EVALUATION OF THE RBC PROCESS FOR MUNICIPAL WASTEWATER TREATMENT

Municipal Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

EVALUATION OF THE RBC PROCESS FOR MUNICIPAL WASTEWATER TREATMENT

by

David L. Kluge Village of Pewaukee Pewaukee, WI 53072

and

Raymond J. Kipp Clifford J. Crandall Marquette University Milwaukee, Wl 53233

Grant No. S802905

Project Officer

Robert L. Bunch
Wastewater Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268

MUNICIPAL ENVIRONMENTAL RESEARCH LABORTORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268

DISCLAIMER

This report has been reviewed by the Municipal Environmental Research Laboratory, U. S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U. S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

The Environmental Protection Agency was created because of increasing public and government concern about the dangers of pollution to the health and welfare of the American people. Noxious air, foul water, and spoiled land are tragic testimony to the deterioration of our natural environment. The complexity of that environment and the interplay between its components require a concentrated and integrated attack on the problem.

Research and development is that necessary first step in problem solution and it involves defining the problem, measuring its impact, and searching for solutions. The Municipal Environmental Research Laboratory develops new and improved technology and systems for the prevention, treatment, and management of wastewater and solid and hazardous waste pollutant discharges from municipal and community sources, for the preservation and treatment of public drinking water supplies, and to minimize the adverse economic, social, health, and aesthetic effects of pollution. This publication is one of the products of that research; a most vital communications link between the researcher and the user community.

The case history documented herein is intended to provide the sanitary engineering community with design and operating information on the utilization of the rotating biological contactor process for municipal wastewater treatment.

Francis T. Mayo, Director Municipal Environmental Research Laboratory

ABSTRACT

The rotating biological contactor (RBC) process was evaluated for municipal wastewater treatment in a two-phase study conducted at the 1779 m³/day (0.47 mgd) Pewaukee, Wisconsin wastewater treatment plant. The Phase I study demonstrated and evaluated the effectiveness and efficiency of the RBC process and compared its performance with a parallel 1136 m³/day (0.30 mgd) trickling filter. The Phase II study demonstrated and evaluated phosphorus removal and treatment upgrading by mineral addition of different cation species (i.e. alum and ferric chloride) to the RBC process at two different feed points upstream and downstream from the RBC units.

Phase I results indicated that superior BOD and SS effluent values were obtained with the RBC process but that better nitrification was achieved by the trickling filter. Neither attached growth process exhibited significant phosphorus removal efficiencies.

Phase II results indicated that mineral addition improved RBC phosphorus removal but resulted in a deterioration of effluent BOD and SS values, regardless of the location of mineral addition or the cation species employed for phosphorus removal.

This report was submitted in fulfillment of Grant No. S802905 by the Village of Pewaukee under the partial sponsorship of the U.S. Environmental Protection Agency. This report covers the period from 1971 to 1976, and work was completed as of January 31, 1976.

CONTENTS

Forewo	rd	i
Abstra	ct	٧
	s	
	vi	i
	ledgments	
	Introduction	ı
2.		2
3.		4
4.		5
5.		0
6.		5
٥.		5
		ر 4
	Mase 17	.4
Append	ices	
Α.	RBC design data	15
В.	Trickling filter design data	7
С.		18
D.		1
Ε.		4
F.	Phase II organic removal data 6	6
G.		8
н.		0
1.	RBC treatment summary. 1973. 4 & 6	

FIGURES

Nur	nbe	<u>r</u>	Page
	1	Schematic flow diagram: RBC Plant, Village of Pewaukee, Wl	б
	2	Schematic flow diagram : Trickling Filter Plant, Village of Pewaukee, Wl	8
	3	BOD removal efficiency: RBC process (Phase I)	17
	4	Effect of hydraulic loading on BOD removal efficiency: RBC process (Phase I),	18
	5	Effect of alum on effluent total P concentration (feed after RBC units)	29
	6	Effect of alum on effluent ortho-P concentration (feed after RBC units)	30
	7	Effect of alum on effluent total P concentration (feed before RBC units)	31
	8	Effect of alum on effluent ortho-P concentration (feed before RBC units)	32
	9	Effect of iron salt on effluent total P concentration (feed after RBC units)	34
1	10	Effect of iron salt on effluent ortho-P concentration (feed after RBC units)	35
i	11	Effect of iron salt on effluent total P concentration (feed before RBC units)	36
ı	12	Effect of iron salt on effluent ortho-P concentration (feed before RBC units)	37
1	13	BOD removal efficiency: RBC process (Phase II)	38
l	14	TOC removal efficiency: RBC process (Phase II)	40
	15	Variation of effluent nitrate nitrogen : RBC process	41
-	16	Variation of effluent ammonia nitrogen: RBC process	42

TABLES

Numbe	<u>r</u>	Page
ı	Sampling Description, Village of Pewaukee Study, Phase I	11
2	Testing Schedule, Village of Pewaukee Study, Phase I	12
3	Sampling Description, RBC Process, Village of Pewaukee Study, Phase II	13
4	Testing Schedule, Village of Pewaukee Study, Phase II	14
5	Treatment Summary, Village of Pewaukee RBC Plant, Phase I, 1972 .	16
6	Treatment Summary, Village of Pewaukee Trickling Filter, Phase I, 1972	20
7	Phosphorus Removal Summary, Village of Pewaukee, Phase I, 1972	21
8	Nitrogen Summary, Village of Pewaukee RBC Plant, Phase 1	22
9	Nitrogen Summary, Village of Pewaukee Trickling Filter, Phase I .	23
10	Preliminary Plant Performance Data, Village of Pewaukee RBC Plant, Phase II	25
11	Organic Removal Summary, Village of Pewaukee RBC Plant, Phase II, 1975	43
12	Final Effluent Summary, Village of Pewaukee RBC Plant,	44

ACKNOWLEDGMENTS

The cooperation of Frank Koehler and his associates at Autotrol Corporation is gratefully acknowledged. Special assistance was also provided by Darwin Spaal, Village of Pewaukee wastewater treatment plant operator, and John McCarthy and Don Gamble, research assistants at Marquette University, College of Engineering.

SECTION I

INTRODUCTION

The Village of Pewaukee, Wisconsin is the site of a 1779 m³/day (0.47 MGD) wastewater treatment plant incorporating the rotating biological contactor (RBC) process for secondary biological treatment. The Pewaukee facility is the first municipal wastewater treatment plant in the U.S. to utilize the RBC process on a full-scale basis. The RBC portion of the treatment plant was constructed and evaluated with Environmental Protection Agency (EPA) demonstration grant funds. The demonstration project was divided into two phases, as reported below. This report presents the results of both phases of the study.

PHASE I

The Phase I study commenced on December I, 1971, and continued for a one-year period. The study was conducted jointly by the Village of Pewaukee and Autotrol Corporation.* The objectives of this portion of the study were to demonstrate and evaluate the effectiveness and efficiency of the RBC process for treating municipal wastewater on a plant scale basis and to compare its performance with the existing trickling filter. Operating variables investigated included rotational disc velocity, hydraulic loading and wastewater temperature.

PHASE II

The Phase II study commenced on September 23, 1974, and continued for approximately one and one-half years. The study was conducted jointly by the Village of Pewaukee and the Marquette University Engineering Research Foundation. The purpose of this portion of the study was two-fold, as follows:

- 1. To demonstrate and evaluate phosphorus removal by mineral addition to the RBC process.
- 2. To demonstrate and evaluate overall treatment upgrading by mineral addition to the RBC process.

Both aluminum sulfate and ferric chloride were evaluated at two different injection points upstream and downstream from the RBC units. The objectives of the study were to consistently produce an effluent phosphorus concentration below 1.5 mg/l (total P) and biochemical oxygen demand (BOD) and suspended solids (SS) levels below 15 mg/l.

^{*}Autotrol Corporation, 5888 North Glen Park Road, Glendale, WI 53209

CONCLUSIONS

Based on the results observed during this study, the following conclusions are presented.

PHASE I

- 1. The RBC process produced an effluent of satisfactory BOD and SS quality, averaging 20 and 15 mg/l, respectively.
- 2. The RBC process achieved an average BOD removal efficiency of 83 percent.
- 3. The trickling filter process produced inconsistent effluent BOD and SS concentrations, averaging 38 and 50 mg/l, respectively.
- 4. RBC process performance was not appreciably affected by variations in raw wastewater temperature between 3.9°C (39°F) and 19.4°C (67°F).
- 5. Trickling filter process performance was affected by raw wastewater temperature between 3.9°C and 19.4°C, with process deterioration at the lower temperatures.
- 6. BOD removal efficiency improved with increasing influent BOD concentration applied to the RBC process.
- 7. Both attached growth processes exhibited p∞r and inconsistent phosphorus removal efficiencies, varying from a 21 percent average for the RBC process to a 27 percent average removal for the trickling filter.
- 8. The trickling filter consistently achieved significantly better nitrification than the RBC process.

PHASE 11

- The addition of mineral salts to the RBC process resulted in a deterioration of effluent BOD and SS quality, averaging 35 and 56 mg/l, respectively.
- 2. The addition of mineral salts to the RBC process resulted in a decreased effluent phosphorus concentration averaging 3.0 mg/l, but the desired project objective of 1.5 mg/l total P was not achieved.

- 3. RBC process efficiency, as measured by BOD removal, was considerably lower than Phase I performance (i.e. 63 percent compared to 83 percent); this observation was verified by COD and TOC measurements.
- 4. Neither mineral salt studied provided a significant advantage over the other relative to phosphorus removal.

RECOMMENDATIONS

Based on the results of this study, the following recommendations are made.

- I. Mineral salt addition after the RBC process is advised for phosphorus removal, with close control over any side streams such as digester supernatant that may adversely affect the process. Either iron or aluminum salts may be utilized.
- 2. Filtration or polymer addition to enhance removal of precipitated phosphorus should be investigated as a means to achieve desired effluent phosphorus levels if mineral saits are added.

PLANT DESCRIPTION

GENERAL

Schematic flow diagrams of the Pewaukee wastewater treatment plant are presented in Figures I and 2. Raw wastewater enters the plant through a diversion manhole which divides the flow between the trickling filter plant (II36 $\rm m^3/day$ design flow) and the RBC plant (I779 $\rm m^3/day$ design flow).

RBC Plant (Figure 1)

Raw wastewater enters the RBC plant through a 15.2 cm (6 in.) Parshall flume and a comminutor into a wet well. Wastewater is pumped by three 25.2 l/sec (400 gpm) pumps to the primary portion of the combined primary and secondary clarifier. A II.0 m (36 ft.) diameter by 2.1 m (7 ft.) deep inner section serves as the secondary clarifier and a 2.0 m (6.5 ft.) wide by 2.1 m (7 ft.) deep outer annular ring serves as the primary clarifier. A single rotating bridge with two scraper mechanisms collects settled solids from both the primary and secondary sections. The primary clarifier is designed for a surface overflow rate of 22.6 m 3 /day/m 2 (554 gpd/ft 2) and the secondary clarifier is designed for a surface overflow rate of 20.5 m 3 /day/m 2 (503 gpd/ft 2).

Primary effluent flows by gravity to the RBC units where the flow stream is divided into two parallel paths which pass through four stages of treatment. Each stream is distributed along the length of the first shaft of discs by a V-notch weir. Mixed liquor in each stage of treatment flows over a flat-edge weir to the subsequent adjacent stage. Total head loss through the four stages of treatment is approximately 10.2 cm (4 in.).

The effluents from the two parallel paths of treatment are combined after the RBC units and flow by gravity to the secondary portion of the combined primary and secondary clarifiers. Effluent from the secondary clarifier is chlorinated prior to discharge into the Pewaukee River.

Sludge is drawn from the secondary clarifier by an automated valve and flows by gravity to the wet well of the plant. A recirculation pump is available to recycle secondary sludge to the RBC units. Raw wastewater pumps lift the mixture of raw wastewater and secondary sludge to the primary clarifier where settling occurs, and the combined primary and secondary sludge is pumped on an intermittent basis to the aerobic digester.

Figure I. Schematic flow diagram: RBC Plant, Village of Pewaukee, WI.

The aerobic digester consists of a 9.8 m (32 ft.) diameter by 3.7 m (12 ft.) liquid depth single stage covered unit equipped with a 14.9 kw (20 HP) floating surface aerator. The unit is designed for a liquid detention time of 28.5 days. Digester supernatant is drawn off intermittently by means of a telescopic valve and flows by gravity to the raw wastewater wetwell.

Digested sludge is dewatered on sand drying beds prior to disposal by landfill. A drawoff line is available for alternate hauling of wet sludge.

Trickling Filter Plant (Figure 2)

Raw wastewater entering the trickling filter plant is metered by a 15.2 cm (6 in.) Parshall flume prior to being pumped to the primary clarifier unit by three 25.2 l/sec (400 gpm) wastewater pumps. The primary clarifier consists of a rectangular unit 13.1 m (43 ft.) long by 3.7 m (12 ft.) wide by 2.8 m (9.25 ft.) deep and is designed for a surface overflow rate of $23.6 \text{ m}^3/\text{day/m}^2$ (580 gpd/ft²).

Primary effluent flows by gravity to a 21.3 m (70 ft.) diameter by 1.7 m (5.7 ft.) deep stone media filter equipped with a fiberglass cover. Effluent from the trickling filter is settled in a rectangular secondary clarifier identical to the primary clarifier and discharged to the Pewaukee River.

Secondary sludge is returned to the raw wastewater wet well. Primary sludge is pumped to a single stage anaerobic digestor. Digestor supernatant is returned to the raw wastewater wet well.

RBC UNITS

Physical Description

The RBC units are enclosed in a 15.2 m (50 ft.) by $18.3 \, \text{m}$ (60 ft.) building which protects the discs from potential damage due to wind, precipitation, vandalism, or freezing temperatures.

A total of eight shafts, each 5.5 m (18 ft.) long, are located in the RBC building. Mounted on each shaft are 150 polystyrene discs spaced at 3.4 cm (1.33 in.) centers. The discs, each 3.0 m (10 ft.) in diameter by 1.3 cm (0.5 in.) thick provide 14.1 m 2 (152 ft 2) of surface area per disc for biological growth, for a total surface area of 2118 m 2 (22,800 ft 2) per shaft.

The shafts are mounted in semicircular concrete tanks, which conform to the shape of the discs, and are arranged in two parallel paths of four shafts each. Wastewater flow is perpendicular to the shafts and each shaft provides an individual biological treatment stage.

Each shaft is driven independently by a drive system consisting of a 1.1 kw (1.5 HP) motor, helical gear reducer, and chain and sprocket final drive capable of discs speed variations between 0.75 to 2.0 rpm.

Figure 2. Schematic flow diagram: Trickling Filter Plant, Village of Pewaukee, WI.

Process Description

The RBC process is classified as an attached growth biological reactor. Initially, slow rotation of the partially submerged (i.e. approximately one-half of the disc diameter) discs in the wastewater results in the gradual growth of an attached microbial culture, reaching a thickness of 2 to 4 mm after approximately I week of operation. Continued rotation of the shaft results in oxidation of organic matter in the applied wastewater. Rotation also provides a low energy means of aeration by exposing a thin film of wastewater on the disc surfaces to the air.

Excess biomass generated by organic carbon metabolism of the attached culture is continuously sloughed off by the shearing forces exerted as the discs are rotated through the wastewater. Mixing provided by the rotating shafts keeps the sloughed biomass in suspension until this mixed liquor stream is processed by subsequent secondary clarification.

DESIGN DATA

A summary of the detailed design data for the RBC plant is presented in Appendix A. The plant is designed for an overall BOD removal of 90 percent, with the primary clarifier expected to remove 30 percent of the applied BOD and the RBC process expected to remove 86 percent of the remaining BOD. Expected effluent quality is approximately 23 mg/l of BOD. An overall suspended solids removal of 95 percent is anticipated, resulting in an average effluent SS concentration of 18 mg/l.

Design data for the trickling filter plant are presented in Appendix B.

TESTING PROGRAM

PHASE I

The Phase I sampling points are indicated on Table I. Composite samples were obtained daily from Sunday through Thursday of each week at the frequencies indicated in Table I. Raw wastewater and biological process effluents were manually composited by obtaining and mixing three daily grab samples obtained in the morning, noon and afternoon of each day. All samples were refrigerated prior to analysis.

The Phase I testing schedule is presented in Table 2. The indicated analytical techniques were performed in accordance with the 13th Edition of Standard Methods.

PHASE II

Phase II sampling points are indicated on Figure I and described in Table 3. Automatic composite samples were obtained daily from Sunday through Thursday of each week. Raw wastewater samples were composited proportional to flow by means of a bucket-type sampler located in the raw influent channel prior to the point where the flow is split between the two plants. The bucket sampler was calibrated to collect one sample for every 37.9 m³ (10,000 gallons) of wastewater entering the plant. Primary and final effluent samples were composited on a timed basis, with a sample collected for compositing every 15 minutes. A single grab sample of undigested primary sludge was obtained daily from Monday through Friday, timed to coincide with sludge withdrawal from the primary clarifier to the aerobic digester.

All analyses were performed at the Marquette University Engineering Research Foundation Environmental Laboratory with the exception of those tests which were conveniently measured at the plant (i.e. D.O., temperature and pH). The Phase II testing schedule is presented in Table 4. All analyses were performed in accordance with the appropriate sections of the I3th Edition of Standard Methods.

TABLE I. SAMPLING DESCRIPTION, VILLAGE OF PEWAUKEE STUDY, PHASE I

SAMPLE IDENTIFICATION									
	Raw	Primary	Biological	Final					
	Wastewater	Effluent	Process Effluent	Effluent					
Sampling	Automatic	Automatic	Manual	Automatic					
Method	Composite	Composite	Composite	Composite					
Sampling	l Hour	l Hour	3 Times	l Hour					
Frequency	Intervals	Intervals	Daily	Intervals					
RBC Sampling Point	Diversion Manhole	RBC Influent Trough	RBC Effluent Trough	Secondary Clarifier Outfall Line					
Trickling Filter Sampling Point	Diversion Manhole	Primary Clarifier Effluent Trough	Trickling Filter Effluent Trough	Secondary Clarifier Outfall Line					

TABLE 2. TESTING SCHEDULE, VILLAGE OF PEWAUKEE STUDY, PHASE I

	A	NALYTICAL FREG	QUENCY, PER WEE	.K
ANALYSES	Raw Wastewater	Primary Effluent	Biological Process Effluent	Final Effluent
BOD ₅ (1) BOD ₅ , Carbonaceous (2) COD (3) Cl ₂ Demand TSS TVSS TKN NH ₃ -N NO ₂ & NO ₃ -N Total P Total Filtrable P Ortho P Temp. pH Setteable Solids (volumetric)	5 0-2 5 - 2 1 2 2-5 1-2 2 2 2 2 7 5-7 7	5 0-2 5 - 2 1 2 2-5 1-2 2 2 2 7 5-7 7	2 0-2 - - 2 2-5 -2 - - 7 5-7	5 0-2 - 0-1 2 1 2 2-5 1-2 2 2 2 7 5-7 7
D.O. (probe)	5	5	5	5

NOTE: (1) 0.5 mg/l allylthiourea added.

(3) Trickling filter effluent only.

⁽²⁾ June, 1972 through December, 1972 only.

13

TABLE 3. SAMPLING DESCRIPTION, RBC PROCESS, VILLAGE OF PEWAUKEE STUDY, PHASE II

	SAMI	PLEIDEN	TIFICATIO	N C
	Raw	Primary	Final	Undigested
	Wastewater	Effluent	Effluent	Sludge
Sampling	Automatic	Automatic	Automatic	Grab
Method	Composite	Composite	Composite	Sample
Sampling	l/2 Hour	1/2 Hour	1/2 Hour	Once
Frequency	Intervals	Intervals	Intervals	Daily
f Sampling Point	Diversion Manhole (I)	RBC Influent Trough (2)	Secondary Clarifier Outfall Line (3)	Sludge Pump Discharge Line (4)

^{*} Numbers in parentheses refer to sampling point location shown in Figure 1.

TABLE 4. TESTING SCHEDULE, VILLAGE OF PEWAUKEE STUDY, PHASE II

	ANA	ALYTICAL FREQU	JENCY, PER WEE	K
ANALYSES	Raw Wastewater	Primary Effluent	Final Effluent	Undigested Sludge
BOD ₅	3	3	3	_
COD	2	2	2	-
TOC	5		5	_
TSS	5	5 5	5	-
TS	-	-		5
VS	-	-	-	5
Total P	5	5	5	•
Soluble P	_	1	5	-
(1) TKN	5	5	5	-
(1) NH ₃ -N	5	5	5	-
N0 ₃ -N	-	-	5	-
Alkalinity	2	-	2	-
рН	7	-	7	-
Temperature	7	-	7	-
(2) D.O.		(See N	ote (2))	
(3) AI	-		2	,
(3) Fe	-	-	2	-

NOTES: (I) June 1975 through December 1975 only.

- (2) Monitored 5 days per week at Stages I & 4 of RBC unit.(3) Monitored only when added for P removal.

TEST RESULTS

PHASE I

Phase I data are summarized in Tables 5 to 9, Figures 3 and 4, and Appendices C and D. A brief discussion of the data classified according to significant categories is presented below.

BOD and Suspended Solids

RBC Process--

Summary of operation — Table 5 summarizes monthly RBC process operation during Phase I of the study. Effluent BOD and suspended solids averaged 20 and 15 mg/l, respectively, which are well within expected conventional biological wastewater treatment levels of 30 mg/l for both variables. Further examination of the data indicates that average monthly BOD and SS values were both consistently below 30 mg/l and that plant performance was not significantly effected by wastewater temperature. The annual average flow of I154 m 3 /day (305,000 gpd) was well within the average design flow of I779 m 3 /day (470,000 gpd), which was not exceeded during any month on an average basis.

The RBC unit achieved an average BOD removal of 83 percent for the one year period studied. Total plant BOD removal also averaged 83 percent during this period.

Effect of BOD concentration on process efficiency -- Figure 3 presents the effect of influent BOD concentration (i.e. primary effluent BOD) on RBC process BOD removal, with wastewater temperature indicated as a parameter. In order to cover temperature extremes and investigate what effect, if any, that wastewater temperature had on process efficiency, data were selected for the two warmest months (i.e. August and September) and the two coldest months (i.e. February and March). Wastewater temperatures averaged 18.3 and 17.9°C in August and September and 8.3 and 8.2°C in February and March.

The data indicate more efficient BOD removals at higher influent BOD concentrations. The data do not indicate a significant temperature effect in the wastewater temperature range encountered.

Effect of hydraulic loading on process efficiency -- The effect of hydraulic loading on RBC process efficiency is presented in Figure 4.

6

TABLE 5. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE RBC PLANT, PHASE 1, 1972

Month	Raw Water Temp.°C	Avg. Flow m ³ /day	B 0 Raw	D mg/ Primary	i Final	Perc BOD Re Total		S . Raw	S . m o] / Final	Hydraulic Loading m ³ /day/1000 m ²	Organic Loading *
JAN.	9.2	723	167	150	24	86	84	163	79	17	42.8	8.20
FEB.	8.3	715	146	147	16	89	89	142	83	13	42.4	6.20
MAR.	8.2	1083	145	129	27	81	79	143	103	20	64.0	8.25
APR.	9.2	1098	105	100	22	79	78	100	91	18	64.8	6.49
MAY	11.8	1313	110	100	17	85	83	116	77	15	77.4	7.76
JUNE	15.7	852	126	110	- 14	89	87	107	78	11	50.1	5.51
JULY	17.3	999	98	110	14	86	87	Ш	79	14	59.1	6.49
AUG.	18.3	1060	80	108	19	76	82	95	134	16	62.8	6.73
SEPT.	17.9	1643	94	158	23	75	85	107	252	21	97.0	15.32
OCT.	15.7	1298	95	90	18	81	80	70	75	14	76.6	6.88
NOV.	13.0	1317	128	109	23	82	79	108	99	16	77.8	8.44
DEC.	10.9	1749	181	122	21	88	83				103.1	13.52
AVG.	12.9	1154	124	120	20	83	83	115	105	15	62.8	8.15

NOTE: *Organic loading expressed as kg primary BOD/day per 1000 sq. m. of RBC surface area (i.e. organic loading to RBC units).

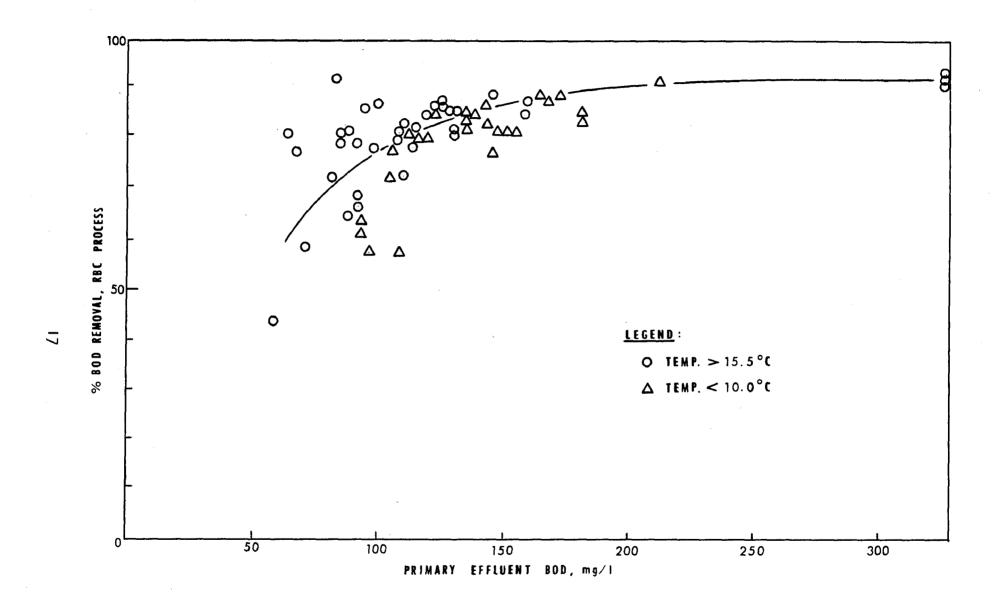


Figure 3. BOD removal efficiency: RBC process (Phase I).

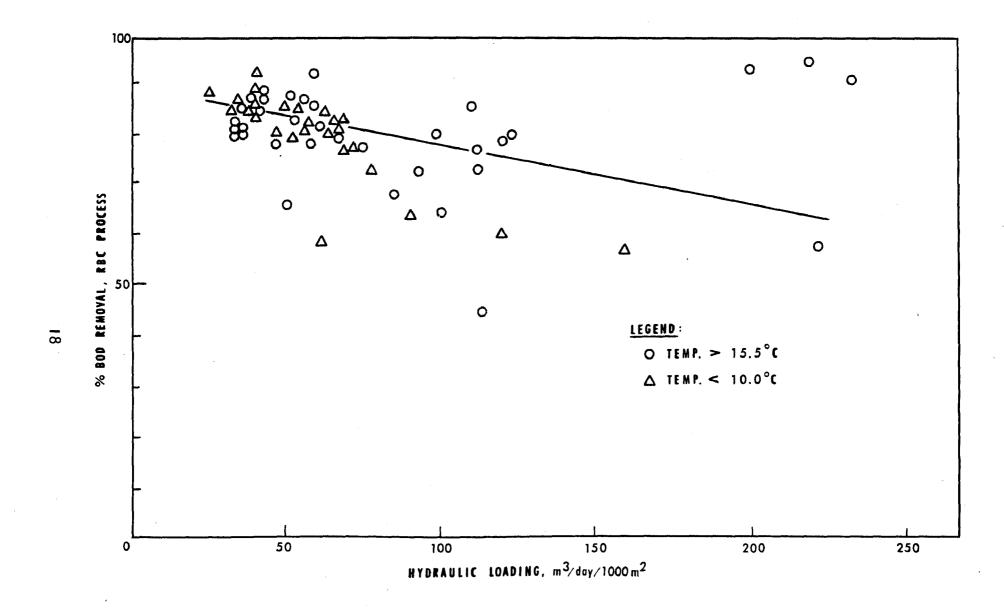


Figure 4. Effect of hydraulic loading on BOD removal efficiency: RBC process (Phase I).

Wastewater temperature is again represented as a parameter, using the same data selected for presentation in Figure 3. The data indicate a decrease in RBC process efficiency at increased hydraulic loading (or decreased retention time), which is consistent with RBC process theory.

Trickling Filter Process--

Summary of operation — Table 6 summarizes monthly trickling filter process operation during Phase I of the study. Effluent BOD and suspended solids values averaged 38 and 50 mg/l, respectively, which were considerably higher than the RBC process effluent levels. Further examination of the data indicates a relationship between process performance and wastewater temperature. The highest process BOD removals of 94 and 80 percent were achieved during July and August when the wastewater temperature averaged 17.3 and 18.3°C, respectively, compared to the lowest process BOD removals of 58 percent during January and February when the wastewater temperature averaged 9.2 and 8.3°C, respectively. Total plant BOD removal averaged 71 percent and trickling filter process removal averaged 70 percent during Phase 1.

The annual average flow of $768 \text{ m}^3/\text{day}$ (203,000 gpd) was less than the average design flow of 1136 m $^3/\text{day}$ (300,000 gpd). During three months of the Phase I study, the average design flow was equalled or exceeded (i.e. August, September and October).

Hydraulic loading to the trickling filter averaged $2.15~\text{m}^3/\text{day/m}^2$ (2.30 mgad) and organic loading averaged 158 g BOD/day per m³ (9.86 lbs. BOD per 1000 cu. ft. per day). Both of these loadings are characteristic of a standard or low-rate trickling filter. A BOD removal efficiency of 85 to 90 percent is reasonable for this type of filter. However, as indicated by the data in Table 6, this range of removal was achieved only once on a monthly basis during the one year period studied.

Phosphorus

RBC Process--

A detailed summary of Phase I phosphorus data for the RBC plant is presented in Appendix C. Raw wastewater total phosphorus values averaged 8.1 mg/l during the 12 month interval. In comparison, primary effluent total phosphorus values averaged 8.6 mg/l during that same period, indicating the possible influence of aerobic digester supernatant on phosphorus levels. Final effluent total phosphorus values averaged 6.9 mg/l, of which 6.5 mg/l were filtrable.

The daily percent removals varied considerably, as indicated by the data in Appendix C. Annual total phosphorus removals averaged 14.9 percent for the complete plant and 20.6 percent for the RBC process.

Trickling Filter Process--

Phosphorus data for Phase I trickling filter plant operation are presented in Appendix D. Raw wastewater phosphorus values are the same reported for the RBC plant. Similar to the RBC plant, trickling filter primary effluent total phosphorus values increased over the raw wastewater values, in this

20

TABLE 6. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE TRICKLING FILTER, PHASE 1, 1972

Raw Water Temp. °C	Avg. Flow m ³ /day					moval				Hydraulic Loading m ³ /day/m ²	Organic Loading *
9.2	772	167	197	82	51	58	163	170	81	2.16	245
8.3	537	146	154	64	56	58	142	196	69	1.51	133
8.2	753	145	146	52	64	64	143	146	60	2.10	177
9.2	749	105	122	37	65	70	100	163	54	2.09	147
11.8	575	110	97	30	73	69	116	157	51	1.61	90
15.7	689	126	130	38	70	71	107	177	63	1.93	144
17.3	572	98	343	20	80	94	111	778	31	1.60	315
18.3	1154	80	91	18	78	80	95	138	32	3.23	169
17.9	1268	94	61	17	82	72	107	69	33	3.54	132
15.7	1136	95	84	23	76	73	70	97	34	3.18	153
13.0	462	128	68	25	80	63	108	66	40	1.29	50
10.9	560	181	155	45	75	71				1.57	140
12.9	768	124	137	38	71	70	115	196	50	2.15	158
	Water Temp. °C 9.2 8.3 8.2 9.2 11.8 15.7 17.3 18.3 17.9 15.7 13.0 10.9	Water Temp. °C m³/day 9.2 772 8.3 537 8.2 753 9.2 749 11.8 575 15.7 689 17.3 572 18.3 1154 17.9 1268 15.7 136 13.0 462 10.9 560	Water Temp. C m3/day Raw 9.2 772 167 8.3 537 146 8.2 753 145 9.2 749 105 11.8 575 110 15.7 689 126 17.3 572 98 18.3 1154 80 17.9 1268 94 15.7 1136 95 13.0 462 128 10.9 560 181	Water Temp. °C m³/day Raw Primary 9.2 772 167 197 8.3 537 146 154 8.2 753 145 146 9.2 749 105 122 11.8 575 110 97 15.7 689 126 130 17.3 572 98 343 18.3 1154 80 91 17.9 1268 94 61 15.7 1136 95 84 13.0 462 128 68 10.9 560 181 155	Water Temp. Flow m³/day B O D m g / I land mary Final 9.2 772 167 197 82 8.3 537 146 154 64 8.2 753 145 146 52 9.2 749 105 122 37 11.8 575 110 97 30 15.7 689 126 130 38 17.3 572 98 343 20 18.3 1154 80 91 18 17.9 1268 94 61 17 15.7 1136 95 84 23 13.0 462 128 68 25 10.9 560 181 155 45	Water Temp. C m3/day Raw Primary Final Total 9.2 772 167 197 82 51 8.3 537 146 154 64 56 8.2 753 145 146 52 64 9.2 749 105 122 37 65 11.8 575 110 97 30 73 15.7 689 126 130 38 70 17.3 572 98 343 20 80 18.3 1154 80 91 18 78 17.9 1268 94 61 17 82 15.7 1136 95 84 23 76 13.0 462 128 68 25 80 10.9 560 181 155 45 75	Water Temp. Flow m3/day B O D m g / l Total BOD Removal Total BOD Removal Total BOD Removal Total T.F. 9.2 772 167 197 82 51 58 8.3 537 146 154 64 56 58 8.2 753 145 146 52 64 64 9.2 749 105 122 37 65 70 11.8 575 110 97 30 73 69 15.7 689 126 130 38 70 71 17.3 572 98 343 20 80 94 18.3 1154 80 91 18 78 80 17.9 1268 94 61 17 82 72 15.7 1136 95 84 23 76 73 13.0 462 128 68 25 80 63	Water Temp. Flow m3/day B O D m g / I Total BOD Removal Total S. Raw 9.2 772 167 197 82 51 58 163 8.3 537 146 154 64 56 58 142 8.2 753 145 146 52 64 64 143 9.2 749 105 122 37 65 70 100 11.8 575 110 97 30 73 69 116 15.7 689 126 130 38 70 71 107 17.3 572 98 343 20 80 94 111 18.3 1154 80 91 18 78 80 95 17.9 1268 94 61 17 82 72 107 15.7 1136 95 84 23 76 73 70 13.0	Water Temp. C m3/day Raw Primary Final BOD Removal S . S . m g Primary 9.2 772 167 197 82 51 58 163 170 8.3 537 146 154 64 56 58 142 196 8.2 753 145 146 52 64 64 143 146 9.2 749 105 122 37 65 70 100 163 11.8 575 110 97 30 73 69 116 157 15.7 689 126 130 38 70 71 107 177 17.3 572 98 343 20 80 94 111 778 18.3 1154 80 91 18 78 80 95 138 17.9 1268 94 61 17 82 72 107 69 15.7 1136 95 84 23 76 73 70 97 13.0 462 128 68 25 80 63 108 66 10.9 560 181 155 45 75 71	Water Temp. Flow Temp. B O D m g / I name BOD Removal Total S. S. m g / I name S. S. m g / I name 9.2 772 167 197 82 51 58 163 170 81 8.3 537 146 154 64 56 58 142 196 69 8.2 753 145 146 52 64 64 143 146 60 9.2 749 105 122 37 65 70 100 163 54 11.8 575 110 97 30 73 69 116 157 51 15.7 689 126 130 38 70 71 107 177 63 17.3 572 98 343 20 80 94 111 778 31 18.3 1154 80 91 18 78 80 95 138 32 17.9	Water Temp. ac Flow m3/day B 0 D m g / l mary BOD Removal Total T.F. S. S. m g / l m3/day Loading m3/day/m2 9.2 772 167 197 82 51 58 163 170 81 2.16 8.3 537 146 154 64 56 58 142 196 69 1.51 8.2 753 145 146 52 64 64 143 146 60 2.10 9.2 749 105 122 37 65 70 100 163 54 2.09 11.8 575 110 97 30 73 69 116 157 51 1.61 15.7 689 126 130 38 70 71 107 177 63 1.93 17.3 572 98 343 20 80 94 111 778 31 1.60 18.3 1154 80

NOTE: *Organic loading expressed as g primary BOD/day per m^3 of trickling filter volume (i.e. $g/day/m^3$).

TABLE 7. PHOSPHORUS REMOVAL SUMMARY, VILLAGE OF PEWAUKEE, PHASE I, 1972

	Description	RBC PL Annual Avg. Conc. mg/l	ANT Range mg/l	TRICKLING Annual Avg. Conc. mg/l	
1.	Raw Wastewater				
	Total P Filt. P Ortho P	8.1 6.6 3.4	3.0-18.4 1.0-13.9 1.2- 8.0	8.1 6.6 3.4	3.0-18.4 1.0-13.9 1.2- 8.0
2.	Primary Effluent				
	Total P Filt. P Ortho P	8.6 6.7 4.6	4.6-12.2 2.0-10.1 1.2- 7.3	10.4 6.8 4.8	3.5-66.0 2.4-18.0 1.1-16.0
3.	Final Effluent				
	Total P Filt. P Ortho P	6.9 6.5 5.1	2.4-10.3 2.1- 9.2 1.3- 7.4	7.6 6.5 4.8	3.3-11.2 2.6- 9.8 1.9- 7.9
	Avg. Per Cent Removal (Total P)	14.9 (ove 20.6 (RBC		5.8 (over 26.6 (T.F.	

case averaging 10.4 mg/l. Although this value is considerably higher than the corresponding RBC primary effluent total phosphorus value, the filtrable phosphorus values are approximately the same, averaging 6.8 mg/l for the trickling filter and 6.7 mg/l for the RBC plant. The influence of anaerobic digester supernatant on nonfiltrable phosphorus levels is indicated by the data.

Final effluent total phosphorus values averaged 7.6 mg/l, of which 6.5 mg/l were filtrable. Annual total phosphorus removals averaged only 5.8 percent for the complete plant, but a more acceptable removal of 26.6 percent was achieved by the trickling filter process.

Process Comparison--

A comparison of phosphorus removal performance for the RBC and trickling filter processes is presented in Table 7. Of significance is the fact that both processes exhibited comparable, though poor, performance and resulted in the same average filtrable effluent phosphorus concentration (i.e. 6.5 mg/l). Thus, neither attached growth process appears to offer an advantage for phosphorus removal.

Nitrogen

RBC Process--

A summary of nitrogen data for the RBC plant during Phase I is presented in Table 8. Raw wastewater total Kjeldahl nitrogen (TKN) averaged 27.3 mg/l

TABLE 8. NITROGEN SUMMARY, VILLAGE OF PEWAUKEE RBC PLANT, PHASE I

		MON	THLY	AVE	RAGE	S , m	g / I		- · · · · · · · · · · · · · · · · · · ·
Month	Raw TKN	Wastewa NHz-N		Prima TKN	ary Eff NH ₃ -N		Fina TKN	al Effi NH3-N	
	1101	14113-14		1101	14113-14	1103-11	1100	NH3-N	N03-N
Dec71	30.2	15.4	1.9	21.8	12.6	0.7	19.3	13.0	0.8
Jan72	32.9	15.8	1.1	26.9	17.6	0.9	21.6	16.4	1.3
Feb72	30.2	15.4	8.0	30.3	17.5	1.0	17.7	13.1	4.9
Mar72	23.6	13.7	0.8	25.4	12.3	0.6	13.1	8.0	3.1
Apr72	21.5	12.9	0.7	23.3	13.5	0.6	12.4	8.8	3.9
May -72	22.5	14.0	0.8	20.0	12.1	0.7	8.6	5.6	4.9
June -72	22.5	14.8	0.7	21.4	14.1	0.6	9.5	7.8	3.9
July -72	15.3	10.5	0.2	20.7	13.3	0.3	8.2	7.3	3.6
Aug72	19.7	11.7	0.6	24.9	13.5	2.0	9.5	6.5	5.2
Sept72	21.2	10.7	1.7	21.9	9.5	0.5	11.9	7.1	2.6
0ct72	18.2	11.0	1.3	17.9	10.5	0.8	8.1	6.5	2.9
Nov72	26.3	10.7	2.2	22.1	11.7	0.7	13.6	9.0	2.1
Dec72	43.6	15.4	1.8	25.6	15.6	0.6	16.9	13.5	1.3
Avg.	27.3	14.3	1.2	25.2	14.5	0.8	14.2	10.2	3.4

during that period, which is within the range of values considered typical for domestic wastewater. Ammonia nitrogen accounts for approximately one-half of the raw wastewater Kjeldahl nitrogen, averaging 14.3 mg/l.

Insignificant changes occurred during primary clarification, as indicated by the same approximate average nitrogen values for the primary effluent and the raw wastewater. Final effluent ammonia nitrogen and nitrate nitrogen values averaged 10.2 and 3.4 mg/l, indicating that some nitrification took place.

Trickling Filter Process--

A summary of nitrogen data for the trickling filter plant during Phase I is presented in Table 9. Raw wastewater data are identical to those presented in Table 8.

TABLE 9. NITROGEN SUMMARY, VILLAGE OF PEWAUKEE TRICKLING FILTER, PHASE I

		мом	THLY	AVE	RAGE	S , m	g / I		
Month	Raw TKN	Wastew NH ₃ -N		Prim TKN	ary Eff NH ₃ -N	luent NO3-N		I Efflu NH ₃ -N	
Dec71	30.2	15.4	1.9	34.4	20.6	1.1	18.0	10.3	5.5
Jan. - 72	32.9	15.8	1.1	28.2	14.2	2.2	16.4	9.4	9.7
Feb. - 72	30.2	15.4	0.8	32.7	12.7	0.9	16.9	8.4	8.3
Mar72	23.6	13.7	0.8	24.5	10.2	0.8	10.9	4.5	7.5
Apr72	21.5	12.9	0.7	26.2	12.1	0.6	9.1	4.9	6.9
May -72	22.5	14.0	0.8	18.4	8.5	1.9	7.3	2.4	9.0
June -72	22.5	14.8	0.7	23.7	13.4	1.4	11.7	5.7	6.1
July -72	15.3	10.5	0.2	19.8	8.3	0.4	10.5	5.0	6.7
Aug72	19.7	11.7	0.6	18.7	9.4	0.6	7.7	4.4	5.9
Sept72	21.2	10.7	1.7	13.7	7.3	1.4	5.3	2.4	7.5
Oct72	18.2	11.0	1.3	16.0	9.9	1.2	5.8	3.4	7.7
Nov72	26.3	10.7	2.2	17.9	8.6	2.6	4.7	1.6	10.9
Dec72	43.6	15.4	1.8		13.8		10.6	8.4	9.3
	27.3	14.3	1.2	24.9	12.4	1.4	11.2	5.9	8.4

The effect of primary clarification on nitrogen concentrations is similar to that observed previously for the RBC plant, with generally insignificant changes occurring. Final effluent ammonia nitrogen and nitrate nitrogen values averaged 5.9 and 8.4 mg/l, indicating that significant nitrification occurred.

Process Comparison--

A comparison of nitrification performance for the RBC and trickling filter processes indicates that the trickling filter was consistently more effective in achieving nitrification.

Preliminary Study

Before chemical feed to the RBC units was initiated, a preliminary study was conducted to characterize diurnal variations of the raw wastewater and provide background information on treatment plant performance. The main purposes of this study were to determine the most appropriate sampling techniques and estimate the required chemical feed rates.

Table 10 summarizes preliminary plant performance data for eight selected variables over a period of thirteen consecutive days. Raw influent, primary effluent and final effluent samples were composited over a 24-hour period and the indicated analyses performed on the composites. During this period the influent wastewater averaged 9.2 mg/l total P, the primary effluent averaged 6.2 mg/l and the final effluent averaged 5.9 mg/l. Thus, an average total P removal of approximately 33 percent was achieved by primary clarification, but an average removal of only 6 percent was achieved by the RBC units.

Relatively high average effluent BOD and SS concentrations of 60 mg/l and 43 mg/l, respectively, were observed during this period. BOD removal by the RBC process averaged approximately 58 percent.

Diurnal flow variations were obtained by calculating average hourly flows from continuous flow records; the calculated flows were compared to flow meter totalized flows with good agreement. The flow pattern represented was typical of normal domestic wastewater loadings, with the peak flow occurring during the day and early evening and minimum flow occurring from midnight to 6 AM.

The diurnal variations of COD and SS were also investigated. A pattern similar to that of flow variation was obtained for both variables, with lower concentrations in the early morning compared to higher daytime levels.

The diurnal variation of influent phosphorus was determined for 4 selected days. Significant variation was shown in the daytime levels but a uniformly low loading was evident during the late evening and early morning hours. These data served as the basis for characterizing the phosphorus loading to the plant and subsequent selection of chemical feed rates. The estimated average total phosphorus loading levels were 0.9 kg/hr (2.0 lbs/hr) between 9 AM and 5 PM, 0.5 kg/hr (1.0 lbs/hr) between 5 PM and midnight, 0.1 kg/hr (0.3 lbs/hr) between midnight and 7 AM, and 0.5 kg/hr (1.0 lbs/hr) between 7 and 9 AM.

Operating Conditions

The operating conditions under which mineral addition was to be evaluated are summarized below:

a. Aluminum addition after the RBC units but prior to the secondary clarifier (case 1).

	Analyses of 24 hour Composite Samples					
	SEPTEMBER, 1974					
	23	24	25	26	29	30
pH:						
Raw	7.4	7.5	7.2	7.4	7.3	7.3
Primary	7.3	7.4	7.1	7.5	7.4	7.4
Final	8.0	7.7	7.2	7.5	7.3	7.4
B.O.D. mg/I:						
Primary	184	127	193	72	86	80
Final	62	65	61	31	42	45
Total Phosphorous mg/l:						
Raw .	7.5	9.0	9.0	7.5	11.0	6.8
Primary	8.0	7.2	6.2	5.5	4.6	6.0
Final	7.0	9.5	6.2	6.0	4.7	6.0
Susp. Solids mg/l:	•					
Primary	92	76	87	70	54	52
Final	74	. 78	59	36	18	31
Aluminum mg/l:						
Raw	0.036	0.076	0.076	0.036	0.044	0.050
Primary	0.036	0.006	0.006	0.016	0.024	0.024
Final	0.010	0.012	0.006	0.006	0.006	0.060
<pre>Iron mg/I:</pre>						
Raw	3.1	12.5	9.2	7.2	8.7	5.3
Primary Final	2.0	. 0.4	0.8 0.6	0.6	1.2 0.6	1.1
	2.5	0.4	0.0	0.3	0.0	0.8
Nitrate N mg/I:						<u>.</u>
Final	1.90	0.65	0.60	0.45	0.50	0.45
Ammonia N mg/l:						
Final				13.3		13.5
Flow m ³ /day	651	654	818	783	780	1014

N 3
~
$\boldsymbol{\sigma}$
-

		Analy	ses of 24	hour Compos	ite Sample	∍s		
	OCTOBER, 1974							
	01	02	03	07	08	09	10	Avg.*
<u>pH:</u> Raw Primary Final	7.2 7.5 7.5	7.3 7.5 7.4	7.4 N.S. 7.5	7.2 7.5 7.5	7.3 N.S. 7.3	N.S. 7.5 7.4	7.45 7.45 7.4	7.3 7.4 7.5
B.O.D. mg/l: Primary Final	132 55	102 49	N.S. 46	451 171	N.S. 84	97 35	89 44	144 60
Total Phosphorous mg/l: Raw Primary Final	9.5 5.8 6.2	9.5 6.0 5.8	9.0 N.S. 6.3	11.0 7.0 4.5	11.75 N.S. 4.5	N.S. 7.2 5.0	6.5 5.5 5.7	9.2 6.2 5.9
Susp. Solids mg/l: Primary Final	67 35	· 77	N.S. 39	198 46	N.S. 42	75 27	64 21	83 43
Aluminum mg/l: Raw Primary Final	0.015 0.026 0.020	0.025 0.014 0.010	0.060 N.S. 0.026	0.070 0.006 0.016	0.060 N.S. 0.014	N.S. 0.014 0.018	0.010 0.006 0.018	0.044 0.016 0.016
Iron mg/l: Raw Primary Final	5.8 0.8 0.5	7.7 0.8 0.8	11.4 N.S. 1.4	25.2 3.1 0.8	23.8 N.S. 0.6	N.S. 0.6 I.O	3.8 0.6 0.5	10.0 1.1 0.8
Nitrate N mg/l: Final	0.45	0.60	0.95	1.25	0.50	0.34	0.04	0.66
Ammonia N mg/l: Final Flow m ³ /day *Average of 13 Daily Res	 867 sults	 912	 901	 1090	 988	 908	 1170	13.4 886

- b. Aluminum addition prior to the RBC units but after the primary clarifier (case 2).
- c. Iron addition after the RBC units but prior to the secondary clarifier (case 3).
- d. Iron addition prior to the RBC units but after the primary clarifier (case 4).

In addition, it was decided to evaluate the effect of cation: P molar ratio on phosphorus removal efficiency. Consequently, cation: P molar ratios ranging from 1.35: I to 1.75: I for both aluminum and iron were initially identified for consideration.

Because of the variable nature of the phosphorus loadings indicated in the preliminary study, it was decided to vary the mineral addition rate to correspond to the anticipated phosphorus loading rates. However, because of manpower and equipment limitations, it was not possible to vary the mineral addition rate as often as desired. Instead, the chemical feed pump was adjusted to deliver at (1) a minimum rate (i.e. dependent upon chemical feed concentration and desirable cation:P molar ratio) between 4:30 PM and 7:30 AM when lower phosophrus loadings were anticipated, and (2) a rate twice the minimum rate between 7:30 AM to 4:30 PM when higher phosphorus loadings were anticipated. This schedule was also selected because it coincided with normal plant operation.

A positive displacement chemical feed pump was used for mineral addition. The pump was capable of feeding both liquid alum and ferric chloride, which were selected as the sources of aluminum and iron. A polyethylene tank located inside the RBC building was utilized for temporary chemical storage. The tank was calibrated and daily observations were made to determine the actual amount of mineral addition. Every time that a new supply of alum or ferric chloride was obtained, a sample was taken and analyzed for either aluminum or iron. In this manner, a precise record of chemical feed strength was obtained.

The schedule followed in Phase II of the study is summarized below:

Date	Chemical Feed Conditions
Jan. 7 - May 6, 1975	Alum feed after RBC units
May 12 – July 2Ó, 1975	Alum feed before RBC units
Aug. 5 - Aug. 28, 1975	Alum feed after RBC units (enhanced mixing)
Sept. 7 - Oct. 30, 1975	Ferric chloride feed after RBC units
Nov. 2 - Dec. 23, 1975	Ferric chloride feed before RBC units

Alum was fed one additional month (i.e. August) after the RBC units in order to evaluate a system of enhanced mixing. A wide range of Al:P and Fe:P ratios were obtained during the study because of the difficulty in predicting influent phosphorus levels.

RBC speed was maintained at 2 rpm, corresponding to a peripheral velocity of approximately 0.3 m/sec (60 fpm), throughout the Phase II test period.

Data Presentation

Phase II data are summarized in Figures 5 to 16, Tables II and 12, and Appendices E to G. A brief discussion of the data classified according to significant categories is presented below.

Phosphorus Removal--

Case I -- Alum was introduced after the RBC units from January 7 to May 6 and August 5 to 28. A wide range of Al:P molar ratios, varying from approximately 0.4 to 3.5, were obtained.

The effect of Al:P molar ratio on effluent total P concentration is presented in Figure 5. Although a decrease in effluent total P was achieved with increasing Al:P molar ratios, the desired project objective of total P less than 1.5 mg/l was seldom realized and, in fact, a value less than 1.0 mg/l total P was achieved only once, at an Al:P molar ratio of 2.72.

The effect of Al:P molar ratio on effluent ortho-P concentration is presented in Figure 6. This plot demonstrates that ortho-P concentrations below 1.5 mg/l were consistently achieved at an Al:P molar ratio of approximately 1.0 or greater. These data, when compared to total P data, suggest the need for either improved clarification or filtration to achieve desirable effluent P limits.

Case 2 -- Alum was fed prior to the RBC units from May 12 to July 20. A wide range of Al:P ratios, varying from approximately 0.2 to 3.2, were obtained.

The effect of Al:P molar ratio on effluent total P concentration is presented in Figure 7. Once again, a decrease in effluent total P with increasing Al:P values is evident, but the desired project objective of 1.5 mg/l total P was not consistently achieved. In this case, not a single effluent value less than 1.0 mg/l total P was realized.

The effect of AI:P molar ratio on effluent ortho-P concentration is presented in Figure 8. As in the Case I results, these data suggest potential improvement in effluent P quality with improved secondary solids removal. In this case, an AI:P molar ratio of approximately 1.5 or greater corresponds to effluent ortho-P concentrations less than 1.0 mg/l.

Effluent aluminum data for both Case I and Case 2 alum feed conditions were observed. The data generally indicate increasing effluent aluminum concentrations with increasing AI:P molar ratios. However, with the exception of two observations, effluent aluminum concentrations less than 2.5 mg/l were consistently found over a broad range of AI:P molar ratios.

Figure 5. Effect of alum on effluent total P concentration (feed after RBC units).

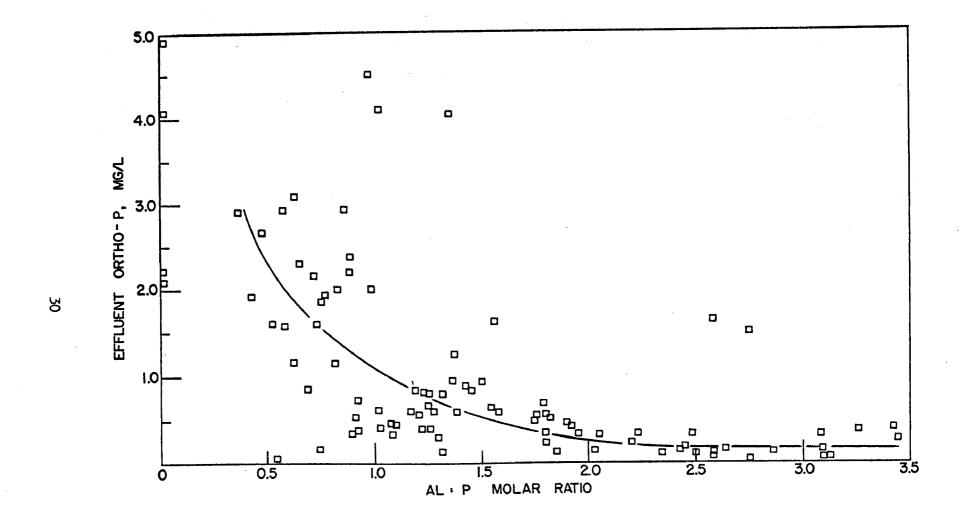


Figure 6. Effect of alum on effluent ortho-P concentration (feed after RBC units).

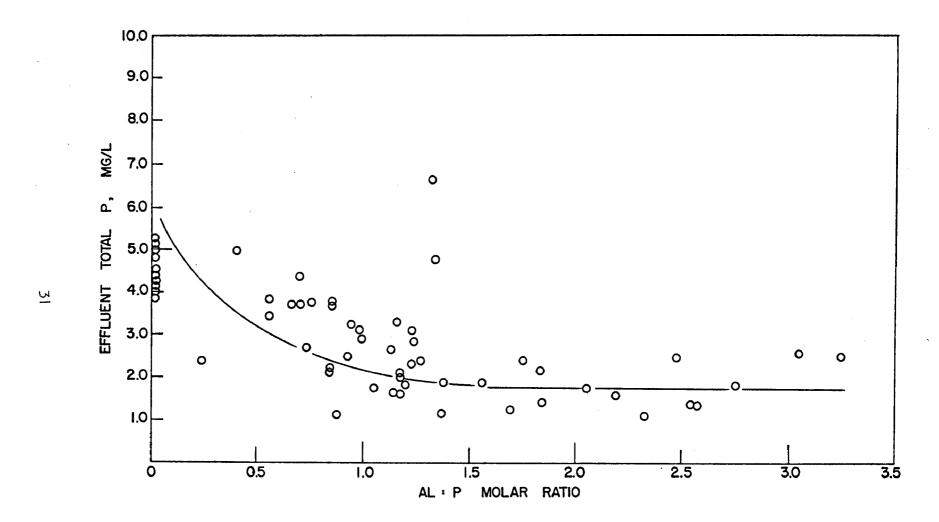


Figure 7. Effect of alum on effluent total P concentration (feed before RBC units).

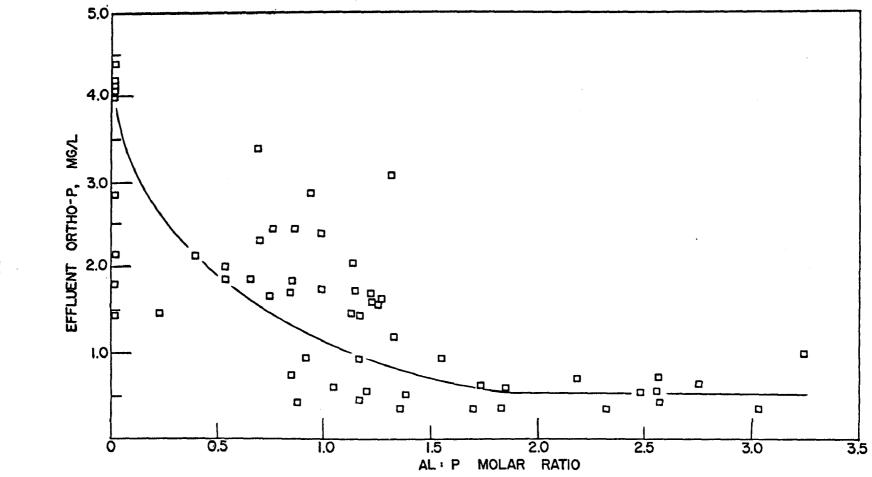


Figure 8. Effect of alum on effluent ortho-P concentration (feed before RBC units).

 $\underline{\text{Case 3}}$ -- Ferric chloride was introduced after the RBC units from September 7 to October 30. A relatively wide range of Fe:P molar ratios, ranging from approximately 0.1 to 1.9, were obtained.

The influence of Fe:P molar ratio on effluent total P concentration is shown in Figure 9. In a pattern similar to that shown for aluminum, decreasing effluent total P concentrations are achieved with increasing Fe:P molar ratios, but the project objective of 1.5 mg/l total P was not consistently realized even at the higher Fe:P values.

Effluent ortho-P concentration is plotted against Fe:P molar ratios in Figure 10. Considerable improvement in effluent P quality is indicated by these data. Significantly low effluent ortho-P concentrations are achieved at Fe:P molar ratios less than 1.0. These data suggest potential achievement of project objectives with improved secondary solids removal.

Effluent iron data for Case 3 ferric chloride feed conditions were determined and a random pattern of effluent iron concentration was observed. Values ranging from approximately 1.0 to 10.0 mg/l Fe were found.

Case 4 -- Ferric chloride was fed prior to the RBC units from November 2 to December 23, 1975 and a short period in January, 1976. A wide range of Fe:P ratios, varying from approximately 0.4 to 2.7 were obtained.

The effect of Fe:P molar ratio on effluent total P concentration is shown in Figure II. A random variation of the data is evident, accompanied by inconsistent achievement of the project objective of 1.5 mg/l effluent total P.

However, when considering effluent ortho-P data, as presented in Figure 12, once again the potential for improvement in P removal performance with improved secondary solids removal is obvious. The data of Figure 12 are noteworthy because they indicate effluent ortho-P values less than 1.4 mg/l for all Fe:P values. In fact, effluent ortho-P values less than 1.0 mg/l were achieved on all but three days tested.

Organic Removal --

<u>BOD</u> -- Figure 13 presents the effect of influent BOD on RBC process efficiency. These data indicate more efficient BOD removal at higher BOD loadings, although there is a considerable amount of scatter, particularly at the lower influent BOD values.

The effect of hydraulic loading on RBC process BOD removal was also observed. Considerable scatter was evident in the data, but a decrease in RBC process efficiency was indicated at increased hydraulic loading.

The effect of organic loading on RBC process efficiency was investigated but not found to be significant.

 $\overline{\text{TOC}}$ -- Total organic carbon (TOC) data were collected in addition to BOD and $\overline{\text{COD}}$ data in order to determine organic removal efficiencies directly

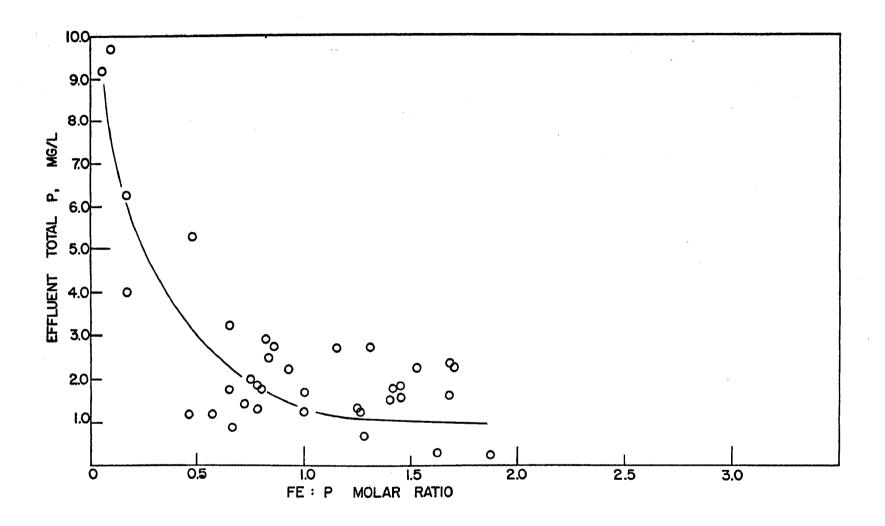


Figure 9. Effect of iron salt on effluent total P concentration (feed after RBC units).

10.0

Figure 10. Effect of iron salt on effluent ortho-P concentration (feed after RBC units).

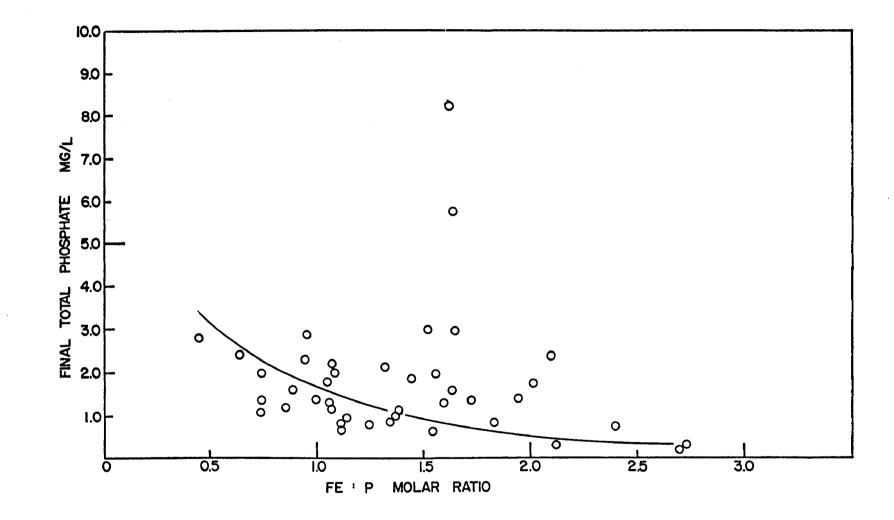


Figure II. Effect of iron salt on effluent total P concentration (feed before RBC units).

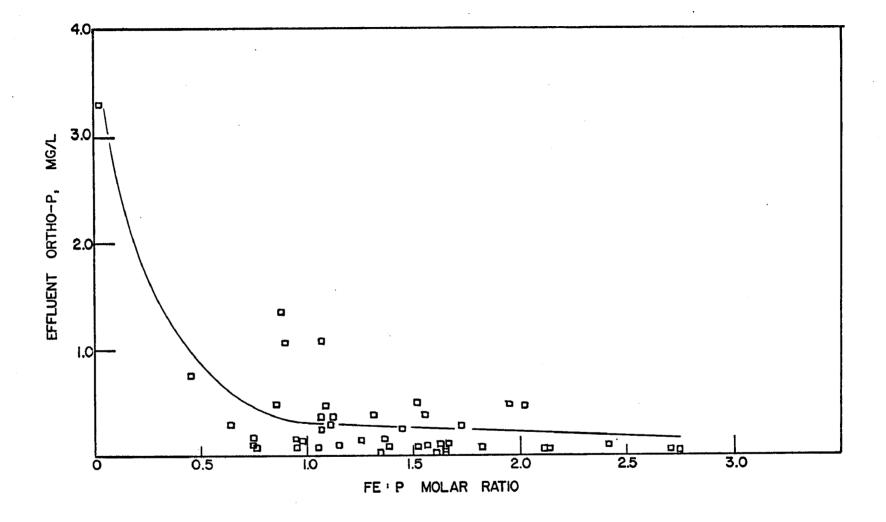


Figure 12. Effect of iron salt on effluent ortho-P concentration (feed before RBC units).

Figure 13. BOD removal efficiency: RBC process (Phase II).

instead of through the oxygen demanding tests. The effect of influent TOC concentration on RBC process removal efficiency is presented in Figure 14. The pattern presented in this plot verifies the previous observation of variable and poor organic removal efficiencies, particularly at, but not limited to, lower organic loadings.

<u>Summary</u> -- A summary of organic removal data for the Phase II test period is presented in Table II. It is significant to note the close agreement in average BOD, COD and TOC percent removals for both total plant (i.e. 77, 80 and 78 percent) and RBC process performance (i.e. 63, 64 and 65 percent).

Nitrification--

A detailed study of the fate of nitrogen was undertaken during the period from June to December. The variation of effluent nitrate-nitrogen and ammonia-nitrogen are presented in Figures 15 and 16, respectively. It can be seen from Figure 15 that variable nitrification occurred during the six-month period of observation, with relatively high nitrate-nitrogen levels occurring during the month of September. Corresponding ammonia-nitrogen data indicate that complete nitrification did not occur, however, as significant effluent ammonia-nitrogen values are observed in Figure 16.

Effluent Summary--

A summary of final effluent data achieved during the Phase II test period is presented in Table I2. When comparing these data to Phase I data for the RBC process, it is evident that some significant changes occurred. Average effluent values of 35 mg/I BOD, 56 mg/I SS, and 3 mg/I total P were achieved during Phase II, compared to 20 mg/I BOD, 15 mg/I SS and 7 mg/I total P during Phase I.

It can generally be stated that, although improvement was noted in total P removals, the net effect of mineral addition to the RBC process was a deterioration in effluent quality.

ADDITIONAL PLANT DATA

Summaries of treatment plant performance during the interim between Phase I and Phase II (1973 and 1974) and for the year following Phase II (1976) are presented in Appendices H and I. Appendix H summarizes trickling filter operating data for those periods and Appendix I summarizes RBC operating data.

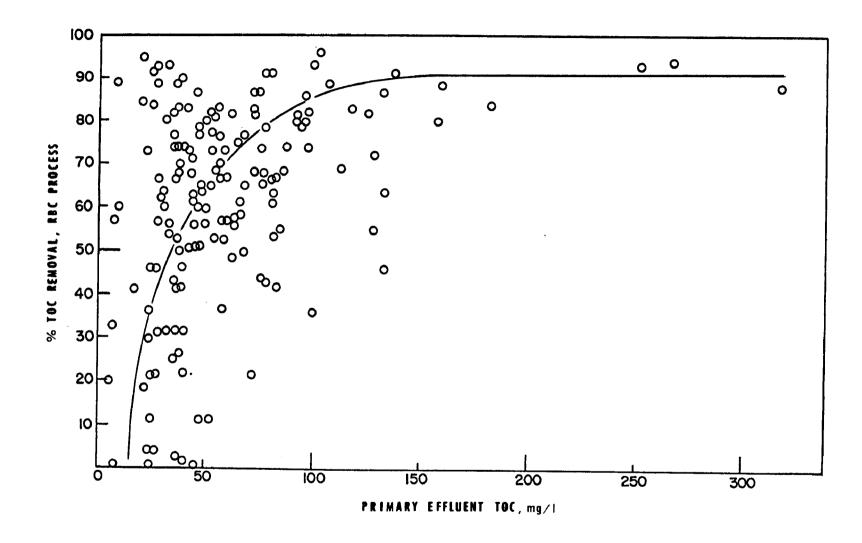


Figure 14. TOC removal efficiency: RBC process (Phase II).

Figure 15. Variation of effluent nitrate nitrogen: RBC process.

Figure 16. Variation of effluent ammonia nitrogen: RBC process.

TABLE II. ORGANIC REMOVAL SUMMARY, VILLAGE OF PEWAUKEE RBC PLANT, PHASE II, 1975

		Avg. Organic	Avg. Hydraulic	DOD		ge Perce			
Month	Chemical Feed Conditions	Loading kg Prim. BOD/day/1000 m ²	Joading 2 m ³ /day/1000 m ²	BOD Total	RBC	COD Total	RBC	TOC Total	RBC
JAN.	Al after discs	8.83	68.46	86	69	92	77		
FEB.	Al after discs	6.10	61.53	83	72	84	74		
MAR.	Al after discs	8.59	106.36	68	49	68	51	71	61
APR.	Al after discs	7.32	110.43	63	57	68	64	52	53
MAY	Al after discs (1-6) Al before discs (12-29)	8.98	129.18	71	64	77	67	76	61
JUNE	Al before discs	6.98	98.21	59	42	64	47	73	57
JULY -	Al before discs	6.39	96.58	74	40	81	53	82	49
AUG.	Al after discs (enhanced mixing)	6.20	80.28	76	52	79	44	83	59
SEPT.	Fe after discs	6.78	52.16	85	68	86	67	85	75
OCT.	Fe after discs	6.88	52.98	91	77	92	72	90	72
NOV.	Fe before discs	12.05	58.68	87	76	87	78	90	78
DEC.	Fe before discs	76.91	61.94	81	85	18	79	76	87
AVG.		12.20	81.50	77	63	80	64	78	65

DEC.

AVG.

Fe before discs

49

35

102

78

88

27

4.78

2.98

0.22

1.20

190

56

0.9

2.4

14.5

6.7

7.8 11.5 0.94

MONTHLY AVERAGES, mg/l Chemical Month Feed Conditions BOD COD TOC Total P Ortho P SS NOz-N NHz-N ΑI Fe 49 JAN. Al after discs 38 2.65 1.67 33 4.0 0.12 FEB. Al after discs 27 65 2.35 0.52 46 3.4 1.09 MAR. Al after discs 88 22 3.05 0.46 40 68 1.2 1.33 APR. Al after discs 27 57 24 2.40 0.67 44 3.6 1.53 Al after discs (1-6) 22 52 9 1.82 0.62 27 3.3 MAY 1.26 Al before discs (12-29) JUNE Al before discs 37 83 30 2.51 1.24 47 1.7 0.64 JULY Al before discs 72 6.7 10.1 39 19 4.07 2.69 39 1.5 0.62 AUG. Al after discs 34 · 79 13 4.44 2.35 40 1.3 8.2 10.4 0.96 (enhanced mixing) SEPT. Fe after discs 59 20 3.85 2.77 36 4.0 6.3 8.6 2.3 33 OCT. Fe after discs 9.0 32 83 21 1.97 0.67 38 1.8 11.0 6.0 NOV. 8.7 11.7 Fe before discs 72 25 1.86 0.53 58 1.8 4.0 43 7.8 17.4

TABLE 12. FINAL EFFLUENT SUMMARY, VILLAGE OF PEWAUKEE RBC PLANT, PHASE 11, 1975

```
I. Design factors
```

 $= 1779 \text{ m}^3/\text{day} (470.000 \text{ gpd})$ Avg. daily flow

= 239 mg/lAvg. influent BOD Avg. influent S.S.
Avg. volatile solids
Max. design flow $= 363 \, \text{mg/l}$ $= 277 \, \text{mg/l}$

 $= 4360 \text{ m}^3/\text{day} (48,000 \text{ gph})$ Max. design flow

2. Unit design

Primary Clarifier: the primary clarifier consists of the outer annular tank of a concentric "Donau" type clarifier.

 $= 124.2 \text{ m}^3/\text{day/m} (10,000 \text{ qpd/ft.})$ Weir loading

 $= 77.5 \text{ m}^2 (834 \text{ sq. ft.})$ Surface area

Overflow rate, avg. = $22.6 \text{ m}^3/\text{day/m}^2$ (554 gpd/sq. ft.)

Volume $= 165.4 \text{ m}^3 (43,700 \text{ gal})$

Avg. detention time = 1.5 hrs.

RBC Units: two parallel paths of 4 stages each are provided; each stage having 150 discs.

Total no. of discs = 1200

 $= 16,945 \text{ m}^2 (182,400 \text{ sq. ft.})$ Total disc area

= $17.5 \text{ g BOD/day/m}^2$ Organic loading

(3.59 lb. BOD/1000 sq. ft./day)

Hydraulic loading $= 7.8 \text{ m}^3/\text{stage}$ (2062 gal./stage)

Avg. detention time = 42.2 min.

= 10.5 min./stage

Secondary Clarifier: center tank of the "Donau" clarifier.

= 33.2 m(109 ft.)Weir length

Weir loading $= 53.5 \text{ m}^3/\text{day/m} (4310 \text{ gpd/ft.})$

 $= 86.8 \text{ m}^2 (934 \text{ sq. ft.})$ Surface area

Overflow rate, avg. = $20.5 \text{ m}^3/\text{day/m}^2$ (503 gpd/sq. ft.)

 $= 163.9 \text{ m}^3 (43,300 \text{ gal.})$ Volume

= 1.5 hrs.Detention time

Chlorine Contact Chamber

Capacity

= 45.4 m³ (12,000 gal.) = 15 min. (at max. pumping rate) Contact time

= 8 mg/IChlorine demand

Chlorine dosage = 13.9 kg/day (30.6 lbs./day)

e. Aerobic Digester

 $= 0.2 \text{ m}^3/\text{hr} (52.5 \text{ gph})$ Volume of primary sludge (re. 30% SS removal, 4% solids)

(continued)

TABLE A-I (continued)

 $= 0.3 \text{ m}^3/\text{hr} (84.7 \text{ gph})$ Volume of secondary sludge (re. 86.2% BOD removal, 50% conversion to solids, 2% solids concentration) = $0.5 \text{ m}_3^3/\text{hr} (137.2 \text{ gph})$ = $9.5 \text{ m}^3/\text{day} (2500 \text{ gpd})$ Total sludge volume Digester volume $(4.75 \text{ m diam.} \times 3.66 \text{ m liquid depth}) = 275.4 \text{ m}^3 (72,750 \text{ gal.})$ = 28.5 daysAvg. detention time $= 635 \text{ kg } 0_2/\text{day}$ Oxygen requirement $(1400 \text{ lb. } 0_2/\text{day})$ (<u>re</u>. 1.5 kg 0₂/kg raw BOD) = $26.4 \text{ kg } 0_2/\bar{h}r$ (58.3 lb. 0₂/hr) Aerator capacity (at 45 rpm) $= 31.0 \text{ kg } 0_2/\text{hr}$ (68.4 lb. 0₂/hr) f. Sludge Beds No. of sludge beds $= 125.4 \text{ m}^2 (1350 \text{ sq. ft.})$ Area of each sludge bed (re. 7.6 m \times 16.5 m each) = 501.6 m^2 (5400 sq. ft.) Total sludge bed area

APPENDIX B

DESIGN DATA, TRICKLING FILTER PLANT

Design Factors ١.

> $= 1136 \text{ m}^3/\text{day} (300,000 \text{ gpd})$ Avq. daily flow

= 3 @ 2180 m³/day (400 qpm) eachRaw wastewater pumps

Unit Design 2.

> 13.1 m (43 ft.) \times 3.7 m (12 ft.) \times 2.8 m Primary Clarifier: a.

(9.25 ft.) depth S.W.D. = 2.4 m (7.75 ft.)

 $= 47.9 \text{ m}^2 (516 \text{ sq. ft.})$ Surface area

Overflow rate, avg. = $23.6 \text{ m}^3/\text{day/m}^2$ (580 gpd/sq. ft.)

 $= 113.6 \text{ m}^3 (30,000 \text{ gal.})$ Volume

21.3 m (70 ft.) diam. x 1.7 m (5.7 ft.) depth Trickling Filter:

(stone media, equipped with fiberglass cover)

= 357.5 m^2 (3848 sq. ft.) = 0.0357 ha (0.0883 acres) Surface area

 $= 621.2 \text{ m}^3 (21,936 \text{ cu. ft.})$ Volume

13.1 m (43 ft.) \times 3.7 m (12 ft.) \times 2.8 m Secondary Clarifier:

(9.25 ft.) depth S.W.D. = 2.4 m (7.75 ft.)

(i.e. Design identical to primary clarifier.)

		TABLE C-I	. PHOS	PHORUS	DATA, PHASE	JAN	NUARY -	JUNE, 1972,	RBC PL	ANT	
	Р	ноѕрно					NS,	mg/l		PER CENT	REMOVAL
		w Wastewate	r	Pri	mary Efflue	ent		nal Effluer		Tota	
Date	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Overall	R.B.C.
1-11	11.3	9.6	3.7	9.4	7.9	6.1	8.2	7.9	6.9	27.4	12.8
21	10.7	8.2	3.6	7.8	6.5	4.8	6.7	6.5	5.4	37.4	14.1
28	18.4	7.7	6.4	8.4	6.7	4.8	6.8	6.5	5.5	63.0	19.0
2 - 5	10.0	8.0	3.7	9.3	7.8	6.2	7.7	7.6	6.6	23.0	17.2
10	10.4	8.2	3.4	11.0	9.4	5.7	9.4	9.0	5.8	9.6	14.5
18	6.5	4.7	2.4	10.3	9.4	5.1	8.2	7.9	6.0	0.0	20.4
25	8.8	6.3	2.8	10.7	8.6	5.8	9.0	8.6	6.2	0.0	15.9
3 - 3	10.8	8.3	4.5	10.7	8.3	6.4	9.2	8.2	6.4	14.8	14.0
10	7.5			6.5			4.2			44.0	35.4
30	7.4	6.8	3.4	9.4	6.8	6.1		5.9	4.8	16.2	34.0
4- 5	8.3	6.1	2.9	8.1	6.9	5.8	4.7	5.4	4.9	43.4	42.0
13	8.1	4.2	2.5	10.5	6.0	4.4	10.3	5.8	4.9	0.0	1.9
18	7.2	5.3	2.8	9.0	7.1	4.9	7.6	7.2	5.5	0.0	15.6
20	9.3	6.7	2.9	8.2	6.4	4.6	6.9	6.4	5.0	25.8	15.9
25	7.6	6.4	2.8	8.4	7.1	4.3	8.3	7.5	4.8	0.0	1.2
27	9.3	7.3	3.2	8.1	6.6	4.5	6.9	6.7	5.2	25.8	14.8
5- 2	6.9	4.4	2.8	6.4	5.2	3.2	6.0	5.4	4.1	13.0	6.3
4	6.1	4.9	1.5	6.7	5.5	1.9	4.5	4.3	2.9	26.2	32.8
11	8.1	6.5	2.6	8.1	6.6	4.2	6.4	6.4	4.3	21.0	21.0
16	11.2	9.0	3.5	8.8	7.4	5.5	7.8	7.6	5.1	30.6	11.4
18	8.7	7.2	3.1	8.5	7.0	5.3	7.1	6.7	5.2	18.4	16.5
23	16.7	13.9	7.5	11.7	9.8	7.1	9.6	9.2	7.3	42.5	17.9
25	9.8	7.8	3.1	10.2	8.3	5.9	8.3	7.8	5.9	15.3	18.6
6- 6	8.8	7.4	3.8	9.8	8.1	4.8	8.2	7.9	6.7	6.8	16.3
8	10.1	7.9	5.0	11.1	8.6	6.4	8.1	7.6	6.6	19.8	27.0
13	6.1	4.0	2.8	7.9	6.7	3.8	6.8	6.4	5.I	0.0	13.9
15	5.3	4.0	2.4	5.7	4.6	3.1	5.4	5.1	4.2	0.0	5.3
21	11.7	9.8	4.7	8.6	7.2	4.3	7.8	7.4	6.2	33.3	9.3
23	9.7	8.0	4.3	8.7	7.3	5.6	8.0	7.4	5.6	17.5	8.0
27	10.9	8.7	4.9				9.2	8.6	6.9	15.6	'
29	8.3	6.4	4.0	9.1	7.6	6.1	7.6	7.3	5.7	8.4	16.5

-	4
١	$\overline{}$

•		Т	ABLE C-2.	PHOSPHO	RUS DAT	A, PHASE I,	JULY -	SEPTEM	BER, 1972,	RBC PLA	NT	
			ноѕрно			CENTRA				· · · · · · · · · · · · · · · · · · ·	PER CENT	
			w Wastewate			mary Efflue			nal Effluen		Tota	al P
	Date	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Overall	R.B.C.
	7- 6	10.8	10.8	8.0	9.1	7.8	6.6	8.1	7.7	6.4	25.0	11.0
·	11	11.0	1.0	6.0	10.1	8.8	6.9	8.4	8.3	6.9	23.6	16.8
	13				7.4	6.0	4.1	6.4	6.1	5.3		13.5
	18	10.3	8.4	5.0	7.1	6.0	3.8	6.7	6.1	5.4	35.0	5.6
	20				7.1	5.8	3.9	6.0	5.6	4.7		15.5
	25	9.5	8.0	5.1	11.3	8.9	6.3	8.6	8.3	7.2	9.5	23.9
	27	6.7	7.1	3.4	9.3	4.4	4.8	7.0	6.7	5.5	0.0	24.7
	31	11.2	9.0	7.2	11.1	9.6	6.6	8.7	8.6	7.4	22.3	21.6
	8- 8				10.1	7.5	5.7	7.8	7.5	6.3		22.8
49	10	7.8	7.8	4.3	11.2	6.8	5.7	7.4	7.0	6.3	5.1	33.9
	15	8.7	7.4	2.6	9.0	6.9	5.0					
	17	4.5	3.4	2.3	6.9	5.4	4.5	6.2	6.0	5.5	0.0	10.1
	22	12.6	9.5	6.4	10.0	8.1	4.5	6.1	5.9	3.7	51.6	39.0
	24	6.9	5.3	3.4	7.9	7.9	4.2	5.9	5.9	4.2	14.5	12.7
	29	12.1	10.2	3.5	9.2	6.2	4.5	7.0	6.4	5.3	42.1	23.9
	31	4.3	3.0	1.8	9.3	5.9	3.9	6.3	5.9	4.8	0.0	32.3
	9- 7	10.7	8.8	4.6	10.1	7.0	5.3	8.1	7.6	5.9	24.3	19.8
	12	16.2	13.5	4.5	10.8	8.9	6.5	9.1	8.7	7.4	43.8	15.7
	14	4.9	3.4	2.6	7.5	5.6	4.5	6.2	5.8	5.2	0.0	17.3
	19	3.0	2.4	1.5	4.6	2.0	1.2	3.1	2.1	1.3	0.0	32.6
	21	3.8	3 . l	1.2	16.9	3.1	2.6	4.2	3.3	2.6	0.0	75.1
	26	7.5	6.1	2.7	6.9	4.5	3.4	5.5	4.6	3.6	26.7	20.3
	28	5.2	4.2	2.1	5.3	4.0	2.5	2.4	2.1	1.9	53.8	54.7

ı	•	
•	٠,	
•	_	

		H O S P H C w Wastewate	RUS	CON	CENTRA	TIO	NS,		PER CENT REMOVA		
Date	Total	Filtrable	Ortho		mary Efflue Filtrable		Total	nal Effluen Filtrable		Overall	R.B.C
10- 3		4.0	2.8	6.6	5.3	3.2	5.7	5.2	4.2	0.0	13.6
5	3.1	2.4	1.5	6.4	4.6	3.2	4.8	4.4	3.4	0.0	25.0
10	6.0	4.8	3.1	9.7	8.3	4.2	6.8	6.4	5.0	0.0	30.0
12				6.8	5.4	3.6	5.6	5.2	4.2		17.6
17	4.4	3. 6	2.1	8.4	6.4	3.4	6.8	6.0	4.6	0.0	19.0
19	5.3	4.0	2.2	7.0	5.5	3.4	6.0		4.4	0.0	14.3
24	3.6	3.0	1.4	5.1	3.9	1.8	4.2	3.7	2.7	0.0	17.6
26	3.3	2.4	1.8	4.8	3.6	2.1	3.8	3.6	2.5	0.0	20.8
31	9.7	8.2	3.1	7.1	5.6	3.0	5.7	5.4	4.0	41.2	19.7
11-2	4.0	2.9	1.6	5.8	4.6	2.8	4.7	4.4	3.6	0.0	19.0
7	7.6	6.4	3.2	8.1	6.5	3.6	6.3	6.0	4.7	17.1	22.2
9	7.8	6.4	2.9	7.0	5.7	3.6	5.6	5.2	4.2	23.1	20.0
14	6.0	4.7	2.4	8.3	7.0	4.2	7.4	7.0	5.4	0.0	10.8
16	6.2	5.0	2.8	7.8	5.8	3.5	6.0	5.6	3.8	3.2	23.1
12- 5		6.0	4.1	10.0	8.5	6.7	9.5	9.1	7.3	0.0	5.0
7	4.7	3.5	2.9	8.7	7.2	5.2	6.6	6.3	5.2	0.0	24.1
19		7.2	4.1	12.2	10.1	7.3	8.7	8.3	7.2	0.0	28.7
Avg. (Ent Yea		6.4	3.4	8.6	6.7	4.6	6.9	6.5	5.1	14.9	20.6

	TABL	E D-!. PHO	<u>SPHORUS</u>	DATA,	PHASE I, JA	NUARY -	JUNE	1972, TRICK	LING F		
		ноѕрно								PER CENT R	
		w Wastewate			mary Efflue			nal Effluen		Total	
Date	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Overall	T.F.
1-11	11.3	9.6	3.7	12.1	9.2	7.1	9.5	8.0	6.3	15.9	21.5
21	10.7	8.2	3.6	10.4	7.9	5.7	8.5	7.2	5.6	20.6	18.3
28	18.4	7.7	6.4	10.0	7.5	5.9	8.5	7.0	5.8	. 53.8	15.0
2- 5	10.0	8.0	3.7	9.4	7.1	6.0	8.4	7.3	5.8	16.0	10.6
10	10.4	8.2	3.4	11.4	9.2	6.4	10.8	9.4	6.6	0.0	5. 3
18	6.5	4.7	2.4	11.3	8.7	5.8	10.7	9.2	7.0	0.0	5.3
25	8.8	6.3	2.8	11.5	8.5	6.1	10.1	9.1	6.3	0.0	12.2
3 - 3	10.8	8.3	4.5	9.4	7.4	7.1	7.7	4.7	4.7	28.7	18.1
10	7.5			7.4			5.9			21.3	20.3
30	7.4	6.8	3.4	7.9	5.6	5.6	6.8	4.4	4.4	8.1	13.9
4- 5	8.3	6.1	2.9	8.4	6.1	4.3	7.5	7.5	4.6	9.6	10.7
13	8.1	4.2	2.5	12.6	5.9	3.7	7.8	5.6	4.3	3. 7	38.1
18	7.2	5.3	2.8	10.5	7.5	4.9	9.1	7.2	5.3	0.0	13.3
20	9.3	6.7	2.9	9.7	7.1	4.3					
25	7.6	6.4	2.8	9.1	7.4	3.7	7.9	6.6	4.5	0.0	13.2
27	9.3	7.3	3.2	9.0	7.0	4.9	7.9	6.7	4.6	15.1	12.2
5 - 2	6.9	4.4	2.8				7.3	6.2	4.1	0.0	
4	6.1	4.9	1.5	8.3	5.7	3.1	7.1	5.6	2.7	0.0	14.5
11	8.1	6.5	2.6	9.4	6.2	4.4	7.1	6.0	4.5	12.3	24.5
16	11.2	9.0	3.5	10.6	7.7	4.9	9.6	8.1	5.3	14.3	9.9
18	8.7	7.2	3.1	9.4	7.0	5.2	7.8	6.5	4.3	10.3	17.0
23	16.7	13.9	7.5	12.9	10.4	7.4	11.2	9.8	6.5	32.9	13.2
25	9.8	7.8	3.1	10.2	7.8	5.7	9.1	7.8	5.6	7.1	10.8
6- 6	8.8	7.4	3.8	11.6	7.9	5.3	9.3	7.1	4.9	0.0	19.8
. 8	10.1	7.9	5.0	11.0	7.6	5.1	8.9	6.9	4.8	11.9	19.1
13	6.1	4.0	2.8	8.4	5.7	3.6	8.8	6.6	4.8	0.0	0.0
15	5.3	4.0	2.4	6.6	4.5	2.9	6.2	4.7	3.3	0.0	6.1
21	11.7	9.8	4.7	9.4	6.8	4.1	9.0	7.2	4.8	23.1	4.3
23	9.7	8.0	4.3	10.2	7.3	4.5	9.4	7.3	4.9	3.1	7.8
27	10.9	8.7	4.9	10.8	8.1	5.2	10.2	8.5	6.4	6.4	5.6
29	8.3	6.4	4.0	10.3	7.7	5.0	9.1	8.0	5.7	0.0	11.6

	TABLE	D-2. PHOS	PHORUS	DATA, P	HASE I, JUL	<u> Y - SEP</u>	TEMBER,	1972, TRIC	KLING	FILTER	
	Р	ноѕрно	RUS	CON	CENTRA	TIO	NS,	m g / l		PER CENT R	EMOVAL
	Ra	w Wastewate	r	Pri	mary Efflue	nt .	Fi	nal Effluen	+	Total	Ρ
Date	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Overall	T.F.
7- 6	10.8	10.8	8.0	13.4	13.4	7.5	9.4	8.0	6.5	13.0	30.0
П	11.0	1.0	6.0	12.7	9.9	7.4	11.0	9.8	7.9	0.0	13.4
13		-		11.7	8.8	6.8	10.3	9.1	7.1		12.0
18	10.3	8.4	5.0	15.7	8.5	7.5	6.8	6.5	5.4	34.0	56.7
20				12.3	7.3	6.5	6.0	5.6	4.8		51.2
25	9.5	8.0	5.1	66.0	18.0	16.0	9.0	8.4	7.0	5.3	86.4
27	6.7	7. l	3.4	53.0	16.0	12.0	7.6	6.9	5.6	0.0	85.7
31	11.2	9.0	7.2	18.5	7.0	7.5	9,5	8.5	7.0	15.2	48.6
8-8				7.3	4.1	3.0	7.7	7.0	5.3		0.0
10	7.8	7.8	4.3	8.8	8.8	4.6	7.3	6.8	5.6	6.4	17.0
15	8.7	7.4	2.6	8.9	6.8	4.2	7.6	6.9	5.0	12.6	14.6
17	4.5	3.4	2.3	7.4	5.2	4.0	6.2	5.6	4.7	0.0	16.2
22	12.6	9.5	6.4	8.8	5.0	4.5	7.8	6.9	4.6	38.1	11.4
24	6.9	5.3	3.4	7.3	5.8	4.6	5.6	5.6	4.2	18.8	23.3
29	12.1	10.2	3.5	7.3	5.3	3.1	6.6	5.8	4.3	45.5	9.6
31	4.3	3.0	8.1	6.8	4.8	3.5	6.6	5.8	4.5	0.0	2.9
9- 7	10.7	8.8	4.6								
12	16.2	13.5	4.5	8.3	6.3	4.4	8.6	7.5	5.3	46.9	0.0
14	4.9	3.4	2.6	6.3	4.8	2.8	5.5	4.7	3.6	0.0	12.7
19	3.0	2.4	1.5	3.5	2.4	1.1	3.3	2.6	1.9	0.0	5.7
21	3.8	3 . l	1.2	5.0	3.3	1.8	3.7	3.0	2.0	2.6	26.0
26	7.5	6.1	2.7	6.4	3.9	2.4	4.4	4.0	2.9	41.3	31.3
28	5.2	4.2	2.1	4.4	3.4	1.9	4.4	3.4	2.5	15.4	0.0

١	
•	•

.

		P	HOSPHC	RUS					mg/l		PER CENT F	
		Ra	w Wastewate	r		mary Efflue			nai Effluen		Total	Р
-	Date	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Total	Filtrable	Ortho	Overall	T.F.
	10- 3	5.1	4.0	2.8	5.0	4.1	2.4	5.3	4.6	3.1	0.0	0.0
	5	3.1	2.4	1.5	5.0	4.0	2.3	4.8	4.2	3.0	0.0	4.0
	10	6.0	4.8	3.1	7.3	6.1	3.8	7.0	6.2	4.4	0.0	4.1
	12				5.4	4.0	2.8	5.3	4.6	3.6		0.0
	17	4.4	3.6	2.1	7.6	6.2	4.1	7.1	6.7	4.7	0.0	6.6
Π N	19	5.3	4.0	2.2	9.2	6.3	4.2	7.4	6 . I	4.4	0.0	19.6
	24	3.6	3.0	1.4	4.1	3.2	1.9	4.7	3.9	2.9	0.0	0.0
	26	3.3	2.4	1.8	4.4	3.6	1.9	4.3	3. 5	2.6	0.0	2.3
	31	9.7	8.2	3.1	6.1	5.0	2.9	6.6	5.6	3.6	32.0	0.0
	11-2	4.0	2.9	1.6	6.0	4.8	3.0	6.3	5.3	3.7	0.0	0.0
	7	7.6	6.4	3.2	6.7	5.9	4.4	6.9	6.I	4.2	9.2	0.0
	9	7.8	6.4	2.9	6.2	5.4	3.2	5.8	5.0	3.8	25.6	6.5
	14	6.0	4.7	2.4	7.2	6.2	3.5	6.8	6.2	4.3	0.0	5.6
	16	6.2	5.0	2.8	5.8	5.0	3.4	6.1	5.4	4.3	1.6	0.0
	12- 5	7.9	6.0	4.1				9.1	7.7	5.8	0.0	
	7	4.7	3.5	2.9	8.5	6.2	4.0	8.2	6.8	5.7	0.0	3.5
	19	8.6	7.2	4.1	10.6	7.6	5.8	10.7	9.2	6.0	0.0	0.0
	Avg. (Entire Year)	8.1	6.4	3.4	10.4	6.8	4.8	7.6	6.5	4.8	5.8	26.6

APPENDIX E

	TABLE E-I	. PHOSPHO	RUS DATA, PI	EWAUKEE STP,	JANUARY 197	5
Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2 3 4				946 1045 973 943		
5 6		5.66	5.25	954	5.39	5.00
0	1 00	5.66 5.00	5.50	1064	6.01 5.31	5.84
7 8	1.02 1.36	5.00 3.16	4.10 4.05	1064 1226	3.87	4.35 4.96
9	0.99	3.66	4.50	1843	6.74	8.29
10 11	0.99	J.00	4.50	2411 1821	0.74	0.29
12		1.50	1.60	1332	2.00	2.13
13		1.00	0.38	1685	1.68	0.64
14	2.11	1.16	0.17	1158	1.34	0.20
15	0.75	1.26	0.20	1075	1.35	0.21
16	3.10	1.33	0.12	965	1.28	0.11
17				1011		
18				825		
19	3.41	1.60	0.45	810	1.29	0.36
20	0.52	2.20	1.60	1166	2.56	1.86
21	1.03	2.20	0.42	1011	2.22	0.42
22	1.08	2.80	0.45	1226	3.43	0.55
23	1.25	3.44	0.40	1177	4.05	0.47
24				1351		
25	4			1552		
26		1.74	0.27	738	1.28	0.20
27		1.50	0.27	871	1.30	0.23
28	0.57	2.90	1.55	1329	3.85	2.05
29	0.72	2.80	1.57	757 700	2.12	1.18
30	2.69	NS	NS	799		
3ŀ				992		
Avg.	1.47	2.65	1.67	1162		
NOTE:	: ALUM FEED A	FTER RBC U	NITS			

	TABLE E-2.	PHOSPHORUS	<u> DATA, PEW</u>	AUKEE STP, FEE	BRUARY 1975	
Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
 				1170 1166		
2 3 4	2.58 1.79	2.80 2.24	1.65 0.72	723 806	2.02 1.80	1.19 0.58
5 6	1.91	2.00	0.72	1052	2.10	0.42
6 7	·2.20	1.50	0.25	1041	1.56	0.26
8				977 1060		
9		2.80	0.70	1166	3.26	0.81
10 11	1.56 2.74	3.20 3.94	1.65 1.50	939 878	3.00 3.46	1.55 1.32
12	3.09	2.10	0.30	878	1.84	0.26
13 14	3.25	2.30	0.35	867 1196	1.99	0.30
15			•	1067		
16 17	1.31 3.46	2.60 2.20	0.30 0.27	1192 937	3.10 2.06	0.35 0.25
18	2.72	0.50	0.03	1064	0.53	0.03
19 20	2.59	1.60	0.15	1128	1.80	0.17 0.41
21	2.48	3.40	0.33	1249 912	4.24	0.41
22	1.00	7 14	0.46	1223	7 17	0.46
23 24	1.90 1.94	3.14 NS	0.46 NS	1011 1162	3.17	0.46
25	3.14	2.60	0.11	1219	3.17	0.13
26 27	2.64 2.34	1.60 1.80	0.18 0.11	1086 1052	1.73 1.89	0.20 0.11
28		, , , ,	• • • • • • • • • • • • • • • • • • • •	1011		
Avg.	2.42	2.35	0.52	1045		
NOTE	: ALUM FEED A	AFTER RBC U	NITS			

	TABLE E-3	. PHOSPHOI	RUS DATA, PE	EWAUKEE STP, N	MARCH 1975_	
Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1				1003	•	
2	1.84	2.0	0.17	787	1.57	0.14
3	2.46	2.34	0.22	1079	2.52	0.24
4	3.10	1.84	1079	1.98	0.12	
5	2.86	2.24	0.17	988	2.21	0.17
6	2.58	2.40	0.14	1033	2.48	0.14
7 8				980 590		
9	0.54	3.20	0.10	1223	3.91	0.12
ΙÓ	1.31	4.00	0.78	1098	2.12	0.86
-11	1.80	2.24	0.25	1083	2.42	0.27
12	2.50	2.34	0.16	1048	2.45	0.17
13	2.43	3.20	0.20	939	3.00	0.19
14				958		
15	2.60	4 50		1185	6 00	1 50
16	0.62	4.50	1.18	1340	6.02 5.75	1.58 1.57
17 18	0.69 0.93	3.00 3.40	0.82 0.37	1919 2589	10.09	0.96
19	0.90	2.40	0.35	2755	6.61	0.96
20	1.03	3.06	0.64	3123	9.55	2.00
21	1.05	3.00	0.0	3369		
22				1877		
23	1.23	3.00	0.41	2396	7.18	0.98
24	0.92	3.48	0.59	2975	10.35	1.75
25		3.20	0.64	2559	8.18	1.63
26		3.84	0.69	1900	7.29	1.31
27	1.18	2.60	0.56	1699	4.41	0.95
28 29				2161 2146		
30	1.10	NS	NS	1821		
3I	0.81	3.04	1.18	2566	7.79	3.03
Avg.	1.54	3.05	0.46	1684		
NOTE:	ALUM FEED A	FTER RBC U	NITS			

	TABLE E-4.	PHOSPHORUS	DATA.	PEWAUKEE	STP.	APRIL	1975
--	------------	------------	-------	----------	------	-------	------

Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
I 2 3 4	1.57 1.26 1.28	3.50 3.16 3.10	0.57 0.77 0.66	1930 1900 1752 1677	6.75 6.00 5.43	. .46 . 5
5 · 6 7 8 9	0.91 1.10 1.50 1.27	2.80 2.60 3.34 2.20	0.74 0.43 0.91 0.57	1620 1552 1866 1832 1715	4.34 8.45 6.11 3.77	1.15 0.80 1.66 0.98
10 11 12 13 14	0.85 1.09	2.90 NS I.86	0.80 NS 0.48	1669 1646 1419 1317 1469	4.83 2.73	0.71
15 16 17 18	1.08 1.21 1.46	NS 2.50 2.50	NS 0.55 0.81	1374 1412 1336 1669	3.52 3.34	0.78 1.08
19 20 21 22 23 24 25	1.10 1.36 1.56 1.80 1.84	NS 2.84 2.26 2.10 1.76	NS 0.92 0.68 0.58 0.56	1317 1385 1435 1382 1559 1450	4.07 3.12 3.27 2.55	1.40 0.93 0.90 0.81
26 27 28 29 30	1.39 1.38 2.05 2.23	2.44 2.72 1.76 1.60	0.61 1.25 0.32 0.33	1370 1215 1582 1207 2460 2112	3.86 3.28 4.33 3.37	0.96 1.51 0.78 0.69
Avg. NOTE:	1.40 ALUM FEED	2.40 AFTER RBC U	0.67 NITS	1537		

	TABLE E-	-5. PHOSPHO	DRUS DATA, I	PEWAUKEE STP.	MAY 1975	
Date	Al/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2 3	1.80	2.04	0.31	2067 1930 1681	4.21	0.64
4 5 6 7 8 9	1.32 1.72 1.95	1.32 2.56 2.00 2.72 2.20	0.15 0.50 0.36 1.62 1.72	1639 1881 1927 1699 1544 1518	2.16 4.81 3.85	0.24 0.94 0.70
10 11 12 13 14 15	1.20 1.38 1.84 2.58	1.26 1.82 1.90 1.44 1.44	0.39 0.54 0.54 0.38 0.44	1332 1404 1949 2381 1911 1427 1696	1.76 3.54 4.52 2.75 2.05	0.54 1.05 1.28 0.73 0.63
17 18 19 20 21 22 23	1.70 2.48 1.05 1.18 1.34	1.26 2.50 1.72 1.60 1.14	0.36 0.55 0.60 0.47 0.36	1302 1264 2267 2173 2286 1832 2263	1.59 5.67 3.73 3.65 2.09	0.45 1.24 1.30 1.07 0.66
24 25 26 27 28 29 30	0.88 1.55 2.32 3.04	1.10 2.66 1.94 1.16 2.54	0.43 1.63 0.95 0.36 0.36	1938 1866 2029 1412 1018 1011 1177 893	2.05 5.39 2.74 1.18 2.56	0.81 3.30 1.34 0.37 0.37
3ļ Avg.	. 1.73	. 1.83	0.62	1699		

NOTE: ALUM FEED AFTER RBC UNITS MAY 1-6
ALUM FEED BEFORE RBC UNITS MAY 12-29

	TABLE E-6	. PHOSPHO	RUS DATA, PE	EWAUKEE STP, .	JUNE 1975	
Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1	0.83	2.06	0.75	893	1.84	0.67
	2.76	1.82	0.66	1079	1.96	0.71
2 3 4	2.05	1.72	0.55	1075	1.85	0.59
4	1.84	2.22	0.56	1400	3.11	0.78
5	. I . 73	2.44	0.69	1442	3.52	0.99
5 6				1264		
7				1056		
8	1.16	1.62	0.95	931	1.51	0.88
9	0.91	2.50	0.98	1370	3.42	1.34
10	3.25	2.50	1.00	1041	2.60	1.04
11	2.19	1.58	0.72	1544	2.44	1.12
12	2.57	1.46	0.72	1196	1.74	0.87
13				1139		•
14				1400		
15	0.23	2.38	1.45	1522	3.62	2.20
16	0.85	3.80	1.85	1419	5.39	2.62
17	1.33	4.74	1.20	1798	8.51	2.15
18	0.56	3.88	2.00	1582	6.13	3.16
19	0.55	3.48	1.85	1412	4.91	2.61
20				1389		
21		0.04		738		1 70
22	1.17	2.04	1.48	939	1.91	1.39
23	1.22	3.08	1.57	1435	4.41	2.25
24	0.74	2.60	1.66	1427	3.71	2.36
25	1.28	2.34	1.62	1355	3.17	2.19
26	1.17	2.00	1.46	1313	2.62	1.91
27				1329		
28	0.04	2 20	1 77	1117	2.70	1 01
29 70	0.84	2.20	1.73	1048	2.30 3.22	1.81
30	1.22	2.80	1.73	1151	2.42	1.99
Avg.	1.38	2.51	1.24	1260		
NOTE:	ALUM FEED E	BEFORE RBC	UNITS	•		

TABLE E-7.	PHOSPHORUS	DATA.	PEWAUKEE	STP.	JULY	1975

Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
ı	1.16	3.32	2.08	l 385	4.59	2.88
2	1.22	2.26	1.58	1419	3.20	2.24
3	1.32	6.60	3.10	1253	8.26	3.88
4				1234		
5				1287		
6	0.70	4.32	3.42	1317	5.68	4.50
7	0.98	3.04	2.31	1298	3.94	2.99
8	1.14	2.70	1.72	1291	3.48	2.22
9	0.99	2.90	1.75	1279	3.71	2.24
10	0.68	3.80	1.80	1238	4.70	2.23
11				1347		
12	47	NC	NC	1113		
13 14	.43	NS ·	NS 2. 20	1086	7 70	2 01
15	.94 .77	3.36 3.80	2.88	1011	3.39	2.91
16	.84	3.70	2.45	1283	4.87	3.14
17	.70	3.70 3.70	2.45 2.30	1329	4.91	3.25
18	. 70	5.70	2.30	1438 1563	5.32	3.30
19				1264		
20	.40	5.00	2.12	1154	5.77	2.44
21	• 40 .	5.32	2.85	1484	7 . 89	4.22
22	•	4.34	2.15	1325	5.74	2.84
23		3.90	1.48	1442	5.62	2.13
24		3.94	1.73	1230	4.84	2.12
25				1120	,,,,,	
26				984		
27		5.00	4.40	920	4.59	4.04
28		4.86	4.20	942	4.58	3.96
29		4.56	4.20	946	4.31	3.97
30		4.20	4.00	946	3.97	3.78
31		5.00	4.10	1086	5.43	4.45
Avg.	0.88	4.07	2.69	1226		
NOTE:	ALUM FEED E	BEFORE RBC L	INITS		·	

	TABLE E-8	. PHOSPHOR	US DATA, PE	WAUKEE STP, AL	J <u>GUST 1975</u>	
Date	AI/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
				1450		
2				787		
3		4.84	2.23	692	3.35	I.54
4		5.12	2.10	992	5.07	2.08
5	1.24	3.34	0.81	897	2.99	0.73
6	1.19	3.26	0.86	992	3.23	0.85
7	1.75	2.20	0.55	886	1.95	0.49
8 9				1366		
10	0.38	5.00	2.90	1128 1067	5.33	3.09
11	0.59	5.30	2.95	1450	7 . 67	4.27
12	0.62	5.60	3.03	1306	7.07 7.31	3.95
13	0.72	4.34	2.15	1461	6.34	3.14
14	0.48	4.90	2.70	1018	4.99	2.74
15	3013	, , ,	2.,0	829	1022	2.,,
16				659		
17	0.68	6.30	5.35	674	4.24	3.60
18	0.86	5.00	2.95	859	4.29	2.53
19	0.89	4.00	2.35	920	3.67	2.16
20	0.98	4.24	2.00	1211	5.13	2.42
21	0.89	4.30	2.21	1230	5.28	2.72
22				1991		
23	0 47	7 70		1412	4 70	0.70
24	0.43	3.70	1.97	1170	4.32	2.30
25 26	0.66 0.79	4.70 4.50	2.28 1.95	1510 1374	7.09 6.18	3.44 2.68
20 27	0.79	4.42	2.00	1219	5.38	2.44
28	0.83	3.76	1.82	1213	4.59	2.22
29	0.77	J. 70	1.02	1211	4.00	∠ • ∠ ∠
30				973		
31		4.48	4.10	871	3.90	3.57
Avg.	0.82	4.44	2.35	1124		
NOTE	: ALUM FEED	AFTER RBC U	NITS WITH E	NHANCED MIXIN	G	

	TABLE E-9.	PHOSPHORU	JS DATA, PE	WAUKEE STP.	SEPTEMBER 19	75 .
Date	Fe/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2 3 4 5 6		5.20 4.70 4.76 5.26	4.70 3.88 4.10 4.00	1033 1071 1083 1329 1752 905	5.37 5.03 5.15 6.98	4.85 4.15 4.43 5.31
7 8 9 10 11 12	0.79 0.83 1.47 1.41 1.03	1.84 2.50 1.56 1.56 1.28	0.75 1.35 0.47 0.40 0.90	844 958 950 1007 916 833 685	1.55 2.39 1.48 1.57 1.17	0.63 1.29 0.44 0.40 0.82
14 15 16 17 18 19 20	0.18 0.86 1.44 0.48 0.18	4.00 2.86 1.90 5.12 6.24	4.85 I.76 I.05 4.55 5.42	685 848 768 749 749 715 659	2.74 2.42 1.46 3.83 4.67	3.32 1.49 0.81 3.43 4.06
20 21 22 23 24 25 26 27 28 29	0.05 1.16 1.31 1.71 1.41	9.10 2.70 2.64 2.36 1.72 2.28 7.90	7.25 1.70 1.32 0.80 0.77	613 749 1067 931 855 836 746 678	5.57 2.02 2.81 2.20 1.47	4.44 1.27 1.41 0.74 0.66
30 Avg.	0.95	7.30 3.85	4.40 2.77	534 886	3.89	2.35

NOTE: FERRIC CHLORIDE FEED AFTER RBC UNITS

	TABLE E-10.	PHOSPHOR	JS DATA, PE	WAUKEE STP, O	CTOBER 1975	
Date	Fe/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2 3 4	0.10 0.94	4.76 2.16	5.94 .18	818 799 783 678	7.97 1.72	4.85 0.94
5 6 7 8 9	0.80 0.58 0.47 0.68 1.29	1.80 1.20 1.12 0.90 0.66	0.83 0.40 0.27 0.25 0.15	655 651 886 488 897 871	1.17 0.78 0.99 0.44 0.59	0.54 0.26 0.24 0.12 0.14
11 12 13 14 15 16 17	0.73 0.65 0.67 0.74 0.79	1.47 1.64 3.24 2.00 1.32	0.43 0.47 0.17 0.47 0.28	731 681 939 1325 935 973 965	0.99 1.54 4.29 1.87 1.28	0.29 0.44 0.22 0.44 0.27
18 19 20 21 22 23 24	1.01 0.81 1.26 1.69 1.54	1.64 2.94 1.32 2.36 2.28	0.68 0.73 0.46 0.36 0.23	852 821 1249 746 783 791 836	1.34 3.67 0.98 1.85 1.80	0.56 0.91 0.34 0.28 0.18
25 26 27 28 29 30 31	.0 .69 .89 .63 .25	NS 1.70 0.27 0.34 1.36	NS 0.05 0.04 0.03 0.72	685 829 912 802 814 761 852	1.55 0.21 0.27 1.03	0.05 0.03 0.02 0.54
Avg. NOTE:	1.01 FERRIC CHLC	1.97 DRIDE FEED	0.67 AFTER RBC U	833 JNTTS		

	TABLE E-II.	PHOSPHOR	JS DATA, PEV	WAUKEE STP. NO	OVEMBER 197	5
Date	Fe/P Mole Ratio	Effluent Total P mg/!	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.04 0.90 1.52 1.95 2.03	NS 1.60 3.03 1.48 1.70 6.28 2.16 2.00 1.40 1.94	NS 1.02 0.48 0.50 0.50 3.32 1.07 0.43 0.27 0.26	908 NS 1030 931 878 825 806 431 871 1211 988 886 825 840 715 689	1340 1.65 2.82 1.30 1.40 5.46 2.61 1.97 1.24 1.60	1.05 0.44 0.41 2.88 1.29 0.42 0.24 0.21
17 18 19 20 21 22 23 24 25 26 27 28 29 30 Avg.	1.06 1.11 1.31 1.38 0.75 1.11 0.96 1.24 1.05	1.34 0.80 2.10 1.00 2.00 0.66 2.90 0.72 1.80	0.38 0.37 0.40 0.17 0.20 0.27 0.18 0.18 0.08	708 840 829 889 776 678 613 878 814 795 659 723 1442 1204	1.22 0.67 1.74 0.88 1.22 0.58 2.36 0.57 1.18	0.34 0.31 0.33 0.15 0.12 0.24 0.15 0.14 0.05
NOTE:			BEFORE RBC U			

	TABLE E-12	. PHOSPHOR	US DATA, PE	WAUKEE STP, DI	ECEMBER 197	5
Date	Fe/P Mole Ratio	Effluent Total P mg/l	Effluent Ortho P mg/l	Plant Flow m ³ /day	Effluent Total P kg/day	Effluent Ortho P kg/day
1 2	I.40 I.56	1.16	0.06 0.06		1.36 2.12	0.07 0.06
2 · 3	0.65	2.44	0.29	1249	3.04	0.36
4	0.46	2.80	0.79	1211	3.39	0.95
5 6				912 836		
7	1.08	1.20	0.24	780	0.93	0.19
8	1.54	24.8	0.40	958	23.73	0.38
9	1.63	1.60	0.08	905	1.44	0.07
10	1.52	0.60	0.07	878	0.53	0.06
11	1.60	1.32	0.01	863	1.13	0.01
12 13				1098		
13	1.14	1.00	0.09	984 1011	1.01	0.09
15	1.62	8.12	0.16	1154	9.37	0.09
16	1.63	5.68	0.07	1098	6.23	0.19
17	1.65	3.00	0.09	1022	3.04	0.09
18	0.99	1.40	0.16	1101	1.54	0.18
19 20		, , , ,		984 852	, , , ,	
21	0.75	1.40	0.12	810	1.13	0.09
22	0.88	20.5	1.38	942	19.31	1.30
23	0.96	2.30	0.09	852	1.96	0.07
24				761		
25				632		
26				674		
27				692		
28				712		
29				768		
30				749		
31				715		
Avg.	1.24	4.78	.22	916		

NOTE: FERRIC CHLORIDE FEED BEFORE RBC UNITS

APPENDIX F

TABLE F-1.	ORGANIC	REMOVAL	DATA,	PEWAUKEE	STP,	JANUARY	1975

Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total		Percen Remo Total		Percent TOC Removal Total RBC	Hydraulic Loading m ³ /day/1000 m ²
1	8	7.52	82	63				55.8
2 3	11	7.08	88	76				61.5
4								57.0 55.4
5		•						56.2
6	12		-		85	73		62.7
7	12	6.84	89	74	70	15		62.7
8	12	8.45	66	33				72.1
9	10	30.95	00	22				108.8
10	10							142.2
11								107.1
12				•				78.2
13	9		•					99.4
14	9	8.54	95	90	94	87		68.0
15	8	4.64	93	69	95	77		63.1
16	9	5.66	94	83	95	85		56.6
17	9							59.5
18								48.5
19	0							47.7
20	9	C 75	00	70	0.4	70		68.4
21 22	9 10	6.35 13.38	90	72	94	78		59.5
23	10	7.62	82	63	91	74		72.1
24	11	7.02						69.3
25	• • • • • • • • • • • • • • • • • • • •					-		79.4 91.3
26	•							43.6
27	11							51.3
28	10	8.84	74	67	81	70		78 . 2
29	11	3.91	91	83	89	78		44.4
30.	12	3.81		-2				46.9
31	11							58.3
Avg.	. 11	8.84	86	69	92	77		68.4
	••-							

	TABLE	F-2. ORG	ANIC RE	MOVAL	DATA,	PEWAUKE	<u>E STP, FEBRUA</u>	RY 1975
Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total			nt COD loval RBC	Percent TOC Removal Total RBC	Hydraulic Loading m ³ /day/1000 m ²
ı					·			68.9
2 3								68.4
3	11							42.4
- 4	12	5.42	90	81	89	78		47. 3
5	12	5.91	84	66				61.9
6	. 11	10.55	87	87	89	86		61.1
7	10						,	46.4
8 9								62.3
								68.4
10	11							55.0
11	10	4.39	68	41	83	65		51.7
12	10	6.79	83	78	82	77		51.7
13	9	5.22	81	72				50.9
14	10							70.5
15								62.7
16								70.1
17	10							55.0
18	12	4.05	94	85	89	72		62.7
19	[]	7.18	87	77	89	79		66.4
20	11	6.69	75	57				73.3
21	11							53.8
22								72.1
23								59.5
24	11							68.4
25	8		80		75 75			71.7
26	10	6.30	84	84	75	63		64.0
27	9	4.78	82	59				61.9
28	10							68.0
Avg.	10	6.10	83	72	84	74	_	61.5

	TABLE	F-3. OF	RGANIC R	EMOVAL	DATA,	PEWAUK	EE STP,	MARCH	1975	·
	Raw Water	Organic Loading	Percen Remo		Percer Remo	nt COD oval	Percen Remo		Hydraulic , Loading	2
Date	Temp. °C	*	Total	RBC	Total	RBC	Total	RBC	m ³ /day/1000	m ²
1									59.1	
							99	93	46.4	
3	10						94	83	63.6	
2 3 4	11	6.49	74	65	80	61	84	67	63.6	
5 6	11	5.91	83	65			89	74	58.3	
6	10	4.88	80	60	81	59	86	65	61.1	
· 7	10								57.9	
8									39.9	
9							97	81	82.3	
10	10						53	44	86.4	
11	10	9.23	86	72	89	77	90	83	85.1	
12	10	6.69	77	69.			67	57	70.9	
13	10	7.23	81	74	83	72			63.1	
14	10								56.6	
15									70.1	
16							90	67	79.0	
17	11						70	56	113.3	
18	10	20.31	18	46	2	36	16	64	152.8	
19	8	7.08	57	5			83	0	162.6	
20	11	3.86	57	0	75	0	81	4	184.2	
21	11								198.8	
22									110.8	
23		•					40	0	154.4	
24	10						0	36	200.4	
25	10	14.45		37		55		65	172.7	
26	10		71						112.0	
27	10						88		114.9	
28	10								145.9	
29									126.7	
30									122.6	
31	10						55	50	173.2	
Avg.	10	8.59	68	49	68	51	71	61	106.3	

TABLE	F-4.	ORGANIC	REMOVAL	DATA.	PEWAUKEE	STP.	APRII	1975

Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total		Percen Remo Total		Percen Remo Total		Hydraulic Loading m³/day/1000	_m 2
1	10	9176	10	28	44	58	-	52	130.4	
2	10	7.32	37	23			51	41	128.3	
3	10	5.22	46	16	64	65	47	51	118.2	
4	10								113.3	
2 3 4 5 6	•								109.2	
	10						89	74	104.7	
7	10						60	53	125.9	
8	10	11.08	37	46	59	48	74	77	123.4	
9	11	8.64	65	51			46	60	115.7	
10	11	8.79	70	67	75	63	40	57	112.4	
11	11								111.2	
12									95.7	
13	11								88.8	
14	11						40	32	99.0	
15	10	4.69							92.5	
16	11	8.30	82	79	74	71	60	70	95.3	
17	12	5.42	88	83			51	66	90.0	
18	12								112.4	
19									88.8	
20	11								93.3	
21	11						83	78	96.6	
22	11	8.01	77	83	90	92	28	61	93.3	
23	11	9181	87	84	78	· 73	59	57	122.6	
24	01	8.10	18	76			62	48	114.1	
25	11								108.0	
26							00		81.9	
27	10						82	7	106.7	
28	10	0.01	. . .	50	- 4		27	3	81.5	
29	11	8.01	63	58	54	62	33	22	193.5	
30	12	4.30	74	50	73	47	28	0	166.2	
Avg.	П	7.32	63	57	68	64	52	5 3	110.4	

	TABL	E F-5. 0	RGANIC	REMOVA	L DATA	PEWAU	KEE STP	, MAY	1975
Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total		Percer Remo Total	nt COD oval RBC	Percen Remo Total		Hydraulic Loading m ³ /day/1000 m ²
1 2 3 4	12 11	7.13	63	51			17	2	162.6 152.0 113.3
5	13						49 7	11 12	110.4 126.7
6	12	8.59	73	65	79	73	44	0	151.6
7	12	8.01	52	38	66	57	58	41	133.6
8 9 10	13 12	3.42	77	68			94	89	104.3 102.3 90.0
	17						00	20	94.5
12	13	15 10	E0	60		60	88	60	131.6
13	13	15.18	59	60	66	62	89	33	187.4
14	13	9.18	80	69	84	73	91	57	150.3
15	13	7.76	73	73			82	0	112.4
16 17	. 13								133.2 102.3
18							97	89	99.4
19	14				•		85	84	178.4
20	16	14.35	73	59	18	71	84	87	171.1
21	15	16.40	79	72	79	68	92	90	180.1
22	16	9.62	81	81			93	85	144.2
23	13								178.0
24 25							00	0.5	152.4
25 26	16						99	95	146.7
20 27	17	7.91	60	EΩ	67	67	97 74	94	159.7
28	16	4.88	87	59 79	87 87	63 74	74 05	68	111.2
29	17	4.20	72	63	07	74	85 80	67 80	80.3
30	16	4.20	12	65			89	80	79.4
31	10								92 . 5
									70.5
Avg.	14	8.98	71	64	7 7	67	76	61	129.2

TABLE F-6.	ORGANIC	REMOVAL	DATA,	PEWAUKEE	STP.	JUNE	1975

Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total			nt COD oval RBC	Percer Remo		Hydraulic Loading m ³ /day/1000 m ²
1						-	92	74	70.5
2	16						82	73	84.7
3	17	6.84	76	69	76	66	81	71	84.7
4	15	7.13	54	35	71	62	94	89	110.0
5	· 17	10.69	68	61			77	77	113.3
6	15								99.4
7									83.1
8							94		73.3
9	16						77		108.0
10	16	4.98	46	51	65	66	60	66	81.9
11	16	7.18	87	69	87	70	90	82	121.4
12	16	6.59	77	69			65	63	94 . l
13	16								89.6
14									110.0
15							81	36	119.8
16	17						83	56	111.6
17	17	9.08	32	9	10	0	13	0	141.4
18	17	5.61		0	50	5	47	0	124.3
19	17	6.79	47	1			10	53	111.2
20	17								109.2
21									57.9
22							53	30	73.7
23	18					,	75	61	112.9
24	19	6.84	68	26	81	47	73	43	112.0
25	18	7.37	61	59	72	63	63	21	106.7
26	17	4.30	87	62			68	0	103.5
27	18								104.7
28	18								, 88.0
29	18						76	46	82.3
30	18						83	22	90.4
Avg.	. 17	6.98	59	42	64	47	73	57	98.2
NOT	- 40				بسياست		POD /day		000 ca m

	TABL	E F-7. C	RGANIC	REMOVA	L DATA	, PEWAU	KEE STF	, JULY	1975
	Raw Water	Organic Loading	Percen Remo	val	Remo		Percer Remo	oval	Hydraulic Loading
Date	Temp. °C	*	Total	RBC	Total	RBC	Total	RBC	m ³ /day/1000 m ²
1	18	9.08	61	36	62	37	69	32	109.2
2	18	5.71	78	49	82	61	85	62	111.6
2 3 4	20						0	43	98.6
4	19								95.3
5 6 7	21								101.0
6	19						87		103.5
7	20						85	68	102.3
8 9	21	8.74	68	52	78	65	90	82	101.4
	19	6.79	75	47	83	61	84	73	100.6
10	18		18				87		97.4
11	19								105.9
12	19				•				87.6
13	19								85.6
14	19						85		79.4
15	19		56		76		70		101.0
16	19	6.98	73	19	85	53	70	26	104.7
17	19		74				80		113.3
18	19								123.0
19	21								99.4
20	20						86		90.9
21	20						68	38	116.9
22		7.57	82	57	85	53	80	0	104.3
23	19	6.15	73	0	83	28	87	19	113.3
24	19	6.49	75	54			83	57	97.0
25	20	,							88.0
26	20							•	77.4
27	20						92	0	72.5
28	21						90	60	74.1
29	21	3.76	82	53	84	56	77	51	74.6
30	20	3.71	84	51	87	61	74	4	74.6
31	20	5.13	7 3	18			76	31	84.7
Avg.	19	6.40	74	40	81	53	83	49	96.6

	TABLE	F-8. OF	GANIC R	<u>EMOVAL</u>	DATA,	PEWAUK	EE STP,	AUGUS	T_1975	
	Raw Water	Organic Loading	Percen Remo		Percen Remo		Percen Remo		Hydraulic Loading	2
Date	Temp. °C	*	Total	RBC	Total	RBC	Total	RBC	m ³ /day/1000	m ²
1	21								114.1	
2	20								61.9	
2 3	20						92		54.2	
4	. 20						97	46	78.2	
5	20	5.13	82	58	85	61	88	66	70.5	
6	20	4.44	75	49	80	59	50	73	78.2	
7	20						95	84	69.7	
8	20								107.6	
9	21								88.8	
10	21						93	50	83.9	
П	21				80	22	89	53	114.1	
12	20	8.84	81	64	85	21	84	12	102.7	
13	21	8.74	74	53			60	42	114.9	
14	21	5.47	84	56			86	60	80.3	
15	20								65.2	
16	21								51.7	
17	20						99	92	53.0	
18	20						94	70	67.6	
19	20				82	49	87	56	72.5	
20	20	8.10	58	41	62	40	63	25	95.3	
21	21	5.13	83	55			80	32	97.0	
22	20					,			117.3	
23	20								83.1	
24	20						94	79	68.9	
25	20						80	68	89.2	
26	21	5.03	62	27	70	42	84	76	81.1	
27	20	4.54	80	51	86	60	82	63	72.1	
28	20	6.74	81	66			75	46	72.1	
29	20								71.3	
30	19								56.2	
							07	07	513	

51.3

80.3

Avg.

6.20

-	TABLE F	-9. ORGA	NIC REM	VAL D	ATA, PE	WAUKEE	STP, S	EPTEMB	ER 1975	
Date	Raw Water Temp. °C	Organic Loading	Percent Remov Tota I		Percen Remo Total		Percen Remo		Hydraulic Loading m ³ /day/1000	" 2
Date	Temp. °C		10101	INDU	10141		10141		111 / day/ 1000	
1	19						79		61.1	
2 3	20	7.86	85	77	84	74	58	51	63.1	
3	20		77		79		80		64.0	
4	20	8.45	77	51			91	80	78.2	
5 6	20								103.5	
6	19								53.4	
7	19						98		49.7	
8	20						97	93	56.6	
9	20		93				77		56.2	
10	20	4.00	83	63	90		82	56	59.5	
11	20	9.52	86	85	86	74	88	81	54.2	
12	19								49.3	
13	18								40.3	
14	18						86	75	40.3	
15	19						77	67	50.1	
16	19	4.78	88	79			82	76	45.2	
17	- 19	6.35	91	83	90	85	92	74	44.4	
18	19	5.47	84	76	94	85	88	76	44.4	
19	19								42.4	
20	18								38.7	
21	18						90		36.3	
22	18						87	78	44.4	
23	81	10.06	85	73			85	57	63.1	
24	19	9.86	85	77	85	72	89	80	55.0	
25	18	6.44	89	83	86	78	89	87	50.5	
26	18								49.3	
27	18								44.0	
28	18							99	39.9	
29	18						85		60.7	
30	20	1.81	79	2	77	0	81	0	31.4	
Avg.	19	6.79	85	68	86	67	85	7 5	52.1	

TABLE F-10. ORGANIC REMOVAL DATA, PEWAUKEE STP, OCTOBER 1975

Date	Raw Water Temp. °C	Organic Loading *	Percen Remo Total		Percen Remo Total		Percen Remo Total		Hydraulic Loading m ³ /day/1000 m ²
ı	16	8.25	54	32	47	23	62	47	48.1
2	18	7.67	86	82			87		47.3
3	18								53.0
2 3 4 5 6	. 18						0.4		45.6
5	18						94		44.0
6	17	7 76	0.0	00	0.4	60	93	00	44.0
7	20	7.76	98 06	92	94	68 81	97 08	82 81	59.9 33.0
8	19	2.93 6.88	96	80	98	01	98 96	87	53.0
9 10	19 19	0.00	97	93			90	07	51.3
11	19								43.2
12	17						97		40.3
13	17						94	65	55.4
14	20	11.86	73	44	81	49	79	21	78.2
15	19	8.06	89	81	94	87	97	92	55.0
16	18	4.39	97	87		-	92	63	57.4
17	18								57.0
18	18								50.1
19	17						90		48.5
20	18						92	86	84.3
21	19	6.10	96	89	93	85	94	87	50.I
22	19	5.52	88	70	91	, 78	85	61	53.0
23	17	7.96	80	66			84	66	53.4
24	17								56.2
25	17								46.0
26	16								55.8
27	16						88	73	61.5
28	17	6.74	99	95	98	91	98 05	91	54.2
29	17	6.10	98	89	98	89	95 04	73	55.0
30	18	5.91	95	78			94	69	51.3 57.4
31	17								
Avg	. 18	6.88	91	77	92	72	90	72	53.0
						_			

	TABLE F-	II. ORGA	NIC REM	DVAL D	ATA, PE	WAUKEE	STP, N	<u>IOVEMBE</u>	R 1975
Date	Raw Water Temp. °C	Organic Loading *	Percent Remov Total		Percen Remo Total		Percen Remo Total		Hydraulic Loading m ³ /day/1000 m ²
1	17						······································		61.1
2	17								90.4
3	17						89	69	69.3
2 3 4	16	9.37	70	50	59	45	63	55	62.7
5	17	21.68	90	92	94	96	85	94	59.1
5 6	16	17.58	83	88			83	93	55. 8
7	16								54.2
8	16								28.9
9	16						89	55	58.7
10	14						93	89	77.0
11	16	14.65	88	84	88.	85	86	84	66.8
12	16	10.79	91	83	91	86	89	82	59.9
13	16	7.23	80	52			83	53	55. 8
14	16								56.6
15	17								48.1
16	16						96	73	46.4
17	16	•					88	80	61.1
18	18	8.79	95	88			96	91	56.6
19	16	11.91	86	74	94	85	87	80	55.8
20	16	10.01	94	86	95	89	98	96	59.9
21	16								52 . I
22	15								45.6
23	15						98		48.9
24	15						98	89	59.1
25	15	8.64	90	59	91	61	96	72	55.0
26	15						99	83	53.8
27	15	•					95	64	44.4
28	13								48.9
29	13								97.4
30	13						96	81.	-
Avg.	16	12.06	87	76	87 -	78	90	78	58.7

	TABLE F-	12. ORGA	NIC REMO	VAL D	ATA, PE	WAUKEE	STP. DE	CEMBE	R 1975	
Da†e	Raw Water Temp. °C	Organic Loading *	Percent Remov Total		Percen Remov Total		Percent Remov Total		Hydraulic Loading m ³ /day/1000	m ²
1	13						94	97	79.4	-
2	12	9.28	7 8	60	83	58	74	42	71.3	
3	13	24.51	74	79	75	84	82	88	84.3	
4	. 14	256.33	74	97			75	98	81.5	
5	12								61.5	
6	12								56.2	
7	12						93	99	52.6	
8	14				-			26	64.8	
9	14	8.84	90	81	84	69	91	82	61.1	
10	13	5.71	93	82	93	81	89	68	59.1	
11	14	92.28	81	97			83	98	58.3	
12	14								74.1	
13	13					•	0.4	00	66.4	
14	14						94	98	68.0	
15	14	057.00		0.0		00	0	98	77.8	
16	II	253.89	62	98	77	99	8	99	74.1	
17	9	17.47	76	79	72	81	62	96 98	68.9 74.1	
18	13	23.63	84	90			85	90	66.4	
19	12								57.4	
20	13						98	99	54 . 6	
21	13						19	90	63.6	
22	13 13		93			•	98	99	57 . 4	
23	12		9)				90	99	51.3	
24 25	10								42.8	
26	10								45.6	
20 27	10								46.9	
28	10								48.1	
20 29	10								51.7	
30	12								50.5	
31	12									

85

76.95

Avg.

12

81

81

79 76

87

61.9

APPENDIX G

	TABLE G-	I. FINA	L EFFLUE	NT DATA,	PEWAUKEE	STP, JAN	UARY 197	5
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/I	NH3-N mg/l	TKN mg/l	Al mg/l
1 2 3 4	45 32							
4 5 6 7	29	52		14 10 20				0.02
8 9 10	78 37			23 30	4.4			0.04
11 12 13 14	13	31	30	22 23	3.5			0.14
15 16 17	23 17	39 29	50	36 33				0.17
18 19 20	70	45		27 28				0.10
21 22 23 24	30 69 73	45 76		34 87 73	4.7			0.18
25 26 27				27 48	3.6			0.15
28 29 30 31	38 15	73 46		48 18				
Avg.	38	49		33	4.0			0.12

	TABLE G-2.	FINAL	EFFLUEN	DATA,	PEWAUKEE	STP, FEBR	<u>UARY 197</u>	5
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/I	NH ₃ -N mg/l	TKN mg/l	Al mg/l
1								
2								
3	0.1			26				0.11
4	21	56		39 30	7.0			0 70
. 5	32 22	48		30 34	3.9			0.78
7	22	40		J4				
2 3 4 5 6 7 8 9								
9				41	4.2			
10				43				0.67
11	50	68		60			•	
12	28	66		40				0.72
13	29			48				
14								
15 16				54	2.5			
17				58	2.5			0.76
i 8	10	45		26				
19	24	51		36				
20	39			54				1.18
21								
22				6.7	7 .			
23				63	3.1			0.88
24	25	90		82				
25 26	25 16	90 94		62 49				
27	32) 1		48				2.34
28	22							2.34
Avg	. 27	65		46	3.4		To.	1.09

	TABLE C	-3. FIN	IAL EFFLL	<u>JENT DATA,</u>	_PEWAUKE	E STP, MA	RCH 1975	
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/l	NH3-N mg/l	TKN mg/l	AI mg/l
Date	11197 1	11197 I	11197 1	11197 1	ilig/ I		mg/l	mg/l
I								
2			2 7	46				
2 3			7	48	2.2			
4	36	76	14	48				3.20
5 6	35		10	54				4.06
6	32	59	18	50				
7								
8				70				
9			12	32				
10		50	42	78	0.8			0.77
11	31	50	12	44				1 07
12	28	E-7	26 70	39				1.03
13	30	57	30	55				
14 15								•
16			20	97	0.8			0.33
17			28	56	0.0			رر.ں
18	72	232	47	144				
19	42	<i>L J L</i>	6	76				0.80
20	33	42	23	82				0.00
21								
22								
23			32	90	1.1			0.81
24			64	122				0.79
25	53	102	24	78				
26	55		31	86				
27	25		11,	50				
28								
29								
30								
31			34	64	1.3			0.76
Avg.	40	88	22	68	1.2			1.33

 	TABLE G	<u>-4. FIN</u>	AL EFFLU	ENT DATA	. PEWAUKE	E STP, AP	RIL 1975	
Date	BOD mg/l	COD mg/l	TOC mg/i	SS mg/l	NO ₃ -N mg/l	NH ₃ -N mg/l	TKN mg/i	Al mg/l
1 2 3 4 5 6	58 28 42	81 59	28 23 23	81 63 67				1.48
5 6 7 8 9 10 11	44 30 37	98 67	10 25 11 20 27	52 48 62 30 40	2.3			1.58 1.66
12 13 14 15 16 17 18 19	19 14	59	21 17 26	27 40 26	4.2			I.04 0.97
20 21 22 23 24 25	11 16 15	17 47	17 31 25 32	45 22 32 31	4.7			1.65 1.47
26 27 28 29 30	23 10	48 36	14 35 31 36	53 72 26 19	3.1		٠	2.35
Avg.	27	. 57	24	44	3.6			1.53

	TABLE	G-5. FI	NAL EFFL	UENT DAT	A, PEWAUK	EE STP. M	AY 1975	
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/l	NH ₃ -N mg/l	TKN mg/l	AI mg/I
1 2 3	22		39	30				
2 3 4 5 6	20	32	48 42 10	30 30 32	3.5			1.97 2.23
7 8 9	37 10	52	10	31 13				2.23
10 11 12			4 4	18 32	3.6			0.62
13 14 15 16	32 19 19	66 44	4 3 7	31 24 34				0.91
17 18 19 20	34	51 71	3 6 6	17 50 29 27	3.0			1.97
21 22 23 24	24 13	/1	4	16				0.70
25 26	20	61	.l 2 12	20 35	3.1			1.05
27 28 29 30 31	29 13 20	61 39	12 12 6	37 21 25				0.63
Avg.	22	52	9	27	3.3			1.26

	TABLE G	-6. FIN	AL EFFLL	IENT DATA	, PEWAUKE	E STP, JL	NE 1975	
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/I	NH ₃ -N mg/I	TKN mg/l	Al mg/l
	<u> </u>		10	36				
2 3 4 5 6 7			11	31	1.9			0.90
3	25	60	12	30				
4	42	67	4	54				
_. 5	36		12	49				1.33
6								
7			-7	26				0.80
8			7	26 51	1.4			0.00
9	20	F0	20	51 39	1.4			
10	29	59 40	19 6	21				0.70
11	18 22	40	18	28				0.70
12 13	22		10	20				
14								
15			16	42	1.8			0.55
16			22	75	1.5			0.90
17	58	184	52	142	1.2			
18	60	108	24	80	1.2			
19	60		16	78	1.5			
20								
21								
22			16	34	2.6			
23			17	47	0.6			0 20
24	45	79	20	40	1.4			0.20
25	28	66	19	55	1.7			0.24
26	16		25	19	1.7			0.24
27								
28			15	24	3.0			
29			15 21	24 34	3.0		•	0.16
30								
Avg.	37	83	30	47	1.7			0.64

	TABLE C	-7. FIN	IAL EFFLL	JENT DATA	, PEWAUKE	E STP, JU	LY 1975	
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/l	NH ₃ -N mg/l	TKN mg/l	Al mg/l
1 2 3 4	53 26	117 49	27 11 44	41 22 102	2.2 2.5 0.2	4.4 2.8 10.5	8.0 3.3 16.6	0.04
5 6 7 8 9 10	41 36 34	69 61	20 24 9 14 15	24 40 32 37 62	1.2 0.8 1.5 2.0 2.3	8.6 5.7 7.2 7.2 9.7	10.7 8.1 9.4 10.8 13.7	0.89 1.35
11 12 13 14 15 16 17	61 40 40	90 61	18 23 28 19	30 58 35 34	1.5 1.1 1.6 2.4	8.5 6.9 6.7 6.6	10.8 10.4 11.4 9.6	1.36 0.66
19 20 21 22 23 24 25	31 54 31	77 98	18 36 27 17 12	42 58 37 46 24	1.2 0.6 0.6 1.2 1.9	8.3 5.4 6.6 5.0 5.2	12.8 10.0 10.4 8.3 10.1	0.41
26 27 28 29 30	24 24 49	56 44	25 18 23 25 25	40 31 28 14 30	2.3 1.0 1.3 2.0 1.8	8.5 5.7 7.7 5.2 5.4	12.3 9.2 10.0 7.2 7.9	0.10 0.05
Avg.	39	72	19	39	1.5	6.7	10.1	0.62

TABLE G-8	B. FINA	<u>L EFFLUE</u>	NT DATA,	PEWAUKEE	STP, AUG	<u>UST 1975</u>	
BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/l	NH ₃ -N mg/I	TKN mg/l	Al mg/l
				0.0	10.0	17.4	
31	64	10	33	0.6	0	2.0	
29	57	6	27	0.8	7.5	9.8	1.08
		4	25	0.6	8.0	9.6	1.00
		19	42	0.3	11.3	14.6	
		17					0.00
	107						0.98 1.18
							1.10
		2	. =	0.2	116	16.5	0.12
							1.52
	80	14	49	0.3	7.2	9.8	
50	106	27	52	0.6	10.6	13.5	
24		19	48	0.8	12.3	14.6	
		10	43	1.0	7.2	8.5	
45							0.72
							1.06
	40	21	28	3.3	5.2	6.3	
						1.	
		9	21	4.2	3.5	4.5	
34	79	13	40	1.3	8.2	10.4	0.96
	BOD mg/I 31 29 31 36 30 50 24	BOD COD mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	BOD COD TOC mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	BOD COD TOC SS mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	BOD COD TOC SS NO3-N mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	BOD mg/l COD mg/l TOC mg/l SS mg/l NO3-N mg/l NH3-N mg/l 31 64 10 33 0.6 0 14 40 2.0 7.4 31 64 10 33 0.6 0 0 29 57 6 27 0.8 7.5 4 25 0.6 8.0 19 42 0.3 11.3 108 17 54 01. 7.4 31 107 22 65 0.1 8.6 36 21 46 0.1 8.8 30 12 46 0.1 10.1 2 15 0.2 14.6 9 44 0.3 9.6 9 44 0.3 9.6 9 44 0.3 9.6 19 48 0.8 12.3 10 43 1.0 7.2 17 64 2.3 4.6 31 46 11 29 3.9 5.0 32 21 28 3.3 5.2	mg/l mg/l

	TABLE G-9	. FINAL	EFFLUE	NT DATA,	PEWAUKEE	STP, SEP	TEMBER I	975
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg7 I	NH ₃ -N mg/l	TKN mg/l	Fe mg/l
1 2 3 4 5 6	29 38 53	47 49	23 23 13 10	10 23 26 47	3.8 4.5 3.5 3.2	2.5 5.1 2.6 1.7	3.5 6.5 8.7 4.3	0.80 0.80 0.80
7 8 9 10 11	13 25 26	26 38	18 7 14 20 17	48 23 22 32 34	4.8 4.9 5.6 5.8 5.8	3.5 8.6 6.3 3.9 4.3	5.9 10.1 8.2 5.5 6.5	3.40 4.30
13 14 15 16 17 18	22 25 30	37 39	16 27 16 22 13	30 30 21 20 24	6.0 4.9 5.9 5.7 6.0	5.8 6.3 6.5 7.2 5.4	7.3 7.8 7.4 8.6 6.7	2.50 0.80
20 21 22 23 24 25 26	43 41 22	77 75	27 21 28 18 17	63 37 46 64 40	6.3 5.1 1.3 2.1 0.9	4.6 5.9 10.0 8.9 7.8	7.8 7.6 12.5 11.4 9.2	3.00 4.00
27 28 29 30 Avg.	57 . 33	145 59	11 39 46 20	28 97 36	1.0 0.6 1.0 4.0	11.6 8.8 10.7 6.3	12.9 14.0 16.8 8.6	2.30

	TABLE G-10.	FINAL	EFFLUE	NT DATA,	PEWAUKE <u>E</u>	STP, OCT	OBER 197	5
Date		COD mg/l	TOC mg/l	SS mg/l	NOz-N mg71	NH ₃ -N mg/l	TKN mg/l	Fe mg/l
1 2 3 4 . 5	116 29	298	71 23	140 35	1.3	7.9 9.3	13.5 10.1	5.2
6 7	10	86	29 19 13	42 26 17	0.8 1.5 1.7	7.5 8.4 10.4	8.6 9.1 11.7	3.0
8 9 10 11	18 9	37	10 9	12 20	2.4 1.5	10.3	11.1	3.5
12 13 14	85	155	10 17 56	26 21 61	3.2 1.7 0.4	7.9 6.2 9.2	9.3 7.8 12.9	4.0 8.6
15 16 17	28 10	36	6 16	39 23	2.0 1.7	6.5 8.0	8.4 9.5	0.0
19 20 21	13	37	20 14 9	30 60 28	1.2 1.7 1.2	13.0 9.8 12.9	15.1 13.7 14.0	8.6
22 23 24 25 26	31 50	51	26 27	51 54	2.0	10.0 9.3	12.6 11.8	7.0
27 28	6	20	26 7	38 21	2.4 1.7	7.6	10.1	10.0
29 30 31	12 26	23	16 22	25 23	2.1	6.7	8.0	4.0
Avg	. 32	83	21	38	1.8	9.0	11.0	6.0

	TABLE G-11	. FINAL	EFFLUE	NT DATA,	PEWAUKEE	STP, NOV	EMBER 19	75
Date	BOD mg/l	COD mg/l	TOC mg/i	SS mg/l	NO ₃ -N mg/l	NH3-N mg/l	TKN mg/l	Fe mg/l
1								
2								
2 3 4			35	27	0.9	7.8	9.2	2.5
4	75	154	37	120	2.8	8.2	13.8	
5	31	30	16	40	1.2	9.2	10.9	
6	37		18	52	1.4	10.0	15.7	4.2
7								
7 8 9			F 0	1.40		0.7		
			58 18	140 55	0.8	8.3	14.0	6.5
10 11	35	71	29	78	0.9 1.2	9.5 8.6	11.3 11.4	5.0
12	31	50	22	42	1.5	8.6	11.4	9.0
13	62	J 0	38	84	2.3	8.5	11.9	
14	02		50	04	2.5	0.5	11.0	
15								
16			20	26	1.1	10.3	13.3	
17			19	38	1.3	8.8	10.7	2.5
18	18		12	21	1.5	9.8	12.4	1.5
19	55	47	32	67	1.6	10.0	13.6	
20	24	40	4	30	1.5	8.6	10.2	
21								
22								
23			29	69	3.2	8.7	12.7	
24	c E		12	24	2.3	7.3	8.3	<i>c</i> 0
25 26	65	111	36 17	98 30	1.5	9.5 9.5	14.0 11.2	6.8
20 27			29	64	2.0 3.9	10.0	13.2	2.6
28			29	04	2.9	10.0	13.2	
29								
30			27	50	3.0	2.4	4.4	4.0
Avg	. 43	72	25	58	1.8	8.7	11.7	4.0

	TABLE G-12.	<u>FINAL</u>	<u>EFFLUE</u>	NT DATA,	PEWAUKEE	STP, DEC	EMBER 19	75
Date	BOD mg/l	COD mg/l	TOC mg/l	SS mg/l	NO ₃ -N mg/l	NH3-N mg/l	TKN mg/l	Fe mg/l
1 2 3 4 5	52 61 78	91 122	15 48 37 70	51 90 91 107	2.3 2.7 1.2 0.7	4.7 7.7 6.3 8.1	7.0 11.2 11.8 13.9	4.5
6 7 8 9 10 11	27 17 51	90 43	30 518 21 27 44	45 958 76 24 75	0.4 0 1.4 1.1 0.6	13.3 5.6 8.4 9.1 11.3	16.1 42.6 11.2 14.1 17.6	5.0 5.0
13 14 15 16 17 18 19	82 56 32	123 142	31 130 108 47 40	42 312 226 106 65	0.5 0.3 1.0 1.0	6.2 3.4 5.7 6.9 6.8	9.8 33.3 13.7 12.0 10.2	24.3 7.5
20 21 22 23 24 25 26 27 28 29 30 31	38		29 268 35	47 850 67	0.6 0.2 0.9	8.1 11.2 9.3	11.2 46.5 12.9	3.5 52.0
Avg	. 49	102	88	190	0.9	7.8	17.4	14.5

TABLE H-I. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE TRICKLING FILTER, 1973

Month	Raw Water Temp. °C	Avg. Flow m ³ /day	Raw	BOD mg/ Primary		Perc BOD Re Total	moval	Raw	S.S. mg Primary		Percent Total Susp. Solids Removal	Hydraulic Loading m ³ /day/m ²	Loading
JAN.	10.0	450	141	66	24	53	83	_	_	-	_	1.26	48
FEB.	8.7	587	168	97	48	42	71	-	-	-	-	1.65	92
MAR.	9.6	950	149	104	30	30	80			-	~	2.66	159
APR.	10.4	1223	124	56	24	55	81	-	-	-	-	3.42	110
MAY	11.8	916	110	77	33	30	70		-	.	-	2.56	113
JUNE	15.6	742	141	93	41	34	71	•	-	-	•	2.08	111
JULY	19.1	712	184	129	43	30	77	-	-	<u>:</u>	••	1.99	148
AUG.	20.0	575	160	85	41	47	74	-	-	-	***	1.61	79
SEPT.	19.1	469	186	81	28	56	85	-	-		-	1.31	61
OCT.	17.5	1586	167	115	41	31	75	-	-		-	4.44	293
NOV.	14.6	848	192	116	55	40	71	-	-	-	-	2.38	158
DEC.	12.3	912	129	76	21	41	84		-	-	_	2.55	111
AVG.	14.1	746	154	91	36	41	77		-	_	-	2.33	124

NOTE: *Organic loading expressed as g primary BOD/day per m^3 of trickling filter volume (i.e. $g/day/m^3$).

TABLE H-2. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE TRICKLING FILTER, 1974

	Month	Raw Water Temp. °C	Avg. Flow m ³ /day		BOD mg/ Primary		Perc BOD Re Total	moval	Raw	S.S. mg Primary	/I Final	Percent Total Susp. Solids Removal	Hydraulic Loading m ³ /day/m ²	Loading
	JAN.	10.4	871	1 35	105	57	58	46	_	-		-	2.43	147
	FEB.	9.7	814	132	91	62	53	32		~	_	-	2.27	119
	MAR.	9.6	2036	77	72	46	40	36	-	-	_	~	5.70	236
	APR.	10.4	1874	88	101	29	67	71	-	-	-	~	5.25	304
	MAY	13.2	2850	98	128	35	64	73	-		***	-	7.98	586
9	JUNE	15.7	1900	147	148	36	76	76	90	108	43	52	5.32	425
	JULY	18.8	874	189	149	29	85	18	110	236	40	64	2.45	209
	AUG.	19.8	700	215	243	64	70	74	136	299	63	54	1.96	273
	SEPT.	19.1	348	275	240	48	83	80	244	264	74	70	0.97	134
	OCT.	17.2	72	531	305	74	86	76	430	424	120	72	0.21	35
	NOV.	13.4	488	176	194	60	66	69	118	170	67	43	1.37	152
	DEC.	11.3	363	150	115,	44	71	62	140	154	60	57	1.02	67
	AVG.	14.1	1099	184	158	49	71	57	181	236	67	59	3.08	226

NOTE: *Organic loading expressed as g primary BOD/day per m^3 of trickling filter volume (i.e. $g/day/m^3$).

TABLE H-3. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE TRICKLING FILTER, 1976

Month	Raw Water Temp.°C	Avg. Flow m ³ /day		BOD mg/ Primary		Perc BOD Re Total	emoval	Raw	S.S. mg Primary	/l Final	Percent Total Susp. Solids Removal	Hydraulic Loading m ³ /day/m ²	Loading
JAN.	10.1	416	283	1 39	58	80	51	389	79	45	88	1.17	93
FEB.	9.7	662	330	96	50	71	85	664	72	40	94	1.85	102
MAR.	9.3	1514	248	92	33	63	87	531	58	33	94	4.24	224
APR.	10.6	969	306	59	25	81	92	496	82	41	92	2.71	92
MAY	12.2	799	280	82	15	71	95	327	79	39	88	2.24	105
JUNE	15.7	625	255	99	43	61	83	303	65	39	87	1.75	99
JULY	17.2	568	220	97	42	56	18	319	62	34	89	1.59	88
AUG.	18.3	590	187	112	59	40	68	182	66	29	84	1.66	106
SEPT.	19.3	481	149	105	46	30	69	160	73	25	84	1.35	81
OCT.	15.5	666	245	108	66	56	73	347	63	38	89	1.86	116
NOV.	12.8	447	302	105	44	65	85	381	42	25	93	1.25	75
DEC.	9.9	447	277	128	68	54	75	294	82	47	84	1.25	92
AVG.	13.4	682	257	102	46	62	73	366	69	36	89	1.91	106
	W								3				

NOTE: *Organic loading expressed as g primary BOD/day per m^3 of trickling filter volume (i.e. $g/day/m^3$).

92

APPENDIX I

TABLE 1-1. TREATMENT SUMMARY, VILLAGE OF PEWAUKEE RBC PLANT, 1973 Percent Raw Ava. Percent Hydraulic Organic Water Flow BOD ma/l BOD Removal S.S. mq/1 Total Loadina Loading Removal $m^3/day/1000 m^2$ Temp. °F m³/day Raw Primary Final Total Month RBC Raw Primary Final JAN. 10.0 2366 141 75 113 28 80 139.6 15.77 FEB. 8.7 1987 170 142 35 79 75 117.3 16.65 MAR. 9.6 1544 148 123 71 91.1 11.18 36 76 APR. 10.4 2600 124 113 29 77 74 153.4 17.33 MAY 11.8 2100 110 104 31 72 70 123.9 12.89 JUNE 15.6 1211 141 101 26 82 74 71.5 7.23 JULY 19.1 617 184 130 25 81 86 36.4 29.00 AUG. 20.0 727 160 101 16 90 84 42.9 4.35 SEPT. 19.1 859 185 117 19 90 84 50.7 5.91 OCT. 17.5 757 167 174 24 86 86 44.7 7.76 NOV. 14.6 942 192 151 30 84 80 55.6 8.40 DEC. 12.3 1294 25 129 103 . 81 76 76.4 7.86 14.1 27 AVG. 1417 154 123 82 78 12.01 83.6

w	,
~	
-	

Month	Raw Water Temp. °F	Avg. Flow m ³ /day	Raw	BOD mg/ Primary		Perc BOD Re Total	moval		S.S. mg Primary		Percent Total Removal	Hydraulic Loading m ³ /day/1000 m ²	Organic Loading *
JAN.	10.4	988	135	114	29	_	-	-	-	-	-	58.3	6.64
FEB.	9.7	942	1 32	100	32	-	-	-		-	-	55.6	5.56
MAR.	9.6	2154	77	89	25	68	72	-	-	-	-	127.1	11.31
APR.	10.4	1809	88	111	31	65	72	-	-	-	-	106.8	11.85
MAY	13.2	1253	98	106	28	71	74	-	-	-	-	73.9	7.84
JUNE	15.7	852	143	62	23	84	63	90	50	. 7	92	50.3	3.12
JULY	18.8	931	189	87	31	84	64	110	77	25	77	54.9	4.78
AUG.	19.8	492	215	123	28	87	77	136	129	28	79	29.0	3.57
SEPT.	19.1	643	275	147	60	78	59	244	94	36	85	37.9	5.58
ост.	17.2	1098	531	113	50	91	56	386	82	35	91	64.8	7.32
NOV.	13.4	889	176	105	1.8	90	83	128	78	24	81	52.5	5.51
DEC.	11.3	1094	150	101	22	85	78	140	83	24	83	64.6	6.52
AVG.	14.1	1095	184	105	31	80	 70	176	 75	26	84	64.6	6.64

V	Ο.
۱	\mathbf{a}

	Raw	Avg.	•			Perce					Percent	Hydraulic	Organic
Mọnth	Water Temp. °F	Flow m ³ /day	Raw	BOD mg/ Primary		BOD Rer Total		Raw	S.S. mg/ Primary		Total Removal	Loading m ³ /day/1000 m ²	Loading ? *
JAN.	10.1	731	232	250	24	90	90	390	426	22	94	49.3	12.30
FEB.	9.7	1238	346	225	28	92	88	630	349	43	93	83.5	18.75
MAR.	9.3	2176	262	204	33	87	84	531	451	61	89	146.7	29.93
APR.	10.6	1605	306	208	31	90	85	496	315	44	91	108.4	22.51
MAY	12.2	1400	281	204	26	91	87	327	395	30	91	94.5	19.23
JUNE	15.7	1037	255	218	22	91	90	303	269	26	91	70.1	12.64
JULY	17.2	765	220	221	14	94.	94	315	305	21	93	51.7	11.37
AUG.	18.3	674	187	124	19	90	85	182	92	16	91	79.4	9.86
SEPT.	19.3	844	175	122	31	82	75	179	90	24	86	99.8	12.15
OCT.	15.5	413	245	147	24	90	84	347	80	24	93	48.9	7.18
NOV.	12.8	689	325	138	19	94	86	389	76	21	95	81.5	11.23
DEC.	9.9	723	277	146 .	27	90	82	294	115	25	91	85.1	12.45
AVG.	13.4	1024	259	184	25	90	86	365	247	30	92	83.1	14.99

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
1. REPORT NO. EPA-600/2-78-028	2.	3. RECIPIENT'S ACCESSION NO.		
4. TITLE AND SUBTITLE EVALUATION OF THE RBC PROCESS FOR MUNICIPAL WASTEWATER TREATMENT		5. REPORT DATE March 1978 (Issuing Date)		
		6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S) David L. Kluge Raymond J. Kipp Clifford J. Crand	lall	8. PERFORMING ORGANIZATION REPORT NO.		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT NO.		
Village of Pewaukee Pewaukee, Wisconsin 53072		1BC611 11. CONTRACT/GRANT NO. S802905		
12. SPONSORING AGENCY NAME AND ADD Municipal Environmental Re Office of Research and Dev U.S. Environmental Protect Cincinnati, Ohio 45268	esearch LaboratoryCin.,OH relopment	13. TYPE OF REPORT AND PERIOD COVERED Final 14. SPONSORING AGENCY CODE EPA/600/14		

15. SUPPLEMENTARY NOTES

Robert L. Bunch, Project Officer U.S. EPA (684-7655)

Municipal Environmental Research Laboratory Cincinnati, Ohio 45268

16. ABSTRACT

The major objective of this study was to operate a full scale rotating biological contactor (RBC) to determine if it could produce an effluent that would meet the definition of a secondary effluent (BOD <30 mg/l; TSS <30 mg/l). An additional objective was to compare the performance and effluent quality of a RBC system with a full scale trickling filter operating in a parallel mode on the same influent wastewater.

A secondary objective was to evaluate the effectiveness of chemical addition (alum and ferric chloride) to remove phosphorus and determine its effect on operating performance.

The following results were determined from these studies.

- (1) The effluent from the RBC process met and exceeded the standards for secondary treatment.
- (2) The RBC process gave a superior effluent qualtiy in regard to BOD and TSS than the trickling filter.
- (3) Chemical addition to the RBC process was effective for removing phosphorus.
- (4) Chemical addition in the RBC process showed a deleterious effect on BOD and TSS removal.

17.	KEY WORDS AND DOCUMENT ANALYSIS			
a.	DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
-	Wastewater* Trickling Filter Nitrification Alum	Temperature Variation RBC Phosphorus Removal Ferric Chloride	13B	
1	DISTRIBUTION STATEMENT ELEASE TO PUBLIC	19. SECURITY CLASS (This Report) UNCLASSIFIED 20. SECURITY CLASS (This page) UNCLASSIFIED	21, NO. OF PAGES 104 22. PRICE	