-
toxicity | ND | 3E -5 a | NA | 3000 | U.S. EPA, 1990/
Abou-Donia
et al., 1980;
U.S. EPA, 1984,
1990 | | Merphos oxide
subchronic (RfD _S) | NA; O.1 mg/kg/day in capsules for 3 months | NA | hen | NA; ataxia,
delayed neuro-
toxicity | ND | 3E- 4 | NA | 300 | U.S. EPA, 1990/
Abou-Donia
et al., 1979;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 0.1 mg/kg/day in capsules for 3 months | NA | hen | NA; ataxia,
delayed neuro-
toxicity | NO | 3E-5 a | NA | 3000 | U.S. EPA, 1990/
Abou-Donia
et al., 1979;
U.S. EPA, 1984,
1990 | | | Exposure | Specie | • • | Effect of Concern | Reference [| | Uncertainty | | Reference | |---|--|------------|-----|--|---|---------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Ora1 | Inhalation/Oral | | Methacrylonitrile
subchronic (RfD _s) | 3.2 ppm (9 mg/m³), 7 hours/day, 5 days/week for 90 days (0.63 mg/kg/day); 3.2 ppm (9 mg/m³) 7 hours/day 5 days/week for 90 days (0.32 mg/kg/day) | dog | dog | increased SGOT and SGPT, loss of hind-
limb motor control
brain lesions; in-
creased SGOT and
SGPT, loss of hind-
limb motor control
brain lesions | ·
- | 1E-3 b | 300 | 300 | Pozzani et al.,
1968; U.S. EPA,
1990/Pozzani
et al., 1968;
U.S. EPA, 1990 | | chronic (RfD) | 3.2 ppm (9 mg/m ³), 7 hours/day, 5 days/week for 90 days (0.63 mg/kg/day); 3.2 ppm (9 mg/m ³) 7 hours/day 5 days/week for 90 days (0.32 mg/kg/day) | dog | dog | increased SGOT and SGPT, loss of hind limb motor control brain lesions; increased SGOT and SGPT, loss of hind limb motor control brain lesions | .
- | 1€-4a,b | 3000 | 3000 | Pozzani et al.,
1968; U.S. EPA,
1990/Pozzani
et al., 1968;
U.S. EPA, 1990 | | Methanol
subchronic (RfD _S) | NA; 500 mg/kg/day by
gavage for 90 days | NA | rat | NA; increased seru
alkaline phosphata
and SGPT and
decreased brain
weight | | 5E+0 | NA | 100 | NA/U.S. EPA,
1986, 1990 | | chronic (RfD) | NA; 500 mg/kg/day by
gavage for 90 days | NA | rat | NA; increased seru
alkaline phosphata
and SGPT and
decreased brain
weight | | 5E-1 a | NA | 1000 | NA/U.S. EPA,
1986, 1990 | | Methomyl
subchronic (RfD _s) | NA; 100 ppm in diet
(2.5 mg/kg/day) for
24 months | NA | dog | NA; kidney lesions | , ND | 3E-2 | NA | 100 | U.S. EPA, 1988
Kaplan and
Sherman, 1977;
U.S. EPA, 1988
1990 | | chronic (RfD) | NA; 100 ppm in diet
(2.5 mg/kg/day) for
24 months | NA | dog | NA; kidney lesion | s ND | 3E - 2 a | NA | 100 | U.S. EPA, 1988
Kaplan and
Sherman, 1977;
U.S. EPA, 1988
1990 | | | Exposure | Spec 1e | \$ | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | <u>Factor</u> | Reference | |--|--|------------|--------|--|---|---------------------|--------------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Methoxychlor
subchronic (RfD _s) | NA; 200 ppm (10 mg/kg/
day in diet during
gestation | NA | rat | NA; fetotoxicity | ND | 1E-1pp | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 200 ppm (10 mg/kg/
day) in diet during
gestation | NA | rat | NA; fetotoxicity | ND | 1E-1g,1,bb | NA NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | 2-Methoxyethanol
subchronic (RfO _s) | 10 ppm {31 mg/m ³ } 6 hours/day, 5 days/ week for 13 weeks (2.9 mg/kg/day); 10 ppm (31 mg/m ³) 6 hours/day, 5 days/week for 13 weeks {1.47 mg/kg/day) | rabbit | rabbit | fetotoxicity and
testicular effects
fetotoxicity and
testicular effects | • | 1E-2 b ,bb | 100 | 100 | Miller et al.,
1982; U.S. EPA,
1986/Miller
et al., 1982;
U.S. EPA, 1986 | | chronic (RfD) | 10 ppm (31 mg/m ³) 6 hours/day, 5 days/ week for 13 weeks (2.9 mg/kg/day); 10 ppm (31 mg/m ³) 6 hours/day, 5 days/week for 13 weeks (1.47 mg/kg/day) | rabbit | rabbit | fetotoxicity and
testicular effects
fetotoxicity and
testicular effects | • | 1E-3p.g.bb | 1000 | 1000 | Miller et al.,
1982; U.S. EPA,
1986/Miller
et al., 1982;
U.S. EPA, 1986 | | 2-Methoxyethanol aceta
subchronic (RfD _s) | NA; 10 ppm (31 mg/m ³) 2-methoxyethanol x 18.13/76.09 (molecular weight ratio) x 6 hours/ day x 5 days/week x 0.5 absorption factor for 13 weeks | NA | rabbit | NA; testicular
degeneration | ND | 5£-5p | NA | 100 | U.S. EPA, 1987/
Miller et al.,
1982; U.S. EPA,
1987 | | chronic (RFD) | NA; 10 ppm (31 mg/m ³) 2-methoxyethanol x 18.13/76.09 (molecular weight ratio) x 6 hours/ day x 5 days/week x 0.5 absorption factor for 13 weeks | NA | rabbit | NA; testicular
degeneration | ND | 2E-3p | NA | 1000 | U.S. EPA, 1987/
Miller et al.,
1982; U.S. EPA,
1987 | | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Reference D Inhalation [mg/m³ (mg/kg/day)] | Oral | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | |--|--|----------------------|--------|---|--|------------------------|----------------------------------|----------------|--| | Methyl acetate
subchronic (RfD _S) | NR; 500 mg/kg/day
methanol by gavage for
90 days x 74.08/32.04
(molecular weight ratio) | NA | rat | NA; liver
damage | ND | 10 | NA | 100 | U.S. EPA, 1986/
Toxicity
Research Labora
tory, 1986;
U.S. EPA, 1986 | | chronic (RfD) | NR; 500 mg/kg/day
methanol by gavage for
90 days x 74.08/32.04
(molecular weight ratio) | NA | rat | NA; liver
damage (also see
Table B) | ND | 19 | NA | 1000 | U.S. EPA, 1986/
Toxicity
Research Labora-
tory, 1986;
U.S. EPA, 1986 | | Methyl acrylate
subchronic (RfD _S) | NA; 15 ppm (53 mg/m ³)
x 6 hours/day x 5 days/
week for 2 years x 0.5
absorption factor | NA | rat | NA; no effect | ND | 3E-2 | NA | 100 | U.S. EPA, 1987/
Klimisch and
Reininghaus,
1984; U.S. EPA,
1987 | | chronic (RfD) | NA; 15 ppm (53 mg/m ³)
x 6 hours/day x 5 days/
week for 2 years x 0.5
absorption factor | NA | rat | NA; no effect
(also see Table 8 | ND
) | 3E-2 | NA | 100 | U.S. EPA, 1987/
Klimisch and
Reininghaus,
1984; U.S. EPA,
1987 | | Methyl bromide (see Bro | omomethane) | | | | | | | | | | Methyl chloride | | | DATA I | NADEQUATE FOR QUANTI
(also see Tabl | TATIVE RISK ASSESSMEN
B) | т | | | U.S. EPA, 1986 | | Methyl chlorocarbonate | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1989 | | 2-Methyl-4-chlorophenox | κy- | | | | | | | | | | acetic acid
(MCPA)
subchronic (RfD _S) | NA; 6 ppm in the diet
for 52 weeks (0.15 mg/
kg/day) | NA | dog | NA; kidney and and liver | ND | 5E-4 | NA | 300 | U.S. EPA, 1990/
Industry Task
Force, 1986;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 6 ppm in the diet
for 52 weeks (0.15 mg/
kg/day) | NA | dog | NA; kidney and and liver | ND | 5 <u>E</u> -4 a | NA | 300 | U.S. EPA, 1990/
Industry Task
Force, 1986;
U.S. EPA, 1984,
1990 | | 0627h | | | | A-57 | | | | | 07/12/90 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty | | Reference | |---|--|------------|-------------|--|---|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | 4-(2-Methyl-4-chloropi | henoxy)- | | | | | | | | | | buturic acid (MCPB)
subchronic (RfD _S) | NA; 12 mg/kg/day in the
diet for 13 weeks | NA | rat,
dog | NA; reproductive
toxicity in dogs,
liver and kidney
effects in rats | ND | 16-1 | NA | 100 | U.S. EPA, 1990/
Rhodia Inc.,
1970a,b;
U.S. EPA, 1984,
1990 | | chronic | NA; 12 mg/kg/day in the
diet for 13 weeks | NA | rat,
dog | NA; reproductive
toxicity in dogs,
liver and kidney
effects in rats | ND | 1E-2ª | NA | 1000 | U.S. EPA, 1990,
Rhodia Inc.,
1970a,b;
U.S. EPA, 1984,
1990 | | 2-(2-Methyl-4-chlorop
propionic acid (MCPP) | henoxy)- | | | | | | | | | | subchronic (RfD _s) | NA; 50 ppm in the diet
for 90 days (3 mg/kg/
day) | NA | rat | NA; kidney weight | ND | 1E-2 | NA | 300 | U.S. EPA, 1990,
BASF Akt., 1989
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 50 ppm in the diet
for 90 days (3 mg/kg/
day) | NA | rat | NA; kidney weight | ND | 1E-3ª | NA | 3000 | U.S. EPA, 1990,
BASF Akt., 198
U.S. EPA, 1984
1990 | | Methylcyclohexane | | | DATA 1 | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEI | NT | | | U.S. EPA, 1984 | | Methylene bromide
subchronic (RfD _S) | NA; 25 ppm (178 mg/m ³)
6 hours/day for 63 days
in a 90-day period, 0.5
absorption factor
(11.0 mg/kg/day) | NA | rat | NA; increased carboxyhemoglobin | ND | 1E-1 b | NA | 100 | U.S. EPA, 1987,
Keyes et al.,
1982; U.S. EPA
1987 | | chronic (RfD) | NA; 25 ppm (178 mg/m ³)
6 hours/day for 63 days
in a 90-day period, 0.5
absorption factor
(11.0 mg/kg/day) | NA | rat | NA; increased
carboxyhemoglobin
(also see
Table B) | ND | 1E-5 p | NA | 1000 | U.S. EPA, 1987
Keyes et al.,
1982; U.S. EPA
1987 | | | Exposure | Specie | s | Effect of Concern | Reference l |)ose | Uncertainty | | Reference | |---|--|------------|-----------|--|---|--------------------|-------------|------|--| | Compound | | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Methylene chloride (dichloromethane) | | | | | | | | | | | subchronic (RfD _S) | 200 ppm (694.8 mg/m³) 6 hours/day, 5 days/week for 2 years; 24-month drinking water study [5.85 mg/kg/day (males) 6.47 mg/kg/day (females)] | rat | rat | NA; liver toxicity | v; 3 | 6E - 2 | 100 | 100 | Nitschke et al.,
1988/ National
Coffee Associa-
tion, 1982;
U.S. EPA, 1989,
1990 | | chronic (RfD) | 200 ppm (694.8 mg/m ³) 6 hours/day, 5 days/week for 2 years; 24-month drinking water study [5.85 mg/kg/day (males) 6.47 mg/kg/day (females)] | rat | rat | NA; liver toxicity
(Cancer: see
Table B) | y; 3J | 6E -2 ^a | 100 | 100 | Nitschke et al.,
1988/National
Coffee Associa-
tion, 1982;
U.S. EPA, 1989,
1990 | | 4,4'-Methylenediphenylisocyanate | | DATA INAD | EQUATE FO | R QUANTITATIVE RISK | ASSESSMENT | | | | U.S. EPA, 1985 | | Methyl ethyl benzenes (| (see Ethyltoluene) | | | | | | | | | | Methyl ethyl ketone
subchronic (RfD _S) | 235 ppm (693 mg/m³)
7 hours/day, 5 days/
week for 12 weeks (92
mg/kg/day); 235 ppm
(693 mg/m³) 7 hours/
day, 5 days/week for
12 weeks (46 mg/kg/day) | rat | rat | CNS; fetotoxicity | 3E-O (9E-1) | 5E-1b,bb | 100 | 100 | LaBelle and
Brieger, 1955;
U.S. EPA, 1990/
LaBelle and
Brieger, 1955;
U.S. EPA, 1985,
1989, 1990 | | chronic (RfD) | 235 ppm (693 mg/m³)
7 hours/day, 5 days/
week for 12 weeks (92
mg/kg/day); 235 ppm
(693 mg/m³) 7 hours/
day, 5 days/week for
12 weeks (46 mg/kg/day) | rat | rat | CNS; fetotoxicity | 3E-1 (9E-2) 9 | 5E-2b,1,z | ,bb 1000 | 1000 | LaBelle and
Brieger, 1955;
U.S. EPA, 1990/
LaBelle and
Brieger, 1955;
U.S. EPA, 1985,
1989, 1990 | | | Exposure | Specie | s | Effect of Concern | Reference D | | Uncertainty | Factor | Reference | |--|---|------------|--------|--|---|---------------------|-------------|--------|---| | Compound | Inhalation; Oral | Inhalation | Ora1 | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Methyl isobutyl ketone
subchronic (RfD _S) | 50 ppm (205 mg/m ³) 6 hours/day, 5 days/ week for 90 days (23.3 mg/kg/day); 50 mg/kg/day by gavage for 13 weeks | rat | rat | liver and kidney
effects; liver and
kidney effects | 8E-1 (2E-1) | 5E-1 | 100 | 100 | Union Carbide
Corp., 1983;
U.S. EPA, 1987/
Microbiological
Associates,
1986; U.S. EPA,
1987 | | chronic (RfD) | 50 ppm (205 mg/m ³) 6 hours/day, 5 days/ week for 90 days (23.3 mg/kg/day); 50 mg/kg/day by gavage for 13 weeks | rat | rat | liver and kidney
effects; liver and
kidney effects | 8E-2 (2E-2)9
1 | 5E -2 ^a | 1000 | 1000 | Unton Carbide
Corp., 1983;
U.S. EPA, 1987/
Microbiological
Associates,
1986; U.S. EPA,
1987, 1990 | | Methyl isocyanate | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | łT | | | U.S. EPA, 1986 | | Methyl mercury
subchronic (RfD _S) | NA; 0.003 mg/kg/day
in humans associated
with Hg in blood at
200 ng/mg | NA | human | NA; CNS effects | ND | 3E -4 | NA | 10 | U.S. EPA, 1990/
Clarkson et al.
1976; Nordberg
Strangart, 1976
WHO, 1976; U.S.
EPA, 1980, 1984
1990 | | chronic (RfD) | NA; 0.003 mg/kg/day
in humans associated
with Hg in blood at
200 ng/mæ | NA | human | NA; CNS effects | ND | 3E -4 ^z | NA | 10 | U.S. EPA, 1990/
Clarkson et al.
1976; Nordberg
Strangart, 1976
WHO, 1976; U.S.
EPA, 1980, 1984
1990 | | Methyl methacrylate
subchronic (RfD _s) | NA; 60 ppm for 4 months
then 70 ppm for 20
months in drinking water
(7.5 mg/kg/day) | NA | rat | NA; increased relative kidney weight | ND | 8E-2 | NA | 100 | U.S. EPA, 1985/
Borgelleca
et al., 1964;
U.S. EPA, 1985 | | | Exposure | Specie | S | Effect of Concern | Reference D | lose | Uncertainty | Factor | Reference | |---|--|------------|-------|--|---|---------------------|-------------|--------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 60 ppm for 4 months
then 70 ppm for 20
months in drinking water
(7.5 mg/kg/day) | NA | rat | NA; increased relative kidney weight (also see Table B) | ND | 8E-2 9 | NA | 100 | U.S. EPA, 1985/
Borgelleca
et al., 1964;
U.S. EPA, 1985 | | Methyl parathion
subchronic (RfD _S) | NA; 0.5 ppm (0.025 mg/
kg/day) in diet for
2 years | NA | rat | NA; reduced hemo-
globin, hematocrit
and RBCs, cholin-
esterase inhibitio | | 2.5E-4 | NA | 100 | U.S. EPA, 1984/
Monsanto Co.,
1983; U.S. EPA,
1990 | | chronic (RfD) | NA; 0.5 ppm (0.025 mg/
kg/day) in diet for
2 years | NA | rat | NA; reduced hemo-
globin, hematocrit
and RBCs, cholin-
esterase inhibitio | | 2.5E-4 ^a | NA | 100 | U.S. EPA, 1984/
Monsanto Co.,
1983; U.S. EPA,
1990 | | Methyl styrene | | | | | | | | | | | (Industrial mixture) subchronic (RfD _s) | 10 ppm (48.3 mg/m³) 6
hours/day, 5 days/week
for 103 weeks (11.2 mg/
kg/day); 10 ppm (48.3
mg/m³) 6 hours/day,
5 days/week for 103
weeks (5.6 mg/kg/day) | mouse | mouse | nasal lesions;
nasal lesions | 4E-2 (1E-2) | 6E-3 b | 1000 | 1000 | MRI, 1984a;
U.S. EPA, 1987/
MRI, 1984a;
U.S. EPA, 1987 | | chronic | 10
ppm (48.3 mg/m³) 6
hours/day, 5 days/week
for 103 weeks (11.2 mg/
kg/day); 10 ppm (48.3
mg/m³) 6 hours/day,
5 days/week for 103
weeks (5.6 mg/kg/day) | mouse | mouse | nasal lesions;
nasal lesions | 4E-2 (1E-2) | 6E - 3b | 1000 | 1000 | MRI, 1984a;
U.S. EPA, 1987/
MRI, 1984a;
U.S. EPA, 1987 | | Methyl styrene, alpha
subchronic (RfD _S) | 970 mg/m ³ , 7.5 hours/
day, 5 days/week for
200 days (69 mg/kg/day);
NA | rat | NA | liver and kidney;
NA | ND | 7E-1 ^b | NA | 100 | U.S. EPA, 1987;
Wolf et al.,
1956/U.S. EPA,
1987; Wolf
et al., 1956 | | | Exposure | Spec 1e | s | Effect of Concern | Reference D | ose | Uncertaint | y factor | Reference | |--|--|------------|-----------------|--|-----------------------------------|-------------------|------------|----------|---| | Compound | Inhalation, Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral | Inhalation | | Inhalation/Oral | | chronic (RfD) | 970 mg/m ³ , 7.5 hours/
day, 5 days/week for
200 days (69 mg/kg/day);
NA | rat | NA | liver and kidney;
NA | ND | 7E-2b | NA | 1000 | U.S. EPA, 1987;
Wolf et al.,
1956/U.S. EPA,
1987; Wolf
et al., 1956 | | irex
subchronic (RfD _S) | NA; O.1 ppm in diet,
multigenerational study
(O.015 mg/kg/day) | NA | prairie
vole | NA; decreased pup
survival | ND | 2E -6 | NA | 10,000 | U.S. EPA, 1987/
Shannon, 1976;
U.S. EPA, 1990 | | chronic (RfD) | NA; O.1 ppm in diet,
multigenerational study
(O.015 mg/kg/day) | NA | prairie
vole | NA; decreased pup
survival (Cancer:
see Table B) | ND | 2E -6 a | NA | 10,000 | U.S. EPA, 1987/
Shannon, 1976;
U.S. EPA, 1990 | | olinate
subchronic (RfD _S) | NA; O.2 mg/kg/day by
gavage | NA | rat | NA; reproductive
toxicity | ND | 2E-3 | NA | 100 | U.S. EPA, 1984/
Stauffer
Chemical Co.,
1981; U.S. EPA,
1990 | | chronic (RfD) | NA; O.2 mg/kg/day by
gavage | NA | rat | NA; reproductive
toxicity | ND | 2E-3 ^a | NA | 100 | U.S. EPA, 1984/
Stauffer
Chemical Co.,
1981; U.S. EPA,
1990 | | onochlorobutanes
subchronic (RfD _S) | NA; 120 mg/kg, 5 days/
week for 13 weeks by
gavage | NA | rat | NA; reduced body weight gain; hyperactivity, convulsions | ND | 9E - 1 | NA | 100 | U.S. EPA, 1989/
NTP, 1986; U.S.
EPA, 1989 | | chronic (RfD) | NA; 60 mg/kg, 5 days/
week for 103 weeks by
gavage | NA | rat | NA; mortality | ND | 4E-1 | NA | 100 | U.S. EPA, 1989/
NTP, 1986; U.S.
EPA, 1989 | Update: 'e, 1990 | | Exposure | Specie | · c | Effect of Concern | Referen <u>ce</u> D | ose | Uncertaint | y Factor | Reference | |---|--|------------|------------|---|---|---------------------|-------------------|----------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Naphthalene
subchronic (RfD _S) | NA; 10-20 mg/day in
diet 6 days/week for
~700 days (41 mg/kg/
day) ^s | NA | rat | NA; ocular and internal lesions | ND | 4E-3t | NA | 10,000 | U.S. EPA, 1988/
Schmahl, 1955;
U.S. EPA, 1988 | | chronic (RfD) | NA; 10-20 mg/day in diet
6 days/week for =700
days (41 mg/kg/day) ^s | NA | rat | NA; ocular and
internal lesions | ND | 4E-3g,1,t | NA | 10,000 | U.S. EPA, 1988/
Schmahl, 1955;
U.S. EPA, 1986,
1988 | | 1,4-Naphthoquinone | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | NT | | | U.S. EPA, 1986 | | Nickel
subchronic (RfD _S) | NA; 100 ppm N1 from
nickel sulfate in diet
for 2 years
(5 mg N1/kg/day) | NA | rat | cancer; reduced
body and organ
weight | ND | 2E-2 | NA | 300 | U.S. EPA, 1984/
Ambrose
et al., 1976;
U.S. EPA, 1990 | | chronic (RfD) | NA; 100 ppm Ni from nickel sulfate in diet for 2 years (5 mg Ni/kg/day) | NA | rat | cancer (see Table
B); reduced body
and organ weight | ND | 2E -2² | NA | 300 | U.S. EPA, 1984/
Ambrose
et al., 1976;
U.S. EPA, 1990 | | Nicotinonitrile | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1987 | | Nitric oxide subchronic (RfO _S) | NA; 10 ppm (10 mg/1) nitrate concentration in infant formula (1.0 mg/kg/day) | NA | human | NA; methemoglobin
emia | - NA | 1E-1 | NA | 10 | NA/Walton, 1951
U.S. EPA, 1990 | | chronic (RfD) | NA; 10 ppm (10 mg/t) nitrate concentration in infant formula (1.0 mg/kg/day) | NA | human | NA; methemoglobin
emia | – NA | 1E-1 a | NA | 10 | NA/Walton, 1951
U.S. EPA, 1990 | | Nitrite
subchronic (RfD _S) | NA; 10 ppm nitrate in
drinking water | NA | human | NA; methemoglobin
emia | - ND | 16-1 | NA | 10 | U.S. EPA, 1989/
Walton, 1951;
U.S. EPA, 1989,
1990 | | | Exposure | Specie | es | Effect of Concern | Reference D | | Uncertainty | | Reference | |--|--|------------|---------|--|---|---------------------|--------------------|-------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | chronic (RfD) | NA; 10 ppm nitrate in
drinking water | NA | human | NA; methemoglobin-
emia | ND | 1E-12 | NA | 10 | U.S. EPA, 1989/
Walton, 1951;
U.S. EPA, 1989,
1990 | | Nitroanilines (o-, m-, | p-) | | DATA II | MADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | ıt | | | U.S. EPA, 1985 | | Nitrobenzene
subchronic (RfD _S) | 5 ppm (25 mg/m ³) 6 hours/day, 5 days/ week for 90 days (HEC=4.5 mg/m ³); 5 ppm (25 mg/m ³) 6 hours/day, 5 days/ week for 90 days (4.64 mg/kg/day) | mouse | mouse | hematological,
adrenal, renal and
hepatic lesions;
hematological,
adrenal, renal and
hepatic lesions; | | 5E - 3 ^b | 300 | 1000 | CIIT, 1984;
U.S. EPA, 1987,
CIIT, 1984;
U.S. EPA, 1987 | | chronic (RFD) | 5 ppm (25 mg/m³) 6 hours/day, 5 days/ week for 90 days (HEC=4.5 mg/m³); 5 ppm (25 mg/m³) 6 hours/day, 5 days/ week for 90 days (4.64 mg/kg/day) | mouse | mouse | hematological,
adrenal, renal and
hepatic lesions;
hematological,
adrenal, renal and
hepatic lesions; | | 5E-4b,1,z | 3000 | 0,000 | CIIT, 1984;
U.S. EPA, 1987,
CIIT, 1984;
U.S. EPA, 1985,
1987, 1990 | | Nitrofurantoin
Subchronic (RfD _S) | NA; 300 ppm diet for
13 weeks (69.7 mg/kg/
day) | NA | mouse | NA; testicular
damage | ND | 7E-1 | NA | 100 | U.S. EPA, 1987,
SRI, 1980;
U.S. EPA, 1987 | | chronic (RfD) | NA: 300 ppm diet for
13 weeks (69.7 mg/kg/
day) | NA | mouse | NA; testicular
damage | ND | 7E-2 | NA | 1000 | U.S. EPA, 1987
SRI, 1980;
U.S. EPA, 1987 | | Nitrofurans, other: see | e Table B | | | | | | | | | | Nitrogen dioxide
subchronic (RfD _S) | 0.4 ppm (0.753 mg/m³) continuous for up to 27 months (HEC=1.56 mg/m³); 10 ppm nitrate-N in water (1 mg nitrate-N/kg/day) | rat | human | proliferative
changes in lungs;
methemoglobinemia | 2E -2 | 1E+0 | 100 | 1 | Kubota et al.,
1987; Sagai an
Ichinose, 1987
Sagai et al.,
1984; U.S. EPA
1990b/Malton,
1951; U.S. EPA
1990a,b | | 0627h | | | | A-64 | | | | | 07/12/90 | | | Exposure | Specie | s | Effect of Concern | Reference D | | <u>Uncertainty</u> | | Reference | |--|--|------------|---------|---|-----------------------------------|---------------------|--------------------|--------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Orai | Inhalation/Oral | | chronic (RfD) | O.4 ppm (O.753 mg/m³) continuous for up to 27 months (HEC=1.56 mg/m³); 10 ppm nitrate-N in water (1 mg nitrate-N/kg/day) | rat | human | proliferative
changes in lungs;
methemoglobinemia | 2E-2 9 | 1E+0a,dd | 100 | 1 | Kubota et al.,
1987; Sagai and
Ichinose, 1987;
Sagai et al.,
1984; U.S. EPA,
1990b/Walton,
1951; U.S. EPA,
1990a,b | | Nitrogen oxides | | | RISK AS | SSESSMENT VALUES NOT | DERIVED | | | | U.S. EPA, 1982 | | Nitromethane | | | DATA IN | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1985 | | Nitrophenols | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1987 | | p-Nitrosodiphenylamine | | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1986 | | Nitrotoluenes (o-, m-,
subchronic (RfD _S) | p-) NA; 200 mg/kg/day o-nitrotoluene x 5 days/week by gavage for 6 months | NA | rat | NA; splenic lesio | ns ND | 16-1
| NA | 1000 | U.S. EPA, 1986;
Ciss et al.,
1980; U.S. EPA,
1986 | | chronic (RfD) | NA; 200 mg/kg/day
o-nitrotoluene x
5 days/week by gavage
for 6 months | NA | rat | NA; splenic lesic
(also see Table E | | 1E-2 | NA 7 | 10,000 | U.S. EPA, 1986;
Ciss et al.,
1980; U.S. EPA,
1986 | | Octamethylpyrophos- | | | | | | | | | | | phoramine
subchronic (RfD _s) | NA; 1.5 mg/day for at
least 30 days (0.02
mg/kg/day) | NA | human | NA; decreased blo
cholinesterase
activity | od ND | 2E-3 | NA | 10 | U.S. EPA, 1989,
Rider et al.,
1969; U.S. EPA,
1989 | | chronic (RfD) | NA; 1.5 mg/day for at
least 30 days (0.02
mg/kg/day) | NA | human | NA; decreased blocholinesterase activity | ood ND | 2E-39 | NA | 10 | U.S. EPA, 1989,
Rider et al.,
1969; U.S. EPA, | | | Exposure | Spec 1e | s | Effect of Concern | Reference D | lose | Uncertainty | <u>Factor</u> | Reference | |---|---|------------|---------|-------------------------------------|---|---------------------|--------------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Octabromodiphenyl ether
subchronic (RfD _S) | NA; 2.5 mg/kg/day by
gavage for 90 days | NA | rat | NA; liver
histology | ND | 3E-2 | NA | 100 | U.S. EPA, 1990/
Carlson, 1980;
U.S. EPA, 1983,
1990 | | chronic (RfD) | NA; 2.5 mg/kg/day by
gavage for 90 days | NA | rat | NA; liver
histology | ND | 3E - 3ª | NA | 1000 | U.S. EPA, 1990/
Carlson, 1980;
U.S. EPA, 1983,
1990 | | Ozone and other
photochemical oxidants | | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | NT | | | U.S. EPA, 1986 | | Para Idehyde | | | DATA IN | IADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT (also see | Table B) | | U.S. EPA, 1986 | | Parathion
subchronic (RfD _S) | NA; CBI | NA | human | NA; cholinesteras
inhibition | e ND | 6E-3 | NA | 10 | U.S. EPA, 1987/
U.S. EPA, 1987 | | chronic (RfD) | NA; CBI | NA | human | NA; cholinesteras inhibition, cance | | 6E-3 9 | NA | 10 | U.S. EPA, 1987/
U.S. EPA, 1987 | | Particulate matter
and sulfur oxides | | | RISK AS | SESSMENT VALUES NOT | DERIVED | | | | U.S. EPA, 1982 | | Pebulate
subchronic (RfD _S) | NA; 5 mg/kg/day
subchronic feeding
study | NA | rat | NA; anticoagulant
effects | ND | 5E-2 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 5 mg/kg/day
subchronic feeding
study | NA | rat | NA; anticoagulant
effects | ND | 5E-2 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Pendimethalin
subchronic (RfD _S) | NA; 12.5 mg/kg/day,
7 days/week in capsules
for 2 years | NA | dog | NA; liver | ND | 4E-2 | NA | 300 | U.S. EPA, 1990/
American
Cyanimid, 1979;
U.S. EPA, 1984,
1990 | | | Exposure | Specie | s | Effect of Concern | Reference [| ose | Uncertainty | Factor | Reference | |---|---|------------|--------|--|---|----------------|-------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Orai | Inhalation/Oral | | chronic (RfD) | NA; 12.5 mg/kg/day,
7 days/week in capsules
for 2 years | NA | dog | NA; liver | ND | 4E-2ª | NA | 300 | U.S. EPA, 1990/
American
Cyanimid, 1979;
U.S. EPA, 1984,
1990 | | entabromodiphenyl ether
subchronic (RfD _s) | NA; 1.8 mg/kg/day by
gavage for 90 days | NA | rat | NA; liver
enzymes | ND | 2E -2 | NA | 100 | U.S. EPA, 1990/
Carlson, 1980;
U.S. EPA, 1983,
1990 | | chronic (RfD) | NA; 1.8 mg/kg/day by
gavage for 90 days | NA | rat | NA; liver
enzymes | ND | 2E - 3ª | NA | 1000 | U.S. EPA, 1990/
Carlson, 1980;
U.S. EPA, 1983,
1990 | | entachlorobenzene
subchronic (RfD _S) | NA; 83 mg/kg/day in
the diet for 100 days | NA | rat | NA; liver and kid
toxicity | iney ND | 8E -3 | NA | 1000 | U.S. EPA, 1989/
Linder, 1980;
U.S. EPA, 1989,
1990 | | chronic (RfD) | NA; 83 mg/kg/day in
the diet for 100 days | NA | rat | NA; liver and kid
toxicity | Iney ND | 8E -4ª | NA 1 | 0,000 | U.S. EPA, 1989/
Linder, 1980;
U.S. EPA, 1989,
1990 | | entachlorocyclopentadie | ene | | DATA I | NADEQUATE FOR QUANT | TATIVE RISK ASSESSME | NTI | | | U.S. EPA, 1988 | | Pentachloronitrobenzene
subchronic (RfD _S) | NA; 30 ppm (0.75 mg/kg/day) in diet for 2 years | NA
; | dog | NA; liver toxici | ky NO | 3E -3 | NA | 300 | U.S. EPA, 1986/
011n Corp.,
1968; U.S. EPA,
1990 | | chronic (RfD) | NA; 30 ppm (0.75 mg/kg/day) in diet for 2 years | NA
; | dog | NA; liver toxici
(Cancer: see
Table B) | ty ND | 3E -3 a | NA | 300 | U.S. EPA, 1986/
Olin Corp.,
1968; U.S. EPA,
1990 | | | Exposure | Specie | s | Effect of Concern | Reference D | | Uncertainty Factor | | Reference | | |--|---|------------|------|-------------------------------------|---|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | Pentachlorophenol subchronic (RfD _S) | NA; 3 mg/kg/day by
gavage 62 days before
mating through gestation | NA | rat | NA; fetotox1c1ty | ND | 3E-2pp | NA | 100 | U.S. EPA, 1984/
Schwetz et al.,
1978; U.S. EPA,
1984, 1986, 199 | | | chronic (RfD) | NA; 3 mg/kg/day by
gavage for 22-24 months | NA | rat | NA; liver and
kidney pathology | ND | 3E - 2ª | NA | 100 | U.S. EPA, 1984/
Schwetz et al.,
1978; U.S. EPA,
1984, 1986, 199 | | | 1,1,2,3,3-Pentachlorop | ropene | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1983 | | | n-Pentane | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | | Phenanthrene | | | DATA | INADEQUATE FOR QUANT! | TATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1984,
1987 | | | Phenol
subchronic (RfD _S) | NA; 60 mg/kg/day by
gavage during organo-
genesis | NA | rat | NA; reduced
fetal body
weight | ND | 6E-1 ^{bb} | NA | 100 | U.S. EPA, 1984/
Research
Triangle
Institute, 1983
U.S. EPA, 1990 | | | chronic (RfD) | NA; 60 mg/kg/day by
gavage during organo-
genesis | NA | rat | NA; reduced
fetal body
weight | ND | 6E-1 a ,1,b | b na | 100 | U.S. EPA, 1984/
Research
Triangle
Institute, 1983
U.S. EPA, 1990 | | | Phenylenediamines (o-, | p-) | | DATA | INADEQUATE FOR QUANT | ITATIVE RISK ASSESSMEN | IT (Cancer: s | ee Table B) | | U.S. EPA, 1985 | | | m-Phenylenediamine
subchronic (RfD _s) | NA; 6.0 mg/kg/day for
90 days | NA | rat | NA; liver lesion | s ND | 6E -2 | NA | 100 | U.S. EPA, 1985/
Hofer and Hruby
1982; U.S. EPA,
1990 | | | chronic (RfD) | NA; 6.0 mg/kg/day for
90 days | NA | rat | NA; liver lesion | s ND | 6E-3 a | NA | 1000 | U.S. EPA, 1985/
Hofer and Hruby
1982; U.S. EPA,
1990 | | | | Exposure | Spec 1e | S | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | | Reference | |--|---|------------|---------|---|---|---------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | Phenylmercuric acetate
subchronic (RfD _S) | NA; O.1 ppm mercury in
diet for 2 years
(0.0084 mg mecuric
acetate/kg/day) ^{ee} | NA | rat | NA; renal damage | ND | 8E -5 | NA | 100 | NA/Fitzhugh et
al., 1950; U.S.
EPA, 1990 | | chronic (RFD) | NA; O.1 ppm mercury in
diet for 2 years
(0.0084 mg mecuric
acetate/kg/day) ^{ee} | NA | rat | NA; renal damage | ND | 8E -5ª | NA | 100 | NA/Fitzhugh et
al., 1950; U.S
EPA, 1990 | | Phosgene | | | DATA IN | MADEQUATE FOR QUANTIT | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | Phosphine
subchronic (RfD _S) | l ppm (l.4 mg/m ³)
34 hours/week for 24
weeks; 0.026 mg/kg/day
in the diet for 2 years | rat | rat | renal effects;
no effect | 3E-4 | 3E-4 | 1 | 100 | Klimmer, 1969;
U.S. EPA, 1989;
Hackenberg,
1972; U.S. EPA,
1989 | | chronic (RfD) | 1 ppm (1.4 mg/m ³)
34 hours/week for 24
weeks; 0.026 mg/kg/day
in the diet for 2 years | rat | rat | renal effects;
no effect | 3E-5 | 3E-4ª | 10 | 100 | Klimmer, 1969;
U.S. EPA, 1989.
Hackenberg,
1972; U.S. EPA
1989 | | Phthalic acid esters, | selected (see Table B) | | | | | | | | • | | Phthalic acids (o-, m- |) | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1986 | | p-Phthalic acid
subchronic (RfD _s) | NA; 142 mg/kg/day in
diet for 2 years | NA | rat | NA; hyperplasia
of bladder uro-
thelium | ND | 1E+0 | NA | 100 | U.S. EPA, 1986,
CIIT,
1983;
Gross, 1974;
U.S. EPA, 1986 | | chronic (RfD) | NA; 142 mg/kg/day in
diet for 2 years | NA | rat | NA; hyperplasia
of bladder uro-
thelium | ND | 1E+0 | NA | 100 | U.S. EPA, 1986
CIIT, 1983;
Gross, 1974;
U.S. EPA, 1986 | | Phthalic anhydride
subchronic (RfD _s) | NA; 12,019 ppm (1562
mg/kg/day) in diet for
104 weeks | NA | mouse | NA; lung and kidn
histopathology | ey ND , | 2E+0 | NA | 1000 | U.S. EPA, 1986
NCI, 1979,
U.S. EPA, 1990 | | _ | <u>Exposure</u> | Spec 16 | | Effect of Concern | Reference D | | <u>Uncertaint</u> | | Reference | |---|--|------------|-------|---|---|---------------------|-------------------|--------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | oral | Inhalation/Oral | | chronic (RfD) | NA; 12,019 ppm (1562
mg/kg/day) in diet for
104 weeks | NA | mouse | NA; lung and kidne
histopathology
(also see Table B) | - | 2E+0 a | NA | 1000 | U.S. EPA, 1986/
NCI, 1979,
U.S. EPA, 1990 | | Polybrominated biphenyls | | | | | | | | | | | subchronic (RfD _s) | NA; Firemaster FF-1
O.1 mg/kg by gavage,
5 days/week for 25 weeks
(O.07 mg/kg/day) | NA | rat | NA; elevated liver weight and liver lesions | ND | 7E-5 | NA | 1000 | U.S. EPA, 1989/
NTP, 1983; U.S.
EPA, 1989 | | chronic (RfD) | NA; Firemaster FF-1
0.1 mg/kg by gavage,
5 days/week for 25 weeks
(0.07 mg/kg/day) | NA | rat | NA; elevated liver
weight and liver
lesions
(also see Table B) | | 7E -6 | NA | 10,000 | U.S. EPA, 1989/
NTP, 1983; U.S.
EPA, 1989 | | Potassium cyanide
subchronic (RfD _s) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(27 mg/kg/day) | NA | rat | NA; weight loss,
thyroid effects, a
myelin degeneratio | | 5E-2 | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) | NA; 10.8 mg/kg/day
fum1gated cyan1de in
food for 2 years
(27 mg/kg/day) | NA | rat | NA; weight loss,
thyroid effects, a
myelin degeneratio | | 5E - 2ª | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | Potassium silver cyan | 1de | | | | | | | | | | subchronic (RfD _s) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(equivalent to
potassium silver cyanide
at 82.7 mg/kg/day) | NA | rat | NA; weight loss,
thyroid effects, a
myelin degeneratio | | 2E-1 ⁿ | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) · | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(equivalent to
potassium silver cyanide
at 82.7 mg/kg/day) | NA | rat | NA; weight loss,
thyroid effects, a
myelin degeneratio | | 2E-]a,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | | Exposure | Spec 16 | S | Effect of Concern | Reference D | ose | Uncertainty | factor | Reference | |---|---|------------|--------|---|---|---------------------|-------------|---------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Orai | | Profluralin
subchronic (RfD _S) | NA; subchronic feeding
study; no details
provided | NA | rat | NA; NA | ND | 6E -3 | NA | NA | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; subchronic feeding
study; no details
provided | NA | rat | NA; NA | ND | 6E-3 | NA | NA | U.S. EPA, 1984/
U.S. EPA, 1984 | | Pronamide
subchronic (RfD _s) | NA; 300 ppm in diet for
2 years (7.5 mg/kg/day) | NA | dog | NA; none observed | ND . | 8E -2 | NA | 100 | NA/Rohm & Haas,
Co., 1970; U.S.
EPA, 1990 | | chronic (RfD) | NA; 300 ppm in diet for
2 years (7.5 mg/kg/day) | NA | dog | NA; none observed | ND | 8E - 2 a | NA | 100 | NA/Rohm & Haas,
Co., 1970; U.S.
EPA, 1990 | | Propachlor
subchronic (RfD _s) | NA; 13.3 mg/kg/day
in the diet for 90 days | NA | rat | NA; decreased body
weight gain | y ND | 1.3E-1 | NA | 100 | U.S. EPA, 1984/
Monsanto, 1964;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 13.3 mg/kg/day
in the diet for 90 days | NA | rat | NA; decreased body
weight gain | y ND . | 1.3E-2ª | NA | 1000 | U.S. EPA, 1984/
Monsanto, 1964;
U.S. EPA, 1984,
1990 | | Propazine
subchronic (RfD _S) | NA; 100 ppm in the
diet for 2 years
(5 mg/kg/day) | NA | rat | NA; decreased body
weight gain | y ND | 2E -2 | NA | 300 | U.S. EPA, 1990/
Ge1gy, 1980;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 100 ppm in the
diet for 2 years
(5 mg/kg/day) | NA | rat | NA; decreased body
weight gain
(also see Table 8) | | 2E - 2 a | NA | 300 | U.S. EPA, 1990/
Geigy, 1980;
U.S. EPA, 1984,
1990 | | ?-Propenoic acid (see | Acrylic acid) | | | | | • | | | | | Propionitrile | | | DATA I | NADEQUATE FOR QUANTII | TATIVE RISK ASSESSMEN | т | | | U.S. EPA, 1985 | | -Propyl alcohol | | | DATA I | NADEQUATE FOR QUANTII | TATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1987 | | | Exposure | Specie | ٠ς | Effect of Concern | Reference D | ose | Uncertainty | | Reference | |--|--|----------------|-----|---|---|------|-------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | Propylene glycol subchronic (RfD _S) | 170-350 mg/m ³ (mean:
260 mg/m ³) contin-
uously for 18 months
(166 mg/kg/day); 6% in
diet for 20 weeks
(3 g/kg/day) | rat | rat | none observed; ren
lesions | al 6E+O (2E+O) | 3E+1 | 100 | 100 | Robertson, 1947;
U.S. EPA, 1987/
Guerrant et al.,
1947; U.S. EPA,
1987 | | chronic (RfD) | 170-350 mg/m³ (mean:
260 mg/m³) contin-
uously for 18 months
(166 mg/kg/day); 50,000
ppm in diet for 2 years
(2.1 g/kg/day) | rat | dog | none observed; de-
crease in RBC,
hematocrit, hemo-
globin in dogs | 6E+O (2E+O) | 2E+1 | 100 | 100 | Robertson, 1947
U.S. EPA, 1987/
Gaunt et al.,
1972; U.S. EPA,
1987 | | Propylene glycol
monoethyl ether
subchronic (RfD _S) | NA; 30-day drinking
water (680 mg/kg/day) | NA | rat | NA; reduced weight
gain | . ND | 7E+O | NA | 100 | U.S. EPA, 1984/
Smyth and
Carpenter, 1948
U.S. EPA, 1984 | | chronic (RfD) | NA; 30-day drinking
water (680 mg/kg/day) | NA | rat | NA; reduced weight
gain | : ND | 7E-1 | NA | 1000 | U.S. EPA, 1984/
Smyth and
Carpenter, 1948
U.S. EPA, 1984 | | Propylene glycol
monomethyl ether
subchronic (RfD _S) | 1000 ppm (3685 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks;
947 mg/kg, 5 days/week
for 35 days (676 mg/
kg/day) by gavage | rat,
rabbit | rat | mild CNS effects;
liver and kidney
histopathology | 7E+O | 7E+O | 100 | 100 | Landrey et al.,
1983; Miller
et al., 1984;
U.S. EPA, 1984/
Rowe et al.,
1954; U.S. EPA, | | chronic (RfD) | 1000 ppm (3685 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks;
947 mg/kg, 5 days/week
for 35 days (676 mg/
kg/day) by gavage | rat,
rabbit | rat | mild CNS effects;
liver and kidney
histopathology | 7E-1J | 7E-1 | 1000 | 1000 | Landrey et al.,
1984; Miller
et al., 1984;
U.S. EPA, 1984/
Rowe et al.,
1954; U.S. EPA,
1984 | to manyon this community index or constituents and survivate tovicity father time constituents tell Update: ne, 1990 | | Exposure | Spec | tes | Effect of Concern | Reference [| | <u>Uncertainty</u> | | Reference | |---|--|-----------|--------|---|---|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalatio | n Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Pyrene
subchronic (RfD _S) | NA; 75 mg/kg/day by
gavage for 13 weeks | NA | mouse | NA; renal effects | ND | 3E-1 | NA | 300 | U.S. EPA, 1984/
U.S. EPA, 1989 | | chronic (RfD) | NA; 75 mg/kg/day by
gavage for 13 weeks | NA | mouse | NA; renal effects | ND | 3E-2J | NA | 3000 | U.S. EPA, 1984/
U.S. EPA, 1989 | | Pyridine
subchronic (RfD _S) | NA; 1 mg/kg/day by
gavage for 90 days | NA | rat | NA; increased
liver weight | ND | 1E-2 | NA | 100 | U.S. EPA, 1990,
U.S. EPA,
1986a,b, 1990 | | chronic (RfD) | NA; 1 mg/kg/day by
gavage for 90 days | NA | rat | NA; increased
liver weight | ND ' | 1E-3ª | NA | 1000 | U.S. EPA, 1990/
U.S.
EPA,
1986a,b, 1990 | | RDX (Cyclonite)
subchronic (RfD _S) | NA; 0.3 mg/kg/day
for 105 weeks | NA | rat | NA; prostate inflar
mation, hemosidero | | 3E -3 | NA | 100 | U.S. EPA, 1989,
Levine et al.,
1984; U.S. EPA,
1989, 1990 | | chronic (RfD) | NA; 0.3 mg/kg/day
for 105 weeks | NA | rat | NA; prostate inflamation, hemosidero | | 3E - 3 a | NA | 100 | U.S. EPA, 1989,
Levine et al.,
1984; U.S. EPA
1989, 1990 | | Ronnel
subchronic (RfD _S) | NA; 5 mg/kg/day in
the diet for 2 years | NA | rat | NA; liver and effects | ND | 5E -2 | NA | 100 | U.S. EPA, 1984.
McCollister
et al., 1959;
U.S. EPA, 1984 | | chronic (RfD) | NA; 5 mg/kg/day in
the diet for 2 years | NA | rat | NA; liver and effects | ND | 5E-2 9 | NA | 100 | U.S. EPA, 1984,
McCollister
et al., 1959;
U.S. EPA, 1984 | | Selenious acid
subchronic (RfD _S) | NA; 3.2 mg/day from
diet of seleniferous
foodstuffs (0.046
mg/kg/day) | NA | human | ND; hair and nail
loss, dermatitis | ND | 3E-3 | NA | 15 | U.S. EPA, 1989,
Yang et al.,
1983; U.S. EPA
1989, 1990 | | | Exposure | Spec 1e | s | Effect of Concern | Reference (| ose | Uncertainty | Factor | Reference | |--|---|------------|-------|---------------------------------------|--------------------------------|---------------------|-------------|---------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation [mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA: 3.2 mg/day from
diet of seleniferous
foodstuffs (0.046
mg/kg/day) | NA | human | ND; hair and nail
loss, dermatitis | ND | 3E-3 J | NA | 15 | U.S. EPA, 1989/
Yang et al.,
1983; U.S. EPA,
1989, 1990 | | Selenourea
subchronic (RfO _S) | NA; 0.046 mg/kg/day, exposure to selenium in high-selenium areas, converted to 0.072 mg selenourea/kg/day | NA | human | NA; selenosis | ND | 5E-3 | NA | 15 | NA/Yang et al.,
1983; U.S. EPA,
1990 | | chronic (RfD) | NA; 0.046 mg/kg/day,
exposure to selenium in
high-selenium areas,
converted to 0.072
mg selenourea/kg/day | NA | human | NA; selenosis | ND | 5E - 3 ^z | NA | 15 | NA/Yang et al.,
1983; U.S. EPA,
1990 | | Silver
subchronic (RfD _S) | NA; 0.9-1.5 g silver arsphenamine by i.v. for 2-3 years (average, 0.0031 mg/kg/day); 6.4 g total dosage silver nitrate in l year (0.077 mg/kg/day); ~6.4 g total dosage silver acetate over 2.5 years (0.0048 mg/kg/day) Average of 3 studies, 0.0052 mg/kg/day | NA | human | NA; argyrta | ND | 3E - 3 | NA | 2 | NA/Gaul and
Staud, 1935;
Blumberg and
Carey, 1934;
East et al.,
1980; U.S. EPA, | | chronic (RfD) | NA; 0.9-1.5 g silver arsphenamine by 1.v. for 2-3 years (average, 0.0031 mg/kg/day); 6.4 g total dosage silver nitrate in 1 year (0.077 mg/kg/day); ~6.4 g total dosage silver acetate over 2.5 years (0.0048 mg/kg/day) Average of 3 studies, 0.0052 mg/kg/day | NA | human | NA; argyr1a | ND | 3E-3 a | NA | 2 | NA/Gaul and
Staud, 1935;
Blumberg and
Carey, 1934;
East et al.,
1980; U.S. EPA,
1990 | | | Exposure | Specie | S | Effect of Concern | Reference (| ose | Uncertainty | Factor | <u>Reference</u> | |--|--|------------|------|--|---|---------------------|--------------------|---------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | Silver cyanide
subchronic (RfD _s) | NA; 10.8 mg/kg/day
fumigated cyanide in | NA | rat | NA; weight loss,
thyroid effects ar | ND
nd | 1E-1 ⁿ | NA | 500 | NA/Howard and
Hanzal, 1955; | | | food for 2 years
(55.7 mg silver
cyanide/kg/day) | | | myelin degeneratio | | | | | Philbrick et
al., 1979; U.S
EPA, 1990 | | chronic (RfD) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(55.7 mg silver
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | JE-Ja,n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | Simazine
subchronic (RfD _s) | NA; 0.52 mg/kg/day in
in the diet for 2 years | NA | rat | NA; decreased weig
gain, hematologica
effects | | 2E - 3 | NA | 300 | U.S. EPA, 1984,
C1ba-Ge1gy
Corp., 1988;
U.S. EPA, 1984,
1990 | | chronic (RfD) | NA; 0.52 mg/kg/day in
in the diet for 2 years | NA | rat | NA; decreased weig
gain, hematologica
effects | | 2E-3ª | NA | 300 | U.S. EPA, 1984,
C1ba-Ge1gy
Corp., 1988;
U.S. EPA, 1984
1990 | | odium cyanide | | | | | | | | | | | subchronic (RfD _S) | NA; 10.8 mg CN/kg/day
from diet containing
HCN (equivalent to
NaCN at 20.4 mg/kg/day) | NA | rat | NA; CNS | ND | 4E-2 ⁿ | NA | 500 | U.S. EPA, 1984,
Howard and
Hanzal, 1955;
U.S. EPA, 1984 | | chronic (RfD) | NA; 10.8 mg CN/kg/day
from diet containing
HCN (equivalent to
NaCN at 20.4 mg/kg/day) | NA | rat | NA; CNS | ND | 4E_2a.n | NA | 500 | U.S. EPA, 1984,
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1990 | | Sodium diethyldithio- | | | | | | | | | | | arbamate
subchronic (RfD _S) | NA; 30 mg/kg/day for
90 days | NA | rat | NA; decreased body
weight gain, renal
and hemotological
effects | | 3E - 1 | NA | 100 | U.S. EPA, 1988,
Sunderman
et al., 1967;
U.S. EPA, 1988 | A-75 | | Exposure | Spec 16 | es : | Effect of Concern | Reference (| lose | <u>Uncertainty</u> | Factor | Reference | |---|--|------------|--------|--|---|---------------------|--------------------|--------|---| | Compound | Inhalation; Oral . | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 30 mg/kg/day for
90 days | NA | rat | NA; cataracts and reduced body weight in chronic study (Cancer: see Table B) | ND
nt | 3E-2ª | NA | 1000 | U.S. EPA, 1988/
Sunderman
et al., 1967;
U.S. EPA, 1988
1990 | | Sodium metavanadate
subchronic (RfD _S) | NA; 10 ppm sodium
metavanadate in drink-
ing water for 3 months
(1.32 mg sodium meta-
vanadate/kg/day) | NA | rat | NA; impaired kidno
function | ey ND | 1E-2 | NA | 100 | U.S. EPA, 1987/
Domingo
et al., 1985;
U.S. EPA, 1987 | | chronic (RfD) | NA; 10 ppm sodium
metavanadate in drink-
ing water for 3 months
(1.32 mg sodium meta-
vanadate/kg/day) | NA | rat | NA; impaired kidno
function | ey ND | 1E-3 · | NA | 1000 | U.S. EPA, 1987/
Domingo
et al., 1985;
U.S. EPA, 1987 | | Strychnine
subchronic (RfD _S) | NA; 2.5 mg/kg by
gavage for 28 days | NA | rat | NA; toxicity
histopathology | ND | 3E - 3 | NA | 1000 | NA/Seldl and
Zbinden, 1982;
U.S. EPA, 1990 | | chronic (RfD) | NA; 2.5 mg/kg by
gavage for 28 days | NA | rat | NA; toxicity
histopathology | ND | 3E-4 a | NA | 10000 | NA/Seldl and
Zbinden, 1982;
U.S. EPA, 1990 | | Styrene
subchronic (RfD _S) | NA; 200 mg/kg/day by
gavage for 19 months | NA | dog | NA; red blood cel
and liver effects | I ND | 2E+0 | NA | 100 | U.S. EPA, 1990/
Quast et al.,
1979; U.S. EPA,
1984, 1989, 199 | | chronic (RfD) | NA; 200 mg/kg/day by
gavage for 19 months | NA | dog | NA; red blood cel
and liver effects
(also see Table B | | 2E-1 ^z | NA | 1000 | U.S. EPA, 1990/
Quast et al.,
1979; U.S. EPA,
1984, 1989, 199 | | Stirophos (see Tetrac | hlorvinphos) | | | | | | | | | | Succinonitrile | | | DATA 1 | NADEQUATE FOR QUANTI | FATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | | Exposure | Specie | S | Effect of Concern | Reference D | ose | <u>Uncertainty</u> | | Reference | |---|---|------------|--------|-----------------------|---|---------------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | Sulfuric acid
subchronic (RfD _S) | O.066-O.098 mg/m ³
occupational; NA | human | NA | respiratory; NA | NDA | ND | NA | NA | Carson et al.,
1981; U.S. EPA,
1984/NA | | chronic (RFD) | 0.066-0.098 mg/m ³ occupational; NA | human | NA | respiratory; NA | NDA | ND | NA | NA | Carson et al.,
1981; U.S. EPA
1984/NA | | Temephos
subchronic (RfD _S) | NA; 200 ppm in the diet
for 99 days (11-24
mg/kg/day) | NA | rat | NA; no effect | ND | 2E-1 | NA | 100 | U.S. EPA, 1984/
Gaines et al.,
1967; U.S. EPA,
1984 | | chronic (RfD) | NA; 200 ppm in the
diet
for 99 days (11-24
mg/kg/day) | NA | rat | NA; no effect | ND | 2E-2 | NA | 1000 | U.S. EPA, 1984/
Gaines et al.,
1967; U.S. EPA,
1984 | | Terbufos
subchronic (RfD _S) | NA; 0.01 mg/kg/day in
the diet for 6 months | NA | dog | NA; no effect | ND | 16-49 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; 0.01 mg/kg/day in
the diet for 6 months | NA | dog | NA; no effect | ND | 1E .49 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Terephthalic acid | | | DATA 1 | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | IT | | | U.S. EPA, 1984 | | 1,2,4,5-Tetrachlorobena
subchronic (RfD _S) | rene NA; 50 ppm in diet for 13 weeks (converted to 0.34 mg/kg/day by authors) | NA | rat | NA; kidney lesion | s ND | 3E-3 | NA | 100 | NA/Chu et al.,
1984; U.S. EPA,
1990 | | chronic (RfD) | NA; 50 ppm in diet for
13 weeks (converted to
0.34 mg/kg/day by
authors) | NA | rat | NA; kidney lestor | s ND | 3E -4ª | NA | 1000 | NA/Chu et al.,
1984; U.S. EPA,
1990 | | Tetrachloroazoxybenzen | e (TCAOB) | | DATA : | INADEQUATE FOR QUANT | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1985 | | Tetrachlorocyclopentad | | | DATA : | INADEQUATE FOR QUANT! | TATIVE RISK ASSESSME | NT 1 | | | U.S. EPA, 1988 | 07/12/90 Update: "me, 1990 | | Exposure | Specie | • | Effect of Concern | Reference D | ose | Uncertainty | | Reference | | |--|---|------------|---------|--|---|-----------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Orai | Inhalation/Oral | | | Tetrachloroethylene
(perchloroethylene)
subchronic (RfD _S) | NA; 20 mg/kg 5 days/week
for 6 weeks
(14 mg/kg/day) | NA | mouse | NA; hepatotoxicity | , ND | 16-1 | NA | 100 | U.S. EPA, 1988/
Buben and
O'Flaherty,
1985; U.S. EPA,
1990 | | | chronic (RfD) | NA; 20 mg/kg 5 days/week
for 6 weeks
(14 mg/kg/day) | NA | mouse | NA; hepatotoxicity
(Cancer: see
Table B) | , ND | 1E-2 a | NA | 1000 | U.S. EPA, 1988/
Buben and
O'flaherty,
1985; U.S. EPA,
1990 | | | Tetrachlorohydrazobenze | ene (TCHB) | | DATA II | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | NT | | | U.S. EPA, 1985 | | | 2,3,4,6-Tetrachlorophen subchronic (RfDs) | nol
NA; 25 mg/kg/day for
90 days | NA | rat | NA; increased live
weights and centr
lobular hypertrop | 1- | 3E-1 | NA | 100 | U.S. EPA, 1987/
U.S. EPA, 1986,
1990 | | | chronic (RfD) | NA; 25 mg/kg/day for
90 days | NA | rat | NA; increased live
weights and centr
lobular hypertrop | 1- | 3E-2 a | NA | 1000 | U.S. EPA, 1987/
U.S. EPA, 1986,
1990 | | | Tetrachlorophenol, 2,3,2,3,5,6- | 4,5-, | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1987 | | | 1,1,2,3-Tetrachloroprop | pene | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1983 | | | Tetrachlorovinphos
(Stirofos)
subchronic (RfD _S) | NA; 125 ppm in the
diet for 2 years
(3.1 mg/kg/day) | NA | dog | NA; increased liv
and kidney weight
reduced body
weight gain | | 3E -2 | NA | 100 | U.S. EPA, 1990/
Shell Chem. Co.
1968; U.S. EPA,
1984, 1990 | | | chronic (RfD) | NA; 125 ppm in the
diet for 2 years
(3.1 mg/kg/day) | NA | dog | NA; increased liv
and kidney weight
reduced body weig
gain (Cancer: see
Table B) | s,
ht | 3E - 2 a | NA | 100 | U.S. EPA, 1990/
Shell Chem. Co.
1968; U.S. EPA,
1984, 1990 | | | | Exposure | Spec | 1es | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference
Inhalation/Oral | | |--|---|-----------|-----|---|---|---------------------|--------------------|--------|--|--| | Compound | Inhalation; Oral | Inhalatio | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inna lat lon/ola i | | | Tetraethyl dithiopyroph
subchronic (RfD _S) | osphate
NA; 10 ppm in diet
for 3 months (0.5
mg/kg/day) | NA | rat | NA; depressed RBC
and plasma
cholinesterase
activity | ND | 5E - 3 | NA | 100 | NA/Kimmerle and
Kiimmer, 1974;
U.S. EPA, 1990 | | | chronic (RFD) | NA; 10 ppm in diet
for 3 months (0.5
mg/kg/day) | NA | rat | NA; depressed RBC and plasma cholinesterase activity | ND | 5E 4 a | NA | 1000 | NA/Kimmerle and
Kiimmer, 1974;
U.S. EPA, 1990 | | | Tetraethyl lead
subchronic (RfD _S) | NA; 1.7 µg/kg/day in
peanut oil by gavage
for 20 weeks, 5 days/
week (1.2 µg/kg/day) | NA | rat | NA; histopatholog
of liver and thym | | 1E-7 | NA | 10,000 | NA/Schepers,
1964; U.S. EPA,
1990 | | | chronic (RfD) | NA; 1.7 µg/kg/day in
peanut oil by gavage
for 20 weeks, 5 days/
week (1.2 µg/kg/day) | NA | rat | NA; histopatholog
of liver and thym | y ND
us | 1E-7 a | NA | 10,000 | NA/Schepers,
1964; U.S. EPA,
1990 | | | Thallic oxide
[Thallium(III) oxide]
subchronic (RfD _S) | NA; 0.02 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA NA | rat | NA; increased SGO
and serum LOH
levels, alopecia | T ND | 7E-4 | NA | 300 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986 | | | chronic (RfD) | NA; 0.02 mg thallium/kg/
day (from thallium
sulfate) for 90 days | ' NA | rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 7E-5 y | NA | 3000 | U.S. EPA, 1988
MRI, 1986;
U.S. EPA, 1986 | | | Thallium (in soluble s
subchronic (RfD _s) | alts)
NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | ' NA | rat | NA; increased SGO
and serum LDH
levels, alopecia | T NO | 7E-4 | NA | 300 | U.S. EPA, 1988
MRI, 1986;
U.S. EPA, 1986 | | | chronic (RfD) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | ' NA | rat | NA; increased SGC
and serum LOH
levels, alopecia | ON TO | 7E-5 | NA | 3000 | U.S. EPA, 1988
MRI, 1986;
U.S. EPA, 1986 | | | Thallium(I) acetate
subchronic (RfD _s) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | / NA | rat | NA; increased SGC
and serum LDH
levels, alopecia | DI ND | 9E -4 | NA | 300 | U.S. EPA, 1988
MRI, 1986;
U.S. EPA, 1986
1990 | | | | | | | A-79 | | | | | 07/12/90 | | | | Exposure | Species | Effect_of Concern | Reference [| ose | Uncertainty Factor | | Reference | | |--|--|----------------|--|---|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation Ora | | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | | chronic (RFD) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 9E-5a | NA | 3000 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986,
1990 | | | Thallium(I) carbonate
subchronic (RfD _S) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 8E -4 | NA | 300 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986,
1990 | | | chronic (RfD) | NA; 0.20 mg thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 8E -5a | NA | 3000 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986,
1990 | | | Thallium(I) chloride
subchronic (RfD _s) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 8E -4 | NA | 300 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986,
1990 | | | chronic (RfD) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 8E - 5 a | NA | 3000 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986
1990 | | | Thallium(I) nitrate
subchronic (RfD _S) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 9E -4 | NA | 300 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986
1990 | | | chronic (RfD) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 9E - 5a | NA | 3000 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986
1990 | | | Thallium selenite (Tl ₂
subchronic (RfD _s) | Se) NA; 0.20 mg thallium/kg/ day (from thallium sulfate) for 90 days | NA rat | NA; increased SGO
and serum LDH
levels, alopecia | T ND | 9E-4 | NA | 300 | U.S. EPA, 1988,
MRI, 1986;
U.S. EPA, 1986
1990 | | | | Exposure | Spec 1es | s | Effect of Concern | Reference D | ose | Uncertainty | Factor | Reference | | |---|--|------------|--------
---|---|-------------|-------------|---------------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Ora1 | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 0.20 mg thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecta | ND | 9E-5² | NA | 3000 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986,
1990 | | | Thallium(I) sulfate
subchronic (RfD _s) | NA; 0.25 mg/kg/day for
90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | r ND | 8E-4 | NA | 300 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986,
1990 | | | chronic (RfD) | NA; 0.25 mg/kg/day for
90 days | NA | rat | NA; increased SGOT
and serum LOH
levels, alopecia | T ND | 8E -5ª | NA | 3000 | U.S. EPA, 1988/
MRI, 1986;
U.S. EPA, 1986,
1990 | | | 2-(Thiocyanomethylthio |)- | | | | | | | | | | | benzothiazole (TCMTB)
subchronic (RfD _s) | NA; 333 ppm in the diet
diet, subchronic (25 mg/
kg/day) | NA | rat | NA; stomach
lesions | ND | 3E-1 | NA | 100 | U.S. EPA, 1984/
U.S. EPA, 1984 | | | chronic (RfD) | NA; 333 ppm in the diet
diet, subchronic (25 mg/
kg/day) | NA | rat | NA; stomach
lesions | ND | 3E -2 | NA | 1000 | U.S. EPA, 1984/
U.S. EPA, 1984 | | | Thiofanox
subchronic (RfD _S) | NA; O.O25 mg/kg/day
for 8 days | NA | dog | NA; cholinesteraso | e ND | 3E -4 | NA | 100 | U.S. EPA, 1989/
U.S. EPA, 1989 | | | chronic (RfD) | NA; 0.025 mg/kg/day
for 8 days | NA | dog | NA; cholinesterase inhibition | e ND | 3E -49 | NA | 100 | U.S. EPA, 1989/
U.S. EPA, 1989 | | | Thiram
subchronic (RfD _s) | NA; 0.61 mg/kg/day
for 24 weeks | NA | ferret | NA; impaired reproduction | ND | 6E-3 | NA | 100 | U.S. EPA, 1989/
Hornshaw et al.
1987; U.S. EPA,
1989, 1990 | | | chronic (RfD) | NA; 0.61 mg/kg/day
for 24 weeks | NA | ferret | NA; impaired reproduction | ND . | 6E -3ª | NA | 100 | U.S. EPA, 1989/
Hornshaw et al.
1987; U.S. EPA,
1989, 1990 | | | Update: | ne, | 1990 | |---------|-----|------| | | Exposure | Specie | | Effect of Concern | Reference D | | Uncertainty Factor | | Reference
Inhalation/Oral | | |---|--|------------|--------|---|---|---------------------|--------------------|------|---|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inna lat lon/ora i | | | Tin and Compounds
subchronic (RfD _S) | NA; 2000 ppm stannous
chloride in diet for 2
years (62 mg Sn/kg/day) | NA | rat | NA; liver and kidney lesions | ND | 6E-1 | NA | 100 | U.S. EPA, 1987/
NTP, 1982;
U.S. EPA, 1987 | | | chronic (RfD) | NA; 2000 ppm stannous
chloride in diet for 2
years (62 mg Sn/kg/day) | NA | rat | NA; liver and
kidney lesions | ND | 6E-1 | NA | 100 | U.S. EPA, 1987/
NTP, 1982;
U.S. EPA, 1987 | | | Toluene
subchronic (RfD _S) | 40 ppm for 6 hours
(151 mg/m ³);
590 mg/day 5 days/week
for 138 doses (42 mg/
kg/day) by gavage | human | rat | CNS effects, eyes
and nose irritatio
CNS effects | 2E+0
n; | 4E-1 | 100 | 100 | Andersen et al.
1983;CIIT, 1980
U.S. EPA, 1984/
Wolf et al.,
1956 | | | chronic (RfD) | 40 ppm for 6 hours (151 mg/m ³); 300 ppm (1130 mg/m ³) 6 hours/day, 5 days/ week for 24 months (29 mg/kg/day) ^b | human | rat | CNS effects, eyes
and nose irritatio
CNS effects ¹ | 2E+0 j
n; | 3E-1b,ff | 100 | 100 | Andersen et al.
1983; CIIT,
1980; U.S. EPA,
1984/CIIT, 1980
U.S. EPA, 1984,
1985, 1990 | | | Toluenediamine (2,3-, | 3,4-) | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1984 | | | Toluene-2,5-diamine
subchronic (RfD _S) | NA; 2000 ppm of the sulfate salt in the diet for 78 weeks (56 mg/kg/day) | NA | rat | NA; no effect | ND | 6E-1 | NA | 100 | U.S. EPA, 1984/
NCI, 1978;
U.S. EPA, 1984 | | | chronic (RfD) | NA; 2000 ppm of the
sulfate salt in the
diet for 78 weeks
(56 mg/kg/day) | NA | rat | NA; no effect | ND | 6E-1 | NA | 100 | U.S. EPA, 1984/
NCI, 1978;
U.S. EPA, 1984 | | | Toluene-2,6-diamine
subchronic (RfD _S) | NA; 500 ppm of the dihydrochloride in the diet for 2 years (16 mg/kg/day) | NA | rat | NA; no effect | ND | 2E-1 | NA | 100 | U.S. EPA, 1984/
NCI, 1980;
U.S. EPA, 1980 | | | chronic (RfD) | NA; 500 ppm of the
dihydrochloride in the
diet for 2 years (16
mg/kg/day) | NA | rat | NA; no effect | ND | 2E-1 | NA | 100 | U.S. EPA, 1984/
NCI, 1980;
U.S. EPA, 1980 | | | 0627h | | | | A-82 | | | | | 07/12/90 | | | Compound | <u>Exposure</u>
Inhalation; Oral | Species
Inhalation | | Effect of Concern
Inhalation; Oral | Reference
Inhalation | Dose
Oral | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | |--|---|-----------------------|--------|---|---------------------------------|---------------------|----------------------------------|----------------|---|--| | Compound | Innaration, oral | Illia iat ion | or a r | Inna lacton, or a | [mg/m ³ (mg/kg/day)] | | | | | | | n-Toluidine | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1984 | | | <pre>friallate subchronic (RfDs)</pre> | NA; 1.3 mg/kg/day in
the diet for 24 months | NA | dog | NA; spleen and and liver | ND | 1.3E-2 | NA | 100 | U.S. EPA, 1990/
Monsanto Co.,
1979; U.S. EPA,
1990 | | | chronic (RfD) | NA; 1.3 mg/kg/day in
the diet for 24 months | NA | dog | NA; spleen and li
and liver | ver ND | 1.3E-2 a ,aa | a NA | 100 | U.S. EPA, 1990/
Monsanto Co.,
1979; U.S. EPA,
1990 | | | 1,2,4-Tribromobenzene
subchronic (RfD _s) | NA; 5 mg/kg/day in the
diet for 45 or 90 days | NA | rat | NA; liver weight
and enzyme
induction | ND | 5E-2 | NA | 100 | U.S. EPA, 1990/
Carlson and
Tardiff, 1977;
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 5 mg/kg/day in the
diet for 45 or 90 days | NA | rat | NA; liver weight
and enzyme
induction | ND | 5E-3 a | NA | 1000 | U.S. EPA, 1990/
Carlson and
Tardiff, 1977;
U.S. EPA, 1984,
1990 | | | Tribromomethane (see B | romoform) | | | | | | | | | | | 1,2,4-Trichlorobenzene
subchronic (RfD _S) | 3 ppm (22 mg/m ³) 6
hours/day, 5 days/
week for 3 months
(2.5 mg/kg/day);
20 mg/kg/day by
gavage for 90 days | rat | rat | increased uropor-
phyrin; increased
liver-to-body
weight ratio | • • | 2E-1 | 100 | 100 | Watanabe et al.
1978; U.S. EPA,
1987/Carlson an
Tardiff, 1976;
U.S. EPA, 1987 | | | chronic (RfD) | 3 ppm (22 mg/m ³) 6
hours/day, 5 days/
week for 3 months
(2.5 mg/kg/day);
20 mg/kg/day by
gavage for 90 days | rat | rat | increased uropor-
phyrin; increased
liver-to-body
weight ratio | | 2E -2¥ | 1000 | 1000 | Watanabe et al.
1978; U.S. EPA,
1987/Carlson an
Tardiff, 1976;
U.S. EPA, 1987 | | | | Exposure | Specie | s | Effect of Concern | Referen <u>ce D</u> | | Uncertainty Factor | | <u>Reference</u> | | |--|--|---------------|---------------|---|---|-------------------|--------------------|------|---|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | Trichlorocyclopentadien | e | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ŢÌ | | | U.S. EPA, 1988 | | | 1,1,1-Trichloroethane
subchronic (RfDs) | 500 ppm (2730 mg/m³) 7 hours/day, 5 days/ week for 6 months (304 mg/kg/day); 500 ppm (2730 mg/m³) 7 hours/day for 6 months (90 mg/kg/day) | guinea
pig | guinea
pig | hepatotoxicity;
hepatotoxicity | 1E+1 (3E+0) ^s | 9E-1 ^b | 100 | 100 | Torkelson et
al., 1958;
U.S. EPA, 1990/
Torkelson et
al., 1958;
U.S. EPA, 1990 | | | chronic (RfD) | 500 ppm (2730 mg/m³) 7 hours/day, 5 days/ week for 6 months (304 mg/kg/day); 500 ppm (2730 mg/m³) 7 hours/day for 6 months (90 mg/kg/day) ^b | guinea
pig | guinea
pig | hepatotoxicity;
hepatotoxicity ¹ | 1E+0 (3E-1) ^S | 9E-2b, z | 1000 | 1000 | Torkelson et al., 1958; U.S. EPA, 1990/Torkelson et al., 1958; U.S. EPA, 1990 | | | 1,1,2-Trichloroethane
subchronic (RfD _S) | NA; 3.9 mg/kg/day by
drinking water for 90
days | NA | mouse | NA; clinical
chemistry altera-
tions | ND | 4E-2 | NA | 100 | U.S. EPA, 1984/
White et al.,
1985; Sanders
et al., 1985;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 3.9 mg/kg/day by
drinking water for 90
days | NA | mouse | NA;
clinical
chemistry altera-
tions (Cancer:
see Table B) | ND | 4E - 3 a | NA | 1000 | U.S. EPA, 1984/
White et al.,
1985; Sanders
et al., 1985;
U.S. EPA, 1990 | | | Trichlorofluoromethane
(f-11)
subchronic (RfD _S) | 5600 mg/m ³ contin-
uously for 90 days
(1940 mg/kg/day);
1000 mg/kg/day, 5
days/week for 6 weeks
(714.3 mg/kg/day) | dog | rat | elevated BUN, lur
lesions; mortali | | 7E-1 | 1000 | 1000 | Jenkins et al.,
1970; U.S. EPA,
1987/NCI, 1978;
U.S. EPA, 1987 | | | | Exposure | Spec 1e | s | Effect of Concern | Reference Dose | | Uncertainty Factor | | Reference | |--|---|------------|--------|--|---|---------------|--------------------|------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Ora1 | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | 5600 mg/m ³ continuously for 90 days (1940 mg/kg/day);
488 mg/kg/day, 5
days/week for 66 weeks (348.6 mg/kg/day) | dog | rat | elevated BUN, lung
lesions; mortality | 7E-1 (2E-1) | 3E-1a | 10,000 | 1000 | Jenkins et al.,
1970; U.S. EPA,
1987/NCI, 1978;
U.S. EPA, 1987,
1990 | | 2,4,4'Trichloro- | | | | | | | | | | | 2'-hydroxydiphenyl ethe
subchronic (RfD _S) | r
NA; 500 mg/kg, 6 days/
week for 4 weeks (429
mg/kg/day) | NA | rat | ND; ND | ND | 4E+0 | NA | 100 | U.S. EPA, 1987/
Lyman and
Furta, 1969;
U.S. EPA, 1987 | | chronic (RfD) | NA; NA | NA | NA | ND; ND | ND | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | | Trichloromethane (see C | hloroform) | | | | | | | | | | Trichlorophenol, 2,3,4-
2,3,6-, and 3,4,5- | , 2,3,5-, | | DATA I | NADEQUATE FOR QUANTII | ATIVE RISK ASSESSMEN | ıt | | | U.S. EPA, 1987 | | 2,4,5-Trichlorophenol subchronic (RfD _S) | NA; 1000 ppm of diet
for 98 days (100 mg/
kg/day) | NA | rat | NA; hepatotoxicity
kidney effects | , ND | 1E+0 | NA | 100 | U.S. EPA, 1984,
1987/McColliste
et al., 1961;
U.S. EPA, 1984,
1987 | | chronic (RfD) | NA; 1000 ppm of diet
for 98 days (100 mg/
kg/day) | NA | rat | NA; hepatotoxicity
kidney effects | , ND | 1E-1 a | NA | 1000 | U.S. EPA, 1984,
1987/McColliste
et al., 1961;
U.S. EPA, 1984,
1987, 1990 | | 2,4,6-Trichlorophenol - | see Table B | | | | | | | | | | 2,4,5-Trichloro-
phenoxyacetic acid
subchronic (RfD _S) | NA; 10 mg/kg/day for
90 days | NA | rat | NA; liver and
kidney weights | ND | 1E-1 | NA | 100 | U.S. EPA, 1989/
Gehring and
Betso, 1978;
U.S. EPA, 1989 | | | Exposure | Specie | s | Effect of Concern | Reference (| ose | Uncertainty Factor | | Reference | | |--|--|------------|--------|--|---|---------------------|--------------------|------|--|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | NA; 3 mg/kg/day
3-generation study | NA | rat | NA; decreased
survival | ND | 1E-2 a | NA | 300 | U.S. EPA, 1989/
Kociba et al.,
1979; U.S. EPA,
1989, 1990 | | | (2,4,5-Trichlorophenox)
propionic acid (Silvex) | () | | | | | | | | | | | subchronic (RfD _s) | NA; 30 ppm in diet
for 2 years (0.75
mg/kg/day) | NA | dog | NA; histopathologi
changes in liver | cal ND | 8E -3 | NA | 100 | NA/Mullison,
1966, Gehring
and Betso, 1978
U.S. EPA, 1990 | | | chronic (RfD) | NA; 30 ppm in diet
for 2 years (0.75
mg/kg/day) | NA | dog | NA; histopathologi
changes in liver | cal ND | 8E -3ª | NA | 100 | NA/Mullison,
1966, Gehring
and Betso, 1978
U.S. EPA, 1990 | | | ,1,1-Trichloropropane | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | V T | | | U.S. EPA, 1987/
U.S. EPA, 1987 | | | 1,2,2-Trichloropropane | | | DATA I | NADEQUATE FOR QUANTII | ATIVE RISK ASSESSME | I T | | | U.S. EPA, 1987/
U.S. EPA, 1987 | | | 1,1,2-Trichloropropane
subchronic (RfD _S) | NA; 100 mg/t in drinking
water for 13 weeks
(15 mg/kg/day) | NA | rat | histopathological
lesions in liver,
kidney and thyroid | ND | 5E -2 | NA | 300 | U.S. EPA, 1987/
Villaneuve
et al., 1985;
U.S. EPA, 1990 | | | chronic (RfD) | NA; 100 mg/t in drinking
water for 13 weeks
(15 mg/kg/day) | NA | rat | histopathological
lesions in liver,
kidney and thyroid | ND | 5E - 3 a | NA | 3000 | U.S. EPA, 1987/
Villaneuve
et al., 1985;
U.S. EPA, 1990 | | | ,2,3-Trichloropropane
subchronic (RfD _S) | NA; 8 mg/kg 5 days/week
for 120 days (5.7
mg/kg/day) | NA | rat | NA; transient clir
cal signs, liver
and kidney lesions
decrease in RBC,
hematocrit and
hemoglobin | | 6E-2 | NA | 100 | U.S. EPA, 1987/
NTP, 1983;
U.S. EPA, 1987 | | | (3 | Exposure | Spec tes | | Effect of Concern | Reference Dose | | Uncertainty Facto | | | |---|--|------------|-----|--|---|---------------------|-------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation: Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inna lation/ura i | | chronic (RfD) | NA; 8 mg/kg 5 days/week
for 120 days (5.7
mg/kg/day) | NA | rat | NA; transient clin
cal signs, liver
and kidney lesions
decrease in RBC,
hematocrit and
hemoglobin | | 6E-3ª | NA | 1000 | U.S. EPA, 1987/
NTP, 1983;
U.S. EPA, 1987,
1990 | | ,2,3-Trichloropropene
subchronic (RfD _S) | 3 ppm (18 mg/m ³),
6 hours/day, 5 days/week
for 66 weeks; NA | dog | NA | eye irritation;
NA | ND | 5E-3 ^b | NA | 100 | U.S. EPA, 1983/
McKenna et al.,
1978; U.S. EPA,
1983 | | chronic (RFD) | 3 ppm (18 mg/m ³),
6 hours/day, 5 days/week
for 66 weeks; NA | dog | NA | eye irritation;
NA | ND | 5E-3Þ | NA | 100 | U.S. EPA, 1983/
McKenna et al.,
1978; U.S. EPA,
1983 | | ,3,6-Trichlorotoluene
subchronic (RfD _s) | NA; O.5 ppm in diet
(O.05 mg/kg/day) for
28 days | NA | rat | NA; liver kidney,
thyroid lesions | ND | 5E - 5 | NA | 1000 | U.S. EPA, 1987,
Chu et al.,
1984; U.S. EPA,
1987 | | chronic (RfD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1987
U.S. EPA, 1987 | | ,2,6-Trichloro-
oluene
subchronic (RfO _S) | NA; 0.5 ppm in diet
(0.05 mg/kg/day) for
28 days | NA | rat | NA; liver, kidney
thyroid lesions | , ND | 5E-5 | NA | 1000 | U.S. EPA, 1987
Chu et al.,
1984; U.S. EPA
1987 | | chronic (RfD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1987
U.S. EPA, 1987 | | 1,1,2-Irichloro-1,2,2-
Irifluoroethane
subchronic (RfD _S) | 5358 mg/m ³ occupational
for 2.77 years (273
mg/kg/day); NA | human | NA | psychomotor impai
ment; NA | r- ND | 3E+1 | NA | 10 | Imbus and
Adkins, 1972;
U.S. EPA, 1983
1985/Imbus and
Adkins, 1972;
U.S. EPA, 1983 | 0627h | | Exposure | Specie | S | Effect of Concern | Reference 1 | os <u>e</u> | <u>Uncertainty</u> | <u>Factor</u> | | | |---|--|------------|---------|--|--------------------------------|---------------|--------------------|---------------|---|--| | Compound | | Inhalation | | Inhalation; Oral | Inhalation [mg/m³ (mg/kg/day)] | Oral | Inhalation | Oral | Inhalation/Oral | | | chronic (RfD) | 5338 mg/m ³ occupational
for 2.77 years (273
mg/kg/day); NA | human | NA | psychomotor impai
ment; NA | - ND | 3E+1b,z | NA | 10 | Imbus and
Adkins, 1972;
U.S. EPA, 1983,
1985/Imbus and
Adkins, 1972;
U.S. EPA, 1983,
1990 | | | Trifluralin
subchronic (RfD _S) | NA; 30 ppm in the diet
for 12 months (0.75
mg/kg/day) | NA | dog | NA; increased liv
weight, methemo-
globinemia | er ND | 7.5E-3 | NA | 100 | U.S. EPA, 1990/
Hoechst, 1984;
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 30 ppm in the diet
for 12 months (0.75
mg/kg/day) | NA | dog | NA; increased liv
weight, methemo-
globinemia (Cance
see Table B) | | 7.5E-3ª | NA | 100 | U.S. EPA, 1990/
Hoechst, 1984;
U.S. EPA, 1984,
1990 | | | •
Trimethylbenzenes | | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT . | | | U.S. EPA, 1987 | | | 1,3,5-Trinitrobenzene
subchronic (RfD _S) | NA; 3 ppm 1,3-dinitro-
benzene in drinking water
for 16 weeks (0.4 mg/kg/
day equivalent to 0.51
mg/kg/day 1,3,5-trinitro-
benzene) | | rat | NA; increased spl
weight | een ND | 5E-4 | NA | 1000 | U.S. EPA, 1989/
Cody et al.,
1981; U.S.
EPA,
1989, 1990 | | | chronic (RfD) | NA; 3 ppm 1,3-dinitro-
benzene in drinking water
for 16 weeks (0.4 mg/kg/
day equivalent to 0.51
mg/kg/day 1,3,5-trinitro-
benzene) | | rat | NA; increased spl
weight | een ND | SE-S a | NA 1 | 0,000 | U.S. EPA, 1989/
Cody et al.,
1981; U.S. EPA,
1989, 1990 | | | Trinitrophenols | | | DATA IN | IADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1984 | | | Vanadium
subchronic (RfD _S) | NA; 5 ppm vanadium
from vanadyl sulfate
in drinking water for
lifetime (0.7 mg/kg/day) | NA | rat | NA; none observed | ND | 7E-3 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | | Compound | Exposure
Inhalation; Oral | Species | | Effect of Concern | Reference Dose | | Uncertainty factor | | Reference | |--|---|------------|---------|------------------------------|---|---------------------|--------------------|------|--| | | | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | chronic (RfD) | NA; 5 ppm vanadium
from vanadyl sulfate
in drinking water for
lifetime (0.7 mg/kg/day) | NA | rat | NA; none observed | ND | 7E-39 | NA | 100 | U.S. EPA, 1987/
Schroeder et
al., 1970; U.S.
EPA, 1987, 1990 | | /anadium pentoxide
subchronic (RfD _S) | NA; 10 ppm vanadium
in diet from vanadium
pentoxide for lifetime
(0.9 mg vanadium pent-
oxide/kg/day) | NA | rat | NA; none observed | ND | 9E-3 | NA | 100 | U.S. EPA, 1987/
Stokinger
et al., 1953;
U.S. EPA, 1987 | | chronic (RfD) | NA; 10 ppm vanadium
in diet from vanadium
pentoxide for lifetime
(0.9 mg vanadium pent-
oxide/kg/day) | NA | rat | NA; none observed | ND | 9E-3 a | NA | 100 | U.S. EPA, 1987/
Stokinger
et al., 1953;
U.S. EPA, 1987,
1990 | | /anadyl sulfate
subchronic (RfD _S) | NA; 5 ppm vanadium from
vanadyl sulfate in
drinking water for life-
time (2.24 mg vanadyl
sulfate/kg/day) | NA | rat | NA; none observed | ND | 2E -2 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | chronic (RfD) | NA; 5 ppm vanadium from
vanadyl sulfate in
drinking water for life-
time (2.24 mg vanadyl
sulfate/kg/day) | NA | rat | NA; none observed | ND | 2E-2 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | ernolate | | | | | | | | | | | Vernam)
subchronic (RfD _s) | NA; 20 ppm in the diet
(1 mg/kg/day) reproduc-
tive | NA | rat | NA; decreased
body weight | ND | 1E-2 | NA | 100 | U.S. EPA, 1983/
Stauffer Chem.
Co., 1983; U.S.
EPA, 1983, 1990 | | chronic (RfD) | NA; 20 ppm in the diet
(1 mg/kg/day) reproduc-
tive | NA | rat | NA; decreased
body welght | ND | 1E-3 a | NA | 1000 | U.S. EPA, 1983/
Stauffer Chem.
Co., 1983; U.S.
EPA, 1983, 1990 | | -Vinyl-1-cyclohexene | | | DATA IN | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1983 | | | Exposure | Specie | s | Effect of Concern | Reference D | ose | Uncertainty | Factor | | | |--|--|------------|-----|---|---|---------------------|-------------|--------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | | m-Xylene
subchronic (RfD _S) | 4750 mg/m ³ , 8 hours/
day, 7 days/week for
1 year (1009 mg/kg/
day) ^w ; 500 mg/kg mixed
xylenes 5 days/week for
103 weeks (357 mg mixed
xylenes/kg/day) | rat | rat | hepatomegaly; none
observed | 4E+0 (1E+0) | 4E+O | 1000 | 100 | Tatra1 et al.,
1981; U.S. EPA,
1989/NTP, 1986 | | | chronic (RfD) | 4750 mg/m³, 8 hours/
day, 7 days/week for 1
year (1009 mg/kg/day)™;
250 mg/kg mixed xylenes
5 days/week for 103
weeks (179 mg mixed
xylenes/kg/day) | rat | rat | hepatomegaly; hype
activity, decrease
body weight, in-
creased mortality
at higher dosage | | 2E+0 | 5000 | 100 | Tatra1 et al.,
1981; U.S. EPA,
1989/NTP, 1986;
U.S. EPA, 1986 | | | o-Xylene
subchronic (RfD _S) | 150 mg/m ³ continuous
on days 7-14 of gesta-
tion (95.6 mg/kg/day);
500 mg/kg mixed xylenes
5 days/week by gavage
for 13 weeks (357 mg
mixed xylenes/kg/day) | rat | rat | fetotox1c1ty; none
observed | 3E+0 (1E+0) ^{bb} | 4E+0 | 100 | 100 | Ungvary et al.,
1980; U.S. EPA,
1989/NTP, 1986 | | | chronic (RfD) | 4750 mg/m³, 8 hours/
day, 7 days/week for
1 year (1009 mg/kg/day);
250 mg/kg mixed xylenes
5 days/week for 103
weeks (179 mg mixed
xylenes/kg/day) | rat | rat | hepatomegaly; hype
activity, decrease
body weight, in-
creased mortality
higher dosage | d | 2E+0 | 5000 | 100 | Tatra1 et al.,
1981; U.S. EPA,
1989/NTP, 1986;
U.S. EPA, 1986 | | | p-Xylene
subchronic (RfD _s) | 20 ppm 7.5 hours/day
for 5 days (27 mg/m ³);
NA | human | rat | CNS effects, nose and throat irrita-tion; NA | 3E-1 | ND | 100 | NA | Hake et al.,
1981;
U.S. EPA, 1989/
U.S. EPA, 1989 | | | chronic (RfD) | 20 ppm 7.5 hours/day
for 5 days (27 mg/m ³);
NA | human | NA | CNS effects, nose
and throat irrita-
tion; NA | 3E - 1 | ND | 100 | NA | U.S. EPA, 1989/
U.S. EPA, 1989 | | | | Exposure_ | <u>Species</u> | | Effect of Concern | Reference D | Uncertainty Factor | | Reference | | |--|---|----------------|-------|---|---|---------------------|------------|-----------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Oral | | (ylenes, mixed
subchronic (RfD _s) | 20 ppm 7.5 hours/day
for 5 days (27 mg/m³);
500 mg/kg mixed xylenes
5 days/week by gavage
for 13 weeks (357 mg
mixed xylenes/kg/day) | human | rat | CNS effects, nose
and throat irrita-
tion; none observe | | 4E+O | 100 | 100 | Hake et al.,
1981;
Litton Bio-
netics, 1978;
U.S. EPA, 1989/
NTP, 1986;
U.S. EPA,
1990 | | chronic (RfD) | 20 ppm 7.5 hours/day
for 5 days (27 mg/m³);
250 mg/kg mixed
xylenes 5 days/week for
103 weeks (179 mg mixed
xylenes/kg/day) | human | rat | CNS effects, nose and throat irrita-tion; hyperactivit decreased body weight and increas mortality at higher dosage l | • | 2E +0ª | 100 | 100 | Hake et al.,
1981;
Carpenter et al
1975; U.S. EPA,
1989/NTP, 1986;
U.S. EPA, 1989,
1990 | | inc
subchronic (RfO _s) | NA; 2.14 mg/kg/day
therapeutic dosage | NA | human | NA; anemia | ND | 2E-1 | NA | 10 | U.S. EPA, 1984/
Pories et
al., 1967;
Prasad et al.,
1975; U.S. EPA,
1984 | | chronic (RfD) | NA; 2.14 mg/kg/day
therapeutic dosage | NA | human | NA; anemia | ND | 2E-1 9 | NA | 10 | U.S. EPA, 1984/
Pories et al.,
1967; Prasad
et al., 1975;
U.S. EPA, 1984,
1990 | | inc cyanide
subchronic (RfO _S) | NA; 10.8 mg/kg/day
fumigated cyanide in
food for 2 years
(67.5 mg zinc
cyanide/kg/day) | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 5E-2 ⁿ | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | chronic (RfD) | NA; 10.8 mg/kg/day
fum1gated cyan1de in
food for 2 years
(67.5 mg zinc
cyan1de/kg/day) | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 5E-2 a. n | NA | 500 | NA/Howard and
Hanzal, 1955;
Philbrick et
al., 1979; U.S.
EPA, 1990 | | | Exposure | Specie | S | Effect of Concern | Reference D | ose | Uncertaint | y Factor | Reference | | |--|--|------------|-----|---|--|---------------------|-------------------|----------|--|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Oral | Inhalation/Ora | | | Zinc phosphide
subchronic (RfD _S) | NA; 50 ppm in diet
for 13 weeks, converted
to 3.48 mg/kg/day by
authors | NA | rat | NA; reduction of
food intake and boo
weight | ND
Jy | 3E-3 | NA | 1000 | NA/Ba1 et al.,
1980; U.S. EPA,
1990 | | | chronic (RfD) | NA; 50 ppm in diet
for 13 weeks, converted
to 3.48 mg/kg/day by
authors | NA | rat | NA; reduction of
food intake and boo
weight | ND
Jy | 3E _4ª | NA | 10,000 | NA/Ba1 et al.,
1980; U.S. EPA,
1990 | | | Zineb
subchronic (RfD _S) | NA; 500 ppm in the
diet
for 2 years (25 mg/kg/
day) | NA | rat | NA; thyroid
hyperplasia | ND | 5E-2 | NA | 500 | U.S. EPA, 1984/
Blackwell-Smitt
et al., 1953;
U.S. EPA, 1984,
1990 | | | chronic (RfD) | NA; 500 ppm in the diet
for 2 years (25 mg/kg/
day) | NA | rat | NA; thyroid
hyperplasia | ND | 5E-2 a | NA | 500 | U.S. EPA, 1984,
Blackwell-Smith
et al., 1953;
U.S. EPA, 1984,
1990 | | averified, available on IRIS fCalculated by analogy to antimony by correcting for differences in molecular weight **Gunder review by RfD Work Group** hBecause of background dietary exposure, an RfDs for the oral route was not estimated. 1verified 2 separate RfDs, 1E-3 for food and 5E-4 for water. Iverified; Workgroup concurrence on final data base file and IRIS input pending bBased on route-to-route extrapolation CSpecifically related to organoleptic threshold and potential for respiratory tract irritation, not to systemic toxicity dSpecifically related to organoleptic threshold; safe concentration may be higher but data are inadequate to assess. eInhalation study with antimony trioxide in rats (Watt, 1980, 1981, 1983; ASARCO, Inc., 1980) provides qualitative evidence of lung cancer; cancer potency not estimated. kCurrent do ing water standard of 1.3 mg/k; Drinking Water Criteria Do. it concluded toxicity data were inadequate for calculation — n RfD for copper. 1CRAVE-verified as a CAG Group D substance MThese values differ from those in the HEED (U.S. EPA, 1987a) because the uncertainty factors for deriving the inhalation RfD values presented herein were changed to correspond to those used by IRIS (U.S. EPA, 1987b) for generating the oral RfD from the same (inhalation) study. "Calculated by analogy to free cyanide by correcting for differences in molecular weight OThese values differ from those in the HEA (U.S. EPA, 1984) because the study chosen as the basis for the inhalation RfD values was changed to conform to the inhalation study chosen as the basis of the oral RfD derived in a more recent HEEP (U.S. EPA, 1986). PFinal Draft of Air Quality Criteria Document (600/8-83-028F) declines to derive an air quality criterion for lead. 9Not verified and further discussion not scheduled rBased on RfD for methyl mercury SThese values differ from those in the HEA (U.S. EPA, 1984) because the study chosen as the basis for the inhalation RfD values was changed to conform to the inhalation study chosen as the basis of the oral RfD derived on IRIS. $^{f t}$ A minor calculation error in estimation of transformed dose in 1986 HEEP is corrected here. "Verified as a Group C carcinogen; no quantitative estimate available. VReported effects occurred at portal of entry; estimates of mg/day reference doses are inappropriate because effects at portal of entry depend on concentration in air. An acceptable air concentration of 0.07 mg/m³ was estimated by Carson et al. (1981) from available data. A-93 ₩Experiment performed with o-xylene xfrom toxicity data on tetraethyl lead YWithdrawn from IRIS The oral RfD, while still available on IRIS, is being reconsidered by the RfD Workgroup. aaThe verified RfD appears on IRIS as 1.3E-3 because of a typographical error. DDDevelopmental effects have been used as the basis of calculation. ccbased on arsenic equivalents ddThis value for nitrogen dioxide-N is based on analogy to nitrate. eeCalculated by analogy to mercury by correcting for differences in molecular weight. ffA new RfD verified and the old number on IRIS will be changed. NA = Not applicable or not available; ND = not determined Notes: To estimate acceptable water concentrations from oral RfDs/RfD, multiply by 70 and divide by 2 t. If exposure occurs by both oral and inhalation routes, the route-specific RfDs/RfD must be proportionally reduced. Update: 9, 1990 | | Exposure | Spec 1 | P C | Tumor Sit | te | | up/Unit Risk
: Factor] | Reference | | |---------------|--|------------|------------|-----------------------------|--|---------------------------------------|--|---|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(µg/£) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | | Acephate | NA; 2-year dietary | NA | mouse | NA
(also see l | liver
Table A) | ND | C/2.5E-7
[8.7E-3] ^a | U.S. EPA, 1990/
Chevron Chemical
Company, 1982;
U.S. EPA, 1984;
U.S. EPA, 1990;
U.S. EPA, 1988, 1990 | | | Acrolein | NA; NA | NA | NA | NA
(also see l | NA
Table A) | C/ND ^a | C/NDª | U.S. EPA, 1987,
1990/U.S. EPA, 1987,
1990 | | | Acrylamide | NA; 2-year drinking
water | NA | rat | NA
(also see
Table A) | CNS, mammary
and thyrold
glands,
uterus, oral
cavity | B2/1.3E-3
[4.5E+0]a,b | B2/1.3E-4
[4.5E+0] ^a | U.S. EPA, 1990/
Johnson et al.,
1986; U.S. EPA,
1985, 1990 | | | Acrylonitrile | occupational; three
drinking water
studies | human | rat | lung | multiple | B1/6.8E-5
[2.4E-1] ^a | B1/1.5E-5
[5.4E-1] ^a | O'Berg, 1980;
U.S. EPA, 1983,
1987a,b/Quast
et al., 1980;
Bio/dynamics,
Inc., 1980a,b;
U.S. EPA, 1983,
1987, 1990 | | | Alachlor | NA; NA | NA | NA | NA
(also see l | NA
Table A) | B2/ND ^f | B2/2.3E-6
[8.1E-2] ^f | U.S. EPA, 1984,
1988/U.S. EPA,
1984, 1988 | | | Aldrin | three dietary
studies; three
dietary studies | mouse | mouse | liver
(also see l | liver
Table A) | 82/4.9E-3
[1.7E+1] ^a ,b | 82/4.9E-4
[1.7E+1] ^a | NCI, 1977; Davis
and fitzhugh, 1962;
Epstein, 1975;
Davis, 1965; U.S.
EPA, 1986, 1987b/
NCI, 1977; Davis
and fitzhugh, 1962;
Epstein, 1975;
Davis, 1965; U.S.
EPA, 1986, 1987,
1990 | | Update: ne, 1990 | | f.uaaa.uaa | Spec | lac. | Tumor Site | | EPA Group/U | nit Risk
Factor] | Reference | |----------------|--|-------------|-------|---|---|--|-------------------------------------|--| | Compound | Exposure Inhalation; Oral | Inha lation | | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(µg/1)-1
[(mg/kg/day)-1] | Inhalation/Oral | | Allyl chloride | NA; NA | NA | NA | NA
(also see Tab) | NA
le A) | C/ND ^f | C/ND ^f | U.S. EPA, 1983,
1989/U.S. EPA,
1983, 1989 | | Aniline | NA; 2-year dietary | NA | rat | NA | spleen | B2/ND | 82/1.6E-7
[5.7E-3] ^a | U.S. EPA, 1987/
CIIT, 1982;
U.S. EPA, 1985, 1989 | | Aramite | NA; 400 ppm in diet
for 104 weeks (20
mg/kg/day) | NA | rat | increased
incidence
of liver
tumors
(also see Tab | increased
incidence
of liver
tumors
le A) | 82/7.1E-6
[2.5E-2] ^b | B2/7.1E-6
[2.5E-2] | 1990/ U.S.EPA, 1989;
Popper et al., 1960;
Oser and Oser, 1962 | | Arsenic | 100-5000 µg/m ³ continuous; 0.01-1.8 mg/£ in drinking water | human | human | respiratory
tract
(also see Tab | skin
le A) | A/4.3E-3
[5.0E+1]a.p | a/na ^k | Brown and Chu,
1983a,b,c; Lee-
Feldstein, 1983;
Higgins, 1982;
Enterline and
Marsh, 1982;
U.S. EPA, 1984a,b,
1990/U.S. EPA, | | Asbestos | occupational;
dietary | human | rat | lung and
mesothelioma | large
intestine | A/2.3E-1
(fibers/mm)-1 m | A/ND | U.S. EPA, 1986,
1987/NTP, 1985;
U.S. EPA, 1985, 1990 | | Azobenzene | NA; 2-year dietary | NA | rat | NA | abdominal
cavity | 82/3.1E-5
[1.1E-1] a. b | B2/3.1E-6
[1.1E-1] ^a | U.S. EPA, 1990/
NCI, 1979; U.S. EPA,
1986, 1990 | | Benzene | occupational;
occupational | human | human | leukemla | leukemia | A/8.3E-6
[2.9E-2] ^a | A/8.3E-7
[2.9E-2]a.b | Ott et al., 1978;
Rinsky et al., 1981;
Wong et al., 1983;
U.S. EPA, 1989,
1987a, 1989/Ott et
al., 1978; Rinsky
et al., 1981; Wong
et al., 1983; U.S.
EPA, 1985, 1987a,
1989, 1990 | ### HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update 'une, 1990 | | Exposure | Specio | a c | Tumor Sit | P | EPA Group/U
(Slope | nit Risk
Factor] | Reference | | |----------------------|--|------------|-------|-----------------------------------|-------------------------------|--------------------------------------|-------------------------------------|---|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(µg/k)-l
[(mg/kg/day)-l] | Inhalation/Oral | | | Benzidine | occupational;
occupational | human | human | urinary
bladder
(also see l | urinary
bladder
able A) | A/6.7E-2
[2.3E+2] ^a | A/6.7E-3
[2.3E+2]a,b | Zavon et al., 1973;
U.S. EPA, 1990/
Zavon et al., 1973;
U.S. EPA, 1980,
1986, 1987, 1990 | | | Benzo(a)anthracene | NA; NA | NA | NA | NA | NA | B2/NAf,u | 82/ND ^f ,u | U.S. EPA, 1990 | | | Benzo(a)pyrene | 2.2-9.5 mg/m ³ , 4.5
hours/day for ≤96.4
weeks; 1-250 ppm
dlet for ≈110 days | hamster | mouse | respiratory
tract | stomach | B2∕NDa•n | 82/NDa.u | Thyssen et al.,
1990; U.S. EPA,
1987/Neal and
Rigdon,
1967;
U.S. EPA,1980,
1990 | | | Benzo(b)fluoranthene | NA;NA | NA | NA | NA | NA | B2/NDf,u | B2/ND ^f ,u | U.S. EPA, 1990 | | | Benzo(k)fluoranthene | NA; NA | NA | NA | NA | NA | B2/NDf.u | B2/ND ^f ,u | U.S. EPA, 1987 | | | Benzotrichloride | NA; 0.26 mg/kg/day,
2 days/week by gavage
for 25 weeks | mouse | mouse | lung | lungs | B2/NA g | B2/3.6E-4
[1.3E+1] ^f | U.S. EPA, 1989/
Fukuda et al., 1978
U.S. EPA, 1986, 198 | | | Benzyl chloride | NA; O, 15, 30 mg/kg,
3 days/week by gavage
for 104 weeks | NA | rat | NA | thyroid | 82/ND | B2/4.9E-6
[1.7E-1]a | U.S. EPA, 1990/
Lijinski, 1986;
U.S. EPA, 1986, 199 | | | Beryllium | occupational; 5 ppm
in drinking water
for lifetime | human | rat | lung
(also see | total
tumors
Table A) | B2/2.4E-3
[8.4E+0] ^a | 82/1.2E-4
[4.3E+0]a | Wagoner et al.,
1980; U.S. EPA,
1987, 1990/
Schroeder and
Mitchener, 1975;
U.S. EPA, 1986,
1990 | | # HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: e, 1990 | | Evangue | Speci | . c | Tumor Site | | EPA Group/U
[Slope | nit Risk
Factor] | Reference | | |----------------------------------|---|------------|-------|----------------------|---|--|-------------------------------------|--|--| | Compound | Exposure
Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-l
[(mg/kg/day)-l] | Oral
(µg/%)-[
[(mg/kg/day)-]] | Inhalation/Oral | | | Bis(2-chloroethyl)
ether | 560-day oral study;
560-day oral study | mouse | mouse | liver | liver | B2/3.3E-4
[1.1E+0]a,b | B2/3.3E-5
[1.1E+0] ^a | Innes et al.,
1969; U.S. EPA,
1980, 1990;/Innes
et al., 1969;
U.S. EPA, 1980
1987, 1990 | | | Bis(chloromethyl)-
ether | inhalation 10–100
days; inhalation
10–100 days | rat | rat | respiratory
tract | ND | A/6.2E-2
[2.2E+2] ^a | A/6.2E-3
[2.2E+2]a,b | Kuschner et al.,
1975; U.S. EPA,
1990/U.S. EPA,
1990 | | | Bls(2-chloro-1-methylethyl)ether | -
2-year gavage
study ^b ; 2-year
gavage study | mouse | mouse | liver, lung | liver, lung | C/2E-5
[7E-2] ^b | C/2E-6
[7E-2] | NTP, 1982;
U.S. EPA, 1987/
NTP 1982;
U.S. EPA, 1987 | | | Bis(2-ethylhexyl)
phthalate | NA; 103-week
dietary study | NA | mouse | NA
(also see Tal | liver
ble A) | B2/ND ^a | 82/4E-7
[1.4E-2]a | U.S. EPA, 1987/
NTP, 1982,
U.S. EPA, 1986,
1988, 1990 | | | Bromodichloromethane | NA; 102-week gavage
study | NA | mouse | NA
(also see Ta | liver
ble A) | B2/ND ^f | B2/3.7E-6
[1.3E-1] ^f | U.S. EPA, 1987,
1989, 1990/NTP,
1986; U.S. EPA,
1987, 1990 | | | Bromoethene
(vinyl bromide) | 2-year inhalation
study; NA | rat | NA | liver | NA | 82/3.2E-5
[1.1E-1] | B2/ND | Benya et al., 1982
U.S. EPA, 1984/
U.S. EPA, 1984 | | | Bromoform | NA; 103-week gavage
study | NA | rat | NA | adenomatous
polyps or
adenocarcino-
mas in the
large intestine
(also see Table | | B2/2.2E-7
[7.9E-3] ^f | U.S. EPA, 1989,
1990/ NTP, 1988/
U.S. EPA, 1989,
1990 | | #### HEALTH EFFECTS ASSESSMENTS SUB. . TABLE B: CARCINOGENICITY Update: June, 1990 | | - | Canala | _ | Tumor Site | | EPA Group/U | nit Risk
Factor] | Reference | |---------------------------|--|-----------------------|---------|--|-------------------|--|--|---| | Compound | Exposure
Inhalation; Oral | Spec to
Inhalation | Oral | | Oral | Inhalation (ug/m³) [(mg/kg/day)-1] | Oral
(μg/%) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | 1,3-Butadiene | two inhalation
studies; NA | mouse, rat | NA | hematopoietic NA
system,
Leydig cell,
thyroid | | 82/2.8E-4
[1.8E+0]a,1 | ND | Hazelton Labs, 1981;
U.S. EPA, 1985,
1987, 1989; U.S
EPA, 1989, 1990 | | Butyl benzyl
phthalate | NA; NA | NA | NA | NA NA
(also see Table | | NA | C/NDª | U.S. EPA, 1987,
1990/U.S. EPA,
1987, 1990 | | Cadmium | occupational; NA | human | NA | respiratory NA
tract
(also see Table | | 81/1.8E-3
[6.1E+0] ^a | ND/NO ^C | Thun et al., 1985;
U.S. EPA, 1985,
1990/U.S. EPA, 1984,
1988 | | Captafol | NA; dietary study
(CBI) | NA | mouse | NA ly
(also see Table | mphosarcoma
A) | C/ND | C/2.4E·7
[8.6E·3] | U.S. EPA, 1984/
U.S. EPA, 1984 | | Captan | NA; NA | NA | NA | NA NA
(also see Table | | 82/ND ^f | B2/1.0E 7
[3.5E-3] ^f | U.S. EPA, 1984,
1988/U.S. EPA,
1984, 1988 | | Carbazole | NA; 96-week dietary
study | NA | mouse | NA 1i | ver | B2/ND | 82/2.8E7
[2E-2] | U.S. EPA, 1986/
Tsuda et al., 1982;
U.S. EPA, 1986 | | Carbon tetrachloride | several gavage
studies; several
gavage studies | several | several | liver li
(also see Table | ver
• A) | 82/1.5E-5 ^d
[1.3E-1] ^a .b | 82/3.7E-6
[1.3E 1] ⁸ | Della Porta et al.,
1961; Edwards
et al., 1942; NCI,
1976; U.S. EPA,
1984a,b, 1990/
Della Porta et
al., 1961; Edwards
et al., 1942;
NCI, 1976;
U.S. EPA, 1984,
1990 | | Chloranil | NA; 82-week oral
study | NA | mouse | **** | iver and
ung | C/ND | C/1.1E-5
[4.03E-1] | U.S. EPA, 1986/
BRL, 1968; U.S. EPA
1986 | ## HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B. CARCINOGENICITY Update: June, 1990 | | Exposure | Spec 10 | P < | lumor S | ite | EPA Group/U
[Slope | nit Risk
Factor] | Reference | |---|---|------------|--------|--------------------|--|---|--|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | | Inhalation (µg/m³) ⁻¹ [(mg/kg/day) ⁻¹] | Oral
(µg/%) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | Chlordane | two dietary bioassays;
two dietary bioassays | mouse | mouse | liver
(also see | liver
Table A) | 82/3.7E-4
[1.3E+0] ^a .b | 82/3.7E-5
[1.3E+0] ^a | IRDC, 1973; NCI,
1977; U.S. EPA,
1986, 1990/IRDC,
1973; NCI, 1977;
U.S. EPA, 1986
1988, 1990 | | Chlorodibromoethane | NA; 105-week gavage
study | NA | mouse | NA
(also see | liver
Table A) | 82/ND | 82/2.4E-6
[8.4E-2] | U.S. EPA, 1987/
NTP, 1985;
U.S. EPA, 1987 | | Chloroethene
(see vinyl chloride) | | | | | | | | | | Chloroform | 138-47/ mg/kg/day;
200-188 ppm in
drinking water for
104 weeks | mouse | rat | liver
(also see | kidney
Table A) | 82/2.3E-5
[8.1E-2] ^a | B2/1.7E-7
[6.1E-3] ^a | NCI, 1976; U.S. EPA
1985, 1988, 1990/
Jorgenson et al.,
1985; U.S. EPA,
1988, 1990 | | Chloromethane | 24 month inhalation
study; 24-month
inhalation study | mouse | mouse | kidney | kidney | C/1.8E-6
[6.3E-3] | C/3.7E-7
[1.3E-2]b | CIIT, 1983; NIOSH,
1984; U.S. EPA,
1987/CIIT, 1983;
NIOSH, 1984; U.S.
EPA, 1986, 1987 | | 4-Chloro-2 methyl-
aniline | NA; 0-4000 ppm in
the diet for 18
months | NA | mouse | NA | vascular
hemangiomas
and hemangio-
sarcomas | B2/ND | 82/1.6E-4
[5.8E-1] ⁰ | U.S. EPA, 1986/
U.S. EPA, 1986;
Weisburger et al.,
1978 | | 4-Chloro-2-2-methyl-
aniline hydrochloride | | NA | inouse | NA | vascular
hemangiomas
and hemangio-
sarcomas | B2/ND | B2/1.3E-5
[4.6E-1] | U.S. EPA, 1986/
U.S. EPA, 1986;
Weisburger et al.,
1978 | | Chloromethyl methyl
ether | NA; NA | human | NA | lung | NA
' | A/ND ^a | A/ND ^a | U.S. EPA, 1987,
1990/U.S. EPA,
1990 | # HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: June, 1990 | | Exposure | Specio | ec . | lum <u>or Sit</u> | e | EPA Group/U
(Slope | nit Risk
Factorl | Reference | | |--------------------------|---|------------|-------|---------------------|--------------------|------------------------------------|--|---|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalat ion | Oral | [(mg/kg/day) ⁻¹] | Oral
(µg/l) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | | o Chloronitrobenzene | NA; 18-month
dietary study | NA | mouse | NA | liver | B2/ND | 82/3.5E-7
[2.5E-2] | U.S. EPA, 1985/
U.S. EPA, 1985;
Weisburger et al.,
1978 | | | Chloronitrobenzene | NA; 0-6000 ppm in
the diet for 18
months | NA | mouse | NA | vascular
tumors | B2/ND | B2/5.1E-7
[1.8E-2] | U.S. EPA, 1985/
U.S. EPA, 1985;
Weisburger et al.,
1978 | | | Chlorthalonil | NA; 80-week dietary
study | NA | rat | NA
(also see l | kidney
able A) | 82/ND | 82/8.2E-8
[2.9E-3] ^f | U.S. EPA, 1984/
NCI, 1978; U.S. EPA
1984 | | | Chromium (VI) | occupational; NA | human | NA | lung
(also see l | NA
able A) | A/1.2E-2
[4.1E+1] ^a | ND/ND ^C | Mancuso, 1975; U.S.
EPA, 1984a,b,
1990/NA | | | Chrysene | NA; NA | NA | NA | NA
(also see (| NA
able A) | BS/ND _L | B2/NA ^f | U.S. EPA, 1990 | | | Coal tars | occupational, HA | human |
NA | 1 ung ' | NA | ND/6.2E-4
[2.2E+0] ^e | ND/ND | Redmond et al.,
1979; Mazumdar
et al., 1975; U.S.
EPA, 1984/NA | | | Creosote | NA; NA | NA | NA | NA | NA | B1/NDª | B1/NDª | U.S. EPA, 1990/
U.S. EPA, 1990 | | | Cresol, o-, m-
and p- | NA; NA | NA | NA | NA
(also see 1 | NA
Table A) | C/ND ^f | C/ND ^f | U.S. EPA, 1984,
1985, 1990/U.S.
EPA, 1984, 1985,
1990 | | | Crotona Idehyde | 113-week drinking
water study;
113-week drinking
water study | rat | rat | liver | liver | C/5.4E-4
[1.9E+0] ^b | C/5.4E-5
[1.9E+0] | U.S. EPA, 1989/
Chung et al.,
1986; U.S. EPA,
1989 | | # HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: "'ne, 1990 | | _ | Species | | Tumor Site | | EPA Group/U
[Slope | Reference | | |---|--|---------------|-------------------|---|---|--|-------------------------------------|--| | Compound | Exposure
Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-l
[(mg/kg/day)-l] | Oral
(µg/l)-1
[(mg/kg/day)-1] | Inhalation/Oral | | | NA; 250 ppm in diet
for 130 weeks | NA | mouse | NA | liver | B2/ND | B2/6.9E-6
[2.4E-1] ^a | NA/Tomatis et al.,
1974; U.S. EPA, 1990 | | | NA; doses of 0-1,000 ppm in diet in 3 studies | NA | mouse,
hamster | NA | liver | B2/ND | B2/9.7E-6
[3.4E-1] ^a | NA/NCI, 1978; Tomaths
et al., 1974; Rossi e
al., 1983; U.S. EPA,
1990 | | OT | NA; several dietary
studies | mouse,
rat | mouse,
rat | liver
(also see Tal | liver
ble A) | B2/9.7E-5
[3.4E-1]a,b | 82/9.7E-6
[3.4E-1]a | U.S. EPA, 1986,
1990/U.S. EPA,
1984, 1986, 1990 | | Decabromodiphenyl
oxide (Decabromo-
iiphenyl ether) | NA; NA | NA | NA | NA
(also see Tal | NA
ble A) | C/ND ^a | C/ND ^a | U.S. EPA, 1984,
1987, 1990/U.S.
EPA, 1984, 1987
1990 | | Mallate | NA; 19-month oral study | NA | mouse | NA
(also see Ta | liver
ble A) | B2/ND | 82/1.7E-6
[6.1E-2] | U.S. EPA, 1983/
BRL, 1968; Innes
et al., 1969;
U.S. EPA, 1983 | | Olbenzo(a,h)
anthracene | NA; NA | NA | NA | NA | NA | B2/ND ^f ,u | B2/ND ^f ,u | U.S. EPA, 1990 | | Olbromochloromethane | NA; 105-week gavage
study | NA | mouse | NA
(also see Ta | hepatocellular
adenomas or
carcinomas
ble A) | C/ND ^f | C/2.4E-6
[8.4E-2] ^f | U.S. EPA, 1989/
NTP, 1985; U.S.
EPA, 1987, 1989a,b | | 1,2-Dibromo-3-
chloropropane | Inhalation study;
Studies include
gavage and skin
application | rat, mouse | rat, mouse | lung, nasal
cavity,
tongue,
pharynx,
adrenal cortex | forestomach,
mammary gland,
lung, skin | 82/6.3E-3
[2.2E+1] | B2/6.3E-4
[2.2E+1] | SRC, 1982; U.S. EPA,
1985, 1986/SRC 1982;
U.S. EPA, 1985, 1986 | | 1,2-Dibromoethane
(ethylene dibromide) | 88-103 week inhala-
tion study; 49-week
gavage study | rat | rat | nasal cavity | forestomach | B2/2.2E-4
[7.6E-1] ^a | B2/2.5E-3
[8.5E+1] ^a | NTP, 1982; U.S. EPA,
1984, 1990/NCI,
1978; U.S. EPA,
1984, 1987, 1990 | | 1,4-Dichlorobenzene
(p-dichlorobenzene) | NA; 103-week gavage
study | NA | mouse | NA
(also see Ta | liver
able A) | B2/ND | 82/6.8E-7
[2.4E-2]9 | U.S. EPA, 1987/
NTP, 1986;
U.S. EPA, 1987 | ## HEALTH EFFECTS ASSESSMENTS " "ARY TABLE B: CARCINOGENICITY Update e, 1990 | | Exposure | Specie | ·c | Tumor Site | | EPA Group/U
[Slope Fa | | Reference | |---|---|------------|-------|--|--|---------------------------------------|-------------------------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(µg/l)-1
[(mg/kg/day)-1] | Inhalation/Oral | | 3,3'-Dichloro-
benzidine | NA; lifetime
dietary study | NA | rat | NA | mammary | B2/ND ^f | B2/1.3E-5
[4.5E-1] ^f | U.S. EPA, 1988/
Stula et al.,
1975; U.S. EPA,
1988 | | 1,4-Dichloro-2-
butene | 90-day inhalation
study; NA | rat | NA | nasal
passages
(also see Ta | NA
(ble A) | 82/2.6E-3
[9.3E+0] | B2/ND | EI Dupont de
Nemours, 1986;
U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,1-Dichloroethane | NA; gavage | NA | rat | NA
(also see Ta | hemanglo-
sarcoma
ble A) | C/ND ^f | C/ND ^f | U.S. EPA, 1984,
1990/NCI, 1978;
U.S. EPA, 1985, 1989 | | 1,2-Dichloroethane
(ethylene chloride) | gavage; gavage | rat | rat | circulatory
system | circulatory
system | B2/2.6E-5
[9.1E-2]a,b | B2/2.6E-6
[9.1E-2] ^a | NCI, 1978; U.S. EPA,
1985, 1990/NCI,
1978; U.S. EPA,
1985, 1990 | | 1,1-Dichloroethylene
(vinylidene chloride) | 10 and 25 ppm for
12 months; gavage | mouse | rat | kidney
(also see Ta | adrenal
ble A) | C/5E-5
[1.2E+0]a,1 | C/1.7E-5
[6E-1] a | Malton1 et al.,
1985; U.S. EPA,
1985, 1990/
NTP, 1982;
U.S. EPA, 1985,
1988, 1990 | | 1,2-Dichloropropane | NA; gavage | NA | mouse | NA
(also see Ta | liver
ible A) | B2/ND | 82/1.9E-6
[6.8E-2]9 | U.S. EPA, 1987/
NTP, 1986;
U.S. EPA, 1987 | | 1,3-Dichloropropene | 2-year inhalation
bioassay; 104-week
gavage study | mouse | rat | benign lung
tumors
(also see
Table A) | forestomach,
liver, adrena
thyroid | 82/3.7E-5
1, [1.3E-1] ^t | 82/5.1E-6
[1.8E-1] ^t | Lomax et al., 1989;
U.S. EPA, 1989/
NTP, 1985;
U.S. EPA, 1985, 1989 | ### HEALTH EFFECTS ASSESSMEN Update. IMARY TABLE B: CARCINOGENICITY June, 1990 | | Exposure | Species | | Tumor Site | | EPA Group/l
[Slope Fa | | Reference | |--------------------------------------|--|-------------|---------------|----------------------------------|--------------------|--|-------------------------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-l
[(mg/kg/day)-l] | Oral
(µg/2)-l
[(mg/kg/day)-l] | Inhalation/Oral | | Dieldrin | several dietary
studies; several
dietary studies | mouse | mouse | liver
(also see Ta | liver
ble A) | B2/4.6E-3
[1.6E+1]a,b | B2/4.6E-4
[1.6E+1] ^a | Thorpe and Walker, 1973; Davis, 1965; Walker et al., 1972; Tennekes et al., 1981; Meierhenrey et al., 1988; NCI, 1978; U.S. EPA, 1990/Thorpe and Walker, 1973; Davis, 1965; Walker et al., 1972; Tennekes et al., 1981; Meierhenrey et al., 1983; NCI, 1978; U.S. EPA, 1987, 1990 | | Diethylstilbesterol | Oral studies ^b ;
Oral studies | rat, mouse, | rat,
mouse | mammary gland,
uterus, cervix | | | A/1.4E-2
[4.9E+2] | SRC, 1983; U.S. EPA
1986b/SRC, 1983;
U.S. EPA, 1986 | | 3,3'-Dimethoxybenzidin | e NA; lifetime dietary
study | , NA | hamster | NA | forestomach | B2/ND | B2/4E-7
[1.4E-2] | U.S. EPA, 1987/
Sellakumar et al.,
1969; OSHA/NIOSH,
1980; U.S. EPA, 198 | | 2,4-Dimethylaniline | NA; 18-month dietary
study with the HCl
salt · | , NA | mouse | NA | lung | C/ND | C/2.1E-5
[7.5E-1] | U.S. EPA, 1987/
Weisberger et al.,
1978; U.S. EPA, 198 | | 2,4-Dimethylaniline
hydrochloride | NA; 18-month dietary
study | , NA | mouse | NA | lung | C/ND | C/1.7E-5
[5.8E-1] | U.S. EPA, 1987/
Weisberger et al.,
1978; U.S. EPA, 198 | | 7,12-Dimethylbenz(a)
anthraçene | | | Data Inac | dequate for Risk a | Assessmentu | | | | | 3,3'-Dimethylbenzidine | NA; 30-day gavage
study | NA | rat | NA | mammar y | B2/ND | B2/2.6E-4
[9.2E+0] | U.S. EPA, 1987/
Griswold et al.,
1968; U.S. EPA, 198 | | 1,1-Dimethylhydrazine | NA; lifetime
drinking water study | NA
/ | mouse | NA | vascular
system | C/ND | C/2.5E-4
[8.7E+0]9 | U.S. EPA, 1984/Toth,
1972, 1973;
U.S. EPA, 1984 | 07/24/90 #### HEALTH EFFECTS ASSESSMENTS STAMMARY TABLE B: CARCINOGENICITY Update: 1990 | | Exposure | Spec 1e | s | Tumor Site | | EPA Group/U
[Slope Fa | Reference | | |----------------------------|--|------------|-------|------------|----------------------------|--------------------------------------|--------------------------------------|---| | Compound | | Inhalation | Oral | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(µg/k)-l
[(mg/kg/day)-l] | Inhalation/Oral | | 1,2-Dimethylhydrazine | NA; 73-week drinking
water study | NA | mouse | NA | vascular
system | B1/ND | B1/4.0E-2
[1.4E+3]9 | U.S. EPA, 1984/Toth
and Wilson, 1971;
U.S. EPA, 1984 | | Dimethyl sulfate | NA; NA | NA | NA | NA | NA | B2/NDa | B2/ND ^a | U.S. EPA, 1985,
1990/U.S. EPA, 1985,
1990 | | 2,4-Dinitrotoluene | NA; 2-year dietary
study | NA | rat | NA | liver,
mammary
gland | B2/ND ^f | 82/1.9E-5
[6.8E-1] ^{f,n} | U.S. EPA, 1987,
1990/Ellis et al.,
1979; U.S. EPA,
1987, 1990 | | 2,6-Dinitrotoluene | NA; NA | NA | NA | NA | NA | B2/ND ^f | 82/1.9E-5
[6.8E-1] ^{f,n} | U.S. EPA, 1987,
1990/US. EPA,
1987, 1990 | | 1,4-Dioxane | NA; 0-530 mg/kg/day
for 110 weeks | NA | rat
| NA | nasal cavity
liver | , B2/ND | B2/3.1E-7
[1.1E-2] ^a | NA/NCI, 1978; U.S.
EPA, 1990 | | 1,2-Diphenyl-
hydrazine | 2-year dietary
study ^b ; 2-year
dietary study | rat | rat | liver | · liver | 82/2.2E-4
[8.0E-1] ^{a,b} | B2/2.2E-5
[8.0E-1] ^a | NCI, 1978;
U.S. EPA, 1980,
1990/NCI, 1978;
U.S. EPA, 1980,
1987, 1988, 1990 | | Direct Black 38 | NA; 190-1500 ppm in
diet for 93 days | NA | rat | NA | liver | A/ND | A/2.4E-4
[8.7E+0]9 | U.S. EPA, 1987/
NCI, 1978; U.S. EPA,
1987 | | Direct Blue 6 | NA; 190-1500 ppm in
diet for 91 days | NA | rat | NA | liver | A/ND | A/2.3E-4
[8.7E+0]9 | U.S. EPA, 1987/
NCI, 1978; U.S. EPA,
1987 | | Direct Brown 95 | NA; 190-1500 ppm in
diet for 91 days | NA | rat | NA | liver | A/ND | A/2.6E-4
[9.3E+0]9 | U.S. EPA, 1987/
NCI, 1978; U.S. EPA,
1987 | | Direct Sky Blue 6B | NA; NA | NA | NA | NA | NA | B2/ND | B2/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | # HFALIH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: 'ne, 1990 | | Exposure | Species | | Tumor Site | Tumor Site | | Init Risk
ctor] | Reference | |------------------------|---|------------|--------|--------------------------------------|--------------------|--|--|--| | Compound | | nha lation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(µg/l)-
[(mg/kg/day)- ¹] | Inhalation/Oral | | Epichlorohydrin | inhalation exposure
for 30 days, observed
for lifespan; 81-week
drinking water study | rat | rat | respiratory
tract
(also see To | forestomach | B2/1.2E-6
[4.2E-3] ^a | 82/2.8E-7
[9.9E-3]a | Laskin et al., 1980
U.S. EPA, 1984,
1985, 1990/Komishi
et al., 1980;
U.S. EPA, 1984,
1985, 1990 | | Ethyl acrylate | NA; 104-week
gavage study | NA | rat | NA | forestomach | 82/ND | 82/1.4E-6
[4.8E-2]9 | U.S. EPA, 1987/
NTP, 1986; U.S. EPA
1987 | | Ethylene dibromide (se | | | | | | | | | | Ethylene oxide | 2-year inhalation study; NA | rat | NA | blood cells,
brain | NA | B1/1E-4
[3.5E-1]g | ND | Snellings et al.,
1981; U.S. EPA,
1985/U.S. EPA,
1985 | | Ethylene thlourea | NA; 5-500 ppm in diet for 2 years | NA | rat | NA | thyroid | B2/ND | B2/1E-6
[3.6E-2] 9 | U.S. EPA, 1984/
U.S. EPA, 1984 | | Folpet | NA; 112-113-week
dietary study | NA | mouse | NA | digestive
tract | B2/ND | B2/1E-7
[3.5E-3] ^a | U.S. EPA, 1990/
Chevron Chemical
Company, 1982;
U.S. EPA, 1984, 199 | | Formaldehyde | 24-month inhalation study; NA | rat | rodent | nasal cavity | nasal cavity | B1/1.3E-5
[4.5E-2] ^a | B1/8.6E-7
[3.0E-2] | U.S. EPA, 1985,
1990/U.S. EPA, 1985
1988a,b | | furazolidone | NA; 45-week
dietary study | NA . | rat | NA | mammary | B2/ND | 82/1E-4
[3.8E+0] | U.S. EPA, 1987/
U.S. DHEW, 1976a,b;
U.S. EPA, 1987 | | Furlum | NA; 28-week dietary
study | NA | mouse | NA | leukemia | B2/ND | B2/7.1E-4
[5.0E+1] | U.S. EPA, 1987/
Cohen et al., 1970;
U.S. EPA, 1987 | | Glyc ida idehyde | NA; 70-week study
(gastric intubation) | NA | rat | NA | NA | B2/ND | 82/ND | U.S. EPA, 1989/
U.S. EPA, 1989 | ## HEALTH EFFECTS ASSESSMENTS * "ARY TABLE B: CARCINOGENICITY Update e, 1990 | | Exposure | Species | | Tumor Site | | EPA Group/U
[Slope Fa | | Reference | |---------------------------------|--|-----------|---------|------------------------|------------------|--|------------------------------------|--| | Compound | | nhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral (µg/£)-1 [(mg/kg/day)-1] | Inhalation/Oral | | Heptachlor | dietary studies;
dietary studies | mouse | mouse | liver
(also see Ta | liver
able A) | B2/1.3E-3
{4.5E+0}a.b | B2/1.3E-4
{4.5E+0}a | Davis, 1965;
Epstein, 1976; NCI,
1977; Reuber, 1977;
U.S. EPA, 1986,
1990/Davis, 1965;
Epstein, 1976; NCI,
1977; Reuber, 1977;
U.S. EPA, 1986
1987, 1990 | | Heptachlor epoxide | 0-10 ppm in diet for
years ^b : 0-10 ppm in
diet for 2 years | 2 mouse | mouse | liver | liver | B2/2.6E-3
[9.1E+0]a,b | B2/2.6E-4
[9.1E+0] ^a | Davis, 1965;
Velsicol Chemical
Corp., 1973; U.S.
EPA, 1990/Davis,
1965; Velsicol
Chemical Corp.,
1973; U.S. EPA,
1990 | | Hexach lorobenzene | diet; diet | hamster | hamster | liver
(also see Ta | liver
ble A) | B2/4E-4
[1.6E+0]b.f | B2/4E-5
[1.6E+0] ^f | Cabral et al., 1977;
U.S. EPA, 1984,
1989/Cabral et al.,
1977; U.S. EPA,
1984, 1985 | | Hexach lor obut ad 1 ene | diet; diet | rat | rat | kidney
(also see Ta | kidney
ble A) | C/2.2E-5
[7.8E-2]a.b | C/2.2E-6
[7.8E-2]ª | Koc1ba et al.,
1977; U.S. EPA,
1990/Koc1ba et al.,
et al., 1977;
U.S. EPA,1980,
1984, 1990 | | Hexachlorocyclohexane-
alpha | NA; 24-week dietary
study | NA | mouse | NA | liver | 82/1.8E-3
[6.3E+0]a,b | 82/1.8E-4
[6.3E+0] ^a | U.S. EPA, 1990/Ito
et al., 1973;
U.S. EPA, 1987, 1990 | | Hexach lorocyc lohexane
beta | NA; 110-week dietary
study | NA | mouse | NA | liver | C/5.3E-4
[1.8E+0]a,b | C/5.3E-5
[1.8E+0]ª | U.S. EPA, 1990/
Thorpe and Walker,
1973; U.S. EPA,
1987, 1990 | ### HEALIH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: ne, 1990 | | Exposure | | pecies | Tumor_Sit | | EPA Group/U
 | ctor] | Reference | |---|--|---------|---------------|----------------------|--|--------------------------------------|--|---| | Compound | Inhalation; Oral | Inhalat | ion Oral | Inhalation | Oral | Inhalation (| Oral
(µg/l) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | Hexachlorocyclohexane -
delta | NA; 24-week dietary
study | NA | mouse,
rat | NA | liver | D/ND | D/ND ^a | U.S. EPA, 1990/
Ito et al., 1973,
1975; Nagasaki
et al., 1972;
U.S. EPA, 1987, 1990 | | dexachlorocyclohexane-
gamma (Lindane) | NA; d1et | NA | mouse | NA
(also see T | liver
able A) | B2-C/ND | B2-C/3.7E-5
[1.3E+0]9 | U.S. EPA, 1984/
Thorpe and Walker,
1973; U.S. EPA,
1984, 1990 | | Hexachlorocyclohexane-
epsilon | NA; mixture of
delta and epsilon in
the diet for 26 weeks | NA | mouse | NA | liver | D/ND | D/NDa | U.S. EPA, 1986/
Goto et al., 1972;
U.S. EPA, 1987, 1990 | | dexachlorocyclohexane-
Lechnical | NA; 6- to 20-month
dietary study | NA | mouse | NA | liver | B2/5.1E-4
{1.8E+0] ^{a,b} | 82/5.1E-5
[1.8E+0] ^a | U.S. EPA, 1990/
Munir et al., 1983;
U.S. EPA, 1987, 1990 | | dexach lor oe thane | 90-week gavage study;
90-week gavage study | mouse | mouse | liver
(also see T | liver
able A) | C/4.0E-6
[1.4E-2]a,b | C/4.0E-7
[1.4E-2]a | NCI, 1978; U.S. EPA,
1990, 1989/NCI,
1978; U.S. EPA,
1980a, 1987, 1989,
1990 | | lydrazine/hydrazine
ulfate | hydrazine vapor
inhalation for
l year; 25-week
exposure by gavage
to hydrazine sulfate | rat | mouse | nasal cavity | liver | B2/4.9E-3
[17.1E+0] ^a | 82/8.5E-5
[3.0E+0] ^a | MacEwen et al., 1981;
U.S. EPA, 1984, 1990,
Bianciflori, 1970;
U.S. EPA, 1984, 1990 | | indeno(1,2,3-c,d)
byrene | NA; NA | NA | NA | NA | NA | B2/ND ^f ,u | B2/ND ^f ,u | U.S. EPA, 1990 | | Sophorone | NA; 2-year gavage
study | NA | rat | NA
(also see T | kidney,
preputial
gland
able A) | C/ND ^f | C/1.1E-7
[3.9E-3] 9 | U.S. EPA, 1987, 1989/
NTP, 1986; U.S.
EPA, 1986, 1987, 1989 | | Lead | NA; NA | NA | NA | NA
(also see T | NA
able A) | B2/ND ^a | B2/ND ^a | U.S. EPA, 1984,
1990/U.S. EPA,
1984, 1990 | | 2-Methoxy-5-nitro-
aniline | NA; 0.4%, 0.8% in
diet for 104 weeks | NA | rat | NA | skin | B2/ND | B2/1.3E-6
[4.6E-2] | U.S. EPA, 1987/NCI,
1978; U.S. EPA, 1987 | | 0625h | | | | B-14 | | | | 07/24/90 | ### HEALTH EFFECTS ASSESSMENTS 'ARY TABLE B: CARCINOGENICITY Update: e, 1990 | | Exposure | Species | | Tumor Site | <u>.</u> | EPA Group/U | Reference | | |---|--|------------|-----------|----------------------------|------------------------------|--|--|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | <u>Oral</u>
(μg/ξ)-l
[(mg/kg/day)-l] | Inhalation/Orai | | 2-Methylaniline | NA; 2-methylaniline-
hydrochloride in
diet for 93 weeks | NA | rat | NA | skin | B2/ND | B2/6.9E-6
[2.4E-1] | U.S. EPA, 1987/
Hecht et al., 1982;
U.S. EPA, 1987 | | 2-Methylaniline
hydrochloride | NA; 93-week dietary
study | NA | rat | NA | skin | B2/ND | 82/6.0E-6
[1.8E-1] | U.S. EPA, 1987/
Hecht et al., 1982;
U.S. EPA, 1987 | | Methyl chloride (see Ch | loromethane) | | | | | | | | | 3-Methylchlol-
anthracene | | | Data Inad | lequate for Risk | Assessmentu | | | | | 4,4-Methylenebis
benzelamine | NA; 2-year
drinking
water | NA | rat | NA | liver | ND | ND/7.1E-6
[2.5E-1] | NA/NTP, 1983;
U.S. EPA, 1984 | | 4,4'-Methylene
bis(N,N'-dimethyl)
aniline | NA; in diet for
59 weeks | NA | rat | NA | thyroid | B2ª/ND | 82 ^a /1.3E-6
[4.6E-2] ^a | U.S. EPA, 1985/
NCI, 1979;
U.S. EPA, 1990 | | Methylene chloride
(dichloromethane) | inhalation study;
inhalation and
drinking water
studies | mouse | mouse | lung, liver
(also see T | liver
able A) | 82/4.1E-6
[1.4E-2] ^m | B2/2.1E-7
[7.5E-3] ^m | NTP, 1986; U.S. EPA,
1984, 1990/NTP,
1986; NCA, 1983;
U.S. EPA, 1985, 1990 | | Methyl ethyl ketone | NA; NA | NA | NA | NA
(also see Ta | NA
able A) | D/NDa | D/NDa | U.S. EPA, 1985, 1988
U.S. EPA, 1985, 1988 | | Methylhydrazine | NA; lifetime
oral study | NA | hamster | NA | liver | NA/ND | NA/3.1E-5
[1.1E+0] | U.S. EPA, 1984/Toth
and Shimizu, 1973;
U.S. EPA, 1984 | | 2-Methyl-5-nitroaniline | NA; in diet for
98 weeks | NA | mouse | NA | liver | C/ND | C/9.4E-7
[3.3E-2] | U.S. EPA, 1987/NCI,
1978; U.S. EPA, 1987 | | Mirex | NA; 2-year dietary
study | NA | rat | NA
(also see T | liver,
adrenal
able A) | B2/ND | 82/5.1E-5
[1.8E+0] | U.S. EPA, 1987/
NTP, 1987;
U.S. EPA, 1987 | | Niagara Blue 4B | NA; NA | NA | NA | NA | NA | B2/ND | B2/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | #### HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: 1e, 1990 | | Exposure | Sp | ectes | Tumor S1 | te | EPA Group/Unit Risk
[Slope Factor] | | Reference | |-------------------------------|---|-------|----------------|-----------------------------------|----------------------|---|-------------------------------------|---| | Compound | Inhalation; Oral | | on Oral | Inhalation | Oral | Inhalation
(μg/m³)-1
[(mg/kg/day)-1] | Oral
(µg/l)-l
[(mg/kg/day)-l] | Inhalation/Oral | | Nickel | occupational; NA | human | NA | respiratory
tract
(also see | NA
Table A) | nickel
refinery dust: A/
2.4E-4 [8.4E-1] ^a
nickel subsulfide:
A/4.8E-4 [1.7E+0] ^a | ND/ND ^C | U.S. EPA, 1986;
Chovil et al.,
1981; Enterline and
Marsh, 1982; Magnus
et al., 1982; Peto
et al., 1984;
U.S. EPA, 1984/
U.S. EPA, 1990 | | Nitrofurazone | NA; 46-week dietary
study | NA | rat | NA | mammar y | B2/ND | B2/4.3E-5
[1.5E+0] | U.S. EPA, 1987/
Erturk et al.,
1970; U.S. EPA,
1987 | | 2-N1tropropane | 22-month inhalation study; 22-month inhalation study | rat, | rat.
rabbit | liver | liver | 82/2.7E-3
[9.4E+0]9 | 2.7E-4
[9.5E+0] ^g | Lewis et al., 1979;
U.S. EPA, 1985/
U.S. EPA, 1985, 1986 | | N-Nitrosodi-n-butyl-
amine | drinking water for
life; drinking
water for life | mouse | mouse | bladder
esophagus | bladder
esophagus | B2/1.6E-3
[5.4E+0]a.b | B2/1.6E-4
[5.4E+0] ^a | Bertram and Craig,
1970; U.S. EPA, 1986
1990/Bertram and
Craig, 1970; U.S.
EPA, 1986, 1990 | | Nitrosodiethanol-
amine | NA; 28 or 64 ppm in
drinking water for
100 weeks | NA | rat | NA | liver | B2ª/NO | 82/8.0E-5
[2.8E+0] ^a | U.S. EPA, 1986, 1990
Lijinsky and Kovatch
1985; U.S. EPA, 1986
1990 | | N-Nitrosodiethyl-
amine | drinking water
6 or 12 months;
drinking water
for 6 or 12 months | rat | rat | liver | liver | B2/4.3E-2
[1.5E+2]a,b | 82/4.3E-3
[1.5E+2] ^a | Peto et al., 1984;
U.S. EPA, 1986, 1990
Peto et al., 1984;
U.S. EPA, 1986, 1990 | | N-Nitrosodimethyl-
amine | drinking water;
drinking water; | rat | rat | liver | liver | 82/1.4E-2
[5.1E+1]a.b | 82/1.4E-3
[5.1E+1] ^a | Peto et al., 1984;
U.S. EPA, 1986, 1990
Peto et al., 1984;
U.S. EPA, 1986, 1990 | | N-Nitrosodiphenyl-
amine | NA; 700-day dietary
study | NA | rat | NA | urinary
bladder | B2/ND ^a | B2/1.4E-7
[4.9E-3]a | U.S. EPA, 1987/
NCI, 1979; U.S.
EPA, 1980, 1986,
1987, 1990 | 07/24/90 # HEALTH EFFECTS ASSESSMENTS STEMMARY TABLE B: CARCINOGENICITY Update: e, 1990 | | Exposure | S | pecies | Tumor | Site | EPA Group/U
[Slope Fac | ctor] | Reference | |--|---|-----|----------|----------------|---------------------|--------------------------------------|---|---| | Compound | Inhalation; Oral | | ion Oral | Inhalatio | | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | <u>Oral</u>
(μg/l) ⁻¹
[(mg/kg/day) ⁻¹] | Inhalation/Oral | | N-Nitrosodi-n-pro-
pylamine | NA; lifetime
drinking water | NA | rat | NA | liver | B2ª/ND | B2/2.0E-4
[7.0E+0] ^a | U.S. EPA, 1986, 1990/
Druckrey, 1967;
Druckrey et al., 1967
U.S. EPA, 1986, 1990 | | N-Nitrosomethyl-
ethylamine | NA; in drinking
water for lifetime | NA | rat | NA | liver | B2 ^a /ND | B2/6.3E-4
[2.2E+1] ^a | U.S. EPA, 1986, 1990/
Druckrey et al., 1967
Druckrey, 1967;
U.S. EPA, 1986, 1990 | | N-Nitrosomethyl-
vinylamine | NA; NA | NA | NA | NA | NA | B2/ND | B2/ND | U.S. EPA, 1986/
U.S. EPA, 1986 | | N-Nitrospyrrolidine | 0-3 mg/kg/day in
drinking water ^b ;
0-3 mg/kg/day in
drinking water | rat | rat | liver | liver | B2/6.0E-4
[2.1E+0]a,b | B2/6.0E-5
[2.1E+0] ^a | Preussman et al.,
1977; U.S. EPA, 1990/
Preussman et al.,
1977; U.S. EPA, 1990 | | Parathion | NA; NA | NA | NA | NA
(also se | NA
e Table A) | C/ND ^a | C/NDª | U.S. EPA, 1987, 1990/
U.S. EPA, 1987, 1990 | | PCBs (see Polychlorina | ited biphenyls) | | | | | | | | | 1,2,3,4,5-Penta-
bromo-6-chloro-
cyclohexane | NA; 0-70 mg/kg/day
in the diet for
2 years | NA | rat | NA | large
intestine | C/ND | C/6.6E-7
[2.3E-2]9 | U.S. EPA, 1985/
Blair, 1981;
U.S. EPA, 1985 | | Pentachloronitro-
benzene | NA; 72-week oral
study | NA | mouse | NA
(also se | liver
e Table A) | C/ND | C/7.4E-6
[2.6E-1]9 | U.S. EPA, 1986/
Innes et al., 1969;
U.S. EPA, 1986 | | o-Phenylenediamine | NA; o-phenylenedi-
amine dihydrochlo-
ride in diet for
548 days | NA | rat | NA | liver | B2/ND | B2/1.3E-6
[4.7E-2] | U.S. EPA, 1985/
U.S. EPA, 1985;
We1sburger et al.,
1978 | | 2-Pheny lpheno l | NA; 2-phenyl-
phenol sodium
salt in diet for
637 days | NA | rat | NA | urinary
bladder | C/ND | C/5.5E-8
[1.9E-3] | U.S. EPA, 1984/
Hiraga and Fujii,
1981; U.S. EPA,
1984 | ### HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update ne, 1990 | | Exposure | Species Tumor Site | | | EPA Group/Ui
[Slope Fac | Reference | | | |------------------------------------|--|--------------------|---------------|--------------------|---|--------------------------------------|--|---| | Compound | Inhalation; Oral | Inhalatio | | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral (µg/2)-1 [(mg/kg/day)-1] | Inhalation/Oral | | Polybrominated
biphenyls | NA; Firemaster FF-1
by gavage for 25
weeks followed by
23-month observation | NA | rat | NA
(also see Ta | hepato-
cellular
carcinoma
and neo-
plastic
nodules
able A) | B2/ND | 82/2.5E-4
[8.9E+0] | U.S. EPA, 1989/
NTP, 1983; U.S.
EPA, 1989 | | Polychlorinated
biphenyls | NA; Aroclor 1260
in diet | NA | rat | NA | liver | 82/ND | B2/2.2E-4
[7.7E+0] ^a | U.S. EPA, 1984,
1990/Norback and
Weltman, 1985;
U.S. EPA, 1987, 1990 | | Propylene oxide | 2-year inhalation
study; 150-week
gavage study | mouse | rat | nasal cavity | forestomach | B2/3.7E-6
[1.3E-2] ^f | B2/6.8E-6
[2.4E-1] [†] | NTP, 1985; Renne
et al., 1986; U.S.
EPA, 1985, 1990/
Dunkelberg, 1982;
U.S. EPA, 1985, 1990 | | RDX (Cyclonite) | NA; 2-year diet
study | NA | mouse | NA | liver
hepato-
cellular
carcinomas
and adenomas | C/ND ^f | C/3.1E-6 ^f
[1.1E-1] ^f | U.S. EPA, 1988,
1989/Lish et al.,
1984; U.S. EPA,
1988, 1989 | | | | | | (also see To | able Nj | | | | | Quinoline | NA; 20-40-week
dletary study | NA | rat | NA | liver | C/ND | C/3.5E-4
[1.2E+1] | U.S. EPA, 1985/
Hirao et al., 1976;
U.S. EPA, 1985 | | Selenium sulfide | NA; 2-year oral
study | NA | rat,
mouse | NA | liver, lung | 82/ND ^f | B2/ND ^f | U.S. EPA, 1989/
NCI/NTP, 1980;
U.S. EPA, 1989 | | Simazine | NA; NA | NA | NA | NA | NA | C/ND ^f | C/3.4E-6
[1.2E-1] ^f | U.S. EPA, 1984,
1988/U.S. EPA, 1984
1987 | | Sodium diethyldithio-
carbamate | NA; diet | NA | mouse | NA
(also see T | hepatoma
able A) | C/ND | C/7.7E-6
[2.7E-1] | U.S. EPA, 1988/
BRL, 1968;
U.S. EPA, 1988 | 07/24/90 # HEALTH EFFECTS ASSESSMENTS SPARRY TABLE B: CARCINOGENICITY Update: 2, 1990 | | Fun agrees | 0-5- | 100 | Tumor Site | | EPA Group/Ui
{Slope Fac | Reference | | |---|--|-------------------------|-------|------------------------------------|------------------|---
--|---| | Compound | Exposure Inhalation; Oral | Species Inhalation Oral | | Inhalation Oral | | Inhalation | Oral | Inhalation/Oral | | Compound | | • | | | | (µg/m³)-1
[(mg/kg/day)-1] | $\frac{(\mu g/1)^{-1}}{(mg/kg/day)^{-1}}$ | | | Styrene | 20-month inhalation study; gavage study | rat | mouse | leukemia
(also see Ta | | 82/5.7E-7
[2.0E-3]9 | 82/8.6E-7
[3.0E-2]9 | Jersey et al., 1978;
U.S. EPA, 1989/NCI,
1979; U.S. EPA,
1989a,b | | 2,3,7,8-TCDD | diet; diet | rat | rat | several | several | 82 ¹ /3.3E-5 ⁵
(pg/m³) ⁻¹
[1.5E+5] ^b ,f | B2 ³ /4.5E+0
[1.5E+5] ^f | Kociba et al.,
1978; U.S. EPA,
1984/Kociba et al.,
1978; U.S. EPA, 1984
1985a,b | | 1,1,1,2-Tetrachloro-
ethane | 0-500 mg/kg/day in
corn oil by gavage 5
days/week for 103
weeks ^b ; 0-500
mg/kg/day in corn oil
by gavage 5 days/week
for 103 weeks | mouse | mouse | liver | liver | C/7.4E-6
[2.6E-2]a.b | C/7.4E-7
[2.6E-2] ^a | NTP, 1983; U.S. EPA,
1990/NTP, 1983; U.S.
EPA, 1990 | | 1,1,2,2-Tetrachloro-
ethane | gavage; gavage | mouse | mouse | liver | liver | C/5.8E-5
[2.0E-1]a,b | C/5.8E-6
[2.0E-1] ^a | NCI, 1978; U.S. EPA,
1980, 1986/NCI,
1978; U.S. EPA,
1980, 1990 | | Tetrachloroethy-
lene (perchloroe-
thylene) | inhalation; gavage | rat,
mouse | mouse | leukemia,
liver
(also see Ta | liver
able A) | B2/9.5E-7
[3.3E-3] | B2/1.5E-6
[5.1E-2] ^g | NTP, 1986; U.S. EPA
1986, 1988/NCI,
1977; U.S. EPA,
1985, 1988 | | p,a,a,a-Tetra-
chlorotoluene | gavage study;
gavage study | mouse | mouse | lung | lung | B2 | B2/5.7E-4
[2.0E+1] | Fukada et al., 1979
U.S. EPA, 1987/
Fukada et al., 1979
U.S. EPA, 1987 | | Tetrachlorvinphos
(stirophos) | NA; 560-day
dletary study | NA | mouse | NA
(also see Ta | liver
able A) | C/ND | C/6.9E-7
[2.4E-2] | U.S. EPA, 1984/
NCI, 1978; U.S. EPA
1984 | | 2,4-Toluenedlamine | NA; in the diet
for 103 weeks | NA | rat | NA | mammary gland | B2/ND | B2/9.1E-5
[3.2E+0] | U.S. EPA, 1986/
NCI, 1979;
U.S. EPA, 1986 | # HEALIH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update: ne, 1990 | | Exposure | Species | | Tumor Site | | EPA Group/U | | Reference | |--------------------------------------|--|----------|-------|-----------------------|---|---------------------------------------|-------------------------------------|---| | Compound | Inhalation; Oral | Inhalati | | Inhalation | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(µg/%)-1
[(mg/kg/day)-1] | Inhalation/Oral | | o-Toluidine | NA; 511-day
dietary study
with HCl salt | NA | rat | NA | skin fibroma | 82/ND | 82/6.9E-6
[2.4E-1] | U.S. EPA, 1984/
Hecht et al.,
1982; U.S. EPA,
1984 | | p-Toluidine | NA; 6-12 month
dietary study
with the HCl salt | NA | mouse | NA | liver | C/ND | C/2.6E-5
[1.9E-1] | U.S. EPA, 1984/
Weisburger et al.,
1978; U.S. EPA, 1984 | | Toxaphene | 735-day dietary
study; 735-day
dietary study | mouse | mouse | liver | liver | B2/3.2E-4
[1.1E+0]a,b | B2/3.2E-5
[1.1E+0] ^a | Litton Bionetics,
Inc., 1978;
U.S. EPA,1990/
Litton Bionetics,
Inc.,1978; U.S. EPA,
1980, 1987, 1990 | | 2,4,6-Trichloroaniline | NA; diet, HC1 salt | NA | mouse | NA | unspecified
tumors of the
vascular syst | ! | C/1.0E-6
[3.4E-2] | U.S. EPA, 1987/
We1sburger et al.,
1978; U.S. EPA, 1987 | | 2,4,6-Trichloroaniline hydrochloride | NA; dlet | NA | mouse | NA | unspecified
tumors of the
vascular syst | | C/8.2E-7
[2.9E-2] | U.S. EPA, 1987/
Weisburger et al.,
1978; U.S. EPA, 1987 | | 1,1,2-Trichloroethane | gavage; gavage | mouse | mouse | liver
(also see Ta | liver
ble A) | C/1.6E-5
[5.7E-2]a,b | C/1.6E-6
[5.7E-2] ^a | NCI, 1978; U.S. EPA,
1980, 1990/NCI,
1978; U.S. EPA,
1980, 1984, 1990 | | Trichloroethylene | two inhalation
studies; two
gavage studies | mouse | mouse | lung | liver | B2/1.7E-6
[1.7E-2] ^f ,† | 82/3.1E-7
[1.1E-2]f,1 | Maltoni et al.,
1986; Fukuda et.
al., 1983/
NCI, 1976; NTP,
1983; U.S. EPA,
1985, 1987, 1988 | | 2.4.6-Trichlorophenol | diet; diet | mouse | mouse | liver | liver | B2/3.1E-6
[1.1E-2] ^a | B2/3.1E-7
[1.1E-2] a | NCI, 1979; U.S.
EPA, 1980, 1990,
1987/NCI, 1979;
U.S. EPA, 1980,
1984, 1987, 1990 | #### HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY Update ne, 1990 | | Exposure | • | Species | Tumor Sit | .e | EPA Group/Unit Risk [Slope Factor] | | Reference | |------------------------------------|---|---------|---------|-----------------------------|-----------------------------------|--|-------------------------------------|---| | Compound | Inhalation; Oral | Inhalai | | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(µg/l)-T
[(mg/kg/day)-1] | Inhalation/Oral | | Trifluralin | NA; in the diet
for 2 years | NA | rat | NA
(also see
Table A) | kidney,
bladder and
thyroid | C/ND | C/2.2E-7
[7.7E-3] ^a | U.S. EPA, 1990/
Emmerson et al.,
1980; U.S. EPA,
1984, 1990 | | Trimethyl phosphate | NA; 10-week gavage
study | NA | mouse | NA | uterus | B2/ND | B2/1.1E-6
[3.7E-2] | U.S. EPA, 1985/
NCI, 1978;
U.S. EPA, 1985 | | Vinyl bromide
(see bromoethene) | | | | | | | | | | Vinyl chloride | l-year inhalation
study; 10–50 ppm
diet | rat | rat | liver | lung | A/4.2E-5
[2.95E-1]1,f | A/6.5E-5
[2.3E+0] ^f | Malton1 et al.,
1980, 1981; U.S.
EPA, 1985b; ATSDR,
1988/Feron et al.,
1981; U.S. EPA,
1984, 1985a | averified, available on IRIS bBased on route-to-route extrapolation CThere is inadequate evidence for carcinogenicity of this compound by the oral route. dIncorporates an absorption factor of 0.4 eBased on occupational data for coke-oven workers fVerified; Workgroup concurrence on final data base file and IRIS input pending **GUnder review by CRAVE Workgroup** hValues removed from IRIS pending further review; new verified values are pending input into IRIS. ¹Based on metabolized dose ^{\$}B2 classification is for 2,3,7,8-TCDD alone. Mixtures consisting of phenoxy herbicides and/or chlorophenols with 2,3,7,8-TCDD as a contaminant are classified as B1 carcinogens. kA unit risk of 5E-5 ($\mu g/2$)⁻¹ has been proposed by the Risk Assessment Forum and this recommendation has been scheduled for SAB review. 1Slope far is for internal dose; ambient concentration was calculated by __iming an absorption factor of 54%. The slope factor, while still available on IRIS, is being reconsidered by CRAVE Workgroup. This value applies to the mixture of 2,4- and 2,6-dinitrotoluene isomers OBased on results with 4-chloro-2-methylaniline hydrochloride PAn absorption factor of 30% is used to calculate the unit risk from the slope factor. **9Based on results with the alpha isomer** SAn absorption factor of 75% used to calculate the unit risk from the slope factor tEPA group verified and available on IRIS; quantitative estimates, derived more recently than IRIS evaluation, have not been verified. UFor RCRA activities only, contact Sue Griffin of Office of Solid Waste (FTS 382-6392 or (202)382-6392) for RCRA-approved numeric assessment for this compound NA = Not applicable; ND = not determined #### USER'S GUIDE: RADIONUCLIDE CARCINOGENICITY The Health Effects Assessment Summary Table C summarizes the slope factors and unit risk values for selected radionuclides of potential concern at Superfund sites contaminated with radioactive materials. These values were calculated by the Office of Radiation Programs (ORP) and are intended for use by EPA risk assessors during human health risk assessments conducted as part of the Superfund remedial investigation/feasibility study HEAST users should apply these values as (RI/FS) process. specified by the radiation risk assessment guidance provided in this section and in Chapter 10 of the Risk Assessment Guidance for Superfund; Volume I, Human Health Evaluation Manual, Part A (EPA/540/1-89/002), which is available from the Center for Environmental Research Information at (513) 569-7562. assessment methodologies are refined, slope factors and unit risk values will be revised and updated in Table C. EPA classifies all radionuclides as Group A carcinogens based on their property of emitting ionizing radiation and on the extensive weight of evidence provided by epidemiological studies of radiation-induced cancers in humans. Data derived from both human studies and animal experiments are used by EPA to construct mathematical models of exposure, dose, and risk to estimate radionuclide slope factor values. These models consider pathways of exposure, the distinct metabolic behavior of each element by compound and the radiological characteristics of each nuclide of concern, the time and duration of exposure, the radiosensitivity of each target organ in the body, the latency period for cancer expression in these organs, and the age and sex of individuals in the exposed population. Similar to chemical risk models, radiation models extrapolate cancer risks at low dose and dose rate exposures from risks observed at higher doses using non-threshold, linear dose-response relationships. Because of the radiation risk models employed, slope factors for radionuclides are characterized as best estimates (i.e., maximum likelihood estimates) of the age-averaged lifetime total excess
cancer risk per unit intake or exposure. HEAST users should consult Volume I of the Background Information Document for the Draft Environmental Impact Statement for Proposed NESHAPs for Radionuclides (EPA 520/1-89-005) for a more detailed discussion of EPA's current radiation risk assessment methodology. Quantitative carcinogenic estimates listed in Table C include the following: slope factor = risk per unit intake or exposure = risk per pCi inhaled or ingested or as risk per year per pCi/ m^2 due to external exposure. ^{*} Slope factors and risk estimates are reported in Table C in units of activity, both in the customary units of picocuries (1 pCi = 10⁻¹² curies (Ci) = 3.7x10⁻² nuclear transformations per second) for consistency with the system used for radionuclides in the IRIS database, and in the International System (SI) units of becquerels (1 Bq = 1 nuclear transformation per second; approximately 27 pCi). Users can calculate cancer risks using slope factors expressed in either customary units or SI units with equivalent results, provided that they also use air, water and soil concentration values in the same system units. For simplicity, examples presented in text are shown in picocuries only. pathway-specific unit risk = risk per unit concentration in air, drinking water or soil (external exposure) = risk per pCi/m^3 (air), risk per pCi/L (water), risk per pCi/g (external exposure), or risk pCi/g (soil ingestion). Unit risk estimates for air, drinking water, and soil ingestion pathways provided in Table C were calculated by multiplying the appropriate inhalation and ingestion slope factors by the inhalation rate (20 m³/day), the water consumption rate (2 L/day), or the soil ingestion rate*, respectively, and by multiplying all values by the total number of days in 70 years (i.e., by the lifetime exposure = 365 days/yr x 70 yrs = 25,550 days). Hence, risk per pCi/m³ (air) = slope factor (risk per pCi inhaled) x 20 m³/day x 25,550 days risk per pCi/L (water) = slope factor (risk per pCi ingested) x 2 L/day x 25,550 days risk per pCi/g (soil) = slope factor (risk per pCi ingested) x [(0.2 g/day x 1,825 days) + (0.1 g/day x 23,360 days)] The designations "D", "W", and "Y" presented under the heading "ICRP Lung Class" in Table C refer to the lung clearance times for ^{*}Soil ingestion rates of 0.2 gram per day for children aged 1 year through 6 years and 0.1 gram per day for older age groups were taken from EPA's Interim Final Guidance for Soil Ingestion Rates (OSWER Directive 9850.4; January 27, 1989), available from the Office of Waste Enforcement Programs at (202) 382-4814. Accordingly, for lifetime exposures, an individual would be expected to consume 365 grams of soil starting at age 1 to age 6 (i.e., 0.2 g/day x 365 days/year x 5 years), plus 2,336 grams after age 6 to age 70 (i.e., 0.1 g/day x 365 days x 64 years) for a total of approximately 2,700 grams. inhaled particulate radionuclides expressed as days (D), weeks (W), or years (Y), as recommended by the International Commission on Radiological Protection (ICRP). Gaseous radionuclides, e.g., Rn-222, are assigned to class "g". "GI Absorption Factors, f₁" are the fractional amounts of each radionuclide that may be absorbed from the gastrointestinal (GI) tract into blood following an oral intake. The ICRP lung clearance rates and GI absorption factors provided in Table C are default values used by the EPA to calculate radionuclide slope factors for inhalation and ingestion exposures, respectively. Application of values other than those specified in Table C will result in slope factors and unit risk estimates different from those provided in the table. At this time, EPA recommends that risk assessors should not replace or substitute for the default values listed. Values listed in Table C for external exposure are best estimates of the lifetime cancer risk due to the irradiation of an individual exposed to gamma-emitting radionuclides uniformly mixed in soil. Unit risk estimates for this pathway were calculated by multiplying the appropriate ground surface slope factors by the effective surface density of soil (i.e., $143 \text{ kg/m}^2 = 0.10 \text{ m}$ (soil depth) x $1.43 \text{x} 10^3 \text{ kg/m}^3$ (soil density)), and by multiplying all values by 70 years (i.e., by the lifetime exposure). Hence, risk per pCi/g (soil) = slope factor (risk per year per pCi/m²) x 143 kg/m² \times 10 3 (g/kg) x 70 years External exposure factors <u>do</u> <u>not</u> include contributions from decay products, i.e., any radionuclides formed during radioactive decay. In some cases, these contributions can be substantial and should be factored into the risk calculations. For example, to estimate the total lifetime excess cancer risk due to continuous, lifetime external exposure to soil contaminated with Cs-137 at a level of 1 pCi/g, risk values must be calculated for Cs-137 and Ba-137m in equilibrium concentrations of 1 pCi/g each (assuming a uniformly mixed source in soil and using the values listed under "External Exposure" in Table C as follows; Total risk = Risk from Cs-137 + Risk from Ba-137m - = (pCi/g Cs-137 x Risk per pCi/g Cs-137) + (pCi/g Ba-137m x Risk per pCi/g Ba-137m) - = (1 pCi/g x 0.0E+00 risk per pCi/g Cs-137) + (1 pCi/g x 3.4E-04 risk per pCi/g Ba-137m) - = 3.4 x 10⁻⁴ total lifetime excess cancer risk This calculation must be performed in this manner because the external exposure risk from Cs-137 is due to the photon radiation emitted by Ba-137m, its immediate short-lived decay product. In the same manner, the total lifetime excess cancer risk due to continuous external exposure to soil contaminated with Ra-226 and progeny (assuming secular equilibrium) should be calculated as the summation of the risks contributed by Ra-226 and each decay product that emits photon radiation, such as Pb-214 and Bi-214. To estimate risk-specific concentrations in air from the unit risk in air as presented in Table C, the specified level of risk is divided by the unit risk for air. Hence, the air concentration (in pCi/m^3) corresponding to a best estimate of the increased lifetime cancer risk of $1x10^{-5}$ is calculated as follows: pCi/m³ in air = $$\frac{1 \times 10^{-5}}{\text{unit risk in } (\text{pCi/m}^3)^{-1}}$$ Similarly, to estimate risk-specific concentrations in water and in soil (ingestion exposure), the specified level of risk is divided by the unit risk for drinking water or soil ingestion. Hence, the water concentration (in pCi/L) corresponding to a best estimate of the increased lifetime cancer risk of lx10⁻⁵ is calculated as follows: and the soil concentration (in pCi/g) corresponding to a best estimate of the increased lifetime cancer risk of $1x10^{-5}$ is calculated as follows: To estimate risk-specific concentrations in soil from the unit risk from external exposure as presented in Table C, the specified level of risk is divided by the unit risk for soil. Hence, the soil concentration (in pCi/g) corresponding to a best estimate of the increased lifetime cancer risk of 1x10⁻⁵ is calculated as follows: pCi/g in soil 1x10⁻⁵ (external exposure) = unit risk in (pCi/g)⁻¹ (external exposure) #### HEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in picocuries (pCi)) | Nuclide | ICRP°°
Lung
Class | Gl ^{***}
Absorption
Factor (f ₁) | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | |----------------|-------------------------|---|--|---------|---------|---|---------|---------|---------|---------| | | | | | | | | | | | | | | | | Ac-225 | Y | 1.0E-03 | 2.4E-09 | 1.7E-11 | 9.4E-13 | 1.2E-03 | 8.7E-07 | | Ac-227 | Y | 1.0E-03 | 8.3E-08 | 3.5E-10 | 1.3E-14 | 4.2E-02 | 1.8E-05 | 1.3E-07 | 9.5E-07 | | | Ac-228 | Y | 1.0E-03 | 2.6E-11 | 5.1E-13 | 5.1E-11 | 1.3E-05 | 2.6E-08 | 5.1E-04 | 1.4E-09 | | | Am-241 | v | 1.0E-03 | 4.0E-08 | 3.1E-10 | 1.6E-12 | 2.1E-02 | 1.6E-05 | 1.6E-05 | 8.4E-07 | | | Am-243 | Ü | 1.0E-03 | 4.0E-08 | 3.0E-10 | 3.6E-12 | 2.1E-02 | 1.5E-05 | 3.6E-05 | 8.1E-07 | | | At-217 | D | 9.5E-01 | 5.6E-17 | 4.5E-18 | 1.4E-14 | 2.9E-11 | 2.3E-13 | 1.4E-07 | 1.2E-14 | | | Ba-137m | D | 1.0E-01 | 6.0E-16 | 2.4E-15 | 3.4E-11 | 3.0E-10 | 1.2E-10 | 3.4E-04 | 6.5E-12 | | | Bi-210 | v | 5.0E-02 | 8.1E-11 | 1.9E-12 | 0.0E+00 | 4.1E-05 | 9.7E-08 | 0.0E+00 | 5.1E-09 | | | Bi-211 | ü | 5.0E-02 | 1.9E-13 | 1.2E-14 | 2.8E-12 | 9.7E-08 | 6.1E-10 | 2.8E-05 | 3.2E-11 | | | Bi-212 | W | 5.0E-02 | 6.9E-12 | 3.6E-13 | 1.0E-11 | 3.5E-06 | 1.8E-08 | 1.0E-04 | 9.7E-10 | | | Bi-213 | W | 5.0E-02 | 3.2E-13 | 2.3E-13 | 8.1E-12 | 1.6E-07 | 1.2E-08 | 8.1E-05 | 6.2E-10 | | | Bi-214 | W | 5.0E-02 | 2.2E-12 | 1.4E-13 | 8.0E-11 | 1.1E-06 | 7.2E-09 | 8.0E-04 | 3.8E-10 | | | C-14 | 9 | 9.5E-01 | 6.4E-15 | 9.1E-13 | 0.0E+00 | 3.2E-09 | 4.7E-08 | 0.0E+00 | 2.5E-09 | | | Ce-144 | Y | 3.0E-04 | 3.4E-10 | 6.1E-12 | 1.2E-12 | 1.7E-04 | 3.0E-07 | 1.2E-05 | 1.6E-08 | | | Cm-243 | v | 1.0E-03 | 3.1E-08 | 2.3E-10 | 8.2E-12 | 1.6E-02 | 1.2E-05 | 8.2E-05 | 6.2E-07 | | | Cm-244 | Ÿ | 1.0E-03 | 2.7E-08 | 2.0E-10 | 5.8E-14 | 1.4E-02 | 1.0E-05 | 5.9E-07 | 5.4E-07 | | | Co-60 | Y | 3.0E-01 | 1.6E-10 | 1.5E-11 | 1.3E-10 | 8.1E-05 | 7.8E-07 | 1.3E-03 | 4.1E-08 | | #### HEALTH EFFECTS ASSESSMENT SURMARY TABLE C: RADIONUCLIDE CARCINGENICITY (Expressed in picocuries (pCi)) | Nuclide | ICRP**
Lung
Class | GI G | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake
or exposure for 70 years | | | | | |----------------|-------------------------|--|--|---------|---------|---|---------|---------|---------|---------| | | | | | | | | | | | | | | | | Cr-51 | Y | 1.0E-01 | 3.0E-13 | 4.2E-14 | 1.9E-12 | 1.5E-07 | 2.1E-09 | | Cs-134 | D | 9.5E-01 | 2.8E-11 | 4.2E-11 | 8.9E-11 | 1.4E-05 | 2.1E-06 | 8.9E-04 | 1.1E-07 | | | Cs-135 | D | 9.5E-01 | 2.7E-12 | 4.0E-12 | 0.0E+00 | 1.4E-06 | 2.1E-07 | 0.0E+00 | 1.1E-08 | | | Cs-137 | D | 9.5E-01 | 1.9E-11 | 2.8E-11 | 0.0E+00 | 9.6E-06 | 1.4E-06 | 0.0E+00 | 7.6E-08 | | | Eu-152 | v | 1.0E-02 | 1.2E-08 | 2.1E-12 | 6.3E-11 | 6.1E-03 | 1.1E-07 | 6.3E-04 | 5.7E-09 | | | Eu-154 | W | 1.0E-02 | 1.4E-10 | 3.0E-12 | 6.8E-11 | 7.2E-05 | 1.5E-07 | 6.8E-04 | 8.1E-09 | | | Fe-59 | W | 1.0E-01 | 9.8E-12 | 2.8E-12 | 6.2E-11 | 4.9E-06 | 1.4E-07 | 6.3E-04 | 7.6E-09 | | | Fr-221 | D | 9.5E-01 | 9.2E-13 | 5.9E-14 | 1.9E-12 | 4.7E-07 | 3.0E-09 | 1.9E-05 | 1.6E-10 | | | H-3 | 9 | 9.5E-01 | 7.8E-14 | 5.5E-14 | 0.0E+00 | 4.0E-08 | 2.8E-09 | 0.0E+00 | 1.5E-10 | | | I-125 | D | 9.5E-01 | 1.7E-11 | 2.6E-11 | 1.7E-12 | 8.7E-06 | 1.3E-06 | 1.7E-05 | 7.0E-08 | | | 1-129 | D | 9.5E-01 | 1.2E-10 | 1.9E-10 | 1.5E-12 | 6.1E-05 | 9.6E-06 | 1.5E-05 | 5.1E-07 | | | 1-131 | D | 9.5E-01 | 2.4E-11 | 3.6E-11 | 2.9E-11 | 1.2E-05 | 1.8E-06 | 2.9E-04 | 9.7E-08 | | | I-133 | D | 9.5E-01 | 1.2E-11 | 2.1E-11 | 3.5E-11 | 6.1E-06 | 1.1E-06 | 3.5E-04 | 5.7E-08 | | | K-40 | D | 9.5E-01 | 7.6E-12 | 1.1E-11 | 7.8E-12 | 4.0E-06 | 5.7E-07 | 7.8E-05 | 3.0E-08 | | | Mn-54 | ٧ | 1.0E-01 | 5.3E-12 | 1.1E-12 | 4.7E-11 | 2.6E-06 | 5.7E-08 | 4.8E-04 | 3.0E-09 | | | Mo-99 | Υ, | 8.0E-01 | 2.6E-12 | 1.7E-12 | 9.0E-12 | 1.3E-06 | 8.7E-08 | 8.9E-05 | 4.6E-09 | | | Nuclide | ICRP**
Lung
Class | Gi ^{***}
Absorption
Factor (f _I) | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | |---------|-------------------------|---|--|---------|---------|---|---------|---------|---------|---------| | | | | | | | | | | | | | | | | Nb-94 | Y | 1.0E-02 | 2.1E-10 | 2.1E-12 | 8.9E-11 | 1.1E-04 | 1.1E-07 | | N1-59 | v | 5.0E-02 | 6.9E-13 | 8.7E-14 | 3.4E-14 | 3.5E-07 | 4.4E-09 | 3.4E-07 | 2.3E-10 | | | Ni-63 | Ÿ | 5.0E-02 | 1.7E-12 | 2.3E-13 | 0.0E+00 | 8.7E-07 、 | 1.2E-08 | 0.0E+00 | 6.2E-10 | | | #1-65 | Ÿ | 5.0E-02 | 1.9E-13 | 2.6E-13 | 2.8E-11 | 9.7E-08 | 1.3E-08 | 2.8E-04 | 7.0E-10 | | | Np-237 | v | 1.0E-03 | 3.6E-08 | 2.7E-10 | 1.8E-12 | 1.8E-02 | 1.4E-05 | 1.8E-05 | 7.3E-07 | | | Np-239 | ü | 1.0E-03 | 1.5E-12 | 9.3E-13 | 1.1E-11 | 7.7E-07 | 4.8E-08 | 1.1E-04 | 2.5E-09 | | | P-32 | D | 8.0E-01 | 3.0E-12 | 3.5E-12 | 0.0E+00 | 1.5E-06 | 1.8E-07 | 0.0E+00 | 9.5E-09 | | | Pa-231 | Y | 1.0E-03 | 4.0E-08 | 1.9E-10 | 2.0E-12 | 2.0E-02 | 9.7E-06 | 2.0E-05 | 5.1E-07 | | | Pa-233 | Ÿ | 1.0E-03 | 8.7E-12 | 1.0E-12 | 1.3E-11 | 4.4E-06 | 5.1E-08 | 1.3E-04 | 2.7E-09 | | | Pa-234 | Ÿ | 1.0E-03 | 5.4E-13 | 6.8E-13 | 1.1E-10 | 2.8E-07 | 3.5E-08 | 1.1E-03 | 1.8E-09 | | | Pa-234m | Ÿ | 1.0E-03 | 1.6E-15 | 5.8E-15 | 6.4E-13 | 8.2E-10 | 3.0E-10 | 6.4E-06 | 1.6E-11 | | | Pb-209 | D | 2.0E-01 | 7.0E-14 | 8.5E-14 | 0.0E+00 | 3.6E-08 | 4.3E-09 | 0.0E+00 | 2.3E-10 | | | Pb-210 | Ď | 2.0E-01 | 1.7E-09 | 6.5E-10 | 1.8E-13 | 8.7E-04 | 3.4E-05 | 1.8E-06 | 1.8E-06 | | | Pb-211 | Ď | 2.0E-01 | 2.9E-12 | 1.8E-13 | 2.9E-12 | 1.5E-06 | 9.2E-09 | 2.9E-05 | 4.9E-10 | | | Pb-212 | Ď | 2.0E-01 | 4.7E-11 | 7.2E-12 | 9.2E-12 | 2.4E-05 | 3.7E-07 | 9.2E-05 | 1.9E-08 | | | Pb-214 | D | 2.0E-01 | 2.9E-12 | 1.8E-13 | 1.5E-11 | 1.5E-06 | 9.2E-09 | 1.5E-04 | 4.9E-10 | | | Po-210 | u | 1.0E-01 | 2.7E-09 | 2.6E-10 | 4.8E-16 | 1.4E-06 | 1.3E-05 | 4.8E-09 | 7.0E-07 | | | Po-212 | ü | 1.0E-01 | 6.1E-22 | 2.2E-23 | 0.0E+00 | 3.1E-16 | 1.1E-18 | 0.0E+00 | 5.9E-20 | | | Po-213 | Ü | 1.0E-01 | 8.0E-21 | 3.2E-22 | 1.7E-15 | 4.1E-15 | 1.6E-17 | 1.7E-08 | 8.6E-19 | | | Po-214 | ü | 1.0E-01 | 2.8E-19 | 1.0E-20 | 4.7E-15 | 1.4E-13 | 5.1E-16 | 4.7E-08 | 2.7E-17 | | | Po-215 | ü | 1.0E-01 | 5.7E-18 | 2.8E-19 | 8.7E-15 | 2.9E-12 | 1.4E-14 | 8.7E-08 | 7.6E-16 | | | | | | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | |---------|-------------------------|---|--|----------------------------------|--|---|--|---------------------------------|--|--| | | ICRP**
Lung
Class | Gl ^{***}
Absorption
Factor (f _i) | | | | | | | | | | Nuclide | | | Inhalation
(pCi) ⁻¹ | Ingestion
(pCi) ⁻¹ | Ground
Surface
(yr/(pCi/m²)) ^{.1} | Air
(pCi/m³)-i | Drinking
Water
(pCi/L) ⁻¹ | External
Exposure
(pCi/g) | Soil
Ingestion
(pCi/g) ^{-l} | | | Pu-238 | Y | 1.0E-03 | 4.2E-08 | 2.8E-10 | 6.1E-14 | 2.1E-02 | 1.4E-05 | 5.9E-07 | 7.6E-07 | | | Pu-239 | Ÿ | 1.0E-04 | 4.1E-08 | 3.1E-11 | 2.6E-14 | 2.6E-02 | 1.6E-06 | 2.6E-07 | 8.4E-08 | | | Pu-240 | Ÿ | 1.0E-04 | 4.1E-08 | 3.1E-11 | 5.9E-14 | 2.1E-02 | 1.6E-06 | 5.9E-07 | 8.4E-08 | | | Pu-241 | Ÿ | 1.0E-03 | 2.9E-10 | 4.8E-12 | 0.0E+00 | 1.5E-04 | 2.5E-07 | 0.0E+00 | 1.3E-08 | | | Pu-242 | Ÿ | 1.0E-04 | 3.9E-08 | 3.0E-11 | 4.9E-14 | 2.1E-02 | 1.5E-06 | 4.8E-07 | 8.1E-08 | | | Ra-223 | u | 2.0E-01 | 3.1E-09 | 8.0E-11 | 8.4E-12 | 1.6E-03 | 4.1E-06 | 8.4E-05 | 2.2E-07 | | | Ra-224 | u | 2.0E-01 | 1.2E-09 | 4.8E-11 | 6.2E-13 | 6.1E-04 | 2.5E-06 | 6.2E-06 | 1.3E-07 | | | Re-225 | Ü | 2.0E-01 | 1.6E-09 | 6.6E-11 | 8.0E-13 | 8.2E-04 | 3.4E-06 | 8.0E-06 | 1.8E-07 | | | Ra-226 | Ü | 2.0E-01 | 3.0E-09 | 1.2E-10 | 4.2E-13 | 1.5E-03 | 6.1E-06 | 4.1E-06 | 3.2E-07 | | | Ra-228 | Ü | 2.0E-01 | 6.5E-10 | 1.0E-10 | 5.4E-20 | 3.4E-04 | 5.1E-06 | 5.6E-13 | 2.7E-07 | | | Rn-219 | 9 | | 4.6E-14 | •• | 3.5E-12 | 2.4E-08 | •• | 3.5E-05 | | | | Rn-220 | g | •• | 1.2E-13 | •• | 3.0E-14 | 6.1E-08 | •• | 3.0E-07 | | | | Rn-222 | 9 | •• | 7.2E-13 | | 2.2E-14 | 3.7E-07 | | 2.2E-07 | •• | | | Ru-106 | Y | 5.0E-02 | 4.4E-10 | 9.6E-12 | 0.0E+00 | 2.3E-04 | 4.9E-07 | 0.0E+00 | 2.6E-08 | | | s-35 | D | 8.0E-01 | 1.9E-13 | 2.2E-13 | 0.0E+00 | 9.6E-08 | 1.1E-08 | 0.0E+00 | 5.9E-10 | | | Sr-89 | D | 3.0E-01 | 2.9E-12 | 3.0E-12 | 7.8E-15 | 1.5E-06 | 1.5E-07 | 7.8E-08 | 8.1E-09 | | | sr-90 | D | 3.0E-01 | 5.6E-11 | 3.3E-11 | 0.0E+00 | 2.8E-05 | 1.7E-06 | 0.0E+00 | 8.9E-08 | | | Tc-99 | u | 8.0E-01 | 8.3E-12 | 1.3E-12 | 3.4E-17 | 4.2E-06 | 6.6E-08 | 3.4E-10 | 3.5E-09 | | | Tc-99m | W | 8.0E-01 | 2.7E-14 | 5.1E-14 | 8.1E-12 | 1.4E-08 | 2.6E-09 | 8.2E-05 | 1.4E-10 | | HEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIOMUCLIDE CARCINOGENICITY (Expressed in picocuries (pCi)) #### Pathway-Specific Unit Risk Slope Factor Age-averaged lifetime excess total Age-averaged lifetime excess total cancer risk per unit intake or cancer risk per unit daily intake or exposure for 70 years exposure ICRP** Drinking External Soil Ground Ingestion Absorption Inhalation Ingestion Surface Air Vater Exposure Lung (yr/(pCi/m²)).1 (pCi/m3)-1 (pCi/L)-1 Factor (f₁) (pCi)-1 (pCi/g)" (pCi/g)" **Nuclide** Class (pCi)" 1.3E-08 6.6E-12 2.5E-03 2.5E-07 6.6E-06 Th-227 Y 2.0E-04 4.9E-09 4.8E-12 1.6E-13 3.9E-02 7.7E-07 1.6E-06 4.1E-08 Th-228 2.0E-04 7.7E-08 1.5E-11 Y 1.1E-07 Th-229 Y 2.0E-04 7.7E-08 3.9E-11 5.8E-12 3.9E-02 2.0E-06 5.8E-05 5.9E-14 1.6E-02 1.2E-06 5.9E-07 6.5E-08 th-230 Y 2.0E-04 3.1E-08 2.4E-11 1.1E-09 Th-231 Y 2.0E-04 4.9E-13 4.0E-13 1.1E-12 2.5E-07 2.0E-08 1.1E-05 Th-232 Y 2.0E-04 3.1E-08 2.2E-11 4.6E-14 1.6E-02 1.1E-06 4.5E-07 5.9E-08 2.0E-07 5.6E-06 1.1E-08 Th-234 2.0E-04 3.2E-11 4.0E-12 5.6E-13 1.6E-05 Y 3.5E-11 4.5E-15 1.3E-14 1.2E-13 2.3E-09 6.6E-10 1.2E-06 TL-207 D 9.5E-01 1.8E-14 1.7E-10 2.6E-09 9.2E-10 1.7E-03 4.9E-11 T1-208 9.5E-01 5.1E-15 3.8E-11 7.2E-10 1.1E-03 TL-209 D 9.5E-01 4.3E-15 1.4E-14 1.1E-10 2.2E-09 3.8E-07 3.2E-14 1.4E-02 7.2E-06 3.2E-07 u-233 Y 2.0E-01 2.7E-08 1.4E-10 1.4E-02 7.2E-06 5.6E-07 3.8E-07 U-234 2.7E-08 1.4E-10 5.7E-14 Y 2.0E-01 3.5E-07 2.5E-08 1.3E-10 9.6E-12 1.3E-02 6.6E-06 9.7E-05 U-235 Y 2.0E-01 3.5E-07 1.2E-02 6.6E-06 4.5E-07 U-238 Y 2.0E-01 2.4E-08 1.3E-10 4.6E-14 0.0E+00 2.8E-06 1.6E-07 0.0E+00 8.6E-09 5.5E-12 3.2E-12 Y-90 Y 1.0E-04 A picocurie is a unit of activity equal to 3.7E-02 nuclear transformations per second: 1 pCi = 1.0E-12 curies (Ci) = 3.7E-02 becquerels (Bq). Lung clearance classifications recommended by the International Commission on Radiological Protection (ICRP); "D" (days), "W" (weeks), "Y" (years), "g" (gas). Gastrointestinal (GI) absorption factors, i.e, fractional uptake of a radionuclide from the gut into blood. # HEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in Becquerels (Bq)) | | | | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | |---------|-------------------------|--
--|---------------------------------|---|---|---|--|---|--| | | 1CRP**
Lung
Class | GI ***
Absorption
Factor (f _I) | | | | | | | | | | Nuclide | | | Inhalation
(Bq) ² | Ingestion
(Bq) ⁻¹ | Ground
Surface
(yr/(Bq/m²)) ⁻¹ | Air
(Bq/m³)-1 | Drinking
Water
(Bq/L) ⁻¹ | External
Exposure
(Bq/g) ^{-/} | Soil
Ingestion
(Bq/g) ⁻¹ | | | Ac-225 | ٧ | 1.0E-03 | 6.5E-08 | 4.6E-10 | 2.5E-11 | 3.3E-02 | 2.3E-05 | 2.5E-04 | 1.2E-06 | | | Ac-227 | Ÿ | 1.0E-03 | 2.2E-06 | 9.5E-09 | 3.5E-13 | 1.1E+00 | 4.9E-04 | 3.5E-06 | 2.6E-05 | | | Ac-228 | Ÿ | 1.0E-03 | 7.0E-10 | 1.4E-11 | 1.4E-09 | 3.6E-04 | 7.0E-07 | 1.4E-02 | 3.7E-08 | | | Am-241 | W | 1.0E-03 | 1.1E-06 | 8.4E-09 | 4.3E-11 | 5.6E-01 | 4.3E-04 | 4.3E-04 | 2.3E-05 | | | Am-243 | ¥ | 1.0E-03 | 1.1E-06 | 8.1E-09 | 9.7E-11 | 5.6E-01 | 4.1E-04 | 9.7E-04 | 2.2E-05 | | | At-217 | D | 9.5E-01 | 1.5E-15 | 1.2E-16 | 3.8E-13 | 7.7E-10 | 6.2E-12 | 3.8E-06 | 3.3E-13 | | | Ba-137m | D | 1.0E-01 | 1.6E-14 | 6.5E-14 | 9.2E-10 | 8.2E-09 | 3.3E-09 | 9.2E-03 | 1.8E-10 | | | B1-210 | u | 5.0E-02 | 2.2E-09 | 5.1E-11 | 0.0E+00 | 1.1E-03 | 2.6E-06 | 0.0E+00 | 1.4E-07 | | | Bi-211 | u | 5.0E-02 | 5.1E-12 | 3.2E-13 | 7.6E-11 | 2.6E-06 | 1.6E-08 | 7.6E-04 | 8.6E-10 | | | Bi-212 | Ü | 5.0E-02 | 1.9E-10 | 9.7E-12 | 2.7E-10 | 9.5E-05 | 4.9E-07 | 2.7E-03 | 2.6E-08 | | | Bi-213 | u | 5.0E-02 | 8.6E-12 | 6.2E-12 | 2.2E-10 | 4.3E-06 | 3.2E-07 | 2.2E-03 | 1.7E-08 | | | Bi-214 | W | 5.0E-02 | 5.9E-11 | 3.8E-12 | 2.2E-09 | 3.3E-05 | 1.9E-07 | 2.2E-02 | 1.0E-08 | | | C-14 | 9 | 9.5E-01 | 1.7E-13 | 2.5E-11 | 0.0E+00 | 8.7E-08 | 1.3E-06 | 0.0E+00 | 6.8E-08 | | | Ce-144 | Y | 3.0E-04 | 9.2E-09 | 1.6E-10 | 3.2E-11 | 4.7E-03 | 8.2E-06 | 3.2E-04 | 4.3E-07 | | | Cm-243 | v | 1.0E-03 | 8.4E-07 | 6.2E-09 | 2.2E-10 | 4.3E-01 | 3.2E-04 | 2.2E-03 | 1.7E-05 | | | Cm-244 | Ÿ | 1.0E-03 | 7.3E-07 | 5.4E-09 | 1.6E-12 | 3.7E-01 | 2.8E-04 | 1.6E-05 | 1.5E-05 | | | Co-60 | Y | 3.0E-01 | 4.3E-09 | 4.1E-10 | 3.5E-09 | 2.2E-03 | 2.1E-05 | 3.5E-02 | 1.1E-06 | | # HEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in Becquerels (Bq)) | Nuclide | | | | Slope Factor | | | Pathway-Specif | ic Unit Risk | | | |---------|-------------------------------------|--|--|---------------------------------|---|---|---|--|---|--| | | ICRP ^{**}
Lung
Class | GI *** Absorption Factor (f _I) | Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | | | | | Inhalation
(Bq) | Ingestion
(8q) ⁻¹ | Ground
Surface
(yr/(Bq/m²)) ⁻¹ | Air
(Bq/m³) ⁻¹ | Drinking
Water
(Bq/L) ^{-/} | External
Exposure
(Bq/g) ⁻¹ | Soil
Ingestion
(Bq/g) ⁻¹ | | | Cr-51 | Y | 1.0E-01 | 8.1E-12 | 1.1E-12 | 5.1E-11 | 4.1E-06 | 5.6E-08 | 5.1E-04 | 3.0E-09 | | | Cs-134 | Ð | 9.5E-01 | 7.6E-10 | 1.1E-09 | 2.4E-09 | 3.9E-04 | 5.6E-05 | 2.4E-02 | 3.0E-06 | | | Cs-135 | D | 9.5E-01 | 7.3E-11 | 1.1E-10 | 0.0E+00 | 3.7E-05 | 5.6E-06 | 0.0E+00 | 3.0E-07 | | | Cs-137 | D | 9.5E-01 | 5.1E-10 | 7.6E-10 | 0.0E+00 | 2.6E-04 | 3.9E-05 | 0.0E+00 | 2.1E-06 | | | Eu- 152 | W | 1.0E-02 | 3.2E-07 | 5.7E-11 | 1.7E-09 | 1.7E-01 | 2.9E-06 | 1.7E-02 | 1.5E-07 | | | Eu-154 | V | 1.0E-02 | 3.8E-09 | 8.1E-11 | 1.8E-09 | 1.9E-03 | 4.1E-06 | 1.8E-02 | 2.2E-07 | | | Fe-59 | W | 1.0E-01 | 2.6E-10 | 7.6E-11 | 1.7E-09 | 1.3E-04 | 3.9E-06 | 1.7E-02 | 2.1E-07 | | | Fr-221 | D | 9.5E-01 | 2.5E-11 | 1.6E-12 | 5.1E-11 | 1.3E-05 | 8.1E-08 | 5.1E-04 | 4.3E-09 | | | H-3 | 9 | 9.5E-01 | 2.1E-12 | 1.5E-12 | 0.0E+00 | 1.1E-06 | 7.7E-08 | 0.0E+00 | 4.1E-09 | | | 1-125 | D | 9.5E-01 | 4.6E-10 | 7.0E-10 | 4.6E-11 | 2.3E-04 | 3.6E-05 | 4.6E-04 | 1.9E-06 | | | I-129 | D | 9.5E-01 | 3.2E-09 | 5.1E-09 | 4.1E-11 | 1.6E-03 | 2.6E-04 | 4.1E-04 | 1.4E-05 | | | 1-131 | D | 9.5E-01 | 6.5E-10 | 9.7E-10 | 7.8E-10 | 3.3E-04 | 5.0E-05 | 7.8E-03 | 2.6E-06 | | | 1-133 | D | 9.5E-01 | 3.2E-10 | 5.7E-10 | 9.5E-10 | 1.7E-04 | 2.9E-05 | 9.5E-03 | 1.5E-06 | | | K-40 | D | 9.5E-01 | 2.1E-10 | 3.0E-10 | 2.1E-10 | 1.1E-04 | 1.5E-05 | 2.1E-03 | 8.1E-07 | | | Mn-54 | W | 1.0E-01 | 1.4E-10 | 3.0E-11 | 1.3E-09 | 7.2E-05 | 1.5E-06 | 1.3E-02 | 8.1E-08 | | | Mo-99 | Y | 8.0E-01 | 7.0E-11 | 4.6E-11 | 2.4E-10 | 3.6E-05 | 2.4E-06 | 2.4E-03 | 1.2E-07 | | #### (Expressed in Becquerels (Bq)) HEALTH EFFECTS ASSESSMENT SURPARY TABLE C: RADIONUCLIDE CARCINOGENICITY Pathway-Specific Unit Risk #### Slope Factor Age-averaged lifetime excess total Age-averaged lifetime excess total cancer risk per unit daily intake cancer risk per unit intake or or exposure for 70 years exposure ICRP** Drinking External Soil Ground Ingestion Air Water Exposure Surface Inhalation Ingestion Lung Absorption (yr/(Bq/m²))-1 (Ba/m³)-1 (Bq/L)-1 (Bq/g)^{./} (Bq/g)./ (Bq)⁻¹ (Bq)^{.1} **Nuclide** Class Factor (f₁) 2.9E-06 2.4E-02 1.5E-07 2.9E-03 1.0E-02 5.7E-09 5.7E-11 2.4E-09 Nb-94 Y 6.4E-09 1.2E-07 9.2E-06 2.4E-12 9.2E-13 9.5E-06 5.0E-02 1.9E-11 N1-59 W 1.7E-08 2.3E-05 3.2E-07 0.0E+00 0.0E+00 N1-63 u 5.0E-02 4.6E-11 6.2E-12 7.6E-03 1.9E-08 2.6E-06 3.6E-07 7.0E-12 7.6E-10 5.0E-02 5.1E-12 Ni-65 V 2.0E-05 3.7E-04 4.9E-04 5.0E-01 W 1.0E-03 9.7E-07 7.3E-09 4.9E-11 Np-237 1.3E-06 3.0E-03 6.8E-08 2.1E-05 3.0E-10 1.0E-03 4.1E-11 2.5E-11 Np-239 2.6E-07 4.9E-06 0.0E+00 4.1E-05 9.5E-11 0.0E+00 P-32 D 8.0E-01 8.1E-11 5.4E-04 1.4E-05 5.4E-11 5.5E-01 2.6E-04 1.1E-06 5.1E-09 Y 1.0E-03 Pa-231 7.3E-08 1.4E-06 3.5E-03 3.5E-10 1.2E-04 1.0E-03 2.4E-10 2.7E-11 Pa-233 3.0E-02 5.0E-08 7.5E-06 9.4E-07 1.8E-11 3.0E-09 1.5E-11 Pa-234 Y 1.0E-03 8.0E-09 1.7E-04 4.2E-10 1.6E-13 1.7E-11 2.2E-08 4.3E-14 Pa-234m Y 1.0E-03 6.2E-09 1.2E-07 0.0E+00 9.7E-07 0.0E+00 2.0E-01 1.9E-12 2.3E-12 Pb-209 D 4.9E-05 9.2E-04 4.9E-05 4.9E-12 2.4E-02 1.8E-08 2.0E-01 4.6E-08 Pb-210 7.8E-04 1.3E-08 2.5E-07 4.9E-12 7.8E-11 4.0E-05 7.8E-11 Pb-211 D 2.0E-01 5.3E-07 2.5E-03 6.5E-04 9.9E-06 1.9E-10 2.5E-10 2.0E-01 1.3E-09 Pb-212 D 2.5E-07 4.2E-03 1.3E-08 4.0E-05 4.9E-12 4.2E-10 2.0E-01 7.8E-11 Pb-214 1.9E-05 1.3E-07 3.7E-05 3.6E-04 7.0E-09 1.3E-14 v 1.0E-01 7.3E-11 Po-210 1.6E-18 3.0E-17 0.0E+00 5.9E-22 0.0E+00 8.4E-15 1.6E-20 1.0E-01 Po-212 2.3E-17 4.4E-16 4.6E-07 8.6E-21 4.6E-14 1.1E-13 1.0E-01 2.2E-19 Po-213 V 7.3E-16 1.3E-06 1.3E-13 3.9E-12 1.4E-14 2.7E-19 1.0E-01 7.6E-18 Po-214 2.0E-14 3.9E-13 2.4E-06 7.6E-18 2.4E-13 7.9E-11 1.0E-01 1.5E-16 Po-215 # HEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in Becquerels (Bq)) | | | | | Slope Factor | | Pathway-Specific Unit Risk | | | | | |---------|-------------------------|--|--|---------------------------------|---|---|---|--|---|--| | Nuclide | ICRP**
Lung
Class | GI escapation Factor (f _i) | Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | | | | | Inhalation
(Bq) ^{-/} | Ingestion
(Bq) ⁻¹ | Ground
Surface
(yr/(Bq/m²)) ⁻¹ | (Bq/m³)-1 | Drinking
Water
(Bq/L) ⁻¹ | External
Exposure
(Bq/g) ⁻¹ | Soil
Ingestion
(Bq/g) ⁻¹ | | | Pu-238 | Y | 1.0E-03 | 1.1E-06 | 7.6E-09 | 1.6E-12 | 5.6E-01 | 3.9E-04 | 1.6E-05 | 2.1E-05 | | | Pu-239 | Ÿ | 1.0E-04 | 1.1E-06 | 8.4E-10 | 7.0E-13 | 5.6E-01 | 4.3E-05 | 7.0E-06 | 2.3E-06 | | | Pu-240 | Ÿ | 1.0E-04 | 1.1E-06 | 8.4E-10 | 1.6E-12 | 5.6E-01 | 4.3E-05 | 1.6E-05 | 2.3E-06 | | | Pu-241 | Ÿ | 1.0E-03 | 7.8E-09 | 1.3E-10 | 0.0E+00 | 4.0E-03 | 6.6E-06 | 0.0E+00 | 3.5E-07 | | | Pu-242 | Ÿ | 1.0E-04 | 1.1E-06 | 8.1E-10 | 1.3E-12 | 5.6E-01 | 4.1E-05 | 1.3E-05 | 2.2E-06 | | | Ra-223 | v | 2.0E-01 | 8.4E-08 | 2.2E-09 | 2.3E-10 | 4.3E-02 | 1.1E-04 | 2.3E-03 | 5.8E-06 | | | Ra-224 | v | 2.0E-01 | 3.2E-08 | 1.3E-09 | 1.7E-11 | 1.7E-02 | 6.6E-05 | 1.7E-04 | 3.5E-06 | | | Ra-225 | Ü | 2.0E-01 | 4.3E-08 | 1.8E-09 | 2.2E-11 | 2.2E-02 | 9.1E-05 | 2.2E-04 | 4.8E-06 | | | Ra-226 | Ü | 2.0E-01 | 8.1E-08 | 3.2E-09 | 1.1E-11 | 4.1E-02 | 1.6E-04 | 1.1E-04 | 8.6E-06 | | | Ra-228 | Ü | 2.0E-01 | 1.8E-08 | 2.7E-09 | 1.5E-18 | 9.2E-03 | 1.4E-04 | 1.5E-11 | 7.3E-06 | | | Rn-219 | g | •• | 1.2E-12 | •• | 9.5E-11 | 6.4E-07 | | 9.5E-04 | •• | | | Rn-220 | 9 | •• | 3.2E-12 | •• | 8.1E-13 | 1.7E-06 | | 8.1E-06 | •• | | | Rn-222 | g | •• | 1.9E-11 | | 5.9E-13 | 9.9E-06 | | 6.0E-06 | •• | | | Ru-106 | Y | 5.0E-02 | 1.2E-08 | 2.6E-10 | 0.0E+00 | 6.1E-03 | 1.3E-05 | 0.0E+00 | 7.0E-07 | | | s-35 | D | 8.0E-01 | 5.1E-12 | 5.9E-12 | 0.0E+00 | 2.6E-06 | 3.0E-07 | 0.0E+00 | 1.6E-08 | | | Sr-89 | D | 3.0E-01 | 7.8E-11 | 8.1E-11 | 2.1E-13 | 4.0E-05 | 4.1E-06 | 2.1E-06 | 2.2E-07 | | | Sr-90 | D | 3.0E-01 | 1.5E-09 | 8.9E-10 | 0.0E+00 | 7.7E-04 | 4.5E-05 | 0.0E+00 | 2.4E-06 | | | Tc-99 | u | 8.0E-01 | 2.2E-10 | 3.5E-11 | 9.2E-16 | 1.1E-04 | 1.8E-06 | 9.2E-09 | 9.5E-08 | | | Tc-99m | W | 8.0E-01 | 7.3E-13 | 1.4E-12 | 2.2E-10 | 3.7E-07 | 7.2E-08 | 2.2E-03 | 3.8E-09
| | HEALTH EFFECTS ASSESSMENT SURPLARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in Becquerels (Bq)) | Nuclide | | GI *** Absorption Factor (f _I) | Slope Factor Age-averaged lifetime excess total cancer risk per unit intake or exposure | | | Pathway-Specific Unit Risk Age-averaged lifetime excess total cancer risk per unit daily intake or exposure for 70 years | | | | | |---------|-------------------------|--|--|---------------------------------|---|---|---|--|---|--| | | ICRP**
Lung
Class | | | | | | | | | | | | | | Inhalation
(Bq) ⁻¹ | Ingestion
(Bq) ⁻¹ | Ground
Surface
(yr/(Bq/m²)) ⁻¹ | Air
(Bq/m³) ^{.1} | Drinking
Water
(Bq/L) ⁻¹ | External
Exposure
(Bq/g) ^{-/} | Soil
Ingestion
(Bq/g) ⁻¹ | | | Th-227 | Y | 2.0E-04 | 1.3E-07 | 1.3E-10 | 1.8E-10 | 6.8E-02 | 6.6E-06 | 1.8E-03 | 3.5E-07 | | | Th-228 | Y | 2.0E-04 | 2.1E-06 | 4.1E-10 | 4.3E-12 | 1.1E+00 | 2.1E-05 | 4.3E-05 | 1.1E-06 | | | Th-229 | Y | 2.0E-04 | 2.1E-06 | 1.1E-09 | 1.6E-10 | 1.1E+00 | 5.4E-05 | 1.6E-03 | 2.8E-06 | | | Th-230 | Y | 2.0E-04 | 8.4E-07 | 6.5E-10 | 1.6E-12 | 4.3E-01 | 3.3E-05 | 1.6E-05 | 1.8E-06 | | | Th-231 | Y | 2.0E-04 | 1.3E-11 | 1.1E-11 | 3.0E-11 | 6.8E-06 | 5.5E-07 | 3.0E-04 | 2.9E-08 | | | Th-232 | Y | 2.0E-04 | 8.4E-07 | 5.9E-10 | 1.2E-12 | 4.3E-01 | 3.0E-05 | 1.2E-05 | 1.6E-06 | | | Th-234 | Y | 2.0E-04 | 8.6E-10 | 1.1E-10 | 1.5E-11 | 4.4E-04 | 5.5E-06 | 1.5E-04 | 2.9E-07 | | | TL-207 | D | 9.5E-01 | 1.2E-13 | 3.5E-13 | 3.2E-12 | 6.2E-08 | 1.8E-08 | 3.2E-05 | 9.5E-10 | | | Tl-208 | D | 9.5E-01 | 1.4E-13 | 4.9E-13 | 4.6E-09 | 7.0E-08 | 2.5E-08 | 4.6E-02 | 1.3E-09 | | | Tl-209 | D | 9.5E-01 | 1.2E-13 | 3.8E-13 | 3.0E-09 | 5.9E-08 | 1.9E-08 | 3.0E-02 | 1.0E-09 | | | U-233 | Y | 2.0E-01 | 7.3E-07 | 3.8E-09 | 8.6E-13 | 3.7E-01 | 1.9E-04 | 8.7E-06 | 1.0E-05 | | | U-234 | Y | 2.0E-01 | 7.3E-07 | 3.8E-09 | 1.5E-12 | 3.7E-01 | 1.9E-04 | 1.5E-05 | 1.0E-05 | | | U-235 | Y | 2.0E-01 | 6.8E-07 | 3.5E-09 | 2.6E-10 | 3.5E-01 | 1.8E-04 | 2.6E-03 | 9.5E-06 | | | U-238 | Y | 2.0E-01 | 6.5E-07 | 3.5E-09 | 1.2E-12 | 3.3E-01 | 1.8E-04 | 1.2E-05 | 9.5E-06 | | | Y-90 | Y | 1.0E-04 | 1.5E-10 | 8.6E-11 | 0.0E+00 | 7.6E-05 | 4.4E-06 | 0.0E+00 | 2.3E-07 | | A Becquerel is a unit of activity equal to one nuclear transformation per second: 1 Bq = 2.7E-11 curies (Ci) = 27.027 picocuries (pCi). Lung clearance classifications recommended by the International Commission on Radiological Protection (ICRP); "D" (days), "W" (weeks), "Y" (years), "g" (gas). Gastrointestinal (GI) absorption factors, i.e., fractional uptake of a radionuclide from the gut into blood. #### REFERENCES #### HEA SUMMARY TABLE A: NONCARCINOGENS ## Acenaphthene U.S. EPA. 1987. Health Effects Assessment for Acenaphthene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1989. Mouse oral subchronic study with acenaphthene. Study conducted by Hazelton Laboratories, Inc. for the Office of Solid Waste, Washington, DC. # **Acenaphthylene** U.S. EPA. 1987. Health Effects Assessment for Acenaphthylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # Acephate Chevron Chemical Company. 1987. Confidential Business Information; unpublished data. MRID No. 40504819. - U.S. EPA. 1984. Health and Environmental Effects Profile for Acephate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Integrated Risk Information System (IRIS). Reference Dose (RfD) for Oral Exposure for Acephate. Online. (Verification date 01/18/89.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Acetone - U.S. EPA. 1986. Ninety-day gavage study in albino rats using acetone. Office of Solid Waste, Washington, DC. (Cited in U.S. EPA, 1986b) - U.S. EPA. 1988. Updated Health Effects Assessment for Acetone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Acetone cyanohydrin Blank, T.L. and D.C. Thake. 1984. Three-Month Inhalation Toxicity of Acetone Cyanohydrin in Male and Female Sprague-Dawley Rats. Monsanto Report Nop. MSL-4423. TSCA 8(d) submission 878216397 (OTSO510325). - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. J. Agric. Food Chem. 3: 325-329. (Cited in U.S. EPA, 1985a) - U.S. EPA. 1985a. Drinking Water Criteria Document for Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft. - U.S. EPA. 1985b. Health and Environmental Effects Profile for Acetone Cyanohydrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988. Health and Environmental Effects Document for Cyanohydrins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # <u>Acetonitri</u>le - Coate, W.B. 1983. 90-Day subchronic toxicity study of acetonitrile in B6C3F1 mice. Final Report (revised). Submitted to National Toxicology Program by Hazelton Laboratories America, Inc. - U.S. EPA. 1987. Health Effects Assessment for Acetonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS): Online.(RfD) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Acetophenone - Imasheva, N.B. 1966. Threshold concentrations of acetophenone during short—and long-term inhalation. In: AICE Survey of USSR Air Pollution Literature, VIII, 1971, A compilation of technical reports of the biological effect and the public health aspects of atmospheric pollutants, M.Y. Nuttonson, Ed. p. 79-93. - Hagan, E.C., W.H. Hansen, D.G. Fitzhugh, et al. 1967. Food flavorings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol. 5(2): 141-157. - U.S. EPA. 1987. Health Effects Assessment for Acetophenone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Acrolein Costa, D.L., R.S. Kutzman, J.R. Lehmann and R.T. Drew. 1986. Altered lung function and structure in the rat after subchronic exposure to acrolein. Am. Respir. Dis. 133(2): 286-291. Kutzman, R.S. 1981. A subchronic inhalation study of Fischer 344 rats exposed to 0, 0.4, 1.4 or 4.0 ppm acrolein. Brookhaven National Laboratory, National Toxicology Program. Interagency Agreement No. 222-Y01-ES-9-0043. Kutzman, R.S., E.A. Popenoe, M. Schmaeler and R.T. Drew. 1985. Changes in rat lung structure and composition as a result of subchronic exposure to acrolein. Toxicology. 34: 139-151. U.S. EPA. 1987. Health Effects Assessment for Acrolein. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # Acrylamide Burek, J.D., R.R. Albee, J.E. Beyer, et al. 1980. Subchronic toxicity of toxicity of acrylamide administered to rats in the drinking water followed by up to 144 days of recovery. J. Environ. Pathol Toxicol. 4: 157-182. - U.S. EPA. 1985. Health and Environmental Effects Profile for Acrylamide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Acrylic acid DePass L.R., M.D. Woodside, R.H. Garman and C.S. Weil. 1983. Subchronic and reproductive toxicology studies on acrylic acid in drinking water of the rat. Drug Chem. Toxicol. 6(1): 1-20. - U.S. EPA. 1984. Health and Environmental Effects Profile for Acrylic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Adiponitrile U.S. EPA. 1987. Health Effects Assessment for Adiponitrile.
Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Alachlor Monsanto Company. 1984. Confidential Business Information; unpublished study. Accession No. 255953. - U.S. EPA. 1984. Health and Environmental Effects Profile for Alachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Aldicarb - <u>U.S. EPA.</u> 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Weil, C.S. and C.P. Carpenter. 1968. Temik sulfoxide. Results of feeding in the diet of rats for six months and dogs for three months. Mellon Institute Report No. 31-141. EPA Pesticide Petition No. 9F0798. ## Aldrin - Fitzhugh, O.G., A.A. Nelson and M.L. Quaife. 1964. Chronic oral toxicity of aldrin and dieldrin in rats and dogs. Food Cosmet. Toxicol. 2: 551-562. - U.S. EPA. 1987. Health Effects Assessment for Aldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Allidochlor U.S. EPA. 1984. Health and Environmental Effects Profile for Allidochlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Allyl alcohol Carpanini, F.M.B., I.F. Gaunt, J. Hardy, et al. 1978. Short-term toxicity of allyl alcohol in rats. Toxicology. 9: 29-45. U.S. EPA. 1985. Health and Environmental Effects Profile for Allyl Alcohol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-4 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Allyl chloride (3-Chloropropene) ACGIH (American Conference of Governmental Industrial Hygienists). 1980. Documentation of the Threshold Limit Values for Substances in the Workroom Air, 4th ed. Concinnati, OH. p. 12. U.S. EPA. 1983. Health and Environmental Effects Profile for Chloro-propenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Aluminum U.S. EPA. 1987. Health Effects Assessment for Aluminum. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. Aluminum phosphide Hackenburg, U. 1972. Chronic ingestion by rats of standard diet treated with aluminum phosphide. Toxicol. Appl. Pharmacol. 23(1): 147-158. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. Ametryn C1ba-Geigy. 1961. Confidential Business Information; unpublished study. MRID No. 00034843. - U.S. EPA. 1984. Health and Environmental Effects Profile for Ametryn. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 1-Amino-2-naphtol and 1-Amino-2-naphtol hydrochloride U.S. EPA. 1986. Health and Environmental Effects Profile for 1-Amino-2-naphtol and 1-Amino-2-naphtol hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. m-Aminophenol Re, T.A., R.F. Loehr, S.C. Rodriguez, et al. 1984. Results of teratogenicity testing of m-aminophenol in Sprague-Dawley rats. Fund. Appl. Toxicol. 4: 98-104. 0121h D-5 07/24/90 U.S. EPA. 1985. Health and Environmental Effects Profile for Aminophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. o-Aminophenol U.S. EPA. 1985. Health and Environmental Effects Profile for Aminophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. p-Aminophenol U.S. EPA. 1985. Health and Environmental Effects Profile for Aminophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 4-Aminopyridine Kohn, F.E. 1968. Four-week Subacute Oral Toxicity of Compound 1861 Hydro-chloride -- Albino Rats. (Unpublished study). Prepared by Industrial Biotest Laboratories, Inc. under 224-12. Submitted by Phillips Petroleum Co., Bartlesville, OK. CDL: 229844-E. (Cited in U.S. EPA, 1980) - U.S. EPA. 1980. 4 Aminopyridine. Avitrol Pesticide Registration Standard. OPTS, U.S. EPA, Washington, DC. NTIS PB84-209907. - U.S. EPA. 1989. Health and Environmental Effects Document for 4-Aminopyridine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Ammon i a Campbell, C.L., R.K. Dawes, S. Deolalkar and M.C. Merritt. 1958. Effect of certain chemicals in water on the flavor of brewed coffee. Food Res. 23: 575-579. (Cited in U.S. EPA, 1981) Carson, B.L., C.M. Beall, H.V. Ellis, III and L.H. Baker. 1981. Ammonia Health Effects. Prepared by Midwest Research Institute for Office of Mobile Source Air Pollution Control, Emission Control Technology Division, U.S. EPA. Ann Arbor. MI. EPA 460/3-81-027. - U.S. EPA. 1981. Ambient Water Quality Criterion for the Protection of Human Health: Ammonia. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Ammonia. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. WHO (World Health Organization). 1986. Environmental Health Criteria. 54. Ammonia. WHO, Geneva, Switzerland. #### Anthracene - U.S. EPA. 1987. Health and Environmental Effects Profile for Anthracene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Subchronic toxicity in mice with anthracene. Final Report. Hazelton Laboratories America, Inc. Prepared for the Office of Solid Waste, Washington, DC. # Antimony and Compounds ASARCO, Inc. 1980. TSCA 8(e) submission 8EHQ-0580-0342. Bio/tox data on antimony trioxide. OTS, U.S. EPA, Washington, DC. Schroeder, H.A., M. Mitchener and A.P. Nason. 1970. Zirconium, nioblium, antimony and lead in rats: Life time studies. J. Nutr. 100: 59-69. - U.S. EPA. 1985. Health and Environmental Effects Profile for Antimony Oxides. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Antimony and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, EnvironmentalCriteria and Assessment Office, Cincinnati, OH. - Watt, W.D. 1980. Chronic inhalation toxicity of antimony trioxide and validation of the TLV. Progress report -- Summary of results. TSCA 8(e) submission 8#HQ-0980-0342. Study submitted by ASARCO, Inc., New York. Microfiche No. 0TS0204846. - Watt, W.D. 1981. FYI submission TY-OTS-00081 0121 regarding pathology report on rat inhalation study on antimony trioxide. OTS, U.S. EPA, Washington, DC. (Cited in U.S. EPA, 1985) - Watt, W.D. 1983. Chronic inhalation toxicity of antimony trioxide: Validation of the threshold limit value. Diss. Abstr. Int. B 1983. 44(3): 739-740. #### Aramite Oser, B.L. and M. Oser. 1962. 2-(p-tert-butylphenoxy)isopropyl 2-chloroethyl sulfite (aramite). II. Carcinogenicity. Toxicol. Appl. Pharmacol. 4: 70-88. Popper, H., S.S. Sternberg, B.L. Oser and M. Oser. 1960. The carcinogenic effect of aramite in rats. Cancer. 13(5): 1035-1046. 0121h D-7 06/14/90 U.S. EPA. 1989. Health and Environmental Effects Document for Aramite. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Arsenic Tseng, W.P. 1977. Effects and Dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19:
109-119. U.S. EPA. 1984. Health Effects Assessment for Arsenic. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # **Atrazine** Ciba-Geigy Corporation. 1987. Confidential Business Information; unpublished study. MRID No. 40431303. - U.S. EPA. 1984. Health and Environmental Effects Profile for Atrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Bartum Perry, H.M., S.J. Kopp, M.W. Erlanger and E.F. Perry. 1983. Cardiovascular effects of chronic barium ingestion. <u>In</u>: Trace Substances in Environmental Health, XVII, D.D. Hemphill, Ed. Proc. Univ. Missouri's 17th Ann. Conf. on Trace Substances in Environmental Health. University of Missouri Press, Columbia, MO. Tarasenko, M., O. Promin and A. Silayev. 1977. Barium compounds as industrial poisons (an experimental study). J. Hyg. Epidem. Microbiol. Immunol. 21: 361. - U.S. EPA. 1984. Health Effects Assessment for Barium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-86-021. - U.S. EPA. 1985. Drinking Water Criteria Document for Barium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, 6 shington, DC. External Review Draft. Final Draft (on Public Comment). NTIS PB 86-118031/AS. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Barium cyanide Perry, H.M., E.F. Perry, M.N. Erlanger and S.J. Kopp. 1983. Cardiovascular effects of chronic barium ingestion. IN: Proc. 17th Ann. Conf. Trace Substances in Environmental Health, Vol. 17. University of Missouri Press, Columbia, MO. p. 155-164. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. Benefin Eli Lilly and Co. 1972. Confidential Business Information; unpublished study. MRID No. 00037678. U.S. EPA. 1984. Health and Environmental Effects Profile for Benefin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Benzal chloride U.S. EPA. 1985. Health and Environmental Effects Profile for Benzal Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. **Benzaldehyde** Kluwe, W.M., C.A. Montgomery, H.D. Giles and J.D. Prejeau. 1983. Encephalopathy in rats and nephropathy in rats and mice after subchronic oral exposure to benzaldehyde. Food Chem. Toxicol. 21: 245-250. U.S. EPA. 1985. Health and Environmental Effects Profile for Benzal-dehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990 Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Benzaldehyde cyanohydrin U.S. EPA. 1988. Health and Environmental Effects Document for Cyanohydrins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Benz1d1ne Littlefield, N.A., C.J. Nelson and C.H. Futh. 1983. Benzidine dihydro-chloride: Toxicological assessments in mice during chronic exposure. J. Toxicol. Environ. Health. 12: 671-68. - U.S. EPA. 1987. Health Effects Assessment for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Benzoic acid - FASEB (Federation of American Societies for Experimental Biology). 1973. Evaluation of the Health Aspects of Benzoic Acid and Sodium Benzoate as Food Ingredients. Report No. SCOGS-7 PB-223 837/6. p. 17. - U.S. EPA. 1987. Health and Environmental Effects Document for Benzoic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Benzyl Alcohol - NTP (National Toxicology Program). 1988. Toxicology and carcinogenesis studies of benzyl alcohol (CAS No. 100-51-6) in F344/N rats and B6C3Fl mice (gavage studies). NTP Technical Report, NTP TR 343. p. 1-161. - U.S. EPA. 1989. Health and Environmental Effects Document for Benzyl Alcohol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Beryllium - Schroeder, H.A. and M. Mitchner. 1975. Life-time studies in rats: Effects of aluminum, barium, beryllium and tungsten. J. Nutr. 105: 421-427. - U.S. EPA. 1987. Health Effects Assessment for Beryllium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 1.1'-Biphenyl - Ambrose, A.M., A.N. Booth, F. De Eds and A.J. Cos, Jr. 1960. A toxicological study of biphenyl, a vitrous fungistat. Food Res. 25: 328-336. - U.S. EPA. 1984. Health and Environmental Effects Profile for 1,1-B1-phenyl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-10 07/11/90 - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - Bis (2-chloro-isopropyl) ether Mitsumori, K., T. Usui, K. Takahashi and Y. Shirasu. 1979. Twenty-four month chronic toxicity studies of dichlorodiisopropyl ether in mice. Nippon NoYaku Gakkaishi. 4(3): 323-335. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati. OH. # Bis(2-ethylhexyl) phthalate Carpenter, C.P., C.S. Weil and H.F. Smyth. 1953. Chronic oral toxicity of di(2-ethylhexyl) phthalate for rats, guinea pigs and dogs. Arch. Ind. Hyg. Occ. Med. 8: 219-226. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Bisphenol A NTP (National Toxicology Program). 1982. Carcinogenesis Bioassay of Bisphenol A in F344 rats and B6C3Fl mice (feed study) NTP Tech Rep Ser. No. 80-35 NTIS PB 84-1555308 p.192. - U.S. EPA. 1984. Reproduction and ninety-day oral toxicity study in rats U.S. EPA/OPTS Public Files Fiche No. 0TS0509954. - U.S. EPA. 1988. Health and Environmental Effects Document for Bisphenol A. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Boron U.S. EPA. 1987. Health Effects Assessment for Boron. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. Weir, R.J., Jr. and R.S. fisher. 1972. Toxicologic studies on borax and boric acid. Toxicol. Appl. Pharmacol. 23(3): 351-364. 0121h D-11 07/11/90 Brominated dibenzo-p-dioxins and Dibenzofurans - U.S. EPA. 1985a. Health and Environmental Effects Profile for Brominated Dibenzofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1985b. Health and Environmental Effects Profile for Brominated Dibenzo-p-dioxins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency
Response, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Brominated Dibenzo-p-dioxins and Dibenzofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Bromoacetone U.S. EPA. 1986. Health and Environmental Effects Profile for Bromoacetone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Bromochloroethanes U.S. EPA. 1985. Health and Environmental Effects Profile for Bromochloroethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Bromodichloromethane - NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of Bromodichloromethane in F344/N Rats and B6C3Fl Mice (Gavage Studies). NTP Tech. Report, Ser. No. 321, NIH Publ. No. 87-2537. - U.S. EPA. 1985. Health and Environmental Effects Profile for Bromochloromethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Bromoform NTP (National Toxicology Program). 1988. Technical Report on the toxicology and carcinogenesis studies of trihalomethane (bromoform) (CAS No. 75-25-2) in F344 rats and B6C3F1 mice (gavage studies). Board Draft. - U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for Bromoform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Bromomethane - Danse, L.H., F.L. van Velsen and C.A. vander Heijden. 1984. Methyl bromide: Carcinogenic effects in the rat forestomach. Toxicol. Appl. Pharmacol. 72: 262-271. - Russo, J.M., W.K. Anger, J.V. Setzer and W.S. Brightwell. 1984. Neurobehavioral assessment of chronic low-level methyl bromide exposure in the rabbit. J. Toxicol. Environ. Health. 14: 247-255. - U.S. EPA. 1986. Health and Environmental Effects Profile for Methyl Bromide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Bromomethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Criteria and Assessment Office, Cincinnati, OH. # 4-Bromophenyl phenyl ether U.S. EPA. 1986. Health and Environmental Effects Profile for 4-Bromophenyl Phenyl Ether. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Bromophos Leuschner, F., A. Leuschner and E. Poppe. 1967. Chronischer Reproduktionsversuch über 3 Generationen an Wistar-Ratten bei fortdauernder Verabreichung von Bromophos. Report C.H. Boehringer Sohn. (Unpublished). (Cited in U.S. EPA, 1986). U.S. EPA. 1986. Health and Environmental Effects Profile for Bromophos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-13 07/11/90 #### Bromoxyn11 Union Carbide Agriculture Products, Inc. 1982. Confidential Business Information; unpublished study. MRID No. 00096521. - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromoxynil. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Bromoxynil octanoate Union Carbide Agriculture Products, Inc. 1982. Confidential Business Information; unpublished study. MRID No. 00096521. - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromoxynil Octanoate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Busan-77 U.S. EPA. 1984. Health and Environmental Effects Profile for Busan-77. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Busan-90 U.S. EPA. 1984. Health and Environmental Effects Profile for Busan-90. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### 1-Butanol U.S. EPA. 1986. Butanol: Rat oral subchronic toxicity study. Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for 1-Butanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Butylate Stauffer Chemical Company. 1987. Confidential Business Information; unpublished study. MIRD No. 40289101. 0121h D-14 07/11/90 - U.S. EPA. 1984. Health and Environmental Effects Profile for Butylate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Butyl benzyl phthalate - NTP (National Toxicology Program). 1985. Project No. 12307-02, -03. Hazelton Laboratories America, Inc; unpublished study. - U.S. EPA. 1986. Drinking Water Criteria Document for Phthalic Acid Esters (PAE)s. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. External Review Draft. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # t-Butylchloride U.S. EPA. 1988. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Butyrolactone, gamma U.S. EPA. 1984. Health and Environmental Effects Profile for Gamma-butyro-lactone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Cacodylic Acid Nees, P.O. 1968. Report on cacodylic acid toxicity to animals. Wisconsin Alumni Res. Found. EPA Pesticide Petition No. OFO911. U.S. EPA. 1989. Health and Environmental Effects Document for Cacodylic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Cadmium U.S. EPA. 1980. Ambient Water Quality Criteria Document for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-025. NTIS PB 81-117368. 0121h D-15 07/11/90 - U.S. EPA. 1984. Health Effects Assessment for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and
Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Calcium cyanide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Envoronmental Criteria and Assessment Office, Cincinnati. OH. # Caprolactam Powers, W.J.J, J.C. Peckham, K.M. Siino and S.C. Gad. 1984. Effects of subchronic dietary caprolactam on renal function. <u>In</u>: Proc Symp. Ind. approach Chem Risk Assessment: Caprolactam Relat. Compd. Case Study 77-96 Ind. Health Found., Pittsburgh, PA. - Serota, D.G., A.M. Hoberman and S.C. Gad. 1984. A three generation reproduction study with caprolactam in rats. In: Proc Symp Ind Approach Chem Risk Assessment: Caprolactam RElat Compl. Case study 191-204 Ind, Health Found. Pittsburgh, PA. - U.S. EPA. 1988. Health and Environmental Effects Document for Caprolactam. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Captafol Ortho-Chevron Chemical Company. 1985. Confidential Business Information; unpublished study. Accession No. 260671. - U.S. EPA. 1984. Health and Environmental Effects Profile for Captafol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Captan Chevron Chemical Company. 1982. Confidential Business Information; unpublished study. MRID No. 0012. Stauffer Chemical Company. 1982. Confidential Business Information; unpublished study. MRID No. 00120315. - U.S. EPA. 1984. Health and Environmental Effects Profile for Captan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Carbaryl Carpenter, C.P., C.W. Weil, P.E. Polin, et al. 1961. Mammalian toxicity of l-naphthayl-n-methylcarbamate (Sevin insecticide). J. Agric. Food Chem. 9: 30-39. - U.S. EPA. 1984. Health and Environmental Effects Profile for Carbaryl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Carbofuran FMC Corporation. 1983. Confidential Business Information; unpublished study. Accession No. 250740-250755. - U.S. EPA. 1984. Health and Environmental Effects Profile for Carbofuran. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Carbon disulfide Hardin, B.D., G.P. Bond, M.R. Sikor, F.D. Andrew, R.P. Beliles and R.W. Niemeir. 1981. Testing of selected work place chemicals for teratogenic potential. Scand. J. Work Environ. Health. 7(Suppl. 4): 66-75. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-17 07/11/90 #### Carbon tetrachloride - Bruckner, J.V., W.F. MacKenzie, S. Muralidhara, et al. 1986. Oral toxicity of carbon tetrachloride: Acute, subacute and subchronic studies in rats. Fund. Appl. Toxicol. 6(1): 16-34. - U.S. EPA. 1984. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS): Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. # Chloral - Sanders, V.M., B.M. Kauffmann, K.L. White, Jr. 1982. Toxicology of chloral hydrate in the mouse. Environ. Health Perspect. 44: 146-173. - U.S. EPA. 1988. Health and Environmental Effects Document for Chloral. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chlordane Versicol Chemical Corp. 1983. Acc. No. 252267 Available from EPA under FOI. - U.S. EPA. 1988. Health Effects Assessment for Chlordane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chlorine cyanide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. - Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-18 07/11/90 Chloroacetaldehyde U.S. EPA. 1988. Health and Environmental Effects Document for Chloroacetaldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Chloroacetic Acid IRDC (International Research and Development Corporation). 1982a. Sub-chronic oral toxicity test with monochloroacetic acid in rats. National Toxicology Program, Bethesda, MD. p. 1-101. U.S. EPA. 1988. Health and Environmental Effects Document for Chloroacetic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 2-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 3-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 4-Chloroaniline - NCI (National Cancer Institute). 1979. Bioassay of p-chloroaniline for possible carcinogenicity. NCI Carcinogenesis Tech Rep. Ser. No. 189. NTIS PB295896. - U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chlorobenzene - Dilley, J.V. 1977. Toxic Evaluation of Inhaled Chlorobenzene. NIOSH, DHEW, Cincinnati, OH. Contract 210-76-0126. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Chlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-040. - U.S. EPA. 1985. Health Assessment Document for Chlorinated Benzenes. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA 600/8/84/015F. NTIS PB85-150332. - U.S. EPA. 1989. Updated Health Effects Assessment for Chlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chlorobenzilate Ciba-Geigy Corporation. 1984. MRID No. 00144691. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. # p-Chlorobenzoic acid Kieckebusch, W., W. Griem and K. Lang. 1960. The tolerability
of p-chlorobenzoic acid. Arzneimi Hel-Forsch. 10: 999-10001. (In German; English translation) U.S. EPA. 1987. Health and Environmental Effects Document for p-Chlorobenzoic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergence Response, Washington, DC. ## 4-Chlorobenzotrifluoride Hooker Chemical Corp. 1981. Modified 90-day gavage and reproduction study in rats PCBTF. Conducted by Elars Bioresearch Laboratories, Inc., Fort Collins, CO. U.S. EPA/OPTS Public Files. Microfiche #OTS0508148. U.S. EPA. 1988. Health and Environmental Effects Document for 4-Chloro-benzotrifluoride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 2-Chloro-1.3-butadiene Du Pont de Nemours and Company, Inc. 1985. 2-Year Inhalation Carcinogenicity Study of Chloroprene in Rats. E.I. Du Pont De Nemours and Co., Inc., Wilmington, DE. U.S. EPA. 1989. Health and Environmental Effects Document for 2-Chloro-1,3-butadiene (Chloroprene). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 1-Chlorobutane NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis studies of n-butyl chloride in F344/N rats and B6C3Fl mice (gavage studies). CAS No. 109-69-3. NTP-TR-312. 198 p. U.S. EPA. 1988. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-20 07/11/90 2-Chlorobutane U.S. EPA. 1988. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Chlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. p-Chloro-m-cresol Madsen, C., P.H. Andersen, O. Meyer and G. Wurtzen. 1986. 4-Chloroemethyl-phenol: <u>Salmonella/mammalian-microsome</u> mutagenicity test and subacute toxicity test in rats. Bull. Environ. Contam. Toxicol. 37(5): 651-654. U.S. EPA. 1988. Health and Environmental Effects Document for p-Chloro-m-cresol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Chloroform Heywood, R., R.J. Sortwell, P.R.B. Noel, et al. 1979. Safety evaluation of toothpaste containing chloroform. III. Long-term study in beagle dogs. J. Environ. Pathol. Toxicol. p. 835-851. - U.S. EPA. 1988. Updated Health Effects Assessment for Chloroform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. m-Chloronitrobenzene U.S. EPA. 1985. Health and Environmental Effects Profile for Chloronitrobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Chlorophenol. 3- and 4- U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 2-Chlorophenol Exon, J.H. and L.D. Koller. 1982. Effects of transplacental exposure to chlorinated phenols. Environ. Health Perspect. 46: 137-140. - U.S. EPA. 1987a. Health Effects Assessment for 2-Chlorophenol and 2,4-Di-chlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 2-Chloropropane - Gage, J.C. 1970. The subacute inhalation toxicity of 109 industrial chemicals. Br. J. Ind. Med. 27(1): 1-18. - U.S. EPA. 1987. Health and Environmental Effects Document for 2-Chloropropane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Chlorotoluenes, m- and p- U.S. EPA. 1985. Health and Environmental Effects Profile for Chloro-toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # o-Chlorotoluene - Gibson, W.R., F.O. Gossett, G.R. Koenig and F. Marroquin. 1974. The toxicity of daily oral doses of o-chlorotoluene in the rat. Toxicology Division, Lilly Research Laboratories. Submitted to Test Rules Development Branch, Office of Toxic Substances. U.S. EPA. Washington. DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment office. Cincinnati. OH. #### Chlorpyrifos Dow Chemical Company. 1972. Confidential Business Information; unpublished study. Accession No. 112118. - U.S. EPA. 1984. Health and Environmental Effects Profile for Chlorpyrifos and Chlorpyrifos-methyl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Chlorpyrifos-methyl U.S. EPA. 1984. Health and Environmental Effects Profile for Chlorpyrifos and Chlorpyrifos-methyl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Chlorthalonil Diamond Shamrock Chemical Company. 1970. Confidential Business Information; unpublished study. Accession No. 111253. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. Chlorthiophos Worthing, C.R. and S.B. Walker, Ed. 1983. The Pesticide Manual, 7th ed. British Crop Protection Council, The Lavenham Press Ltd., Suffolk, England. p. 130. U.S. EPA. 1986. Health and Environmental Effects Profile for Chlorthiophos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Chromium (III) Ivankovic, S. and R. Preussman. 1975. Absence of toxic and carcinogenic effects after administrations of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet Toxicol. 13: 347-351. - U.S. EPA. 1984. Health Effects Assessment for Trivalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chromium (VI) MacKenzie, R.D., R.U. Byerrum, C.F. Decker et al. 1958. Chronic toxicity studies. II. Hexavalent and trivalent chromium administered in drinking water to rats. Am. Med Assoc. Arch. Ind. Health. 18: 232-234. - U.S. EPA. 1984. Health Effects Assessment for Hexavalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-23 07/11/90 Chrysene U.S. EPA. 1984. Health and Environmental Effects Profile for Chrysene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Copper - U.S. EPA. 1984. Health Effects Assessment for Copper. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Drinking Water Criteria Document for Copper. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. External Review
Draft. Copper cyanide - U.S. EPA. 1986. 90-Day oral toxicity study of copper cyanide. Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. m-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. - Toxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. o-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. - Toxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## p-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. - Toxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Cumene Monsanto Company. 1986. One month study of cumene vapor administered to male and female Sprague-Dawley rats by inhalation. U.S. EPA/OTS Public Files, 8D submission. Microfiche # OTS 0513229. - U.S. EPA. 1987. Health and Environmental Effects Document for Cumene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-25 07/11/90 Wolf, M.A., V.K. Rowe, D.D. McCollister, R.L. Hollingsworth and F. Oyen. 1956. Toxicological Studies of certain alkylated benzene and benzenes AMA Arch. Ind. Health. 14: 387-398. # Cyanazine Shell Chemical Company. 1986. Confidential Business Information; unpublished study. MRID No. 40081901 and 40229001. - U.S. EPA. 1984. Health and Environmental Effects Profile for Cyanazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. # Cvanide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. J. Agric. Food Chem. 3:325-329. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-011. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Cyanogen Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Cyanogen bromide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-26 07/11/90 Cvcloate U.S. EPA. 1984. Health and Environmental Effects Profile for Cycloate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Cyclohexanol U.S. EPA. 1985. Health and Environmental Effects Profile for Cyclo-hexanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Cyclohexylamine Gaunt, I.F., M. Sharratt, P.G. Grasso, A.B. Lansdown and S.D. Gangolli. 1974. Short-term toxicity of cyclohexylamine HCl in the rat. Food Cosmet. Toxicol. 12: 609-624. Gaunt, I.F., J. Hardy, P. Grasso, S.D. Gangolli and K.R. Butterworth. 1976. Long-term toxicity of cyclohexylamine hydrochloride in the rat. Food Cosmet. Toxicol. 14(4): 255-268. U.S. EPA. 1987. Health and Environmental Effects Document for Cyclohexyl-amine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. Cyclopentadiene Dow. 1987. Confidential Business Information; unpublished data. Dow Chemical U.S.A., Midland, MI. U.S. EPA. 1987. Health and Environmental Effects Document for Cyclopentadiene and Dicyclopentadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. Dacthal Diamond Shamrock Agricultural Chemicals. 1963. Confidential Business Information; unpublished study. MRID No. 00083584. U.S. EPA. 1984. Health and Environmental Effects Profile for Dacthal. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-27 07/11/90 - <u>Dalapon (sodium salt)</u> Paynter, O.E., T.W. Tusing, D.D. McCollister and V.K. Rowe. 1960. Toxicology of dalapon sodium (2,2-dichloropropoionic acid, sodium salt). J. Agric. Food Chem. 8: 47-51. - U.S. EPA. 1984. Health and Environmental Effects Profile for Dalapon. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - Integrated Risk Information System (IRIS). U.S. EPA. 1990. Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. # 2,4-DB - Rhodia Inc. 1969. Confidential Business Information; unpublished study. MRID No. 0092165. - U.S. EPA. 1984. Health and Environmental Effects Profile for 2.4-DB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. # DDT - Laug. E.P., A.A. Nelson, O.G. Fitzhugh and F.M. Kunze. 1950. Liver cell alteration and DDT storage in the fat of the rat induced by dietary levels of 1-50 ppm DDT. J. Pharmacol. Exp. Therap. 98: 268-273. - U.S.
EPA. 1984. Health Effects Assessment for DDT. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - Updated Health Effects Assessment for DDT. Prepared by U.S. EPA. 1988. the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Decabromodiphenyl ether - Kociba, R.J., L.O. Frauson, C.G. Humiston, et al. 1975. Results of a two-year dietary feeding study with decabromodiphenyl oxide (DBDPO) in rats. Combust. Toxicol. 2: 267-285. - U.S. EPA. 1983. Health and Environmental Effects Profile for Brominated Diphenyl Ether. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-28 07/11/90 U.S. EPA. 1900. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Decabromodiphenyl oxide Kociba, R.J., L.O. Frauson, C.G. Humiston, et al. 1975. Results of a two-year dietary feeding study with decabromodiphenyl oxide (DCDPO) in rats. Combust. Toxicol. 2: 267-285. Norris, J.M., J.W. Ehrmantraut, C.L. Gibbons, et al. 1973. Toxicological and environmental factors involved in the selection of decadibromophenyl oxide as a fire retardant chemical. Appl. Polym. Symp. 22: 195-219. Norris, J.M., J.W. Ehrmantraut, C.L. Gibbons, et al. 1975. Toxicology of octabromobiphenyl and decabromodiphenyl oxide. Environ. Health Perspect. 11: 153-161. U.S. EPA. 1987. Health and Environmental Effects Document for Decabromodiphenyl oxide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Diazinon Davies, D.B. and B.J. Holub. 1979. Comparative susceptibility of male and female rats to dietary diazinon toxicity. J. Nutr. 109(6): xxviii. Davies, D.B. and B.J. Holub. 1980a. Comparative subacute toxicity of dietary diazinon in the male and female rat. Toxicol. Appl. Pharmacol. 54(3): 359-367. Davies, D.B. and B.J. Holub. 1980b. Toxicological evaluation of dietary diazinon in the rat. Arch. Environ. Contam. Toxicol. 9(6): 637-650. U.S. EPA. 1984. Health and Environmental Effects Profile for Diazinon. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Dibenzofuran U.S. EPA. 1987. Health Effects Assessment for Dibenzofuran. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # 1,4-Dibromobenzene Carlson, G.P. and R.G. Tradiff. 1977. Effect of 1,4-dibromobenzene and 1,2,4-tribromobenzene on xenobiotic metabolism. Toxicol. Appl. Pharmacol. 42: 189-196. 0121h D-29 07/11/90 - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromoben-zenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Dibromochloromethane - NTP (National Toxicology Program). 1985. Toxicology and Carcinogenesis Studies of Chlorodibromomethane in F344/N Rats and B6C3Fl mice (Gavage Studies). NTP TR282. - U.S. EPA. 1985. Health and Environmental Effects Profile for Bromochloromethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for Dibromo-chloromethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. ## Di-n-butyl phthalate - Smith, C.C. 1953. Toxicity of butyl stearate, dibutyl sebacate, dibutyl phthalate and methoxyethyl oleate. Arch. Hyg. Occup. Med. 7: 310-318. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1.2-Dichlorobenzene - Hollingsworth, R.L., V.K. Rowe, F. Oyen, T.R. Torkelson and E.M. Adams. 1958. Toxicity of o-dichlorobenzene. Am. Med. Assoc. Arch. Ind. Health. 17(1): 180-187. - NTP (National Toxicology Program). 1985. Toxicology and Carcinogenesis studies of 1,2-dichlorobenzene in F344/N rats and B6C3F1 mice. U.S. DHHS, NIH Tech. Rep. Ser. No. 255. (Also publ. as NIH Publ. No. 86-2511 and PB86-144888) - U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-30 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### 1.3-Dichlorobenzene U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. #### 1.4-D1chlorobenzene Riley, R.A., I.S. Chart, A. Doss, et al. 1980. Para-dichlorobenzene: Long-Term Inhalation Study in the Rat. ICI Report Nso. CTL/P/447. August, 1980. U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. #### Dichlorobutenes U.S. EPA. 1987. Health and Environmental Effects Document for Dichlorobutenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. ## Dichlorodifluoromethane Clayton, W.J., Jr. 1967. Fluorocarbon toxicity and biological action. Fluorine Chem. Rev. 1(2): 197-252. Prendergast, J.A., R.A. Jones, L.J. Jenkins and J. Siegal. 1967. Effects on experimental animals of long-term inhalation of trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, dichlorodifluoromethane and 1,1-di-chloroethylene. Toxicol. Appl. Pharmacol. 10: 270-289. Sherman, H. 1974. Long-term feeding studies in rats and dogs with dichlorodifluoromethane (Freon 12 Food Freezant). Haskell Laboratory Report No. 24-74. Unpublished, courtesy duPont de Nemours Co. - U.S. EPA. 1982. Errata: Halomethanes Ambient Water Quality Criteria Document for the Protection of Human Health. Environmental Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-DO23. - U.S. EPA. 1987. Health Effects Assessment for Fully Halogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-31 07/11/90 #### 1.1-Dichloroethane - Hofmann, H.T., H. Birnstiel and P. Jobst. 1971. The inhalation toxicity of 1,1- and 1,2-dichloroethane. Arch. Toxikol. 27: 248-265. (Cited in U.S. EPA. 1983b) - U.S. EPA. 1983. Drinking Water Criteria Document for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft. - U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ## 1,1-Dichloroethylene - Quast, J.F., C.G. Humiston, C.E. Wade, et al. 1983. A chronic toxicity and oncogenicity study in rats and subchronic toxicity study in dogs on ingested vinylidene chloride. Fund. Appl. Toxicol. 3: 55-62. - U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Updated Health Effects Assessment for 1,1-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office
of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1,2-c-Dichloroethylene - McCauley, P.T., M. Robinson, L.W. Condie and M. Parvell. n.d. The effects of subacute and subchronic oral exposure to cis-1,2-dichloroethylene in rats. Health Effects Research Laboratory, U.S. EPA, Cincinnati, OH. - U.S. EPA. 1984. Health Effects Assessment for 1,2-c-Dichloroethylene. Prepared by the Office of Health and Environment Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### 1.2-t-Dichloroethylene Barnes, D.W., W.M. Sanders, K.L. Shite, Jr., et al. 1985. Toxicology of trans-1,2-dichloroethylene in the mouse. Drug Chem. Toxicol. 8: 373-392. 0121h D-32 07/11/90 - U.S. EPA. 1984. Health Effects Assessment for 1,2-t-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### 2.4-Dichlorophenol - Exon, J.H. and L.D. Koller. 1985. Toxicity of 2-chlorophenol, 2,4-di-chlorophenol and 2,4,6-trichlorophenol. Water Chlorination. Chem. Environ. Impact Health Eff. Proc. Conf. 5: 307-330. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 2,4-dichlorophenol. Online. (Verification date 01/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987a. Health Effects Assessment for 2-Chlorophenol and 2,4-Di-chlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. # Dichlorophenol, 2,3-, 2-5, 2,6-, 3-4-, 3,5- U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 2,4-Dichlorophenoxy acetic acid (2,4-D) Dow Chemical Co. 1983. Acc. No. 251473. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Dichloroprop U.S. EPA. 1984. Health and Environmental Effects Profile for Dichloroprop. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste. Washington, DC. **Dichloropropanes** U.S. EPA. 1985. Health and Environmental Effects Profile for Dichloropropanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 1.3-Dichloropropene Dow Chemical Co. 1973. MRID Nos. 0067977, 0039684. U.S. EPA, Washington, DC. - Stott, W.T., J.T. Young, L.L. Calhoun and J.E. Battjes. 1988. Subchronic toxicity of inhaled technical grade 1,3-dichloropropene in rats and mice. Fund. Appl. Toxicol. 11: 207-220. - U.S. EPA. 1985. Health and Environmental Effects Profile for 1,3-Dichloro-propene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for 1.3-Dichloropropene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Dicyclopentadiene Dodd, D.E., L.C. Longo and D.L. Eisler. 1982. Dicyclopentadiene vapor ninety-day inhalation study on rats and mice. Bushy Run Research Center, Export, PA. PSCA 8e submission by Exxon Chem. Amer. Doc. I.D. 88-8300464, Odd Doc. I.D. 8EHQ-0283-0364. Microfiche No. 0TS204864. - Litton Bionetics, Inc. 1980. Mammalian Toxicological Evaluation of DIMP and DCPD. (Phase 2). Litton Bionetics, Inc., Kensington, MD. Contract DAMB. 17-77-C-7003. NTIS AD-A082685. - U.S. EPA. 1987. Health and Environmental Effects Document for Cyclopentadiene and Dicyclopentadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Dieldrin Walker, A.I.T., D.E. Stevenson, J. Robinson, et al. 1969. The toxicology and pharmacodynamics of dieldrin (HEOD): Two-year oral exposures of rats and dogs. Toxicol. Appl. Pharmacol. 15: 345-373. U.S. EPA. 1987. Health Effects Assessment for Dieldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-34 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. N.N-Diethylaniline U.S. EPA. 1987. Health and Environmental Effects Profile for N,N-Diethyl-aniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Diethylene glycol monoethyl ether Hall, D.E., F.S. Lee, P. Austin and F.A. Fairweather. 1966. Short-term feeding study with diethylene glycol monoethyl ether in rats. Food Cosmet. Toxicol. 4: 263. Smyth, H.F., C.P. Carpenter and C.B. Shaffer. 1964. A 2-year study of diethylene glycol monoethyl ether in rats. Food Cosmet. Toxicol. 2: 641-642. U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. Diethylformamide Argus, M.F., J.C. Arcos and C. Hoch-Ligeti. 1965. The carcinogenic activity of protein-denaturing agents hepatocarcinogenicity of dioxane. J. Natl. Cancer Inst. 35: 949-958. U.S. EPA. 1986. Health and Environmental Effects Profile for Diethylform-amide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 1.2-Diethylhydrazine U.S. EPA. 1984. Health and Environmental Effects Profile for 1,2-Diethyl-hydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Diethyl-p-nitrophenylphosphate (Paraoxon) U.S. EPA. 1989. Health and Environmental Effects Document for Diethyl-p-nitrophenylphosphate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Diethyl phthalate Brown, D., K.R. Butterworth, I.F. Gaunt et al. 1978. Short-term oral toxicity study of diethyl phthalate in the rat. Food Cosmet. Toxicol. 16: 415-422. U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-35 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Dimethoate American Cyanimid Company. 1986. MRID No. 00164177. U.S. EPA, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for Dimethoate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N.N-Dimethylaniline Abdo, K., M. Wolfe and R. Hiles. 1984. Subchronic toxicity of N,N-di-methylaniline to F-344 rats and B6C3Fl mice. Fed. Proc. 43(3): 1698. - U.S. EPA. 1986. Health and Environmental Effects Profile for N.N-Dimethyl-aniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health
and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N,N-Dimethylformamide Becci, P.J., K.A. Voss, W.D. Johnson, M.A. Gallo and J.G. Babish. 1983. Subchronic feeding study of N,N-dimethylformamide in rats and mice. J. Am. Coll. Toxicol. 2(6): 371-378. U.S. EPA. 1986. Health and Environmental Effects Profile for N,N-Dimethyl-formamide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Dimethylphenols (2,3-; 2,5-) U.S. EPA. 1986. Health and Environmental Effects Profile for Dimethyl-phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2,4-Dimethylphenol American Biogenics Corporation. 1989. Ninety-day gavage study in albinomice using 2,4-dimethylphenol. Study 410-2831. U.S. EPA. 1986. Health and Environmental Effects Profile for Dimethyl-phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 2.6-Dimethylphenol Veldre, I.A. and H.J. Janes. 1979. Toxicological studies of shale oils, some of their components and commercial products. Environ. Health Perspect. 30: 141-146. - U.S. EPA. 1987. Health Effects Assessment for Dimethylphenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## 3,4-Dimethylphenol Veldre, I.A. and H.J. Janes. 1979. Toxicological studies of shale oils, some of their components and commercial products. Environ. Health Perspect. 30: 141-146. - U.S. EPA. 1987. Health Effects Assessment for Dimethylphenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## Dimethyl phthalate Lehman, A.J. 1955. Insect repellants. Assoc. Food Drug Office, U.S. Quart Bull. 19: 87. U.S. EPA. 1987. Health and Environmental Effects Profile for Phthalic Acid Alkyl, Aryl and Alkyl/Aryl Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Dimethyl terephthalate NCI (National Cancer Institute). 1979. Bloassay of dimethyl terephthalate for possible carcinogenicity. DHEW/PUB/NIH 79-1376, NCI-CG-TR121. - U.S. EPA. 1984. Health and Environmental Effects Profile for Dimethyl and Methyl Terephthalate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. 0121h D-37 07/11/90 #### N,N-Dimethylurea U.S. EPA. 1984. Health and Environmental Effects Profile for N,N-Dimethylurea. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### m-Dinitrobenzene - Cody, T.E., S. Witherup, L. Hastings, K. Stemmer and R.T. Christian. 1981. 1.3-Dinitrobenzene: Toxic effect in vivo and in vitro. J. Toxicol. Environ. Health. 7(5): 829-847. - U.S. EPA. 1985. Health and Environmental Effects Profile for Dinitrobenzenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Dinitrobenzene (o-, p-) - Cody, T.E., S. Witherup, L. Hastings, K. Stemmer and R.T. Christian. 1981. 1,3-Dinitrobenzene: Toxic effect in vivo and in vitro. J. Toxicol. Environ. Health. 7(5): 829-847. - U.S. EPA. 1985. Health and Environmental Effects Profile for Dinitrobenzenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2.6-Dinitro-p-cresol U.S. EPA. 1984. Health and Environmental Effects Profile for 2,6-Dinitro-p-cresol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### 4.6-Dinitro-o-cresol U.S. EPA. 1986. Health and Environmental Effects Profile for Dinitrocresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2,4-Dinitrophenol - Horner, W.D. 1942. Dinitrophenol and its relation to formation of cataracts. Arch. Ophthalmol. 27: 1097-1121. - U.S. EPA. 1984. Health and Environmental Effects Profile for Dinitrophenols (Selected). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Dinitrophenols U.S. EPA. 1984. Health and Environmental Effects Profile for Dinitrophenols (Selected). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Dinitrotoluenes U.S. EPA. 1986. Health and Environmental Effects Profile for Dinitro-toluene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. Di-n-octyl phthalate Piekacz, H. 1971. Effect of dioctyl and dibutyl phthalates on the organism of rats after oral administration in prolonged experiment. II. Subacute and chronic toxicity. Rocz. Panstw. Zakl. Hig. 22(3): 295-307. (CA 75:96911v) U.S. EPA. 1987. Health and Environmental Effects Profile for Phthalic Acid Alkyl, Aryl and Alkyl/Aryl Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Dinoseb Dow Chemical Company. 1981. Confidential Business Information; unpublished study. NRID No. 00152675. - U.S. EPA. 1984. Health and Environmental Effects Profile for Dinoseb. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. N,N-Diphenylamine Thomas, J.O., W.E. Ribelin, J.R. Woodward and F. DeEds. 1967. The chronic toxicity of diphenylamine for dogs. Toxicol. Appl. Pharmacol. 11: 184-194. - U.S. EPA. 1985. Health and Environmental Effects Profile for N,N-Diphenyl-amine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Direct lightfast blue U.S. EPA. 1987. Health and Environmental Effects Profile for Direct Light-fast Blue. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-39 07/11/90 #### Disulfoton Mobay Chemical Company. 1985. MRID No. 00129456, 00146873, 41115401. Available from EPA. Write to FOI, EPA, Washington, DC 20460. - U.S. EPA. 1990a. Health and Environmental Effects Document for Disulfoton. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990b. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Endosulfan Huntington Research Center. 1984. Effect of Endosulfan-Technical on Reproductive Function of Multiple Generations in the Rat. Report submitted by J.A. Edwards et al. to OPP. U.S. EPA. - U.S. EPA. 1987. Health Effects Assessment for Alpha- and Beta-Endo-sulfan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990.
Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Endothall Keller, J. 1965. Two-year chronic feeding study of disodium endothall to beagle dogs. Scientific Associates Report. EPA Pesticide Petition 6G0503, redesignated No. 7F0570, June 1966. Accession No. 24601. Pennwalt Agchem. n.d. MRID No. 00101735. Available from U.S. EPA. Write to FOI, EPA, Washington, DC 20460. - U.S. EPA. 1989. Health and Environmental Effects Document for Endothall. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Endrin Treon, J.F., F.P. Cleveland and J. Cappel. 1955. Toxicity of endrin for laboratory animals. Agric. Food Chem. 3: 842-848. U.S. EPA. 1985. Drinking Water Criteria Document for Endrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. EPA 600/X-84-176. NTIS PB 86-117967. - U.S. EPA. 1987. Health Effects Assessment for Endrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Epichlorohydrin** - Laskin, S., A.R. Sellakumar, M. Kuschner, et al. 1980. Inhalation carcinogenicity of epichlorohydrin in non-inbred Sprague-Dawley rats. J. Natl. Cancer Inst. 65(4): 751-757. - Quast, J.F., J.W. Henck, B.J. Postma, et al. 1979. Epichlorohydrin subchronic studies. I. A 90-day Inhalation study in Laboratory Rodents. 8D submission. Microfiche #206200. - U.S. EPA. 1984. Health Assessment Document for Epichlorohydrin. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-83-032F. NTIS PB85-132363. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Ethoprop U.S. EPA. 1984. Health and Environmental Effects Profile for Ethoprop. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## 2-Ethoxyethanol - Barbee, S.J., J.B. Terrill, D.J. DeSousa and C.C. Conaway. 1984. Subchronic inhalation toxicology of ethylene glycol monoethyl ether in the rat and rabbit. Environ. Health Perspect. 57: 157-163. - Doe, J.E. 1984. Ethylene glycol monoethyl ether and ethylene glycol monoethyl ether acetate teratology studies. Environ. Health Perspect. 57: 33-41. - Melnick, R.L. 1984. Toxicities of ethylene glycol and ethylene glycol monoethyl ether in Fischer 344/N rats and B6C3F1 mice. Environ Health Perspect. 57: 147-155. - Stenger, E.G., A. Lislott, D. Mueller et al. 1971. Toxicology of ethylene glycol monoethylether. Arzneim.-Forsch. 21(6): 880-885. (In German with English translation) - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-41 07/11/90 U.S. EPA. 1985. Health and Environmental Effects Profile for 2-Ethoxy-ethanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. ## 2-Ethoxyethanol acetate Union Carbide. 1984. A teratogenic evaluation of Cellosolve Acetate in Fisher 344 rats and New Zealand White rabbits following inhalation exposure. Bushy Run Research Center, Export, PA, October 1984. FYI-AX-1184-0360. U.S. EPA. 1985. Health and Environmental Effects Profile for 2-Ethoxyethanol Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2-Ethoxyethanol esters U.S. EPA. 1985. Health and Environmental Effects Profile for 2-Ethoxyethanol Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Ethyl acetate U.S. EPA. 1986a. Rat oral subchronic study with ethyl acetate. Office of Solid Waste, Washington, DC. - U.S. EPA. 1986b. Health and Environmental Effects Profile for Ethylacetate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N-Ethylaniline U.S. EPA. 1986. Health and Environmental Effects Profile for N-Ethylaniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ethylbenzene - U.S. EPA. 1984. Health Effects Assessment for Ethylbenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Ethylbenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Wolf, M.A., V.K. Rowe, D.D. McCollister et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. Arch. Ind. Health. 14: 387-398. (Cited in U.S. EPA, 1985) ## Ethyl chloride U.S. EPA. 1987. Health Effects Assessment for Ethyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ## S-Ethyl dipropylthiocarbamate (EPTC) PPG Industries, Inc. 1986. Confidential Business Information; unpublished study. Accession No. 263695, 262696. (Cited in U.S. EPA, 1987) - U.S. EPA. 1984. Health and Environmental Effects Profile for EPTC. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Ethylene cyanohydrin Sauerhoff, M.W., W.H. Braun, J.C. Ramsey, C.B. Humiston and G.C. Jersey. 1976. Toxicological evaluation and pharmacokinetic profile of β-hydroxy-propionitrile in rats. J. Toxicol. Environ. Health. 2(1): 31-44. U.S. EPA. 1988. Health and Environmental Effects Document for Cyanohydrins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ethylenediamine Pozzani, U.C. and C.P. Carpenter. 1954. Response of rats to repeated inhalation of ethylenediamine vapors. Arch. Ind. Hyg. Occ. Med. 9: 223-226. U.S. EPA. 1988. Health and Environmental Effects Document for Ethylene-diamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Yang, R.S., R.H. Garman, R.R. Maronpot, et al. 1983. Acute and subchronic toxicity of ethylenediamine in laboratory animals. Fund. Appl. Toxicol. 3(6): 512-520. #### Ethylene glycol DePass, L.R., R.H. Garman, M.D. Woodside et al. 1986a. Chronic toxicity and oncogenicity studies of ethylene glycol in rats and mice. Fund. Appl. Toxicol. 7: 547-565. Maronpot, R.R., J.P. Zelenak, E.V. Weaver and N.J. Smith. 1983. Teratogenicity study of ethylene glycol in rats. Drug. Chem. Toxicol. 6(6): 579-594. 0121h D-43 07/11/90 - U.S. EPA. 1987. Health Effects Assessment for Ethylene Glycol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Ethylene glycol monobutyl ether Dodd, D.E., W.M. Snellings, R.R. Maronpot and B. Balantyne. 1983. Ethylene glycol monobutyl ether: Acute, 9-day and 90-day vapor inhalation studies in Fischer 344 rats. Toxicol. Appl. Pharmacol. 68: 405-414. U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. ## Ethylene thiourea U.S. EPA. 1984. Health and Environmental Effects Profile for Ethylene
Thiourea. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Ethyl ether American Biogenics Corp. 1986. 90-Day gavage study in rats using ehtylether. Status Report for ABC Study No. 410-2343. 3/18/86. U.S. EPA. 1987. Health Effects Assessment for Ethyl Ether. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ethyl methacrylate Borzelleca, J.F., P.S. Larson, G.R. Hennigar, et al. 1964. Studies on the chronic oral toxicity of monomeric ethyl acrylate and methyl methacrylate. Toxicol. Appl. Pharmacol. 6: 29-36. U.S. EPA. 1986. Health and Environmental Effects Profile for Ethyl Methacrylate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ethyl Toluene U.S. EPA. 1984. Health and Environmental Effects Profile for Methyl Ethyl Benzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### 4-Ethyl-o-xylene U.S. EPA. 1984. Health and Environmental Effects Profile for Methyl Ethyl Benzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Fluoranthene U.S. EPA. 1988. 13-week mouse oral subchronic toxicity study. Prepared by Toxicity Research Laboratories, LTD. Muskegon, MI for the Office of Solid Waste, Washington, DC. Fluorene U.S. EPA. 1989. Mouse oral subchronic study. Prepared by Toxicity Research Laboratories, LTD, Muskegon, MI for the Office of Solid Waste, Washington, DC. Fluoride Hodge, H.C. and F.A. Smith. 1965. <u>In:</u> Fluorine Chemistry, Vol. IV, J.H. Simons, Ed. Academic Press, New York, NY. 789 p. - U.S. EPA. 1989. Health and Environmental Effects Document for Fluoride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Fluridone Eli Lilly and Company. 1980. Confidential Business Information; unpublished study. Accession Nos. 070933, 070939. - U.S. EPA. 1984. Health and Environmental Effects Profile for Fluridone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Folpet Chevron Chemical Corporation. 1986. Confidential Business Information; unpublished study. Accession No. 263772. - U.S. EPA. 1984. Health and Environmental Effects Profile for Folpet. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Formaldehyde cyanohydrin U.S. EPA. 1988. Health and Environmental Effects Document for Cyano-hydrins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-45 07/11/90 #### Formic acid - Malorny, G. 1969. Acute and chronic toxicity of formic acid and formate. Z. Ernachrungswiss. 9: 332-339. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Furan - SRI (Southern Research Institute). 1982. Subchronic toxicity report on furan (C56202) in B6C3F1 mice. Prepared for National Toxicology Program under Contract No. 1-CP-95641-01, Bethesda, MD. - U.S. EPA. 1987. Health and Environmental Effects Document for Furan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Furfura1 - Feron, V.J., A. Kruysse and H.C. Dreef Vander Meulen. 1979. Repeated exposure to furfural vapor: 13 week study in Syrian golden hamsters. Zentrase. Bakteviol Pavasiten Kd Infection SKV. Hyg. Abt 1 orig Reihe B. 168(5-6): 442-451. - SRI (Southern Research Institute). 1981. 90 day rat report. Unpublished study performed for NTP. - U.S. EPA. 1988. Health and Environmental Effects Document for Furfural. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Glycidaldehyde - Hine, C.H., R.J. Guzman, M.K. Dunlap, R. Lima and G.S. Loquvam. 1961. Studies on the toxicity of glycidaldehyde. Arch. Environ. Health. 2: 23-30. - U.S. EPA. 1989. Health and Environmental Effects Document for Glycid-aldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-46 07/24/90 n-Heptane U.S. EPA. 1989. Health and Environmental Effects Document for n-Heptane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. **Heptachlor** Velsicol Chemical Corp. 1955. MRID No. 00062599. Available under FOI. - U.S. EPA. 1987. Health Effects Assessment for Heptachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Hexabromobenzene Mendoza, C.E., H.M. Vijay, J.B. Shields and G.W. Laver. 1977. Effects of hexabromobenzene on the male rat. Toxicol. Appl. Pharmacol. 41: 127-130. - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromoben-zenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Hexachlor obenzene Arnold, D.L., C.A. Moodie, S.M. Charbonneau et al. 1985. Long-term toxicity of hexachlorobenzene in the rat and the effect of dietary vitamin A. Food Chem. Toxicol. (In press). (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. **Hexachlorobutadiene** Kociba, R.J., D.G. Keys, G.C. Jersey, et al. 1977. Results of a 2-year chronic toxicity study with hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38: 589-602. U.S. EPA. 1984. Health Effects Assessment for Hexachlorobutadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-47 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Hexachlorocyclohexane, gamma (Lindane) Zoecon Corporation. 1983. MRID No. 00128356. Available under FOI. - U.S. EPA. 1984. Health Effects Assessment for Lindane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## <u>Hexachlorocyclopentadiene</u> Abdo, K.M., C.A. Montgomery, W.M. Kluwe et al. 1984. Toxicity of hexachlorocyclopentadiene: Subchronic (13-week) administration by gavage to F344 rats and B6C3Fl mice. J. Appl. Toxicol. 4: 75-81. Battelle Northwest Laboratories. 1984. Inhalation Carcinogenesis Bioassay Study: Subchronic Study Report on Hexachlorocyclopentadiene in Rats. Submitted to the National Toxicology Program. - SRI (Southern Research Institute). 1981a.
Subchronic Toxicity Report on Hexachlorocyclopentadiene (C53607) in B6C3Fl Mice. Report for the NTP. Project No. 4419-XXXVIX. Doc. #40-8349230. Microfiche #0TS0507497. - U.S. EPA. 1984. Health Effects Assessment for Hexachlorocyclopentadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Hexachloroethane** Gorzinski, S.J., R.J. Nolan, S.B. McCollister, et al. 1985. Subchronic oral toxicity, tissue distribution and clearance of hexachloroethane in the rat. Drug Chem. Toxicol. 8(3): 155-169. - U.S. EPA. 1987. Health Effects Assessment for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h D-48 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## Hexachlor ophene Nationwide Chemical Corporation. 1974. Confidential Business Information; unpublished study. MRID No. 00055365. - U.S. EPA. 1986. Health and Environmental Effects Profile for Hexachlorophene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## Hexamethylenediamine U.S. EPA. 1985. Health and Environmental Effects Profile for Hexamethylenediamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### n-Hexane Krasavage, W.J., J.L. O'Donoghue, G.D. Divincenzo and Terhaar. 1980. Relative neurotoxicity of methyl-n-butyl ketone, n-hexane and their metabolites. Toxicol. Appl. Pharmacol. 52(3): 433-441. - Sanagi, S., Y. Seki, K. Sugimoto and M. Hirata. 1980. Peripheral nervous system functions of workers exposed to n-hexane at a low level. Int. Arch. Occup. Environ. Health. 47: 69-79. - U.S. EPA. 1989. Health and Environmental Effects Document for n-Hexane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### 2-Hexanone U.S. EPA. 1990. Health and Environmental Effects Document for 2-Hexanone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Hydrogen sulfide U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Watterau, H., W. Ockert and U.G. Knape. 1964-1965. <u>In</u>: Toxicity of hydrogen sulfide in animal feeding. Survey of the literature. (Westermann et al., 1975. Landwirtsch. Forsch. 28: 70-80.) 0121h D-49 07/11/90 p-Hydroquinone Carlson, A.J. and N.R. Brewer. Toxicity studies on Hydroguinone. Proc. Soc. Exp. Biol. Med. 84: 684-688. U.S. EPA. 1987. Health and Environmental Effects Document for Hydroquinone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Iron U.S. EPA. 1984. Health Effects Assessment for Iron. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. Isobutyl alcohol - U.S. EPA. 1986a. Rat oral subchronic toxicity with isobutyl alcohol. Office of Solid Waste, Washington, DC. - U.S. EPA. 1986b. Health and Environmental Effects Profile for Isobutanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Isophorone Rohm and Haas. 1972. Pesticide Petition No. 2F1224. Available under FOI. - NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of Isophorone (CAS No. 78-59-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP Tech. Report Ser. No. 291, NIH Publ. No. 86-2547. - U.S. EPA. 1987. Health Effects Assessment for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Isopropalin - Eli Lilly Company. 1985. Confidential Business Information; unpublished study. - U.S. EPA. 1984. Health and Environmental Effects Profile for Isopropalin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-50 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Lead - U.S. EPA. 1984. Health Effects Assessment for Lead. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Air Quality Criteria for Lead. June, 1986 and Addendum, September, 1986. Office of Health and Environmental Assessment, Research Triangle Park, NC. EPA 600/8-83-028F. NTIS PB 87-142378. ## Lead alkyls Scheper, G.W.H. 1964. Tetraethyl lead and tetramethyl lead. Arch. Environ. Health. 8: 277-295. U.S. EPA. 1985. Health and Environmental Effects Profile for Lead Alkyls. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Linuron Du Pont de Nemours and Company, Inc. 1962. Confidential Business Information; unpublished study. MRID No. 00018374. - U.S. EPA. 1984. Health and Environmental Effects Profile for Linuron. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Malathion Moeller, H.C. and J.A. Rider. 1962. Plasma and red blood cell-cholinesterase activity as indications of the threshold of incipient toxicity of ethyl-p-nitrophenol thionebenzenephosphorate (EPN) and malathion in human beings. Toxicol. Appl. Pharmacol. 4: 123-130. - U.S. EPA. 1984. Health and Environmental Effects Profile for Malathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Maleic anhydride Jessup, D.C., D. Aldridge, J.L. Schardein and M. Blair. 1982. Three-generation reproduction study in rats (modified to a 2-generation study). Maleic anhydride IR-79-358. International Research and Development Corp. for Monsanto Co., St. Louis, Mo. Unpublished 8D submission. Microfiche No. OTS 0206655. Document ID 878214777. Preache, M. 1983. Chronic Dietary Administration of Maleic Anhydride. Vol. 1: Narrative. FYI-OTS Submission 1283-0277. Prepared by ITT Research Institute for Chemical Industry Institute of Technology, Research Triangle Park, NC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Maleic Anhydride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. Maleic hydrazide - U.S. EPA. 1989. Health and Environmental Effects Document for Maleic Hydrazide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Van der
Heijden, C.A., E.M. Den Tonkelaar, J.M. Garbis-Berkvens and G.J. Van Esch. 1981. Maleic hydrazide, carcinogenicity study in rats. Toxicology. 19(2): 139-150. ## Malononitrile Panov, I., M. Zlateva and G. Antov. 1972. Toxicological characteristics of dicyanomethane. Chronic effects in white rats. Khig. Zdraveopazvane. 15(6): 553-562. U.S. EPA. 1986. Health and Environmental Effects Profile for Malanonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. ## Mancozeb U.S. EPA. 1984. Health and Environmental Effects Profile for Mancozeb. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Maneb Maneb Data Task Force. 1986. MRID No. 00161552. (Cited in U.S. EPA, 1987) Rohm and Haas Co. 1977. MRID No. 00129980. (Cited in U.S. EPA, 1987) 0121h D-52 07/11/90 - U.S. EPA. 1984. Health and Environmental Effects Profile for Maneb. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. Manganese - Lai, J.C.K., T.K.C. Leung and L. Lim. 1982. Activities of the mitochondrial NAD-linked isocitric dehydrogenase in different regions of the rat brain. Changes in aging and the effect of chronic manganese chloride administration. Gerontology. 28(2): 81-85. - Laskey, J.W., G.L. Rehnberg, J.F. Hein and S.D. Carter. 1982. Effects of chronic manganese (Mn_3O_4) exposure on selected reproductive parameters in rats. J. Toxicol. Environ. Health. 9: 677-687. - Leung, T.K.C., J.C.K. Lai and L. Lim. 1981. The regional distribution of monoamine oxidase activities towards different substrates: Effects in rat brain of chronic administration of manganese chloride and of aging. J. Neurochem. 36(6): 2037-2043. - Saric, M., S. Markicevic and O. Hrustic. 1977. Occupational exposure to manganese. Br. J. Ind. Med. 34: 114-118. - U.S. EPA. 1984a. Health Effects Assessment for Manganese. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO57. - U.S. EPA. 1984b. Health Assessment Document for Manganese. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA 600/8/83-013F. NTIS PB84-229954. Mephosfolan U.S. EPA. 1984. Health and Environmental Effects Profile for Mephosfolan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Mercury, inorganic Andres, P. 1984. IgA-IgG disease in the intestine of Brown Norway rats ingesting mercuric chloride. Clin. Immunol. Immunopathol. 20: 488-494. Bernaudin, J.F., E. Druet, P. Druet and R. Masse. 1981. Inhalation or ingestion of organic or inorganic mercurials produces auto-immune disease in rats. Clin. Immunol. Immunopathol. 20: 129-135. Druet, P., E. Druet, F. Potdevin and C. Sapin. 1978. Immune type glomerulonephritis induced by HgCl₂ in the Brown Norway rat. Ann. Immunol. 129C: 777-792. 0121h D-53 07/11/90 - Fawer, R.F., V. DeRibaupierre, M.P. Guillemin, M. Berode and M. Lobe. 1983. Measurement of hand tremor induced by industrial exposure to metallic mercury. J. Ind. Med. 40: 204-208. - Piikivi, L. 1989. Cardiovascular reflexes and low long-term exposure to mercury vapor. Int. Arch. Occup. Environ. Health. 61: 391-395. - Piikivi, L. and H. Hanninen. 1989. Subjective symptoms and psychlogical performance of chlorine-alkali workers. Scand. J. Work Environ. Health. 15: 69-74. - Piikivi, L. and V. Tolonen. 1989. EEG findings in chlor-alkali workers subjected to low long-term exposure to mercury vapor. Br. J. Ind. Med. 46: 370-375. - U.S. EPA. 1984. Health Effects Assessment for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Peer Review Workshop on Mercury Issues. October 26-27, 1987, SUmmary Report. Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Merphos - Abou-Donia, M.B., D.G. Graham, P.R. Timmons and B.L. Reichert. 1980. Late acute, delayed neurotoxic and cholinergic effects of S,S,S-tributylphos-phorotrithioite (merphos) in hens. Toxicol. Appl. Pharmacol. 53: 439-457. - U.S. EPA. 1984. Health and Environmental Effects Profile for Merphos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Merphos oxide - Abou-Donia, M.B., D.G. Graham, K.M. Abdo and A.A. Komeil. 1979. Delayed neurotoxic, late acute and cholinergic effects of S,S,S-tributylphosphorotrithioate (DEF): Subchronic (90 days) administration in hens. Toxicology. 14: 229-243. - U.S. EPA. 1984. Health and Environmental Effects Profile for Merphos Oxide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-54 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## **Methacrylonitrile** Pozzani, U.C., C.R. Kinkead and J.M. King. 1968. The mammalian toxicity of methacrylonitrile. Am. Ind. Hyg. Assoc. J. 29(3): 202-210. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Methanol** - U.S. EPA. 1986. Rat oral subchronic toxicity study with methanol. Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Methomy1 - Kaplan, A.M. and H. Sherman. 1977. Toxicity studies with methyl N-[[(methylamino) carbonyl] oxyl] ethanimidothioate. Toxicol. Appl. Pharmacol. 40(1): 1-17. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Oral Exposure for Methomyl. Online. (Verification date 04/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Methoxychlor U.S. EPA. 1984. Health and Environmental Effects Profile for Methoxy-chlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### 2-Methoxyethanol - Miller, R.R., L.L. Calhoun and B.L. Yano. 1982. Ethylene glycol monomethyl ether: 13-week vapor inhalation study in male rabbits. Report prepared for the CMA March 25, 1982. - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-55 07/11/90 U.S. EPA. 1986. Health and Environmental Effects Profile for 2-Methoxyethanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2-Methoxyethanol acetate Miller, R.R., L.L. Calhoun and B.L. Yano. 1982. Ethylene glycol monomethyl ether: 13-week vapor inhalation study in male rabbits. Report prepared for the Chemical Manufacturers Association, March 25, 1982. U.S. EPA. 1987. Health and Environmental Effects Profile for 2-Methoxyethanol Acetate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Methyl acetate Toxicity Research Laboratory. 1986. Rat oral subchronic toxicity study with methanol. Sponsored by Office of Solid Waste, U.S. EPA, Washington, DC. U.S. EPA. 1986. Health and Environmental Effects Profile for Methyl Acetate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Methyl acrylate Klimisch, H.J. and W. Reininghaus. 1984. Carcinogenicity of acrylates: Long-term inhalation studies on methyl acrylate (MA) and n-butyl acrylate (BA) in rats. Toxicologist. 4(1): 53. (Taken from Abstract No. 211) U.S. EPA. 1987. Health and Environmental Effects Profile for Methyl Acrylate. Prepared by the Office of Health and Environmental Assessment,
Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Methyl chloride U.S. EPA. 1986. Health and Environmental Effects Profile for Methyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### **Methylchlorocarbonate** U.S. EPA. 1989. Health and Environmental Effects Document for Methyl-chlorocarbonate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2-Methyl-4-chlorophenoxy acetic acid (MCPA) Industry Task Force on MCPA Research Data. 1986. Confidential Business Information; unpublished study. MRID No. 00164352. U.S. EPA. 1984. Health and Environmental Effects Profile for MCPA and MCPB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-56 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB) Rhodia, Inc. 1970a. Confidential Business Information; unpublished study. MRID No. 00116345. Rhodia, Inc. 1970b. Confidential Business Information; unpublished study. MRID No. 00116344. - U.S. EPA. 1984. Health and Environmental Effects Profile for MCPA and MCPB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 2-(2-Methyl-4-chlorophenoxy) propionic acid (MCPP) BASF Aktiegerellschaft. 1985. Confidential Business Information; unpublished study. MRID No. 00158359. - U.S. EPA. 1984. Health and Environmental Effects Profile for MCPP. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Methylcyclohexane U.S. EPA. 1984. Health and Environmental Effects Profile for Methylcyclo-hexane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Methylene bromide Keyes, D.G., J.W. Henck, G.C. Jersey, R.J. Kociba, D.J. Schwetz and T.D. Landry. 1982. Methylene bromide: A 90-day repeated inhalation toxicity study in rats and dogs with a subsequent two-year holding period for rats. Toxicology Research Lab, Health and Environmental Sciences, Dow Chemical Co., Midland, MI. U.S. EPA. 1987. Health and Environmental Effects Profile for Methylene Bromide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. #### Methylene chloride National Coffee Association. 1982. 24-Month Chronic Toxicity and Oncogenicity Study of Methylene Chloride in Rats. Final Report. Prepared by Hazleton Laboratories America, Inc., Vienna, VA. (Unpublished). - Nitschke, K.D., J.D. Bured, T.J. Bell, et al. 1988. Methylene chloride: A 2-year inhalation toxicity and oncogenicity study in rats. Fund. Appl. Toxicol. (In press) - U.S. EPA. 1989. Updated Health Effects Assessment for Methylene Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. 4.4'-Methylenediphenyl isocyanate U.S. EPA. 1985. Health and Environmental Effects Profile for 4.4'Methylenephenyl Isocyanate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Methyl mercury Clarkson, T.W., L. Amin-Zaki and S.K. Al-Tikriti. 1976. Federation Proceedings. 35(12): 2395-2399. - Nordberg, G.F. and P. Strangert. 1976. Estimations of a dose-response curve for long-term exposure to methylmercuric compounds in human beings taking into account variability of critical organ concentration and biological half-time: A preliminary communication. <u>In</u>: Effects and Dose-Response Relationships of Toxic Metals. G.F. Nordberg, Ed. Elsevier, Amsterdam. p. 273-282. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-058. NTIS PB 81-117699. - U.S. EPA. 1984. Health Effects Assessment for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - WHO (World Health Organization). 1976. Environmental health criteria for mercury. <u>In</u>: Environmental Health Criteria 1. WHO, Geneva. Methyl ethyl ketone LaBelle, C.W. and H. Brieger. 1955. Vapour toxicity of a composite solvent and its principal components. Arch. Ind. Health. 12: 623-627. 0121h D-58 07/11/90 - U.S. EPA. 1984. Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for methyl ethyl ketone. Online. (Verification date 07/08/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. - U.S. EPA. 1989. Updated Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Methyl isobutyl ketone Microbiological Associates. 1986. Subchronic toxicity of methyl isobutyl ketone in Sprague-Dawley rats. Preliminary report for Research Triangle Institute, RTP, NC. Study No. 5221.04. January. Union Carbide Corp. 1983. Ninety-day inhalation study in rats and mice sponsored by CMA. U.S. EPA/OTS public files 0750507469. - U.S. EPA. 1987. Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Updated Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Methyl isocyanate U.S. EPA. 1986. Health and Environmental Effects Profile for Methyl Isocyanate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Methyl methacrylate Borzelleca, J.F., P.S. Larson, G.R. Hennigar, et al. 1964. Studies on the chronic oral toxicity of monomeric ethyl acrylate and methyl methacrylate. Toxicol. Appl. Pharmacol. 6: 29-36. 0121h D-59 07/11/90 U.S. EPA. 1985. Health and Environmental Effects Profile for Methyl Methacrylate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Methyl parathion Monsanto Co. 1983. Accession No. 252501-252503, 253346, 253372-253374. U.S. EPA, Washington, DC. - U.S. EPA. 1984. Health and Environmental Effects Profile for Methyl Parathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Methyl styrene MRI (Midwest Research Institute). 1984a. Study of the inhalation carcinogenicity (bioassay) of vinyl toluene in B6C3Fl mice. Final chronic report performed for the NTP under Contract No. NO1-ES-38042. U.S. EPA. 1987. Health and Environmental Effects Document for Methyl Styrenes. Prepared by the Office of Health and Environmental Assessment, Environmental
Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. Methylstyrene, alpha U.S. EPA. 1987. Health and Environmental Effects Profile for alpha-Methylstyrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Wolf, M.A., V.K. Rowe, D.D. McCollister, et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. Arch. Ind. Health. 14: 387-398. ## Mirex Shannon, V.C. 1976. The effects of mirex on the reproductive performance and behavioral development in the prairie vole (<u>Microtus ochrogaster</u>). Ph.D. Dissertation, Iowa State University, Ames, IA. - U.S. EPA. 1987. Health Effects Assessment for Mirex. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Molinate Stauffer Chemical Company. 1981. MRID No. 00079209. U.S. EPA, Washington, DC. 0121h D-60 07/11/90 - U.S. EPA. 1984. Health and Environmental Effects Profile for Molinate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Monochlorobutane - NTP (National Toxicology Program). 1986. Toxicology and carcinogenesis studies of n-butyl chloride in F344/N rats and B6C3Fl mice (gavage studies). (CAS No. 109-69-3). NTP TR-312. - U.S. EPA. 1989. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Naphthalene - Schmahl, D. 1955. Testing of naphthalene and anthracene as carcinogenic agents in the rat. Z. Krebsforsch. 60: 697-710. (German with English translation) - U.S. EPA. 1986. Health and Environmental Effects Profile for Naphthalene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988. Health Effects Assessment for Naphthalene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response. Washington. DC. # 1.4-Naphthoquinone U.S. EPA. 1986. Health and Environmental Effects Profile for 1,4-Naphthoquinone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. #### Nickel Ambrose, A.M., D.S. Larson, J.R. Borzelleca and G.R. Hennigar, Jr. 1976. Long-term toxicologic assessment of nickel in rats and dogs. J. Good Sci. Technol. 13: 181-187. - U.S. EPA. 1984. Health Effects Assessment for Nickel. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-61 07/11/90 #### Nicotinonitrile U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Nitric oxide U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Walton, G. 1951. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am. J. Public Health. 41: 986-996. ## N1tr1te U.S. EPA. 1989. Health and Environmental Effects Document for Nitrite. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Walton, G. 1951. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am. J. Pub. Health. 41: 986-996. #### **Nitroanilines** U.S. EPA. 1985. Health and Environmental Effects Profile for Nitroanilines (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Nitrobenzene CIIT (Chemical Industry Institute of Toxicology). 1984. Ninety-day inhalation study of nitrobenzene in F-344 rats, CD rats and B6C3Fl mice with cover letter dated 6/24/84 and EPA response dated 8/06/84. Unpublished study. FYI-OTS-0784-0333 and computer print-out of pathology finding. - U.S. EPA. 1987. Health Effects Assessment for Nitrobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## <u>Nitrofurantoin</u> SRI (Southern Research Institute). 1980. Subchronic Toxicity Report on Nitrofurantoin (C55196) in Fischer-344 rats and B6C3F1 mice Tracor Jit CO, Inc. Rockville, MD contract Nos NO1-CP-43350 and 78-65-106002 U.S. EPA. 0121h D-62 07/11/90 U.S. EPA. 1987. Health and Environmental Effects Document for Nitrofurans Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Nitrogen dioxide Kubota, K., M. Murakami, S. Takenaka, K. Kawai and H. Kyono. 1987. Effects of long-term nitrogen dioxide exposure on rat lung morphological observations. Environ. Health Perspect. 73(0): 157-169. Sagai, M. and T. Ichinose. 1987. Lipid-peroxidation and antioxidative protection mechanism in rat lungs upon acute and chronic exposure to nitrogen-dioxide. Environ. Health Perspect. 73: 179-189. Sagai, M., T. Ichinose and K. Kubota. 1984. Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative protective system in rat lungs upon life span exposure to low levels of NO_2 . Toxicol. Appl. Pharmacol. 73(3): 444-456. U.S. EPA. 1990a. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. U.S. EPA. 1990b. Health and Environmental Effects Document for Nitrogen Dioxide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Walton, G. 1951. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am. J. Public Health. 41: 986-996. #### Nitrogen oxides U.S. EPA. 1982. Air Quality Criteria for Oxides of Nitrogen. Office of Health and Environmental Assessment, Research Triangle Park, NC. EPA 600/8-82-026F. NTIS PB83-163337. ## Nitromethane U.S. EPA. 1985. Health and Environmental Effects Profile for Nitromethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### N1tropheno1s U.S. EPA. 1987. Health Effects Assessment for Nitrophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ## p-Nitrosodiphenylamine U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### **Nitrotoluenes** - Ciss, M., N. Huyen, H. Dutertre, N. Phu-Lich and R. Truhaut. 1980. Toxico-logical study of nitrotoluenes: Long-term toxicity. Dakar Medical. 25: 293-302. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitrotoluenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Octabromodiphenyl ether Carlson, G.P. 1980. Induction of xenobiotic metaolism in rats by brominated diphenyl ethers administered for 90 days. Toxicol. Lett. 6:207-212. - U.S. EPA. 1983. Health and Environmental Effects Profile for Brominated Diphenyl Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria
and Assessment Office, Cincinnati, OH. ## Octamethylpyrophosphoramide Rider, J.A., H.C. Moeller, E.J. Puletti and J.I. Swader. 1969. Toxicity of parathion, systox, octamethylpyrophosphoramide and methyl parathion in man. Toxicol. Appl. Pharmacol. 14(3): 603-611. U.S. EPA. 1989. Health and Environmental Effects Document for Octamethyl-pyrophosphoramide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ozone and other photochemical oxidants U.S. EPA. 1986. Air Quality Criteria for Ozone and Other Photochemical Oxidants. Office of Health and Environmental Assessment, Research Triangle Park. NC. EPA 600/8-84-020F. NTIS PB87-142949. ## Paraldehyde U.S. EPA. 1986. Health and Environmental Effects Profile for Paraldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Parathion U.S. EPA. 1987. Health Effects Assessment for Parathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # Particulate matter and sulfur oxides U.S. EPA. 1986. Air Quality Criteria for Particulate Matter and Sulfur Oxides. Office of Health and Environmental Assessment, Research Triangle Park, NC. EPA 600/8-82-029F. NTIS PB84-156777. #### Pebulate U.S. EPA. 1984. Health and Environmental Effects Profile for Pebulate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### <u>Pendimethalin</u> American Cyanamid Company. 1979. Confidential Business Information; unpublished study. MRID No. 0058657. - U.S. EPA. 1984. Health and Environmental Effects Profile for Pendimethalin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Pentabromodiphenyl ether Carlson, G.P. 1980. Induction of xenobiotic metaolism in rats by brominated diphenyl ethers administered for 90 days. Toxicol. Lett. 6:207-212. - U.S. EPA. 1983. Health and Environmental Effects Profile for Brominated Diphenyl Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # **Pentachlorobenzene** Linder, R., T. Scotti, J. Goldstein and K. McElroy. 1980. Acute and subchronic toxicity of pentachlorobenzene. J. Environ. Pathol. Toxicol. 4(5-6): 183-196. - U.S. EPA. 1989. Health and Environmental Effects Document for Pentachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## <u>Pentachlorocyclopentadiene</u> U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## <u>Pentachloronitrobenzene</u> Olin Corporation. 1968. MRID NO. 000114201. U.S. EPA. Washington. DC. 0121h D-65 07/11/90 - U.S. EPA. 1986. Health and Environmental Effects Profile for Pentachloronitrobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Pentachlorophenol - Schwetz, B.A., J.F. Quast, P.A. Keeler et al. 1978. Results of two-year toxicity and reproduction studies on pentachlorophenol in rats. <u>In</u>: Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, K.R. Rao, Ed. Plenum Press, New York. p. 301. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Pentachlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Pentachlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 1,1,2,3,3-Pentachloropropene U.S. EPA. 1983. Health and Environmental Effects Profile for Chloropropenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### n-Pentane U.S. EPA. 1987. Health Effects Assessment for n-Pentane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. #### Phenanthrene - U.S. EPA. 1984. Health Effects Assessment for Phenanthrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Profile for Phenanthrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Pheno 1 Research Triangle Institute. 1983. Teratologic Evaluation of Phenol in CD Rats. Report prepared for NIEHS/NTP, Research Triangle Park, NC. - U.S. EPA. 1984. Health Effects Assessment for Phenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. <u>Phenylenediamines (o-, p-)</u> U.S. EPA. 1985. Health and Environmental Effects Profile for Phenylenediamines (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH for the Office of Solid Waste and Emergency Response, Washington, DC. # m-Phenylenediamine Hofer, H. and R. Hruby. 1982. Ninety-day toxicity study with m-phenylenediamine on rats. Oestrr. Forschungszent. Seibersdorf (Ber.) OEFZS Ber. No. 4155. p. 50. - U.S. EPA. 1985. Health and Environmental Effects Profile for Phenylenediamines (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Phenylmercuric acetate Fitzhugh, O.G., A.A. Nelson, E.P. Laug and I.M. Kunze. 1950. Chronic oral toxicities of mercuric phenyl and mercuric salts. Arch. Ind. Hyg. Occup. Med. 2: 433-442. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. #### 2-Phenylphenol U.S. EPA. 1984. Health and Environmental Effects Profile for 2-Phenyl-Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Phosgene U.S. EPA. 1984. Health and Environmental Effects Profile for Phosgene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Phosphine Hackenberg, J. 1972. Chronic ingestion by rats of standard diet treated with aluminum phosphide. Toxicol. Appl. Pharmacol. 23: 147-158. - Klimmer, O.R. 1969. Contribution to the study of action of phosphine (PH3). On the question of so-called chronic phosphine poisoning. Arch. Toxicol. 24: 164-187. - U.S. EPA. 1989. Health and Environmental Effects Document for Phosphine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Phthalic acid esters, selected U.S. EPA. 1987. Health Effects Assessment for Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response. Washington, DC. #### Phthalic acids U.S. EPA. 1986. Health and Environmental Effects Profile for Phthalic
Acids. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. p-Phthalic acid - CIIT (Chemical Industry Institute of Technology). 1982. A Ninety-Day Study of Terephthalic Acid-Induced Urolithiasis and Reproductive Performance in Wistar and CD rats. CIIT, Research Triangle Park, NC. - Gross, J. 1974. The Effects of Prolonged Feeding of Terephthalic Acid (TPA) to Rats. Project FG-IS-175. Agricultural Research Service, U.S. Department of Agriculture, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Phthalic Acids (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Phthalic anhydride - NCI (National Cancer Institute). 1979. Bioassay of phthalic anhydride for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 159. NTIS P8293594. - U.S. EPA. 1986. Health and Environmental Effects Profile for Phthalic Anhydride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Polybrominated biphenyls NTP (National Toxicology Program). 1983. Carcinogenesis studies of polybrominated biphenyl mixture in F344/N rats and B6C3Fl mice (gavage studies). Firemaster FF-1. Case No. 67774-32-7. NTP, Research Triangle Park, NC. U.S. EPA. 1989. Health and Environmental Effects Document for Polybrominated Biphenyls. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Potassium cyanide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Potassium silver cyanide Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## **Profluralin** U.S. EPA. 1984. Health and Environmental Effects Profile for Profluralin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Pronamide Rohm & Haas, Co. 1970. Acc. Nos. 000967, 004417. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Propachlor Monsanto Company. 1964. Confidential Business Information; unpublished study. MRID NO. 00094370. - U.S. EPA. 1984. Health and Environmental Effects Profile for Propachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Propazine Geigy Company. 1980. Confidential Business Information; unpublished study. Accession No. 243353. - U.S. EPA. 1984. Health and Environmental Effects Profile for Propazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. **Propionitrile** U.S. EPA. 1985. Health and Environmental Effects Profile for Propionitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. n-Propyl alcohol U.S. EPA. 1987. Health and Environmental Effects Document for n-Propyl Alcohol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Propylene glycol Gaunt, I.F., R.M.B. Carpanini, P. Grasso and A.B.G. Lansdown. 1972. Longterm toxicity of propylene glycol in rats. Food Cosmet. Toxicol. 10: 151-162. Guerrant, N.B., G.P. Whitlock, M.L. Wolff and R.A. Dutcher. 1947. Response of rats to diets containing varying amounts of glycerol and propylene glycol. Bull. Natl. Formulary Comm. 15: 204-229. (Cited in Informatics, Inc., 1973) Robertson, O.H., C.G. Loosli, T.T. Puck, H. Wise, H.M. Lemon and W. Lester. 1947. Tests for chronic toxicity of propylene glycol and oral administration. J. Pharmacol. Exp. Ther. 91: 52-75. U.S. EPA. 1987. Health and Environmental Effects Document for Propylene Glycol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Propylene glycol monoethyl ether Smyth, H.F., Jr. and C.P. Carpenter. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J. Ind. Hyg. Toxicol. 30: 63-68. U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. 0121h D-70 07/11/90 - Propylene glycol monomethyl ether - Landry, T.D., T.S. Gushow and B.L. Yano. 1983. Propylene glycol monomethyl ether: A 13-week inhalation toxicity in rats and rabbits. Fund. Appl. Toxicol. 3: 627-630. - Miller, R.R., E.A. Herman, J.T. Young et al. 1984. Ethylene glycol monomethyl ether and propylene glycol monomethyl ether: Metabolism, disposition, and subchronic inhalation toxicity studies. Environ. Health Perspect. 57: 233-239. - Rowe, V.K., D.D. McCollister, H.C. Spencer et al. 1954. Toxicology of mono-, di-, and tri-propylene glycol methyl ethers. Arch. Ind. Hyg. Occup. Med. 9: 509-525. - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. ### Pyrene - U.S. EPA. 1984. Health Effects Assessment for Pyrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Mouse oral subchronic toxicity study of pyrene. Study conducted by Toxicity Research Laboratories, Muskegon, MI for the Office of Solid Waste, Washington, DC. ## **Pyridine** - U.S. EPA. 1986a. Health and Environmental Effects Profile for Pyridine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1986b. Pyridine. 90-Day subchronic oral toxicity in rats. Sponsored by Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### RDX - Levine, B.S., E.M. Furedi, V.S. Rae, D.E. Gordon and D.M. Lish. 1984. Determination of the chronic mammalian toxicological effects of RDX: Twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the Fischer 344 rat. NTIS AD-A160774. Vol. 1. 347 p. - U.S. EPA. 1989. Health and Environmental Effects Document for RDX (Cyclonite). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h · D-71 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Ronne 1 McCollister, D.D., F. Oyen and V.K. Rowe. 1959. Toxicological studies of 0,0-dimethyl-o-(2,4,5-trichlorophenyl)phosphothicate (ronnel) in laboratory animals. J. Agric. Food Chem. 7: 689. U.S. EPA. 1984. Health and Environmental Effects Profile for Ronnel. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # <u>Selenourea</u> U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Yang, G., S. Wang, R. Zhou and S. Sun. 1983. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 37:
872-881. ## Selenous acid U.S. EPA. 1989. Health and Environmental Effects Document for Selenium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Yang, G., W. Shuzhen, R. Ahou and S. Sun. 1983. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 37: 872-888. #### Silver Blumberg, H. and T.N. Carey. 1934. Argyremia: Detection of unsuspected and obscure arguria by the spectrographic demonstration of high blood silver. J. Am. Med. Assoc. 103: 1521-1524. East, B.W., K. Boddy, E.D. Williams, D. MacIntyre and A.L.C. McLay. 1980. Silver retention, total body silver and tissue silver concentrations in argyria associated with exposure to an anti-smoking remedy containing silver acetate. Clin. Exp. Dermatol. 5: 305-311. Gaul, L.E. and A.N. Staud. 1935. Clinical spectroscopy. Seventy cases of generalized argyria following organic and colloidal silver medication. J. Am. Med. Assoc. 104: 1387-1390. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Silver cvanide - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. - Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Simazine Ciba-Geigy Corporation. 1988. MRID No. 40614405. - U.S. EPA. 1984. Health and Environmental Effects Profile for Simazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Sodium cyanide - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. - U.S. EPA. 1984. Health Effects Assessment for Sodium Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Sodium diethyldithiocarbamate - Sunderman, F.W., O.E. Paynter and R.B. George. 1967. The effects of the protracted administration of the chelating agent, sodium diethyldithiocarbamate (dithiocarb). Am. J. Med. Sci. 254: 46-56. - U.S. EPA. 1988. Health and Environmental Effects Document for Sodium Diethyldithiocarbamate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Sodium metavanadate Domingo, J.L., J.L. Llobet, J.M. Tomas and J. Corbella. 1985. Short-term toxicity studies of vanadium in rats. J. Appl. Toxicol. 5(6): 418-421. 0121h D-73 07/11/90 U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. # Strychnine Seidl, I. and G. Zbinden. 1982. Subchronic oral toxicity of strychnine in rats. Arch. Toxicol. 51(3): 267-271. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Stvrene - Quast, J.F., C.G. Humiston, R.T. Kalnins, et al. 1979. Results of a Toxicity Study of Monomeric Administered to Beagle Dogs by Oral Intubation for 19 Months. Toxicology Research Laboratory, Health and Environmental Sciences, Dow Chemical Co., Midland, MI. Final Report. - U.S. EPA. 1984. Health and Environmental Effects Profile for Styrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Health Effects Assessment for Styrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H115. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Succinonitrile U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. #### Sulfuric acid Carson, B.L., B.L. Herndon, H.V. Ellis III, et al. 1981. Sulfuric Acid Health Effects. Prepared under Contract 68-03-2928 by Midwest Research Institute, Kansas City, MO. Prepared for Emission Control Technology Division, Office of Mobile Source Air Pollution Control. U.S. EPA, Ann Arbor MI. EPA 460/3-81-025. NTIS PB82-113135. U.S. EPA. 1984. Health Effects Assessment for Sulfuric Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ## Temephos Gaines, T.B., R.D. Kimbrough and E.R. Law, Jr. 1967. Toxicology of abate in laboratory animals. Arch. Environ. Health. 14: 283-288. 0121h D-74 07/11/90 U.S. EPA. 1984. Health and Environmental Effects Profile for Temephos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Terbufos U.S. EPA. 1984. Health and Environmental Effects Profile for Terbufos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Terephthalic acid U.S. EPA. 1984. Health and Environmental Effects Profile for Terephthalic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # 1,2,4,5,-Tetrachlorobenzene Chu, I., D.C. Villeneuve, V.E. Valli and V.E. Secours. 1984. Toxicity of 1,2,3,4-, 1,2,3,5- and 1,2,4,5-tetrachlorobenzene in the rat: Results of a 90-day feeding study. Drug Chem. Toxicol. 7: 113-127. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Tetrachloroazoxybenzene (TCAOB) U.S. EPA. 1985. Health and Environmental Effects Profile for TCAB, TCAOB and TCHB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Tetrachlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Tetrachloroethylene (perchloroethylene) Buben, J.A. and E.J. O'flaherty. 1985. Delineation of the role of metabolism in the hepatoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol. Appl. Pharmacol. 78: 105-122. - U.S. EPA. 1988. Updated Health Effects Assessment for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-75 07/11/90 Tetrachlorohydrazobenzene (TCHB) U.S. EPA. 1985. Health and Environmental Effects Profile for TCAB, TCAOB and TCHB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 2,3,4,6-Tetrachlorophenol - U.S. EPA. 1986. 2,3,4,6-Tetrachlorophenol. 90-day Subchronic Oral Toxicity Study in Rats Office of Solid Waste, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Tetrachlorophenol 2,3,4,5-, 2,3,5,6- U.S. EPA. 1987.
Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 1,1,2,3-Tetrachloropropene U.S. EPA. 1983. Health and Environmental Effects Profile for Chloro-propenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Tetrachlorovinphos (Stirofos) Shell Chemical Company. 1968. Confidential Business Information; unpublished study. Accession No. 115684. - U.S. EPA. 1984. Health and Environmental Effects Profile for Stirofos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Tetraethyl dithiopyrophosphate Kimmerle, G. and O.R. Klimmer. 1974. Acute and subchronic toxicity of Sulfotep. Arch. Toxicol. 33(1): 1-16. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Tetraethyl lead Schepers, G.W. 1964. Tetraethyl and tetramethyl lead. Arch. Environ. Health. 8: 277-295. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. Thallium and Compounds: Thallium (in salts), Thallium(I) oxide [Thallic oxide], Thallium(I) acetate, Thallium(I) carbonate, Thallium(I) chloride, Thallium (I) nitrate, Thallium selenite (Tl₂Se), Thallium(I) sulfate MRI (Midwest Research Institute). 1986. Subchronic (90-day) toxicity study of thallium sulfate in Sprague-Dawley rats. Office of Solid Waste, U.S. EPA, Washington, DC. (Cited in U.S. EPA, 1987a) - U.S. EPA. 1986. Subchronic (90-day) toxicity of thallium(I) sulfate (CAS No. 7446-18-6) in Sprague-Dawley rats. Final Report. Prepared for the Office of Solid Waste, U.S. EPA, Washington, DC. Project No. 8702-1 (18). - U.S. EPA. 1988. Health and Environmental Effects Document for Thallium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 2-(Thiocyanomethylthio)benzothiazole (TCMTB) U.S. EPA. 1984. Health and Environmental Effects Profile for TCMTB. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## **Thiofanox** U.S. EPA. 1989. Health and Environmental Effects Document for Thiofanox. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Thiram Hornshaw, T.C., R.J. Aulerich and R.K. Ringer. 1987. Toxicity of thiram (tetramethylthinoram disulfide) to mink and European ferrets. Bull. Environ. Contam. Toxicol. 38(4): 618-626. - U.S. EPA. 1989. Health and Environmental Effects Document for Thiram. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-77 07/11/90 - Tin and compounds - NTP (National Toxicology Program). 1982. Carcinogenesis bloassay of stannous chloride (CAS No. 7772-99-8) in F344/N rats and B6C3F1/N mice (feed study). NCI/NTP Tech. Rep. Ser. No. 231. Also publ. as DHHS (NIH) publ Iss NIH 82-1787 and NTIS PB 82-242-553. - U.S. EPA. 1987. Health Effects Assessment for Tin. Prepared by the Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - Andersen, I., G.R. Lundqvist, L. Molhave, O.F. Pedersen, D.F. Proctor, M. Veath, and P P. Wyon. 1983. Human response to controlled levels of toluene in six-hour exposure. Scand. J. Work Environ. Health 9: 405-418. - CIIT (Chemical Industry Institute of Toxicology). 1980. A twenty-four month inhalation toxicology study in Fischer-344 rats exposed to atmospheric toluene. Executive Summary and Data Tables. October 15, 1980. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Toluene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Drinking Water Criteria Document for Toluene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft (on Public Comment). EPA 600/X-84-188-2. - 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wolf, M.A., V.K. Rowe, D.D. McCollister et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. Arch. Ind. Health. 14: 387. (Cited in U.S. EPA, 1985) Toluenediamine (2,3-; 3,4-) U.S. EPA. 1984. Health and Environmental Effects Profile for Selected Toluenediamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Toluene-2.5-diamine - NCI (National Cancer Institute). 1978. Bioassay of Toluene-2,5-diamine Sulfate for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 126. - 1984. Health and Environmental Effects Profile for Selected Toluenediamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0121h D-78 07/11/90 Toluene-2.6-diamine NCI (National Cancer Institute). 1980. Bioassay of 2,6-Toluenediamine Dihydrochloride for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 200. U.S. EPA. 1984. Health and Environmental Effects Profile for Selected Toluenediamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. m-Toluidine U.S. EPA. 1984. Health and Environmental Effects Profile for Toluidines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Triallate Monsanto Company. 1979. Confidential Business Information; unpublished study. Accession No. 242057. - U.S. EPA. 1983. Health and Environmental Effects Profile for Triallate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1,2,4-Tribromobenzene Carlson, G.P. and R.G. Tardiff. 1977. Effect of 1,4-dibromodibenzene and 1,2,4-tribromobenzene on xenobiotic metabolism. Toxicol. Appl. Pharmacol. 42: 189-196. - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### 1,2,4-Trichlorobenzene Carlson, G.P. and R.G. Tardiff. 1976. Effect of chlorinated benzenes on the metabolism of foreign organic compounds. Toxicol. Appl. Pharmacol. 36: 383-394. U.S. EPA. 1987. Health Effects Assessment for 1,2,4-Trichlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-79 07/11/90 Watanabe, P.G., R.J. Kociba, R.E. Hefner et al. 1978. Subchronic toxicity studies of 1,2,4-trichlorobenzene in experimental animals. Toxicol. Appl. Pharmacol. 45(1): 322-333. Trichlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 1.1.1-Trichloroethane Torkelson, R.R., F. Oyen, D.D. McCollister and V.K. Rowe. 1958. Toxicity of 1,1,1-trichloroethane as determined on laboratory animals and human subjects. Am. Ind. Hyg. Assoc. J. 19: 353-362. - U.S. EPA. 1984. Health Effects Assessment for 1,1,1-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment,
Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1.1.2-Trichloroethane Sanders, V.M., K.L. White Jr., G.M. Shopp Jr. and A.E. Munson. 1985. Humoral and cell mediated immune status of mice exposed to 1,1,2 trichloroethane Drug Chem Toxicol. 8(5): 357-372. - U.S. EPA. 1984. Health Effects Assessment for 1,1,2-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. White, K.L. Jr., V.M. Sanders, V.W. Barnes, G.M. Shopp and A.E. Munson. 1985. Toxicology of 1,1,2 trichloroethane in the mouse. Drug Chem Toxicol. 8(5): 333-355. #### Trichlorofluoromethane Jenkins, L.J., R.A. Jones, R.A. Coon and J. Siegal. 1970. Repeated and continuous exposures of laboratory animals to trichlorofluoromethane. Toxicol. Appl. Pharmacol. 16: 133-142. - NCI (National Cancer Institute). 1978. Bioassay of Trichlorofluoromethane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 106. (Also publ as DHEW (NIH) 78-1356) - U.S. EPA. 1987. Health Effects Assessment for Fully Halogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0121h D-80 07/11/90 - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - 2,4,4'-Trichloro-2'-hydroxydiphenyl ether Lyman, F.L. and T. Furia. 1969. Toxicology of 2,4,4'-Trichloro-2'-hydroxydiphenyl ether. Ind. Med. 38: 45-52. - U.S. EPA. 1987. Health Effects and Environmental Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - 2,4,5-Trichlorophenol - McCollister, D.D., D.T. Lockwood and V.K. Rowe. 1961. Toxicologic information on 2,4,5-trichlorophenol. Toxicol. Appl. Pharmacol. 3: 63-70. - U.S. EPA. 1984. Health Effects Assessment for 2,4,5-Trichlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Trichlorophenol, 2,3,4-, 2,3,5-, 2,3,6-, 3,4,5-U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2,4,5-Trichlorophenoxy acetic acid Gehring, P.J. and J.E. Betso. 1978. Phenoxy acids: Effects and fate in mammals. Ecol. Bull. 27: 122-133. - Kociba, R.S., D.G. Keyes, R.W. Lisowe, et al. 1979. Results of 2-year chronic toxicity and oncogenicity study of rats ingesting diets containing 2,4,5-T. Food Cosmet. Toxicol. 17: 205-222. - U.S. EPA. 1989. Health and Environmental Effects Document for 2,4,5-Trichlorophenoxy Acetic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-81 07/11/90 - 2 (2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP). (Silvex) Gehring, P.J. and J.E. Betso. 1978. Phenoxy acids: Effects and fate in mammals. In: Chlorinated Phenoxy Acids and Their Dioxins, Vol. 27, C. Ramel, Ed. Ecol. Bull., Stockholm. p. 122-133. - Mullison, W.R. 1966. Some toxicological aspects of silvex. <u>In:</u> Proc. 19th Ann. Meet., Southern Weed Conference, Jacksonville, FL. p. 420-435. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1.1.1- and 1.2.2-Trichloropropane U.S. EPA. 1987. Health and Environmental Effects Document for Trichloropropanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 1,1,2-Trichloropropane - U.S. EPA. 1987. Health and Environmental Effects Document for Trichloropropanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Villaneuve, D.C., I. Chu, V.E. Secours, M.G. Cotie, G.L. Plaa and V.E. Valli. 1985. Results of a 90-day toxicity study on 1,2,3- and 1,1,2-tri-chloropropane administered via the drinking water. Sci. Total Environ. 47: 421-426. # 1,2,3-Trichloropropane - NTP (National Toxicology Program). 1983a. Final report 120-day toxicity gavage study of 1,2,3-trichloropropane in Fischer 344 rats. Performed by Hazelton Laboratories. - U.S. EPA. 1987. Health and Environmental Effects Document for Trichloro-propanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1,2,3-Trichloropropene McKenna, M.J., J.F. Quast and G.A. Stevens. 1978. Results of a 90-day inhalation toxicity study of 1,2,3-trichloropropene in laboratory animals. Toxicol. Appl. Pharmacol. 45: 249. U.S. EPA. 1983. Health and Environmental Effects Profile for Chloro-propenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste. Washington. DC. #### 2.3.6-Trichlorotoluene - Chu, I., S.Y. Shen, D.C. Villeneuve, V.E. Secours and V.E. Valli. 1984. Toxicity of trichlorotoluene isomers: A 28-day feeding study in the rat J. Environ. Sci. Health Part B. Pestic Food conterm. Agric. Wastes. 19(2): 183-192. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # a,2,6-Tr1chlorotoluene - Chu, I., S.Y. Shen, D.C. Villeneuve, V.E. Secours and V.E. Valli. 1984. Toxicity of trichlorotoluene isomers: A 28-day feeding study in the rat J. Environ. Sci. Health Part B. Pestic Food conterm. Agric. Wastes. 19(2): 183-192. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 1,1,2-Trichloro-1,2,2-trifluoroethane Imbus, H.R. and C. Adkins. 1972. Physical examination of workers exposed to trichlorotrifluoroethane. Arch. Environ. Health. 24: 257-261. - U.S. EPA. 1983. Health Assessment Document for 1,1,2-Trichloro-1,2,2-tri-fluoroethane (Chlorofluorocarbon CFC-113). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-82-002F. NTIS PB84-118843. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Trifluralin Hoechst Aktiengesellschaft. 1984. Confidential Business Information; unpublished study. MRID No. 00151908. - U.S. EPA. 1984. Health and Environmental Effects Profile for Trifluralin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-83 07/11/90 # Trimethylbenzenes U.S. EPA. 1987. Health Effects Assessment for Trimethylbenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. #### 1.3.5-Trinitrobenzene - Cody, T.E., S. Witherup, L. Hastings, K. Stemmer and R.T. Chustion. 1981. 1,3-Dinitrobenzene: Toxic effects <u>in vitro</u>. J. Toxicol. Environ. Health. 7: 829-847. - U.S. EPA. 1989. Health and Environmental Effects Document for 1,3,5-Tri-nitrobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office
of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Trinitrophenols U.S. EPA. 1984. Health and Environmental Effects Profile for Trinitrophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Vanadium - Schroeder, J.A., M. Mitchener and A.P. Nason. 1970. Zirconium, niobium, antium, antimony, vanadium and lead in rats: Life term studies. J. Nutr. 100(1): 59-68. - U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. ## Vanadium pentoxide - Stokinger, H.E., W.D. Wagner, J.T. Mountain et al. 1953. Unpublished results. Div. Occup. Health, Cincinnati, OH. (Cited in Stokinger, 1981) - U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Vanadyl sulfate Schroeder, J.A., M. Mitchener and A.P. Nason. 1970. Zirconium, niobium, antium, antimony, vanadium and lead in rats: Life term studies. J. Nutr. 100(1): 59-68. U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. #### Vernolate Stauffer Chemical Company. 1983. Confidential Business Information; unpublished study. Accession Nos. 249703-249704. - U.S. EPA. 1983. Health and Environmental Effects Profile for Vernolate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 4-Viny1-1-Cyclohexene U.S. EPA. 1983. Health and Environmental Effects Profile for 4-Vinyl-1-cyclohexene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### m-Xvlene NTP (National Toxicology Program). 1986. NTP Technical Report on the Toxicology and Carcinogenesis of Xylenes (Mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene and 9.1% o-Xylene) (CAS No. 133-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP TR 327, NIH Publ. No. 86-2583. - Tatrai, E., G. Ungvary, I.R. Cseh, et al. 1981. The effects of long-term inhalation of o-xylene on the liver. End. Environ. Xenobiotics, Proc. Int. Conf. p. 293-300. - U.S. EPA. 1986. Health and Environmental Effects Profile for Xylenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Updated Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response. Washington. DC. #### o-Xylene NTP (National Toxicology Program). 1986. NTP Technical Report on the Toxicology and Carcinogenesis of Xylenes (mixed) (60.2% m-xylene, 13.6% p-xylene, 17.0% ethylbenzene and 9.1% o-xylene) (CAS No. 1330-20-7) in F344/N rats and B6C3F1 mice (gavage studies). U.S. DHHS, PHS, NIH, NTP, Research Triangle Park, NC. NTP TR 327, NIH Publ. No. 86-2583. Tatrai, E., G. Ungvary, I.R. Cseh, et al. 1981. The effects of long-term inhalation of o-xylene on the liver. End. Environ. Xenobiotics, Proc. Int. Conf. p. 293-300. - Ungvary, G., E. Tatrai, A. Hudak, et al. 1980. The embryotoxic effects of o-, m- and p-xylene. Toxicology. 18(1): 61-74. - U.S. EPA. 1986. Health and Environmental Effects Profile for Xylenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Updated Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response. Washington, DC. #### p-Xylene - Hake, C.L., R.D. Steward, A. Wu et al. 1981. Development of a biologic standard for the industrial worker by breath analysis. NIOSH-MCOW-ENUM-XY-77-3. NTIS PB82-152844. - U.S. EPA. 1987. Updated Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # Xylenes, mixed - Carpenter, C.P., E.R. Kinhead, D.L. Geary, et al. 1975. Petroleum hydrocarbon toxicity studies. V. Animal and human response to vapors of mixed xylenes. Toxicol. Appl. Pharmacol. 33(3): 543-558. - Litton Bionetics. 1978. Teratology study in rats: Xylene. Final Report to American Petroleum Institute, Washington, DC. LBI Project No. 20698-5. FYI-AX-0183-0231. - Hake, C.L., R.D. Steward, A. Wu et al. 1981. Development of a biologic standard for the industrial worker by breath analysis. NIOSH-MCOW-ENUM-XY-77-3. NTIS PB82-152844. - NTP (National Toxicology Program). 1986. NTP Technical Report on the Toxicology and Carcinogenesis of Xylenes (Mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene and 9.1% o-Xylene) (CAS No. 133-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP TR 327. NIH Publ. No. 86-2583. - U.S. EPA. 1989. Updated Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### <u>Z1nc</u> Pories, W.J., J.H. Henzel, C.G. Rob and W.H. Strain. 1967. Acceleration of wound healing in man with zinc sulfate given by mouth. Lancet. 1: 121-124. - Prasad, A.S., E.B. Schoomaker, J. Ortega et al. 1975. Zinc deficiency in sickle cell disease. Clin. Chem. 21: 582-587. - U.S. EPA. 1984. Health Effects Assessment for Zinc. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. Zinc cyanide - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. - Philbrick, D.J., J.B. Hopkins, D.C. Hill, J.C. Alexander and R.G. Thomson. 1979. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health. 5: 579-592. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Zinc phosphide - Bai, K.M., M.K. Krishnakumari, J.P. Ramesh, T. Shivanandappa and S.K. Majunder. 1980. Short-term toxicity study of zinc phosphide in albinorats. Indian J. Exptl. Biol. 18: 854-857. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Zineb - Blackwell-Smith, R.J., Jr. J.K. Finnegan, P.S. Larson, et al. 1953. Toxicologic studies on zinc and disodiumethylenebisdithiocarbamates. J. Pharmacol. Exp. Ther. 109: 159-166. - U.S. EPA. 1984. Health and Environmental Effects Profile for Zineb. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h D-87 07/11/90 #### HEA SUMMARY TABLE B: CARCINOGENS #### Acephate Chevron Chemical Company. 1982. MRID No. 00105197 - U.S. EPA. 1984. Health and Environmental Effects Profile for Acephate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Acrolein - U.S. EPA. 1987. Health Effects Assessment for Acrolein. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Acrylamide - Johnson, K., S. Gorzinski, K.M. Bodner, et al. 1986. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fisher 344 rats. Dow Chemical, U.S.A., Midland, MI. - U.S. EPA. 1985. Health and Environmental Effects Profile for Acrylamide. Prepared by the Office of Health and Environmental Assessment,
Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati. OH. ## Acrylonitrile Bio/dynamics, Inc. 1980a. A 24-month oral toxicity/carcinogenicity study of acrylonitrile administered to Spartan rats in the drinking water. Final Report. Vol. 1 and 2. Prepared by Bio/dynamics, Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, under Project No. 77-1745 for Monsanto Company, St. Louis, MO. (Cited in U.S. EPA, 1983a) Bio/dynamics, Inc. 1980b. A 24-month oral toxicity/carcinogenicity study of acrylonitrile administered in drinking water to Fischer 344 rats. Final Report. Vol. 1-4. Prepared by Bio/dynamics, Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, under Project No. 77-1744 (BDN-77-27) for Monsanto Company, St. Louis, MO. (Cited in U.S. EPA, 1983a) O'Berg, M. 1980. Epidemiologic study of workers exposed to acrylonitrile. J. Occup. Med. 22: 245-252. - Quast, J.F., C.E. Wade, C.G. Humiston et al. 1980. A 2-year toxicity and oncogenicity study with acrylonitrile incorporated in the drinking water of rats. Prepared by the Toxicology Research Laboratory, Health and Environmental Research, Dow Chemical USA, Midland, MI, for the Chemical Manufacturers Association, Washington, DC. (Cited in U.S. EPA, 1983a) - U.S. EPA. 1983. Health Assessment Document for Acrylonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-82-007F. NTIS PB84-149152. - U.S. EPA. 1987. Health Effects Assessment for Acrylonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Alachlor - U.S. EPA. 1984. Health and Environmental Effects Profile for Alachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1988. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. #### Aldrin - Davis, K.J. 1965. Pathology report on mice for aldrin, dieldrin, heptachlor, or heptachlor epoxide for two years. Int. Food. Drug Admin. - Davis, K.J. and O.G. Fitzhugh. 1962. Tumorigenic potential of aldrin and dieldrin for mice. Toxicol. Appl. Pharmacol. 4: 187-189. - Epstein, S.S. 1975. The carcinogenicity of dieldrin. Part I. Sci. Total Environ. 4: 1-52. - NCI (National Cancer Institute). 1977. Bioassays of aldrin and dieldrin for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 21. (Also published as NTIS PB-275-666) - U.S. EPA. 1986. Carcinogenicity Assessment of Aldrin and Dieldrin. December 1986 Review Draft. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Aldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0626h D-89 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Allyl chloride - U.S. EPA. 1983. Health and Environmental Effects Profile for Chloropropenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheets and input onto IRIS. ## **Aniline** - CIIT (Chemical Industry Institute of Toxicology). 1982. 104-Week chronic toxicity study in rats: Aniline hydrochloride. Final Report. - U.S. EPA. 1985. Health and Environmental Effects Profile for Aniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Aramite** - Oser, B.L. and M. Oser. 1962. 2-(p-tert-Butylphenoxy)isopropyl 2-chloroethyl sulfite (aramite). II. Carcinogenicity. Toxicol. Appl. Pharmacol. 4: 70-88. - Popper, H., S.S. Steinberg, B.L. Oser and M. Oser. 1960. The carcinogenic effect of aramite in rats. Cancer. 13(5): 1035-1046. - U.S. EPA. 1989. Health and Environmental Effects Document for Aramite. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Arsenic - Brown, C.C. and K.C. Chu. 1983a. Approaches to epidemiologic analysis of prospective and retrospective studies: Example of lung cancer and exposure to arsenic. <u>In</u>: Risk Assessment: Proc. SIMS Conference on Environmental Epidemiology, June 28-July 2, 1982, Alta UT. SIAM Publication. - Brown, C.C. and K.C. Chu. 1983b. Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. J. Nat. Cancer Inst. 70: 455-463. - Brown, C.C. and K.C. Chu. 1983c. A new method for the analysis of cohort studies; implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. Environ. Health Persp. 50: 293-308. - Enterline, P.E. and G.M. Marsh. 1982. Cancer among workers exposed to arsenic and other substances in a copper smelter. Am. J. Epidemiol. 116: 895-911. - Higgins, I. 1982. Arsenic and respiratory cancer among a sample of Anaconda smelter workers. Report submitted to the Occupational Safety Health Administration in the comments of the Kennecott Minerals on the inorganic arsenic rulemaking (Exhibit 203-5). - Lee-Feldstein, A. 1983. Arsenic and respiratory cancer in man: Follow-up of an occupational study. $\underline{\text{In}}$: Arsenic: Industrial, Biomedical, and Environmental Perspectives, W. Lederer and R. Fensterheim, Eds. Van Nostrand Reinhold, New York. - U.S. EPA. 1984a. Health Effects Assessment for Arsenic. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1984b. Health Assessment Document for Inorganic Arsenic. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8/83-021F. NTIS P884-190891. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Asbestos - NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of chrysotile asbestos (CAS No. 1200-29-5) in F344/N rats (feed studies) technical report series No. 295. - U.S. EPA. 1985. Drinking Water Criteria Document for Asbestos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft. NTIS PB 86-118262. - U.S. EPA. 1986. Airborne Asbestos Health Assessment Update. Prepared by the Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-84/003F. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Azobenzene NCI (National Cancer Institute). 1979. Bloassay of azobenzene for possible carcinogenicity. NCI Carcinogenesis Technical Report Series. No. 154. U.S. DHEW Publ. No. (NIH) 79-1710. p. 112. 0626h .. D-91 07/11/90 - U.S. EPA. 1985. Health and Environmental Effects Profile for Azobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Benzene - Ott, M.G., J.C. Townsend, W.A. Fishbeck and R.A. Langner. 1978. Mortality among workers occupationally exposed to benzene. Arch. Environ. Health. 33: 3-10. - Rinsky, R.A., R.J. Young and A.B. Smith. 1981. Leukemia in benzene workers. Am. J. Ind. Med. 2: 217-245. - U.S. EPA. 1985. Interim Quantitative Cancer Unit Risk Estimates Due to Inhalation of Benzene. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC for the Office of Air Quality Planning and Standards, Washington, DC. - U.S. EPA. 1987. Memorandum from J. Orme HEB, CSD/ODW to C. Vogt, Criteria and Standards Division, ODW, June, 1987. - U.S. EPA. 1989. Updated Health Effects Assessment for Benzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wong, O., R.W. Morgan and M.D. Whorton.
1983. Comments on the NIOSH study of leukemia in benzene workers. Technical report submitted to Gulf Canada, Ltd., by Environmental Health Associates, August 31. (Cited in U.S. EPA, 1985) #### Benzidine - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-023. NTIS PB 81-117343. - U.S. EPA. 1986. Health and Environmental Effects Profile for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0626h D-92 07/11/90 - U.S. EPA. 1987. Health Effects Assessment for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. Zavon, M.R., U. Hoegg and E. Bingham. 1973. Benzidine exposure as a cause of bladder tumors. Arch. Environ. Health. 27: 1-73. Benzo(a)anthracene - U.S. EPA. 1984. Health Effects Assessment for Selected PAHs. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## Benzo(a)pyrene Neal, J. and R.H. Rigdon. 1967. Gastric tumors in mice fed benzo[a]pyrene: A quantitative study. Tex. Rep. Biol. Med. 25: 553. - Thyssen, J., J. Althoff, G. Kimmerle and U. Mohr. 1981. Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J. Natl. Cancer Inst. 66(3): 575-577. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Polynuclear Aromatic Hydrocarbons. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-069. NTIS PB 81-117806. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Benzo(b)fluoranthene - U.S. EPA. 1984. Health Effect Assessment for PAHs. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. 0626h D-93 07/11/90 Benzo(k)fluoranthene U.S. EPA. 1987. Health and Environmental Effects Profile for Benzo(k)-fluoranthene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Benzotrichloride Fukuda, K., H. Metsushita and K. Takemoto. 1978. Carcinogenicity of benzotrichloride by the oral route of administration (J-4774). <u>In: Proc. 52nd Ann. Meet. Japanese Industrial Health Assoc. TSCA 8E Submission Document No. 88-8000360, Fiche #204867. p. 516-517.</u> - U.S. EPA. 1986. Health and Environmental Effects Profile for Benzotri-chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. Benzyl Chloride - Lijinski, W. 1986. Chronic bioassay of benzyl chloride in F344 rats and (C57BL/6J x BALB/c) F_1 mice. J. Natl. Cancer Inst. 76:1231-1236. - U.S. EPA. 1986. Health and Environmental Effects Profile for Benzyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. **Beryllium** Schroeder, H.A. and M. Mitchener. 1975. Life-term studies in rats: Effects of aluminum, barium, beryllium and tungsten. J. Nutr. 105(4): 421-427. - U.S. EPA. 1986. Drinking Water Criteria Document for Beryllium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. - U.S. EPA. 1987. Health Assessment Document for Beryllium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-84-026F. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Wagoner, J.K., P.F. Infante and D.L. Bayliss. 1980. Beryllium: An etiologic agent in the induction of lung cancer, nonneoplastic respiratory disease, and heart disease among industrially exposed workers. Environ. Res. 21: 15-34. Bis (2-chloroethyl)ether Innes, J.R.M., B.M. Ulland, M.G. Valerio et al. 1969. Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 42: 101-1114. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chloroalkyl Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-030. NTIS PB 81-117418. - U.S. EPA. 1987. Health Effects Assessment for Bis(2-Chloroethyl)Ether. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Bis(choromethy1)ether Kuschner, M., S. Laskin, R.T. Drew, et al. 1975. Inhalation carcinogenicity of alpha halo ethers: III. Lifetime and limited period inhalation studies with bis(chloromethyl) ether at 0.1 ppm. Arch. Environ. Health. 30(2): 73-77. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Bis(2-chloro-1-methylethyl)ether NTP (National Toxicology Program). 1982. Carcinogenic Bioassay of Bis(2-Chloro-1-Methylethyl) Ether (~70%) Containing 2-Chloro-1-Ethylethyl-(2-Chloropropyl) Ether (~30%) in B6C3Fl Mice (Gavage Study). NCI Carcinogen. Tech. Rep. Ser. No. 239. 105 p. [Also publ. as DHHS (NIH) 83-1795.] U.S. EPA. 1987. Health and Environmental Effects Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Bis(2-ethylhexyl) phthalate NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of di(2-ethylhexyl) phthalate (CAS No. 117-81-7) in F344 rats and B6C3Fl mice (feed study). NTP Tech. Report. Ser. No. 217, NIH/PUB-82-1773. U.S. EPA. 1986. Health and Environmental Effects Profile for Phthalic Acid Alkyl, Aryl and Alkyl/Aryl Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0626h D-95 07/11/90 - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## **Bromodichloromethane** - NTP (National Toxicology Program). 1986. NTP technical report on the toxicology and carcinogenesis studies of bromodichloromethane (CAS No. 75-27-4) in F344 rats and B6C3Fl mice (gavage studies). Board Draft. NTP, Research Triangle Park, NC. NTP TR 321. - U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO83. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## Bromoethene - Benya, T.J., W.M. Basey, M.A. Dorato and P.E. Berteau. 1982. Inhalation carcinogenicity bioassay of vinyl bromide in rats. Toxicol. Appl. Pharmacol. 64:367-379. - U.S. EPA. 1984. Health and Environmental Effects Profile for Bromoethene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Bromoform - NTP (National Toxicology Program). 1988. Technical Report on the toxicology and carcinogenesis studies of trihalomethane (bromoform) (CAS No. 75-25-2) in F344/N rats and B6C3Fl mice
(gavage studies). Board Draft. - U.S. EPA. 1989. Health and Environmental Effects Document for Bromoform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. # 1.3-Butadiene Hazleton Laboratories. 1981. The Toxicity and Carcinogenicity of Butadiene Gas Administered to Rats by Inhalation for Approximately 24 Months. Prepared for the International Institute of Synthetic Rubber Producers, New York, NY. Unpublished. (Cited in U.S. EPA, 1985) - U.S. EPA. 1985. Mutagenicity and Carcinogenicity Assessment of 1,3-Butadiene. Office of Health and Environmental Assessment, Washington, DC. EPA 600/8-85-004F. NTIS PB86-125507. - U.S. EPA. 1989. Health and Environmental Effects Document for 1,3-Buta-diene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Butyl benzyl phthalate - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Cadmium - Thun, M.J., T.M. Schnorr, A.B. Smith and W.E. Halperin. 1985. Mortality among a cohort of U.S. cadmium production workers: An update. J. Natl. Cancer Inst. 74(2): 325-333. - U.S. EPA. 1984. Health Effects Assessment for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Updated mutagenicity and Carcinogenicity Assessment of Cadmium: Addendum to the Health Assessment Document for Cadmium (May 1981, EPA 600/8-81-023). EPA 600/8-83-025F. - U.S. EPA. 1988. Updated Health Effects Assessment for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Captafol U.S. EPA. 1984. Health and Environmental Effects Profile for Captafol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. 0626h D-97 07/11/90 - Captan - U.S. EPA. 1984. Health and Environmental Effects Profile for Captan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1988. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Workgroup Verified, pending concurrence on final coversheet and input onto IRIS. #### Carbazole - Tsuda, H., A. Haziwara, M. Shibata, M. Ohsima and N. Ito. 1982. Carcinogenic effect of carbazole in the liver of (C57BL/6N x C3H/HeN)F₁ mice. J. Natl. Cancer Inst. 69:1383-1389. - U.S. EPA. 1986. Health and Environmental Effects Profile for Carbazole. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Carbon tetrachloride - Della Porta, G.B., B. Terracini and K.P. Shubik. 1961. Induction with carbon tetrachloride of liver cell carcinomas in hamsters. J. Natl. Cancer Inst. 26: 855-863. - Edwards, J., W.E. Heston and H.A. Dalton. 1942. Induction of the carbon tetrachloride hepatoma in strain L mice. J. Natl. Cancer Inst. 3: 297-301. - NCI (National Cancer Institute). 1976. Report on the Carcinogenesis Bioassay of Chloroform. Carcinogenesis Program, Division of Cancer Cause and Prevention, Washington, DC. - U.S. EPA. 1984a. Health Assessment Document for Carbon Tetrachloride. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA-600/8-82-001F. NTIS PB 85-124196. - U.S. EPA. 1984b. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Chlorany1 - BRL (Bionetics Research Labs, Inc.). 1968. Evaluation of carcinogenic, teratogenic and mutagenic activities of selected pesticides and industrial chemicals. Volume I: Carcinogenic Study. NTIS PB 223159. - U.S. EPA. 1986. Health and Environmental Effects Profile for Chloranyl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Chlordane - IRDC (International Research and Development Corporation). 1973. Unpublished report to Velsicol Chemical Corporation, Eighteen Month Oral Carcinogenic Study in Mice, December 14, 1973. - NCI (National Cancer Institute). 1977. Bioassay of Chlordane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 8. Also publ. as DHEW Publ. No. (NIH) 77-808. - U.S. EPA. 1986. Carcinogenicity Assessment of Chlordane and Heptachlor/Heptachlor Epoxide. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA-600/6-87-004. Final Report. - U.S. EPA. 1988. Updated Health Effects Assessment for Chlordane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### 4-Chloroaniline - NCI (National Cancer Institute). 1979. Bioassay of p-chloroaniline for possible carcinogenicity. NCI Carcinogenesis Tech Rep. Ser. No. 189. NTIS PB295896. - U.S. EPA. 1987. Health and Environmental Effects Document for Chloro-anilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Chlorodibromomethane - NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of chlorodibromomethane (CAS No. 124-48-1) in F/344/N rats and B6C3F1 mice. NTP Tech. Rep. Ser. No. 282, DHHS No. NIH 85-2538. - U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO83. ## **Chloroform** - Jorgenson, T.A., E.F. Meierhenry, C.J. Rushbrook et al. 1985. Carcinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6C3Fl mice. Fund. Appl. Toxicol. (U.S.A.) 5(4): 760-769. - NCI (National Cancer Institute). 1976. Report on Carcinogenesis Bioassay of Chloroform. NTIS PB264-018. - U.S. EPA. 1985. Health Assessment Document for Chloroform. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH Research Triangle Park, NC. EPA 600/8-84-004F. NTIS PB86-105004. 0626h D-99 07/11/90 - U.S. EPA. 1988. Updated Health Effects Assessment for Chloroform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. #### **Chloromethane** CIIT (Chemical Industry Institute of Toxicology). 1981. Final report on 24-month inhalation study on methyl chloride. Prepared by Battelle-Columbus Laboratories, Columbus, OH. December 31. NIOSH (National Institute for Occupational Safety and Health). 1984. Carcinogenic Risk Assessment for Occupational Exposure to Monohalomethanes. NTIS PB85-111623. - U.S. EPA. 1986. Health and Environmental Effects Profile for Methyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Chloromethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. # 4-Chloro-2-methylaniline U.S. EPA. 1986. Health and Environmental Effects Profile for 4-Chloro-2-methylaniline and 4-Chloro-2-methylaniline hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC.
Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2:325-356. # 4-Chloro-2-methylaniline hydrochloride U.S. EPA. 1986. Health and Environmental Effects Profile for 4-Chloro-2-methylaniline and 4-Chloro-2-methylaniline hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2: 325-356. ## Chloromethyl methyl ether U.S. EPA. 1987. Health and Environmental Effects Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### o-Chloronitrobenzene U.S. EPA. 1985. Health and Environmental Effects Profile for Chloronitrobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2:325-356. ## p-Chloronitrobenzene U.S. EPA. 1985. Health and Environmental Effects Profile for Chloronitrobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2:325-356. #### Chlorthalonil NCI (National Cancer Institute). 1978. Bioassay of chlorothalonil for possible carcinogenicity. DHEW Publ. NIH-78-841, NCI-CG-TR-41. NTIS PB-286369. U.S. EPA. 1984. Health and Environmental Effects Profile for Chlor-thalonil. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Chromium (VI) Mancuso, T.F. 1975. International Conference on Heavy Metals in the Environment, Toronto, Canada, Oct. 27-31. (Cited in U.S. EPA, 1984) - U.S. EPA. 1984a. Health Assessment Document for Chromium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA-600/8-83-014F. NTIS PB 85-115905. - U.S. EPA. 1984b. Health Effects Assessment for Hexavalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for chromium(VI). Online. (Verification date 06/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0626h D-101 07/11/90 #### Chrysene - U.S. EPA. 1984. Health and Environmental Effects Profile for Chrysene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. #### Coal tars Mazumdar, S., C. Redmond, W. Sollecito and N. Sussman. 1975. An epidemiological study of exposure to coal-tar-pitch volatiles among coke oven workers. APCA J. 25(4): 382-389. Redmond, C.K., H.S. Wieand, H.E. Rockette et al. 1979. Long-term mortality experience of steelworkers. Prepared under Contract No. HSM-99-71-32. NIOSH, Cincinnati, OH. June. U.S. EPA. 1984. Carcinogen Assessment of Coke Oven Emissions. Office of Health and Environmental Assessment, Washington, DC. EPA-600/6-82-003F. NTIS PB 84-170182. #### Creosote U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Cresol, o-, m- and p- - U.S. EPA. 1984. Health and Environmental Effects Profile for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. # <u>Crotonaldehyde</u> Chung, F.L., T. Tamaka and S.S. Hecht. 1986. Induction of liver tumors in F344 rats by crotonaldehyde. Can. Res. 46: 1285-1289. U.S. EPA. 1989. Health and Environmental Effects Document for Crotonaldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### DDD Tomatis, L., V. Turusov, R.T. Charles and M. Boicchi. 1974. Effect of long-term exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, to 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane, and to the two chemicals combined on CF-1 mice. J. Natl. Cancer Inst. 52(3): 883-891. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### DDE NCI (National Cancer Institute). 1978. Bioassay of DDT, TDE and p.p' -DDE for possible carcinogenicity. NCI Report No. 131. DHEW Publ. No, (NIH) 78-1386. Rossi, L., O. Barbieri, M. Sanguineti, J.R.P. Cabral, P. Bruzzi and L. Santi. 1983. Carcinogenicity study with technical-grade DDT and DDE in hamsters. Cancer Res. 43: 776-781. (Cited in U.S. EPA, 1988) Tomatis, L., V. Turusov, R.T. Charles and M. Boicchi. 1974. Effect of long-term exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, to 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane, and to the two chemicals combined on CF-1 mice. J. Natl. Cancer Inst. 52(3): 883-891 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## DOT U.S. EPA. 1984. Health Effects Assessment for DDT. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-026. - U.S. EPA. 1986. The Assessment of the Carcinogenicity of Dicofol (Kelthane), DDT, DDE and DDD (TDE). Office of Health and Environmental Assessment, Washington, DC. EPA/600/6-86/001. NTIS PB87-110904. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Decabromodiphenyl oxide U.S. EPA. 1984. Health and Environmental Effects Profile for Brominated Diphenyl Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Profile for Decabromodiphenyl Oxide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0626h D-103 07/11/90 ## Diallate BRL (Bionetics Research Labs, Inc.) 1968. Evaluation of carcinogenic, teratogenic, and mutagenic activities of selected pesticides and industrial chemicals, Vol. 1, Carcinogenic Study. Prepared for National Cancer Institute, U.S. Department of Commerce, Washington, DC. NTIS PB-223159. Innes, J.R.M., B.M. Ulland, M.G. Valerio, et al. 1969. Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 42:1101-1114. U.S. EPA. 1983. Health and Environmental Effects Profile for Diallate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## Dibenzo(a,h)anthracene U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## Dibenzofuran U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## <u>Dibromochloromethane</u> NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of chlorodibromomethane in F344/N rats and B6C3F1 mice. NTP Technical Report Series No. 282. NTIS/PB86-166675. - U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. -
U.S. EPA. 1989a. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. - U.S. EPA. 1989b. Health and Environmental Effects Document for Dibromo-chloromethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 1.2-Dibromo-3-chloropropane SRC. 1982. Review of Toxicologic Data in Support of Evaluation for Carcinogenic Potential of 1,2-Dibromo-3-chloropropane. TR-82-723. (Cited in U.S. EPA, 1986) - U.S. EPA. 1985. Drinking Water Criteria Document for Dibromochloropropane. ECAO-CIN-410. - U.S. EPA. 1986. Carcinogen Assessment Group (CAG) Profiles. Prepared by the Carcinogen Assessment Group. Available through RCRA/Superfund Docket. 0626h D-104 07/11/90 # 1.2-Dibromoethane - NCI (National Cancer Institute). 1978. Bioassay of 1,2-dibromoethane for possible carcinogenicity. NCI Carcinogenesis Technical Report Series No. 86. PB-288-428 [Also published as CHHA (NIH) 78-1336]. p. 64. - NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of 1,2-dibromoethane in F344 rats and B6C3F1 mice (Inhalation Study), NTP Series No. 210. NIH Pub. No. 82-1766. - U.S. EPA. 1984. Health and Environmental Effects Profile for 1,2-Dibromo-Prepared by the Office of Health and Environmental Assessment, ethane. Environmental Criteria and Assessment Office. Cincinnati. OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. Health Effects Assessment for Ethylene Dibromide. 1987. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### 1.4-Dichlorobenzene - NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of 1,4-Dichlorobenzene in F344/N Rats and B6C3F1 Mice -- Galley Draft. U.S. DHHS. PHS. NIH Tech. Rep. Ser. No. 319. - U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH for the Office of Solid Waste and Emergency Response, Washington, DC. - 3,3'-Dichlorobenzidine Stula, E.F., H. Sherman, J.A. Zapp, et al. 1975. Experimental neoplasia in rats from oral administration of 3,3'-dichlorobenzidine, 4,4'-methylenebis(2-chloroaniline) and 4.4'-methylene-bis (2-methylaniline). Toxicol. Appl. Pharmacol. 31: 159-175. - Health and Environmental Effects Document for 3,3'-Di-U.S. EPA. 1988. chlorobenzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH for the Office of Solid Waste and Emergency Response. Washington, DC. EPA 600/8-89/ 011. ## 1,4-Dichloro-2-butene - E.I. Dupont de Nemours and Co. 1986. Long-term Inhalation study with 1,4-dichlorobutene-2 (DCB) in rats. Final report OTS 8(e) Fiche 0509754. - U.S. EPA. 1987. Health and Environmental Effects Document for Dichlorobutenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 1.1-Dichloroethane - NCI (National Cancer Institute). 1978. Bioassay of 1,1-dichloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 66, DHEW Publ. No. (NIH) 78-1316. - U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for Dichloroethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 1,2-Dichloroethane - NCI (National Cancer Institute). 1978. Bioassay of 1,2-dichloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 55, DHEW Publ. No. (NIH) 78-1361. - U.S. EPA. 1985. Health Assessment Document for 1,2-Dichloroethane. EPA 600/8-84-006F. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## 1,1-Dichloroethylene - Maltoni, C., G. Lefemine, P. Chieco et al. 1985. Experimental research on vinylidene chloride carcinogenesis. <u>In</u>: Archives of Research on Industrial Carcinogenesis, Vol. 3, C. Maltoni and M. Mehlman, Ed. Princeton Scientific Publishers, Princeton, NJ. - NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of vinylidene chloride (CAS No. 75-35-4) in F344 rats and B6C3F1 mice (gavage study). NTP Tech. Rep. Ser. No. 228, DHHS No. NIH 82-1784. - U.S. EPA. 1985. Health Assessment Document for Vinylidene Chloride. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-83-031F. NTIS PB 86-100641. - U.S. EPA. 1988. Updated Health Effects Assessment for 1,1-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0626h D-106 07/11/90 - 1,2-Dichloropropane - NTP (National Toxicology Program). 1986. NTP Technical Report on the Carcinogenesis Studies of 1,2-Dichloropropane (Propylene Dichloride). (CAS No. 78-87-5) in F344/N rats and B6C3F1 mice (gavage studies). NTP-82-092, NIH Publ. No. 84-2519, NTP TR 263. U.S. DHHS, PHS, NIH. August, 1986. Draft. - U.S. EPA. 1987. Health Effects Assessment for 1,2-Dichloropropane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # 1,3-Dichloropropene Lomax, L.G., W.T. Stott, K.A. Johnson, L.L. Calhoun, B.L. Yano and J.F. Quast. 1989. The chronic toxicity and oncogenicity of inhaled technical grade 1,3-dichloropropene in rats and mice. Fund. Appl. Toxicol. 12: 418-431. - NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of telone II in F344/N rats and B6C3F1 mice. U.S. Dept. Health and Human Services, Technical Report Ser. No. 269. - U.S. EPA. 1985. Health and Environmental Effects Profile for 1,3-Dichloro-propene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for 1,3-Dichloropropene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Dieldrin Davis, K.J. 1965. Pathology report on mice fed aldrin, dieldrin, heptachlor or heptachlor epoxide for two years. Int. Food Drug Admin. Meierhenrey, E.F., B.H. Reuber, M.E. Gershwin et al. 1983. Dieldrininduced mallory bodies in hepatic tumors of mice of different strains. Hepatology. 3: 90-95. NCI (National Cancer Institute). 1978. Bioassays of aldrin and dieldrin for possible carcinogenicity. National Cancer Institute Carcinogen. Tech. Rep. Ser. No. 22. NCI-CG-TR-22. [Also publ. as DHEW Publ. No. (NIH) 78-882.] Tennekes, H.A., A.S. Wright, K.M. Dix and J.H. Koeman. 1981. Effects of dieldrin, diet and bedding on enzyme function and tumor incidences in livers of male CF-1 mice. Cancer Res. 41: 3615-3620. Thorpe, E. and A.I. Walker. 1973. Toxicity of dieldrin (HEOD). II. Comparative long-term oral toxicity studies in mice with dieldrin, DDT, phenobarbitone, beta-BHC and gamma-BHC. Food Cosmet. Toxicol. 11(3): 433-443. 0626h D-107 07/11/90 - U.S. EPA. 1987. Health Effects Assessment for Dieldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Walker, A.I.T., E. Thorpe and D.E. Stevenson. 1972. The toxicology of dieldrin (HEOD): I. Long-term oral toxicity studies in mice. Food Cosmet. Toxicol. 11: 415-432. ## Diethylstilbestrol SRC. 1983. Teview of Toxicologic Data in Support of Evaluation for Carcinogenic Potential of Diethylstilbestrol. TR-83-562. U.S. EPA. 1986. Carcinogen Assessment Group (CAG) Profiles. Prepared by the Carcinogen Assessment Group. Available through RCRA/Superfund Docket. ## 3,3'-Dimethoxybenzidine OSHA/NIOSH (Occupational Safety and Health Administration/National Institute for Occupational Safety and Health). 1980. Health hazard, alert benzidine, o-tolidine and o-dianisidine based dyes. DHHS (NIOSH) Publ. No. 81-106. Sellakumar, A.R., R. Montesano and A. Saffioti. 1969. Aromatic amines carcinogenicity in hamsters. Proc. Am. Assoc. Cancer Res. 10:78. U.S. EPA. 1987. Health and Environmental Effects Profile for 3,3'-Dimethoxybenzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2,4-Dimethylaniline U.S. EPA. 1987.
Health and Environmental Effects Profile for 2,4-Dimethylaniline and 2,4-Dimethylaniline hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2:325-356. # 2.4-Dimethylaniline hydrochloride U.S. EPA. 1987. Health and Environmental Effects Profile for 2,4-Dimethylaniline and 2,4-Dimethylaniline hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield, F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2:325-356. # 3,3'-Dimethylbenzidine - Griswold, D.P., Jr., A.E. Casey, E.K. Weisburger and J.H. Weisburger. 1968. The carcinogenicity of multiple intragastric doses of aromatic and heterocyclic nitro or amino derivatives in young female Sprague-Dawley rats. Cancer Res. 28(5):924-933. - U.S. EPA. 1987. Health and Environmental Effects Profile for 3,3'-Dimethylbenzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 1.1-Dimethylhydrazine - Toth, B. 1972. Comparative studies with hydrazine derivatives. Carcinogenicity of 1,1-dimethylhydrazine, unsymmetrical (1,1-DMH) in the blood vessels, lung, kidneys and liver of Swiss mice. Proc. Am. Assoc. Cancer Res. 13:34. - Toth, B. 1973. 1,1-Dimethylhydrazine (unsymmetrical) carcinogenesis in mice. Light microscopic and ultrastructural studies on neoplastic blood vessels. J. Natl. Cancer Inst. 50(1):181-194. - U.S. EPA. 1984. Health and Environmental Effects Profile for 1,1-Dimethyl-hydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## 1,2-Dimethylhydrazine - Toth, B. and R.B. Wilson. 1971. Blood vessel tumorigenesis by 1,2-di-methylhydrazine dihydrochloride (symmetrical). Am. J. Pathol. 64: 585. - U.S. EPA. 1984. Health and Environmental Effects Profile for 1,2-Dimethyl-hydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### Dimethyl sulfate - U.S. EPA. 1985. Health and Environmental Effects Profile for Dimethyl sulfate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 2.4-Dinitrotoluene - Ellis, H.V., S.H. Hageusen, J.R. Jodgson et al. 1979. Mammalian Toxicity of Munition Compounds. Phase III. Effects of Lifetime Exposure. Part I. 2,4-Dinitrotoluene. NTIS AD-A077692. 281 p. - U.S. EPA. 1987. Health Effects Assessment for 2,4- and 2,6-Dinitro-toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. # 2,6-Dinitrotoluene - U.S. EPA. 1987. Health Effects Assessment for 2,4- and 2,6-Dinitro-toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## 1,4-Dioxane - NCI (National Cancer Institute). 1978. Bloassay of 1,4-dloxane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 80. DHEW Publication No. (NIH) PB-285-711. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Ofice, Cincinnati, OH. ## 1.2-Diphenylhydrazine - NCI (National Cancer Institute). 1978. Bioassay of hydrazobenzene for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 92. DHEW Publ. No. (NIH) 78-1342. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for 1,2-Diphenyl-hydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-062. NTIS PB 81-117731. - U.S. EPA. 1987. Health Effects Assessment for 1,2-Diphenylhydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Health and Environmental Effects Document for 1,2-Diphenylhydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Direct Black 38 NCI (National Cancer Institute). 1978. 13-Week subchronic toxicity studies of direct blue 6, direct black 38, and direct brown 95 dyes. NCI Carcinogenesis. Tech. Rep. Ser. No. 108. p. 127. U.S. EPA. 1987. Health and Environmental Effects Profile for Direct Black 38. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. # Direct Blue 6 NCI (National Cancer Institute). 1978. 13-Week subchronic toxicity studies of direct blue 6, direct black 38, and direct brown 95 dyes. NCI Carcinogenesis. Tech. Rep. Ser. No. 108. p. 127. U.S. EPA. 1987. Health and Environmental Effects Profile for Direct Blue 6. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## <u>Direct Brown 95</u> NCI (National Cancer Institute). 1978. 13-Week subchronic toxicity studies of direct blue 6, direct black 38, and direct brown 95 dyes. NCI Carcinogenesis. Tech. Rep. Ser. No. 108. p. 127. U.S. EPA. 1987. Health and Environmental Effects Profile for Direct Brown 95. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Direct Sky Blue 6B U.S. EPA. 1987. Health and Environmental Effects Profile for Direct Sky Blue 6B. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. #### **Epichlorohydrin** Komishi, T., A. Kawabata, A. Denda, et al. 1980. Forestomach tumors induced by orally administered epichlorohydrin in male Wistar rats. Gann. 71: 922-923. - Laskin, S, A.R. Sellakumar, M. Kuschner, et al. 1980. Inhalation carcinogenicity of epichlorohydrin in noninbred Sprague-Dawley rats. J. Natl. Cancer Inst. 65(4): 751-757. - U.S. EPA. 1984. Health Assessment Document for Epichlorohydrin. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-83-032F. NTIS PB85-132363. - U.S. EPA. 1985. Health and Environmental Effects Profile for Epichlorohydrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Ethyl acrylate NCI (National Toxicology Program). 1986. Carcinogenesis studies of ethylacrylate in F344/N rats and B6C3F1 mice (gavage studies). U.S. EPA. 1987. Health and Environmental Effects Profile for Ethyl Acrylate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Ethylene oxide Shellings, W.M., C.S. Weil and R.R. Moronpot. 1981. Final Report, Ethylene Oxide, Two Year Inhalation Study. Submitted to the U.S. Environmental Protection Agency by Bushey Run Research Center, Pittsburgh, PA. (Cited in U.S. EPA, 1985) U.S. EPA. 1985. Health Assessment Document for Ethylene Oxide. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-84-009F. NTIS PB86-102597. Ethylene thiourea U.S. EPA. 1984. Health and Environmental Effects Profile for Ethylene Thiourea. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. folpet Chevron Chemical Company. 1982. Chevron study: Lifetime oncogenicity feeding study of pholton technical (SX-946; folpet) in CD-1 (ICR derived) mice. Cited in U.S. EPA, 1987. - U.S. EPA. 1984. Health and Environmental
Effects Profile for Folpet. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Formaldehyde - U.S. EPA. 1985. Health and Environmental Effects Profile for Formaldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1988a. Review Draft. Addendum to Evaluation of the Potential Carcinogenicity of Formaldehyde. - U.S. EPA. 1988b. Carcinogen Assessment Group (CAG) Profiles. Prepared by the Carcinogen Assessment Group. Available through RCRA/Superfund Docket. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Furozolidone - U.S. DHEW. 1976a. Furozolidone, nihydrazone, furaltadone, nitrofurazone. Withdrawal of proposals and notice of proposed rule making. Federal Register 41: 34884-34921. - U.S. DHEW. 1976b. Furozolidone (NF-180): Notice of Opportunity for hearing on proposal to Withdraw approval of certain new animal drug applications. Federal Register. 41: 19907-19921. - U.S. EPA. 1987. Health and Environmental Effects Document for Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Furium - Cohen, S.M., E. Erturk and G.T. Bryan. 1970. Production of leukemia and stomach neoplasms in Swiss, R.F., BALB/c and C3H female mice by feeding N-(4,5-n) tro-2-furyl-2-thiazolyl)acetamide. Cancer Res. 30(9): 2320-2325. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Glyc1daldehyde U.S. EPA. 1989. Health and Environmental Effects Document for Glycid-aldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Heptachlor - Davis, K. 1965. Pathology report on mice fed aldrin, dieldrin, heptachlor and heptachlor epoxide for two years. Internal FDA memorandum to Dr. A.J. Lehman, July 19. - Epstein, S.S. 1976. Carcinogenicity of heptachlor and chlordane. Sci. Total Environ. 6: 103-154. - NCI (National Cancer Institute). 1977. Bioassay of Heptachlor for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 9, DHEW No. (NIH) 77-809. - Reuber, M.D. 1977. Histopathology of carcinomas of the liver in mice ingesting heptachlor or heptachlor epoxide. Exp. Cell. Biol. 45: 147-157. - U.S. EPA. 1986. Carcinogenicity Assessment of Chlordane and Heptachlor/Heptachlor Epoxide. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. OHEA-C-204. - U.S. EPA. 1987. Health Effects Assessment for Heptachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0626h D-113 07/11/90 U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Heptachlor epoxide Davis, K.J. 1965, July 19. Pathology report on mice fed aldrin, dieldrin, heptachlor and heptachlor epoxide for two years. Internal FDA memorandum to Dr. A.J. Lehman. Velsicol Chemical Corporation. 1973. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Hexachlorobenzene** Cabral, J.R.P., P. Shubik, T. Mollner et al. 1977. Carcinogenic activity of hexachlorobenzene in hamsters. Nature. 269: 510-511. - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Drinking Water Criteria Document for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft (on Public Comment). EPA-600/X-84-179-1. NTIS PB86-117777. ## **Hexachlorobutadiene** Kociba, R.J., D.G. Keyes, G.C. Jersey et al. 1977. Results of a two-year chronic toxicity study with hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38: 589-602. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Hexachloro-butadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-053. NTIS PB 81-117640. - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobutadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Hexachlorocyclohexane-alpha Ito, N., H. Nagasaki, M. Aria, et al. 1973. Histological and ultrastructural studies on the hepatocarcinogenicity of benzene hexachloride in mice. J. Natl. Cancer Inst. 51:817-826. - U.S. EPA. 1987. Health and Environmental Effects Profile for Hexachlorocvclohexanes. Prepared by the Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - Integrated Risk Information System (IRIS). 1990. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Hexachlorocyclohexane-beta - Thorpe, E. and A.I.T. Walker. 1973. Toxicology of deldrin (HEOD) II. Comparative long-term oral toxicity studies in mice with dieldrin, DDT, phenobarbitone, beta-HCH and gamma-HCH. Food Cosmet. Toxicol. 11: 433-442. - U.S. EPA. 1987. Health and Environmental Effects Profile for Hexachlorocvclohexanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Hexachlorocyclohexane-delta - Ito, N., H. Hagasaki, M. Arai, S. Sugihara and S. Makiura. 1973. Histologic and ultrastructural studies on the hepatocarcinogenicity of benzene hexachloride in mice. J. Natl. Cancer Inst. 51(3): 817-826. - Ito, N., H. Nagasaki, H. Aoe, et al. 1975. Brief communication: Development of hepatocellular carcinomas in rats treated with benzene hexachloride. J. Natl. Cancer Inst. 54: 801-805. - Nagasaki, H., S. Tomii, T. Mega, M. Marugami and N. Ito. 1972. Hepatocarcinogenic effect of α -, β -, γ -, δ -isomers of benzene hexachloride in mice. Gann. 63(3): 393. - U.S. EPA. 1987. Health and Environmental Effects Profile for Hexachlorocyclohexanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - Integrated Risk Information System (IRIS). 1990. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Hexachlorocyclohexane, gamma (Lindane) Thorpe, E. and A.I.T. Walker. 1973. The toxicology of dieldrin (HEOD). II. Comparative long-term oral toxicity studies in mice with dieldrin, DDT, phenobarbitone, beta-BHC and gamma-BHC. Food Cosmet. Toxicol. 11: 433-442. - Health Effects Assessment for Lindane. U.S. EPA. 1984. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 0626h D-115 07/11/90 - U.S. EPA. 1986. Health and Environmental Effects Profile for Hexachloro-cyclohexanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Hexachlorocyclohexane-epsilon - Goto, M., M. Hattori, T. Miyagawa and M. Enomoto. 1972. Ecological chemistry. II. Hepatoma formation in mice after administration of high doses of hexachlorocyclohexane isomers. Chemosphere. 1: 279-282. - U.S. EPA. 1987. Health and Environmental Effects Profile for Hexachloro-cyclohexanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Hexachlorocyclohexane-technical - Monit, K.M., C.S.
Soman and V. Samati. 1983. Hexachlorocyclohexane-induced tumorigenicity in mice under different experimental conditions. Tumorigenicity. 69: 383-386. - U.S. EPA. 1987. Health and Environmental Effects Profile for Hexachloro-cyclohexane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Hexachloroethane - NCI (National Cancer Institute). 1978. Bioassay of Hexachloroethane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 68, DHEW No. (NIH) 78-1318. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1987. Health Effects Assessment for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Health and Environmental Effects Document for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Hydrazine/Hydrazine sulfate Biancifiori, C. 1970. Hepatomas in CBA/Cb/Se mice and liver lesions in golden hamsters induced by hydrazine sulfate. J. Natl. Cancer Inst. 44: 943. - MacEwen, J.D., E.H. Vernot, C.C. Haun, E.R. Kinkead and A. Hall, III. 1981. Chronic Inhalation Toxicity of Hydrazine: Oncogenic Effects. Air Force Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, OH. NTIS - U.S. EPA. 1984. Health and Environmental Effects Profile for Hydrazine and Hydrazine Sulfate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Indeno(1,2,3-c,d)pyrene U.S. EPA. 1990. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. Isophorone - NTP (National Toxicology Program). 1986. Toxicology and carcinogenesis studies of isophorone (CAS No. 78-59-1) in F344/N rats and B6C3F1 mice (gavage studies). NTP Tech. Rep. Ser. No. 291, DHHS (NIH) 86-2547. - U.S. EPA. 1986. Health and Environmental Effects Profile for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. 0626h D-117 07/11/90 #### Lead - U.S. EPA. 1984. Health Effects Assessment for Lead. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Methoxychlor - U.S. EPA. 1987. Health and Environmental Effects Profile for Methoxy-chlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 2-Methoxy-5-nitroaniline - NCI (National Cancer Institute). 1978. Bloassay of 5-nitro-o-anisidine for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 127. 123 p. - U.S. EPA. 1987. Health and Environmental Effects Profile for 2-Methoxy-5-nitroaniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 2-Methylaniline - Hecht, S.S., A. El-Boyoumy, A. Rivenson and E. Fiala. 1982. Comparative carcinogenicity of o-toluidine hydrochloride and o-nitrotoluene in F-344 rats. Cancer Lett. 16(1): 103-108. - U.S. EPA. 1987. Health and Environmental Effects Profile for 2-Methylaniline and 2-Methylaniline Hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 2-Methylaniline hydrochloride - Hecht, S.S., A. El-Boyoumy, A. Rivenson and E. Fiala. 1982. Comparative carcinogenicity of o-toluidine hydrochloride and o-nitrotoluene in F-344 rats. Cancer Lett. 16(1): 103-108. - U.S. EPA. 1987. Health and Environmental Effects Profile for 2-Methylaniline and 2-Methylaniline Hydrochloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - 4.4-Methylenebis benzelamine - NTP (National Toxicology Program). 1983. Carcinogenesis studies of 4,4-methylenedianiline dihydrochloride in F344/N rats and B6C3Fl mice (drinking water studies). NTP-81-143 NIH Publ. No. 83-2504. NTP-TR-248. - U.S. EPA. 1984. Health and Environmental Effects Profile for Benzel-amine, 4,4-Methylenebis. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # 4,4'-Methylene-bis(N,N'-dimethyl)aniline - NCI (National Cancer Institute). 1979. Bloassay of 4,4'-methylenebis(N,N-dimethyl)benzenamine for possible carcinogenicity. NCI Carcinogen. Tech. Rep. Ser. No. 186. CAS 101-61-1. NCI-CG-TR-186. - U.S. EPA. 1985. Health and Environmental Effects Profile for 4,4'-Methylene-bis(N,N'-dimethyl)aniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Methylene chloride - NCA (National Coffee Association). 1983. Twenty-four month oncogenicity study of methylene chloride in mice. Prepared by Hazelton Laboratories, America Inc., Vienna, VA. Unpublished. - NTP (National Toxicology Program). 1986. Toxicology and carcinogenesis studies of dichloromethane (methylene chloride) (CAS No. 75-09-2) in F344/N rats and B6C3F1 mice (inhalation studies). NTP Tech. Rep. Ser. No. 396, DHHS (NIH) 86-2562. - U.S. EPA. 1984. Health Effects Assessment for Methylene Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Addendum to the Health Assessment Document for Dichloromethane (methylene chloride). Updated Carcinogenicity Assessment. Prepared by the Carcinogen Assessment Group, Office of Health and Environmental Assessment, Washington, DC. EPA 600/8-82-004FF. NTIS PB 86-123742. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Methyl Ethyl Ketone U.S. EPA. 1985. Health and Environmental Effects Profile for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1988. Updated Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## <u>Methylhydrazine</u> - Toth, B. and H. Shimizu. 1973. Methyl hydrazine tumorigenesis in Syrian golden hamsters and the morphology of malignant histiocytomas. Cancer Res. 33: 2744. - U.S. EPA. 1984. Health and Environmental Effects Profile for Methylhydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## 2-Methy1-5-nitroaniline - NCI (National Cancer Institute). 1978. Bioassay of 5-nitro-o-toluidine for possible carcinogenicity. NCI Carcinogen. Tech. Rep. Ser. No. 107. 102 p. - U.S. EPA. 1987. Health and Environmental Effects Profile for 2-Methyl-5-nitroaniline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and
Emergency Response, Washington, DC. ### Mirex - NTP (National Toxicology Program). 1987. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Mirex (CAS No. 2385-85-5) in F344/N Rats. NTP TR 313 (March, 1987 draft), NIH Publ. No. 87-2569. - U.S. EPA. 1987. Health Effects Assessment for Mirex. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ## Niagara Blue 4B U.S. EPA. 1987. Health and Environmental Effects Profile for Niagara Blue 4B. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Nickel Chovil, A., R.B. Sutherland and M. Halliday. 1981. Respiratory cancer in a cohort of sinter plant workers. Br. J. Ind. Med. 38: 327-333. Enterline, P.E. and G.M. Marsh. 1982. Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. J. Nat. Cancer Inst. 68: 925-933. Magnus, K., A. Andersen and A. Hogetveit. 1982. Cancer of respiratory organs among workers at a nickel refinery in Norway. Int. J. Cancer. 30: 681-685. - Peto, J., H. Cuckle, R. Doll, et al. 1984. Respiratory cancer mortality of Welsh nickel refinery workers. <u>In</u>: Nickel in the Human Environment: Proceedings of a Joint Symposium, March, 1983. IARC Scientific Publ. No. 53. IARC, Lyon, France. p. 36-46. - U.S. EPA. 1984. Health Effects Assessment for Nickel. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health Assessment Document for Nickel and Nickel Compounds. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-83-012F. NTIS PB 86-232212. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Nitrofurazone - Erturk, E., J.E. Morris, S.M. Cohen, et al. 1970. Transplantable rat mammary tumors induced by 5-nitro-2-furaldehyde semicarbazone and by formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl]hydrazide. Cancer Res. 30(5): 1409-1412. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 2-Nitropropane - Lewis, T.R., C.E. Ulrich and W.M. Busey. 1979. Subchronic inhalation toxicity of nitromethane and 2-nitropropane. J. Environ. Pathol. Toxicol. 2(5):233-249. - U.S. EPA. 1985. Health and Environmental Effects Profile for 2-Nitropropane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1986. Carcinogen Assessment Group (CAG) Profiles. Prepared by the Carcinogen Assessment Group. Available through RCRA/Superfund Docket. ## N-Nitrosodi-n-butylamine Bertram, J.S. and A.W. Craig. 1970. Induction of bladder tumors in mice with dibutylnitrosamines. Br. J. Cancer. 24: 352-359. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitrosamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0626h D-121 07/11/90 #### N-Nitrosodiethanolamine - Lijinsky, W. and R.M. Kovatch. 1985. Induction of liver tumors in rats by nitrosodiethanolamine at low doses. Carcinogenesis. 6: 1679-1681 - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N-Nitrosodiethylamine - Peto, R., R. Gray, P. Brantom and P. Grasso. 1984. Nitrosamine carcinogenesis in 5120 rodents: Chronic administration of 16 different concentrations of NDEA, NDMA, NPYR and NPIP in the water of 4440 inbred rats, with parallel studies on NDEA alone of the effect of age of starting (3, 6 or 20 weeks) and of species (rats, mice or hamsters). IARC Sci. Publ. 57: 627-665. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### N-Nitrosodimethylamine - Peto, R., R. Gray, P. Brantom and P. Grasso. 1984. Nitrosamine carcinogenesis in 5120 rodents: Chronic administration of 16 different concentrations of NDEA, NDMA, NPYR and NPIP in the water of 4440 inbred rats, with parallel studies on NDEA alone of the effect of age of starting (3, 6 or 20 weeks) and of species (rats, mice or hamsters). IARC Sci. Publ. 57: 627-665. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N-Nitrosodiphenylamine NCI (National Cancer Institute). 1979. Bloassay of N-nitrosodiphenylamine (CAS No. 86-30-6) for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 164, NIH 79-1720. NTIS PB298-275. - Peto, R., R. Gray, P. Brantom and P. Grasso. 1984. Nitrosoamine carcinogenesis in 5120 rodents: Chronic administration of 16 different concentrations of NDEA, NDMA, NPYR and NPIP in the water of 4440 inbred rats, with parallel studies on NDEA alone of the effect of age of starting 3, 6 or 20 weeks) and of species (rats, mice or hamsters). IARC Sci. Publ. 57: 627-665. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Nitrosamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-064. NTIS PB 81-117756. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1986b. Integrated Risk Information System (IRIS). Carcinogenicity Assessment for Lifetime Exposure to N-Nitrosodimethylamine. Online. (Verification date 10/29/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for N-Nitrosodiphenylamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N-Nitrosodi-n-propylamine Druckrey, H. 1967. Quantitative aspects in chemical carcinogens. <u>In:</u> Potential Carcinogenic Hazards from Drugs. UICC Monograph, Series 7. Springer-Verlag, Berlin. p. 60-78. - Druckrey, H., R. Puressman, S. Ivankovic and D. Schmahl. 1967. Organotropic carcinogenic effect of 65 different N-nitroso compounds on BD rats. Z. Krebsforsch. 69: 103-201. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## N-Nitrosomethylethylamine Druckrey, H. 1967. Quantitative aspects in chemical carcinogenesis. <u>In:</u> Potential Carcinogenic Hazards from Drugs. UICC Monograph, Series 7. Springer-Verlag, Berlin. p. 60-78. - Druckrey, H., R. Puressman, S. Ivankovic and D. Schmahl. 1967. Organotropic carcinogenic effect of 65 different N-nitroso compounds on BD rats. Z. Krebsforsch. 69: 103-201. - U.S. EPA. 1986. Health and Environmental Effects Profile for Nitrosamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ## N-Nitrosomethylvinylamine U.S. EPA. 1986. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental
Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## N-Nitrosopyrrolidine Preussmann, R., D. Schmahl and G. Eisenbrand. 1977. Carcinogenicity of N-nitrosopyrrolidine: Dose-response study in rats. Z. Krebsforsch. 90: 161-166. U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Parathion - U.S. EPA. 1987. Health Effects Assessment for Parathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1,2,3,4,5-Pentabromo-6-chlorocyclohexane Blair, E.H. 1981. TSCA sec 8(e) submission 8EHQ-0381-0393; 88-8100295 by Dow Chemical Co. Office of Toxic Substances, U.S. EPA, Washington, DC. U.S. EPA. 1985. Health and Environmental Effects Profile for 1,2,3,4,5-Pentabromo-6-chlorocyclohexane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Pentachloronitrobenzene Innes, J.R.M., B.M. Ulland, M.G. Valeria, et al. 1969. Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 41: 1101-1114. 0626h D-124 07/11/90 U.S. EPA. 1986. Health and Environmental Effects Profile for Pentachloronitrobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## o-Phenylenediamine U.S. EPA. 1985. Health and Environmental Effects Profile for o-Phenylene-diamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Weisburger, E.K., A.B. Russfield and F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines of derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2(2): 325-256. ## 2-Phenylphenol Hiraga K. and T. Fujii. 1981. Induction of tumours of the urinary system in F344 rats by dietary administration of sodium o-phenylphenate. Food Cosmet. Toxicol. 19(3): 303-310. U.S. EPA. 1984. Health and Environmental Effects Profile for 2-Phenyl-phenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Polybrominated biphenyls (PBBs) NTP (National Toxicology Program). 1983. Carcinogenesis studies of polybrominated biphenyl mixture in F344/N rats and B6C3Fl mice (gavage studies). Firemaster FF-1. Case No. 67774-32-7. NTP, Research Triangle Park, NC. U.S. EPA. 1989. Health and Environmental Effects Document for Polybrominated Biphenyls (PBBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Polychlorinated biphenyls (PCBs) Norback, D.H. and R.H. Weltman. 1985. Polychlorinated biphenyl induction of hepatocellular carcinoma in the Sprague-Dawley rat. Environ. Health Perspect. 60: 97-105. - U.S. EPA. 1984. Health Effects Assessment for PCBs. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Drinking Water Criteria Document for Polychlorinated Biphenyls (PCBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Document. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Propylene oxide Dunkelberg, H. 1982. Carcinogenicity of ethylene oxide and 1,2-propylene oxide upon intragastric administration to rats. Br. J. Cancer. 46: 924-933. NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of propylene oxide (CAS No. 75-56-9). in F344/N rats and B6C3F1 mice (inhalation studies). NTP Tech. Rep. Ser. No. 267. NTP, Research Triangle Park, NC. NIH Pub. No. 85-2527. Renne, R.A., W.E. Giddens, G.A. Boorman, R. Kovatch, J.E. Haseman and W.J. Clarke. 1986. Nasal cavity neoplasia in F344/N rats and (C57BL/6XC3H)F1 mice inhaling propylene oxide for up to two years. J. Natl. Cancer Inst. 77: 573-582. - U.S. EPA. 1985. Health and Environmental Effects Profile for Propylene Oxide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Quinoline Hirao, K., Y. Shinohara, H. Tsuda, et al. 1976. Carcinogenic activity of quinloine on rat liver. Cancer Res. 36: 329-335. U.S. EPA. 1985. Health and Environmental Effects Profile for Quinoline. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. RDX (Cyclonite) Lish, P.M., B.S. Levine, E.M. Furedi, E.M. Sagartz and V.S. Rac. 1984. Determination of the chronic mammalian toxicological effect of RDX: Twenty-four month chronic toxicity/carcinogenicity study of hexahydra-1,3,5-tri-nitro-1,3,5-triazine (RDX) in the B6C3F1 hybrid mouse. Phase VI. Vol. 1. ITT Research Institute, Chicago, IL. U.S. Army Medical Research and Development Command, Contract No. DAMD 17-79-C-9161. - U.S. EPA. 1988. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. - U.S. EPA, 1989. Health and Environmental Effects Document for RDX (Cyclonite). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Selenium sulfide NCI/NTP (National Cancer Institute/National Toxicology Program). 1980. Bioassay of selenium sulfide (gavage) for possible carcinogenicity. NCI Technical Report Series No. 194. NTP No. 80-17. U.S. EPA. 1989. Health and Environmental Effects Document for Selenium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response. Washington, DC. ## <u>Sima</u>zine - U.S. EPA. 1984. Health and Environmental Effects Profile for Simazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## Sodium diethyldithiocarbamate - BRL (Bionetics Research Laboratories). 1968. Evaluation of carcinogenic, teratogenic and mutagenic activities of selected pesticides on industrial chemicals. Vol. I. Carcinogenic study. Prepared for National Cancer Institute. U.S. Dept. Commerce, Nat. Tech. Info. Serv., Washington, DC. NTIS PB223159. - U.S. EPA. 1988. Health and Environmental Effects Document for Sodium diethyldithiocarbamate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Styrene - Jeney, G., M. Balner, J. Quast, et al. 1978. Two-year chronic inhalation toxicity and carcinogenicity study on monomeric styrene in rats. Dow Chemical Study for Manufacturing Chemists Association. December 6. - NCI (National Cancer Institute). 1979. National Cancer Institute Technical Report Series, No. 185: Bioassay of Styrene for Possible Carcinogenicity. Litton Bionetics, Inc., Kensington, MD. - U.S. EPA. 1989. Health Effects Assessment for Styrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. ## 2,3,7,8-TCDD - Kociba, R.J., D.G. Keyes, J.E. Bower et al. 1978. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl. Pharmacol. 46(2): 279-303. - U.S. EPA. 1984. Health Effects Assessment for 2,3,7,8-TCDD. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985a. Drinking Water Criteria Document for 2,3,7,8-Tetrachloro-dibenzo-p-dioxin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. EPA 600/X-84-194-I. NTIS PB 86-117983. - U.S. EPA. 1985b. Health Assessment Document for Polychlorinated Dibenzo-p-dioxin. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office,
Cincinnati, OH. EPA 600/8-84-014F. NTIS PB86-122546. #### 1.1.1.2-Tetrachloroethane - NTP (National Toxicology Program). 1983. Carcinogenesis studies of 1,1,1,2-tetrachloroethane (CAS No. 630-20-6) in F344/N rats and B6C3F1 mice (gavage studies). NTP-81-53; NIH Publ. No. 83-1793; NTP Technical Report Seroes No. 237. NTIS, Springfield, VA. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1,1,2,2-Tetrachloroethane - NCI (National Cancer Institute). 1978. Bioassay of 1,1,2,2-tetrachloro-ethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 27, DHEW No. (NIH) 78-827. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Tetrachloroethylene (Perchloroethylene) - NCI (National Cancer Institute). 1977. Bioassay of tetrachloroethylene (CAS No. 127-18-4) for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 13, DHEW No. (NIH) 78-813. - NTP (National Toxicology Program). 1986. Carcinogenesis bioassay of tetrachloroethylene (perchloroethylene) (CAS No. 127-18-4) in F344 rats and B6C3F1 mice (inhalation study). NTP Tech. Report. Ser. No. 311. - U.S. EPA. 1985. Drinking Water Criteria Document for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Document. NTIS PB 86-118114. - U.S. EPA. 1986. Addendum to the Health Assessment Document for Tetra-chloroethylene (Perchloroethylene): Updated Carcinogenicity Assessment. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA/600/8-82/005FA. External Review Draft. U.S. EPA. 1988. Updated Health Effects Assessment for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HOO9a. # p.a.a.a-Tetrachlorotoluene Fukada, K.S., Matsashita and K. Takemotol. 1979. Carcinogenicity of p-chlorobenzotrichloride. Proc of Japan Assoc. of Ind. Health. p. 330-331. U.S. EPA. 1987. Health and Environmental Effects Document for Selected Chlorinated Toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Tetrachlorovinphos (Stirofos) NCI (National Cancer Institute). 1978. Bioassay of Tetrachlorvinphos for Possible Carcinogenicity. NCI Carcinogen. Tech. Rep. Ser. No. 33. NTIS PB278650. U.S. EPA. 1984. Health and Environmental Effects Profile for Stirofos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. # Thallium and Compounds U.S. EPA. 1989. Carcinogen Risk Assessment Verification Endeavor (CRAVE) Work Group. Verified, pending concurrence on final coversheet and input onto IRIS. #### 2.4-Toluenediamine NCI (National Cancer Institute). 1979. Bloassay of 2,4-diaminotoluene for possible carcinogenicity. NCI Carcinogen. Tech. Rep. Ser. No. 162. U.S. EPA. 1986. Health and Environmental Effects Profile for 2,4-Toluene-diamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### o-Toluidine Hecht, S.S., K. El-Bayoumi, A. Rivenson and E. Finala. 1982. A Study of chemical carcinogenicity of o-toluidine hydrochloride and o-nitrosotoluene in rats. Cancer Lett. 16: 103-108. U.S. EPA. 1984. Health and Environmental Effects Profile for Toluidines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. ## p-Toluidine U.S. EPA. 1984. Health and Environmental Effects Profile for Toluidines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. Weisburger, E.K., A.B. Russfield and F. Homburger, et al. 1978. Testing of twenty-one environmental aromatic amines of derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2(2): 325-256. ## Toxaphene Litton Bionetics, Inc. 1978. Carcinogenic evaluation in mice: Toxaphene. Prepared by Litton Bionetics, Inc., Kensington, MD for Hercules, Inc., Wilmington, DE. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Toxaphene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-076. NTIS PB 81-117863. - U.S. EPA. 1987. Health Effects Assessment for Toxaphene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - 2,4,6-Trichloroaniline and 2,4,6-trichloroaniline hydrochloride Weisburger, E.L., A.B. Russfield, R. Homburger, et al. 1978. Testing of 21 environmental aromatic acmines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2: 235-258. - U.S. EPA. 1987. Health and Environmental Effects Document for Trichloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 1,1,2-Trichloroethane NCI (National Cancer Institute). 1978. Bioassay of 1,1,2-trichloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 74, DHEW No. NIH 78-1324. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1984. Health Effects Assessment for 1,1,2-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. 0626h D-130 07/11/90 Trichloroethylene Fukuda, K., K. Takemoto, H. Tsuruta. 1983. Inhalation carcinogenicity of trichloroethylene in mice and rats. Ind. Health 21: 243-254. Maltoni, C., G. Lefemine, G. Cotti. 1986. Experimental Research on Trichloroethylene Carcinogenesis. Archiv. Res. Industrial Carcinogenesis Series. Maltoni, C., Mehlman, M.A., Eds., Vol. V. Princeton Scientific Publishing Co., Inc., Princeton, NJ, p. 393. NCI (National Cancer Institute). 1976. Carcinogenesis bioassay of trichloroethylene. NCI Carcinogenesis Tech. Rep. Ser. No. 2, DHEW No. NIH 76-802. NTP (National Toxicology Program). 1983. Carcinogenesis bioassay of trichloroethylene. NTP Tech Rep. Ser. No. 243, NIH 83-1799. - U.S. EPA. 1985. Health Assessment Document for Trichloroethylene. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH Research Triangle Park, NC. EPA 600/8-82-006F. NTIS PB 85-249696. - U.S. EPA. 1987. Addendum to the Health Assessment Document for Trichloroethylene. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA 600/8-82-006FA. External Review Draft. - U.S. EPA. 1988. Updated Health Effects Assessment for Trichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. 2.4.6-Trichlorophenol NCI (National Cancer Institute). 1979. Bloassay of 2,4,6-trichlorophenol for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 155, DHEW No. NIH 79-1711. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-032. NTIS PB 81-117434. - U.S. EPA. 1984. Health Effects Assessment for 2,4,6-Trichlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0626h D-131 07/11/90
Trifluralin - Emmerson, J.L., E.C. Pierce, J.P. McGrath, et al. 1980. The Chronic Toxicity of Compound 36352 (Trifluralin) Given as a Compounds of the Diet to the Fischer 344 Rats for Two Years. Studies R-87 and R-97 (unpublished study received September 18, 1980 under 1471-35; submitted by Elanco Products Co., Division of Eli Lilly and Co., Indianapolis, IN). - U.S. EPA. 1984. Health and Environmental Effects Profile for Trifluralin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC. - U.S. EPA. 1990. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Trimethyl phosphate - NCI (National Cancer Institute). 1978. Bioassay of trimethylphosphate for possible carcinogenicity. NCI Carcinogen. Tech. Rep.. Ser. No. 81. - U.S. EPA. 1985. Health and Environmental Effects Profile for Trimethyl Phosphate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Vinyl chloride - ATSDR (Agency for Toxic Substances and Disease Registry). 1988. First Post-Comment Draft. Revised Toxicological Profile for Vinyl Chloride. U.S. Public Health Service. Public Comment Draft. - Feron, V.J., C.F.M. Hendriksen, A.J. Speek et al. 1981. Lifespan oral toxicity study of vinyl chloride in rats. Food Cosmet. Toxicol. 19(3): 317-333. - Maltoni, C., G. Lefemine, A. Ciliberti et al. 1980. Vinyl chloride carcinogenicity bioassays (BT project) as an experimental model for risk identification and assessment in environmental and occupational carcinogenesis. Epidemiol. Anim. Epidemiol. Hum: Cas Chlorure Vinyle Monomere, (Reun Club Cancerog Chim), 20th, Meeting Date 1979, p. 11-112. Publ Essent, Paris, France. - Maltoni, C., G. Lefemine, A. Ciliberti et al. 1981. Carcinogenicity bioassays of vinyl chloride monomer: A model of risk assessment on an experimental basis. Environ. Health Perspect. 41: 329. - U.S. EPA. 1984. Health Effects Assessment for Vinyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985a. Drinking Water Criteria Document for Vinyl Chloride. Office of Drinking Water, Washington, DC. Final Draft. NTIS PB86-118320. 0626h D-132 07/11/90 U.S. EPA. 1985b. Health and Environmental Effects Profile for Chloroethene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC.