Health Effects Assessment Summary Tables Second Quarter FY 1989 #### DISCLAIMER This report is intended for internal U.S. Environmental Protection Agency distribution only. The information contained herein has been taken from final documents prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, Washington, DC. These documents were reviewed in accordance with Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. 0618h ii 04/05/89 #### TABLE OF CONTENTS | | Page | |--|------| | CHANGES FROM ECAO-CIN 12/88 VERSION | 1 | | INTRODUCTION: USER'S GUIDE | 3 | | HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE A: SUBCHRONIC AND CHRONIC TOXICITY (OTHER THAN CARCINOGENICITY) | A-1 | | HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY | B-1 | | REFERENCES | C-1 | #### 3/89 UPDATE OF HEA SUMMARY TABLES: CHANGES FROM 12/88 ECAO-CIN VERSION #### GENERIC ISSUES: There were no changes in format or the groundrules for compiling the HEA Summary Tables from the 12/88 update. #### CHEMICAL-SPECIFIC CHANGES TO TABLE A: OTHER THAN CARCINOGENICITY #### **Arsenic** The oral RfD value that was verified on 5/25/88 (1E-3) is currently under review for issues such as variability of exposure data and application of uncertainty factors. Therefore both the chronic and subchronic RfD values have been deleted from the table. #### DDT The U.S. EPA (1987) citation in the Reference column has been changed to U.S. EPA (1988) to reflect the date of the updated Health Assessment Document, and this latter reference has been added to the References Section. #### 1,2-Dichlorobenzene The subchronic oral reference dose of 4E-1 was, a typographical error and has been corrected to 9E-1. A new chronic oral reference dose of 9E-2 has been recently verified by the U.S. EPA (1989). The new oral RfD has been incorporated into Table A, as well as appropriate revisions in all relevant columns. The U.S. EPA (1985b) citation has been deleted. #### CHEMICAL-SPECIFIC CHANGES TO TABLE B: CARCINOGENICITY #### Arsenic The footnote indicator \underline{K} has been added to the oral potentcy slope column to reflect the fact that an oral unit risk of $5E-5(\mu/2)^{-1}$ has been proposed by the Risk Assessment Forum. This recommendation has been scheduled for SAB review and the HEA summary table will be updated when the review is completed. #### Asbestos The slope factor has been changed to 2.4E-l (fibers/ml)-l to reflect the new value recently verified by the Crave Work Group (11/30/88), but not yet available on IRIS. The Monthly CRAVE Status Report (2/28/89) indicates that the Work Group still needs to clarify the use of 10% of risk of lung tumors as the risk of GI tumors. The U.S. EPA (1987) citation was deleted. #### **Hexachlorobenzene** A new oral slope factor of 1.7E+0 based on the Cabral et al. (1977) study has been verified. This revised oral slope factor has also been verified for inhalation exposure. Pertinent changes were made in all columns of Table B. The Lambrecht et al. references have been deleted from the list of References, whereas the Cabral et al. (1977) has been added. Methylene chloride The synonym "dichloromethane", which is also used for methylene chloride, has been added to the Compound Identification column in Table B. PCBs The name "polychlorinated biphenyls" has been added under the acronym PCB in the Compound Identification column in Table B. #### 2,3,7,8-TCDD The oral slope factor of 1.56+5 has now been verified by the CRAVE Work Group and has also been adopted as slope factor for inhalation exposure. Pertinent changes were made in all relevant columns. 04/17/89 0622h -2INTRODUCTION: USER'S GUIDE The Health Effects Assessment Summary Tables A & B summarize reference doses (RfDs) for toxicity due to subchronic and chronic inhalation and oral exposure (Table A) and q_1^* and unit risk slope values for carcinogenicity due to lifetime inhalation and oral exposure (Table B). The chemicals included in the tables are the subjects of Health Effects Assessment documents (HEAs) and Health and Environmental Effects Documents (HEEDs). The information in HEA Summary Tables A and B is excerpted from the HEAs and HEEDs and expanded and updated quarterly to include chemicals addressed in HEAs and HEEDs that have been finalized since the last update and to bring existing values into conformity with more recent EPA assessments, especially RFD or CRAVE Work Group verifications. The references listed for each chemical in the Reference column and References section represent not only the study or studies that are the basis for the RfD, $\boldsymbol{q_1}^{\star}$ or unit risk slope, but also the U.S. EPA reference that is the source of the Agency analysis or risk assessment values and the IRIS citation for values verified by the RfD or CRAVE work group. Verified values are indicated in the tables by a footnote. The RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of the daily exposure to the human population that is likely to be without an appreciable risk of deleterious effect during a portion of the lifetime, in the case of a subchronic RfD (designated "RfD_S" in Table A and formerly called AIS), or during the lifetime, in the case of a chronic RfD (designated "RfD" in Table A and formerly called AIC). The RfD values are listed in Table A in the column under "Reference Dose". The RfD is 0618h -3- 04/14/89 derived by dividing the NOAEL (or LOAEL if a suitable NOAEL is not available) for subchronic or chronic exposure by an uncertainty factor (UF) times a modifying factor (MF): In Table A, the NOAEL or LOAEL that is the basis for the RfD value is listed under "Exposure". When a NOAEL or LOAEL is reported in terms of exposure concentration and schedule, the calculated mg/kg/day dose is given in parentheses. The species in which the NOAEL or LOAEL was determined and the effect of concern are also described, and the reference for the study is presented. In the "Exposure", "Effect of Concern" and "Reference" columns, information for the inhalation route is given first, separated from information for the oral route by a semicolon or slash. The uncertainty factor used in calculating the RfD reflects scientific judgment regarding the various types of data used to estimate RfD values. An uncertainty factor of 10 is usually used to account for variations in human sensitivity when extrapolating from valid human studies involving subchronic (for RfD_s) or long-term (for RfD) exposure of average, healthy subjects. An additional 10-fold factor is usually used for each of the following extrapolations: from long-term animal studies to the case of humans, from a LOAEL to a NOAEL, and from subchronic studies to a chronic RfD. In order to reflect professional assessment of the uncertainties of the study and data base not explicitly addressed by the above uncertainty factors (e.g., completeness of the overall data base), an additional 0618h -4- 04/14/89 uncertainty factor or modifying factor ranging from >1 to 10 is applied. The default value for this modifying factor is 1. Table A lists the uncertainty factor and modifying factor, multiplied together to form a single factor, under the heading "Uncertainty Factor". For example, the uncertainty factor of 500 listed for the chronic oral RFD for cyanide reflects an uncertainty factor of 100 and a modifying factor of 5; the uncertainty factor of 100 listed for the subchronic inhalation RFD for bromomethane reflects an uncertainty factor of 100 and a modifying factor of 1. RfD values are specific for the route of exposure for which they are listed on Table A. In the few instances where an oral RfD has been extrapolated from inhalation data, the extrapolation is indicated by footnoting the value. RfD values for inhalation exposure are reported both as a concentration in air (in mg/m³ for continuous, 24 hours/day exposure) and as a corresponding inhaled dose (in mg/kg/day). RfD values for oral exposure are reported as mg/kg/day. An oral RfD value can be converted to a corresponding concentration in drinking water, assuming human body weight of 70 kg and water consumption of 2 %2/day, as follows: The RfD is used as a reference point for gauging the potential effects of other doses. Usually, doses that are less than the RfD are not likely to be associated with health risks. As the frequency of exposures exceeding the RfD increases, and as the size of the excess increases, the probability increases that adverse health effects may be observed in a human population. Nonetheless, a clear distinction that would categorize all doses below the RfD as "acceptable" (risk-free) and all doses in excess of the RfD as "unacceptable" (causing adverse effects) cannot be made. In addition, RfD values, and particularly those with limitations in the quality or quantity of supporting data, are subject to change as additional information becomes available. When RfD values are listed for chemicals that are carcinogens, the entry under "Effect of Concern" in Table A will list cancer and will refer to lable B if additional information concerning carcinogenicity is available in that table. RfD values that have been derived for carcinogens are based on noncancer endpoints and should not be assumed to be protective against carcinogenicity. In assessing the carcinogenic potential of a chemical, the Carcinogen Assessment Group (CAG) of the U.S. EPA classifies the chemical into one of the following groups, according to the weight of evidence from epidemiological studies and animal studies: - Group A Human Carcinogen (sufficient evidence of carcinogenicity in humans) - Group
B Probable Human Carcinogen (Bl limited evidence of carcinogenicity in humans; B2 sufficient evidence of carcinogenicity in animals with inadequate evidence in humans) - Group C Possible Human Carcinogen (limited evidence of carcinogenicity in animals, in the absence of human data) - Group D Not Classifiable as to Human Carcinogenicity (inadequate or no evidence) - Group E Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies). These classifications are shown under "EPA Group" on Table B. Quantitative carcinogenic risk assessments are performed for chemicals in Groups A and B, and on a case-by-case basis for chemicals in Group C. Cancer risk and slope (potency) factors are estimated through the use of mathematical extrapolation models, most commonly the linearized multistage model, for estimating the largest possible linear slope (within the 95% confidence limit) at low extrapolated doses that is consistent with the data. The cancer potency or risk is characterized as an upper-bound estimate: i.e., the true risk to humans, while not identifiable, is not likely to exceed the upper-bound estimate and in fact may be lower. Cancer potency factors listed in Table B include the following: slope factor or q_1^* = risk per unit dose = risk per mg/kg/day unit risk or unit risk slope = risk per concentration unit in air or drinking water = risk per $\mu g/m^3$ (air) or risk per $\mu g/2$ (water) The unit risk estimates can be calculated by dividing the q_1^* by 70 kg and multiplying by the inhalation rate (20 m 3 /day) or the water consumption rate (2 ℓ /day), respectively, for risk associated with unit concentration in air or water. Hence, risk per $$\mu g/m^3$$ (air) = q_1 * x $\frac{1}{70 \text{ kg}}$ x 20 m³/day x 10⁻³ risk per $$\mu g/2$$ (water) = $q_1 * x \frac{1}{70 \text{ kg}} \times 2 2/\text{day} \times 10^{-3}$ Quantitative estimates of carcinogenic risk are listed under " q_1 * or Unit Risk Slope" in Table B. Information on the study and data set used for estimation of the cancer potency factor is given in the other columns of Table 8. In the "Exposure" and "Reference" columns, information for the inhalation route is given first, separated from information for the oral route by a semicolon or slash. Cancer potency factors are specific for the route of exposure for which they are listed on Table B. Footnotes are used in Table B to indicate those instances in which the values for inhalation or oral exposure are based on extrapolation from another route of exposure. To estimate risk-specific concentrations in air from the unit risk slope in air as presented in Table B, the specified level of risk is divided by the unit risk slope for air. Hence the air concentration (in $\mu g/m^3$) corresponding to an upper-bound increased lifetime cancer risk of 1×10^{-5} is calculated as follows: $$\mu g/m^3$$ in air = $$\frac{1 \times 10^{-5}}{\text{unit risk slope in } (\mu g/m^3)^{-1}}$$ To estimate risk-specific concentrations in drinking water from the oral q_1^* values presented in Table B, the specified level of risk is multiplied by 70 kg and divided by the q_1^* and by 2 L/day. Hence, the water concentration corresponding to an upper-bound increased lifetime cancer risk of 1×10^{-5} is calculated as: mg/2 in water = $$\frac{1 \times 10^{-5} \times 70 \text{ kg}}{q_1^* \text{ in } (\text{mg/kg/day})^{-1} \times 2 \text{ 2/day}}$$ | | Eveneven | C4- | _ | | Reference D | ose | | _ | | |---|---|----------------------|--------|--|---|---------------------|---------------------------|----------------|--| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Ora | | Acenaphthene | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1987 | | Acenaphthylene | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1987 | | Acetone
subchronic (RfD _S) | NA; 100 mg/kg/day
for 90 days by
gavage | NA | rat | NA; increased
liver and kidney
weight, nephro-
toxicity | ND | NA | NA | 100 | U.S. EPA, 1988/
U.S. EPA,
1986a,b, 1988 | | chronic (RfD) | NA; 100 mg/kg/day
for 90 days by
gavage | NA | rat | NA; increased
liver and kidney
weight, nephro-
toxicity | ND | 1E-1ª | NA | 1000 | U.S. EPA, 1988/
U.S. EPA,
1986a,b, 1988 | | cetonitrile
subchronic (RfD _S) | 100 ppm (168 mg/m³)
6 hours/day, 65/92
days (39.0 mg/kg/day);
100 ppm (168 mg/m³)
6 hours/day, 65/92 days
(19.3 mg/kg/day) | mouse | mouse | elevated relative
liver weight;
elevated relative
liver weight | (, | 6E-2 ^b | 300 | 300 | Coate, 1983b;
U.S. EPA, 1987a,
Coate, 1983b;
U.S. EPA, 1987a | | chronic (RFD) | 100 ppm (168 mg/m³)
6 hours/day, 65/92 days
(39.0 mg/kg/day); 100
ppm (168 mg/m³) 6
hours/day, 65/92 days
(19.3 mg/kg/day) | mouse | mouse | decreased RBC counts and hemato crit and hepatic lesions; decrease RBC counts and hematocrit and hepatic lesions | | 6E-3a.b | 3000 | 3000 | Coate, 1983b;
U.S. EPA, 1987a/
Coate, 1983b;
U.S. EPA,
1987a,b | | celophenone
subchronic (RfD _S) | 0.007 mg/m ³ continuously for 70 days (0.0045 mg/kg/day); 10,000 ppm diet (8450 ppm, correcting for volatilization) for 17 weeks (423 mg/kg/day) | rat | ral | congestion of cardiac vessels and liver dystrophy, reduced albumin/globulin ratio; none observed | 2E-4(5E-5) | 1E+0 | 100 | 300 | Imasheva, 1966;
U.S. EPA, 1987a/
Hagan et al.,
1967; U.S. EPA,
1987b | | | £ | 6 1 | _ | 566-A -6 B | Reference D | ose | | | | |--|---|----------------------|---------|---|---|---|----------------------------------|------|---| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Ora) | Reference
Inhalation/Oral | | Acetophenone
chronic (RfD) | 0.007 mg/m ³ continuously for 70 days (0.0045 mg/kg/day); 10,000 ppm diet (8450 ppm, correcting for volatilization) for 17 weeks (423 mg/kg/day) | rat | rat | congestion of cardiac vessels and liver dys-trophy, reduced albumin/globulin ratio; none observed | 2E-5(5E-6) | 1E-1ª | 1000 | 3000 | Imasheva, 1966;
U.S. EPA, 1987a
Hagan et al.,
1967; U.S. EPA,
1987b | | Adiponitrile | | | DATA IN | IADEQUATE FOR QUANTII | ATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1987 | | Aldrin
subchronic (RFD _S) | NA; 0.5 ppm in diet
for 2 years (0.025
mg/kg/day) | NA | rat | NA; liver lesions | ND | 3E - 5 | NA | 1000 | NA/Fitzhugh,
et al., 1964;
U.S. EPA, 1985 | | chronic (RfD) | MA; 0.5 ppm in diet
for 2 years (0.025
mg/kg/day) | NA | rat | NA; liver lesions
(Cancer: see Table
B) | ND . | 3E - 5 a | NA | 1000 | NA/F1tzhugh
et al., 1964;
U.S. EPA, 1985 | | Aluminum | | | DATA IN | ADEQUATE FOR QUANTII | ATIVE RISK ASSESSMEN | т | | | U.S. EPA, 1987 | | Ammonta
subchrontc (RfD _S)
9934 mg/s in drinking | 0.36 mg/m ³ continuous;
water | human | human | odor threshold;
taste threshold | 0.36 ^c | 34 mg/L
in drinki
waterd | none
ng | none | Carson et al.,
1981; U.S. EPA,
1987/Campbell
et al., 1958;
U.S. EPA, 1981,
1987; WHO, 1986 | | chronic (RFD) | 0.36 mg/m ³ continuous;
34 mg/t in drinking
water | human | human | odor threshold;
taste threshold | 0.36 ^c | 34 mg/1
in drinkli
water ^d | none
ng | none | Carson et al.,
1981; U.S. EPA,
1987/Campbell
et al., 1958;
U.S. EPA, 1981,
1987; WHO, 1986 | | | _ | | | | Reference 0 | ose | | _ | _ | |---|---|--------------------------|-----|---|-----------------------------------|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Spec 1e
Inha la t ion | | Effect of Concern
Inhalation; Oral | [nha]atlon
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Antimony and Compounds
Antimony | | | | | | | | | | | subchronic (RfD _S) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | ND ^e | 4E-4 | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985b | | chronic (RfD) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day) | NA | rat |
cancer; reduced
lifespan, altered
blood chemistries | | 4E -4ª | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1885a,b, 1987 | | Antimony pentoxide subchronic (RfD _S) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Bs/kg/day, 0.46 mg Sb ₂ O ₅ kg/day | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | | 5E-4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985b | | chronic (RFD) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day,
0.46 mg Sb ₂ 0 ₅ kg/day) | NA | rat | cancer; reduced
11fespan, altered
blood chemistries | ND ^e | SE-4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1985a,b. 1987 | | Antimony potassium tartrate | | | | | | | | | | | subchronic (RfD _S) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day, 0.93 mg SbK tartrate/kg/day) | NA | ral | cancer; reduced
lifespan, altered
blood chemistries | | 9E -4f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985b | | | Exposure | Spec 1e | | Effect of Concern | Reference Dose | | Uncertainty factor | | Deference | |---|---|------------|-----|---|---|---------------------|--------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Inhalation | Ora1 | Reference
Inhalation/Oral | | Antimony potassium
tartrale | | | | | | | | | | | chronic (RfD) | NA; 5 ppm Sb from
antimony potassium
tartrate in drinking
water, lifetime
(0.35 mg Sb/kg/day,
0.93 mg SbK tartrate/
kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | NDe | 9E - 4 f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985b
1987 | | Antimony tetroxide subchronic (RfD _S) | NA; 5 ppm Sb from ant1-
mony potassium tartrate
in drinking water, life-
time (0.35 mg Sb/kg/day,
0.44 mg Sb ₂ O ₄ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | MDe | 4E-4F | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1985b | | chronic (RfD) | NA; 5 ppm Sb from antl-
mony potassium tartrate
in drinking water, life-
time (0.35 mg Sb/kg/day,
0.44 mg Sb ₂ O ₄ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | ND¢ | 4E-4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1985a,b, 1987 | | Antimony trioxide subchronic (RfD _S) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day, 0.42 mg Sb203/kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | ND® | 4E-4 ^f | NA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1985b | | chronic (RfD) | NA; 5 ppm Sb from antimony potassium tartrate in drinking water, lifetime (0.35 mg Sb/kg/day, 0.42 mg Sb ₂ O ₃ /kg/day) | NA | rat | cancer; reduced
lifespan, altered
blood chemistries | MDe | 4E-4 ^f | MA | 1000 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA,
1985a,b, 1987 | | | _ | | | | Reference L |)ose | | f 1 | Defeates | |--|--|----------------------|-------|---|-----------------------------------|---------------------|----------------------------------|------|--| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Oral | Reference
Inhalation/Orat | | Arsenic subchronic (RFD _S) | NA; l μg/kg/day | NA | human | NA; keratosis and
hyperpigmentation | ND | NA | NA | 1 | U.S. EPA, 1984/
Tseng, 1971 | | chronic (RfD) | NA; 1 µg/kg/day | NA | human | cancer; keratosis
and hyperpigmenta
tion (cancer:
see lable B) | ND
- | NA | NA | 1 | U.S. EPA, 1984/
Tseng, 1977 | | 8arlum
subchronic (RfOs) | 1.15 mg BaCO ₃ /m ³ (0.80 mg Ba/m ³) 4 hours/day for 4 months (0.14 mg Ba/kg/day); 100 ppm Ba from BaCl ₂ (5.1 mg Ba/kg/day) in drinking water for ≤16 months | rat | rat | feloloxicity;
increased blood
pressure | 5E-3 (1E-3) | 5E -2 | 180 | 100 | Tarasenko et
al., 1977;
U.S. EPA, 1984/
Perry et al.,
1983; U.S. EPA,
1985b | | chronic (RfD) | 1.15 mg BaCO ₃ /m ³ (0.80 mg/Ba/m ³) 4 hours/day for 4 months (0.14 mg Ba/kg/day); 100 ppm Ba from BaCl ₂ (5.1 mg Ba/kg/day) in drinking water for <16 months | rat | rat | fetotoxicity;
increased blood
pressure | 5E-4 (1E-4) | 5E-2ª.9 | 1000 | 100 | Tarasenko et
al., 1977;
U.S. EPA, 1984/
Perry et al.,
1983; U.S. EPA,
1984, 1985a,b | | Benzidine
subchronic (RfDs) | MA; 160 ppm benzidine dihydrochloride in drinking water for 33 months (27.2 mg/kg/day) | NA | mouse | NA; brain cell
and liver cell
changes | MD | 3£ - 3ª | NA | 1000 | U.S. EPA, 1987a/
Littlefield
et al., 1983;
U.S. EPA, 1987b | | chronic (RfD) | NA; 160 ppm benzidine dihydrochloride in drinking water for 33 months (27.2 mg/kg/day) | HA. | mouse | NA; brain cell
and liver cell
changes (Cancer:
see Table B) | ND | 3E - 3 ª | MA | 1000 | U.S. EPA, 1987a/
Littlefield
et al., 1983;
U.S. EPA, 1987b | | | Cunnatura | C | | £55-14 . £ 0 | Reference D | lose | | | | |--|---|----------------------|-------|---|-----------------------------------|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Benzolc acld
subchronic (RfD _S) | NA; per capita daily
dietary intake of
benzoic acid equiva-
lent to 312 mg/day | NA | human | NA; irritation,
malaise | ND | 4E+0 | NA | 1 | U.S. EPA, 1987a
FASEB, 1973;
U.S. EPA, 1987a | | chronic (RfD) | MA; per capita daily
dietary intake of
benzoic acid equiva-
lent to 312 mg/day | NA | human | NA, irritation,
malaise | ND | 4E+0ª | NA | 1 | U.S. EPA, 1987a
FASEB, 1973;
U.S. EPA,
1987a,b | | Beryllium
subchronic (RfD _S) | NA; 5 ppm in drinking water for lifetime (0.54 mg/kg/day) | NA | rat | NA; none observed | ND | 56-3 | MA | 100 | U.S. EPA, 1987/
Schroeder and
Mitchener, 1975
U.S. EPA, 1985 | | chronic (RFD) | NA; 5 ppm in drinking
water for lifetime
(0.54 mg/kg/day) | NA | rat | NA; none observed
(Cancer: see
Table B) | ND | 5£ -3ª | NA | 100 | U.S. EPA, 1987/
Schroeder and
Mitchener, 1975
U.S. EPA, 1985 | | Bisphenol A
subchronic (RFD _S) | NA; O-1000 ppm for
18 weeks, 2 generations
(NOAEL 750 ppm =
62 mg/kg/day) | NA | rat | NA; reduced body
weight | ND | 6E-1 | NA | 100 | U.S. EPA, 1988a,
U.S. EPA, 1984c,
1988a | | chronic (RFD) | NA; D, 1,000, 2,000 ppm
{1000 ppm = 50 mg/kg/day} | | rat | NA; reduced body
welght | ND | 5E -2ª | NA | 1,000 | U.S. EPA, 1988a/
NIP, 1982;
U.S. EPA,
1988a,b | | Boron
subchronic (RfD _S) | NA; 350 ppm in diet
(8.75 mg/kg/day) for
2 years | NA | dog | NA; testicular
lesions | ND | 9E -2 | NA | 100 | U.S. EPA, 1987/
Weir and
Fisher, 1972;
U.S. EPA, 1987 | | chronic (RfD) | NA; 350 ppm in diet
(8.75 mg/kg/day) for
2 years | NA | dog | NA; testicular
lesions | ND | 9E -2 | NA | 100 | U.S. EPA, 1987/
Welr and
Fisher, 1972;
U.S. EPA, 1987 | | | | | | | Reference D | ose | | • • | | |--|---|-----------------------|-------|--|---|------------------------|----------------------------------|----------------|--| | Compound | Exposure
Inhalation; Oral | Spec 16
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Bromomethane
subchronic (RfD _S) | 65 mg/m ³ 7.5 hours/ day, 5 days/week for 6 months (7.6 mg/kg/ day); 2 mg/kg 5 days/ week for 13 weeks (1.4 mg/kg/day) | rabbli | rat | paralysis and lung
damage; hyperplasi
of forestomach
epithelium | | 1E-2 | 100 | 100 | Irish et al.,
1940; U.S. EPA,
1987/Danse
et al., 1984
U.S. EPA, 1987 | | chronic (RFD) | 65 mg/m ³ 7.5 hours/
day, 5 days/week for
6 months (7.6 mg/kg/
day); 2 mg/kg 5 days/
week for 13 weeks
1.4 mg/kg/day) |
rabblt | rat | paralysis and lung
damage; hyperplasi
of forestomach
epithelium | |)E-3 a | 1000 | 1000 | Irish et al.,
1940/Danse
et al., 1984;
U.S. EPA, 1986a
1987, 1988 | | Cadmium
subchronic (RfD _S) | NA; NA | NA | NA | cancer; NA | ND | NDh | NA | NA | U.S. EPA, 1984/
U.S. EPA, 1984 | | chronic (RfD) | NA; NA | NA | human | cancer (see Summar
Table B); renal
damage | y ND | 1E-3 (foo
5E-4 (wat | d) ¹ .ĴNA
er) | 10 | U.S. EPA, 1984/
U.S. EPA,
1980b, 1988 | | Caprolactam
subchronic (RfD _S) | NA; 0.1% dlet 90 days
(50 mg/kg/day) | NA | rat | NA; renal effects | ND | 5E-1 | NA | 100 | U.S. EPA, 1988a
Powers et al.,
1984; U.S. EPA,
1988a | | chronic (RfD) | NA; 1000 ppm for 3
generations
(50 mg/kg/day) | NA | rat | NA; reduced body
weight | ND | 5E-1ª | NA | 100 | U.S. EPA, 1988a
Serota et al.,
1984; U.S. EPA,
1988a,b | | Carbon tetrachloride
subchronic (RfD _S) | NA; 1 mg/day, 5 days/
week for 12 weeks
(0.71 mg/kg/day) | NA | rat | NA; liver lesions | ND | 7E - 3 | NA | 100 | U.S. EPA, 1984/
Bruckner
et al. 1986;
U.S. EPA, 1985 | | chronic (RfD) | NA; 1 mg/day, 5 days/
week for 12 weeks
{0.71 mg/kg/day} | NA | rat | NA; liver lesions
(Cancer: see
Table B) | ND | 7E -48 | NA | 1000 | U S. EPA, 1984/
Bruckner
et al., 1986;
U.S. EPA, 1985 | | | Exposure | Spec 1e | | Effect of Concern | Reference (| ose | llaces to to t | Frak e- | 0-6 | |--|--|------------|---------|---|---|---------------------|---------------------------------|----------------|--| | Compound | Inhalation; Oral | Inhalation | | Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertaini</u>
Inhalation | | Reference
Inhalation/Oral | | Chloral
subchronic (RfD _S) | NA; 15.7 mg/kg/day
from drinking water | NA | mouse | NA; hepatotoxicity
(Cancer: CAG
Group C, data in-
adequate to
estimate potency) | ND | 2E - 2 | NA | 1000 | U.S. EPA, 1980a/
Sanders
et al., 1982;
U.S. EPA, 1988a | | chronic (RfD) | NA; 15.7 mg/kg/day
from drinking water | NA | mouse | NA; hepatotoxicity
(Cancer: CAG
Group C, data in-
adequate to
estimate potency) | ND | 26 - 3ª | NA | 10,000 | U.S. EPA, 1988a/
Sanders
et al., 1982;
U.S. EPA,
1988a,b | | Chlordane
subchronic (RfD _S) | NA; 1 ppm in diet for
130 weeks (0.045
mg/kg/day) | NA | rat | NA; liver necrosis | ND | 5E - 5 | NA | 1000 | U.S. EPA, 1988/
Velsicol
Chemical Corp.,
1983; U.S. EPA,
1985 | | chronic (RfD) | NA; 1 ppm in diet for
130 weeks (0.045
mg/kg/day) | NA | rat | NA; liver necrosis
(Cancer: see
Table B) | ND | 5E -5 a | NA | 1000 | U.S. EPA, 1988/
Velsicol
Chemical Corp.,
1983; U.S. EPA,
1985 | | Chlorinated cyclopen
Chlorocyclopentadien | | | DATA IN | ADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | Ţ | | | U.S. EPA, 1988 | | Hexachlorocyclo-
pentadlene | | | | | | | | | | | subchronic (RfD _S) | O.15 ppm (1.67 mg/m ³
6 hours/day, 5 days/
week for 13 weeks (0.2
mg/kg/day); 10 mg/kg,
5 days/week for 13
weeks (7.1 mg/kg/day) | rat | rat | respiratory tract
lesions; fore-
stomach lesions | 7E-4 (2E-4) | 7E-2 | 100 | 100 | Battelle
Northwest
Laboratorles,
1984; U.S. EPA,
1988/SRI, 1981a;
Abdo et al.,
1984; U.S. EPA, | | | | | | | Reference D | lose | | | 0.6 | |---|--|----------------------|------|--|-----------------------------------|-------------------------|----------------------------------|-----------------|---| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day)
 | <u>Uncertainty</u>
Inhalation | Practor
Oral | Reference
Inhalation/Oral | | Hexach lorocyc lo-
pentad lene | _ | | | _ | | • | | | | | chronic (RFD) | 0.15 ppm (1.67 mg/m ³ b hours/day, 5 days/week for 13 weeks (0.2 mg/kg/day); 10 mg/kg, 5 days/week for 13 weeks (7.1 mg/kg/day) | rat | rat | respiratory tract
lesions; fore-
stomach lesions | 7E-5 (2E-5) | 7E - 3ª | 1,000 | 1,000 | 8attelle
Northwest
Laboratorles,
1984; U.S. EPA,
1988/SRI, 1981a
Abdo et al.,
1984; U.S. EPA,
1985, 1988 | | Pentachlorocyclo-
pentadiene | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | iT | | | U.S. EPA, 1988 | | Tetrachlorocyclo-
pentadlene | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | I T | | | U.S. EPA, 1988 | | Trichlorocyclo-
pentadiene | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1988 | | Chlorinated phenols | | | | | | | | | | | 2-Chlorophenol
subchranlc (RfD _S) | NA; 50 ppm in drinking
water from weaning
through birth of first
litter (5 mg/kg/day) | NA | rat | NA; reproductive effects | NO | 5E-3 | NA | 1000 | U.S. EPA,
1987a,b/Exon an
Koeller, 1982;
U.S. EPA,
1987a,b | | chronic (RFD) | NA; 50 ppm in drinking
water from weaning
through birth of first
litter (5 mg/kg/day) | NA | rat | NA; reproductive effects | ND | 5E - 3ª | NA | 1000 | U.S. EPA,
1987a,b/Exon an
Koeller, 1982;
U.S. EPA,
1987a,b, 1988 | | Chlorophenol, 3- and 4- | | | DATA | INADEQUATE FOR QUANTI | TATIVE RISK ASSESSME | NT | | | U.S. EPA, 1987 | | 2.4-Dichlorophenol subchronic (RfD _S) | NA; 3 ppm in drinking
water for 2 generations
(0.3 mg/kg/day) | NA | rat | MA; Immune functi | on NB | 3E - 3 | NA | 100 | U.S. EPA,
1987a,b/Exon an
Koller, 1985;
U.S. EPA,
1987a,b | 0059h | | | | | | Reference D | ose | | | | |--|---|----------------------|--------|---|-----------------------------------|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | 2.4-Dichlorophenol
chronic (RfD) | NA; 3 ppm in drinking
water for 2 generations
(0.3 mg/kg/day) | на | rat | NA; 1mmune functi | on ND | 3E - 3 ^a | NA | 100 | U.S. EPA,
1987a,b/Exon and
Koller, 1985;
U.S. EPA, 1986
1987a,b. | | Oichlorophenol, 2,3-,
2,5-, 2,6-, 3,4- and 3, | ,5- | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | 2,3,4,6-Tetrachloropher subchronic (RfD _S) | nol
NA; 25 mg/kg/day for
90 days | NA | rat | NA; increased liv
weights and centr
lobular hypertrop | 1- | 3E-1 | NA | 100 | U.S. EPA, 1987a,
U.S. EPA, 1986,
1987b | | chronic (RFD) | NA; 25 mg/kg/day for
90 days | NA | rat | NA; increased liv
weights and centr
lobular hypertrop | 1- | 3E - 2ª | NA | 1000 | U.S. EPA, 1987a/
U.S. EPA, 1986,
1987b | | Tetrachlorophenol.
2,3,4,5-, 2,3,5,6- | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | 2,4,5-Trichlorophenal subchronic (RfD _S) | NA: 1000 ppm of diet
for 98 days (100 mg/
kg/day) | NA | rat | NA; hepatotoxicit
kidney effects | y, ND | 1E+0 | NA | 100 | U.S. EPA, 1984,
1987/McCollister
et al., 1961;
U.S. EPA, 1984,
1987 | | chronic (RfD) | NA; 1000 ppm of dlet
for 98 days (100 mg/
kg/day) | NA | rat | NA; hepatoloxicil
kidney effects | y, ND | 1E-1g | NA | 1000 | U.S. EPA, 1984,
1987/McCollister
et al., 1961;
U.S. EPA, 1984,
1985, 1987 | | 2,4,6-Trichlorophenol | - see Table B | | | | | | | | | | Trichlorophenol, 2,3,4 2,3,5-, 2,3,6-, and 3, | | | DATA 1 | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | Pentachlorophenol - se | e Pentachlorophenol | | | | | | | | | | | 5 | | . 2 | | Reference D | ose | | | | |--|--|----------------------|--------|---|-----------------------------------|---------------------|---------------------------------|-------|---| | Compound | <u>Exposure</u> Inhalation; Oral | Specie
Inhalation | | Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertaint</u>
Inhalation | Oral | Reference
Inhalation/Oral | | Chlorinated toluenes
2,3,6-Irichlorotoluene
subchronic (RfD _S) | NA; 0.5 ppm in diet
(0.05 mg/kg/day) for
20 days | NA | rat | NA; liver kidney,
thyroid lesions | ND | 5E - 5 | NA | 1000 | U.S. EPA, 1987/
Chu et al.,
1984; U.S. EPA,
1987 | | chronic (RfD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | | a,2,6-Trtchloro-
toluene
subchronic (RfD _S) | NA; 0.5 ppm in diet
(0.05 mg/kg/day)
for
28 days | NA | rat | NA; liver, kidney
thyroid lesions | , ND | 5E -5 | NA | 1000 | U.S. EPA, 1987/
Chu et al.,
1984; U.S. EPA,
1987 | | chronic (RfD) | NA; NA | NA | NA | MA; NA | ND | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | | Chloroacetaldehyde | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1988 | | Chloroacetic acid subchronic (RfD _S) | NA; 30 mg/kg, 5 days/
week for 13 weeks
(21.4 mg/kg/day) | NA | rat | NA; myocarditis | MD | 26-2 | NA | 1000 | U.S. EPA, 1988/
IRDC, 1982a;
U.S. EPA, 1988 | | chronic (RfD) | NA; 30 mg/kg, 5 days/
week for 13 weeks
(21.4 mg/kg/day) | NA | rat | NA; myocarditis | ND | 26 - 3 | NA 1 | 0,000 | U.S. EPA, 1988/
IRDC, 1982a;
U.S. EPA, 1988 | | Chloroantlines (see als
2-Chloroantline | o Table B) | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T (SEE TABLE | B) | | U.S. EPA, 1987 | | 3-Chloroantline | | | DATA I | TTHAUD ROT STAUDSDAN | TATIVE RISK ASSESSMEN | T (SEE TABLE | 8) | | U.S. EPA, 1987 | | 4-Chloroaniline subchronic (RfD _S) | NA; 250 ppm in diet
for 78 weeks (12.5
mg/kg/day) | NA | rat | MA; proliferative
lesions of the
spleen | ND | 4E-3 | NA | 3000 | U.S. EPA, 1987a
NCI, 1979;
U.S. EPA, 1987b | | | _ | | | | Reference D | ose | | | | |--|---|----------------------|-----|--|-----------------------------------|---------------------|---------------------------|----------------|--| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | factor
Oral | Reference
Inhalation/Oral | | 4-Chloroaniline chronic (RfD) | MA; 250 ppm in diet
for 78 weeks (12.5
mg/kg/day) | NA | rat | NA; proliferative
lesions of the
spleen (Cancer:
see Table B) | ND | 4E-38 | NA | 3000 | U.S. EPA, 1987a/
NCI 1979;
U.S. EPA, 1987b | | Chlorobenzene
subchronic (RfO _S) | 75 ppm (345 mg/m³) 7 hours/day, 5 days/ week for 120 days (53 mg/kg/day); 27.3 mg/kg/day by capsule for 90 days | rat | dog | liver and kidney
effects; liver and
kidney effects | 0.2 (5E-2) | 3E-1 | 1,000 | 100 | Billey, 1977;
U.S. EPA, 1984/
Monsanto, 1967a;
U.S. EPA, 1984 | | chronic (RfD) | 75 ppm (345 mg/m ³)
7 hours/day, 5 days/
week for 120 days
(53 mg/kg/day);
27.3 mg/kg/day by
capsule for 90 days | rat | dog | liver and kidney -
effects; liver and
kidney effects | | 3E-5µ | 10,000 | 1000 | Dilley, 1977;
U.S. EPA, 1984/
Monsanto, 1967a;
U.S. EPA, 1984 | | p-Chlorobenzoic acid
subchronic (RfD _S) | NA; 0.2% in diet for
5 months (173.3
mg/kg/day) | NA | rat | NA; nane observed | MD | 2E • O | NA | 100 | U.S. EPA, 1987/
Kleckebusch
el al., 1960;
U.S. EPA, 1987 | | chronic (RFD) | NA; 0.2% in diet for
5 months (173.3
mg/kg/day) | NA | rat | NA; none observed | ND | 2E-1 | NA | 1000 | U.S. EPA, 1987/
Kleckebusch
et al., 1960;
U.S. EPA, 1987 | | 4-Chlorobenzotri- | | | | | | | | | | | fluoride
subchronic (RfD _S) | NA; 15 mg/kg/day by
gavage daily for 90
days | NA | rat | NA; renal tubular
degeneration | ND | 2E - 1 | NA | 100 | U.S. EPA, 1988/
Hooker Chemical
Co., 1981;
U.S. EPA, 1988 | | chronic (RFD) | MA; 15 mg/kg/day by
gavage daily for 90
days | NA | rat | NA; renal tubular
degeneration | ND | 2E-2 | NA | 1000 | U.S. EPA, 1988/
Hooker Chemical
Co., 1981;
U.S. EPA, 1988 | | | _ | | | | Reference D | <u>ose</u> | | | Deference | | |---|--|-----------------------|-------|---|---|-----------------------|---------------------------|-----------------------|---|--| | Compound | Exposure Inhalation; Oral | Spec 1e
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalatton
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | <u>factor</u>
Oral | Reference
Inhalalion/Oral | | | p-Chloro-m-cresol
subchronic (RfO _S) | NA; 200 mg/kg/day for
28 days | NA | rat | NA; decrease in
weight gain | ND | 2E+0 | NA | 100 | U.S. EPA, 1988/
Madsen et al.,
1986; U.S. EPA,
1988 | | | chronic (RFD) | NA; NA | NA | NA | NA; NA | ND | ND | NA | NA | U.S. EPA, 1988
U.S. EPA, 1988 | | | Chloroform
subchronic (RfD _S) | NA; 15 mg/kg, 6 days/
week for 7.5 years
(12.9 mg/kg/day) | NA | dog | NA; liver lesions | ND | 16-2 | NA | 1000 | U.S. EPA, 1988/
Heywood et al.,
1979; U.S. EPA,
1985 | | | chronic (RfD) | NA; 15 mg/kg, 6 days/
week for 7.5 years
(12.9 mg/kg/day) | NA | dog | NA; liver lesions
(Cancer: see
Table B) | MD | 1E-2ª | NA | 1000 | U.S. EPA, 1988/
Heywood et al.,
1979; U.S. EPA,
1985 | | | 2-Chloropropane
subchronic (RFD _S) | 250 ppm (803 mg/m ³),
6 hours/day, 5 days/
weeks for 4 weeks
(91.4 mg/kg/day); NA | rat | NA | liver effects; NA | 3E+0 (9E-1) | ND | 100 | NA | Gage, 1970;
U.S. EPA, 1987/
U.S. EPA, 1987 | | | chronic (RfD) | 250 ppm (803 mg/m ³),
6 hours/day, 5 days/
weeks for 4 weeks
(91.4 mg/kg/day); NA | rat | NA | liver effects; NA | 3E-1 (9E-2) | NO | 1000 | NA | Gage, 1970;
U.S. EPA, 1987/
U.S. EPA, 1987 | | | Copper
subchronic (RfD _S) | NA; 5.3 mg, single
dose | NA | human | NA; local GI
tritation | ND | 1.3 mg/1 ^k | NA | NA | U.S. EPA, 1984/
U.S. EPA, 1987 | | | chronic (RfD) | NA; NA | NA | human | NA; local Gl
irritation ¹ | ND | 1.3 mg/æ ^k | NA | NA | U.S. EPA, 1984/
U.S. EPA, 1987 | | | | _ | | _ | | Reference |)ose | | | | |---|---------------------------------|----|-----------------|--|---|---------------------|---------------------------|-----------------------|---| | Campound | Exposure
Inhalation; Oral | | cles
on Oral | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Cresols
m-Cresol
subchronic (RfD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
1- | 5E-1 | NA | 100 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research Labora-
tories, 1987;
U.S. EPA, 1987 | | chronic (RfD) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
1- | 5E - 2 ^a | NA | 1000 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research Labora-
tories, 1987;
U.S. EPA, 1987 | | o-Cresol
subchronic (RfD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | MD
- | 5E-1 | NA | 100 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research Labora-
tories, 1987;
U.S. EPA, 1987 | | chronic (RfD) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | ND
1- | 5E-2 ª | NA | 1000 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research Labora-
tories, 1987;
U.S. EPA, 1987 | | p-Cresol
subchronic (RFD _S) | NA; 50 mg/kg/day
for 90 days | NA | rat | NA; reduced body
weight gain, neuro
toxicity | NO
 - | 5E-1 | NA | 100 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research
taboratories,
1987; U.S. EPA,
1987 | | | | | | | Reference D | ose | | | | |---|--|-----------------------|------|--|-----------------------------------|---------------------|----------------------------------|----------------|---| | Compound | Exposure
Inhalation; Oral | Spec 1e
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | p-Cresol
chronic (RfD) | NA; 50 mg/kg/day
for 90 days | MA | rat | NA; reduced body
weight gain, neuro
toxicity | NO
- | 5E - 2ª | NA | 1000 | U.S. EPA, 1984/
Microbiological
Associates,
1986; Toxicity
Research
Laboratories,
1987; U.S. EPA,
1987 | | Cumene
subchronic (RfD _S) | 3.7 ppm (18 mg/m ³) continuously for 90 days (8.6 mg/kg/day); 110 mg/kg/day for 194 days | guinea pig | rat | hematological; ren | al 1E-1 (3E-2) ^m | 4E-1 | 300 | 300 | Jenkins et al.,
1970; U.S. EPA,
1987b/Wolfe,
1956; U.S. EPA,
1987b | | chronic (RfD) | 3.7 ppm (18 mg/m³)
continuously for 90
days (8.6 mg/kg);
110 mg/kg for 194 days | guinea pig | ırat | hematologic; renal | 1E-2 [3E-3] ^m | 4E - 2ª | 3000 | 3000 | Jenkins et al.,
1970; U.S. EPA,,
1987b/Wolf
et al., 1956;
U.S. EPA, 1987b | |
Cyanide
subchronic (RfD _S) | NA; 10.8 mg/CN/kg/day
for 104 weeks from
diet treated with HCN | NA | rat | NA; weight loss,
thyroid effects an
myelin degeneratio | | 2E -2 | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1985 | | chronic (RfD) | MA; 10.8 mg CH/kg/day
for 104 weeks from
dlet treated with HCN | HA | rat | MA; weight loss,
thyroid effects an
myelin degeneratio | | 2E - 2ª | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1985 | | Cyanohydrins
Acetone cyanohydrin
subchronic (RfD _S) | 10.1 ppm (35.2 mg/m ³) 6 hours/day, 5 days/week for 14 weeks (4.0 mg/kg/
day); 10.8 mg CN/kg/day for 104 weeks from diet treated with HCN | ral | rat | CNS signs; body
weight, lhyrold an
CNS effects | 1E-1 (4E-2)
id | 7E -2 ⁿ | 100 | 500 | Blank and Thake
1984/ U.S. EPA,
1988/Howard and
Hanzal, 1955;
U.S. EPA,
1985a,b, 1988 | | | Eumaeura | C===1= | _ | 5550-A -5 0 | | <u>Reference</u> l |)ose | | _ | | |--|--|---------------------------------------|---------|---|----------|--------------------------|---------------------|----------------------------------|-----------------------|--| | Compound | Exposure
Inhalation; Oral | Spector Inhalation | | Effect of Concern
Inhalation; Oral | | halation
(mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Acetone cyanohydrin
chronic (RfD) | 10.1 ppm (35.2 mg/m ³)
6 hours/day, 5 days/week
for 14 weeks (4.0 mg/kg/
day); 10.8 mg CN/kg/day
for 104 weeks from diet
treated with HCN | rat | rat | CNS signs; body
weight, thyroid a
CNS effects | | E-1 (4E-2) | 7E-2 ⁿ | 100 | 500 | Blank and Thake
1984/ U.S. EPA,
1988/Howard and
Hanzal, 1955;
U.S. EPA,
1985a,b, 1988 | | Ethylene cyanohydrin
subchronic (RfO _S) | NA; 30 mg/kg/day 1n
drinking water for
90 days | NA | rat | NA; decreased hea
and brain weights | | D | 3E - 1 | NA | 100 | U.S. EPA, 1988/
Sauerhoff
et al., 1976;
U.S. EPA, 1988 | | chronic (RfD) | NA; 30 mg/kg/day in
drinking water for
90 days | NA | rat | NA; decreased hea
and brain weights | |) | 3E - 1 | NA | 100 | U.S. EPA, 1988/
Sauerhoff
et al., 1976;
U.S. EPA, 1988 | | Benzaldehyde cyanohyd | ir in | | DATA I | NADEQUATE FOR QUANTI | ATIVE I | RISK ASSESSMEN | 1 | | | U.S. EPA, 1988 | | formaldehyde cyanohyd | irin | | DATA II | NADEQUATE FOR QUANTI | TATIVE I | RISK ASSESSMEN | 1 | | | U.S. EPA, 1988 | | Lactonitrile | | | DATA II | NADEQUATE FOR QUANTI | TATIVE (| ISK ASSESSMEN | τ | | | U.S. EPA, 1988 | | Cyclohexylamine
subchronic (RfD _S) | NA; 600 ppm cyclohexy-
lamine•HCl in diet
for 90 days (30 mg/kg/
day) cyclohexylamine) | NA | rat | NA; reduced body
weight | N/ | 1 | 3E - 1 | NA | 100 | U.S. EPA, 1987a,
Gaunt et al.,
1974; U.S. EPA,
1987a | | chronic | NA; 600 ppm cyclohexy-
lamine•HCl in diet for
2 years (18 mg/kg/day)
cyclohexylamine | NA | rat | NA; testicular
effects | N/ | l | 2E - 1ª | NA | 100 | U.S. EPA, 1987a/
Gaunt et al.,
1976; U.S. EPA,
1987a,b | | Cyclopentadiene
subchronic (RfD _S) | 250 ppm (676 mg/m ³)
for 135, 7-hour expo-
sures in 194 days
(87.3 mg/kg/day); NA | rat | NA | liver and kidney
lesions; NA | 36 | +0 (9E-1) | ND | 100 | NA | Dow, 1987;
U.S. EPA, 1987/
U.S. EPA, 1987 | | chronic (RfD) | NA; NA | NA | NA | NA; NA | NO | 1 | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | |)U59h | | · · · · · · · · · · · · · · · · · · · | | -16- | | | | | | 04/28/89 | | | _ | | | | Reference | Dose | | | | |---|--|----------------------|--------|---|---|---------------------|----------------------------------|------|---| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ {mg/kg/day)} | Oral
(mg/kg/day) | <u>Uncertalnty</u>
Inhalation | | <u>Reference</u>
Inhalation/Oral | | DDT subchronic (RfD _S) | NA; 1 ppm in diet for
27 weeks (0.05 mg/kg/day) | NA | rat | NA; liver lesions | ND | 5E-4 | NA | 100 | U.S. EPA, 1984/
Laug et al.,
1950; U.S. EPA,
1985 | | chronic (RfD) | NA; 1 ppm in diet for
27 weeks (0.05 mg/kg/day) | , NA | rat | MA; liver lesions
(Cancer: see Table | ND
B) | 5E-4ª | NA | 100 | U.S. EPA, 1984/
Laug et al.,
1950; U.S. EPA,
1985, 1988 | | Dibenzofuran | | | DATA 1 | NADEQUATE FOR QUANTET | ATIVE RISK ASSESSME | NT | | | | | Dichlorobenzenes 1,2-Dichlorobenzene subchronic (RfD _S) | 290 mg/m ³ 7 hours/day,
5 days/week for up to 7
months (44 mg/kg/day);
125 mg/kg/day, 5 days/
week for 13 weeks
{89 mg/kg/day) | rat | rat | decreased body
weight gain; liver
effects | 2E+O {4E-1} | 9£-1 | 100 | 100 | Hollingsworth
et al., 1958;
U.S. EPA, 1987/
NTP, 1985;
U.S. EPA, 1987 | | chronic (RfD) | 290 mg/m ³ 7 hours/day,
5 days/week for up to 7
months (44 mg/kg/day);
125 mg/kg/day, 5 days/
week for 13 weeks
(89 mg/kg/day) | rat | rat | decreased body
weight gain;
liver effects | 2E-1 (4E-2) | 98-21 | j 000 | 1000 | Hollingsworth
et al., 1958;
U.S. EPA, 1987/
NTP, 1985;
U.S. EPA, 1987 | | 1,3-Dichlorobenzene | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSME | NT . | | | U.S. EPA, 1987 | | 1,4-Dichlorobenzene subchronic (RfD _S) | 75 ppm (454.6 mg/m ³)
5 hours/day, 5 days/week
for 76 weeks; NA | rat | NA | liver and kidney
kidney effects; NA | 7E-1 (NA) | ND | 100 | NA | Riley et al.,
1980; U.S. EPA,
1988/U.S. EPA,
1987 | | chronic (RFO) | 75 ppm (454.6 mg/m ³)
5 hours/day, 5 days/week
for 76 weeks; NA | rat | NA | liver and kidney
kidney effects;
(Cancer: see Table | 7E-1 (NA) ^J | ND | 100 | NA | Riley et al.,
1980; U.S. EPA,
1980/U.S. EPA,
1987 | | Dichlorobutenes | | | DATA I | NADEQUATE FOR QUANTLI | ATIVE RISK ASSESSMEN | IT (SEE TABLE | B) | | U.S. EPA, 1987 | | | _ | | _ | F151 -5 C | <u>Reference</u> (| lose | | . | Defeases | |---|---|----------------------|--------|--|--|---------------------|---------------------------|----------------|---| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)} | Oral
(mg/kg/day) | Uncertainty
Inhalation | Pactor
Oral | Reference
Inhalation/Oral | | 1,1-Dichloroethane
subchronic (RfDs) | 500 ppm (2025 mg/m ³)
6 hours/day, 5 days/week
for 13 weeks (138 mg/kg/
day); 500 ppm (2025
mg/m ³) 6 hours/day,
5 days/week for 13 weeks
(115 mg/kg/day) | cat | rat | kidney damage; non | s 5E+0 (1E+0) | 16+0 | 100 | 100 | Hofmann et al.,
1971; U.S. EPA,
1984/Hofmann
et al., 1971;
U.S. EPA, 1983b,
1984 | | chronic (RfOs) | 500 ppm (2025 mg/m ³)
6 hours/day, 5 days/week
for 13 weeks (138 mg/kg/
day); 500 ppm (2025
mg/m ³) 6 hours/day,
5 days/week for 13 weeks
(mg/kg/day) | cat | rat | kidney damage; non
(Cancer: see Table | | 16-1 | 1000 | 1000 | Hofmann et al.,
1971; U.S. EPA,
1984/Hofmann
et al., 1971;
U.S. EPA, 1983b,
1984 | | 1,1-Dichloraethylene subchronic (RfD _S) | NA; 50 ppm in drinking
water for 2 years
(9 mg/kg/day) | NA | rat | NA; liver lesions | ND | 9E -3 | NA | 1000 | U.S. EPA, 1984/
Quast et al.,
1983; U.S. EPA,
1985 | | chronic (RFD) | NA; 50 ppm in drinking
water for 2 years
(9 mg/kg/day) | NA | rat | NA; liver lesions
(Cancer: see Table | ND
B) | 9E -3a | NA | 1000 | U.S. EPA, 1984/
Quast et al.,
1983; U.S. EPA,
1985 | | 1,2-c-Dichloroethylene | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEI | iT | | | U.S. EPA, 1984 | | 1,2-t-Dichloroethylene | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | I T | | | U.S. EPA. 1984 | | Dicyclopentadiene
subchronic (RfDs) | <pre>1 ppm (5.4 mg/m³), 6 hours/day, 5 days/ week for 90 days (0.61 mg/kg/day); 690 ppm in diet for 3 generations (32 mg/kg/day for males)</pre> | rat | rat | liver dysfunction;
none | 2E-3 (6E-4) | 3E - 1 | 1000 | 100 | Dodd et al.,
1982; U.S. EPA,
1987/Litton
Bionetics, 1980;
U.S. EPA, 1987 | | | | | | | Reference D | ose | | | | |---|--|----------------------|-----|--|--|---------------------|---------------------------|--------------------------
--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | - F <u>actor</u>
Oral | Reference
Inhalation/Oral | | Dicyclopentadiene
chronic (RfD) | l ppm (5.4 mg/m³),
6 hours/day, 5 days/
week for 90 days (0.61
mg/kg/day); 690 ppm in
dlet for 3 generations
(32 mg/kg/day for males) | rat | rat | liver dysfunction;
none | 2E-4 (6E-5) | 3E -2 | 10,000 | 1000 | Dodd et al.,
1982;U.S. EPA,
1987/Litton
Bionetics, 1980
U.S. EPA, 1987 | | Dieldrin
subchronic (RfO _S) | NA; O.1 ppm in diet for
2 years (0.005 mg/kg/day) | | rat | NA; liver lesions | ND | 5E - 5 | NA | 100 | U.S. EPA, 1987/
Walker et al.,
1969; U.S. EPA,
1987b | | chronic (RfD) | NA; O.1 ppm in diet for
2 years (O.005 mg/kg/day) | | rat | MA; liver lesions
(Cancer: see
Table 8) | ND | 5E -5ª | NA | 100 | U.S. EPA, 1987/
Walker et al.,
1969; U.S. EPA,
1987b | | Dimethylphenols
2,6-Dimethylphenol
subchronic (RfD _S) | NA; O.6 mg/kg/day for
8 months | NA | rat | NA; effects on
blood pressure,
weight gain and
histological appear-
ance of several orga | | 6£-3 | NA | 100 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1986,
1987 | | chronic (RFD) | NA; O.6 mg/kg/day for
8 months | NA | rat | NA; effects on
blood pressure,
weight gain and
histological appear-
ance of several orga | | 6E -4ª | NA | 1000 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1986,
1987 | | 3,4-Dimethylphenol subchronic (AfD _S) | NA; 1.4 mg/kg/day
for 8 months | NA | ral | NA; reduced growth,
internal lesions | MD | 1E-2 | NA | 100 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1988 | | | _ | | | | Reference D | ose | | | | |--|--|-----------------------|-----|--|---|---------------------|---------------------------|----------------|---| | Compound | Exposure Inhalation; Oral | Spec 16
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | ractor
Oral | Reference
Inhalation/Oral | | 3,4-Dimethylphenol chronic (RfD) | NA; 1.4 mg/kg/day
for 8 months | NA | rat | NA; reduced growth
internal lesions | , ND | 1E-3 a | NA | 1000 | U.S. EPA, 1987/
Veldre and
Janes, 1979;
U.S. EPA, 1987,
1988 | | Endosulfan
subchronic (RfD _S) | NA; 3 ppm in diet in
2-generation reproduc-
tive study
(0.15 mg/kg/day) | NA | rat | NA; mild kidney
lesions | ND | 2E - 4 | NA | 1000 | U.S. EPA, 1987a
Huntington
Research Center
1984; U.S. EPA,
1987a | | chronic (AFD) | MA; 3 ppm in diet in
2-generation reproduc-
tive study
(0.15 mg/kg/day) | NA | rat | NA; mild kidney
lesions | ND | 5E -5 a | HA | 3000 | U.S. EPA, 1987a,
Huntington
Research Center
1984; U.S. EPA,
1987b | | Endrin
subchronic (RfO _S) | NA; 1 ppm in diet for
18 months
(0.045 mg/kg/day) | NA | dog | NA; increased relative organ weights | ND | 5E-4 | NA | 100 | U.S. EPA, 1987/
Treon et al.,
1955; U.S. EPA,
1985a, 1987 | | chronic (RFD) | NA; 1 ppm in diet for >2 years (0.025 mg/kg/day) | NA | dog | NA; convulsions and liver lesions | MD | 3E -48 | NA | 100 | U.S. EPA, 1987/
CBI; U.S. EPA,
1985a, 1987,
1988 | | Ethylbenzene
subchronic (RfD _S) | NA; 136 mg/kg 5
days/week for 182
days (97.1 mg/kg/day) | NA | rat | NA; hepatotoxicily and nephrotoxicily | | 1E+0 | NA | 100 | U.S. EPA, 1984/
Wolf et al.,
1956; U.S. EPA,
1984, 1985 | | chronic (RFD) | NA; 136 mg/kg 5
days/week for 182
days (97.1 mg/kg/day) | NA | rat | NA; hepatotoxicity
and nephrotoxicity | , ND
,1 | 1E-1ª | NA | 1000 | U.S. EPA, 1984/
Wolf et al.,
1956; U.S. EPA,
1984, 1985 | | | _ | | | | Reference D | ose | | | | |---|---|----------------------|--------|--|-----------------------------------|---------------------|----------------------------------|---------------|--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Oral
Oral | Reference
Inhalation/Oral | | Ethyl Chloride | | | DATA I | NADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1987 | | Ethylenedlamine
subchronic (RfD _S) | 59 ppm (145 mg/m³) 7 hours/day, 5 days/week for 30 days (25.8 mg/kg/ day); 3-month dietary study with ethylene- diamine dihydrochloride (22.6 mg ethylene- diamine/kg/day | rat | rat | death, kidney
and liver
lesions; liver
and hematologic
changes | 1E+O (3E-1) | 2 E-1 | 100 | 100 | Pozzani and
Carpenter, 1954
U.S. EPA, 1988/
Yang et al.,
1983; U.S. EPA,
1988 | | chronic (RFD) | NA; 3-month dietary
study with ethylene-
diamine dihydrochloride
(22.6 mg ethylene-
diamine/kg/day | NA | rat | NA; liver and
hematologic
changes | ND | 2E -2 | NA | 1000 | U.S. EPA, 1988/
Yang et al.,
1983; U.S. EPA,
1988 | | Ethylene glycoł
subchronic (RfD _S) | NA; 200 mg/kg/day in
developmental toxicity | NA | rat | NA; fetotoxicity | ND | 2E+0 | NA | 100 | U.S. EPA, 1987a
Maronpot
et al., 1983;
U.S. EPA,
1987a,b | | chronic (RFD) | NA; 200 mg/kg/day in
2-year dietary study | NA | rat | NA; mortality,
liver and kidney
effects | ND | 2E+0ª | NA | 100 | U.S. EPA, 1987a
DePass et al.,
1986a; U.S. EPA
1987a,b | | Ethyl ether
subchronic (RFD _S) | NA; 500 mg/kg/day for
90 days | NA | rat | MA; liver effects | ND | 5E+0 | NA | 100 | U.S. EPA, 1987/
American
Biogenics Corp.
1986; U.S. EPA,
1987 | | chronic (RfD) | NA; 500 mg/kg/day for
90 days | NA | rat | NA; liver effects | ND | 5{ - 1 ^h | NA | 1 00 0 | U.S. EPA, 1987/
American
Blogenics Corp.
1986; U.S. EPA,
1987 | | | 5 | 0 | | | Reference D | ose | | | | |---|--|----------------------|-------|--|---|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Ora | | furan
subchronic (RfD _S) | NA; 2 mg/kg, 5 days/week
for 13 weeks (1.4
mg/kg/day) | NA | mouse | NA; hepatic lesion | DN 2 | 16-2 | NA | 100 | U.S. EPA, 1987,
SRI, 1982b;
U.S. EPA, 1987 | | chronic (RfD) | NA; 2 mg/kg, 5 days/week
for 13 weeks (1.4
mg/kg/day) | NA | mouse | NA; hepatic lesion | S ND | 1E -3ª | NA | 1000 | U.S. EPA, 1987,
SRI, 1982b;
U.S. EPA, 1986,
1987 | | furfural
subchronic (RfD _S) | 20 ppm (77 mg/m ³), 6 hours/day, 5 days/week for 13 weeks (13 mg/kg); 11 mg/kg, 5 days/week for 13 weeks (7.9 mg/kg/day) | hamster | rat | olfactory degenera
tion; hepatotoxici | | 3E -2 | 100 | 300 | Feron et al.,
1979; U.S. EPA,
1988/SRI, 1981;
U.S. EPA, 1987 | | chronic (RfD) | 20 ppm (77 mg/m ³), 6 hours/day, 5 days week for 13 weeks (13 mg/kg); 11 mg/kg, 5 days/week for 13 weeks (7.9 mg/kg/day) | hamster | rat | olfactory degenera-
tion; hepatotoxicii | | 3E - 3ª | 1000 | 3000 | Feron et al.,
1979; U.S. EPA,
1988/SRI, 1981;
U.S. EPA, 1987 | | Glycol ethers
P-Ethoxyethanol
subchronic (RfDs) | 10 ppm (37 mg/m ³)
6 hours/day on days 6-15
of gestation (6.8 mg/kg/
day); 50 µt (46.6 mg/kg/
day) on days 1-21 of
gestation | rat | rat | fetotoxicity;
fetotoxicity | 2E-1 (7E-2) | 5E-1 | 100 | 100 | Doe, 1984a;
U.S. EPA, 1984/
Stenger et al.,
1971; U.S. EPA,
1984 | | chronic (RfD) | 100 ppm (369 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(49.9 mg/kg/day)
500 mg/kg 5 days/week
for 103 weeks (357
mg/kg/day) | rat | rat | altered hemotology;
reduced body weight | | 4 E-1 | 1000 | 1000 | Barbee et al.,
1984; U.S. EPA,
1984/Melnick,
1984; U.S. EPA,
1985 | | | Euga | 0 | _ | 5664 -5 O | Reference D | ose | | _ | | |--|---|----------------------|--------|--|---|---------------------|----------------------------------|-----------------------|--| | Compound | Exposure Inhalation; Oral |
Specio
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>Factor</u>
Oral | Reference
Inhalation/Ora | | 2-Methoxyethanol subchronic (RfDs) | 10 ppm (31 mg/m ³) 6 hours/day, 5 days/ week for 13 weeks (2.9 mg/kg/day); 10 ppm (31 mg/m ³) 6 hours/day, 5 days/week for 13 weeks (1.47 mg/kg/day) | rabbit | rabbit | fetotoxicity and
testicular effects
fetotoxicity and
testicular effects | | 1E-2 ^b | 100 | 100 | Miller et al.,
1982; U.S. EPA
1986/Miller
et al., 1982;
U.S. EPA, 1986 | | chronic (RfD) | 10 ppm (31 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(2.9 mg/kg/day); 10
ppm (31 mg/m ³) 6
hours/day, 5 days/week
for 13 weeks (1.47
mg/kg/day) | rabbil | rabbit | fetoloxicity and
testicular effects
fetoloxicity and
testicular effects | | IE-3Þ∙g | 1000 | 1000 | Miller et al.,
1982; U.S. EPA
1986/Miller
et al., 1982;
U.S. EPA, 1986 | | Diethylene glycol
manaethyl ether
subchronic (RfD _S) | NA; diet provided 500
mg/kg/day for 90 days | NA | rat | NA; impaired renal
function, increase
testes weight | | 5E+O | NA | 100 | U.S. EPA, 1984,
Hall et al.,
1966; U.S. EPA,
1984 | | chronic (RfD) | MA; 0.2% in drinking
water (200 mg/kg/day)
for 2 years | NA | rat | MA; kidney histo-
pathology | ND | 2€ •0 | NA | 100 | U.S. EPA, 1984/
Smyth et al.,
1964; U.S. EPA,
1984 | | Ethylene glycol
monobutyl ether
subchronic (RfD _S) | 25 ppm (121 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(16 mg/kg/day); NA | rat | NA | altered hematology
NA | ; 6E-1 (2E-1) | ND | 100 | NA | Dodd et al.,
1983/U.S. EPA,
1984 | | chronic (RfD) | 25 ppm (121 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks
(16 mg/kg/day); NA | rat | NA | altered hematology
NA | ; 6E-2 (2E-2) | NO | 1000 | NA | Dodd et al.,
1983/U.S. EPA,
1984 | | Compound | Exposure
Inhalation; Oral | | | | Reference Dose | | | | | |---|--|-----------------------|-----|--|---|---------------------|----------------------------------|----------------|---| | | | Spec 16
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Propylene glycol
monomethyl ether | | | | | | | | | | | subchron1c RfD _S) | 1000 ppm (3685 mg/m³) 6 hours/day, 5 days/ week for 13 weeks (489 mg/kg/day); 947 mg/kg, 5 days/week for 35 days (676 mg/ kg/day) by gavage | rat | rat | liver histo-
pathology; liver
and kidney histo-
pathology | 2E+1 (5E+0) | 7E+0 | 100 | 100 | Miller et al.,
1984; U.S. EPA,
1984/Rowe
et al., 1954;
U.S. EPA, 1984 | | chronic (RfD) | 1000 ppm (3685 mg/m ³)
6 hours/day, 5 days/
week for 13 weeks (489
mg/kg/day); 947 mg/kg,
5 days/week for 35 days
(676 mg/kg/day) by gavage | rat | rat | liver histo-
pathology; liver
and kidney histo-
pathology | 2E+O (5E-1) | 7E-1 | 1000 | 1000 | Miller et al.,
1984; U.S. EPA,
1984/Rowe
et al., 1954;
U.S. EPA, 1984 | | Propylene glycol | | | | | | | | | | | monoethy1 ether
subchron1c (RfD _S) | NA; 30-day drinking
water (680 mg/kg/day) | NA | rat | NA; reduced weight
gain | ND | 7E+0 | NA | 100 | U.S. EPA, 1984/
Smyth and
Carpenter, 1948
U.S. EPA, 1984 | | chronic (RfD) | NA; 30-day drinking
water (680 mg/kg/day) | NA | rat | NA; reduced weight
gain | t ND | 78-1 | NA | 1000 | U.S. EPA, 1984/
Smyth and
Carpenter, 1948
U.S. EPA, 1984 | | Haloethers | | | | | | | | | | | 2,4,4'Trichloro-
2'-hydroxydlphenylether
subchronic (RfD _S) | NA; 500 mg/kg, 6 days/
/week for 4 weeks (429
mg/kg/day) | NA | rat | ND; ND | ND | 4E+0 | NA | 100 | U.S. EPA, 1987/
Lyman and
fur1a, 1969;
U.S. EPA, 1987 | | chronic (RfD) | NA; NA | NA | NA | ND; ND | ND | ND | NA | NA | U.S. EPA, 1987/
U.S. EPA, 1987 | | Other haloethers: see T | ahle R | | | | | | | | 5.5. Lin, 1507 | | Compound | Exposure
Inhalation; Oral | Conc. t | | [| <u>Reference</u> | | | | | |--|--|-----------------------|------|--|---|---------------------|----------------------------------|------|--| | | | Spec 1e
Inhalation | Ora) | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Oral | Reference
Inhalation/Oral | | Halogenated (fully) me
Dichlorodifluoromethan
(f-12) | | | | | | • | | | | | subchronic (RfD _S) | 4136 mg/m ³ , 8 hours/
day, 5 days/week for
6 weeks (482.3 mg/kg/
day); 90 mg/kg/day
for 90 days | gu1nea
p1g | dog | lung and liver
lesions; none | 2E+O (5E-1) | 9E - 1 | 1000 | 100 | Prendergast
et al., 1967;
U.S. EPA, 1987,
Clayton, 1967;
U.S. EPA, 1987 | | chronic (RfD) | 4136 mg/m ³ , 8 hours/
day, 5 days/week for
6 weeks (482.3 mg/kg/
day); 15 mg/kg/day
for 2 years | gu i nea
p i g | rat | lung and liver
lesions; depressed
body weight gain | 2E-1 (5E-2)
I | 2E - 1ª | 10,000 | 100 | Prendergast
et al., 1967;
U.S. EPA, 1987,
Sherman, 1974;
U.S. EPA, 1982,
1985, 1987 | | richlorofluoromethane
f-11) | | | | | | | | | | | subchronic (RfD _S) | 5600 mg/m ³ contin-
uously for 90 days
(1940 mg/kg/day);
1000 mg/kg/day, 5
days/week for 6 weeks
(714.3 mg/kg/day) | dog | rat | elevated BUN, lung
lesions; mortality | | 7E-1 | 1000 | 1000 | Jenkins et al.,
1970; U.S. EPA,
1987/NCI, 1978;
U.S. EPA, 1987 | | chronic (RfD) | 5600 mg/m ³ contin-
uously for 90 days
(1940 mg/kg/day);
488 mg/kg/day, 5
days/week for 66 weeks
(348.6 mg/kg/day) | dog | rat | elevated BUN, lung
lestons; mortality | | 3E - 1ª | 10,000 | 1000 | Jenkins et al.,
1970; U.S. EPA,
1987/NCI, 1978;
U.S. EPA, 1985,
1987 | | eptachlor
subchronic (RfD _S) | NA; 3 ppm in diet for
2 years (0.15 mg/kg/day) | NA | rat | NA; increased live
weight | er ND | 5E -4 | NA | 300 | U.S. EPA, 1987a
Velsicol
Chemical, 1955;
U.S. EPA, 1987b | | chronic (RfD) | NA; 3 ppm in diet for
2 years (0.15 mg/kg/day) | NA | rat | NA; increased live
weight (Cancer: se
Table B) | | 5E -4ª | NA | 300 | U.S EPA, 1987a
Velsicol
Chemical, 1955;
U.S. EPA, 1987b | | | | 6 4- | | 5661 - 6 O | Reference D | ose | | _ | | |---|---|----------------------|-----|--|---|---------------------|----------------------------------|-----------------------|--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>Factor</u>
Oral | Reference
Inhalation/Oral | | Hexachlorobenzene
subchronic (RfD _S) | NA; 1.6 ppm in diet for
130 weeks (0.08 mg/kg/
day) | NA | rat | NA; liver and hema-
tologic effects | - ND | 8E - 4 | NA | 100 | U.S. EPA, 1984/
Arnold et al.,
1985; U.S. EPA,
1988 | | chronic (RfD) | NA; 1.6 ppm in diet for
130 weeks (0.08 mg/kg/
day) | NA | rat | NA; liver and hema-
tologic effects
(Cancer: see Table | | 8E - 4ª | NA | 100 | U.S. EPA, 1984/
Arnold et al.,
1985; U.S. EPA,
1988 | | Hexachlorobutadiene
subchronic (RfD _S) | NA; 2 year dietary
study (0.2 mg/kg/day) | NA | rat | NA; kidney toxicity | , ND | 2E - 3 | NA | 100 | U.S. EPA, 1984/
Kociba et al.,
1977; U.S. EPA,
1985 | | chronic (RFD) | NA; 2 year dietary
study (0.2 mg/kg/day) | NA | rat | NA; kidney toxicity
(Cancer: see
Table B) | ND | 2E - 3ª | NA | 100 | U.S. EPA, 1984/
Kociba et al.,
1977; U.S. EPA,
1985 | | Hexachloroethane
subchronic (RfD _S) | NA; 16 week dietary
study (1 mg/kg/day) | NA | rat | NA; kidney degenera
tion | I- ND | 1E-2 | NA | 100 | U.S. EPA, 1987a
Gorzinski
et al., 1985;
U.S. EPA, 1987b | | chronic (RfD) | NA; 16 week dietary
study (1 mg/kg/day) | NA | rat | NA; kidney degenera
tion (Cancer: see
Table B) | - ND | 1E-3 a | NA | 1000 | U.S. EPA, 1987a
Gorzinski
et al., 1985;
U.S. EPA, 1987b | | Hexavalent chromium
subchronic (RFD _S) | NA; 25 ppm Cr VI in
drinking water for i
year (2.4 mg/kg/day) | NA | rat | cancer; not defined | ND | 2E -2 | NA | 100 | U.S. EPA, 1984/
MacKenzle
et al., 1958;
U.S. EPA, 1984 | | chronic (RFD) | NA; 25 ppm Cr VI in
drinking water for i
year (2.4 mg/kg/day) | NA | rat | cancer (see
Table B); not
defined | ND | 5E - 3a | NA | 500 | U.S. EPA, 1984/
MacKenzle
et al., 1958;
U.S. EPA, 1984,
1986 | | | • | 0 | _ | F 6 6 | Reference D | <u>ose</u> | | | | |--|--
----------------------|--------|--|---|---------------------|----------------------------------|----------------|--| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | Oral | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | p-Hydroquinone
subchronic (RfD _S) | NA; 300 mg/day for 3-5
months (4.29 mg/kg/day) | NA | human | NA; hematological
effects | ND | 4E-1 | NA | 10 | U.S. EPA, 1987/
Carlson and
Brewer, 1953;
U.S. EPA, 1987 | | chronic (RfD) | NA; 300 mg/day for 3-5
months (4.29 mg/kg/day) | NA | human | NA; hematological
effects | ND | 4E - 2 | NA | 100 | U.S. EPA, 1987/
Carlson and
Brewer, 1953;
U.S. EPA, 1987 | | iron | | | DATA 1 | NADEQUATE FOR QUANTIT | TATIVE RISK ASSESSMEN | 1 | | | U.S. EPA, 1984 | | Isophorone
subchronic (RfD _S) | NA; 90-day oral
(capsules) study
(150 mg/kg/day) | NA | dog | NA; kidney lesions | s ND | 1.5E+0 | NA | 100 | U.S. EPA, 1987/
Rohm and Haas,
1972; NTP, 1986
U.S. EPA, 1986 | | chronic (RfD) | NA; 90-day oral
(capsules) study
(150 mg/kg/day) | NA | dog | NA; kidney lesions
(Cancer: see
Table B) | s ND | 1.5E-1ª | NA | 1000 | U.S. EPA, 1987/
Rohm and Haas,
1972; NTP, 1986
U.S. EPA, 1986 | | .ead
subchron1c (RfD _S) | NA; NA | NA | NA | NA; NA | NDP | PDN | NA | NA | U.S. EPA, 1984,
1986/U.S. EPA,
1984, 1986 | | chronic (RfD) | NA; NA | NA | NA | CNS effects;
CNS effects
(Cancer: see
Table B) | NDP | PON | NA | NA | U.S. EPA, 1984,
1986/U.S. EPA,
1984, 1986 | | .indane
gamma hexachlorocy- | | | | | | | | | | | :Tohexane)
subchron1c (RfD _S) | NA; 4 ppm in diet for
12 weeks (0.33 mg/kg/
day) | NA | rat | NA; liver and and kidney toxicit | NO
Y | 3E -3 | NA | 100 | U.S. EPA, 1984/
Zoecon Corp.,
1983; U.S. EPA,
1986 | | chronic (RfD) | NA; 4 ppm in diet for
12 weeks (0.33 mg/kg
day) | NA | rat | NA; liver and
kidney toxicity
(Cancer: see
Table B) | ND | 3E -4ª | NA | 1000 | U.S. EPA, 1984/
Zoecon Corp.,
1983; U.S. EPA,
1986 | | | • | | | | Reference D | ose | | | | |---|--|--------------------|-------|---------------------------------------|-----------------------------------|---------------------|---------------------------|----------------|---| | Compound | Exposure Inhalation; Oral | Spector Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Manganese
subchronic RfDs) | O.3 mg/m ³ occupational (2.1 mg/day); 1050 ppm
Mn from Mn ₃ O ₄ from
day 1 of gestation
through 224 days of age
(52.5 mg Mn/kg/day) | human | rat | CNS; reproductive | 1E-3(3E-4) | 56-1 | 100 | 100 | Saric et al.,
1977; U.S. EPA,
1984/Laskey
et al., 1982;
U.S. EPA, 1984 | | chronic (RfD) | 0.3 mg/m ³ occupational
(2.1 mg/day); 1 mg
MnCl ₂ ·4 H ₂ O/1 for
>2 years (22 mg Mn/kg/
day) in drinking water | human | rat | CNS; CNS ¹ | 1E-3(3E-4) | 2E - 1 | 100 | 100 | Saric et al.,
1977; U.S. EPA,
1984/Leung
et al., 1981;
Lai et al.,
1982c; U.S. EPA
1984 | | Mercury, alkyl and
Inorganic
subchronic (RfD _S) | NA; 0.003 mg/kg/day
in humans associated
with Hg in blood at
200 ng/mt | NA | human | NA; CNS effects | ND | 3E-4 | NA. | 10 | U.S. EPA, 1984/
U.S. EPA,1980b,
1984 | | chronic (RfD) | NA: 0.003 mg/kg/day
in humans associated
with Hg in blood at
200 ng/mi | NA | human | NA; CNS effects | ND | 3E_4a,r | NA | 10 | U.S. EPA, 1984/
U.S. EPA, 1980b
1984, 1985 | | Mercury, mercurial subchronic (RfDs) | NA; several oral and parenteral studies in the Brown Norway rat | NA | rat | NA; kidney effect | s ND | 3E -4 | NA | 1000 | U.S. EPA, 1984/ Fitzhugh et al., 1950; Dru et al., 1978; Bernaudin et al., 1981; Andres, 1984; U.S. EPA, 1987, 1988 | | | C | | | | Reference D | ose | | | | |--|--|----------------------|-----|--|---|---------------------|---------------------------|----------------|---| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Ora | | Mercury, mercurtal
chronic (RfD) | NA; several oral and
parenteral studies in
the Brown Norway rat | NA | rat | NA; kidney effect | ;) ND | 3E -4J | NA | 1000 | U.S. EPA, 1984/
fitzhugh
et al., 1950;
Dru et al.,
1978; Bernaudin
et al., 1981;
Andres, 1984;
U.S. EPA, 1987, | | Methomyl
subchronic (RfD _S) | NA; 100 ppm in diet
(2.5 mg/kg/day) for
24 months | NA | dog | NA; kidney lesion | s ND | 3E - 2 | NA | 100 | U.S. EPA, 1988/
Kaplan and
Sherman, 1977;
U.S. EPA, 1988 | | chronic (RfD _S) | NA; 100 ppm in diet
(2.5 mg/kg/day) for
24 months | NA | dog | NA; kidney leşion: | s ND | 3E - 2ª | NA | 100 | U.S. EPA, 1988/
Kaplan and
Sherman, 1977;
U.S. EPA, 1988 | | Methylene chloride
(dichloromethane) | | | | | | | | | | | `subchron1c (RfĎ _S) | 200 ppm (694.8 mg/m³) 6 hours/day, 5 days/week for 2 years; 24-month drinking water study [5.85 mg/kg/day (males) 6.47 mg/kg/day (females)] | rat | rat | NA; liver toxicity | /; 3 (NA) | 6E - 2 | 100 | 100 | Nitschke et al.,
1988; U.S. EPA,
1988/National
Coffee Associa-
tion, 1982;
U.S. EPA, 1985 | | chronic (RfD) | 200 ppm (694.8 mg/m³)
6 hours/day, 5 days/week
for 2 years; 24-month
drinking water study
[5.85 mg/kg/day (males)
6.47 mg/kg/day (females)] | rat | rat | NA; liver toxicit;
(Cancer: see
Table B) | ; 3 (NA) ^j | 6E -2 a | 100 | 100 | Nitschke et al.,
1988; U.S. EPA,
1988/National
Coffee Associa-
tion, 1982;
U.S. EPA, 1985 | | | • | | | 6661 | Reference D | ose | | _ | | |--|--|----------------------|-------|--|-----------------------------------|---------------------|---------------------------|----------------|--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Orał
(mg/kg/day) | Uncertainty
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Methyl ethyl ketone
subchronic (RFD _S) | 235 ppm (693 mg/m³)
7 hours/day, 5 days/
week for 12 weeks (92
mg/kg/day); 235 ppm
(693 mg/m³) 7 hours/
day, 5 days/week for
12 weeks (46 mg/kg/day) | rat | rat | CNS; fetotoxicity | 3E-0 (9E-1) ^s | 5E - 1b | 100 | 100 | LaBelle and
Brieger, 1955;
U.S. EPA, 1985/
LaBelle and
Brieger, 1955;
U.S. EPA, 1985 | | chronic (RfD) | 235 ppm (693 mg/m³) 7 hours/day, 5 days/ week for 12 weeks (92 mg/kg/day); 235 ppm (693 mg/m³) 7 hours/ day, 5 days/week for 12 weeks (46 mg/kg/day) | rat | rat | CNS; fetoloxicity | 3E-1 (9E-2) ^{\$} | 5E-2 a .b | 1000 | 1000 | LaBelle and
Brieger, 1955;
U.S. EPA, 1985/
LaBelle and
Brieger, 1955;
U.S. EPA, 1985 | | Methyl isobutyl ketone
subchronic (RfDs) | 50 ppm (205 mg/m ³)
6 hours/day, 5 days/
week for 90 days
(23.3 mg/kg/day);
50 mg/kg/day by gavage
for 13 weeks | rat | rat | liver and kidney
effects; liver and
kidney effects | 8E-1 (2E-1)
1 | 5E - 1 | 100 | 100 | Union Carbide
Corp., 1983b;
U.S. EPA, 1987/
Microbiological
Associates,
1986; U.S. EPA,
1987 | | chronic (RfD) | 50 ppm (205 mg/m ³)
6 hours/day, 5 days/
week for 90 days
(23.3 mg/kg/day);
50 mg/kg/day by gavage
for 13 weeks | rat | rat | liver and kidney
effects; liver and
kidney effects | 8E-2 (2E-2)
1 | 5E - 2 a | 1000 | 1000 | Union Carbide
Corp., 1983b;
U.S. EPA, 1987/
Microbiological
Associates,
1986; U.S. EPA,
1986, 1987 | | Methyl Styrene
(industrial mixture)
subchronic (RfD _S) | 10 ppm (48.3 mg/m³) 6 hours/day, 5 days/week for 103 weeks (11.2 mg/kg/day): 10 ppm (48.3 mg/m³) 6 hours/day, 5 days/week for 103 weeks (5.6 mg/kg/day) | mouse | mouse | nasal lestons;
nasal lestons | 4E-2 (1E-2) | 6E - 3 b | 1000 | 1000 | MRI, 1984a;
U.S. EPA, 1987/
MRI, 1984a;
U.S. EPA, 1987 | | | £ | | | 566 1 6 0 | Reference D | ose | | _ | | |---|--|----------------------
-----------------|--|---|---------------------|---------------------------------|--------|---| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day}] | Oral
(mg/kg/day) | <u>Uncertaint</u>
Inhalation | | Reference
Inhalation/Oral | | Methyl Styrene
(industrial mixture) | | | | | | | | | | | chronic | 10 ppm (48.3 mg/m ³) 6
hours/day, 5 days/week
for 103 weeks (11.2 mg/
kg/day): 10 ppm (48.3
mg/m ³) 6 hours/day,
5 days/week for 103
weeks (5.6 mg/kg/day) | mouse | mouse | nasal lestons;
nasal lestons | 4E-2 (1E-2) | 6E - 3b | 1000 | 1000 | MRI, 1984a;
U.S. EPA, 1987/
MRI, 1984a;
U.S. EPA, 1987 | | Mirex
subchronic (RfD _S) | NA; O.1 ppm in diet,
multigenerational study
(O.015 mg/kg/day) | NA | prairie
vole | NA; decreased pup
survival | ND | 28 -6 | NA | 10,000 | U.S. EPA, 1987a
Shannon, 1976;
U.S. EPA, 1987b | | chronic (RfD) | NA; 0.1 ppm in diet,
multigenerational study
(0.015 mg/kg/day) | NA | prairie
vole | NA; decreased pup
survival (Cancer:
see Table B) | ND | 5E - 6 a | NA | 10,000 | U.S. EPA, 1987a
Shannon, 1976;
U.S. EPA, 1987b | | Monochlorobutanes
1-Chlorobutane | | | | | | | | | | | subchronic (RfD)s | NA; 120 mg/kg, 5 days/
week for 13 weeks by
gavage (86 mg/kg/day) | NA | rat | NA; CNS and
hematopoletic
effects | ND | 9E - 1 | NA | 100 | U.S. EPA, 1988/
NTP, 1986;
U.S. EPA, 1988 | | chronic (RfD) | NA; 60 mg/kg, 5 days/
week for 103 weeks by
gavage (43 mg/kg/day) | NA | rat | NA; mortality,
CNS and hemato-
logic effects | ND | 4E-1 | NA | 100 | U.S. EPA, 1988/
NTP, 1986;
U.S. EPA, 1988 | | 2-Ch lor obutane | | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1988/
U.S. EPA, 1988 | | t-Butylchlor1de | | | DATA IN | ADEQUATE FOR QUANTI | IATIVE RISK ASSESSMEN | ī | | | U.S. EPA, 1988/
U.S. EPA, 1988 | | Naphthalene
subchronic (RfD _S) | NA; 10-20 mg/day in
diet 6 days/week for
~700 days (41 mg/kg/
day) ^s | NA | rat | NA; ocular and
internal lesions | ND | 4E-1t | NA | 100 | U.S. EPA, 1988/
Schmahl, 1955;
U.S. EPA, 1988 | | | Exposure | Connel | _ | 566.0A of Co | Reference D | ose | | | | |--|--|----------------------|--------|---|--|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Specto
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Naphthalene
chronic (RfD) | NA; 10-20 mg/day in diet
6 days/week for ≃700
days (41 mg/kg/day) ^s | NA | rat | NA; ocular and
internal lesions | ND | 4E-19, t | NA | 100 | U.S. EPA, 1988/
Schmahl, 1955;
U.S. EPA, 1986;
1988 | | Nickel
subchronic (RfDs) | NA; 100 ppm N1 from
nickel sulfate in diet
for 2 years
(5 mg N1/kg/day) | NA | rat | cancer; reduced
body and organ
welght | ND | 2E -2 | NA | 300 | U.S. EPA, 1984/
Ambrose
et al., 1976;
U.S. EPA, 1987 | | chronic (RfD) | NA; 100 ppm N1 from
nickel sulfate in
diet for 2 years
(5 mg N1/kg/day) | NA | rat | cancer (see Table
B); reduced body
and organ | ND | 2E -2 a | NA | 300 | U.S. EPA, 1984/
Ambrose
et al., 1976;
U.S. EPA, 1987 | | Nitriles, Selected
Methacrylonitrile
subchronic (RfDs) | 3.2 ppm (9 mg/m³), 7 hours/day, 5 days/week for 90 days (0.63 mg/kg/day); 3.2 ppm (9 mg/m³) 7 hours/day 5 days/week for 90 days (0.32 mg/kg/day) | dog | dog | increased SGOT and SGPT, loss of hind-
limb motor control, brain lesions; in-
creased SGOT and SGPT, loss of hind-
limb motor control, brain lesions | 7E-3 (2E-3) ^m | 1E-3 ^b | 300 | 300 | Pozzani et al.,
1968; U.S. EPA,
1987b/Pozzani
et al., 1968;
U.S. EPA, 1987b | | chronic (RfD) | 3.2 ppm (9 mg/m³), 7 hours/day, 5 days/week for 90 days (0.63 mg/kg/day); 3.2 ppm (9 mg/m³) 7 hours/day 5 days/week for 90 days (0.32 mg/kg/day) | dog | dog | increased SGOT and SGPT, loss of hind-limb motor control, brain lesions; increased SGOT and SGPT, loss of hind-limb motor control, brain lesions | 7E-4 (2E-4) ^m | 1E-4a,b | 3000 | 3000 | Pozzani et al.,
1968; U.S. EPA,
1987b/Pozzani
et al., 1968;
U.S. EPA, 1987b | | Nicotinonitrile | | | DATA I | INADEQUATE FOR QUANTITAT | TIVE RISK ASSESSMENT | | | | U.S. EPA, 1987 | | Succinonitrile | | | DATA 1 | INADEQUATE FOR QUANTITAT | TIVE RISK ASSESSMENT | | | | U.S. EPA, 1987 | | | _ | | | | <u>Referen</u> ce D | ose | Nacas 4 3 4 - 4 | [244 | Oo for no. | |---|--|----------------------|--------|--|---|---------------------|--------------------------|--------|--| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertaint
Inhalation | | Reference
Inhalation/Oral | | Nitrobenzene
subchronic (RfD _S) | 5 ppm (25 mg/m³)
6 hours/day, 5 days/
week for 90 days
(5.8 mg/kg/day);
5 ppm (25 mg/m³)
6 hours/day, 5 days/
week for 90 days
(4.64 mg/kg/day) | mou s e | mouse | hematological,
adrenal, renal and
hepalic lesions:
hematological,
adrenal, renal and
hepatic lesions; | | 5E - 3 ^b | 1000 | 1000 | CIII, 1984;
U.S. EPA, 1987/
CIIT, 1984;
U.S. EPA, 1987 | | chronic (RFD) | 5 ppm (25 mg/m³)
6 hours/day, 5 days/
week for 90 days
(5.8 mg/kg/day);
5 ppm (25 mg/m³)
6 hours/day, 5 days/
week for 90 days
(4.64 mg/kg/day) | monze | mouse | hematological,
adrenal, renal and
hepatic lesions;
hematological,
adrenal, renal and
hepatic lesions; | | 5{ _4ª,b | 10,000 | 10,000 | CIIT, 1984;
U.S. EPA, 1987,
CIIT, 1984;
U.S. EPA, 1985,
1987 | | Mitrofurans
nitrofurantoin
Subchronic (RFD _S) | MA; 300 ppm dlet for
13 weeks, (69.7 mg/kg/
day) | NA | mouse | NA; testicular
damage | ND | 7E-1 | NA | 100 | U.S. EPA, 1987,
SRI, 1980;
U.S. EPA, 1987 | | chronic ·RFD | NA: 300 ppm dlet for
13 weeks (69.7 mg/kg/
day) | NA | mouse | NA; testicular
damage | ND | 7E - 2 | NA | 1000 | U.S. EPA, 1987,
SRI, 1980;
U.S. EPA, 1987 | | Other nitrofurans: see | Table 8 | | | | | | | | | | Nitrophenols | | | DATA 1 | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | Ť | | | U.S. EPA, 1987 | | Parathion subchronic (RFDs) | NA; CBI | NA | human | NA; cholinesterase
inhibition | e ND | 6E - 3 | NA | 10 | U.S. EPA, 1987/
U.S. EPA, 1987 | | chronic (RFD) | NA; CBI | NA | human | NA; cholinesterase
inhibition, cancer | | 6E - 3 ⁹ | NA | 10 | U.S. EPA, 1987/
U.S. EPA, 1987 | | | • | | | F.C | Reference D | ose . | | • • • • | | |---|---|----------------------|---------------|--|---|---------------------|---------------------------|---------|--| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | Oral | Reference
Inhalation/Oral | | Pentachlorophenol subchronic (RfDs) | NA; 3 mg/kg/day by
gavage 62 days before
mating through gestation | NA | rat | NA; fetatox1c1ty | ND | 3E -2 | NA | 100 | U.S. EPA, 1984/
Schwetz et al.,
1978; U.S. EPA,
1984 | | chronic (RfD) | NA; 3 mg/kg/day by
gavage for 22-24 months | NA | rat | NA; liver and
kidney pathology ^l | ND | 3E -2ª | NA | 100 | U.S. EPA, 1984/
Schwetz et al.,
1978: U.S. EPA,
1984, 1985 | | n-Pentan e | | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | IT | | | U.S. EPA, 1987 | | Phenanthrene | | | DATA IN | ADEQUATE FOR QUANTI | TATIVE RISK ASSESSMEN | ıT | | | U.S. EPA, 1987 | | Phenol subchronic (RfDs) | NA; 60 mg/kg/day by
gavage during organo-
genesis | NA | rat | NA; reduced
fetal body
weight | ND | 6E-1 | HA | 100 | U.S. EPA, 1984/
Research
Triangle
Institute, 1983
U.S. EPA, 1988 | | chronic (RfD) | NA; 60 mg/kg/day by
gavage during organo-
genesis | NA | ral | NA; reduced
fetal body
welght | ND | 6E-1 J | NA | 100 | U.S. EPA, 1984/
Research
Triangle
Institute, 1983
U.S. EPA, 1988 | | Phthalic acid esters (
Bis(2-ethylhexyl) phth
subchronic (RfDs) | | NA | guinea | NA; Increased | ND | 2E -2 | NA | 1000 | U.S. EPA, 1987/ | | | l year (19 mg/kg/day) | | plg | relative liver
weight | | | | | Carpenter
et al.,
1953;
U.S. EPA, 1986 | | chronic (RfD) | NA; 0.04% of diet for
1 year (19 mg/kg/day) | NA | gutnea
ptg | NA; increased relative liver weight (Cancer: s (Table B) | ND
ee | 2E - 2 a | NA | 1000 | U.S. EPA, 1987/
Carpenter
et al., 1953;
U.S. EPA, 1986 | | | Exposure | Spec | • • • | [ffeet of Communication | Reference D | ose | | _ | | |--|---|-----------|---------|--|---|---------------------|----------------------------------|-----------------|--| | Compound | Inhalation; Oral | Inhalatio | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Practor
Oral | Reference
Inhalation/Oral | | Butyl benzyl phthalate
subchronic (RfO _S) | NA; 0.28% of d1et
for 26 weeks (159
mg/kg/day) | NA | rat | NA; effects on
body weight gain,
testes, liver,
kidney | ND | 2E+0 | NA | 100 | U.S. EPA, 1987/
NTP, 1985;
U.S. EPA, 1987 | | chronic (RfD) | NA; 0.28% of diet
for 26 weeks (159
mg/kg/day) | NA | rat | NA; effects on
body weight gain,
testes, liver,
kidney ^u | ND | 2€-1 | NA | 1000 | U.S. EPA, 1987/
N1P, 1985;
U.S. EPA, 1986,
1987 | | Diethyl phthalate
subchronic (RfD _S) | NA; 1% in diet for
16 weeks
(750 mg/kg/day) | NA | rat | NA; reduced
terminal body
weight | ND | 8E+0 | NA | 100 | U.S. EPA, 1987a/
Brown et al.,
1978; U.S. EPA,
1987a | | chronic (RfD) | NA; 1% in diet for
16 weeks
(750 mg/kg/day) | NA | rat | NA; reduced
terminal bòdy
weight ^l | ND | 8E - Ja | NA | 1000 | U.S. EPA, 1987a/
Brown et al.,
1978; U.S. EPA,
1987a,b | | D1-n-butyl phthalate
subchronic (RfD _S) | NA; 0.25% of diet
for 52 weeks
(125 mg/kg/day) | NA | rat | NA; mortality | ND | 1E+0 | NA | 100 | U.S. EPA, 1987/
Smith, 1953;
U.S. EPA, 1987 | | chronic (RfD) | NA; 0.25% of diet
for 52 weeks
(125 mg/kg/day) | NA | rat | NA; mortality ¹ | ND | 16-19 | NA | 1000 | U.S. EPA, 1987/
Smith, 1953;
U.S. EPA, 1986
1987 | | Dimethyl phthalate | | | DATA II | NADEQUATE FOR QUANTE | TATIVE RISK ASSESSMEN | rg, 1 | | | U.S. EPA, 1987 | | D1-n-octyl phthalate | | | DATA II | NADEQUATE FOR QUANTIT | TATIVE RISK ASSESSMENT | ſ | | | U.S. EPA, 1987 | | n-Propyl alcohol | | | DATA II | NADEQUATE FOR QUANTII | TATIVE RISK ASSESSMENT | ſ | | | U.S. EPA, 1987 | | Propylene glycol
subchronic (RfD _S) | 170-350 mg/m³ (mean:
260 mg/m³) contin-
uously for 18 months
(166 mg/kg/day); 6% in
diet for 20 weeks
(3 g/kg/day) | rat | rat | none observed; rer
lesions | nal 6E+O (2E+O) | 3E+1 | 100 | 100 | Robertson, 1947;
U.S. EPA, 1987/
Guerrant et al.,
1947; U.S. EPA,
1987 | | 0059h | | | | -35- | | | | | 04/28/89 | | | - | | | | Reference D | <u> </u> | | | | |--|--|-----------------------|--------|---|---|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Spec 1e
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Propylene glycol
chronic (RfD) | 170-350 mg/m³ (mean:
260 mg/m³) contin-
uously for 18 months
(166 mg/kg/day); 50,000
ppm in diet for 2 years
(2.1 g/kg/day) | rat | dog | none observed; de-
crease in RBC,
hematocrit, hemo-
globin in dogs | - 6E+O (2E+O) | 2E+1 | 100 | 100 | Robertson, 1947
U.S. EPA, 1987/
Gaunt et al.,
1972; U.S. EPA,
1987 | | Pyrene | | | DATA I | INDEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | T | | | U.S. EPA, 1984 | | Selenium
subchronic (RfD _S) | O.1 mg/m ³ occupational;
(O.7 mg/day); 4.8 ppm in
diet for 6 weeks (O.41
mg/kg/day) | human | rat | ND; mortal)ty | 4E-3 (1E-3) | 4E-3 | 10 | 100 | Glover, 1967;
U.S. EPA, 1984/
Halverson
et al., 1966;
U.S. EPA, 1985 | | chronic (RfD) | O.1 mg/m ³ occupational (O.7 mg/day); 3.2 mg/day from diet of seleniferous foodstuffs | human | human | ND; hair and nail
loss, dermatitis | 4E-3 (1E-3) | 3E - 3 9 | 10 | 15 | Glover, 1967;
U.S. EPA, 1984/
Yang et al.,
1983; U.S. EPA,
1984, 1985 | | Sodium cyanide
subchronic (RfD _S) | NA; 10.8 mg CN/kg/day
from diet containing
HCN (equivalent to
NaCN at 20.4 mg/kg/day) | NA | rat | NA; CNS | ND | 4E - 2 | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984 | | chronic (RfD) | NA; 10.8 mg CN/kg/day
from diet containing
HCN (equivalent to
NaCN at 20.4 mg/kg/day) | NA | rat | NA; CNS | ND | 4E -2ª | NA | 500 | U.S. EPA, 1984/
Howard and
Hanzal, 1955;
U.S. EPA, 1984,
1985 | | Sodium diethyldithio-
carbamate
subchronic (RfD _S) | NA; 30 mg/kg/day for
90 days | NA | rat | NA; decreased body
weight gain, renal
and hemotological
effects | | 3E-1 | NA | 100 | U.S. EPA, 1988/
Sunderman
et al., 1967;
U.S. EPA, 1988 | | | | | | | Reference D | ose | | | | |--|--|----------------------|-------|--|---|---------------------|----------------------------------|----------------|---| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Sodium diethyldithio-
carbamate | | | | | | | | | | | chronic (RfD) | NA; 30 mg/kg/day for
90 days | NA | rat | NA; cataracts and reduced body weight in chronic study (Cancer: see Table B) | ND
t | 3E - 2 ª | NA | 1000 | U.S. EPA, 1988/
Sunderman
et al., 1967;
U.S. EPA, 1985
1988 | | Sulfuric acid
subchronic (RfD _S) | 0.066-0.098 mg/m ³
occupational; NA | human | NA | respiratory; NA | MDA | NO | NA | NA | Carson et al.,
1981; U.S. EPA,
1984/NA | | chronic (RfD) | 0.066-0.098 mg/m ³
occupational; NA | human | NA | respiratory; NA | NO V | ND | NA | NA | Carson et al.,
1981; U.S. EPA
1984/NA | | Tetrachloroethylene
(perchloroethylene) | | | | | | | | | | | subchronic (RfD _S) | NA; 20 mg/kg 5 days/week
for 6 weeks
{14 mg/kg/day} | NA | mouse | NA; hepatotoxicily | ND | 16-1 | NA | 100 | U.S. EPA, 1988/
Buben and
O'flaherty,
1985; U.S. EPA,
1987 | | chronic (RfD) | NA; 20 mg/kg 5 days/week
for 6 weeks
(14 mg/kg/day) | NA | wonze | NA; hepatotoxicity
(Cancer: see
Table B) | , MD | 1E-2ª | NA | 1000 | U.S. EPA, 1988/
Buben and
O'flaherty,
1985; U.S. EPA,
1987 | | Thallium and Compounds
Thallium (in soluble s | | | | | | | | | | | subchronic RFDs) | NA; 0.20 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | MD | 7E-4 | NA | 300 | U.S. EPA, 1988a
MRI, 1986;
U.S. EPA, 1986b | | chronic (RfD) | NA; 0.20 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecta | NO NO | 7E - S | NA | 3000 | U S. EPA, 1988a
MRI, 1986;
U S. EPA, 1986b | | | Exposure | Spec 16 | | [ffeet of Consess | Reference D | ose | | | | |---|--|------------|-----|---|-----------------------------------|---------------------|----------------------------------|------|---| | Compound | Inhalation; Oral | Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Oral | Reference
Inhalation/Oral | | Thallium(III) oxide
[Thallic oxide] | NA 0.00 ALLES | | | | | | | | | | subchronic (RfDs) | NA; 0.02 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | T ND | 7E-4 | NA | 300 | U.S. EPA, 1988a
MRI, 1986;
U.S. EPA, 1986b
1988b | | chronic (RfD) | NA; 0.02 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | T ND | 7E - 5 a | MA | 3000 | U.S. EPA, 1988a.
MRI, 1986;
U.S. EPA, 1986b
1988b | | Thallium(I) acetate
subchronic (RfD _S) | NA; 0.20 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | MA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | T ND | 9E -4 | NA | 300 | U.S. EPA, 1988a,
MRI, 1986;
U.S. EPA, 1986b,
1988b | | chronic (RFD) | NA; 0.20 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecta | ND | 9E-5a | NA | 3000 | U.S. EPA,
1988a,
MRI, 1986;
U.S. EPA, 1986b,
1988b | | Thallium(I) carbonate
subchronic (RfO _S) | NA; 0.20 mg/thall1um/kg/
day (from thall1um
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecta | ND | 8E -4 | NA | 300 | U.S. EPA, 1988a/
MRI, 1986;
U.S. EPA, 1986b,
1988b | | chronic (RfD) | NA; 0.20 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | ND | 8E -5ª | NA | 3000 | U.S. EPA, 1988a/
MRI, 1986;
U.S. EPA, 1986b,
1988b | | Thallium(I) chloride
subchronic (RfD _S) | NA; 0.20 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | ND | 8E -4 | NA | 300 | U.S. EPA, 1988a/
MRI, 1986;
U.S. EPA, 1986b,
1988b | | | _ | | | *** | <u>Reference</u> | ose | M | | • | | |--|--|----------------------|-----|---|---|---------------------|---------------------------|----------------|---|--| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | factor
Oral | Reference
Inhalation/Oral | | | Thallium(I) chloride
chronic (RfD) | NA; 0.20 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecia | T NO | 8E-5a | NA | 3000 | U.S. EPA, 1988a.
MRI, 1986;
U.S. EPA, 1986b
1988b | | | Thallium(I) nitrate
subchronic (RfD _S) | NA; 0.20 mg/thallium/kg/
day (from thallium
sulfate) for 90 days | NA | rat | MA; increased SGOT
and serum LDH
levels, alopecia | r ND | 9E -4 | NA | 300 | U.S. EPA, 1988a.
MRI, 1986;
U.S. EPA, 1986b
1988b | | | chronic (RFD) | NA; 0.20 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA | rat | NA; increased SGDT
and serum LDH
levels, alopecia | T ND | 9E -5 a | NA | 3000 | U.S. EPA, 1988a.
MRI, 1986;
U.S. EPA, 1986b
1988b | | | Thallium selenide (Ti ₂
subchronic (RfO _S) | Se) NA; 0.20 mg/thalllum/kg/ day (from thalllum sulfate) for 90 days | NA | rat | NA; increased SGOT
and serum LDH
levels, alopecta | T ND | 9E -4 | NA | 300 | U.S. EPA, 1988a
MRI, 1986;
U.S. EPA, 1986b
1988b | | | chronic (RFD) | NA; 0.20 mg/thalllum/kg/
day (from thalllum
sulfate) for 90 days | NA | rat | NA; Increased SGOT
and serum LDH
Tevels, alopecta | T NO | 9E - 5 a | NA | 3000 | U.S. EPA, 1988a,
MRI, 1986;
U.S. EPA, 1986b
1988b | | | Thallium(I) sulfate subchronic (RFD _S) | NA; D.25 mg/kg/day for
90 days | NA | rat | NA; Increased SGOT
and serum LDH
levels, alopecla | T ND | 8E -4 | NA | 300 | U.S. EPA, 1988a.
MRI, 1986;
U.S. EPA, 1986b,
1988b | | | chronic (RfD) | NA; 0.25 mg/kg/day for
90 days | NA | ral | NA; increased SGO
and serum LDH
levels, alopecta | T ND | 8E -5ª | NA | 3000 | U S. EPA, 1988a,
MRI, 1986;
U.S. EPA, 1986b,
1988b | | | | _ | | | | Reference D | ose | | | | |--|--|----------------------|-----|---|-----------------------------------|---------------------|---------------------------|-----------------------|--| | Compound | Exposure Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | Uncertainty
Inhalation | <u>Factor</u>
Oral | Reference
Inhalation/Oral | | Tin and Compounds subchronic (RFD _S) | NA; 2000 ppm stannous
chloride in diet for 2
years (62 mg Sn/kg/day) | NA | rat | NA; liver and
kidney lesions | ND | 6E 21 | NA | 100 | U.S. EPA, 1987/
NTP, 1982;
U.S. EPA, 1987 | | chronic (RfD) | WA; 2000 ppm stannous
chloride in diet for 2
years (62 mg Sn/kg/day) | NA | rat | NA; liver and
kidney lesions | MD | 6E - 1 | NA | 100 | U.S. EPA, 1987/
NTP, 1982;
U.S. EPA, 1987 | | Toluene subchronic (RfO _S) | 300 ppm (1130 mg/m³)
6 hours/day, 5 days/
week for 24 months
(149.9 mg/kg/day);
590 mg/day 5 days/week
for 138 doses (42 mg/
kg/day) by gavage | rat | rat | CNS effects; CNS effects | 5E+O (1E+O) | 4E-1 | 100 | 100 | CILT, 1980;
U.S. EPA, 1984/
Wolf et al.,
1956 | | chronic (RFD) | 300 ppm (1130 mg/m ³) 6 hours/day, 5 days/ week for 24 months (149.9 mg/kg/day); 300 ppm (1130 mg/m ³) 6 hours/day, 5 days/ week for 24 months (29 mg/kg/day) ^b | rat | rat | CNS effects; CNS
effects 1 | 5E+O (1E+O) | 3E-1a,b,g | 100 | 100 | CIIT, 1980;
U.S. EPA, 1984/
CIIT, 1980;
U.S. EPA, 1984,
1985a,b | | 1,2,4-Trichlorobenzene
subchronic (RfD _S) | 3 ppm (22 mg/m³) 6 hours/day, 5 days/ week for 3 months (2.5 mg/kg/day); 20 mg/kg/day by gavage for 90 days | ral | rat | increased uropor-
phyrin; increased
liver-to-body
weight ratio | | 2E-1 | 100 | 100 | Watanabe et al.,
1978; U.S. EPA,
1987/Carlson and
Tardlff, 1976;
U.S. EPA, 1987 | | chronic (RfD) | 3 ppm (22 mg/m³) 6 hours/day, 5 days/ week for 3 months (2.5 mg/kg/day); 20 mg/kg/day by gavage for 90 days | rat | rat | increased uropor-
phyrin; increased
liver-to-body
weight ratio | | 2E-2 ā ,g | 1000 | 1000 | Watanabe et al.,
1978; U.S. EPA,
1987/Carlson and
Tardlff, 1976;
U.S. EPA, 1986,
1987 | | | Eunoeuno | C===4= | _ | 5541 -6 0 | Reference D | o <u>se</u> | | | | |--|--|----------------------|---------------|---|---|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | 1,1,1-Trichloroethane
subchronic (RfD _S) | 500 ppm (2730 mg/m ³) 7 hours/day, 5 days/ week for 6 months (304 mg/kg/day); 500 ppm (2730 mg/m ³) 7 hours/day for 6 months (90 mg/kg/day) ^b | gu i nea
pig | guinea
pig | hepalotoxicity;
hepalotoxicity | 1E+1 (3E+0) ^s | 9E - 1p | 100 | 100 | Torkelson et
al., 1958;
U.S. EPA, 1986/
Torkelson et
al., 1958;
U.S. EPA, 1986 | | chronic (RfD) | 500 ppm (2730 mg/m³) 7 hours/day, 5 days/ week for 6 months (304 mg/kg/day); 500 ppm (2730 mg/m³) 7 hours/day for 6 months (90 mg/kg/day)b | guinea
pig | gulnea
plg | hepatotoxicity;
hepatotoxicity | 1E+O (3E-1)\$ | 9E-2ª,b | 1000 | 1000 | Torkelson et al., 1958; U.S. EPA, 1986/ Torkelson et al., 1958; U.S. EPA, 1986 | | 1,1,2-Trichloroethane
subchronic (RfD _S) | NA; 3.9 mg/kg/day by
drinking water for 90
days | NA | mouse | NA; clinical chemistry altera-tions | ND | 4E-2 | NA | 100 | U.S. EPA, 1984/
White et al.,
1985; Sanders
et al., 1985;
U.S. EPA, 1988 | | chronic (RfD) | NA; 3.9 mg/kg/day by
drinking water for 90
days | NA | mouse | NA; clinical
chemistry altera-
tions (Cancer:
see Table B) | ND | 4E-3ª | NA | 1000 | U.S. EPA, 1984/
White et al.,
1985; Sanders
et al., 1985;
U.S. EPA, 1988 | | Trichloropropanes
1,1,1-Trichloropropane | | | DATA IN | ADEQUATE FOR QUANTII | ATIVE RISK ASSESSMENT | г | | | U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,2,2Trichloropropane | | | DATA IN | ADEQUATE FOR QUANTII | ATIVE RISK ASSESSMENT | T | | | U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,1,2-Trichloropropane
subchronic (RfD _S) | NA; 100 mg/s in drinking
water for 13 weeks
(15 mg/kg/day) | NA | rat | histopathological
lesions in liver,
kidney and thyroid | ND | 5E -2 | NA | 300 | U.S. EPA, 1987a,
Villaneuve
et al., 1985;
U.S. EPA, 1987b | | | • | | | F6616 M. | Reference D | ose | | | | |--|--|----------------------|-------|--|-----------------------------------|---------------------|----------------------------------|----------------|---| | Compound | Exposure
Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | 1,1,2-Trichloropropane
chronic (RFD) | NA; 100 mg/L in drinking
water for 13 weeks
(15 mg/kg/day) | MA | rat | histopathological
lestons in liver,
kidney and thyroid | ND | 5E-3 a | NA | 3000 | U.S. EPA, 1987a
Villaneuve
et al., 1985;
U.S. EPA, 1987b | | 1,2,3-Trichloropropane
subchronic (RfD _S) | NA; 8 mg/kg 5 days/week
for 120 days (5.7
mg/kg/day) | NA | rat | NA;
translent clin
cal signs, liver
and kidney lesions
decrease in RBC,
hematocrit and
hemoglobin | | 6E -2 | NA | 100 | U.S. EPA, 1987/
NTP, 1983a;
U.S. EPA, 1987 | | chronic (RfD) | NA; 8 mg/kg 5 days/week
for 120 days (5.7
mg/kg/day) | NA | rat | NA; transient clin
cal signs, liver
and kidney lesions
decrease in RBC,
hematocrit and
hemoglobin | | '6E−3 a | NA | 1000 | U.S. EPA, 1987/
NTP, 1983a;
U.S. EPA, 1986,
1987 | | rihalogenated methanes | 3 | | | | | | | | | | Bromodichloromethane
subchronic (RFD _S) | MA; 25 mg/day by gavage
5 days/week for 102
weeks (17.9 mg/kg/day) | NA | mouse | NA; renal cytomega | ly ND | 2E - 2 | NA | 1000 | U.S. EPA, 1987a
NTP, 1986/
U.S. EPA, 1987b | | chronic (RFD) | NA; 25 mg/day by gavage
5 days/week for 102
weeks (17.9 mg/kg/day) | NA | mouse | NA, renal cytomega
(Cancer: see Table
B) | | 2E - 2 a | NA | 1000 | U.S. EPA, 1987a.
NTP, 1986;
U.S. EPA, 1987b | | Bromoform
subchronic (RfD _S) | NA; 25 mg/kg 5 days/
week for 13 weeks
{17.9 mg/kg/day} | NA | rat | NA; liver effects | ND | 2E - 1 | NA | 100 | U.S. EPA, 1987a,
NTP, 1980;
U.S. EPA, 1987b | | chronic (RfD) | NA; 25 mg/kg 5 days/
week for 13 weeks
(17.9 mg/kg/day) | NA | rat | NA; liver effects | ND | 2E-2a | NA | 1000 | U.S. EPA, 1987a
NTP, 1980;
U.S. EPA, 1987b | | | • | | | | Reference D | ose | | | | |---|--|----------------------|--------|---|---|---------------------|----------------------------------|-----------------------|---| | Compound | Exposure
Inhalation; Oral | Specte
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
[mg/m ³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>factor</u>
Oral | Reference
Inhalation/Oral | | Chlorodibromomethane subchronic (RfDs) | NA; 30 mg/kg 5 days/week
for 13 weeks (21.4
mg/kg/day) | NA | NA | NA; liver lesions | ND | 2E - 1 | NA | 100 | U.S. EPA, 1987a,
NTP, 1985;
U.S. EPA, 1987b | | chronic (RFD) | NA; 30 mg/kg 5 days/week
for 13 weeks (21.4
mg/kg/day) | NA | rat | NA; liver lesions
(Cancer: see Table
B) | ND
: | 2£ - 2 ā | NA | 1000 | U.S. EPA, 1987a,
NTP, 1985;
U.S. EPA, 1987b | | Trimethylbenzenes | | | DATA I | NADEQUATE FOR QUANTIT | ATIVE RISK ASSESSMEN | Ţ | | | U.S. EPA, 1987 | | Trivalent chromium subchronic (RfD _S) | NA; 5% Cr ₂ O ₃ in diet
5 days/week for 90 days
(14OO mg Cr/kg/day) | NA | rat | NA; hepatotoxicity | ND | 1E+1 | NA | 100 | U.S. EPA, 1984/
Ivankovic and
Preussman, 1975;
U.S. EPA, 1984 | | chronic (RfD) | NA; 5% Cr ₂ O ₃ in diet
5 days/week for 6OO
feedings (1468 mg
Cr/kg/day) | NA | rat | NA; hepatotoxicity | ND | 1E+0 a | NA | 1000 | U.S. EPA, 1984/
Ivankovic and
Preussman, 1975;
U.S. EPA, 1984,
1985 | | Vanadium and compounds
Sodium metavanadate
subchronic (RfD _S) | NA; 10 ppm sodium
metavanadate in drink-
ing water for 3 months
(1.32 mg sodium meta-
vanadate/kg/day) | NA | rat | NA; impaired kidne
function | y ND | 16-2 | NA | 100 | U.S. EPA, 1987/
Domingo
et al., 1985;
U.S. EPA, 1987 | | chronic (RfD) | NA; 10 ppm sodium
metavanadate in drink-
ing water for 3 months
(1.32 mg sodium meta-
vanadate/kg/day) | NA | rat | NA; impaired kidne
function | y ND | 18-3 | NA | 1000 | U.S. EPA, 1987/
Domingo
et al., 1985;
U.S. EPA, 1987 | | Vanadlum
subchronic (RfD _S) | NA; 5 ppm vanadlum
from vanadyl sulfate
in drinking water for
lifetime (0.7 mg/kg/day) | NA | rat | NA; none observed | ND | 76-3 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | | | | | | Reference D | ose | | | | |--|---|----------------------|-----|---------------------------------------|-----------------------------------|---------------------|----------------------------------|----------------|--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | inhalation
[mg/m³ (mg/kg/day)] | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | Factor
Oral | Reference
Inhalation/Oral | | Vanadłum
chronic (RFD) | NA; 5 ppm vanadium
from vanadyi sulfate
in drinking water for
lifetime (0.7 mg/kg/day) | NA | rat | NA; none observed | NO | 76-3 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | Vanadium pentoxide
subchronic (RfO _S) | NA; 10 ppm vanadium
in diet from vanadium
pentoxide for lifetime
(0.9 mg vanadium pent-
oxide/kg/day) | NA | rat | NA; nane observed | NO | 9 E-3 | NA | 100 | U.S. EPA, 1987/
Slokinger
et al., 1953;
U.S. EPA, 1987 | | chronic (RFD) | NA; 10 ppm vanadium
in diet from vanadium
pentoxide for lifetime
(0.9 mg vanadium pent-
oxide/kg/day) | NA | rat | NA; none abserved | ND | 9E - 3ª | NA | 100 | U.S. EPA, 1987/
Stokinger
et al., 1953;
U.S. EPA, 1986,
1987 | | Vanadyl sulfate
subchronic (RfDs) | NA; 5 ppm vanadium from
vanadyl sulfate in
drinking water for life-
time (2.24 mg vanadyl
sulfate/kg/day) | NA | rat | NA; none observed | NO | 2E-2 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | chronic (RfD) | NA; 5 ppm vanadium from vanadyl sulfate in drinking water for life-time (2.24 mg vanadyl sulfate/kg/day) | NA | rat | NA; none observed | NO | 2E-2 | NA | 100 | U.S. EPA, 1987/
Schroeder
et al., 1970;
U.S. EPA, 1987 | | Xylenes
o-Xylene
subchronic (RfDs) | 150 mg/m³ continuous
on days 7-14 of gesta-
tion (95.6 mg/kg/day);
500 mg/kg mixed xylenes
5 days/week by gavage
for 13 weeks (357 mg
mixed xylenes/kg/day) | rat | rat | fetotoxicity; non
observed | e 3E+O (1E+O) | 4E+0 | 100 | 100 | Ungvary et al.,
1980; U.S. EPA,
1984/NTP, 1986 | | | _ | | | | Reference O | ose | | | | | |--------------------------------|---|----------------------|-----|---|--|---------------------|----------------------------------|-----------------------|--|--| | Compound | Exposure Inhalation; Oral | Specie
Inhalation | | Effect of Concern
Inhalation; Oral | Inhalation
mg/m ³ (mg/kg/day)]
 | Oral
(mg/kg/day) | <u>Uncertainty</u>
Inhalation | <u>Factor</u>
Oral | Reference
Inhalation/Oral | | | o-Xylene | • | | | | | | | | | | | chronic (RFD) | 4750 mg/m ³ , 8 hours/
day, 7 days/week for
1 year (1009 mg/kg/day);
250 mg/kg mixed xylenes
5 days/week for 103
weeks (179 mg mixed
xylenes/kg/day) | rat | rat | hepatomegaly; hyper
activity, decreased
body weight, in-
creased mortality a
higher dosage | | 2E+0 | 5000 | 100 | Tatra1 et al.,
1981; U.S. EPA
1984/NTP, 1986
U.S. EPA, 1986 | | | n-Xylene
subchronic (RfDs) | 4750 mg/m³, 8 hours/ | rat | rat | hepatomegaly; none | 4E+0 (1E+0) | 4E+0 | 1000 | 100 | Tatral et al., | | | sancin onic (wing) | day, 7 days/week for
l year (1009 mg/kg/
day) ^M ; 500 mg/kg mlxed
xylenes 5 days/week for
103 weeks (357 mg mlxed
xylenes/kg/day) | | 100 | observed | 1210 (1210) | 42.0 | 1333 | 700 | 1981; U.S. EPA
1984/NTP, 1986 | | | chronic (RfD) | 4750 mg/m ³ , 8 hours/
day, 7 days/week for 1
year (1009 mg/kg/day) ^w ;
250 mg/kg mixed xylenes
5 days/week for 103
weeks (179 mg mixed
xylenes/kg/day) | rat | rat | hepatomegaly; hyper
activity, decreased
body weight, in-
creased mortality
at higher dosage | - 7E-1 (2E-1)) | 2E+O | 5000 | 100 | latral et al.,
1981; U.S. EPA
1984/NTP, 1986
U.S. EPA, 1986 | | | p-Xylene
subchronic (RfDs) | NA; NA | NA | rat | fetotoxicity; NA | ND | ND | NA | NA | U.S. EPA, 1984 | | | | | | | ••• | | | | | U.S. EPA, 1984 | | | chronic (RfD) | NA; NA | NA | NA | fetotoxicity; NA | ND | ND | NA | NA | U.S. EPA, 1984
U.S. EPA, 1984 | | | lixed xylenes | _ | | | | | | | | | | | subchronic (RfD _S) | 433 mg/m ³ 6 hours/day on days 6-15 of gesta- tion (69 mg/kg/day); 500 mg/kg mixed xylenes 5 days/week by gavage for 13 weeks (357 mg mixed xylenes/kg/day) | rat | rat | fetoloxicity; none
observed | 2E+O (7E-1) | 4E+O | 100 | 100 | Litton
Bionetics, 1976
U.S. EPA, 1984/
NTP, 1986 | | | | | | | | Reference 0 | 920 | | | | |--|--|----------------------|-------|---|-----------------------------------|---------------------|---------------------------|------|---| | Compound | <u>fxposure</u>
Inhalation; Oral | Specie
Inhalation | | Effect of
Concern
Inhalation; Oral | Inhalation
[mg/m³ (mg/kg/day}] | Oral
(mg/kg/day) | Uncertainty
Inhalation | Oral | Reference
Inhalation/Oral | | Mixed xylenes
chronic (RFD) | 3500 mg/m ³ 6 hours/
day 5 days/week for
13 weeks (398 mg/kg/
day); 250 mg/kg m1xed
xylenes 5 days/week for
103 weeks (179 mg m1xed
xylenes/kg/day) | rat | rat | none observed;
hyperactivity,
decreased body
weight and in-
creased mortality
at higher dosage | | 2E +0ª | 1000 | 100 | Carpenter et
al., 1975;
U.S. EPA, 1984/
NTP, 1986;
U.S. EPA, 1987 | | Zinc
subchronic (RfD _S) | NA; 2.14 mg/kg/day
therapeut)c dosage | NA | human | NA; anemia | ND | 2E - 1 | NA | 10 | U.S. EPA, 1984/
Portes et
al., 1967;
Prasad et al.,
1975; U.S. EPA,
1984 | | chronic (RfD) | NA; 2.14 mg/kg/day
therapeutic dosage | NA | human | NA; anemia | NB | 28-1 | NA | 10 | U.S. EPA, 1984/
Portes et al.,
1967; Prasad
et al., 1975;
U.S. EPA, 1984 | averified, available on IRIS bbased on route-to-route extrapolation ^{*}Specifically related to organoleptic threshold and potential for respiratory tract irritation, not to systemic toxicity. dSpecifically related to organoleptic threshold; safe concentration may be higher but data are inadequate to assess. eInhalation study with antimony trioxide in rats (Watt, 1980, 1981, 1983; ASARCO, Inc., 1980) provides qualitative evidence of lung cancer; cancer potency not estimated. fCalculated by analogy to antimony by correcting for differences in molecular weight. **Gunder review by Oral RfD Work Group** bBecause of background dietary exposure, an RfDso was not estimated. *Verified 2 separate RfDs, 1E-3 for food and 5E-4 for water Iverified, IRIS input pending Ecurrent drinking water standard of 1.3 mg/1; Drinking Water Criteria Document concluded toxicity data were inadequate for calculation of an RfD for copper. 1CRAVE-verified as a CAG Group D substance MThese values differ from those in the HEED (U.S. EPA, 1987a) because the uncertainty factor for deriving the inhalation RFD values presented herein were changed to correspond to those used by IRIS (U.S. EPA, 1987b) for generating the oral RFD from the same (inhalation) study. ⁿCalculated by analogy to free cyanide by correcting for differences in molecular weight. OThese values differ from those in the HEA (U.S. EPA, 1984) because the study chosen as the basis for the inhalation RFD values was changed to conform to the inhalation study chosen as the basis of the oral RFD derived in a more recent HEEP (U.S. EPA, 1986). PFinal Draft of Ambient Water Quality Criteria Document (600/8-83-028f) declines to derive an air quality criterion for lead. 9Not verified and further discussion not scheduled FBased on RfD for methyl mercury SThese values differ from those in the HEA (U.S. EPA, 1984) because the study chosen as the basis for the inhalation RfD values was changed to conform to the inhalation study chosen as the basis of the oral RfD derived on IRIS. tA minor calculation error in estimation of transformed dose in 1986 HEEP is corrected here. "Verified as a Group C carcinogen; no quantitative estimate available. VReported effects occurred at portal of entry; estimates of mg/day reference doses are inappropriate because effects at portal of entry depend on concentration in air. An acceptable air concentration of 0.07 mg/m³ was estimated by Carson et al. (1981) from available data. WExperiment performed with o-xylene. NA = Not applicable or not available; ND = not determined Notes: To estimate acceptable water concentrations from oral RfDg/RfD, multiply by 70 and divide by 2 t. If exposure occurs by both oral and inhalation routes, the route-specific RfDg/RfD must be proportionally reduced. 04/28/89 | | Exposure | Spec 1 | es | Tumor S1 | e | CAG Group/qj* and | I Unit Risk Slope | Reference | |---------------|--|------------|-------|--------------------------|--------------------|--|-----------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | Acrolein | NA; NA | NA | NA | NA | NA | C/NDa | C/NDa | U.S. EPA, 1987a,b/
U.S. EPA, 1987a,b | | Acrylonitrile | occupational; three
drinking water
studies | human | rat | lung | multiple | B1/6.8E-5
[2.4E-1]ª | B1/5.4E-1ª | O'Berg, 1980;
U.S. EPA, 1983a,
1987a,b/Quast
et al., 1980a;
Blo/dynamics,
Inc., 1980a,b;
U.S. EPA, 1983a,
1987a,b | | A I dr 1 n | three dietary
studies ^b ; three
dietary studies | mouse | mouse | liver
(also see I | liver
able Aj | 82/4.9E-3
[1.7E•]]ā.b | B2/1.7E+1ª | NCI, 1977; Davis
and fitzhugh, 1962;
Epstein, 1975;
Davis, 1965; U.S.
EPA, 1986b, 1987b/
NCI, 1977; Davis
and fitzhugh, 1962;
Epstein, 1975;
Davis, 1965; U.S.
EPA, 1986b, 1987a,b | | Arsenic | 100-5000 µg/m ³ continuous; 0.01-1.8 mg/1 in drinking water | human | human | respiratory
tract | skin | A/4.3E-3
{5.0E+1}a | A/NA ^k | Brown and Chu,
1983a,b,c; Lee-
Feldstein, 1983;
Higgins, 1982;
Enterline and
Marsh, 1982;
U.S. EPA, 1984a,b,
1988/U.S. EPA, | | Asbestos | occupational;
dletary | human | rat | lung and
mesothelloma | large
Intestine | A/2.4-1
(fibers/m£)-lf | A/ND | U.S. EPA, 1986/NTP,
1985; U.S. EPA, 1985 | | | Exposure | Spec 1 | es | Tumor Site | | CAG Group/qj* and | Unit Risk Slope | Reference | |----------------|---|------------|-------|---------------------------------------|------------------------------|--|-----------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
{µg/m³}-1
[(mg/kg/day)-1] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | Benzene | occupational;
occupational ⁶ | human | human | leukemla | leukemla | A/8.3E-6
[2.9E-2]ª | A/2.9E-2a,b | Ott et al., 1978;
Rinsky et al., 1981;
Wong et al., 1983;
U.S. EPA, 1985,
1987a,b/Ott et al.,
1978; Rinsky et al.,
1981; Wong et al.,
1983; U.S. EPA,
1985, 1987a,b | | Benz 1d ine | occupational;
occupational ⁶ | human | human | urinary
bladder
(also see Tai | urinary
bladder
ble A) | A/6.7E-2
[2.3E+2]a | A/2.3E+2a,b | Zavon et al., 1973;
U.S. EPA, 1986b/
Zavon et al., 1973;
U.S. EPA, 1980a,
1986a,b, 1987 | | Benzo(a)pyrene | 2.2-9.5 mg/m 3 , 4.5 hours/day for \leq 96.4 weeks; 1-250 ppm diet for \simeq 110 days | hams ter | mouse | respiratory
tract | stomach | B2/ND ^a | B2/NDª | Thyssen et al.,
1981; U.S. EPA,
1987/Neal and
Rigdon, 1967;
U.S. EPA,1980b,
1987 | | Beryllium | occupational; 5 ppm
in drinking water
for lifetime | human | rat | lung
(also see Tal | total
tumors
ble A) | B2/2.4E-3
[8.4] ^a | B2/ND ^a | Wagoner et al.,
1980; U.S. EPA,
1987, 1988/
Schroeder and
Mitchener, 1975a;
U.S. EPA, 1986b,
1988 | | Cadmium | occupational; NA | human | NA | respiratory
tract
(also see Tal | NA
ble A) | 81/1.8E-3
[6.1E+0]ª | ND/ND ^C | Thun et al., 1985;
U.S. EPA, 1985a,
1986/U.S. EPA, 1984 | | | Exposure | Spec 1 | es | Tumor Site | | CAG Group/qj* and | Unit Risk Slope | Reference | |---|--|------------|---------|-----------------------|-----------------|--|-----------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalatton | Oral | Inhalation (µg/m³)-1 [(mg/kg/day)-1] | Oral
(mg/kg/day)-T | Inhalation/Oral | | Carbon tetrachloride | several gavage
studies ^b ; several
gavage studies | several | several | liver
(also see Ta | liver
ble A) | B2/1.5E-5a,b,d
[1.3E-1]a,b
[5.2E-2]d | 82/1.3€-1ª | Della Porta et al.,
1961; Edwards
et al., 1942; NCI,
1976; U.S. EPA,
1984a,b, 1986/
Della Porta et
al., 1961; Edwards
et al., 1942;
NCI, 1976;
U.S. EPA, 1984,
1986 | | Ch lor dane | two dietary
bioassays ^b ; two
dietary bioassays | mouse | mouse | liver
(also see Ta | liver
ble A) | B2/3.7E-4
[1.3E+0]a.b | B2/1.3E+0ª | IRDC. 1973; NCI,
1977; U.S. EPA,
1986a, 1987, 1988/
IRDC, 1973; NCI,
1977; U.S. EPA,
1986a, 1987, 1988 | | Chlorinated phenols
2,4,6-Trichlorophenol | d1et ^b ; d1et | mouse | mouse | liver |) I ver | 82/5.7E-6
[2E-2]a.b | B2/2E -2ª | NCI, 1979; U.S.
EPA, 1980, 1986,
1987/NCI, 1979;
U.S. EPA, 1980,
1984 | | Other chlorinated pheno | ols: see Table A | | | | | | | | | Chlorinated toluenes
P.a.a.a-Tetra-
chlorotoluene | 0.05-2 µ1, 2
times/week; 0.05-
2 µ1, 2 times/
week | mous e | mouse | lung | lung | B 2 | 82/2.0E+1 | Fukada et al., 1979;
U.S. EPA, 1987/
Fukada et al., 1979;
U.S. EPA, 1987 | | Chloroanilines
2-Chloroaniline | NA; NA | NA | NA | NA | NA | D/ND | D/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor Site | • | CAG Group/q;* and | Unit Risk Slope | Reference | |---
---|---------------|---------------|-----------------------|-------------------|--|-----------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1) | Oral
(mg/kg/day)-1 | Inhalation/Oral | | 3-Chloroaniline | NA; NA | NA | NA | NA | NA | D/ND | D/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | 4-Chloroaniline | NA; d1et O, 250,
500 ppm | NA | rat | NA | spleen | C/ND | C/3.5E-2 | U.S. EPA, 1987/
NCI, 1979;
U.S. EPA, 1987 | | Chloroform | 138-477 mg/kg/day;
200-188 ppm in
drinking water for
104 weeks | mouse | rat | liver
(also see Ta | kidney
ible A) | 82/2.3E-5
[8.1E-2]a | 82/6.1E-3ª . | NCI, 1976; U.S. EPA
1985, 1987, 1988/
Jorgenson et al.,
1985; U.S. EPA,
1987, 1988 | | Ch lorome thane | 24-month inhalation study; 24-month inhalation study ^b | mouse | mouse | k1dney | kidney | C/1.8E-6
[6.3E-3] | C/1.3E-2 ^b | CIIT, 1983; N10SH,
1984; U.S. EPA,
1987/CIIT, 1983;
NIOSH, 1984; U.S.
EPA, 1986a, 1987 | | Coal tars | occupational; NA | human | NA | lung | NA | ND/6.2E-4
[2.2E+0]e | ND/ND | Redmond et al.,
1979; Mazumdar
et al., 1975; U.S.
EPA, 1984/NA | | Creosote | NA; NA | NA | NA | NA | NA | 81/NDª | B1/ND ^a | U.S. EPA, 1987/
U.S. EPA, 1987 | | DDT | NA; several dietary
studies ^b | mouse,
rat | mouse,
rat | liver
(also see Ta | liver
ble A) | B2/9.7E-5
[3.4E-}]a.b | B2/3.4E-1ª | U.S. EPA, 1986a,b/
U.S. EPA, 1984,
1986a,b | | Dichlorobenzenes
1,2-Dichlorobenzene | NA; NA | NA | NA | NA
(also see Ta | NA
ble A) | D/ND | D/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,3-Dichlorobenzene | NA; NA | NA | NA | NA
(also see Ta | NA
ble A) | D/ND | D/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor S11 | e | CAG Group/qj* and | Unit Risk Slope | Reference | |---|---|------------|---------|-----------------------|-----------------------|--|------------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | 1,4-Dichlorobenzene9 | NA; 103-week gavage
study | NA | mou s e | NA
(also see l | liver
able A) | 82/ND | B2/2.4E-2 | U.S. EPA, 1987/
NIP, 1986;
U.S. EPA, 1987 | | 3,3'-Dichlorobenzidine | NA; lifetime
dietary study | NA | rat | NA | manmar y | B2/ND ^f | B2/4.5E-1 ^f | U.S. EPA, 1988/
Stula et al.,
1975; U.S. EPA,
1988 | | Dichlorobutenes
1,4-Dichloro-2-butene | 0.5-5 ppm
6 hours/day, 5 days/
week 90 days; NA | rat | NA | nasal
passages | NA | 82/2.6E-3
[9.3] | B2/ND | El Dupont de
Nemours, 1986;
U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,1-Dichloroethane | NA; gavage | NA | rat | NA | hemanglo-
sarcoma | ND/ND | B2/9.1E-2 | U.S. EPA, 1984/
NCI, 1978; U.S.
EPA, 1985 | | 1,2-Dichloroethane
(ethylene chloride) | gavage ^b ; gavage | rat | rat | circulatory
system | clrculatory
system | 82/2.6E-5
{9.1E-2}a,b | B2/9.1E-2ª | NCI, 1978; U.S. EPA
1985, 1986/
NCI, 1978; U.S. EPA
1985, 1986 | | 1,1-Dichloroethylene
(vinylidene chloride) | 10 and 25 ppm for
12 months; gavage | mouse | rat | kidney
{also see T | adrenal
able A) | C/5E-5
[1.2E+0] ^a | C/6E-1ª | Maltonl et al.,
1985; U.S. EPA,
1985, 1987/
NTP, 1982;
U.S. EPA, 1985,
1987 | | 1,2-Dichloropropane9 | NA; gavage | NA | mouse | NA | llver | B2/N0 | 82/6.8E-2 | U.S. EPA, 1987/
NTP, 1986;
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor S1t | e | CAG Group/qj* and | Unit Risk Slope | Reference | |------------------------------------|--|------------|-------|----------------------|----------------------------|--|-----------------------|---| | Compound | Inhalatton; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(mg/kg/day)-T | Inhalation/Oral | | Dieldrin | several dietary
studies ^b ; several
dietary studies | mouse | mouse | liver
(also see T | liver
able A) | B2/4.6E-3
{1.6E+1]a.b | 82/1.6E•1ª | Thorpe and Walker, 1973; Davis, 1965; Walker et al., 1972; Tennekes et al., 1981; Meierhenrey et al., 1983; NCI, 1978; U.S. EPA, 1987b/ Thorpe and Walker, 1973; Davis, 1965; Walker et al., 1972; Tennekes et al., 1981; Meierhenrey et al., 1983; NCI, 1978; U.S. EPA, 1987a, b | | Dinitrotoluenes 2,4-Dinitrotoluene | NA; 2-year dietary
study | NA | rat | NA | liver,
mammary
gland | B2/NO ^f | 82/6.8E-1f | U.S. EPA, 1987/
Ellis et al., 1979;
U.S. EPA, 1987,
1988 | | 2,6-Dinitrotoluene | NA; NA | NA | NA | NA | NA | B2/ND | B2/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | 1,2-Diphenylhydrazine | 2-year dietary
study ^b ; 2-year
dietary study | rat | rat | liver | liver | 82/2.2E-4
[8.0E-1]a,b | 82/8.OE-1ª | NCI, 1978;
U.S. EPA, 1980a,
1986/NCI, 1978;
U.S. EPA, 1980a, | | | dietary study | | | | | | | 1986, 1987, 1988 | | Ethylene dibromide | 88-103 week inhala-
tion study; 49-week
gavage study | rat | rat | nasal cavity | forestomach | B2/2.2E-4
[7.6E-1]ª | B2/8.5E+1ª | NTP, 1982; U.S. EPA,
1987b/NCI, 1978;
U.S. EPA, 1987a,b | | Fluorenes | NA; NA | NA | NA | NA | NA | O/ND | D/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor Site | | CAG Group/qj* and | Unit Risk Slope | Reference | |---|---|------------|---------|------------------------|-----------------|---|-----------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | Haloethers
Bis(2-chloroethyl)
ether | 560-day oral study ^b ;
560-day oral study | mouse | mouse | liver | liver | 82/3.3E-4
{1.1E+0]a,b | B2/1.1E+0a | Innes et al.,
1969; U.S. EPA,
1980a, 1986;/Innes
et al., 1969;
U.S. EPA, 1980a
1986, 1987 | | Bis(chloromethyl)-
ether | O.1 ppm 6 hours/day
5 days/week for 10
to 100 days; O.1 ppm
6 hours/day 5 days/
week for 10 to 100
days ^b | rat | rat | respiratory
tract | ND | A/6.2E-2
[2.2E+2]a | A/2.2E,2a.b | Kuschner et al.,
1975; U.S. EPA,
1988/U.S. EPA,
1988 | | Bls(2-chloro-1-methy
ethyllether |]-
100-200 mg/kg 5 days/
week for 103 weeks ^b ;
100-200 mg/kg 5 days/
week for 103 weeks; | mouse | mouse | liver, lung | liver, lung | C/2E-3
[7E-2] | C/7E-2 | NTP, 1982;
U.S. EPA, 1987/
NTP 1982;
U.S. EPA, 1987 | | Chloromethyl methyl
ether | NA; NA | human | NA | lung | NA | A/ND ^a | A/NDª | U.S. EPA, 1987,
1988/U.S. EPA,
1988 | | Heptachlor | dietary studies ^b ;
dietary studies | mouse | mouse | liver
(also see Tal | liver
Die A} | 82/1.3E-3
[4.5E+0]a.b | 82/4.5E+0ª | Davis, 1965;
Epstein, 1976; NCI,
1977; Reuber, 1977;
U.S. EPA, 1986c,
1987b/Davis, 1965;
Epstein, 1976; NCI,
1977; Reuber, 1977;
U.S. EPA, 1986c
1987a,b | | Hexach lor obenzene ^f | dlet ^b ; dlet | hamster | hamster | liver
(also see Tal | liver
ole A) | 82/4.9E-4 ^b
[1.7E+0] ^b | B2/1.7E+O | Cabral et al., 1977;
U.S. EPA, 1984, 1989,
Cabral et al., 1977;
U.S. EPA, 1984, 1985 | | | Exposure | Spec 1 | es | Tumor Site | 2 | CAG Group/qj* and | Unit Risk Slope | Reference | |---|--|------------|-------|-----------------------------|--|--|-----------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-7
[(mg/kg/day)-1] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | Hexachlorobutadiene | diet ^b ; diet | rat | rat | kidney
(also see Ta | kidney
able A) | C/2.2E-5
[7.8E-2]a.b | C/1.8E-2ª | Kociba et al.,
1977a; U.S. EPA,
1986/Kociba et al.,
et al., 1977a;
U.S. EPA,1980,
1984, 1986 | | Hexach lor oe thane | 90-week gavage
study ^b ; 90-week
gavage study | mouse | mouse | liver
(also see Ta | liver
able A) | C/4.OE-6
[1.4E-2]a,b | C/1.4E-2ª | NCI, 1978; U.S. EPA,
1986/NCI, 1978;
U.S. EPA, 1980a,
1986, 1987 | | Hexavalent chromium | occupational; NA | human | NA | lung
(also see Ta | NA
able A) | A/1.2E-2
[4.1E+1]a | ND/ND ^C | Mancuso, 1975; U.S.
EPA, 1984a,b,
1986/NA | | Isophorone | NA; 2-year gavage
study | NA | rat | NA
(also see Ta | kidney,
preputial
gland
able A) | C/ND | C/4.1E-3 | U.S. EPA, 1987/
NTP, 1986; U.S.
EPA, 1986a, 1987 | | Lead | NA; NA | NA | NA | NA
(also see Ta |
NA
Bble A) | 82/NDª | B2/NDª | U.S. EPA, 1984,
1988/U.S. EPA,
1984, 1988 | | Lindaneg | NA; dlet | NA | mouse | NA
(also see Ta | liver
able A) | B2-C/ND | B2-C/1.3E+0 | U.S. EPA, 1984/
1horpe and Walker,
1973; U.S. EPA,
1984, 1986 | | Methylene chloride
(dichloromethane) | 2000 or 4000 ppm;
inhalation and
drinking water
studies | mouse | mouse | lung, liver
(also see To | liver
able A) | 82/4.1E-6
[1.4E-2]a | B2/7.5E-3ª | NTP, 1986; U.S. EPA,
1984, 1986/NIP,
1986; NCA, 1983;
U.S. EPA, 1985b
1986 | | Mirex | NA; 2-year dietary
study | NA | rat | NA
(also see Ta | liver.
adrenal
able A) | B2/ND | B2/1.8E+0 | U.S. EPA, 198//
NTP, 1987;
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor Sit | e | CAG Group/q1* and Unit Risk Slope | | Reference | |-----------------------------|---|------------|-------|-------------------------------------|-----------------------|--|-----------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation (µg/m³]-1 [(mg/kg/day)-1] | Gral
(mg/kg/day)-T | Inhalation/Oral | | N1cke1 | occupational; NA | human | NA | respiratory
tract
(also see I | NA
able A) | nickei
refinery dust: A,
2.4E-4 [8.4E-1] ^a
nickei subsulfide
A/4.8E-4 [1.7E+0 | P: | U.S. EPA, 1986;
Chov11 et al.,
1981; Enterline and
Marsh, 1982; Magnus
et al., 1982; Peto
et al., 1984;
U.S. EPA, 1987a,b/
U.S. EPA, 1984 | | Nitrofurans
furazolidone | NA; 0-1000 ppm dlet
for 45 weeks | NA | rat | NA | mammar y | B2/ND | 82/3.8E+0 | U.S. EPA, 1987/
U.S. DHEW, 1976a,b;
U.S. EPA, 1987 | | Fur tum | NA; 0-1000 ppm for
28 weeks | NA | mouse | NA | leukemia | 82/ND | B2/5.0E+1 | U.S. EPA, 1987/
Cohen et al., 1970;
U.S. EPA, 1987 | | Nitrofurazone | NA; O, 1000 ppm diet
for 46 weeks | NA | rat | NA | mammar y | B2/ND | B2/1.5E+0 | U.S. EPA, 1987/
Erturk et ał.,
1970c; U.S. EPA,
1987 | | Other nitrofurans: se | e Table A | | | | | | | | | N-N1trosod1phenyl-
amine | NA; 700-day dietary
study | NA | rat | NA | ur inar y
b ladder | B2/NDª | B2/4.9E-3a | U.S. EPA, 1987a/
NCI, 1979; U.S.
EPA, 1980a, 1986a,
1987a,b | | PAH | inhalation study with benzo(a)pyrene; dietary study with benzo(a)pyrene | hamster | mouse | respiratory
tract | stomach | 82/NDª | 82/NDª | Thyssen et al.,
1981; U.S. EPA,
1987/Neal and
Rigdon, 1967;
U.S. EPA, 1980,
1987 | | Parathion | NA; NA | NA | NA | NA
(also see l | NA
able A) | C/NO ^a | C/NDª | U.S. EPA, 1987a,b/
U.S. EPA, 1987a,b | | | Exposure | Specia | es | Tumor S1 | le | CAG Group/qj* and | Unit Risk Slope | Reference | |--|-------------------------------|-------------|-------|-----------------------------------|----------------------|---|--------------------------|---| | Compound | Inhalation; Oral | Inha lation | Oral | Inhalation | Oral | Inhalation (µg/m³)- [(mg/kg/day)-] | Oral
(mg/kg/day}-1 | Inhalation/Oral | | PCBs
(polychlorinated
biphenyls) | NA; Aroclor 1260
In diet | NA | rat | NA | liver | B2/ND | B2/7.7E+0 ^f | U.S. EPA, 1984,
1987b/Norback and
Weltman, 1985;
U.S. EPA, 1987a,b | | Phthalic acid esters(| selected) | | | | | | | | | Bis(2-ethylhexyl)
phthalate | NA; 103-week
dielary study | NA | mouse | MA
(also see) | liver
[able A] | B2/ND ^a | B2/1.4E-2 ^a | U.S. EPA, 1987/
NTP, 1982a,
U.S. EPA, 1986,
1988 | | Butyl benzyl phthalat | e | NA; NA | NA | NA | NA | NA | C/NDª | C/NDª | | U.S. EPA, 1987a,b/ | | | | (also see | Table A) | | | U.S. EPA, 1987a,b | | Other phthallc acld esters | NA; NA | NA | NA | NA
(also see l | NÅ
[able A} | D/ND | D/NO | U.S. EPA, 1987/
U.S. EPA, 1987 | | Sodlum diethyldithio-
carbamate | NA; diet | NA | mouse | NA
(also see i | hepatoma
Table A) | C/ND | C/2.7E-1 | U.S. EPA, 1988/
BRL, 1968a;
U.S. EPA, 1988 | | 2,3,7,8-TCDD ^f | dlet ^b ; dlet | rat | rat | several | several | 82 []] /3.3E ₋ 5
(pg/m³)-1
[1.56E+5]b | B2 ¹ /1.56E+5 | Kociba et al.,
1978; U.S. EPÅ,
1984, 1989/
Kociba et al.,
1978; U.S. EPÅ,
1984, 1985, 1989 | | 1,1,2,2-Tetrachloro-
ethane | gavage ^b ; gavage | mouse | mouse | liver | liver | C/5.8E-5
[2.0E-1]a.b | C/2.0E-1ª | NCI, 1978; U.S. EPA
1980, 1986/NCI,
1978; U.S. EPA,
1980, 1986 | | Tetrachloroethy-
lene9 (perchloroe-
thylene) | inhalation; gavage | rat, mouse | mouse | leukemta,
liver
(also see l | liver | 82/9.5E-7
[3.3E-3] | 82/5.1E-2 | NTP, 1986, U.S. EPA
1986a, 1988/NCI,
1977; U.S. EPA,
1985a, 1988 | | | Exposure | Spec 1 | e s | Tumor Site | | CAG Group/qj* and | Unit Risk Slope | Reference | |---|--|------------|-------|-----------------------|---|---|-----------------------|--| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-†
[(mg/kg/day)- [†]] | Oral
(mg/kg/day)-1 | Inhalation/Oral | | Toxaphene | 735-day dietary
study ^b ; 735-day
dietary study | mouse | mouse | liver | liver | B2/3.2E-4
[1.1E+0]a.b | 82/1.1E+0ª | Litton Bionetics,
Inc., 1978;
U.S. EPA,1987b/
Litton Bionetics,
Inc.,1978; U.S. EPA,
1980a, 1987a,b | | Trichloroantlines
2,3,4-Trichloroantline | NA; NA | NA | NA | NA | NA | ND/ND | ND/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | 2,4,5-Trichloroaniline | NA; NA | NA | NA | NA | NA | ND/ND | ND/ND | U.S. EPA, 1987/
U.S. EPA, 1987 | | 2,4,6-Trichloroaniline | NA; d1et | NA | mouse | NA | unspecified
tumors of the
vascular system | C/ND | C/3.4E-2 | U.S. EPA, 1987/
Welsburger
et al., 1978;
U.S. EPA, 1987 | | 2,4,6-Trichloroaniline
hydrochloride | NA; diet | NA | mouse | NA | unspecified
tumors of the
vascular system | C/ND | C/2.9E-2 | U.S. EPA, 1987/
Welsburger
et al., 1978;
U.S. EPA, 1987 | | 1,1,2-Trichloroethane | gavage ^b ; gavage | mouse | mouse | liver
(also see Ta | ltver
ble A) | C/1.6E-5
[5.7E-2]a.b | C/5.7E-2ª | NCI, 1978; U.S. EPA,
1980, 1986/NCI,
1978; U.S. EPA,
1980, 1984, 1986 | | Trichloroethylene | two gavage
studies ^b ; two
gavage studies | mouse | mouse | liver | liver | 82/1.3E-6a.b,h
[1.3E-2] | B2/1.1E-2ª | NCI, 1976; NTP,
1983; U.S. EPA,
1985, 1988b/
U.S. EPA, 1987,
1988a,b | | Trihalogenated methanes
Bromodichloromethane | NA; 102-week gavage
study | NA | mouse | NA
(also see Ta | liver
ble A) | B2/ND | 82/1.3E-1 | U.S. EPA, 1987/
NIP, 1986a;
U.S. EPA, 1987 | | | Exposure | Spec 1 | es | Tumor S1t | e | CAG Group/qj* and | Oral (mg/kg/day)-T | Reference | |---------------------|---|------------|-------|-------------------|------------------|--|--------------------|---| | Compound | Inhalation; Oral | Inhalation | Oral | Inhalation | Oral | Inhalation
(µg/m³)-1
[(mg/kg/day)-1] | | Inhalation/Oral | | Bromoform | NA; NA | NA | NA | NA
(also see T | NA
able A) | D/ND | D/NO | U.S. EPA, 1987/
U.S. EPA, 1987 | | Chlorodibromoethane | NA; 105-week gavage
study | NA | mouse | MA
{also see T | liver
able A) | B2/ND | B2/0.4E-2 | U.S. EPA, 1987/
NTP, 1985;
U.S. EPA, 1987 | | Viny1 chloride9 | 1-year inhalation
study; 10-50 ppm
dlet | rat | rat | liver | lung | A/4.2E-5
[2.95E-1 ¹] | A/2.3E+0 | Maltont et al.,
1980, 1981; U.S.
EPA, 1985b; ATSDR,
1988/feron et al.,
1981; U.S. EPA,
1984, 1985a | averified, on IRIS #### 9Scheduled for CRAVE review #### NA = Not applicable; ND = not determined bBased upon route-to-route extrapolation CThere is inadequate evidence for carcinogenicity of this compound by the oral route. dincorporates an absorption factor of 0.4. Inhalation potency slope of 1.3E-1 $(mg/kg/day)^{-1}$ as administered and 5.2E-2 $(mg/kg/day)^{-1}$ as absorbed dose. eBased on occupational data for coke-oven workers fverified, IRIS input pending. hA new unit risk of 1.7x10 $^{-6}$ (µg/m 3) $^{-1}$ has been proposed in the Addendum to the HAD (U.S. EPA, 1987) and adopted in the updated HEA (U.S. EPA, 1988a). ¹Based on metabolized dose ^{\$82} classification is for 2,3,7,8-TCDD alone. Mixtures consisting of phenoxy herbicides and/or chlorophenols with 2,3,7,8-TCDD as a contaminant are classified as 81 carcinogens. kA unit risk of 5E-5[ug/k]-1 has been proposed by the Risk Assessment forum and this recommendation has been scheduled for SAB review. #### REFERENCES #### HEA SUMMARY TABLE A: NONCARCINOGENS #### Acenaphthene U.S. EPA. 1987. Health Effects Assessment for Acenaphthene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Acenaphthylene U.S. EPA. 1987. Health Effects Assessment for Acenaphthylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH,
for the Office of Emergency and Remedial Response, Washington, DC. #### Acetone - U.S. EPA. 1986a. Ninety-day gavage study in albino rats using acetone. Office of Solid Waste, Washington, DC. (Cited in U.S. EPA, 1986b) - U.S. EPA. 1986b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for acetone. Online. (Verification date 05/30/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Updated Health Effects Assessment for Acetone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Acetonitrile - Coate, W.B. 1983b. 90-Day subchronic toxicity study of acetonitrile in B6C3F1 mice. Final Report (revised). Submitted to National Toxicology Program by Hazelton Laboratories America, Inc. - U.S. EPA. 1987a. Health Effects Assessment for Acetonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for acetonitrile. Online. (Verification date 03/19/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. #### Acetophenone Imasheva, N.B. 1966. Threshold concentrations of acetophenone during short—and long-term inhalation. In: AICE Survey of USSR Air Pollution Literature, VIII, 1971, A compilation of technical reports of the biological effect and the public health aspects of atmospheric pollutants, M.Y. Nuttonson, Ed. p. 79-93. - Hagan, E.C., W.H. Hansen, D.G. Fitzhugh, et al. 1967. Food flavorings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol. 5(2): 141-157. - U.S. EPA. 1987a. Health Effects Assessment for Acetophenone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS: Reference Dose (RfD) for oral exposure for Acetophenone. Online. (Verification date 10/15/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Adiponitrile U.S. EPA. 1987. Health Effects Assessment for Adiponitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. #### Aldrin - Fitzhugh, O.G., A.A. Nelson and M.L. Quaife. 1964. Chronic oral toxicity of aldrin and dieldrin in rats and dogs. Food Cosmet. Toxicol. 2: 551-562. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for aldrin. Online. (Verification date 12/18/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Aldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Alumimun U.S. EPA. 1987. Health Effects Assessment for Aluminum. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### **Ammonia** Campbell, C.L., R.K. Dawes, S. Deolalkar and M.C. Merritt. 1958. Effect of certain chemicals in water on the flavor of brewed coffee. Food Res. 23: 575-579. (Cited in U.S. EPA. 1981) Carson, B.L., C.M. Beall, H.V. Ellis, III and L.H. Baker. 1981. Ammonia Health Effects. Prepared by Midwest Research Institute for Office of Mobile Source Air Pollution Control, Emission Control Technology Division, U.S. EPA, Ann Arbor, MI. EPA 460/3-81-027. 0121h C-2 04/05/89 - U.S. EPA. 1981. Ambient Water Quality Criterion for the Protection of Human Health: Ammonia. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Ammonia. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. WHO (World Health Organization). 1986. Environmental Health Criteria. 54. Ammonia. WHO. Geneva. Switzerland. ### Antimony and Compounds ASARCO, Inc. 1980. TSCA 8(e) submission 8EHQ-0580-0342. Bio/tox data on antimony trioxide. OTS, U.S. EPA, Washington, DC. Schroeder, H.A., M. Mitchener and A.P. Nason. 1970. _rconium, mioblium, antimony and lead in rats: Life-time studies. J. Nutr. 100: 59-69. - U.S. EPA. 1985a. Health and Environmental Effects Profile for Antimony Oxides. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1985b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for antimony. Online. (Verification date 11/06/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Antimony and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - Watt, W.D. 1980. Chronic inhalation toxicity of antimony trioxide and validation of the TLV. Progress report -- Summary of results. TSCA 8(e) submission 8#HQ-0980-0342. Study submitted by ASARCO, Inc., New York. Microfiche No. OTSO204846. - Watt, W.D. 1981. FYI submission TY-OTS-00081-0121 regarding pathology report on rat inhalation study on antimony trioxide. OTS, U.S. EPA, Washington, DC. (Cited in U.S. EPA, 1985) - Watt, W.D. 1983. Chronic inhalation toxicity of antimony trioxide: Validation of the threshold limit value. Diss. Abstr. Int. B 1983. 44(3): 739-740. ### Arsenic Tseng, W.P. 1977. Effects and Dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19: 109-119. 0121h C-3 04/05/89 U.S. EPA. 1984. Health Effects Assessment for Arsenic. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. # Bartum Perry, H.M., S.J. Kopp, M.W. Erlanger and E.F. Perry. 1983. Cardiovascular effects of chronic barium ingestion. <u>In</u>: Trace Substances in Environmental Health, XVII, D.D. Hemphill, Ed. Proc. Univ. Missouri's 17th Ann. Conf. on Trace Substances in Environmental Health. University of Missouri Press, Columbia, MO. Tarasenko, M., O. Promin and A. Silayev. 1977. Barium compounds as industrial poisons (an experimental study). J. Hyg. Epidem. Microbiol. Immunol. 21: 361. - U.S. EPA. 1984. Health Effects Assessment for Barium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-86-021. - U.S. EPA. 1985a. Drinking Water Criteria Document for Barium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, 6 shington, DC. External Review Draft. Final Draft (on Public Comment). NTIS PB 86-118031/AS. - U.S. EPA. 1985b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for barium. Online. (Verification date 07/22/85.) Office of Health and Environmental Assessment, Environmental Cirteria and Assessment Office. Cincinnati. OH. ### Benzidine Littlefield, N.A., C.J. Nelson and C.H. Futh. 1983. Benzidine dihydro-chloride: Toxicological assessments in mice during chronic exposure. J. Toxicol. Environ. Health. 12: 671-68. - U.S. EPA. 1987a. Health Effects Assessment for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS) Reference Dose (RfD) for oral exposure for benzidine. Online. (Verification date 7/16/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. # Benzoic acid FASEB (Federation of American Societies for Experimental Biology). 1973. Evaluation of the Health Aspects of Benzoic Acid and Sodium Benzoate as Food Ingredients. Report No. SCOGS-7 PB-223 837/6. p. 17. 0121h C-4 04/14/89 - U.S. EPA. 1987a. Health and Environmental Effects Document for Benzoic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for benzoic acid. Online. (Verification date 9/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Beryllium Schroeder, H.A. and M. Mitchner. 1975. Life-time studies in rats: Effects of aluminum, barium, beryllium and tungsten. J. Nutr. 105: 421-427. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for beryllium. Online.
(Verification date 12/02/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Beryllium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # Bisphenol A NTP (National Toxicology Program). 1982. Carcinogenesis Bioassay of Bisphenol A in F344 rats and B6C3F1 mice (feed study) NTP Tech Rep Ser. No. 80-35 NTIS PB 84-1555308 p.192. - U.S. EPA. 1984c. Reproduction and ninety-day oral toxicity study in rats U.S. EPA/OPTS Public Files Fiche No. OTSO509954. - U.S. EPA. 1988a. Health and Environmental Effects Document for Bisphenol A. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988b. Integrated Risk Information System (IRIS) Reference Dose (RfD) for oral exposure for Bisphenol A. Online: Input pending. (Verification date 4/20/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Boron and compounds U.S. EPA. 1987. Health Effects Assessment for Boron. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Weir, R.J., Jr. and R.S. Fisher. 1972. Toxicologic studies on borax and boric acid. Toxicol. Appl. Pharmacol. 23(3): 351-364. ### Bromomethane - Danse, L.H., F.L. van Velsen and C.A. vander Heijden. 1984. Methyl bromide: Carcinogenic effects in the rat forestomach. Toxicol. Appl. Pharmacol. 72: 262-271. - Irish, D.D., E.M. Adams, H.C. Spencer and V.K. Rowe. 1940. The response attending exposure of laboratory animals to vapors of methyl bromide. J. Ind. Hyg. Toxicol. 22: 218-230. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Methyl Bromide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Bromomethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for bromomethane. Online. (Revised verification date 05/26/88.) Office of Health and Environmental Criteria and Assessment Office. Cincinnati. OH. # Cadmium - U.S. EPA. 1980b. Ambient Water Quality Criteria Document for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-025. NTIS PB 81-117368. - U.S. EPA. 1984. Health Effects Assessment for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure to cadmium. Online: Input pending. (Verification date 05/26/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Caprolactam - Powers, W.J.J, J.C. Peckham, K.M. Siino and S.C. Gad. 1984. Effects of subchronic dietary caprolactam on renal function. <u>In</u>: Proc Symp. Ind. approach Chem Risk Assessment: Caprolactam Relat. Compd. Case Study 77-96 Ind. Health Found., Pittsburgh, PA. - Serota, D.G., A.M. Hoberman and S.C. Gad. 1984. A three generation reproduction study with caprolactam in rats. In: Proc Symp Ind Approach Chem Risk Assessment: Caprolactam RElat Compl. Case study 191-204 Ind, Health Found. Pittsburgh, PA. 0121h C-6 04/14/89 - U.S. EPA. 1988a. Health and Environmental Effects Document for Caprolactam. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for caprolactam. Online. (Verification date 03/24/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Carbon tetrachloride Bruckner, J.V., W.F. MacKenzie, S. Muralidhara, et al. 1986. Oral toxicity of carbon tetrachloride: Acute, subacute and subchronic studies in rats. Fund. Appl. loxicol. 6(1): 16-34. - U.S. EPA. 1984. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for carbon tetrachloride. Online. (Verification date 05/20/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Chloral Sanders, V.M., B.M. Kauffmann, K.L. White, Jr. 1982. Toxicology of chloral hydrate in the mouse. Environ. Health Perspect. 44: 146-173. - U.S. EPA. 1988a. Health and Environmental Effects Document for Chloral. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for chloral. Online. (Verification date 3/24/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Chlordane Versicol Chemical Corp. 1983. Acc. No. 252267 Available from EPA under FOI. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for chlordane. Online. (Verification date 12/18/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Health Effects Assessment for Chlordane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-7 04/14/89 # Chlorinated cyclopentadienes ### Chlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Hexachlorocyclopentadiene Abdo, K.M., C.A. Montgomery, W.M. Kluwe et al. 1984. Toxicity of hexachlorocyclopentadiene: Subchronic (13-week) administration by gavage to F344 rats and B6C3F1 mice. J. Appl. Toxicol. 4: 75-81. Battelle Northwest Laboratories. 1984. Inhalation Carcinogenesis Bioassay Study: Subchronic Study Report on Hexachlorocyclopentadiene in Rats. Submitted to the National Toxicology Program. SRI (Southern Research Institute). 1981a. Subchronic Toxicity Report on Hexachlorocyclopentadiene (C53607) in B6C3Fl Mice. Report for the NTP. Project No. 4419-XXXVIX. Doc. #40-8349230. Microfiche #0TS0507497. U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for hexachlorocyclopentadiene. Online. (Verification date 10/09/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Pentachlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Tetrachlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Trichlorocyclopentadiene U.S. EPA. 1988. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Chlorinated phenols ### 2-Chlorophenol Exon, J.H. and L.D. Koller. 1982. Effects of transplacental exposure to chlorinated phenols. Environ. Health Perspect. 46: 137-140. 0121h C-8 04/14/89 - U.S. EPA. 1987a. Health Effects Assessment for 2-Chlorophenol and 2,4-Dichlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Chlorophenol, 3- and 4-U.S. EPA.
1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 2-chlorophenol. Online. (Verification date 1/20/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. 2.4-Dichlorophenol Exon, J.H. and L.D. Koller. 1985. Toxicity of 2-chlorophenol, 2.4-di-chlorophenol and 2.4.6-trichlorophenol. Water Chlorination. Chem. Environ. Impact Health Eff. Proc. Conf. 5: 307-330. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 2,4-dichlorophenol. Online. (Verification date 01/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987a. Health Effects Assessment for 2-Chlorophenol and 2,4-Di-chlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # Dichlorophenol, 2,3- 2-5, 2,6-, 3-4-, 3,5-U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. 2.3.4.6-Tetrachlorophenol U.S. EPA. 1986. 2.3.4.6-Tetrachlorophenol. 90-day Subchronic Oral Toxicity Study in Rats Office of Solid Waste, Washington, DC. - U.S. EPA. 1987a. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Reference Dose (RfD) for oral exposure for 2,3,4,6-Tetrachlorophenol. Online. (Revised; verification date 08/13/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. # <u>Tetrachlorophenol</u> 2,3,4,5-, 2,3,5,6- U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 2,4,5-Trichlorophenol McCollister, D.D., D.T. Lockwood and V.K. Rowe. 1961. Toxicologic information on 2,4,5-trichlorophenol. Toxicol. Appl. Pharmacol. 3: 63-70. - U.S. EPA. 1984. Health Effects Assessment for 2,4,5-Trichlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Oral Exposure for 2,4,5-Trichlorophenol. Online. (Verification date 05/20/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # <u>Trichlorophenol, 2,3,4-, 2,3,5-, 2,3,6-, 3,4,5-</u> U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # Chlorinated Toluenes # 2,3,6-Trichlorotoluene - Chu, I., S.Y. Shen, D.C. Villeneuve, V.E. Secours and V.E. Valli. 1984. Toxicity of trichlorotoluene isomers: A 28-day feeding study in the rat J. Environ. Sci. Health Part B. Pestic Food conterm. Agric. Wastes. 19(2): 183-192. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. a,2,6-Trichlorotoluene Chu, I., S.Y. Shen, D.C. Villeneuve, V.E. Secours and V.E. Valli. 1984. loxicity of trichlorotoluene isomers: A 28-day feeding study in the rat J. Environ. Sci. Health Part B. Pestic Food conterm. Agric. Wastes. 19(2): 183-192. U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated loluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. Chloroacetaldehyde U.S. EPA. 1988. Health and Environmental Effects Document for Chloroacetaldehyde. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Chloroacetic Acid IRDC (International Research and Development Corporation). 1982a. Subchronic oral toxicity test with monochloroacetic acid in rats. National loxicology Program, Bethesda, MD. p. 1-101. U.S. EPA. 1988. Health and Environmental Effects Document for Chloroacetic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # <u>Chloroanilines</u> # 2-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### 3-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 4-Chloroaniline NCI (National Cancer Institute). 1979. Bioassay of p-chloroaniline for possible carcinogenicity. NCI Carcinogenesis Tech Rep. Ser. No. 189. NTIS PB295896. - U.S. EPA. 1987a. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for p-chloroaniline. Online: Input pending. (Verification date 12/15/87.) Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-11 04/14/89 # Chlorobenzene Dilley, J.V. 1977. Toxic Evaluation of Inhaled Chlorobenzene. NIOSH, DHEW, Cincinnati, OH. Contract 210-76-0126. (Cited in U.S. EPA, 1985) Monsanto Company. 1967a. 13-Week oral administration - dogs, monochlorobenzene. U.S. EPA, OPTS, Washington, DC. TSCA Sec 8(d) submission 8DHQ1078-0202(2). (Cited in U.S. EPA, 1985) U.S. EPA. 1984. Health Effects Assessment for Chlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-040. # p-Chlorobenzoic acid Kieckebusch, W., W. Griem and K. Lang. 1960. The tolerability of p-chlorobenzoic acid. Arzneimi Hel-Forsch. 10: 999-10001. (In German; English translation) U.S. EPA. 1987. Health and Environmental Effects Document for p-Chlorobenzoic Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergence Response, Washington, DC. ### 4-Chlorobenzotrifluoride Hooker Chemical Corp. 1981. Modified 90-day gavage and reproduction study in rats PCBTF. Conducted by Elars Bioresearch Laboratories, Inc., Fort Collins, CO. U.S. EPA/OPTS Public Files. Microfiche #OTSO508148. U.S. EPA. 1988. Health and Environmental Effects Document for 4-Chlorobenzotrifluoride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. #### p-Chloro-m-cresol Madsen, C., P.H. Andersen, O. Meyer and G. Wurtzen. 1986. 4-Chloro-e-methylphenol: <u>Salmonella/mammalian-microsome</u> mutagenicity test and subacute toxicity test in rats. Bull. Environ. Contam. Toxicol. 37(5): 651-654. U.S. EPA. 1988. Health and Environmental Effects Document for p-Chloro-m-cresol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # **Chloroform** Heywood, R., R.J. Sortwell, P.R.B. Noel, et al. 1979. Safety evaluation of toothpaste containing chloroform. III. Long-term study in beagle dogs. J. Environ. Pathol. Toxicol. p. 835-851. U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for chloroform. Online. (Verification date 12/02/85.) Office of Health and Environmental Assessment,
Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-12 04/14/89 U.S. EPA. 1988. Updated Health Effects Assessment for Chloroform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # 2-Chloropropane Gage, J.C. 1970. The subacute inhalation toxicity of 109 industrial chemicals. Br. J. Ind. Med. 27(1): 1-18. U.S. EPA. 1987. Health and Environmental Effects Document for 2-Chloropropane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Copper - U.S. EPA. 1984. Health Effects Assessment for Copper. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Drinking Water Criteria Document for Copper. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. External Review Draft. # Cresols m-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. Toxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for m-Cresol. Online. (Verification date 08/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### o-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. Toxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. 0121h C-13 04/14/89 - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for o-Cresol. Online. (Verification date 08/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### p-Cresol Microbiological Associates. 1986. o,m,p-Cresol. 90-Day oral subchronic toxicity studies in rats. Sponsored by the Office of Solid Waste, Washington, DC. loxicity Research Laboratories. 1987. o,m,p-Cresol. 90-Day oral subchronic neurotoxicity study in rats. Sponsored by the Office of Solid Waste, Washington, DC. - U.S. EPA. 1984. Health Effects Assessment for Cresols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for p-Cresol. Online. (Verification date 08/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Cumene Jenkins, L.J., R.A. Jones, J. Siegel. 1970. Long-term inhalation screening studies of Benzene toluene, o-xylene and cumene on experimental animals loxicol Appl. Pharmacol. 16(3): 818-823. - U.S. EPA. 1987a. Health and Environmental Effects Document for Cumene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System. Reference Dose (RfD) for oral exposure for cumene. Online. (Verification date 09/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wolf, M.A., V.K. Rowe, D.D. McCollister, R.L. Hollingsworth and F. Oyen. 1956. Toxicological Studies of certain alkylated benzene and benzenes AMA Arch. Ind. Health. 14: 387-398. ### Cyantde Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. J. Agric. Food Chem. 3: 325-329. (Cited in U.S. EPA, 1985) 0121h C-14 04/14/89 - U.S. EPA. 1984. Health Effects Assessment for Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-011. - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for cyanide. Online. (Verification date 08/05/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Blank, T.L. and D.C. Thake. 1984. Three-Month Inhalation Toxicity of Acetone Cyanohydrin in Male and Female Sprague-Dawley Rats. Monsanto Report Nop. MSL-4423. TSCA 8(d) submission 878216397 (OTSO510325). - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. J. Agric. Food Chem. 3: 325-329. (Cited in U.S. EPA, 1985a) - U.S. EPA. 1985a. Drinking Water Criteria Document for Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Drinking Water, Washington, DC. Final Draft. # Cyanohydrins - U.S. EPA. 1985b. Health and Environmental Effects Profile for Acetone Cyanohydrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988. Health and Environmental Effects Document for Cyano-hydrins. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Cyclohexylamine - Gaunt, I.F., M. Sharratt, P.G. Grasso, A.B. Lansdown and S.D. Gangolli. 1974. Short-term toxicity of cyclohexylamine HCl in the rat. Food Cosmet. Toxicol. 12: 609-624. - Gaunt, I.F., J. Hardy, P. Grasso, S.D. Gangolli and K.R. Butterworth. 1976. Long-term toxicity of cyclohexylamine hydrochloride in the rat. Food Cosmet. Toxicol. 14(4): 255-268. - U.S. EPA. 1987a. Health and Environmental Effects Document for Cyclohexyl-amine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS) Reference Dose (RfD) for oral exposure for cyclohexylamine. Online. (Verification date 9/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Cyclopentadiene Dow. 1987. Unpublished data. Dow Chemical U.S.A., Midland, MI. 0121h C-15 04/14/89 U.S. EPA. 1987. Health and Environmental Effects Document for Cyclopentadiene and Dicyclopentadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### <u>DD</u>T - Laug, E.P., A.A. Nelson, O.G. Fitzhugh and F.M. Kunze. 1950. Liver cell alteration and DDT storage in the fat of the rat induced by dietary levels of 1-50 ppm DDT. J. Pharmacol. Exp. Therap. 98: 268-273. - U.S. EPA. 1984. Health Effects Assessment for DDT. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for DDT. Online. (Verification date 12/18/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Updated Health Effects Assessment for DDT. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # Dibenzofuran U.S. EPA. 1987. Health Effects Assessment for Dibenzofuran. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### Dichlorobenzenes ### 1.2-Dichlorobenzene Hollingsworth, R.L., V.K. Rowe, F. Oyen, T.R. Torkelson and E.M. Adams. 1958. Toxicity of o-dichlorobenzene. Am. Med. Assoc. Arch. Ind. Health. 17(1): 180-187. - NTP (National Toxicology Program). 1985. Toxicology and Carcinogenesis studies of 1.2-dichlorobenzene in F344/N rats and B6C3Fl mice. U.S. DHHS. NIH Tech. Rep. Ser. No. 255. (Also publ. as NIH Publ. No. 86-2511 and PB86-1448B8) - U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### 1,3-Dichlorobenzene U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and
Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-16 04/14/89 ## 1.4-Dichlorobenzene - Riley, R.A., I.S. Chart, A. Doss, et al. 1980. Para-dichlorobenzene: Long-Term Inhalation Study in the Rat. ICI Report Nso. CTL/P/447. August, 1980. - U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Inhalation Exposure for 1,4-Dichlorobenzene. Online: Input pending. (Verification date 10/13/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Dichlorobutenes U.S. EPA. 1987. Health and Environmental Effects Document for Dichlorobutenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### 1.1-Dichloroethane Hofmann, H.T., H. Birnstiel and P. Jobst. 1971. The inhalation toxicity of 1,1- and 1,2-dichloroethane. Arch. Toxikol. 27: 248-265. (Cited in U.S. EPA, 1983b) - U.S. EPA. 1983b. Drinking Water Criteria Document for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Drinking Water, Washington, DC. Final Draft. - U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### 1.1-Dichloroethylene Quast, J.F., C.G. Humiston, C.E. Wade, et al. 1983. A chronic toxicity and oncogenicity study in rats and subchronic toxicity study in dogs on ingested vinylidene chloride. Fund. Appl. Toxicol. 3: 55-62. - U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington. DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,1-dichloroethylene. Online. (Verification date 01/22/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-17 04/14/89 ### 1.2-c-Dichloroethylene U.S. EPA. 1984. Health Effects Assessment for 1,2-c-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # 1,2-t-Dichloroethylene U.S. EPA. 1984. Health Effects Assessment for 1,2-t-Dichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # Dicyclopentadiene Dodd, D.E., L.C. Longo and D.L. Eisler. 1982. Dicyclopentadiene vapor ninety-day inhalation study on rats and mice. Bushy Run Research Center, Export, PA. PSCA 8e submission by Exxon Chem. Amer. Doc. I.D. 88-8300464, Odd Doc. I.D. 8EHQ-0283-0364. Microfiche No. 0TS204864. Litton Bionetics, Inc. 1980. Mammalian Toxicological Evaluation of DIMP and DCPD. (Phase 2). Litton Bionetics, Inc., Kensington, MD. Contract DAMB. 17-77-C-7003. NTIS AD-A082685. U.S. EPA. 1987. Health and Environmental Effects Document for Cyclopentadiene and Dicyclopentadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # Dieldrin Walker, A.I.T., D.E. Stevenson, J. Robinson, et al. 1969. The toxicology and pharmacodynamics of dieldrin (HEOD): Two-year oral exposures of rats and dogs. Toxicol. Appl. Pharmacol. 15: 345-373. - U.S. EPA. 1987a. Health Effects Assessment for Dieldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for dieldrin. Online. (Verification date 04/16/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Dimethylphenols # 2,6-Dimethylphenol Veldre, I.A. and H.J. Janes. 1979. Toxicological studies of shale oils, some of their components and commercial products. Environ. Health Perspect. 30: 141-146. U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 2,6-dimethylphenol. Online. (Verification date 01/22/86). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. U.S. EPA. 1987. Health Effects Assessment for Dimethylphenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # 3,4-Dimethylphenol - Veldre, I.A. and H.J. Janes. 1979. Toxicological studies of shale oils, some of their components and commercial products. Environ. Health Perspect. 30: 141-146. - U.S. EPA. 1987. Health Effects Assessment for Dimethylphenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 3,4-dimethylphenol. Online. (Revised; verification date 01/22/86). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Endosulfan Huntington Research Center. 1984. Effect of Endosulfan-Technical on Reproductive Function of Multiple Generations in the Rat. Report submitted by J.A. Edwards et al. to OPP. U.S. EPA. - U.S. EPA. 1987a. Health Effects Assessment for Alpha- and Beta-Endo-sulfan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for endosulfan. Online. (Verification, date 03/18/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Endrin Treon, J.F., F.P. Cleveland and J. Cappel. 1955. Toxicity of endrin for laboratory animals. Agric. Food Chem. 3: 842-848. - U.S. EPA. 1985a. Drinking Water Criteria Document for Endrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Drinking Water, Washington, DC. EPA 600/X-84-176. NTIS PB 86-117967. - U.S. EPA. 1987. Health Effects Assessment for Endrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose for oral exposure for Endrin. Online. (Verification date 04/20/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-19 04/14/89 Ethylbenzene U.S. EPA. 1984. Health Effects Assessment for Ethylbenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for ethylbenzene. Online. (Verification date 05/20/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Wolf, M.A., V.K. Rowe, D.D. McCollister et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. Arch. Ind. Health. 14: 387-398. (Cited in U.S. EPA, '985) Ethyl Chloride U.S. EPA. 1987. Health Effects Assessment for Ethyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Ethylenediamine Pozzani, U.C. and C.P. Carpenter. 1954. Response of rats to repeated inhalation of ethylenediamine vapors. Arch. Ind. Hyg. Occ. Med. 9: 223-226. U.S. EPA. 1988. Health and Environmental Effects Document for Ethylene-diamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Yang, R.S., R.H. Garman, R.R. Maronpot, et al. 1983. Acute and subchronic toxicity of ethylenediamine in laboratory animals. Fund. Appl. Toxicol. 3(6): 512-520. Ethylene glycol DePass, L.R., R.H. Garman, M.D. Woodside et al. 1986a. Chronic toxicity and oncogenicity studies of ethylene glycol in rats and mice. Fund. Appl. Toxicol. 7: 547-565. Maronpot, R.R., J.P. Zelenak, E.V. Weaver and N.J. Smith. 1983. Teratogenicity study of ethylene glycol in rats. Drug. Chem. Toxicol. 6(6): 579-594. U.S. EPA. 1987a. Health Effects Assessment for Ethylene Glycol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1987b. Integrated Risk
Information System (IRIS): Reference Dose (RfD) for oral exposure for ethylene glycol. Online. (Verification date 03/19/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Ethyl ether American Biogenics Corp. 1986. 90-Day gavage study in rats using ehtyl ether. Status Report for ABC Study No. 410-2343. 3/18/86. 0121h C-20 04/14/89 U.S. EPA. 1987. Health Effects Assessment for Ethyl Ether. Prepared by the Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office. Cincinnati OH for the Office of Solid Waste and Emergency Response. Washington. DC. SRI (Southern Research Institute). 1982b. Subchronic toxicity report on furan (C56202) in B6C3Fl mice. Prepared for National Toxicology Program under Contract No. 1-CP-95641-01. Bethesda, MD. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for furan. Online. (Verification date 02/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - 1987. Health and Environmental Effects Document for Furan. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Furfural Feron, V.J., A. Kruysse and H.C. Dreef Vander Meulen. 1979. exposure to furfural vapor: 13 week study in Syrian golden hamsters. Zentrase. Bakteviol Pavasiten Kd Infection SKV. Hyg. Abt 1 orig Reihe B. 168(5-6): 442-451. - SRI (Southern Research Institute). 1981. 90 day rat report. Unpublished study performed for NTP. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Reference Dose (RfD) for oral exposure for furfural. Online. (Verification date Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Health and Environmental Effects Document for Furfural. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response. Washington. DC. # Glycol ethers 2-Ethoxyethanol Barbee, S.J., J.B. Terrill, D.J. DeSousa and C.C. Conaway. 1984. Subchronic inhalation toxicology of ethylene glycol monoethyl ether in the rat and rabbit. Environ. Health Perspect. 57: 157-163. Doe, J.E. 1984a. Ethylene glycol monoethyl ether and ethylene glycol monoethyl ether acetate teratology studies. Environ. Health Perspect. 57: 33-41. Melnick, R.L. 1984. Toxicities of ethylene glycol and ethylene glycol monoethyl ether in Fischer 344/N rats and B6C3Fl mice. Environ Health Perspect. 57: 147-155. - Stenger, E.G., A. Lislott, D. Mueller et al. 1971. Toxicology of ethylene glycol monoethylether. Arzneim.-Forsch. 21(6): 880-885. (In German with English translation) - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1985. Health and Environmental Effects Profile for 2-Ethoxy-ethanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 2-Methoxyethanol - Miller, R.R., L.L. Calhoun and B.L. Yano. 1982. Ethylene Glycol monomethyl Ether: 13-week vapor inhalation study in male rabbits. Report prepared for the CMA March 25, 1982. - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Enviro ental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for 2-Methoxy-ethanol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Diethylene glycol monoethyl ether Hall, D.E., F.S. Lee, P. Austin and F.A. Fairweather. 1966. Short-term feeding study with diethylene glycol monoethyl ether in rats. Food Cosmet. Toxicol. 4: 263. - Smyth, H.F., C.P. Carpenter and C.B. Shaffer. 1964. A 2-year study of diethylene glycol monoethyl ether in rats. Food Cosmet. Toxicol. 2: 641-642. - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. # Ethylene glycol monobutyl ether - Dodd, D.E., W.M. Snellings, R.R. Maronpot and B. Balantyne. 1983. Ethylene glycol monobutyl ether: Acute, 9-day and 90-day vapor inhalation studies in Fischer 344 rats. Toxicol. Appl. Pharmacol. 68: 405-414. - U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. Propylene glycol monomethyl ether Miller, R.R., E.A. Herman, J.T. Young et al. 1984. Ethylene glycol monomethyl ether and propylene glycol monomethyl ether: Metabolism, disposition, and subchronic inhalation toxicity studies. Environ. Health Perspect. 57: 233-239. Rowe, V.K., D.D. McCollister, H.C. Spencer et al. 1954. Toxicology of mono-, di-, and tri-propylene glycol methyl ethers. Arch. Ind. Hyg. Occup. Med. 9: 509-525. U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. Propylene glycol monoethyl ether Smyth, H.F., Jr. and C.P. Carpenter. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J. Ind. Hyg. Toxicol. 30: 63-68. U.S. EPA. 1984. Health Effects Assessment for Glycol Ethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 540/1-86-052. ### **Haloethers** 2,4,4'-Trichloro-2'-hydroxydiphenyl ether Lyman, F.L. and T. Furia. 1969. Toxicology of 2,4,4'-Trichloro-2'-hydroxydiphenyl ether. Ind. Med. 38: 45-52. U.S. EPA. 1987. Health Effects and Environmental Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. # Halogenated (fully) methanes Dichlorodifluoromethane Clayton, W.J., Jr. 1967. Fluorocarbon toxicity and biological action. Fluorine Chem. Rev. 1(2): 197-252. Prendergast, J.A., R.A. Jones, L.J. Jenkins and J. Siegal. 1967. Effects on experimental animals of long-term inhalation of trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, dichlorodifluoromethane and 1,1-di-chloroethylene. Toxicol. Appl. Pharmacol. 10: 270-289. Sherman, H. 1974. Long-term feeding studies in rats and dogs with dichlorodifluoromethane (Freon 12 Food Freezant). Haskell Laboratory Report No. 24-74. Unpublished, courtesy duPont de Nemours Co. U.S. EPA. 1982. Errata: Halomethanes Ambient Water Quality Criteria Document for the Protection of Human Health. Environmental Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-DO23. 0121h C-23 04/14/89 - U.S. EPA. 1987. Health Effects Assessment for Fully Halogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for dichloro-difluoromethane. Online. (Verification date 07/22/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Trichlorofluoromethane Jenkins, L.J., R.A. Jones, R.A. Coon and J. Siegal. 1970. Repeated and continuous exposures of laboratory animals to trichlorofluoromethane. loxicol. Appl. Pharmacol. 16: 133-142. - NCI (National Cancer Institute). 1978. Bioassay of Irichlorofluoromethane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 106. (Also publ as DHEW (NIH) 78-1356) - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for trichlorofluoromethane. Online. (Verification date 05/31/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - U.S. EPA. 1987. Health Effects Assessment for Fully Halogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### Heptachlor Velsicol Chemical Copp. 1955. MRID No. 00062599. Available under FOI. - U.S. EPA. 1987a. Health Effects Assessment for Heptachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for heptachlor. Online. (Verification date 04/16/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Hexachlorobenzene Arnold, D.L., C.A. Moodie, S.M. Charbonneau et al. 1985. Long-term toxicity of hexachlorobenzene in the rat and the effect of dietary vitamin A. Food Chem. Toxicol. (In press). (Cited in U.S. EPA, 1985) U.S.
EPA. 1984. Health Effects Assessment for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for hexachlorobenzene. Online: Input pending. (Verification date 05/26/88.) Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office. Cincinnati. OH. # <u>Hexachlorobutadiene</u> Kociba, R.J., D.G. Keys, G.C. Jersey, et al. 1977. Results of a 2-year chronic toxicity study with hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38: 589-602. - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobutadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for hexachlorobutadiene. Online. (Verification date 12/18/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Hexachloroethane Gorzinski, S.J., R.J. Nolan, S.B. McCollister, et al. 1985. Subchronic oral toxicity, tissue distribution and clearance of hexachloroethane in the rat. Drug Chem. Toxicol. 8(3): 155-169. - U.S. EPA. 1987a. Health Effects Assessment for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for hexachloroethane. Online. (Verification date 04/16/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Hexavalent chromium MacKenzie, R.D., R.U. Byerrum, C.F. Decker et al. 1958. Chronic toxicity studies. II. Hexavalent and trivalent chromium administered in drinking water to rats. Am. Med Assoc. Arch. Ind. Health. 18: 232-234. - U.S. EPA. 1984. Health Effects Assessment for Hexavalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for chromium(VI). Online. (Verification date 02/05/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### p-Hydroquinone Carlson, A.J. and N.R. Brewer. Toxicity studies on Hydroguinone. Proc. Soc. Exp. Biol. Med. 84: 684-688. 0121h C-25 04/14/89 U.S. EPA. 1987. Health and Environmental Effects Document for Hydroquinone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ### Iron U.S. EPA. 1984. Health Effects Assessment for Iron. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. # <u>Isophorone</u> Rohm and Haas. 1972. Pesticide Petition No. 2F1224. Available under FOI. - NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of Isophorone (CAS No. 78-59-1) in F344/N Rats and 86C3F1 Mice (Gavage Studies). NTP Tech. Report Ser. No. 291, NIH Publ. No. 86-2547. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for isophorone. Online. (Verification date 05/15/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - U.S. EPA. 1987. Health Effects Assessment for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. # Lead - U.S. EPA. 1984. Health Effects Assessment for Lead. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Air Quality Criteria for Lead. June, 1986 and Addendum, September, 1986. Office of Health and Environmental Assessment, Research Triangle Park, NC. EPA 600/8-83-028F. NTIS PB 87-142378. #### Lindane Zoecon Corporation. 1983. MRID No. 00128356. Available under FOI. - U.S. EPA. 1984. Health Effects Assessment for Lindane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for gamma-hexachlorocyclohexane. Online. (Verification date 01/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Manganese - Lai, J.C.K., T.K.C. Leung and L. Lim. 1982c. Activities of the mitochondrial NAD-linked isocitric dehydrogenase in different regions of the rat brain. Changes in aging and the effect of chronic manganese chloride administration. Gerontology. 28(2): 81-85. - Laskey, J.W., G.L. Rehnberg, J.F. Hein and S.D. Carter. 1982. Effects of chronic manganese (Mn₃O₄) exposure on selected reproductive parameters in rats. J. Toxicol. Environ. Health. 9: 677-687. - Leung, T.K.C., J.C.K. Lai and L. Lim. 1981. The regional distribution of monoamine oxidase activities towards different substrates: Effects in rat brain of chronic administration of manganese chloride and of aging. J. Neurochem. 36(6): 2037-2043. - Saric, M., S. Markicevic and O. Hrustic. 1977. Occupational exposure to manganese. Br. J. Ind. Med. 34: 114-118. - U.S. EPA. 1984. Health Effects Assessment for Manganese. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO57. # Mercury, alkyl and inorganic - U.S. EPA. 1980b. Ambient Water Quality Criteria Document for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-058. NTIS PB 81-117699. - U.S. EPA. 1984. Health Effects Assessment for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for methyl mercury. Online. (Verification date 12/02/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Mercury, mercuric - Andres, P. 1984. IgA-IgG disease in the intestine of Brown Norway rats ingesting mercuric chloride. Clin. Immunol. Immunopathol. 20: 488-494. - Bernaudin, J.F., E. Druet, P. Druet and R. Masse. 1981. Inhalation or ingestion of organic or inorganic mercurials produces auto-immune disease in rats. Clin. Immunol. Immunopathol. 20: 129-135. - Druet, P., E. Druet, F. Potdevin and C. Sapin. 1978. Immune type glomerulonephritis induced by $HgCl_2$ in the Brown Norway rat. Ann. Immunol. 129C: 777-792. 0121h C-27 04/14/89 - U.S. EPA. 1984. Health Effects Assessment for Mercury. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Peer Review Workshop on Mercury Issues. October 26-27, 1987, SUmmary Report. Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Inhalation Exposure for Inorganic Mercury. Online: Input pending. (Verification date 11/16/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Methomy 1 - Kaplan, A.M. and H. Sherman. 1977. Toxicity studies with methyl N-[(methylamino) carbonyl] oxyl] ethanimidothioate. Toxicol. Appl. Pharmacol. 40(1): 1-17. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Oral Exposure for Methomyl. Online. (Verification date 04/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - U.S. EPA. 1988. Health and Environmental Effects Document for Methomyl. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # Methylene chloride National Coffee Association. 1982. 24-Month Chronic Toxicity and Oncogenicity Study of Methylene Chloride in Rats. Final Report. Prepared by Hazleton Laboratories America, Inc., Vienna, VA. (Unpublished). - Nitschke, K.D., J.D. Bured, T.J. Bell, et al. 1988. Methylene chloride: A 2-year inhalation toxicity and oncogenicity study in rats. Fund. Appl. Toxicol. (In press) - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for dichloromethane. Online. (Verification date 11/06/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for Inhalation Exposure for Dichloromethane. Online: Input
pending. (Verification date 10/13/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Methyl ethyl ketone LaBelle, C.W. and H. Brieger. 1955. Vapour toxicity of a composite solvent and its principal components. Arch. Ind. Health. 12: 623-627. - U.S. EPA. 1984. Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for methyl ethyl ketone. Online. (Verification date 07/08/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Methyl isobutyl ketone Microbiological Associates. 1986. Subchronic toxicity of methyl isobutyl ketone in Sprague-Dawley rats. Preliminary report for Research Triangle Institute, RTP, NC. Study No. 5221.04. January. Union Carbide Corp. 1983b. Ninety-day inhalation study in rats and mice sponsored by CMA. U.S. EPA/OTS public files 0750507469. - U.S. EPA. 1986. IRIS: Reference Dose (RfD) for oral exposure for methyl isobutyl ketone. Online. (Verification date 05/30/86). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Methyl Ethyl Ketone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### Methyl Styrene MRI (Midwest Research Institute). 1984a. Study of the inhalation carcinogenicity (bioassay) of vinyl toluene in B6C3Fl mice. Final chronic report performed for the NTP under Contract No. NOl-ES-38042. U.S. EPA. 1987. Health and Environmental Effects Document for Methyl Styrenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Mirex Shannon, V.C. 1976. The effects of mirex on the reproductive performance and behavioral development in the prairie vole (<u>Microtus ochrogaster</u>). Ph.D. Dissertation, Iowa State University, Ames, IA. - U.S. EPA. 1987a. Health Effects Assessment for Mirex. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for mirex. Online. (Verification date 04/15/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. # **Monochlorobutanes** # 1-Chlorobutane NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis studies of n-butyl chloride in F344/N rats and B6C3Fl mice (gavage studies). CAS No. 109-69-3. NTP-TR-312. 198 p. U.S. EPA. 1988. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 2-Chlorobutane and t-butyl chloride U.S. EPA. 1988. Health and Environmental Effects Document for Monochlorobutanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Naphthalene Schmahl, D. 1955. Testing of naphthalene and anthracene as carcinogenic agents in the rat. Z. Krebsforsch. 60: 697-710. (German with English translation) - U.S. EPA. 1986. Health and Environmental Effects Profile for Naphthalene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988. Health Effects Assessment for Naphthalene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Nickel Ambrose, A.M., D.S. Larson, J.R. Borzelleca and G.R. Hennigar, Jr. 1976. Long-term toxicologic assessment of nickel in rats and dogs. J. Good Sci. Technol. 13: 181-187. - U.S. EPA. 1984. Health Effects Assessment for Nickel. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. IRIS: Reference Dose (RfD) for oral exposure for nickel, soluble salts. Online. (Verification date 07/16/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Nitriles, Selected # Methacrylonitrile Pozzani, U.C., C.R. Kinkead and J.M. King. 1968. The mammalian toxicity of methacrylonitrile. Am. Ind. Hyg. Assoc. J. 29(3): 202-210. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for methacrylonitrile. Online. (Verification date 09/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. ### Nicotinonitrile U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Succinonitrile U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitriles. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ### Nitrobenzene - CIIT (Chemical Industry Institute of Toxicology). 1984. Ninety-day inhalation study of nitrobenzene in F-344 rats, CD rats and B6C3F1 mice with cover letter dated 6/24/84 and EPA response dated 8/06/84. Unpublished study. FYI-01S-0784-0333 and computer print-out of pathology finding. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for nitrobenzene. Online. (Verification date 07/08/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Nitrobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ### **Nitrofurans** ### Nitrofurantoin SRT (Southern Research Institute). 1980. Subchronic Toxicity Report on Nitrofurantoin (C55196) in Fischer-344 rats and B6C3F1 mice Tracor Jit CO, Inc. Rockville, MD contract Nos NO1-CP-43350 and 78-65-106002 U.S. EPA. U.S. EPA. 1987. Health and Environmental Effects Document for Nitrofurans Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # **Nitrophenols** U.S. EPA. 1987. Health Effects Assessment for Nitrophenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-31 04/14/89 <u>Parathion</u> U.S. EPA. 1987. Health Effects Assessment for Parathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. **Pentachlorophenol** Schwetz, B.A., J.F. Quast, P.A. Keeler et al. 1978. Results of two-year toxicity and reproduction studies on pentachlorophenol in rats. <u>In:</u> Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, K.R. Rao, Ed. Plenum Press, New York. p. 301. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Pentachlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for pentachlorophenol. Online. (Verification date 05/20/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati. OH. n-Pentane U.S. EPA. 1987. Health Effects Assessment for n-Pentane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Phenanthrene - U.S. EPA. 1984. Health Effects Assessment for Phenanthrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987. Health and Environmental Effects Profile for Phenanthrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Phenol Research Triangle Institute. 1983. Teratologic Evaluation of Phenol in CD Rats. Report prepared for NIEHS/NTP, Research Triangle
Park, NC. - U.S. EPA. 1984. Health Effects Assessment for Phenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. IRIS: Reference Dose (RfD) for oral exposure for phenol. Online. (Revised verification date 11/16/88). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Phthalic acid esters (selected) # Bis(2-ethylhexyl) phthalate Carpenter, C.P., C.S. Weil and H.F. Smyth. 1953. Chronic oral toxicity of di(2-ethylhexyl) phthalate for rats, guinea pigs and dogs. Arch. Ind. Hyg. Occ. Med. 8: 219-226. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for bis(2-ethylhexyl) phthalate. Online. (Verification date 01/22/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Butyl benzyl phthalate NTP (National Toxicology Program). 1985. Project No. 12307-02, -03. Hazelton Laboratories America, Inc. Unpublished study. - U.S. EPA. 1986. Drinking Water Criteria Document for Phthalic Acid Esters (PAE)s. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. External Review Draft. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # Diethyl phthalate Brown, D., K.R. Butterworth, I.F. Gaunt et al. 1978. Short-term oral toxicity study of diethyl phthalate in the rat. Food Cosmet. Toxicol. 16: 415-422. - U.S. EPA. 1987a. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. IRIS: Reference Dose (RfD) for oral exposure for diethyl phthalate. Online. (Verification date 07/16/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Di-n-butyl phthalate Smith, C.C. 1953. Toxicity of butyl stearate, dibutyl sebacate, dibutyl phthalate and methoxyethyl oleate. Arch. Hyg. Occup. Med. 7: 310-318. U.S. EPA. 1986. IRIS: Reference Dose (RfD) for oral exposure for dibutyl phthalate. Online. (Verification date Ol/22/86). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Dimethyl phthalate U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Di-n-octyl phthalate U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. n-Propyl alcohol U.S. EPA. 1987a. Health and Environmental Effects Document for n-Propyl Alcohol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Propylene glycol Gaunt, I.F., R.M.B. Carpanini, P. Grasso and A.B.G. Lansdown. 1972. Long-term toxicity of propylene glycol in rats. Food Cosmet. Toxicol. 10: 151-162. Guerrant, N.B., G.P. Whitlock, M.L. woiff and R.A. Dutcher. 1947. Response of rats to diets containing varying amounts of glycerol and propylene glycol. Bull. Natl. Formulary Comm. 15: 204-229. (Cited in Informatics, Inc., 1973) Robertson, O.H., C.G. Loosli, T.T. Puck, H. Wise, H.M. Lemon and W. Lester. 1947. Tests for chronic toxicity of propylene glycol and oral administration. J. Pharmacol. Exp. Ther. 91: 52-75. U.S. EPA. 1987. Health and Environmental Effects Document for Propylene Glycol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. Pyrene U.S. EPA. 1984. Health Effects Assessment for Pyrene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. <u>Selenium</u> Glover, J.R. 1967. Selenium in human urine: A tentative maximum allowable concentration for industrial and rural populations. Ann. Occup. Hyg. 10: 3-10. Halverson, A.W., I.S. Palmer and P.L. Guss. 1966. Toxicity of selenium to postweanling rats. Toxicol. Appl. Pharmacol. 9: 477. - U.S. EPA. 1984. Health Effects Assessment for Selenium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. 40 CFR Part 141. National Primary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals and Microorganisms: Proposed Rule. Federal Register. 50(219): 46936-47022. - Yang, G., W. Shuzhen, R. Ahou and S. Sun. 1983. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 37: 872-888. # Sodium cyanide - Howard, J.W. and R.F. Hanzal. 1955. Chronic toxicity for rats of food treated with hydrogen cyanide. Agric. Food Chem. 3: 325-329. - U.S. EPA. 1984. Health Effects Assessment for Sodium Cyanide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for sodium cyanide. Online. (Verification date 08/05/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Sodium diethyldithiocarbamate - Sunderman, F.W., O.E. Paynter and R.B. George. 1967. The effects of the protracted administration of the chelating agent, sodium diethyldithiocarbamate (dithiocarb). Am. J. Med. Sci. 254: 46-56. - U.S. EPA. 1985. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for sodium diethyldithiocarbamate. Online. (Verification date 10/09/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Health and Environmental Effects Document for Sodium Diethyldithiocarbamate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # Sulfuric acid - Carson, B.L., B.L. Herndon, H.V. Ellis III, et al. 1981. Sulfuric Acid Health Effects. Prepared under Contract 68-03-2928 by Midwest Research Institute, Kansas City, MO. Prepared for Emission Control Technology Division, Office of Mobile Source Air Pollution Control. U.S. EPA, Ann Arbor MI. EPA 460/3-81-025. NTIS PB82-113135. - U.S. EPA. 1984. Health Effects Assessment for Sulfuric Acid. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-35 04/14/89 Tetrachloroethylene (perchloroethylene) Buben, J.A. and E.J. O'Flaherty. 1985. Delineation of the role of metabolism in the hepatoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol. Appl. Pharmacol. 78: 105-122. - U.S. EPA. 1987. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for tetrachloroethylene. Online. (Verification date 09/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Updated Health Effects Assessment for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Thallium and Compounds: Thallium (in salts), Thallium(I) oxide [Thallic oxide], Thallium(I) acetate, Thallium(I) carbonate, Thallium(I) chloride, Thallium (I) nitrate, Thallium selenide (Tl₂Se), Thallium(I) sulfate MRI (Midwest Research Institute). 1986. Subchronic (90-day) toxicity study of thallium sulfate in Sprague-Dawley rats. Office of Solid Waste, U.S. EPA, Washington, DC. (Cited in U.S. EPA, 1987a) - U.S. EPA. 1986b. Subchronic (90-day) toxicity of thallium(I) sulfate (CAS No. 7446-18-6) in Sprague-Dawley rats. Final Report. Prepared for the Office of Solid Waste, U.S. EPA, Washington, DC. Project No. 8702-1 (18). - U.S. EPA. 1988a. Health and Environmental Effects Document for Thallium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988b.
Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for thallic oxide, thallium(I) acetate, thallium(I) carbonate, thallium(I) chloride, thallium(I) nitrate, thallium selenite and thallium(I) sulfate. [Separate IRIS entry for each compound.] Online: Input pending. (Revised; verification date 04/21/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati. OH. Tin and compounds NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of stannous chloride (CAS No. 7772-99-8) in F344/N rats and B6C3F1/N mice (feed study). NCI/NTP Tech. Rep. Ser. No. 231. Also publ. as DHHS (NIH) publ Iss NIH 82-1787 and NTIS PB 82-242-553. U.S. EPA. 1987. Health Effects Assessment for Tin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h C-36 04/14/89 # <u>Toluene</u> - CIIT (Chemical Industry Institute of Toxicology). 1980. A twenty-four month inhalation toxicology study in Fischer-344 rats exposed to atmospheric toluene. Executive Summary and Data Tables. October 15, 1980. (Cited in U.S. EPA, 1985) - U.S. EPA. 1984. Health Effects Assessment for Toluene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985a. Drinking Water Criteria Document for Toluene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft (on Public Comment). EPA 600/X-84-188-2. - U.S. EPA. 1985b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for toluene. Online. (Verification date 05/20/85.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wolf, M.A., V.K. Rowe, D.D. McCollister et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. Arch. Ind. Health. 14: 387. (Cited in U.S. EPA, 1985) ### 1.2.4-Trichlorobenzene - Carlson, G.P. and R.G. Tardiff. 1976. Effect of chlorinated benzenes on the metabolism of foreign organic compounds. Toxicol. Appl. Pharmacol. 36: 383-394. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,2,4-trichlorobenzene. Online. (Verification date 02/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for 1,2,4-Trichlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - Watanabe, P.G., R.J. Kociba, R.E. Hefner et al. 1978. Subchronic toxicity studies of 1,2,4-trichlorobenzene in experimental animals. Toxicol. Appl. Pharmacol. 45(1): 322-333. ### 1.1.1-Trichloroethane - Torkelson, R.R., F. Oyen, D.D. McCollister and V.K. Rowe. 1958. Toxicity of 1,1,1-trichloroethane as determined on laboratory animals and human subjects. Am. Ind. Hyg. Assoc. J. 19: 353-362. - U.S. EPA. 1984. Health Effects Assessment for 1,1,1-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,1,1-trichloroethane. Online. (Verification date 05/15/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # 1,1,2-Trichloroethane Sanders, V.M., K.L. White Jr., G.M. Shopp Jr. and A.E. Munson. 1985. Humoral and cell mediated immune status of mice exposed to 1,1,2 trichloro-ethane Drug Chem Toxicol. 8(5): 357-372. - U.S. EPA. 1984. Health Effects Assessment for 1,1,2-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,1,2-trichloroethane. Online. (Revised verification date 05/26/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. - White, K.L. Jr., V.M. Sanders, V.W. Barnes, G.M. Shopp and A.E. Munson. 1985. Toxicology of 1,1,2 trichloroethane in the mouse. Drug Chem Toxicol. 8(5): 333-355. ### **Trichloropropanes** # 1,1,1- and 1,2,2-Trichloropropane U.S. EPA. 1987. Health and Environmental Effects Document for Trichloro-propanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 1,1,2-Trichloropropane - U.S. EPA. 1987a. Health and Environmental Effects Document for Trichloropropanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,1,2-trichloropropane. Online: Input pending. (Verification date 9/17/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Villaneuve, D.C., I. Chu, V.E. Secours, M.G. Cotie, G.L. Plaa and V.E. Valli. 1985. Results of a 90-day toxicity study on 1,2,3- and 1,1,2-tri-chloropropane administered via the drinking water. Sci. Total Environ. 47: 421-426. # 1,2,3-Trichloropropane NTP (National Toxicology Program). 1983a. Final report 120-day toxicity gavage study of 1,2,3-trichloropropane in Fischer 344 rats. Performed by Hazelton Laboratories. - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for 1,1,3-trichloropropane. Online. (Verification date 9/02/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - U.S. EPA. 1987. Health and Environmental Effects Document for Trichloro-propanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ## Trihalogenated methanes #### Bromodichloromethane - NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of Bromodichloromethane in F344/N Rats and B6C3Fl Mice (Gavage Studies). NTP Tech. Report, Ser. No. 321, NIH Publ. No. 87-2537. - U.S. EPA. 1987a. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for bromodichloromethane. Online. (Verification date 07/16/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Bromoform - NTP (National Toxicology Program). 1980. No other information provided on IRIS. from which this reference was taken. - U.S. EPA. 1987a. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for bromoform. Online. (Verification date 08/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Chlorodibromomethane - NTP (National Toxicology Program). 1985. Toxicology and Carcinogenesis Studies of Chlorodibromomethane in F344/N Rats and B6C3Fl Mice (Gavage Studies). NTP TR282. - U.S. EPA. 1987a. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for dibromochloromethane. Online. (Verification date 08/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-39 04/14/89 U.S. EPA. 1987. Health Effects Assessment for Trimethylbenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Trivalent chromium Ivankovic, S. and R. Preussman. 1975. Absence of toxic and carcinogenic effects after administrations of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet Toxicol. 13: 347-351. - U.S. EPA. 1984. Health Effects Assessment for Trivalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. IRIS: Reference Dose (RfD) for oral exposure for chromium (III). Online. (Verification date 11/21/85). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Vanadium and compounds #### Sodium metavanadate Domingo, J.L., J.L. Llobet, J.M. Tomas and
J. Corbella. 1985. Short-term toxicity studies of vanadium in rats. J. Appl. Toxicol. 5(6): 418-421. U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. #### Vanadium Schroeder, J.A., M. Mitchener and A.P. Nason. 1970. Zirconium, niobium, antium, antimony, vanadium and lead in rats: Life term studies. J. Nutr. 100(1): 59-68. U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. #### Vanadium pentoxide Stokinger, H.E., W.D. Wagner, J.T. Mountain et al. 1953. Unpublished results. Div. Occup. Health, Cincinnati, OH. (Cited in Stokinger, 1981) - U.S. EPA. 1986. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for vanadium pentoxide. Online. (Verification date 02/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-40 04/14/89 - Vanadyl sulfate Schroeder, J.A., M. Mitchener and A.P. Nason. 1970. Zirconium, niobium, antium, antimony, vanadium and lead in rats: Life term studies. J. Nutr. 100(1): 59-68. - U.S. EPA. 1987. Health Effects Assessment for Vanadium and Compounds. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-H108. ## Xylenes o-Xylene - NTP (National Toxicology Program). 1986. NTP lechnical Report on the Toxicology and Carcinogenesis of Xylenes (mixed) (60.2% m-xylene, 13.6% p-xylene, 17.0% ethylbenzene and 9.1% o-xylene) (CAS No. 1330-20-7) in F344/N rats and B6C3Fl mice (gavage studies). U.S. DHHS, PHS, NIH, NTP, Research Triangle Park, NC. NTP TR 327, NIH Publ. No. 86-2583. - Tatrai, E., G. Ungvary, I.R. Cseh, et al. 1981. The effects of long-term inhalation of o-xylene on the liver. End. Environ. Xenobiotics, Proc. Int. Conf. p. 293-300. - Ungvary, G., E. Tatrai, A. Hudak, et al. 1980. The embryotoxic effects of o-. m- and p-xylene. Toxicology. 18(1): 61-74. - U.S. EPA. 1984. Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-006. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Xylenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### m-Xylene - NTP (National Toxicology Program). 1986. NTP Technical Report on the Toxicology and Carcinogenesis of Xylenes (Mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene and 9.1% o-Xylene) (CAS No. 133-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP TR 327, NIH Publ. No. 86-2583. - Tatrai, E., G. Ungvary, I.R. Cseh, et al. 1981. The effects of long-term inhalation of o-xylene on the liver. End. Environ. Xenobiotics, Proc. Int. Conf. p. 293-300. - U.S. EPA. 1984. Health Effects Assessment for Xylenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-006. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Xylenes (o-, m-, p-). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### p-Xylene U.S. EPA. 1984. Health Effects Assessment for Xylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Mixed xylenes Carpenter, C.P., E.R. Kinhead, D.L. Geary, et al. 1975. Petroleum hydrocarbon toxicity studies. V. Animal and human response to vapors of mixed xylenes. Toxicol. Appl. Pharmacol. 33(3): 543-558. Litton Bionetics. 1978. Teratology study in rats: Xylene. Final Report to American Petroleum Institute, Washington, DC. LBI Project No. 20698-5. FYI-AX-0183-0231. NTP (National Toxicology Program). 1986. NTP lechnical Report on the loxicology and Carcinogenesis of Xylenes (Mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene and 9.1% o-Xylene) (CAS No. 133-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP TR 327, NIH Publ. No. 86-2583. U.S. EPA. 1984. Health Effects Assessment for Xylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1987. Integrated Risk Information System (IRIS): Reference Dose (RfD) for oral exposure for xylenes (mixed isomers). Online. (Verification date 03/19/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Zinc Pories, W.J., J.H. Henzel, C.G. Rob and W.H. Strain. 1967. Acceleration of wound healing in man with zinc sulfate given by mouth. Lancet. 1: 121-124. Prasad, A.S., E.B. Schoomaker, J. Ortega et al. 1975. Zinc deficiency in sickle cell disease. Clin. Chem. 21: 582-587. U.S. EPA. 1984. Health Effects Assessment for Zinc. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### HEA SUMMARY TABLE B: CARCINOGENS #### Acrolein - U.S. EPA. 1987a. Health Effects Assessment for Acrolein. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for Acrolein. Online. (Verification date 12/02/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### <u>Acrylonitrile</u> Bio/dynamics, Inc. 1980a. A 24-month oral toxicity/carcinogenicity study of acrylonitrile administered to Spartan rats in the drinking water. Final Report. Vol. 1 and 2. Prepared by Bio/dynamics, Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, under Project No. 77-1745 for Monsanto Company, St. Louis, MO. (Cited in U.S. EPA, 1983a) Bio/dynamics, Inc. 1980b. A 24-month oral toxicity/carcinogenicity study of acrylonitrile administered in drinking water to Fischer 344 rats. Final Report. Vol. 1-4. Prepared by Bio/dynamics, Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, under Project No. 77-1744 (BDN-77-27) for Monsanto Company, St. Louis, MO. (Cited in U.S. EPA, 1983a) - O'Berg, M. 1980. Epidemiologic study of workers exposed to acrylonitrile. J. Occup. Med. 22: 245-252. - Quast, J.F., C.E. Wade, C.G. Humiston et al. 1980a. A 2-year toxicity and oncogenicity study with acrylonitrile incorporated in the drinking water of rats. Prepared by the Toxicology Research Laboratory, Health and Environmental Research, Dow Chemical USA, Midland, MI, for the Chemical Manufacturers Association, Washington, DC. (Cited in U.S. EPA, 1983a) - U.S. EPA. 1983a. Health Assessment Document for Acrylonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-82-007f. NTIS PB84-149152. - U.S. EPA. 1987a. Health Effects Assessment for Acrylonitrile. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for Acrylonitrile. Online. (Verification date 02/11/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Aldrin Davis, K.J. 1965. Pathology report on mice for aldrin, dieldrin, heptachlor, or heptachlor epoxide for two years. Int. Food. Drug Admin. 0121h C-43 04/14/89 - Davis, K.J. and O.G. Fitzhugh. 1962. Tumorigenic potential of aldrin and dieldrin for mice. Toxicol. Appl. Pharmacol. 4: 187-189. - Epstein, S.S. 1975. The carcinogenicity of dieldrin. Part I. Sci. Total Environ. 4: 1-52. - NCI (National Cancer Institute). 1977. Bioassays of aldrin and dieldrin for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 21. (Also published as NTIS PB-275-666) - U.S. EPA. 1986b. Carcinogenicity Assessment of Aldrin and Dieldrin. December 1986 Review Draft. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. - U.S. EPA. 1987a. Health Effects Assessment for Aldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for aldrin. Online. (Verification date 03/22/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH.
Arsenic - Brown, C.C. and K.C. Chu. 1983a. Approaches to epidemiologic analysis of prospective and retrospective studies: Example of lung cancer and exposure to arsenic. <u>In</u>: Risk Assesment: Proc. SIMS Conference on Environmental Epidemiology, June 28-July 2, 1982, Alta UT. SIAM Publication. - Brown, C.C. and K.C. Chu. 1983b. Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. J. Nat. Cancer Inst. 70: 455-463. - Brown, C.C. and K.C. Chu. 1983c. A new method for the analysis of cohort studies; implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. Environ. Health Persp. 50: 293-308. - Enterline, P.E. and G.M. Marsh. 1982. Cancer among workers exposed to arsenic and other substances in a copper smelter. Am. J. Epidemiol. 116: 895-911. - Higgins, I. 1982. Arsenic and respiratory cancer among a sample of Anaconda smelter workers. Report submitted to the Occupational Safety Health Administration in the comments of the Kennecott Minerals on the inorganic arsenic rulemaking (Exhibit 203-5). - Lee-Feldstein, A. 1983. Arsenic and respiratory cancer in man: Follow-up of an occupational study. In: Arsenic: Industrial, Biomedical, and Environmental Perspectives, W. Lederer and R. Fensterheim, Eds. Van Nostrand Reinhold, New York. 0121h C-44 04/14/89 - U.S. EPA. 1984a. Health Effects Assessment for Arsenic. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1984b. Health Assessment Document for Inorganic Arsenic. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8/83-021F. NTIS PB 84-190891. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for arsenic. Online. (Revised; verification date 01/13/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Asbestos** - NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of chrysotile asbestos (CAS No. 1200-29-5) in F344/N rats (feed studies) technical report series No. 295. - U.S. EPA. 1985. Drinking Water Criteria Document for Asbestos. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft. NTIS PB 86-118262. - U.S. EPA. 1986. Airborne Asbestos Health Assessment Update. Prepared by the Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-84/003F. #### Benzene - Ott. M.G., J.C. Townsend, W.A. Fishbeck and R.A. Langner. 1978. Mortality among workers occupationally exposed to benzene. Arch. Environ. Health. 33: 3-10. - Rinsky, R.A., R.J. Young and A.B. Smith. 1981. Leukemia in benzene workers. Am. J. Ind. Med. 2: 217-245. - U.S. EPA. 1985. Interim Quantitative Cancer Unit Risk Estimates Due to Inhalation of Benzene. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC for the Office of Air Quality Planning and Standards, Washington, DC. - U.S. EPA. 1987a. Memorandum from J. Orme HEB, CSD/ODW to C. Vogt, Criteria and Standards Division. ODW. June, 1987. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for benzene. Online. (Verification date 10/09/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wong, O., R.W. Morgan and M.D. Whorton. 1983. Comments on the NIOSH study of leukemia in benzene workers. Technical report submitted to Gulf Canada, Ltd., by Environmental Health Associates, August 31. (Cited in U.S. EPA, 1985) ## Benzidine - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-023. NTIS PB 81-117343. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1986b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for benzidine. Online. (Verification date 12/17/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Benzidine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - Zavon, M.R., U. Hoegg and E. Bingham. 1973. Benzidine exposure as a cause of bladder tumors. Arch. Environ. Health. 27: 1-73. #### Benzo(a)pyrene - Neal, J. and R.H. Rigdon. 1967. Gastric tumors in mice fed benzo[a]pyrene: A quantitative study. Tex. Rep. Biol. Med. 25: 553. - Thyssen, J., J. Althoff, G. Kimmerle and U. Mohr. 1981. Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J. Natl. Cancer Inst. 66(3): 575-577. - U.S. EPA. 1980b. Ambient Water Quality Criteria Document for Polynuclear Aromatic Hydrocarbons. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-069. NTIS PB 81-117806. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for benzo[a]pyrene. Online. (Verification date 01/07/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. # Beryllium Schroeder, H.A. and M. Mitchener. 1975a. Life-term studies in rats: Effects of aluminum, barium, beryllium and tungsten. J. Nutr. 105(4): 421-427. U.S. EPA. 1986b. Drinking Water Criteria Document for Beryllium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. - U.S. EPA. 1987. Health Assessment Document for Beryllium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-84-026F. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for beryllium. Online. (Verification date 05/04/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Wagoner, J.K., P.F. Infante and D.L. Bayliss. 1980. Beryllium: An etiologic agent in the induction of lung cancer, nonneoplastic respiratory disease, and heart disease among industrially exposed workers. Environ. Res. 21: 15-34. ## Cadmium - Thun, M.J., T.M. Schnorr, A.B. Smith and W.E. Halperin. 1985. Mortality among a cohort of U.S. cadmium production workers: An update. J. Natl. Cancer Inst. 74(2): 325-333. - U.S. EPA. 1984. Health Effects Assessment for Cadmium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985a. Updated mutagenicity and Carcinogenicity Assessment of Cadmium: Addendum to the Health Assessment Document for Cadmium (May 1981, EPA 600/8-81-023). EPA 600/8-83-025F. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for cadmium. Online. (Verification date 11/12/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Carbon tetrachloride - Della Porta, G.B., B. Terracini and K.P. Shubik. 1961. Induction with carbon tetrachloride of liver cell carcinomas in hamsters. J. Natl. Cancer Inst. 26: 855-863. - Edwards, J., W.E. Heston and H.A. Dalton. 1942. Induction of the carbon tetrachloride hepatoma in strain L mice. J. Natl. Cancer Inst. 3: 297-301. - NCI (National Cancer Institute). 1976. Report on the Carcinogenesis Bioassay of Chloroform. Carcinogenesis Program, Division of Cancer Cause and Prevention, Washington, DC. - U.S. EPA. 1984a. Health Assessment Document for Carbon Tetrachloride. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA-600/8-82-001f. NTIS PB 85-124196. - U.S. EPA. 1984b. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-47 04/14/89 U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for carbon tetrachloride. Online. (Verification date 12/04/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Chlordane - IRDC (International Research and Development Corporation). 1973. Unpublished report to Velsicol Chemical Corporation, Eighteen Month Oral Carcinogenic Study in Mice, December 14, 1973. - NCI (National Cancer Institute). 1977. Bioassay of Chlordane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 8. Also publ. as DHEW Publ. No. (NIH) 77-808. - U.S. EPA. 1986a. Carcinogenicity Assessment of Chlordane and Heptachlor/ Heptachlor Epoxide. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA-600/6-87-004. Final Report. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for chlordane.
Online. (Verification date 04/01/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. - U.S. EPA. 1988. Updated Health Effects Assessment for Chlordane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. # Chlorinated phenols # 2,4,6-Trichlorophenol - NCI (National Cancer Institute). 1979. Bioassay of 2,4,6-trichlorophenol for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 155, DHEW No. NIH 79-1711. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment; Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-032. NTIS PB 81-117434. - U.S. EPA. 1984. Health Effects Assessment for 2,4,6-Trichlorophenol. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 2,4,6-trichlorophenol. Online. (Verification date 10/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health and Environmental Effects Document for Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h C-48 04/14/89 ## Chlorinated Toluenes p.a.a.a-Tetrachlorotoluene Fukada, K.S., Matsashita and K. Takemotol. 1979. Carcinogenicity of p-chlorobenzotrichloride. Proc of Japan Assoc. of Ind. Health. p. 330-331. U.S. EPA. 1987. Health and Environmental Effects Document for Selected Chlorinated Toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Chloroanilines 2-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. 3-Chloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. 4-Chloroaniline NCI (National Cancer Institute). 1979. Bioassay of p-chloroaniline for possible carcinogenicity. NCI Carcinogenesis Tech Rep. Ser. No. 189. NTIS PB295896. U.S. EPA. 1987. Health and Environmental Effects Document for Chloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. **Chloroform** Jorgenson, T.A., E.F. Meierhenry, C.J. Rushbrook et al. 1985. Carcinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6C3Fl mice. Fund. Appl. Toxicol. (U.S.A.) 5(4): 760-769. - NCI (National Cancer Institute). 1976. Report on Carcinogenesis Bioassay of Chloroform. NTIS PB264-018. - U.S. EPA. 1985. Health Assessment Document for Chloroform. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, Research Triangle Park, NC. EPA 600/8-84-004F. NTIS PB86-105004. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for chloroform. Online. (Verification date 08/26/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1988. Updated Health Effects Assessment for Chloroform. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Chloromethane CIIT (Chemical Industry Institute of Toxicology). 1981. Final report on 24-month inhalation study on methyl chloride. Prepared by Battelle-Columbus Laboratories, Columbus, OH. December 31. NIOSH (National Institute for Occupational Safety and Health). 1984. Carcinogenic Risk Assessment for Occupational Exposure to Monohalomethanes. NIIS PB85-111623. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Methyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Chloromethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Coal tars Mazumdar, S., C. Redmond, W. Sollecito and N. Sussman. 1975. An epidemiological study of exposure to coal-tar-pitch volatiles among coke oven workers. APCA J. 25(4): 382-389. Redmond, C.K., H.S. Wieand, H.E. Rockette et al. 1979. Long-term mortality experience of steelworkers. Prepared under Contract No. HSM-99-71-32. NIOSH, Cincinnati, OH. June. U.S. EPA. 1984. Carcinogen Assessment of Coke Oven Emissions. Office of Health and Environmental Assessment, Washington, DC. EPA-600/6-82-003F. NTIS PB 84-170182. Creosote U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for creosote. Online. (Verification date 05/13/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. DDT U.S. EPA. 1984. Health Effects Assessment for DDT. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86-026. - U.S. EPA. 1986a. The Assessment of the Carcinogenicity of Dicofol (Kelthane), DDT, DDE and DDD (TDE). Office of Health and Environmental Assessment, Washington, DC. EPA/600/6-86/001. NTIS PB87-110904. - U.S. EPA. 1986b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for DDT. Online. (Verification date 11/12/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Dichlorobenzenes ## 1.2-Dichlorobenzene U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## 1.3-Dichlorobenzene U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## 1.4-Dichlorobenzene NTP (National Toxicology Program). 1986. Toxicology and Carcinogenesis Studies of 1,4-Dichlorobenzene in F344/N Rats and B6C3Fl Mice -- Galley Draft. U.S. DHHS, PHS. NIH Tech. Rep. Ser. No. 319. U.S. EPA. 1987. Health Effects Assessment for Dichlorobenzenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## 3,3'-Dichlorobenzidine Stula, E.F., H. Sherman, J.A. Zapp, et al. 1975. Experimental neoplasta in rats from oral administration of 3,3'-dichlorobenzidine, 4,4'-methylene-bis(2-chloroaniline) and 4,4'-methylene-bis (2-methylaniline). Toxicol. Appl. Pharmacol. 31: 159-175. U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for 3,3'-Dichlorobenzidine. Online: Input pending. (Verification date 11/30/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **Dichlorobutenes** ## 1,4-Dichloro-2-butene - E.I. Dupont de Nemours and Co. 1986. Long-term Inhalation study with 1,4-dichlorobutene-2 (DCB) in rats. Final report OTS 8(e) Fiche 0509754. - U.S. EPA. 1987. Health and Environmental Effects Document for Dichlorobutenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 1.1-Dichloroethane NCI (National Cancer Institute). 1978. Bioassay of 1,1-dichlorgethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 66, DHEW Publ. No. (NIH) 78-1316. U.S. EPA. 1984. Health Effects Assessment for 1,1-Dichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1985. Health and Environmental Effects Profile for Dichloroethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### 1.2-Dichloroethane NCI (National Cancer Institute). 1978. Bioassay of 1,2-dichloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 55, DHEW Publ. No. (NIH) 78-1361. - U.S. EPA. 1985. Health Assessment Document for 1,2-Dichloroethane. EPA 600/8-84-006F. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 1,2-dichloroethane. Online.
(Verification date 12/04/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### 1.1-Dichloroethylene Maltoni, C., G. Lefemine, P. Chieco et al. 1985. Experimental research on vinylidene chloride carcinogenesis. <u>In</u>: Archives of Research on Industrial Carcinogenesis, Vol. 3, C. Maltoni and M. Mehlman, Ed. Princeton Scientific Publishers, Princeton, NJ. - NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of vinylidene chloride (CAS No. 75-35-4) in F344 rats and B6C3F1 mice (gavage study). NTP Tech. Rep. Ser. No. 228, DHHS No. NIH 82-1784. - U.S. EPA. 1985. Health Assessment Document for Vinylidene Chloride. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-83-031F. NTIS PB 86-100641. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 1,1-dichloroethylene. Online. (Verification date 01/07/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 1.2-Dichloropropane NTP (National Toxicology Program). 1986. NTP Technical Report on the Carcinogenesis Studies of 1,2-Dichloropropane (Propylene Dichloride). (CAS No. 78-87-5) in F344/N rats and B6C3Fl mice (gavage studies). NTP-82-092, NIH Publ. No. 84-2519, NTP TR 263. U.S. DHHS, PHS, NIH. August, 1986. Draft. U.S. EPA. 1987. Health Effects Assessment for 1,2-Dichloropropane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Dieldrin Davis, K.J. 1965. Pathology report on mice fed aldrin, dieldrin, heptachlor or heptachlor epoxide for two years. Int. Food Drug Admin. - Meterhenrey, E.f., B.H. Reuber, M.E. Gershwin et al. 1983. Dieldrininduced mallory bodies in hepatic tumors of mice of different strains. Hepatology. 3: 90-95. - NCI (National Cancer Institute). 1978. Bioassays of aldrin and dieldrin for possible carcinogenicity. National Cancer Institute Carcinogen. Tech. Rep. Ser. No. 22. NCI-CG-TR-22. [Also publ. as DHEW Publ. No. (NIH) 78-882.] - Tennekes, H.A., A.S. Wright, K.M. Dix and J.H. Koeman. 1981. Effects of dieldrin, diet and bedding on enzyme function and tumor incidences in livers of male CF-1 mice. Cancer Res. 41: 3615-3620. - Thorpe, E. and A.I. Walker. 1973. Toxicity of dieldrin (HEOD). II. Comparative long-term oral toxicity studies in mice with dieldrin, DDT, phenobarbitone, beta-BHC and gamma-BHC. Food Cosmet. Toxicol. 11(3): 433-443. - U.S. EPA. 1987a. Health Effects Assessment for Dieldrin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for dieldrin. Online. (Verification date 03/05/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Walker, A.I.T., E. Thorpe and D.E. Stevenson. 1972. The toxicology of dieldrin (HEOD): I. Long-term oral toxicity studies in mice. Food Cosmet. Toxicol. 11: 415-432. ## <u>Dinitrotoluenes</u> ## 2,4-Dinitrotoluene - Ellis, H.V., S.H. Hageusen, J.R. Jodgson et al. 1979. Mammalian Toxicity of Munition Compounds. Phase III. Effects of Lifetime Exposure. Part I. 2,4-Dinitrotoluene. NTIS AD-A077692. 281 p. - U.S. EPA. 1987. Health Effects Assessment for 2,4- and 2,6-Dinitro-toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for 2,4-Dinitrotoluene, 2,6-Dinitrotoluene Mixture. Online: Input pending. (Verification date 11/30/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## 2.6-Dinitrotoluene U.S. EPA. 1987. Health Effects Assessment for 2,4- and 2,6-Dinitro-toluenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - 1,2-Diphenylhydrazine NCI (National Cancer Institute). 1978. Bioassay of hydrazobenzene for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 92. DHEW Publ. No. (NIH) 78-1342. - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for 1,2-Diphenyl-hydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-062. NTIS PB 81-117731. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 1,2-diphenylhydrazine. Online. (Verification date 10/29/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for 1,2-Diphenylhydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Health and Environmental Effects Document for 1,2-Diphenylhydrazine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ## Ethylene dibromide - NCI (National Cancer Institute). 1978. Bioassay of 1,2-dibromoethane for possible carcinogenicity. NCI Carcinogenicity Tech. Rep. Ser. No. 86. NTIS PB-288-428, DHHS (NIH) 78-1336. - NTP (National Toxicology Program). 1982. Carcinogenesis Bioassay of 1,2-Dibromoethane (ethylene dibromide) (CAS No. 106-93-4) in F3444 Rats and B6C3Fi Mice (Inhalation Study). NTP Tech. Rep. Ser. No. 210, NIH Publ. No. 82-1766. - U.S. EPA. 1987a. Health Effects Assessment for Ethylene Dibromide. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS): Risk Estimate for carcinogenicity for ethylene dibromide. Online. (Verification date 05/13/87). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Fluorenes U.S. EPA. 1987. Health Effects Assessment for Fluorenes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### **Haloethers** ## Bis (2-chloroethyl)ether - Innes, J.R.M., B.M. Ulland, M.G. Valerio et al. 1969. Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 42: 101-1114. - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for Chloroalkyl Ethers. Prepared by the Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-030. NTIS PB 81-117418. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for bis(chloroethyl)ether. Online. (Verification date 07/23/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Bis(2-Chloroethyl)Ether. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Bis(choromethyl)ether - Kuschner, M., S. Laskin, R.T. Drew, et al. 1975. Inhalation carcinogenicity of alpha halo ethers: III. Lifetime and limited period inhalation studies with bis(chloromethyl) ether at 0.1 ppm. Arch. Environ. Health. 30(2): 73-77. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for bis(chloromethyl)ether. Online. (Verification date 05/04/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Bis(2-chloro-1-methylethyl)ether - NTP (National Toxicology Program). 1982. Carcinogenic Bioassay of Bis(2-Chloro-l-Methylethyl) Ether (\simeq 70%) Containing 2-Chloro-l-Ethylethyl-(2-Chloropropyl) Ether (\simeq 30%) in B6C3F1 Mice (Gavage Study). NCI Carcinogen. Tech. Rep. Ser. No. 239. 105 p. [Also publ. as DHHS (NIH) 83-1795.] - U.S. EPA. 1987. Health and Environmental Effects Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ## Chloromethyl methyl ether - U.S. EPA. 1987. Health and Environmental Effects Document for Haloethers. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for chloromethyl methyl ether. Online: Input pending. (Verification date 05/04/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-55 04/14/89 Heptachlor Davis, K. 1965. Pathology report on mice fed aldrin, dieldrin, heptachlor and heptachlor epoxide for two years. Internal FDA memorandum to Dr. A.J. Lehman, July 19. Epstein,
S.S. 1976. Carcinogenicity of heptachlor and chlordane. Sci. Total Environ. 6: 103-154. NCI (National Cancer Institute). 1977. Bioassay of Heptachlor for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 9, DHEW No. (NIH) 77-809. Reuber, M.D. 1977. Histopathology of carcinomas of the liver in mice ingesting heptachlor or heptachlor epoxide. Exp. Cell. Biol. 45: 147-157. - U.S. EPA. 1986c. Carcinogenicity Assessment of Chlordane and Heptachlor/ Heptachlor Epoxide. Prepared by the Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. OHEA-C-204. - U.S. EPA. 1987a. Health Effects Assessment for Heptachlor. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for heptachlor. Online. (Verification date 04/01/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ### Hexachlorobenzene Cabral, J.R.P., P. Shubik, T. Mollner et al. 1977. Carcinogenic activity of hexachlorobenzene in hamsters. Nature. 269: 510-511. - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. - U.S. EPA. 1985. Drinking Water Criteria Document for Hexachlorobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Draft (on Public Comment). EPA-600/X-84-179-1. NTIS PB86-117777. #### Hexachlorobutadiene Kociba, R.J., D.G. Keyes, G.C. Jersey et al. 1977a. Results of a two-year chronic toxicity study with hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38: 589-602. U.S. EPA. 1980. Ambient Water Quality Criteria Document for Hexachloro-butadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-053. NTIS PB 81-117640. 0121h C-56 04/14/89 - U.S. EPA. 1984. Health Effects Assessment for Hexachlorobutadiene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for hexachlorobutadiene. Online. (Verification date 11/12/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Hexachloroethane - NCI (National Cancer Institute). 1978. Bioassay of Hexachloroethane for Possible Carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 68, DHEW No. (NIH) 78-1318. - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for hexachloroethane. Online. (Verification date 07/23/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - U.S. EPA. 1987. Health Effects Assessment for Hexachloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Hexavalent chromium- Mancuso, T.F. 1975. International Conference on Heavy Metals in the Environment, Toronto, Canada, Oct. 27-31. (Cited in U.S. EPA, 1984) - U.S. EPA. 1984a. Health Assessment Document for Chromium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. EPA-600/8-83-014F. NTIS PB 85-115905. - U.S. EPA. 1984b. Health Effects Assessment for Hexavalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response. Washington, DC. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for chromium(VI). Online. (Verification date 06/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Isophorone NTP (National Toxicology Program). 1986. Toxicology and carcinogenesis studies of isophorone (CAS No. 78-59-1) in F344/N rats and B6C3Fl mice (gavage studies). NTP Tech. Rep. Ser. No. 291, DHHS (NIH) 86-2547. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Isophorone. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ## Lead - U.S. EPA. 1984. Health Effects Assessment for Lead. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for lead. Online. (Verification date 05/04/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH. ### Lindane - Thorpe, E. and A.I.T. Walker. 1973. The toxicology of dieldrin (HEOD). II. Comparative long-term oral toxicity studies in mice with dieldrin, DDT, phenobarbitone, beta-BHC and gamma-BHC. Food Cosmet. Toxicol. 11: 433-442. - U.S. EPA. 1984. Health Effects Assessment for Lindane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health and Environmental Effects Profile for Hexachloro-cyclohexanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. #### Methylene chloride - NCA (National Coffee Association). 1983. Twenty-four month oncogenicity study of methylene chloride in mice. Prepared by Hazelton Laboratories, America Inc., Vienna, VA. Unpublished. - NTP (National Toxicology Program). 1986. Toxicology and carcinogenesis studies of dichloromethane (methylene chloride) (CAS No. 75-09-2) in F344/N rats and B6C3F1 mice (inhalation studies). NTP Tech. Rep. Ser. No. 306, DHHS (NIH) 86-2562. - U.S. EPA. 1984. Health Effects Assessment for Methylene Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985b. Addendum to the Health Assessment Document for Dichloro-methane (methylene chloride). Updated Carcinogenicity Assessment. Prepared by the Carcinogen Assessment Group, Office of Health and Environmental Assessment, Washington, DC. EPA 600/8-82-004FF. NTIS PB 86-123742. U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk Estimate for Carcinogenicity for Dichloromethane. Online. (Verification date 12/04/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati. OH. #### Mirex NTP (National Toxicology Program). 1987. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Mirex (CAS No. 2385-85-5) in F344/N Rats. NTP TR 313 (March. 1987 draft). NIH Publ. No. 87-2569. U.S. EPA. 1987. Health Effects Assessment for Mirex. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Nickel Chovil, A., R.B. Sutherland and M. Halliday. 1981. Respiratory cancer in a cohort of sinter plant workers. Br. J. Ind. Med. 38: 327-333. Enterline, P.E. and G.M. Marsh. 1982. Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. J. Nat. Cancer Inst. 68: 925-933. Magnus, K., A. Andersen and A. Hogetveit. 1982. Cancer of respiratory organs among workers at a nickel refinery in Norway. Int. J. Cancer. 30: 681-685. - Peto, J., H. Cuckle, R. Doll, et al. 1984. Respiratory cancer mortality of Welsh nickel refinery workers. <u>In</u>: Nickel in the Human Environment: Proceedings of a Joint Symposium, March, 1983. IARC Scientific Publ. No. 53. IARC, Lyon, France. p. 36-46. - U.S. EPA. 1984. Health Effects Assessment for Nickel. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1986. Health Assessment Document for Nickel and Nickel Compounds. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8-83-012F. NTIS PB 86-232212. - U.S. EPA. 1987a. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for nickel refinery dust. Online. (Verification date 04/01/87.) Office of Health and Environmental Assessment, Environmental Criteria and
Assessment Office, Cincinnati, OH. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for nickel subsulfide. Online. (Verification date 04/01/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 0121h C-59 04/14/89 # <u>Nitrofurans</u> ## Furozolidone - U.S. DHEW. 1976a. Furozolidone, nihydrazone, furaltadone, nitrofurazone. Withdrawal of proposals and notice of proposed rule making. Federal Register 41: 34884-34921. - U.S. DHEW. 1976b. Furozolidone (NF-180): Notice of Opportunity for hearing on proposal to Withdraw approval of certain new animal drug applications. Federal Register. 41: 19907-19921. - U.S. EPA. 1987. Health and Environmental Effects Document for Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. ## Furium - Cohen, S.M., E. Erturk and G.T. Bryan. 1970. Production of leukemia and stomach neoplasms in Swiss, R.F., BALB/c and C3H female mice by feeding N-(4.5-nitro-2-furyl-2-thiazolyl)acetamide. Cancer Res. 30(9): 2320-2325. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. #### Nitrofurazone - Erturk, E., J.E. Morris, S.M. Cohen, et al. 1970c. Transplantable rat mammary tumors induced by 5-nitro-2-furaldehyde semicarbazone and by formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl]hydrazide. Cancer Res. 30(5): 1409-1412. - U.S. EPA. 1987. Health and Environmental Effects Document for Selected Nitrofurans. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. #### N-Nitrosodiphenylamine - NCI (National Cancer Institute). 1979. Bioassay of N-nitrosodiphenylamine (CAS No. 86-30-6) for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 164, NIH 79-1720. NTIS PB 298-275. - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for Nitrosamines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-064. NTIS PB 81-117756. - U.S. EPA. 1986a. Health and Environmental Effects Profile for Nitros-amines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 0121h C-60 04/14/89 - U.S. EPA. 1987a. Health Effects Assessment for N-Nitrosodiphenylamine. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for N-nitrosodiphenylamine. Online. (Verification date 02/11/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### PAH Neal, J. and R.H. Rigdon. 1967. Gastric tumors in mice fed benzo[a]pyrene; A quantitative study. Tex. Rep. Biol. Med. 25: 553. - Thyssen, J., J. Althoff, G. Kimmerle and U. Mohr. 1981. Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J. Natl. Cancer Inst. 66(3): 575-577. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Polynuclear Aromatic Hydrocarbons. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-069. NTIS PB 81-117806. - U.S. EPA. 1987. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for benzo[a]pyrene. Online. (Verification date 01/07/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### Parathion - U.S. EPA. 1987. Health Effects Assessment for Parathion. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for parathion. Online. (Verification date 08/05/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. #### **PCBs** - Norback, D.H. and R.H. Weltman. 1985. Polychlorinated biphenyl induction of hepatocellular carcinoma in the Sprague-Dawley rat. Environ. Health Perspect. 60: 97-105. - U.S. EPA. 1984. Health Effects Assessment for PCBs. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987a. Drinking Water Criteria Document for Polychlorinated Biphenyls (PCBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Document. U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for polychlorinated biphenyls. Online: Input pending. (Verification date 04/22/87.) Office of Health and Environmental Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. ## Phthalic acid esters (selected) #### Bis(2-ethylhexyl) phthalate - NTP (National Toxicology Program). 1982a. Carcinogenesis bioassay of di(2-ethylhexyl) phthalate (CAS No. 117-81-7) in F344 rats and B6C3F1 mice (feed study). NTP Tech. Report. Ser. No. 217, NIH/PUB-82-1773. - U.S. EPA. 1986. Health and Environmental Effects Profile for Phthalic Acid Alkyl, Aryl and Alkyl/Aryl Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for bis(2-ethylhexyl)phthalate. Online. (Revised; verification date 08/15/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Butyl benzyl phthalate - U.S. EPA. 1987. Health Effects Assessment for Selected Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for butyl benzyl phthalate. Online. (Verification date 08/26/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Other phthalic acid esters U.S. EPA. 1987. Health Effects Assessment for Phthalic Acid Esters. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. #### Sodium diethyldithiocarbamate - BRL (Bionetics Research Laboratories). 1968a. Evaluation of carcinogenic, teratogenic and mutagenic activities of selected pesticides on industrial chemicals. Vol. I. Carcinogenic study. Prepared for National Cancer Institute. U.S. Dept. Commerce, Nat. Tech. Info. Serv., Washington, DC. NTIS PB223159. - U.S. EPA. 1988. Health and Environmental Effects Document for Sodium diethyldithiocarbamate. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. - 2.3.7.8-TCDD Kociba, R.J., D.G. Keyes, J.E. Bower et al. 1978. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-pdioxin in rats. Toxicol Appl. Pharmacol. 46(2): 279-303. - U.S. EPA. 1984. Health Effects Assessment for 2,3,7,8-TCDD. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1985. Drinking Water Criteria Document for 2,3,7,8-Tetrachloro-dibenzo-p-dioxin. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. EPA 600/X-84-194-I. NTIS PB 86-117983. - 1.1.2.2-Tetrachloroethane NCI (National Cancer Institute). 1978. Bioassay of 1,1.2.2-tetrachloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 27. DHEW No. (NIH) 78-827. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 1,1,2,2-tetrachloroethane. Online. (Verification date 06/26/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. - Tetrachloroethylene
(Perchloroethylene) NCI (National Cancer Institute). 1977. Bioassay of tetrachloroethylene (CAS No. 127-18-4) for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 13, DHEW No. (NIH) 78-813. - NTP (National Toxicology Program). 1986. Carcinogenesis bioassay of tetrachloroethylene (perchloroethylene) (CAS No. 127-18-4) in F344 rats and B6C3F1 mice (inhalation study). NTP Tech. Report. Ser. No. 311. - U.S. EPA. 1985a. Drinking Water Criteria Document for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. Final Document. NTIS PB 86-118114. - U.S. EPA. 1986a. Addendum to the Health Assessment Document for Tetrachloroethylene (Perchloroethylene): Updated Carcinogenicity Assessment. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA/600/8-82/005FA. External Review Draft. - U.S. EPA. 1988. Updated Health Effects Assessment for Tetrachloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HOO9a. 0121h C-63 04/14/89 #### Toxaphene Litton Bionetics, Inc. 1978. Carcinogenic evaluation in mice: Toxaphene. Prepared by Litton Bionetics, Inc., Kensington, MD for Hercules, Inc., Wilmington, DE. - U.S. EPA. 1980a. Ambient Water Quality Criteria Document for Toxaphene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-076. NTIS PB 81-117863. - U.S. EPA. 1987a. Health Effects Assessment for Toxaphene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1987b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for toxaphene. Online. (Verification date 03/06/87.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## **Trichloroanilines** ## 2,3,4- and 2,4,5-Trichloroaniline U.S. EPA. 1987. Health and Environmental Effects Document for Trichloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. # 2.4.6-Trichloroaniline and 2.4.6-Trichloroaniline hydrochloride Weisburger, E.L., A.B. Russfield, R. Homburger, et al. 1978. Testing of 21 environmental aromatic acmines or derivatives for long-term toxicity or carcinogenicity. J. Environ. Pathol. Toxicol. 2: 235-258. U.S. EPA. 1987. Health and Environmental Effects Document for Trichloroanilines. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. ## 1,1,2-Trichloroethane NCI (National Cancer Institute). 1978. Bioassay of 1,1,2-trichloroethane for possible carcinogenicity. NCI Carcinogenesis Tech. Rep. Ser. No. 74, DHEW No. NIH 78-1324. - U.S. EPA. 1980. Ambient Water Quality Criteria Document for Chlorinated Ethanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards, Washington, DC. EPA-440/5-80-029. NTIS PB 81-117400. - U.S. EPA. 1984. Health Effects Assessment for 1,1,2-Trichloroethane. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. 0121h C-64 04/14/89 U.S. EPA. 1986. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for 1,1,2-trichloroethane. Online. (Verification date 07/23/86.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. Trichloroethylene NCI (National Cancer Institute). 1976. Carcinogenesis bioassay of trichloroethylene. NCI Carcinogenesis Tech. Rep. Ser. No. 2, DHEW No. NIH 76-802. - NTP (National Toxicology Program). 1983. Carcinogenesis bioassay of trichloroethylene. NTP Tech Rep. Ser. No. 243, NIH 83-1799. - U.S. EPA. 1985. Health Assessment Document for Trichloroethylene. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH Research Triangle Park, NC. EPA 600/8-82-006F. NTIS PB 85-249696. - U.S. EPA. 1987. Addendum to the Health Assessment Document for Trichloroethylene. Office of Health and Environmental Assessment, Carcinogen Assessment Group, Washington, DC. EPA 600/8-82-006FA. External Review Draft. - U.S. EPA. 1988a. Updated Health Effects Assessment for Trichloroethylene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. - U.S. EPA. 1988b. Integrated Risk Information System (IRIS). Risk estimate for carcinogenicity for trichloroethylene. Online. (Revised; verification date 03/01/88.) Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ## Trihalogenated methanes Bromodichloromethane NTP (National Toxicology Program). 1986a. NTP technical report on the toxicology and carcinogenesis studies of bromodichloromethane (CAS No. 75-27-4) in F344 rats and B6C3F1 mice (gavage studies). Board Draft. NTP, Research Triangle Park, NC. NTP TR 321. U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO83. Chlorodibromomethane NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis studies of chlorodibromomethane (CAS No. 124-48-1) in F/344/N rats and B6C3F1 mice. NTP Tech. Rep. Ser. No. 282, DHHS No. NIH 85-2538. U.S. EPA. 1987. Health Effects Assessment for Trihalogenated Methanes. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. ECAO-CIN-HO83. Vinyl chloride ATSDR (Agency for Toxic Substances and Disease Registry). 1988. First Post-Comment Draft. Revised Toxicological Profile for Vinyl Chloride. U.S. Public Health Service. Public Comment Draft. Feron, V.J., C.f.M. Hendriksen, A.J. Speek et al. 1981. Lifespan oral toxicity study of vinyl chloride in rats. Food Cosmet. Toxicol. 19(3): 317-333. Maltoni, C., G. Lefemine, A. Ciliberti et al. 1980. Vinyl chloride carcinogenicity bioassays (BT project) as an experimental model for risk identification and assessment in environmental and occupational carcinogenesis. Epidemiol. Anim. Epidemiol. Hum: Cas Chlorure Vinyle Monomere, (Reun Club Cancerog Chim), 20th, Meeting Date 1979, p. 11-112. Publ Essent, Paris. France. Maltoni, C., G. Lefemine, A. Ciliberti et al. 1981. Carcinogenicity bioassays of vinyl chloride monomer: A model of risk assessment on an experimental basis. Environ. Health Perspect. 41: 329. U.S. EPA. 1984. Health Effects Assessment for Vinyl Chloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. U.S. EPA. 1985a. Drinking Water Criteria Document for Vinyl Chloride. Office of Drinking Water, Washington, DC. Final Draft. NTIS PB86-118320. U.S. EPA. 1985b. Health and Environmental Effects Profile for Chloroethene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste and Emergency Response, Washington, DC. U.S. Environmental Protection Agency 1,1 many. Room 2404 PM-211-A 401 M Street, S.W. Washington, DG _ 20460