

EQUIMOLAR NO-NO₂ ABSORPTION INTO MAGNESIA SLURRY--A PILOT FEASIBILITY STUDY

RESEARCH AND DEVELOPMENT DIVISION
ALLIANCE RESEARCH CENTER

SPONSORED BY ENVIRONMENTAL PROTECTION AGENCY

EQUIMOLAR NO-NO2 ABSORPTION INTO MAGNESIA SLURRY— A PILOT FEASIBILITY STUDY

PROJECT SPONSORED BY ENVIRONMENTAL PROTECTION AGENCY ORDER 4193-01

RESEARCH CENTER REPORT 4653

BY: W. DOWNS
NOVEMBER 29, 1971

THE BABCOCK & WILCOX COMPANY
RESEARCH AND DEVELOPMENT DIVISION
ALLIANCE RESEARCH CENTER
ALLIANCE, OHIO

THE BABCOCK & WILCOX COMPANY RESEARCH AND DEVELOPMENT DIVISION ALLIANCE RESEARCH CENTER

ALLIANCE, OHIO EQUIMOLAR NO-NO2 ABSORPTION INTO MAGNESIA SLURRY— A PILOT FEASIBILITY STUDY

By: W. Downs ABSTRACT

Purpose

The purpose of this project was to investigate the feasibility of absorption of equimolar concentrations of NOx into MgO slurry on a 1500 cfm wet scrubbing pilot plant.

Summary

A wet scrubbing pilot plant consisting of several scrubbers was modified by the inclusion of an additional scrubber to enable series scrubbing of fly ash, sulfur dioxide, and finally nitrogen oxides. Gaseous nitrogen dioxide was injected into the flue gas following the SO2 scrubber but before the NOx scrubber. Seventeen tests were performed to evaluate parameters including the liquid-to-gas ratio, the ratio of NO2 to NO, slurry concentration, stoichiometry, and gas flow rate.

Results

NOx absorption was very poor for all conditions tested. The absorption is estimated to be less than 10%. The results are obscured by large variance in the NO_X measuring techniques. SO₂ absorption in the NO_X scrubber was dependent upon the liquid-to-gas ratio and varied from 86% to 98.3%. Deposition on the underside of the first tray of the SO, scrubber was observed.

Conclusions

NO_X absorption with equimolar concentrations of NO and NO₂ into MgO slurry is not feasible in the apparatus tested. It is probably unfeasible in any practical gas-slurry contacting apparatus.

NO_X absorption into soluble alkalis may be feasible and would best be done in packed towers.

Recommendations

MgO slurry should be removed from those bases being considered for aqueous NO_X absorption.

Work should continue on the feasibility evaluation of soluble bases for this system.

> Research Center Report 4653 Order 4193-01 November 29, 1971 Equimolar NOx-MgO Absorption Project Sponsored by Environmental Protection Agency

TABLE OF CONTENTS

			Page
1.0		ODUCTION	1-1
2.0	PILO	T PLANT EQUIPMENT	2-1
	2.1	Coal Preparation	2-1
	2.2	Burner and Furnace	2-1
	2.3	Fue1	2-2
	2.4	Wet Scrubbing Apparatus	2-2
		2.4.1 Particulate Scrubbing System	2-2
		2.4.2 Floating Bed Absorber	
	2.5		
	2.6	NO _X Scrubber and Components	2-4
		2.6.1 NO ₂ Injection System	2-4
		2.6.2 NO _X Scrubber	2-5
	2.7		
3.0	TEST	APPARATUS AND PROCEDURES	3-1
	3.1	Plant Operating Test Procedure	3-1
	3.2	Flue Gas Analysis	
		3.2.1 General Analysis	3-2
		3.2.2 NO _X Analysis	3-2
	3.3	Liquid Analyzer	3-7
4.0	RESU	ILTS	4-1
	4.1	Overall Results	4-1
		4.1.1 Particulate Scrubber	4-1
		4.1.2 FBA	4-1
	4.2	NO _X Scrubber Results	4-2
		4.2.1 NO, Absorption	4-2
		4.2.2 SO ₂ Absorption	4-3
5.0		USSION	5-1
6.0		LUSIONS	6-1
7.0	RECC	MMENDATIONS	7-1
	RENCE		R-1
APPE	NDIX	A, SALTZMAN ANALYTICAL PROCEDURE	A-1
		R. COMPILITER OUTPILL	B-1

TABLE OF CONTENTS

List of Tables

Table		Page
2.1	Fuel Analysis	2-7
3.1	Sodium Nitrite Equivalence for Mixtures of NO and NO ₂	3-8
4.1	Analysis of Deposit Samples	4-4
4.2	Parameter Study Specifications	4-5
4.3	Summary of Results	4-6
	<u>List of Figures</u>	
Figur	-	Page
2.1	Magnesia Base Slurry Scrubbing Pilot Plant	2-8
2.2	Basic Combustion Test Furnace	2-9
2.3	Particulate Scrubbing System	2-10
2.4	Particulate Scrubbing System	2-11
2.5	Floating Bed Absorber	2-12
2.6	Floating Bed Absorber	2-13
2.7	Slurry Entrainment Separator Section	2-14
2.8	NO ₂ Injection System	2-15
2.9	NO _Y Scrubber Dimensions	2-16
2.10	NO_{γ} Scrubber	2-17
2.11	NO _X Scrubber and Leach Bed	2-18
2.12	Pilot Plant Flow Schematic	2-19
3.1	SO ₂ Sampling System	3-9
3.2	NO _X Sampling System	3-10
3.3	NO Oxidation Rate in Air	3-11
3.4	NO Oxidation Rate in Flue Gas	3-12
3.5	Equilibrium HNO ₂ Concentrations	3-13
4.1	Deposition on Underside of First FBA Stage	4-7
4.2	SO ₂ Absorption in NO _X Scrubber	4-8
5.1	Geometry Assumed for NO _X Absorption	5-8
5.2	Predicted NO _X Absorption in Test Apparatus	5-9
5.3	Process Flow Schematic	5-10

1.0 INTRODUCTION

 NO_χ removal from power plant effluents by wet scrubbing is one of the approaches being considered by the Office of Research and Monitoring (ORM) of the Environmental Protection Agency (EPA) in its overall NO_χ program. In response to the suggestion from several sources including the recommendation submitted to ORM by The Babcock & Wilcox Company under Contract CPA-22-69-162, the feasibility of absorbing equimolar concentrations of NO and NO_χ into magnesia slurry was undertaken. This work is the outgrowth of a study of wet scrubbing of pulverized coal generated flue gas for the purpose of removing particulate matter and sulfur dioxide in a 1500 cfm pilot plant. As part of that study it was shown to be unfeasible to absorb equimolar NO_χ and SO_χ simultaneously. However, it was suggested that possible nitrogen oxides could be absorbed into magnesia in the scrubber following the SO_χ scrubber. This report presents the results of that work under Contract 68-02-0022.

2.0 PILOT PLANT EQUIPMENT

The pilot plant equipment used for these tests is a self-contained facility which includes coal preparation equipment, a coal-fired furnace, and a wet scrubbing pilot plant. Most of this equipment has been previously described. (1) Only the modifications and additions will be discussed in detail. A pictorial drawing of the pilot facility is shown in Figure 2.1.

2.1 COAL PREPARATION

Coal preparation involves transporting 1/2" mesh coal from the storage bunker to the pulverizer, pulverizing the coal, and transporting it to a storage hopper at the pilot plant. From there the coal is removed by a screw and conveyed to the furnace by the primary air.

The storage bunker is used primarily to supply the heating plant for the Research Center. The pulverizer used during this test program differs from the used on previous tests. (2) A Schutz-O'Neill Air Swept pulverizer Model 22-WJ superfine pulverizer was installed in early 1971 and was used exclusively for these tests.

2.2 BURNER AND FURNACE

The pulverized coal burner is a B&W cell-type circular burner with a natural gas lighter. This lighter is operated continuously during coal firing to help maintain stable ignition.

The furnace, Figure 2.2, consists of a horizontal cylinder 8 feet in length by 4-1/2 feet in diameter. This forms the actual combustion chamber. The walls of the furnace are formed by a water jacket, which dissipates heat by the production of nonpressurized steam. The inside walls are not covered with refractory.

To maintain stable ignition, the pulverized coal must be fired with preheated air. This air is supplied by a forced draft fan and preheated by two gas-fired air heaters capable of heating 10,000 lb/hr air to a temperature of 1000°F. The heat release of the furnace averages about six million Btu/hr.

Combustion gases pass from the furnace proper through three tube banks that cool the flue gas to approximately 450°F. All tubes are 1-1/2-inch O.D. on 2-1/2-inch centers with exception of the first six rows of tubes which are on 5-inch centers. Behind each tube bank is a duct permitting flue gas recirculation

to the burner. See Figure 2.2. This feature, however, was not used during the tests. Flue gas leaving the tube bank passes through a transition piece to a 15-inch-diameter vertical stack. Gas flow to the scrubbing system is taken from the side of this stack. The vertical stack ends at a relief valve. The relief valve is pneumatically operated and is automatically activated during a test if furnace pressure becomes too great. The relief valve can also be operated manually from the control panel and is used during startup and shutdown operations.

The furnace control panel is fully equipped to monitor and control the furnace pressures. A 12-point Speedomax recorder provides a continuous check of the temperatures within the furnace and ancillary components. Oxygen concentration of the flue gas is continuously monitored by a Bailey O₂ Analyzer Model A57.

Located on top of the furnace (Figure 2.2) is the steam drum, a steel cylinder 4-foot diameter by 6-foot long. This drum supplies water to the furnace water jacket and acts as a steam-water separator for venting the steam to atmosphere.

2.3 FUEL

Two fuels were used cocurrently during the tests, pulverized coal and natural gas. Pulverized coal was the main fuel while natural gas was used in the lighter and accounted for about 4% (thermal) of the fuel used. A number of coal analyses were run and the results reported in Table 2.1. A typical natural gas analysis obtained from the Ohio Fuel Company is also shown in Table 2.1.

2.4 WET SCRUBBING APPARATUS

2.4.1 Particulate Scrubbing System

Flue gas leaving the furnace passed through the water tube section to the particulate venturi and cyclone, see Figures 2.3 and 2.4. As the gas entered the venturi throat, its velocity was greatly increased. It is here that the fly ash slurry spray was introduced, just slightly ahead of the throat. The fly ash particles traveling at high velocity impacted upon the slower moving slurry droplets.

The fly ash slurry was separated from the flue gas in the cyclone separator. The flue gas and slurry entered the cyclone tangentially, spinning the slurry to the walls while the gases moved toward the center and out the top. The slurry moved from the cyclone into the sump located immediately below.

The slurry was pumped from the sump and recirculated back to the venturi spray nozzle. To maintain the desired composition, part of the slurry was

discarded. Fresh water previously treated by a zeolite bed was added directly to the sump and through the pump seal. Approximately 25 gal/min of slurry were recirculated through the spray nozzle, and about 9 lb/min were discarded as particulate product.

The particulate venturi spray nozzle flow was controlled by the pump and pinch valve. A pneumatically controlled pinch valve (Red Valve Company) regulated the amount of "short circuit" recirculation through the pump and valve loop. Closing the pinch valve forced more slurry through the spray nozzle. This arrangement was used instead of the normal control method via a gate or glove valve, because solids tend to collect behind the seat, thereby restricting flow. The product flow rate was controlled by an overflow weir in the sump which dumped slurry into a 55-gallon drum.

At the gas outlet from the particulate cyclone, the vortex spin was eliminated by a flow straightener. This cross-shaped member 10 inches long by 10 inches in diameter was placed in the cyclone gas exit duct.

A gas sampling probe used for both NO $_{\rm X}$ sampling and SO $_{\rm 2}$ sampling is positioned 4 inches downstream from the dust sampling connection. The probe includes a 6-inch long 1-3/4-inch pipe welded flush to the duct wall and a 1/8-inch glass tube located concentrically in this pipe. The pipe provides a "quiescent" zone in which the gas flow to the glass probe is relatively slow. This minimizes the possibility of slurry carryover from the cyclone entering into the glass tubing which in turn could result in SO $_{\rm 2}$ and NO $_{\rm X}$ sampling errors due to scrubbing of the gas by the slurry in the probe.

2.4.2 Floating Bed Absorber

The floating bed absorber (hereafter referred to as the FBA) includes a sump, two contact stages, and a liquid disengagement section. The FBA is depicted in Figures 2.5 and 2.6. This countercurrent device admits the flue gas through the sump. Ancillary components of the FBA sump include the following: a liquid level controller, sump observation window, and level indicator.

Above the sump the FBA consists of two stages. Each tray has an effective flow area of 2 square feet and consists of a 1/8-inch thick stainless steel plate perforated with 3/8-inch-diameter holes on staggered 1/2-inch centers. Each stage is packed with 6 to 8 inches of 'wiffle balls.''

The spray nozzle located above the top tray directs the spray of absorbing slurry onto the top tray. Since the gas rises countercurrent through the slurry, it comes into intimate contact with the absorbing slurry. Gas leaving the top tray flows through an angle iron baffle section which serves to trap large water drops, then through a York Demister to ensure that all remaining droplets are removed. The Demister is located at the very top of the FBA and consists of about 6 inches of Teflon mesh fibers. See Figure 2.7.

Flow to the spray nozzle is controlled by the aforementioned pinch valve arrangement, and the slurry composition in the sump is controlled by the product flow rate and MgO makeup rates.

2.5 INDUCED DRAFT FAN SECTION

The cleansed flue gas leaving the FBA passes downward through a vertical length containing an orifice meter, a gas sampling probe, and a particulate sampling port with slide valve. The vertical duct ends at a blank flange. Approximately 3 feet up from the flange is the takeoff for the induced draft fan. The purpose of this length of pipe is to trap any large liquid or solid particles before the gas enters the I.D. fan. A pneumatically operated damper was located at the fan inlet.

2.6 NOX SCRUBBER AND COMPONENTS

2.6.1 NO2 Injection System

The flue gas leaving the I.D. fan contained only small concentrations of fly ash and SO_2 . However, the nitric oxide concentration (NO) was still at the same level as in the furnace exhaust gases. The flue gas left the I.D. fan through a horizontal 10-inch stainless steel (316) duct to the NO_χ scrubber. At a distance of 6 feet from the I.D. fan, gaseous NO_2 was injected into the duct through a multi-orificed dispersion tube. The purpose behind the dispersion tube design was to disperse the gases as rapidly as possible to minimize the probability of extraneous reactions occurring with the momentarily concentrated NO_2 gas as it left the orifices of the dispersion tube. The NO_2 injection system is shown schematically in Figure 2.8 and consists of bottled liquid NO_2 provided with an eductor tube so that the NO_2 could be withdrawn as a liquid, a rotometer to monitor the liquid NO_2 , a steam-heated boiler to vaporize the NO_2 , and the dispersion tube. Placed immediately after the dispersion tube, a

6-1/2-inch inside diameter orifice was placed for the dual purpose of monitoring the total flue gas flow and to act as a means for mixing the NO₂ with the flue gas prior to entry into the NO_x scrubber.

The boiling point for NO_2 is $70^{\circ}F$. Thus, the tendency to form gas bubbles in the line ahead of the rotometer was an operating problem. This problem was solved by packing the valve at the NO_2 bottle in ice thereby substantially subcooling the NO_2 .

2.6.2 NOx Scrubber

The NO_{χ} scrubber was placed approximately 12 feet from the I.D. fan. A dimensional drawing of the scrubber is shown in Figure 2.9. The basic criteria for the design and location of this scrubber are as follows:

- 1. Provide maximum practical gas contact time.
- 2. Sufficient mass transfer surface area to maximize the probability that the system would be chemical reaction rate controlling.
- 3. Open gas flow path.
- 4. Locate sufficiently far from the NO₂ injection point to provide good mixing before entry into the scrubber.
- 5. Locate out-of-doors as a safety precaution.

The scrubber was designed for a total gas contact time of approximately two seconds. This is about three times the maximum gas contact time employed in the FBA. If the process still proves to be chemical reaction rate controlling, then it shall be deemed as being commercially unfeasible.

The mass transfer area consisted of parallel fiber glass window screens which were irrigated with MgO slurry by four Spraying Systems 2H560WSQ stainless steel square-pattern spray nozzles. A screen material was selected because of its superior wetting characteristics. The parallel arrangement provides for an open free flow path for the gas.

Locating the scrubber out-of-doors helped insure that no personnel in the test building would inadvertently be exposed to noxious levels of NO₂ which might leak from the slightly pressurized scrubber. Views of the scrubber, both internal and overall are shown in Figures 2.10 and 2.11.

2.7 OVERALL PILOT PLANT SCHEMATIC

Figure 2.12 shows in schematic form the overall arrangement and the approximate nominal flow rates of the various streams.

TABLE 2.1. FUEL ANALYSIS

PULVERIZED COAL ANALYSES

Lab. Serial No.	<u>C-13425</u>	<u>C-13426</u>	<u>C-13427</u>
Sample Description	Coal from BCTU Hopper 3-9-70 2200 hrs.	Coal from BCTU Hopper 3-10-70 1000 hrs.	Coal
Ash (Dry) %	9.6	9.2	
Sulphur (Dry) %	3.8	4.1	4.5
Carbon (Ult.)%			
Lab. Serial No.	<u>C-13260</u>	<u>C-13386</u>	<u>C-13377</u>
Sample Description	Pulv. Coal Sample N. Industry Strip	Pulverized Coal Ohio Seam #5&6	Pulverized Coal Ohio Seam #5&6
Total Moisture, %	3.0	4.2	
Ash, %	8.1		7.4
Sulphur, %	4.1	3.8	3.7
Btu per 1b. (Dry)	12730	12700	
Btu per 1b. (M&A Free)	13850		

NATURAL GAS ANALYSES

Sulphur Compounds Hydrogen Sulfide, gr/100 cf H ₂ S Sulphur Equiv., gr/100 cf Mercaptans - S - Equiv. Sulfide Sulphur, gr/100 cf Residual Sulphur, gr/100 cf Total Sulphur, gr/100 cf	0.017 0.018 0.007 0.007 0.004 0.034	Date of Sample Components: Nitrogen Carbon Dioxide Methane Ethane Propane Iso-Butane N-Butane Iso-Pentane	Tennessee Guernsey 2/12/69 Mo1 % 0.44 0.65 95.40 2.86 0.49 0.07 0.06 0.02
		N-Pentane	0.01
		Total	100.00

FIGURE 2.1. MAGNESIA BASE SLURRY SCRUBBING PILOT PLANT

FIGURE 2.2. BASIC COMBUSTION TEST FURNACE

FIGURE 2.3. PARTICULATE SCRUBBING SYSTEM

FIGURE 2.4. PARTICULATE SCRUBBING SYSTEM

FIGURE 2.5. FLOATING BED ABSORBER

FIGURE 2.7. SLURRY ENTRAINMENT SEPARATOR SECTION

FIGURE 2.8. NO2 INJECTION SYSTEM

FIGURE 2.9. NOX SCRUBBER DIMENSIONS

FIGURE 2.11. NOX SCRUBBER AND LEACH BED

2-18

FIGURE 2.12. PILOT PLANT FLOW SCHEMATIC

PARTICULATE
SCRUBBER

SO₂ ABSORBER

 NO_{χ} ABSORBER

	Stream	Nominal Flow Rates 1b/hr		Stream	Nominal Flow Rates 1b/hr
1	Makeup Water	750	10	Recirculated Spray	22,200
2	Seal Water	120	11	Flue Gas	4,600
3	Recirculated Spray	11,500	12	Makeup MgO	196
4	Product Fly Ash Slurry	540	13	Seal Water	120
5	Flue Gas	4,400	14	Recirculated Spray	76,500
6	Flue Gas	4,600	15	Product Slurry	327
7	Makeup MgO Slurry	286	16	Flue Gas	4,600
8	Seal Water	120	17	Fly Ash Slurry Bleed	60
9	Product Slurry	498	18	NO ₂ Injection	2.1

3.0 TEST APPARATUS AND PROCEDURES

3.1 PLANT OPERATING TEST PROCEDURE

A day's testing began with the startup of the furnace. First, the air heaters were fired and allowed to reach temperature ($\sim750^{\circ}F$). This usually took an hour. The coal feed was then ignited. The furnace gases at this time were vented directly to the atmosphere via the stack relief. A waiting period of approximately 1 to 2 hours followed until the furnace ignition was stable.

While waiting for the desired furnace conditions, the particulate scrubbing system and the FBA were being readied for operation. During this time the MgO makeup slurry was prepared to the proper concentration. When the furnace was ready, the relief valve was closed, thereby directing the flue gas to the scrubbing systems.

After the transfer of gas was made, it usually took an hour after the MgO makeup was started before the chemical composition of the FBA reached steady-state. Steady-state was assumed when two or three Palmrose analyses taken at 10-minute intervals showed that the system had reached the desired operating conditions and also when the SO₂ concentration at the pilot plant exit was constant and less than 50 ppm.

The NO_2 scrubber was started by filling the sump with MgO slurry and recirculating the slurry. During the startup period no slurry was added nor withdrawn. The NO_2 flow was set as soon as the NO concentration was known. The liquid level was maintained at as low a level as was consistent with good pump operation. This insured a more rapid approach towards steady-state. It took at least one hour to reach steady-state in the NO_χ scrubber. A typical test lasted for about an hour, during which a complete set of data was taken.

During a test several samples were taken and put into storage in the event that they were needed at a later date. If certain data were found to be unusual, an analysis of the stored samples could provide a means for determining what occurred. Samples collected and stored in 8-ounce bottles consisted of the following: MgO makeup slurry, particulate cyclone slurry, FRA slurry, NO_{χ} scrubber slurry, and a makeup water sample.

After a test was completed, the operating conditions were changed for the next test. Depending upon the operating parameter changed, there was usually a waiting period of about 1/2 to 1 hour before steady-state was again reached and the next test could begin.

3.2 FLUE GAS ANALYSIS

3.2.1 General Analysis

The method employed for SO_2 analysis was primarily the Barton coulometric titrator as previously described. (3) The sampling arrangement is shown in Figure 3.1. At the beginning of these tests a second approach for SO_2 analysis was attempted. This involved the use of a DuPont 460 $\mathrm{SO}_2/\mathrm{NO}_2$ Analyzer. This UV analyzer has been used successfully on in-plant experiments on a particulate free synthetic flue gas. However, during this test the DuPont continuously registered SO_2 concentration 150 to 250 ppm higher than the Barton. The discrepancy was investigated by measuring the SO_2 concentration with the Reich iodine titration method. (4) The Reich method was found to agree with the Barton titrator. The possibility that particulate matter was causing an SO_2 interference on the DuPont 460 was then explored analytically. It was deducted that flue gas containing 0.015 grains/DSCF and a $\overline{\mathrm{D}}_{32}$ of 0.25 micron could produce the observed discrepancy. These values are certainly within the range of possibility. Thus, the DuPont was dropped as an SO_2 monitor.

Fly ash and SO_3 concentrations were not measured during this test program. 3.2.2 NO χ Analysis

It is generally recognized that the measurement of the oxides of nitrogen is a difficult task. The circumstance here was even more so since the split between nitric oxide (NO) and nitrogen dioxide (NO $_2$) was required. To accomplish this the following methods were specified:

- 1. Phenoldisulfonic acid (PDS) for NO + NO₂.
- 2. Saltzman for NO₂ only.
- 3. Dynasciences "Fuel Cell" for NO only.

It became evident, however, that neither of the latter two methods were selective. The result of this situation was, therefore, to obscure the analysis of the data. The application of these methods are described below.

The PDS method was the primary means employed for determining overall performance.

PDS analyses were taken at three points: the FBA exit, the NO $_\chi$ scrubber inlet, and the NO $_\chi$ scrubber exit. Figure 3.2 depicts the sampling locations for all three locations.

A typical PDS sampling and analysis consists of the following. To a 1000 ml flask is added an absorbing solution consisting of hydrogen peroxide and dilute sulfuric acid. The flask is then evacuated; a gas sample is now ready to be taken. The line to the other analyzers is pinched off, and one arm of the three-way stopcock is connected to the tee. The stopcock is opened, and the gas sample is drawn into the flask.

The nitrogen oxides are converted to nitric acid by the absorbent solution and are then reacted with phenoldisulfonic acid to produce a yellow compound, which is measured colorimetrically. The color is measured with a photometer and compared with calibration curves made with a solution containing a known amount of nitrate.

A more complete and descriptive explanation of the phenoldisulfonic acid method used in these tests is given in the American Society for Testing and Materials, Standard Method of Test for OXIDES OF NITROGEN IN GASEOUS COMBUSTION PRODUCTS (PHENOL-DISULFONIC ACID PROCEDURE), ASTM Designation: D1608-60. With the exception of the following modifications, the ASTM Method was followed as written:

Modifications to ASTM Method:

- 1. Absorbent Solution 2 ml of H_2O_2 (3%) was added to 50 ml of 0.1N H_2SO_4 . This is about four times the peroxide concentration called for in the ASTM Standard.
- 2. In place of 1N sodium hydroxide solution, 1N potassium hydroxide solution was used.

The Saltzman method of analysis employed for these tests is a modification by $\mathsf{Strom}^{(5)}$ which permits the use of the Saltzman method for high concentrations of NO_2 . A detailed description of the method is attached in Appendix A. The

intent of the Saltzman method was to analyze for NO_2 only in the flue gas. However, it became evident during the tests that both NO and NO_2 were being analyzed. This observation was made in spite of the fact that Saltzman points to the observation that NO does not interfere substantially with the analysis. However, he did not perform his analysis with an $NO-NO_2-N_2$ gas mixture but rather with an $NO-N_2$ mixture.

The Saltzman analysis for samples containing only NO_2 depends upon the following two reactions proceeding at approximately the same rate:

$$NH_{2} \qquad HON \equiv N$$

$$2NO_{2} + () \rightarrow HNO_{3} + ()$$

$$SO_{3}H \qquad SO_{3}H \qquad (3-1)$$

$$NH_2$$
 $HON \equiv N$
 $2NO_2 + 2 \bigcirc \longrightarrow H_2O + 1/2O_2 + 2 \bigcirc \longrightarrow SO_3H$ $(3-2)$

where the aromatic on the left is sulfonilic acid and the aromatic on the right is the diazosulfonilic acid.

If the disproportionating reaction (3-1) was much faster than the oxidation reaction (3-2), then one mole of NO_2 would produce only one half the color as one mole of sodium nitrite. If the reverse were true; i.e., if reaction (3-2) was faster, then one mole of NO_2 would develop the same color as one mole of $NaNO_2$. As Saltzman reports, however, both reactions are significant and one mole of NO_2 yields only as much color as 0.73 moles $NaNO_2$.

Now in the present system with mixtures of NO and NO₂, a third reaction is possible which makes it quite difficult to determine the sodium nitrite equivalency for the mixture; namely,

$$^{\text{H}_2\text{O}}$$
 $^{\text{NO}} + ^{\text{NO}}_2 + ^{\text{N}_2\text{O}}_3 \rightarrow ^{\text{2H}\text{NO}}_2$ (3-3)

Both nitrous acid anhydride (N_2O_3) and nitrous acid (HNO_3) are at the same oxidation state. The extent to which reaction (3-3) takes place will affect that equivalence between NO_X $(NO + NO_2)$ and the sodium nitrite. For instance, if equimolar quantities of NO and NO_2 were present in the sample when taken and if reaction (3-3) predominated, then the NO_X -NaNO₂ equivalence would, of course, be unity. Since reaction (3-3) is a gas-phase reaction while reactions (3-1) and (3-2) are aqueous reactions, it is quite possible that reaction (3-3) does indeed predominate. Table 3.1 summarizes the expected sodium nitrite equivalence for various ratios of NO_2/NO assuming reaction (3-3) is far faster than the other two reactions. For example, if 15 minutes elapsed between the time that a sample containing 600 ppm NO is drawn and the time that the sample is analyzed, 84% of the original NO can be oxidized to NO_2 . See Figure 3.3.

It is apparent from Table 3.1 that unless some aleternate means is available to determine the NO_2/NO ratio, the correct equivalence, $C_{\rm eq}$, cannot be assigned. There are fortunately means available by which the ratio can at times be estimated as will be shown later.

Finally, since the gas sample is injected into the septum bottle, which is filled with air, significant oxidation of the NO can take place by the time the sample was analyzed.

The Dynasciences NX-130 monitor was employed with the hope of being able to monitor only NO from the NO $_\chi$ mixture. Refer to Figure 3.2 for a description of the sampling arrangement. Although this monitor is designed to measure both NO and NO $_2$, it was hoped that by passing the flue gas through Mallcosorb the NO $_2$ could be quantitatively removed. As was evident from the tests, this was not the case. Specifically, when monitoring flue gas at the FBA exit and the NO $_\chi$ scrubber inlet with NO $_2$ being injected in between, the apparent NO $_\chi$ concentration increased substantially. With a bias voltage of 0.4 volts across the fuel cell, the relationship between monitor response and gas composition is as follows:

$$y'_{NO_X} = y_{NO} + 0.53 y_{NO_2}$$

where $y_{NO_X}^{\dagger}$ = apparent NO_X concentration, ppm by volume y_{NO} = NO concentration, ppm by volume

 $y_{NO_2} = NO_2$ concentration, ppm by volume

Thus, unless the ratio of NO to NO $_2$ is known the NX-130 monitor output is difficult to translate. It is known, however, from combustion kinetics that the NO $_X$ split at the furnace exit is essentially all NO. However, given sufficient time and oxygen within the flue gas, the NO will partially oxidize to NO $_2$. Likewise as NO $_2$ forms it can further react with NO to form N $_2$ O $_3$ and/or HNO $_2$, the latter constituent very likely being removed in the Mallcosorb.

To investigate the above question the following analysis is presented. Since the N_2O_3 formation is probably much faster than the NO oxidation, an equilibrium conversion of N_2O_3 (HNO₂) can probably be assumed. It would follow then that if we started with 600 ppm NO (at furnace exit) and assumed also that the flue gas contains 3% oxygen, then by the time the flue gas passed to the FBA exit sampling point and through the sample line to the Mallcosorb at the NX-130 monitor, a period of \sim 60 seconds, \sim 20 ppm NO₂ could have formed (see Figure 3.4). At 80°F about 16 ppm HNO₂ could also have formed (see Figure 3.5). The HNO₂ would most likely be removed in the Mallcosorb. Thus, the NX-130 would have registered as follows:

$$y'_{NO_X}$$
 = (600 - 20) + (0.53)(21 - 16/2) = 587 ppm

This is an error of only 2%. However, when the NX-130 is monitoring the NO, NO₂, $\rm H_2O$ mixture at the NO_X scrubber inlet and exit, the potential for erroneous answers is substantially increased. For instance, assume the following typical condition:

[NO] = 600 ppm

 $[NO_2] = 600 \text{ ppm}$

 $[H_2O] = 15.1%$ at 130°F

≈ 6.5% at 100°F

TEMP. BULK GAS = 130°F

TEMP. SAMPLED GAS = 100°F

From Figure 3.5 the equilibrating HNO_2 is 106 ppm and 148 ppm at 100°F and 130°F respectively. Since the HNO_2 will be absorbed into the Mallcosorb at 100°F, the apparent NO_X on the NX-130 will be:

$$NO_{X}^{1} = (600 - 106/2) + (0.53)(600 - 106/2) = 573.5 + 303.5 = 837 ppm$$

This amounts to an error of 30%.

The net result of the discussion presented above is that because of several NO_χ measuring problems, a significant uncertainty exists in all the NO_χ values with the possible exception of the PDS method. That is, there is no interpretive problems with the PDS method except for its usual characteristic scatter.

In summary, the NO_{χ} analyses will be interpreted in this report as follows:

- 1. PDS: Standard Procedure.
- 2. Saltzman: The nitrite equivalence (C_{eq}) will be assumed to equal 1.0.
- 3. Dynasciences NX-130: Valid only on NO_2 free samples.

3.3 LIQUID ANALYZER

The sulfite, MgO, and suspended solids analysis procedures performed on all three process streams were identical to those used during the previous work. $^{(6)}$ No sulfate analyses were performed on the FBA product. However, sulfate, nitrite, and nitrate analyses were all performed upon the NO $_{\rm X}$ scrubber recirculated slurry. The sulfate analysis used was the standard gravimetric analysis of precipitated barium sulfate. The nitrite analysis was the ASTM method D-1254-67. Finally, the Brucine Alkaloid Method was used for the nitrate analysis.

TABLE 3.1. SODIUM NITRITE EQUIVALENCE FOR MIXTURES OF NO AND NO2

NO ₂ /NO	C _{eq}		
> 1.0 (excess NO)	1.0 (excess NO will be missed)		
1.0	1.0		
1.2	0.975		
1.4	0.955		
∞ (no NO)	0.73		

FIGURE 3.1. SO2 SAMPLING SYSTEM

FIGURE 3.2. NOX SAMPLING SYSTEM

- Saltzman Sampling Location
- ▲ Fuel Cell Sampling Location
- Control Valve

FIGURE 3.3. NO OXIDATION RATE IN AIR

FIGURE 3.4. NO OXIDATION RATE IN FLUE GAS

FIGURE 3.5. EQUILIBRIUM HNO2 CONCENTRATIONS

4.0 RESULTS

Since the singular purpose of these tests was to evaluate the feasibility of NO_{χ} absorption in flue gas containing dilute concentrations of SO_2 , the NO_{χ} scrubber system was the only equipment which was subjected to variable control. The remainder of the pilot plant was maintained under constant operating conditions. However, some pertinent observations were made with regards to the rest of the system. Therefore, before reporting on the results of the NO_{χ} scrubber, the operation and observation of the particulate scrubber and FBA will be reported. All of the computerized data and results are included in Appendix B.

4.1 OVERALL RESULTS

4.1.1 Particulate Scrubber

The particulate venturi scrubber was operated at about 5 to 6 inches w.g. over the entire course of these tests. The liquid spray rate amounted to 20 gal/MCF. These conditions are comparable to the previous tests. $^{(7)}$ SO₂ performance was also similar. The only difference observed was that while previously the slurry pH varied from 2.0 to 3.5, during these tests the pH varied from 4.0 to 5.5. This is probably due to the presence of an alkaline constituent in the ash.

4.1.2 FBA

During the previous work⁽⁸⁾ the FBA was the major subject of study. During the present program its sole function was to reduce the SO₂ concentration to below 50 ppm. To accomplish this a set of operating conditions were specified as follows:

Slurry pH Greater than 7.0 Liquid-to-Gas Ratio Greater than 4.0 lb/lb

Unslaked MgO was used exclusively and at a sufficient rate that the pH was maintained at about 8.0. Fly ash slurry from the particulate scrubber was added intermittently. This was done because during the previous work the presence of fly ash in the slurry prevented the formation of deposits in the sump and piping of the FBA. The results of operation of the FBA in this fashion are as follows:

- 1. Exit SO₂ concentrations were at all times less than 50 ppm. The nominal value was 14.2 ppm.
- 2. Although no deposition problems were experienced in the FBA piping, for the first time deposition occurred on the underside of the bottom tray. This condition was severe enough to completely close the tray holes. To a lesser extent deposition also began on the underside of the top tray. This material was analyzed by X-Ray diffraction analysis and the results given in Table 4.1. The only identifiable operating difference is the continuous operation at elevated pH's (~8.0). Only intermittent operation under these conditions was covered in the previous tests. A photograph of the deposit is shown in Figure 4.3.

4.2 NO_Y SCRUBBER RESULTS

4.2.1 NO_X Absorption

Because of the analytical problems described in Section 3.2.2, discrimination of the data and evaluation of the degree to which NO_X was absorbed is quite limited. Table 4.2 shows the parameters which were tested and also depicts the run number designation used here. That is, the tests were numbered successively but were assigned a letter which depicts the condition which was to be set up. For instance, Run 10-G was the tenth test and was specified to evaluate NO_X absorption at test condition G in Table 4.2.

The primary results can be summarized as follows:

- 1. Under none of the conditions tested was any significantly observable reduction in NO_{χ} concentration experienced across the NO_{χ} absorber.
- 2. The NO_X scrubber operated without difficulty except for a considerable degree of carryover leaving the top of the scrubber. For a period, this carryover affected the analysis by creating a difficult sampling situation.

All of the major results are summarized in Table 4.3. The most interesting factor to note is the NO_χ measurements by the NX-130 and the PDS. The former analysis depicts a reduction in NO_χ concentration in several tests. Significantly the PDS method not only does not indicate the same reduction but in fact indicates an increase NO_χ concentration across the scrubber in several instances. This probably is due to the variance in the PDS method.

4.2.2 SO₂ Absorption

After several of the scheduled tests were completed and the lack of performance was evident, the suitability of the design of the NO_X scrubber became a concern. To evaluate the scrubber design a test was run whereby the scrubber could be evaluated as a sulfur dioxide absorber. This was accomplished by operating the FBA deficient of MgO. Flue gas containing 1350 ppm SO_2 entered the NO_X scrubber. No NO_2 was added to the flue gas. The results are shown in Figure 4.2. These results reveal several facts. First, the K_g a for SO_2 absorption although only about one third as great as for the FBA is still adequate to produce large and measurable changes in SO_2 concentration. Secondly, the fact that SO_2 absorption changed significantly with changes in the liquid spray rate means that either the wetted area changes significantly with the liquid spray rate or that a significant liquid-phase effect is present. This liquid-phase dependence could be either the liquid-phase diffusion coefficient k_2 or a reaction rate effect such as the following:

$$MgO_{(s)} + H_2O + Mg^{++} + 2OH^{-}$$
 (4-1)

$$SO_2 \cdot H_2O + 2OH^- + SO_3^- + 2H_2O$$
 (4-2)

Reaction (4-1) represents the dissolution of MgO which could be the limiting step in either the SO_2 absorption or NO_X absorption systems.

Although no data exists with regards to the diffusivity of HNO_2 in the gas phase, if it does not differ greatly from SO_2 (by a factor of 2 to 3), then the SO_2 results will be useful in interpreting the NO_X results as will be shown in the following section.

TABLE 4.1. ANALYSIS OF DEPOSIT SAMPLES

Chem Lab No.	<u>M-24801</u>	M-24802	<u>M-24803</u>		
Sample Description	Soft Sample from Center	Incipient Deposit from Corner	Bulk Sample from Edge		
X-Ray Diffraction (Crystalline Constituent)					
Major	MgSO3 • 6H ₂ O	MgSO3 • 6H2O	MgSO3 • 6H ₂ O		

TABLE 4.2. PARAMETER STUDY SPECIFICATIONS

Test Condition	NO2/NO	L/G	Stoich.	Recirc. Slurry Conc.	Load	Number Tests	
Α	1.0	15	1.5	2.5%	100%	4	
В	0.7					1	
С	0.0					2	
D	1.3	\rightarrow				1	
E	1.0	10				1	
F		5				1	
G		15	2.0			1	
Н			3.0			1	
I			1.5	5		1	
J				10	\	1	
K	\	1	1	2.5	50		
						16 Two Tests/Da	y

TABLE 4.3. SUMMARY OF RESULTS

	Test Number	1-C	2-A	3-E	4-F	5-K	6-L	7-C	8-B	9-D	10-G	11-H	12-A	13-A	14-I	15-A	16-K	17-J
	NO _X by PDS					4			F00.4		400.0	460 5	501.6	580.9	528.6	547.5	627.7	576.6
	FBA Exit NO _X Scrubber Inlet NO _X Scrubber Exit	124.8 233.4 209.1	420.7 1122.1 901.3	969.3 1180.9	502.4 759.5 855.0	589.4 671.3 920.6		563.4 504.1 550.4	580.4 906.0 947.5	1026.2 717.5	608.8 766.0 1709.5	469.5 913.9 274.1	762.0	525.8 580.3	1310.9 1076.8	971.8 1136.4	866.3 886.4	1194.6 1223.1
	NO _X by Saltzman																	
	NOX Scrubber Inlet NOX Scrubber Exit		876.9	930.3 986.7	613.9 751.1	901.6 1226.1		324.2 311.1	802.1 566.9	937.1 857.8	680.8 491.6	696.2 509.7	442.0	662.5 256.4	689.1 492.4	694.9 471.8	642.5 449.4	609.6 451.1
	NO _X by Fuel Cell																	
	Furnace Exit FBA Exit NOX Scrubber Inlet NOX Scrubber Exit	870.3 902.0 686.0 635.2	485.8 485.8 803.4 308.3	485.6 504.3 644.4 551.1	561.9 486.9 580.6 299.7	588.1 559.6 777.8 398.4		733.2 695.6 714.4 629.8	759.6 873.6	773.6	692.4 645.6 729.9 655.0	748.7 664.4 786.1 505.3	748.6 655.0 842.2 617.6	674.2 730.4 664.8 725.7	648.7 614.9	785.5 835.8 795.6 845.9	715.7 403.2 846.8 514 1	815.7 704.9 856.0 916.4
	Ratio NO2/NO																	
4-6	PDS F.C. & Rotameter	0.87 0.00	1.67 2.29	2.24	0.51 1.55	0.14 1.45		-0.11 0.00			0.26 0.65	0.95 0.65	0.67	-0.09 0.63	1.48 0.76	0.7B 0.59	0.38 0.92	1.07 0.70
	SO ₂ by Barton																	
	Furnace Exit Particulate Scrubber Exit FBA Exit NO _X Scrubber Exit	1007.6 1138.6 10.3 6.0	1862.4 1720.0 3.5	1649.6 9.4	1538.4 1431.0 10.3		1308.8 22.8	1799.0 1614.5 21.2 8.3	1688 7 1557.1 13.2	698.0 698.0 4.2	1783.4 1595.7 4.1	1801.2 1479.5 30.9	1741.8 1479.5 30.9	1713.5 1116.7 8.5	1704.6 1587.7 2.0	1675.5 1369.9 18.4	1643.2 14.2	1951.5 1692.4 18.9
	Gas Residence Time, sec	2.22	2.10	2.22	2.32	2.50	2.10	2.22	2,22	2.22	2.22	2,22	2.22	2.32	2.32	2.32	3.08	2.32
	Gas Velocity, fps	1.8	1.9	1.8	1.7	1.6	1.9	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.3	1.7
	L/G, 1b/1b	21.4	19.2	13.6	8.5	12.5	19.1	19.9	20.2	20.2	19.9	20.3	20.4	22.0	22.0	21.5	17.6	21.8
	Ratio Nitrite/Nitrate (Liq)	11.739	0.534	1.632	3.857	6.000	0.000		6.533	41.333	9.167	4.407	4.321	5.889	5.750	6.833	6.000	4.674
	Flue Gas Flow Rate, 1b/hr	3508.0	3913.0	3748 0	3541.0	3260.0	3927.0	3772.0	3719.0	3715.0	3761.0	3688.0	3684.0	3466.0	3460.0	3518.0	2726.0	3466.0

5.0 DISCUSSION

The purpose of the program was to experimentally study the feasibility of absorbing NO_X into magnesia slurry. Since the results were largely negative, the task remaining is to establish the degree to which these results reflect upon the general feasibility of NO_X absorption by wet scrubbing. That is, it can certainly be concluded that NO_X absorption into MgO in the apparatus tested is unsatisfactory and is therefore not a feasible approach. However, to what extent does the equipment design and the choice of alkali affect the feasibility of NO_X absorption by alkali scrubbing?

To approach this question a mechanism for this absorption must first be postulated. The model for which this research work was based and which is still felt to be valid is presented here.

It is well known that NO absorption into any aqueous medium is very slow owing to its extremely low solubility in water. Secondly, several people have studied NO $_2$ absorption, particularly with respect to nitric acid manufacture. Absorption is known to diminish rapidly with decreasing NO $_2$ partial pressure. NO $_2$ absorption efficiency greater than 50% is difficult to attain when inlet NO $_2$ concentrations are less than 1000 ppm. However, several experimenters have noted that NO $_1$ absorption is enhanced when equimolar concentrations of NO and NO $_2$ are present in the gas phase. Quite obviously any absorption enhancement must be the result of a reaction between NO and NO $_2$ forming a substance more readily absorbed than either of the two reactants. That reaction is believed to be the following:

$$NO + NO_2 + H_2O \rightarrow HNO_2 + HNO_2$$
 (5-1)

In the wet scrubbing environment water vapor is present at very substantial levels. The above reaction probably takes place in two steps:

$$NO + NO_2 \rightarrow N_2O_3$$
 (5-2)

$$N_2O_3 + H_2O \rightarrow HNO_2 + HNO_2$$
 (5-3)

Little is known of the kinetics of reaction (5-1) except for the work done by Wayne. (10) He studied the formation of HNO $_2$ at 25°C and found the forward rate to be $k_f = 7.4 \times 10^4 \ \text{atm}^{-2} \ \text{sec}^{-1}$. Therefore, equimolar concentrations of NO and NO $_2$ initially at 1000 ppm each in a flue gas saturated with water vapor at 130°F and assuming that k_f equals its 25°C value, it would take 1.6 seconds to reduce the NO + NO $_2$ concentration to 200 ppm total. This conversion time is the first clue as to the contact time required for an NO $_X$ scrubber relying on reaction (5-1).

However, gas-phase kinetics are not the only factor of importance in this system. First, it should be noted that chemical thermodynamics show that reaction (5-1) is reversible and in fact in the conditions under question conversion is relatively low (5 to 15%). This means that the HNO₂ concentration driving force for mass transfer will be severely limited. Finally, the gas absorption mass transfer rate of HNO₂ into the alkali solution can easily be limiting by this system for any one of several reasons. The first is quite obviously the small gas-phase driving force available; the second is the possible MgO dissolution lags; and the third follows from the long gas side residence times required which necessitates low gas Reynolds numbers which in turn create poor gas side mixing and mass transfer conditions.

The material balances for NO, NO_2 , and HNO_2 across an element of volume as shown in Figure 5.1 lead to the following set of equations:

For HNO₂,

$$\frac{dy_1}{dZ} = \frac{1}{v_g} \left\{ r_1 - \frac{k_{1g}a}{\rho_g} (y_1 - y_1^*) \right\}$$
 (5-4)

For NO,

$$\frac{dy_2}{dZ} = \frac{-1}{v_g} \frac{r_1}{2}$$
 (5-5)

For NO₂,

$$\frac{dy_3}{dZ} = \frac{-1}{v_g} \left\{ \frac{r_1}{2} + \frac{k_{2g}a}{\rho_g} (y_2 - y_2^*) \right\}$$
 (5-6)

 $y_1 = HNO_2$ molar concentration = p_1/p_T

 $y_2 = NO \text{ molar concentration} = p_2/p_T$

 $y_3 = NO_2$ molar concentration = p_3/p_T

 v_g = gas velocity, ft/sec

 r_1^s = kinetic rate of formation of HNO₂

 ρ_g = molar density of bulk flue gas

a = specific mass transfer surface area, ft² surface/ft³ scrubber volume

 k_{1g} = gas-phase mass transfer coefficient for HNO $_2$ k_{2g} = gas-phase mass transfer coefficient for NO $_2$ y_1^* = HNO $_2$ gas concentration at the gas-liquid interface

 $y_2^* = NO_2$ gas concentration at the gas-liquid interface

Now the kinetic rate of formation of HNO2 is developed as follows:

Forward reaction:

$$\frac{dy_1}{dZ} \Big|_{Forward} = k_f y_2 y_3 H$$
 (5-7)

Reverse reaction:

. .

$$\frac{dy_1}{dZ} \Big|_{\text{Reverse}} = \frac{-k_f}{k_{eq}} y_1^2$$
 (5-8)

where $K_{eq} = \frac{k_f}{k_r} = \text{equilibrium constant}$

 k_r = reverse reaction rate constant

H = molar water vapor concentration p_V/p_T

$$r_1 = k_f y_2 y_3 H - \frac{k_f}{K_{eq}} y_1^2$$
 (5-9)

Several factors are significant from these equations (5-4) through (5-9). From equations (5-4) and (5-9) it is seen that if k_f is fast enough to maintain instantaneous equilibrium then the limiting factor will surely be the mass transfer rate. The maximum value of y_1 will be the equilibrium value.

From equation (5-5) it is seen that the only mechanism for reducing the NO concentration is to form HNO_2 which means, of course, that it is dependent on both the reaction rate and the mass transfer rate of HNO_2 .

Equation (5-6) accounts for the fact that NO_2 can absorb directly in alkali solution. NO_2 absorption would be detrimental to the process in question since it would defeat the purpose of injecting NO_2 into the flue gas in the first place. Since experience has shown equimolar $NO-NO_2$ absorption to be superior to NO_2 absorption alone, it is evident that NO_2 absorption must be substantially greater than k_{2g} . It would seem more likely that since NO_2 is substantially less soluble in water than HNO_2 , then it follows that $y_2 - y_2^*$ must be small compared to $y_1 - y_1^*$ (in spite of the small value of y_1). The relative degree to which these two constituents were absorbed in the present experiment can be examined from the product liquid analysis. NO_2 absorption will produce equimolar quantities of nitrite (NO_2^-) and nitrate (NO_3^-) in solution while HNO_2 absorption will produce only nitrite. See Table 4.2 for this ratio (NO_2^-/NO_3^-) . These results confirm that HNO_2 was the predominant species absorbed.

To apply the above model to the present experimental situation, the following simplifying assumptions were made:

- 1. NO_2 absorption was negligible relative to HNO_2 absorption (supported by liquid analysis).
- 2. $y_1^* = 0$ (no liquid film or reaction effects). This is a weak assumption but will provide a limiting solution to the present case.
- 3. The geometry depicted in Figure 5.1 was used.
- 4. The surfaces were assumed to be fully wetted.

The model was applied to typical operating conditions as follows:

The mass transfer coefficient $k_{\mbox{\scriptsize lg}}$ was determined from the Sherwood equation where:

$$N_{SH} = 0.023 N_{Re}^{0.8} N_{SC}^{0.44} = \frac{k_c^D}{D_f}$$
 $N_{Re} = 2480$
 $N_{SC} = 0.94$

...
$$N_{SH} = 10.6$$

 $D_{eq} = 0.25 \text{ ft}$
 $D = 0.2 \text{ cm}^2/\text{sec}$

...
$$k_c = 4.56 \times 15^{-3} \text{ ft/sec}$$
 $k_{lg} = 0.0764 \text{ lb mole/hr ft}^2$

Equations (5-4) through (5-9) were solved by numerical integration on an IBM 360 computer and showed that NO $_{\chi}$ absorption would only be 2% for this case. The calculated k $_{g}$ a is only 0.764. This is an extremely low mass transfer coefficient. However, from the single SO $_{2}$ absorption experiment it is possible to obtain a measured value of k $_{g}$ a for this device. For comparable liquid recirculation rates the SO $_{2}$ experiment demonstrated a k $_{g}$ a equal to 15.8 lb moles/hr ft 3 . Adjusting for differences in the expected diffusivities, the k $_{g}$ a for HNO $_{2}$ absorption would be as follows:

$$k_g a_{HNO_2} = k_g a_{SO_2} \left(\frac{D_{HNO_2}}{D_{SO_2}} \right) = 15.8 \left(\frac{0.20}{0.138} \right) = 23.0 \text{ lb moles/hr ft}^3$$

This k_ga is nearly 30 times larger than that calculated from theory. This is obviously a better measure of k_ga than the theoretical value. However, for this condition the NO_χ absorption should have been 33%. For this magnitude of NO_χ reduction, the measured change in total NO_χ concentration across the scrubber would surely have been apparent in spite of the analysis difficulties. The conclusion to be drawn here is that a significant liquid film resistance must be present in the HNO_2 absorption situation. That is equivalent to saying that y_1^* is not negligible. To include y_1^* as a system variable would greatly increase the complexity of this model because it would require the coupling on liquid side material balances, liquid side diffusion equations, and liquid side chemical reaction kinetics. If it can be assumed that y_1^* is a linear function of y_1 for a fixed set of liquid and gas flow rates, then the k_ga in equation (5-4) will be reduced by a constant and the solution to these equations will still be valid.

To evaluate the expected $NO_{\mathbf{Y}}$ absorption performance over a broad range of $\mathbf{k}_{\mathrm{p}}\mathbf{a}\text{'s}$ and $\mathbf{k}_{\mathrm{f}}\text{'s},$ this model was applied to the subject scrubber geometry and the results plotted in Figure 5.2. From this figure and from some facts regarding the process material balance, the potential feasibility of NO_{χ} absorption in the subject apparatus can be established. First, consider the flow sheet in Figure 5.3 which depicts the minimum unit operations required of the process. The process design established the criterion that the NO₂ flow to the flue gas is just sufficient (no excess NO_2) to produce an equimolar quantity of NO and NO_2 . Then the minimum NO_{γ} absorption efficiency which will produce a self-sustained supply of NO_2 is 75%. This, however, will produce an overall NO_X efficient of only 50%. The NO_{X} concentration leaving the scrubber which will be acceptable to regulating agencies in light of the fact that 50% of the NO2 would leave as NO2, is highly questionable. Deferring the above question and addressing the question to technical feasibility only, the 75% absorption efficiency is the minimum acceptable scrubber performance. Then from Figure 5.2 it is seen that for $k_f = 7.3 \times 10^4 \text{ atm}^{-2} \text{ sec}^{-1}$, the $k_g a$ will have to be in excess of 72 lb moles/ hr $\text{ft}^3.$ This is as much as 100 times the apparent $\textbf{k}_{\text{g}}\textbf{a}.$ There appears to be no

physical manner in which sufficient contact surface area could be packed into a scrubber of this type to increase the k_g a appreciably. It would appear that the system is liquid film mass transfer or chemical reaction rate limiting and at least for the MgO base, would probably not perform even under very extreme design changes. If the MgO dissolution step is the limiting factor, then for a soluble base such as sodium carbonate the apparent k_g a would only need to be increased from 23 lb mole/hr ft³ to 72 lb mole/hr ft³. This is certainly a feasible physical possibility. For a soluble base, a packed tower seems to be the most appropriate device for this function.

Summarizing, it is concluded that NO_χ absorption into a slurry of MgO is not a technically feasible approach for power plant application within the confines of reasonable equipment design. However, based upon the arguments presented above, it is quite possible that NO_χ absorption into a soluble alkali base may be feasible. The appropriate apparatus would seem to be a conventional packed tower.

A final factor which can be drawn from the above analysis is that the absorption process can be highly temperature dependent. Increasing temperature will increase the water vapor concentration, the forward reaction rate constant, the equilibrium conversion of HNO₂, and finally the gas-phase diffusion coefficient. All of the above, of course, will increase HNO₂ absorption.

FIGURE 5.1. GEOMETRY ASSUMED FOR NOX ABSORPTION

FIGURE 5.3. PROCESS FLOW SCHEMATIC

Absorber: NO + NO₂ + MgO \rightarrow Mg(NO₂)₂

Nitrator: $3Mg(NO_2)_2 + 2H_2O + 4NO + Mg(NO_3)_2 + 2Mg(OH)_2$

Absorber Efficiency	75*	80	85	90	95	99
Process Efficiency	50	60	70	80	90	.98

^{*} Minimum acceptable performance for self sustaining NO₂ supply.

6.0 CONCLUSIONS

- 1. NO_{χ} absorption with equimolar concentration of NO and NO_2 into MgO slurry is unfeasible in the apparatus tested. It is probably unfeasible in any practical gas-slurry contacting apparatus.
- 2. NO_{χ} absorption into soluble alkalis may be feasible and would best be done in packed towers.

7.0 RECOMMENDATIONS

- 1. MgO slurry should be removed from those bases being considered for aqueous NO_X absorption.
- 2. Work should continue on the feasibility evaluation of soluble bases for this system.

j1z

Submitted by: W. Downs/jlg

Approved by: Rucker

H. P. Markant

REFERENCES

- 1. W. Downs and A. J. Kubasco, 'Magnesia Base Wet Scrubbing of Pulverized Coal Generated Flue Gas Pilot Demonstration," Final Report to NAPCA under Contract CPA-22-69-162, Alliance Research Center Report 5153, pp. 2-1 through 2-17, September 28, 1970.
- 2. Ibid., p. 2-1.
- 3. Ibid., p. 3-3 through 3-5.
- 4. Ibid., p. 3-5 through 3-6.
- 5. S. S. Strom, "Catalytic Reduction of Nitrogen Dioxide with Ammonia," MS Thesis, University of Cincinnati, June, 1966, pp. 18-22.
- 6. W. Downs, op. cit., pp. 3-11 through 3-15.
- 7. Ibid., p. 4-1, pp. 4-13 through 4-14.
- 8. Ibid.
- 9. Ibid., p. 4-8.
- 10. L. G. Wayne and D. M. Yost, J. Chem. Phys. 18, pp. 767-768, 1950.
- 11. B. E. Saltzman, Anal. Chem., 26, No. 12, pp. 1949-1955, December 1954.
- U. S. Department of Health, Education, and Welfare, Public Health Service, Selected Methods for the Measurement of Air Pollutants, PAS Publication No. 999-AP-11, 1965, pp. C1-C7.

APPENDIX A

DETERMINATION OF NOX: SALTZMAN METHOD

APPENDIX A

DETERMINATION OF NO_Y: SALTZMAN METHOD

Introduction

The Saltzman method is intended for the manual determination of nitrogen dioxide in the atmosphere in the range of a few parts per billion (ppb) to about 5 ppm by changing the sample size, though the range can be increased to about 10,000 ppm. This method is also applicable to the determination of nitric oxide after it is oxidized to nitrogen dioxide. The nitrogen dioxide is absorbed in Griess-Saltzman reagent. A stable pink color is produced within 15 minutes and may be read visually or in an appropriate instrument. Only slight interfering effects occur from other gases.

Reagents

All reagents are made from analytical-grade chemicals in nitrite-free water prepared, if necessary, by redistilling distilled water in an all-glass still after adding a crystal of potassium permanganate and barium hydroxide. They are stable for several months if kept well stoppered in brown bottles in a refrigerator. The absorbing reagent should be allowed to warm to room temperature before use.

N-(1-Naphthy1) - Ethylenediamine Dihydrochloride, 0.1%

Dissolve 0.1 g of the reagent in 100 ml of water. This is a stock solution.

Sulfanilic Acid, 0.5%

Dissolve 5 g of sulfanilic acid in almost a liter of water containing 140 ml of glacial acetic acid. Gentle heating is permissible, if desired, to speed up the process. Cool and dilute to 1 liter with water.

Absorbing Reagent

Add 10 ml of the N-ethylenediamine dihydrochloride stock solution to a 500-ml volumetric flask and dilute to mark with the 0.5% sulfanilic acid. Mix just before use and discard at end of each day!

Standard Sodium Nitrite Solution, 0.0203 g/Liter

One ml of this working solution produces a color equivalent to that of 10 ml of nitrogen dioxide (10 ppm in 1 liter of air at 760 mm of mercury and 25°C). Prepare fresh just before use by dilution from a stronger stock solution containing 2.03 g of the reagent grade granular solid (drying is unnecessary) per liter. The stock solution should be stable for 90 days.

Apparatus

Spectrophotometer or Colorimeter

A laboratory instrument suitable for measuring the pink color at 550 mm, with stoppered tubes or cuvettes, is recommended.

10 or 20 ml Gas Tight Syringe

Hamilton type, for measuring gas samples.

100-ml Serum Bottle

Needle-puncture rubber stoppers, sleeve type, for serum bottles.

Analytical Procedure for Nitrogen Dioxide

Sampling Procedure

Pipet exactly 10 ml of absorbing reagent into a serum bottle and stopper bottle with rubber stopper. Inject 10 ml of the sample gas with the syringe and shake bottle vigorously. If the gas sample has an expected concentration of about 500 ppm, a 10-ml gas sample will yield an absorbance very near the standard. If the concentration is higher, use a smaller sample proportionally. If the gas sample temperature and pressure deviate greatly from 25°C and 760 mm Hg, measure and record the values.

Determination

After collection and absorption of the sample a pink color appears. Color development is complete within 15 minutes at ordinary temperatures. Transfer

to cuvettes and read in a spectrophotometer at 550 mm using unexposed absorbing reagent as a blank. Colors may be preserved, if well stoppered, with only 3 to 4% loss in absorbance per day; however, if strong oxidizing or reducing gases are present in the sample in concentrations considerably exceeding that of the nitrogen dioxide, the absorbance should be determined as soon as possible to minimize any bleaching.

Standardization

Add graduated amounts of the working standard sodium nitrite solution up to 1 ml (measured accurately in a graduated pipet or small buret) to a series of the serum bottle containing 10 ml of the absorbing reagent. Mix, allow 15 minutes for complete color development, and read the absorbance.

APPENDIX B

COMPUTER OUTPUT

MAGNESIUM BASE SLURRY SCRUBBING PROGRAM-OUTPUT DATA PAGE 1

RUN NUMBER 1-C	DAT	E 9-11	-71	TIME OF	DAY 15	30					
FLUE GAS DATA	FLOW #/HR	TEMP.	SO2 PPM	SO3 PPM	NUX PPM	FLYASH GR/DSCF	HUM. #/#	DEW POINT F	DRY Flow #/HR	STAT PRES IN.H2D	
PRIMARY AIR	454.	160.0					0.016	74.8	447.	8.1	
SECUNDARY AIR		690.0					0.016	75.6	4522.	6.3	
" FURNACE EXIT		680.0	1007.6	****	****	****	2.059	116.9	5150.	2:6	-
PART.SCRB.INLET		565.0	****	****	***	****	0.059	116.9	71 70.	2.7	
PART.CYC.EXIT		148.0	1138.6	****	****		0.159	147.9	2825.	-6.8	
VENT ABS.INLET		****	****	****	****			****		****	
ABS CYC.EXIT		****	*****		****			****		****	
FLOATING BED IN		150.0	****	****	****		0.159			-8.1	
FLOATING BED EX	3686.	0.0	****	****	****		0.196	153.4		-16.3	
P.P. CXIT ORIF.		138.0	10.3	****	125.		0.196	153.4	3081.	-16.3	
SCRUBBER STREAM DATA						VEN	NTURI ABS	ORBER	FBA		
PARTICULATE	TEMP. F	FLO	W.GPM	GAS	ABSORB	ER TEM	AP,F FLOW	,4/M	TEMP, F FL	-OW,#/M	
MAKEUP WATER	60.0	0	•0	MΔ	KEUP WA	TER **	***	* * *	60.0	0.6	
PRODUCT LIQ.	142.0	0	•0	MΔ	KEUP MG	U SL. **	***	3.1	92.0	3.1	
RECTROULATED LIG.	142.0	19	.78	PR	ODUCT L	IQ. **	***	* * *	142.0	0.0	
				RE	C. (SPRA	Y NOZ) ##	***	***	142.0	520.0	
				RE	C.(FLCW	NOZ.)	**	* * *		355.0	
FURNACE PERFORMANCE		S	CRUBBER	PERFURM	ANCE	PART.	VENT A	BS.	FLOAT.BET)	
HEAT RELEASE, BTU/HR	0.535E	07	SO2 AF	SORB.EF	F	-13.01	**	***	99.()9	
% FUEL AS COAL	9	6.5	FLYASH	! COL.FF	F	****	***	* * *	***	* *	
COAL FLOW RATE, #/HR	42	3.7	SU3 AE	SORB.EF	F	****	***	* * 	***	**	
NAT.GAS FLOW,#/HR		8.6	NOX A	SURB.EF	F	*****	***	**	***	-	
% EXCESS AIR		4.8		LOCITY,		91.8	***	**	6.		-
DXYGFN, TORY, MEAS.		.10		S-GAL/4	CF	21.7	*	***	52.		
CO2, %DRY-CALC.		. 39	LIQ/GA			3.0	***	* * *		. 8	
HUMIDITY,#/# - CALC	0.	059	PRES.D	KUP, IN.	MC	2.7	***	* * *	5,	. 3	
SOZ ABSORPTIUN PARAMETER	RS						SULFATE	FORMA	TION PARAM	METERS	
VENTURI ABSORBER		FLO	ATING BE	D ABSOR	BER						
								.,GM-M		***	
KGA,#MOLE/HR-FT3,	= ****		A,#MOLE/		=	30.0		TOTAL		**** -	
SULFITE/SO2-MOL/MOL		_	LFTTE/SC			27.98		T FURN		3.10	
SUMP RESID.TIME, MIN	= ****	SU	MP RESID	TIME, M	IN =	****		T ABSO		***	• •
							U2 A	T 48501	RH.EX= * *	***	

**** MFANS ITEM NOT MEASURED

MAGNESIUM BASE SLURRY SCRUBBING PROGRAM - DUTPUT DATA PAGE 2

RUN NUMBER	1-C	DATE 9-11	71 T	IME OF DAY	1530	
MATERIAL BALANCE	:S		, , , , , , , , , , , , , , , , , , , ,			INPUT FOR EQ KIN.PROG.
•	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS	
FURNACE						INPUT FLOWS, #ATOMS/100#FEED
INPUT,#/HR	15.68		31.36	284-0	· 5142.	CARBON 0-477223
OUTPUT,#/HR	5.41		****	302.4	5150.	HYDROGEN 0.620751
						DXYGEN 1:393074
PART.SCRUBBER			•			NITROGEN 5.046655
INPUT,#/HR	5.41		****	345.	5150.	- SULFUR 0.009072
OUTPUT,#/HR	3.35		****	449.	2825.	
· •				-		FEED RATE,#/SEC= 1.50
SO2 ABSORBERS						
INPUT,#/HR	3.35	7.53	****	658.	2825.	ENTHALPY, BTU/# = -4412.
OUTPUT #/HR	0.03	***	***	605.	3081.	
*		•				
*SO2 ABSORBERS-	GM SU2/	GM-MULE/	GRAM/		JP MGO COMPO	
PRODUCT COMP.	-100ML		100ML			GM MGO/100ML = 6.75
• • • • • • • • • • • • • • • • • • • •	-	-				NO=0, YES=1 . 0
TOTAL	4.12	0.6440				10H12, MEAS. = - +++++
COMBINED	4.12	0.6440				
FREE	0.0	~0.0		- PRODU	JCT MG BASE	PHYSICAL PROPERTIES
MOND (TOTAL)	4.12	0.6440			STRENGTH,	
-MONO(DISSOL VED			1.560			ROM = - 1:0700
MONO (SOLID)	3.16	0.4940	10.473			
BISULFITE						
MGO	1.23	0.1929	0.771			
SULFATE	****	****	****		CULATE SCRI	UBBER PRODUCT
MAGNESIUM	5.36	0.8369			STRENGTH 1	
FLYASH "	_======================================		******			M/100ML = 6:20
SOL I DS. MG			18.457			
COAL COMPOSITI	ON-MASS				***************************************	
CARBON O	0.7150					
	0.0485				•	-
	0.0465 0.0817					
					, 	
	0.0370					
	0.0740 0.0438					
TAKTED (1. NA3 R					

^{*}SOLIDS FREE BASIS, MASS/VCLUME SOLUTION

RUN NUMBER 1-	-c .	DATE 9-11-7	1 T	IME OF DAY 1	1530				
FLUE GAS DATA		MP. SO2	NOX	NOX*1	NOX#2	HUM。 - # 7 #-	DEW POINT…	STAT PRES	
	# / HRF	- PPM		PPM	PPM "	# / W	F	IN.WG	
	_	 .			070 3	0 050	116.9	2.6	
FURNACE EXIT		30.0 1007.6			870.3	0.059		-16.3	
FLOAT.BED EX		38.0 10.3		-	902.0	0.196	153.4		
NOX SÇRUB IN		76.0 10.3			686.0		153.4	2.7	
NOX SCRUB EX	3554. 13	36.0 6.0	209.	1 *****	635.2	0.212	157.4	0.0	
NOX SCRUB.DATA			ERFORMA		RAY SLU	RRY ANAL	YSIS		
	F #/M		BSORB.	41.70			2 0	. F. O.	
MAKEUP WATER	60.0 1.		BSORP.	10.45		/100ML	2.8		
MAKEUP MGO	60.0 0.7		ABSORP	***		SOL IDI +N			
PRODUCT LIQ.	138.0 3.3	10 NOX2	ABSORP	7.41		TOTAL) , N			
RECTRO LIQ.	138-0 125	0 GAS 1	Et FPS	t8	MG SO4 ,	MOLAR"			
		L/G,	SAL/MCF	147.0	MG(NO2	12, MOL			
NU2 FLOW DATA		L/G.	1/4	21.4	MG (NO3)2, MOL/			
ND2 FLOWRATE	.#/MIN 0	.O PRES	DROP, WG	0.1	TSS,GM	/100ML	11.6	77	•
NO2/NO(PDS	• • •	. 87			NITRIT	E/NITRA	re 11.73	19	
NO2/NO(FC &	-	•0							
				**	 MA#	EUD MCO	COMPOSI	TON	1
MATERIAL BALANCE				· ·				MG0/100ML=	0.0
	SULFU	R MAGNESIU	4 WAIEK	NITROGEN		SLUKKI	CONC. FOR	MOUT TOURL	0.0
NOX SCRUBBER									
INPUT,#/HR	0.03	0.0	723.8	0.31					
OUTPUT,#/HR	0.12	3.39	624.3	0.43	-			<u>-</u> -	
PHYSICAL PROPE RECYCLED SLURR									
PH	9	• 30						•	
CONDUCT.MIC		0.							
	414.714	O				~			

NOX = PDS ANALYSIS

NOX+1 = SALTSMAN ANALYSIS

NOX+2 = FUEL CELL ANALYSIS

** DXIDIZED NITROGEN ONLY

MAGNESIUM BASE SLURRY SCRUBBING PROGRAM-OUTPUT DATA PAGE 1

RUN NUMBER 2-A	DAT	E 9-15	5-71	TIME OF	DAY 17	45					
FLUE GAS DATA	FLOW #/HR	TEMP.	SO2 PPM	503 PPM	NOX PPM	FLYASH GR/DSCF	HUM. #/#	DEW POINT F	DRY FLOW #/HR	STAT PRES In.H20	-
PRIMARY AIR	487.	110.0					0.014	71.8	480.	13.5	
SECONDARY AIR	4523.	685.0					0.017	76.4	4449.	4.0	
"FURNACE EXTT	5401		1862.4	***	****	\$\$\$\$\$ \$\$.	0.058	116.3	5104.		
PART.SCRB.INLET	5401.	570.0	****	****	****	****	0.058	116.3			
PART.CYC.EXIT	3494.	143.0	1720.0	***	****	****	0.161	148.2	3010.		
VENT ABS.INLET		***			****	****	***	***			
ABS CYC.EXIT	****	****	****	****	****	****	****	****			-
FLOATING BED IN	3494.	143.0	*****	****	****	****	0.161	148.2			
FLOATING BED EX		-0.0	****	***	****	*****		- 152-8			
P.P. EXIT ORIF.	3847.	135.0	3.5	****	421.	*****	0.191	152.8	3230	-13.5	
SCRUBBER STREAM DATA PARTICULATE	TEMP.		DW+GPM		ABSORE	SER TEM	TURI ABS		FBA TEMP,F 1	-LDW,-#/M 0.8	
MAKEUP WATER	60.0		0.0	MA	KEUP WA	\			-0-0	3-2	
FRODUCT LIQ.	142.0		0.0					フェム 本本本	141.0	0.0	
RECIRCULATED LIQ.	142.0	21	0.02	RE	ODUCT L C.(SPRA C.(FLOW	Y NOZ) **	***	***	141.0	0.0 380.0	-
	-		SCRUBBER	DEDENDA	IANC E	PART.	VENT A	185.	FLOAT.8	ED.	
FURNACE PERFORMANCE	0.519			BSORBIEF		7.65		***	99	.79	
HEAT RELEASE, BTU/HR		96.2		H COL.EF		****	**	***	***	*	
8 FUEL AS COAL		10.3		BSORB.EF		*****	**	***	***	***	
COAL FLOW RATE, #7HR	7	8.8		BSORB.EF		****	**	***	***	***	
NAT.GAS FLOW.#/HR * EXCESS ATR		16.7		ELOCITY,		97.5	**	***	1	5.6	
DXYGEN, TDRY, MEAS.		3.50		AS.GAL/		20.7	**	***	5	4.3	
CU2, SDRY-CALC.		5.03		AS,#/#		2.9		***		5.9	
HUMIDITY,#/# - CALC.		058		DROP, IN.	WG	3.0		***		4.6	
SO2 ABSORPTION PARAMETE	RS	- FI	DATING B	ED ABSOF	RBER		SULFATI	E FORMA	TION PAR	AMETERS	
AEMIONT MASOURES					-				,05-,-	****	
KGA,#MOLE/HR-FT3	= ****	рК	GA, #MOLE	THR=FT3		·· ·· 41.4		-		***	
SULFITE/SO2-MOL/MOL			ULFITE/S			20.86			1. EX.=	3.50	
SUMP RESTD.TIME, MIN	= ***		UMP RESI			****	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** ****	
**** MEANS ITEM NOT	MEASURE	D			-		UZ I	AI ADSU	IKD•CA=		

RUN NUMBER 2	-A	DATE 9-15	-71	TIME OF DAY	1745	- ~		
MATERIAL BALANCES	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS		EQ KIN.P	in
FURNACE							S,#ATOMS/10	
TNPUT,#/HR	15.18		30.36	278.1	5097.	CARBON	0.467256	
OUTPUT,#/HR	9.93		****	297.1	5104.	HYDROGEN		
						OXYGEN	1394189	
PART.SCRUBBER						NITROGEN		
INPUT,#/HR	9.93		***	360.	5104.	SULFUR	0.008870	
OUTPUT,#/HR	5.41		***	484.	3010.		44050- 1	
•	** * * * *				•	FEED RATE	, #/SEC= I	•49
SO2 ABSORBERS					2010	-5-44 TA4 4 I6-M	0 Till	-4-4-9-4
INPUT,#/HR	5.41	, , , ,	- ***		3010.	ENTHALPY	BIU/# = -	4 636 .
OUTPUT,#/HR	0.01	****	***	617.	3230.			
*				-4 4 44 4 - 4	- 400 6040			
*SU2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/		P MGO COMPO		. 70	
PRODUCT COMP.	100ML	LITER	100ML			GM MGN/100ML =	6.70 0	
						NO=0, YES=1	_	
TOTAL,	2.40		· ~	- % 25	AKED IU MG	(OH)2.MEAS. =	*****	
COMBINED	2.40	0.3755		_	40 5405	DUMC 1 CA1	COT C	
FREE	0.0	0.0				PHYSICAL PROP		
MONO(TOTAL)	2.40	0.3755			STRENGTH.		.10	
MONO(DISSOLVED)		0.1656	1.72	- · · · · ·	RAVITY,HYD	ROM. = 1	•0750	
MONO(SOLID)	1.34	0.2099	4.44	9				
BISULFITE	- 0:0	-0.0		_				
MGO	4.56	0.7131	2.85			UDDED BOODIET		
SULFATE	****	***	* * * * *			UBBER PRODUCT	•55	
MAGNESTUM	6.97	1.0886			STRENGTH			
FLYASH			****		SH CONC. G	M/100ML = 5	•50	
SUL IDS - MG			20.41	1				
COAL COMPOSITIO	N-MASS	- -	- • -	••	-			
CARBON 0.	7150							
	0485							
	0817							
-	0370				••			
	0740							
· · · · ·	0438							مب ،
MALEN								

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 2-A	DATE 9-	15-71 TI	ME OF DAY	1745				
FLUE GAS DATA FLOW	TEMP.	SO2 NOX PPM PPM	NOX*1	NOX#2 PPM	HUM. #/#	DEW POINT F	STAT PRES In.WG	
FURNACE EXIT 5401.	640.0 18	62.4 *****	****	485.8	0.058	116.3	0.0	
FLOAT.BED EX 3847.	135.0		****	485.8	0.191	152.8	-13.5	
NOX SCRUB IN 3913.	136.0 **		876.9	803.4	0.191	152.8	1.4	
NOX SCRUB EX 3924.			****	308.3		154.7	0.0	
NOX SCRUB.DATA TEMP.		UB.PERFORMAN O2 ABSORB.	CF. SP(RAY SLUR	RY ANAL	Y S T S		
MAKEUP WATER 60.0	0.81 N	OX ABSORP.	19.67	MGO,GM/	100ML	1.7	87	
MAKEUP MGO 60.0			****	MGS03 (5)		0.01	56	
PRODUCT LIQ. 133.0		GX2 ABSORP	61.63	MGSO3 (T	OTAL),M	0.01	57	
RECIRC - 1 10 - 133.0	1250. G	ASTVEL FPS	1.9	MGSO4,M	OL'AR -	0:00	66	
	L	/G.GAL/MCF	140.5	MG (NO2)	2, MOLA	R 0.00	55	
NO2 FLOW DATA	ι	/G +#/#	19.2	MG(NO3)	2, MOLA	R 0.01	93	
NO2 FLOWRATE,#/MIN	0.09 P	RES.DROP,WG	0.0	TSS,GM/	100ML	10.6	77	
NO2/NO(PDS BASIS)	1.67			NITRITE	/NITRAT	E 0.53	4	
NO2/NO(FC & ROTO)	2.29							
MATERIAL BALANCE	 Ulfur magne	SIUM WATER	** NITROGEN		_	COMPOSIT	ION MGO/100ML=	0.0
NOX SCRUBBER								
INPUT,#/HR 0	.01 0.0	796.2	1.68					
OUTPUT,#/HR 0	.10 1.64	640.5	1.42					
PHYSICAL PROPERTIES RECYCLED SLURRY	DF						·	-
PH CONDUCT.MICROMHOS			-					
NOX = PDS ANALYSIS	LYSTS			- - -	., .			
NOX+2 = FUEL CELL AN	ALTSIS	_						

** OXIDIZED NITROGEN ONLY

MAGNESIUM BASE SLURRY SCRUBBING PROGRAM-DUTPUT DATA PAGE 1

RUN NUMBER 3-E	DA	TE 9-1	5-71	TIME OF	DAY 20	00					
FLUE GAS DATA	FLOW	TEMP.	S 0 2	SU3	NOX	FLYASH	HUM.	DEW	DRY	STAT	
FLUE GAS DATA	# /HR	F	PPM	РРМ	ррч	GR/DSC		PUINT	FLOW	PRES	•
	,,,,,,,	•	• • • •	•	•			F	#/HR	IN.H20	
PRIMARY AIR	487.	110.0					- 0.015	73.8	480.	13-5	
SECONDARY AIR	5128.	672.5					- 0.014	71.2	5057.	4.7	
FURNACE-EXIT		650.0	1649.6	****	***	****	* 0.056	-114.9	57 36.	· 0 - 0	
PART.SCRB.INLET	6055.	540.0		****	****	****	* 0.056	114.9			
PART.CYC.EXIT	3397.	144.0		***	****	****	* 0.150	146.0	2954.	0.0	
VENT ABS.INLET	****	****		****	****	****		****			
ABS CYC.EXIT	****	****	* *****	****	***	****		****			
FLOATING BED IN	3397.	146.0	****	****	***	***		146.0		•••	
FLOATING BED EX	3761.	0.0	***	****	****	***		151.2			
P.P. EXIT ORIF.	3761.	136.0	9.4	****	****	****	* 0.181	151.2	3185.	-13.5	-
SCRUBBER STREAM DATA						٧	ENTURI AB		FBA		
PARTICULATE	TEMP,	F FL	DW.GPM	GAS	ABSORE	ER T	EMP.F FLOY		TEMP,F F		-
MAKEUP WATER	60.0		0.0	MA	KEUP WA	TER		***	60.0	0.8	
- PRODUCT LIQ.	143.0)	0.0	MA	KEUP MG	0 SL.		2.8	0:0		
RECIRCULATED LIQ.	143.0) 2	0.02		ODUCT L			***	140.0	0.0	
				RE	C. (SPRA	Y NUZ)	***	***	140.0	0.0	-
				RE	C.IFLOW	NOZ.)	*	***		380.0	
FURNACE PERFORMANCE			SCRUBBER	PERFORM	ANC E	PART.	VENT	ABS.	FLOAT.BE	D	
HEAT RELEASE, BTU/HR	0.583	3E -07	SO2 A	BSORB.FF	F	****	* * *	***	* ***	-	
T FUEL AS COAL		96.6	FLYAS	H COL.EF	F	***	* **	***	**		
COAL FLOW RATE, #/HR	4	62.8	SO3 A	BSORB.++	F	***	=	***	***		
NAT.GAS FLOW.#/HR		8.8	NOX A	BSORB-EF	F	****	-	***	***		
% EXCESS AIR		16.7	GA-S V	ELOCITY,	FPS	94.		***		- 4	-
OXYGEN, %DRY, MEAS.		3.50		AS, GAL/M	CF	21.		***		9	
CD2, TORY-CALC.		15.05		AS,#/#	•	2.		***			
HUMIDITY, #/# - CALC	• (0.056	PRES.	DROP, IN.	WG	3.	0 **	***	5	• 5	
SO2 ABSORPTION PARAMETE	RS						SULFAT	E FORMA	TION PARA	METERS	
VENTURI ABSORBER		FL	DATING B	ED ABSOR	BER						
								C.,GM-M	.02	***	
KGA,#MOLE/HR-FT3,	= * ***		GA, #MOLE		=	***		TOTAL		****	
SULFITE/SD2-MOL/MOL	= ***	** S	ULFITE/S	02-MOL/M	IOL =	****				3.50	
SUMP RESID.TIME, MIN	= ***	+ + S	UMP RESI	D.TIME,M	IIN =	****		AT ABSO		***	-
·							0 2	AT ABSO	IRB.FX= +	***	

**** MEANS ITEM NOT MEASURED

MAGNESIUM BASE SLURRY SCRUBBING PROGRAM - DUTPUT DATA PAGE 2

RUN NUMBER 3	-E	DATE 9-15	-71 TI	ME OF DAY	Y 2000		
MATERIAL BALANCES						INPUT FOR EQ.	- KIN. PROG.
F. 15. 1. 1. 5. 5.	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS,#A	
INPUT,#/HR	17.12		34.24	300.3	5726.		•467918
OUTPUT,#/HR	9.88		****	319.3	5736.		.603335
5157 C654555							• 394246
PART.SCRUBBER							.055199
INPUT, #/HR	9.88		****	382.	5736.	SULFUR 0	.008905
OUTPUT,#/HR	****		****	442.	2954•		
SO2 ABSORBERS						FEED RATE,#/S	EC = 1.67
TNPUT-, #/HR	······································	· 6-25	****	649.	2954.	ENTHAL PY, BTU/	# = -3592.
OUTPUT,#/HR	0.03	****	*****	577.	3185.	COUNTE TYPE	W - 3372 •
*	444 5			2710	3407		
*SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/	MAKFI	JP MGO COMPOS	SITION	
PRODUCT COMP.	100ML	LITER	100ML			M MGD/100ML =	6.20
	_				PRESLAKED.		0
TOTAL	3-1-3	-0.4892	2 7522		-	DH)2.MEAS. =	***
COMBINED	3.13	0.4892					
FREE	0.0	0.0		PRODU	JCT MG BASE	PHYSICAL PROPERTI	FS
MONO(TOTAL)	3.13	0.4892			STRENGTH,		. •
MONO(DISSOLVED)	1.18	0.1844	1.917		SRAVITY, HYDR (0
MONO(SOLID)	1.95	0.3049	6.463		•		
BISULFITE "		0.0	00				
MGO	4.28	0.6695	2.678				
SULFATE	****	***	****	PARTI	CULATE SCRU	BBER PRODUCT	
MAGNESIUM	7.42	1.1587		AC II	STRENGTH .	PH = 5.50	
FLYASH			****	FLYA	ASH CONC. GM	/100ML = ****	
SOL IDS, MG			19.612				
			•	-			
COAL COMPOSITIO	IN-MA55						
CARBON O.	7150						
	0485		-				
	0817						
	0370	- ··					
ASH O.	0740						
	0438						

^{*}SOLIDS FREE BASIS, MASS/VGLUME SULUTION

RUN NUMBER 3-E	DAT	E 9-15-71	L TIM	E OF DAY	2000				
	LOW TEMP.	SO2	NOX	NOX+1	NOX+2 PPM	HUM. #7# —	DEW POINT		
FURNACE EXIT 60	55. 650.0	1649.6	****	***	485.6	0.056	F 114.9	IN.WG 0.0	
	61. 136.0		****		504.3	0.181	151.2	-13.5	
_	48. 162.0		969.3			0.181		13.4	
	81. 130.0		1180.9		551.0	0.192		0.0	
NOX SCRUB.DATA TE			RFORMANO	CE SP	RAY SLU	RRY ANAL	YSIS		-
MAKEUP WATER 60	.0 0.81	NOX A	SORP	-21.83	MGO, GM	/100ML	1.4	62	
-MAKEUP MGD 60	-0 2.00	NOX1 A	NB SORP	-6.07	MGS03 (SOL FD) .M	- 0 . 0		
PRODUCT LIQ. 134	.0 2.35	NOX2	ABSORP	14.49	MGSO3 (TOTAL),M	0.0		
RECIRC. LIQ: 134	850. ··	GAS VE	t-FPS	1.8	MGS047	MOLAR	· · · · · · · · · · · · · · · · · · ·	47	
		L/G,G/		96.1		12, MOLA		_	
NO2 FLOW DATA			/#	13.6		12. MOLA			
NO2 FLOWRATE,#/		PRES.	DROP•WG	0.0	-	/100ML			
NO2/NO(PDS BAS		"	-	-	NITRIT	F/NITRAT	E 1.63	2	
NO2/NO(FC & ROT	0) 2.24								
MATERIAL BALANCE				**	MAK	EUP MGO			
	SULFUR M	AGNES IUM	WATER	NITROGEN		SLURRY	CONC.,GM	MGO/100ML=	4:00
NOX SCRUBBER			200 5						
INPUT,#/HR		2.88	738.5	1.40					
OUTPUT,#/HR	0.02	1.34	610.2	1.81		-			
PHYSICAL PROPERTI RECYCLED SLURRY	ES OF								-
PH CONDUCT • MICRON		•							
SPECIFIC GRAVI	1 1.01	0							
		-							
NOX = PDS ANALY									
NOX+1 = SALTSMAN						·			**** *** **** ****
NOX*2 = FUEL CELL	ANALYSIS		_						•
** OXIDIZED NITRO	GEN ONLY		-						

RUN NUMBER 4-F	. 0	ATE 9-1	6-71	TIME OF	DAY 12	00				
FLUE GAS DATA	FLOW	TEMP.	S 02	\$03	ИOХ	FLYASH	HUM.	DEW	DR Y	STAT
•	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRES
								F	#/HR	IN.HZO
PRIMARY AIR	462.	110.0)				0.012	65.6	456.	-14.9
SECONDARY AIR	4454.	685.0					0.010	60.6	4408.	5.0
FURNACE EXIT	-52 ⁻ 94.	540.0	1538.4	. 44444.	****	****	0.052	112.8	" 5033 •	0.0
PART.SCRB.INLET	5294.	450.0	* * * * * * *	****	****	****	0.052	112.8		2.7
PART.CYC.EXIT	3323.	142.0	1431.0	****	****	****	0.125	140.6	2954.	-6.8
VENT ABS.INLET	****	****	* *****	****	****	*****	****	****		****
ABS CYC.EXIT	****	****	* ***	. 44444	***	*****	****			****
FLOATING BED IN	3323.	143.0	****	****	****	****	0.125			-6.8
FLOATING BED EX	3604.	0.0	*****	***	****	*****				-17.6 "
P.P. EXIT ORIF.	3604.	128.0	10.3	****	50 <i>2</i> •	****	0.156	146.4	3118.	-17.6
SCRUBBER STREAM DATA						VEI	NTURI ABS	SORBER	FBA	
PARTICULATE	TEMP	.F Ft	-OW.GPM	GAS	ABSORB	ER TE	MP,F FLOW	N,#/M	TEMP,F F	LOW,#/M
MAKEUP WATER	60.	Ó	0.0	MA	KEUP WA	TER #	***	***	60.0	0.6
PRODUCT-LIQ.	135.	·O·	0.0	MΆ	KEUP MG	() SL. **	***	3.2	0.0	3.2
RECIRCULATED LIO.	135.	0 2	20.02	PR	ODUCT L	1Q. **	***	***	133.0	0.0
				RE	C. (SPRA	Y NOZI *	***	***	133.0	380.0
				RE	C. (FLOW	NOZ.)	**	***		380.0
FURNACE PERFORMANCE			SCRUBBER	PER FORM	ANCE	PART.	VENT A	ABS.	FLOAT.BE	D
"HEAT RELEASE, BTU/HR	~ 0.50	4E 07	- 'S02 741	BSORB.EF	F ·	~~6~ . 98	* **	***	99.	28
% FUEL AS COAL		96.1	FLYASI	H COL.EF	F	****	**	***	***	* *
COAL FLOW RATE, #/HR		397.5	S03 A	BSORB.EF	F	****	**	***	***	* *
NAT.GAS FLOW,#/HR		8.9	NOX A	BSORB.EF	F	****	**	* * *	***	* *
% EXCESS AIR		18.1	GAS VI	ELOCITY,	FPS	90.4	**	***	6	• 1
OXYGEN, %DRY, MEAS.		3.80	LIQ/G	AS, GAL/M	CF	22.3	**	***	58	. 7
CO2, TORY-CALC.		14.77	LIQ/G	AS,#/#		3.0	**	***	6	.3
HUMIDITY,#/# - CALC	•	0.052	PRES.	DROP, IN.	WG	2.3	***	***	12	. 8
2 ABSORPTION PARAMETE	RS						SULFATE	E FORMA	TION PARA	METERS
VENTURI ABSORBER		FL	OATING B	ED ABSOR	BER					
KGAT#MOLE/HR-FT3;	<u>≅</u>	**	KGA,#MOLE	/HR-FT3	=	319			OLE/L= * ~\$VLF=~~*	****
SULFITE/SO2-MOL/MOL			SULFITE/S			****		AT FURN		3.80
SUMP RESID. TIME, MIN			SUMP RESI			*****		AT ABSO		\$\$\$\$
SOUL WESTORITHE MIN	_ ,,,,	• •	JUNE NIJI	J- (1/16) 11	-			AT ABSO		***
**** MEANS ITEM NOT							UL ,			

RUN NUMBER	4-F	DATE 9-16	71 r	IMF OF DAY	1200		
MATERIAL BALANCE	S SULFUR	MAGNESIUM	FI YASH	WATER	DRY GAS	INPUT FOR EG	KIN.PROG.
FURNACE	306701	THORESTON	LIASI	WAILK	UNI GAS	INDIIT FLOWS	#ATOMS/100#FEED
INPUT,#/HR	14.71		29.42	242.5	5026.	CARBON	0.459826
OUTPUT,#/HR	8.09		****	261.6	5033.	HYDROGEN	0.570051
			• •			DXYGEN	1.395035
PART.SCRUBBER						NITROGEN	5.062690
INPUT,#/HR	8.09		****	324.	5033.	SULFUR	0.008723
OUTPUT,#/HR	4.42		****	370.	2954.		
	-			-		FEED RATE,#	/SEC= 1.46
SO2 ABSORBERS							
" INPUT,#/HR	4.42	7.14	**	586.	2954.	" ENTHALPY;BT	[U/# = -1477: "
OUTPUT,#/HR	0.03	*****	****	486.	3118.		
*					•	-	
*SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/		P MGO COMPOS		
PRODUCT COMP.	100ML	LTTER	100ML			M MGO/100ML =	6.20
TOTAL		0.0070			PRESLAKED.	•	0
TOTAL,	1.45	0.2263		% SL	AKED TO MG (DH12, MEAS. =	***
COMBINED	1.45	0.2263					
FREE	0.0	0.0				PHYSICAL PROPER	
MONO(TOTAL)	1.45	0.2263			STRENGTH, I		
MONO(DISSOLVED)		****	***		RAVITY;HYDRO	OM. = 1.0	200 -
MONO(SOLID)	***	****	*****		****		
MGÜ	1.71	0.2672	1.069			-	
SULFATE	1 • / 1 ****	U•2012 *****	1.U07		CIN ATE COM	BBER PRODUCT	
MAGNESIUM	3.16	0.4934			STRENGTH .		0:
FLYASH	J.10	0.47.74	****		SH CONC. GM		• •
SOL I DS • MG			1.690		311 CUITC . GIT	/100ML - ++++	•
			1.070				
COAL COMPOSITIO	ON-MASS						
CARBON O	.7150						
	0485						
	.0817						
	0370						
	0740						
	0438						
2							

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

FLUE GAS DATA FLOW TEMP. SOZ NOX NOX*1 NOX*2 HUM. DEW STAT #/HR F PPM PPM PPM "PPM" #/#" PDTNT PRES F IN.WG	
Γ 1N•WU	
FURNACE EXIT 5294. 540.0 1538.4 *****	
FLOAT.8ED EX 3604. 128.0 10.3 502.4 ***** 486.9 0.156 146.4 -17.6	
NOX SCRUB IN 3541. 160.0 ***** 759.5 613.9 580.6 0.156 146.4 1.4	
NOX SCRUB EX 3581. 122.0 ***** 855.0 751.1 299.7 0.169 150.7 0.0	
NUX SCRUB.DATA TEMP. FLOW SCRUB.PERFORMANCE SPRAY SLURRY ANALYSIS F #/MIN SO2 ABSORB. ******	
MAKEUP WATER 60.0 0.71 NUX ABSORP12.57 MGO,GM/100ML 3.031	
MAKEUP MGO 60.0 2.00 NOX1 ABSORP -22.35 MGSO3(SOLID),M 0.0	-
PRODUCT LIQ. 124.0 2.95 NOX2 ABSORP 48.39 MG\$03(TOTAL),M 0.0008	
L/G,GAL/MCF 61.0 MG(NU2)2, MOLAR 0.0054	
NO2 FLOW DATA L/G,#/# 8.5 MG(NO3)2, MOLAR 0.0014	
NO2 FLOWRATE,#/MIN 0.06 PRES.DROP.WG 0.0 TSS.GM/100ML 7.519	
NO2/NO1 PDS BASIS) 0.51 NITRITE/NITRATE 3.857	-
NO2/NO(FC & ROTO) 1.55	
MATERIAL BALANCE ** MAKEUP MGO COMPOSITION	
SULFUR MAGNESIUM WATER NITROGEN SLURRY CONCGM MGO/100ML= 4.00	
NOX SCRUBBER	
INPUT,#/HR 0.03 2.88 635.5 1.06	
OUTPUT,#/HR 0.05 3.28 520.3 1.23	

PHYSICAL PROPERTIES OF RECYCLED SLURRY

PH 9.20
CONDUCT.MICROMHOS 2280.
SPECIFIC GRAVITY 1.015

NOX = PDS ANALYSIS

NOX*I = SAUTSMAN ANALYSIS
NOX*2 = FUEL CELL ANALYSIS

** OXIDIZED NITROGEN CNLY

RUN NUMBER 5-K	DA	TE 9-16	-71	TIME OF	DAY 15	30				
FLUE GAS DATA	FLOW	TEMP.	S 0 2	\$03	NOX	FLYASH	HUM.	DEW	DRY	STAT
	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRES
								F	#/HR	IN.H20
··· · PRIMARY AIR	487.	115.0					0.015	74.2	480:	14.9
SECONDARY AIR	5146.	687.5					0.011	64.9	5089.	5.3
FURNACE EXIT	60 73.	600.0	***	****	****	*****	0.053	113.5	-5 767 -	0.0
PART.SCRB.INLET	6073.	510.0	****	****	****	****	0.053	113.5		1.4
PART-CYC.EXIT	3188.	142.0	****	****	***	****	0.140	143.7	2797.	-9.5
VENT ABS.INLET	****	****	****	****	****	***	****	****		****
ABS CYC.EXIT	****	****	****	***	****	****	****	****		****
FLOATING BED IN	3188.	140.0	****	****	****	****	0.140	143.7		-10.8
FLOATING BED EX -	3407.	··· 0.0	***	****	***	****	0.173	150.1		-12.2
P.P. EXIT ORIF.	3409.	128.0	***	****	589.	****	0.173	150.1	2907.	-12.2
SCRUBBER STREAM DATA						VEN	TURI ABS	ORBER	FBA	
PARTICULATE	TEMP,	F FLC	W.GPM	GAS	ABSORB	ER TEM	P.F FLOW	.#/M	TEMP,F F	LOW.#/M
MAKEUP WATER	60.0		0.0	MA	KEUP WA			***	60.0	0.0
PRODUCT LIQ	132.0)•0 · -			O SL. **	***	2.8	80.0	2.8-
RECIRCULATED LIQ.	132.0		0.02		ODUCT L			***	132.0	0.0
	-					Y NOZ) **	*** * **	***	132.0	0.0
					C.(FLOW		**	**	1,200	367.0
FURNACE PERFORMANCE			CRUBBER	PERFORM	ANCE	PART.	VENT A	- BS.	FLOAT.BE	מ
HEAT RELEASE, BTU/HR	0.583	-		SOR B. EF		****			****	
% FUEL AS COAL		96.6		COL.EF	-	****	***	***	***	**
COAL FLOW RATE, #/HR		62.7		SORB.EF		****	***	***	***	× *
NAT.GAS FLOW,#/HR	•	8.9		SORB.EF		****	***	***	***	**
- % EXCESS ATR		17.1		LOCITY.		88.0	***	***	- 5-	.7
OXYGEN, %DRY, MEAS.		3.60		S.GAL/M		22.9	***	***	60	•
CO2, %DRY-CALC.		4.96		S-#/#		3.1	· ***	***	_	-5
HUMIDITY,#/# - CALC		.053		ROP, IN.	WG	4.5	***	* **	-	.5
SO2 ABSORPTION PARAMETE	RS	FIC	DATING BE	D ABSOR	AFR	-	SULFATE	FORMA	TION PARA	METERS
TENT ON E MEDONDEN							כטאר	. , GM-M	71 F/1 = *:	***
KGA,#MOLE/HR-Ff3,	=····****	≠ Κ6	A, #MOLE/	HR-FT3		*****			SULF=	
SULFITE/SO2-MOL/MOL			JLFITE/SO		Ω1 =	****		T FURN.		3.60
SUMP RESID.TIME, MIN			JMP RESID			****		T ABSOR		7 • OV ***
JOHF REJIDOTINE PHIN	-	. 30	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	erancyn	-14	*****		T ABSOR		***
							UZA	I MOSU	ND D C A P	-

RUN NUMBER	5-K	DATE 9-16	-71 T	IME OF DA	Y 1530	
MATERIAL BALANCE	ES					INPUT FOR EQ KIN.PROG.
	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS	·
FURNACE						INPUT FLOWS, #ATOMS/100#FEED
INPUT,#/HR	17.12		34.24	286.7	5758.	CARBON 0.465489
OUTPUT,#/HR	****		***	305.8	5767.	HYDROGEN 0.601821
						OXYGEN 1.394532
PART.SCRUBBER			•			NITROGEN 5.057435
INPUT,#/HR	****		***	306.	5767.	SULFUR 0.008858
OUTPUT,#/HR	***		****	391.	2797.	
				•	-	FEED RATE, #/SEC= 1.68
SO2 ABSORBERS						
INPUT,#7HR	****	6.25	********	548	~~~2797.~~	ENTHALPY, BTU/# = -1896.
OUTPUT,#/HR	****	****	****	502.	2907.	20,00
SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/	MAKEL	JP MGO COMPO	ISITION
PRODUCT COMP.	100ML	LITER	100ML			M MGD/100ML = 6.20
						NO=0, YES=1 0
TOTAL;	1-50 -	0::2350				OH12.MEAS. = *****
COMBINED	1.50	0.2350				
FREE	0.0	0.0		PRODU	JCT MG BASE	PHYSICAL PROPERTIES
MONO(TOTAL)	1.50	0.2350			STRENGTH.	
MONU(DISSOLVED	1.08	0.1687	1.755		SRAVITY HYDR	
MONO(SOLID)	0.42	0.0663	1.405			110200
BISULFITF -	0.0	0.0	0.0	•		
MGO	1.10	0.1715	0.686			
SULFATE	****	****	****		CULATE SCRU	BBER PRODUCT
MAGNESIUM	2.60	0.4065			STRENGTH ,	
FLYASH			****		ASH CONC. GM	
SOLIDS.MG			3.442			7 200/12
COAL COMPOSITI	ON-MASS					
CARBON O	.7150					
	.0485					
_	.0817					
	-037 0					
	•0740					
	.0438					

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

	·K		E 9-16-71		E OF DAY					· · · ·-
FLUE GAS DATA	FLOW	TEMP.		NOX	NOX#1	NOX#2	HUM.	DEW	STAT	
	#/HR		· РРМ-	-PPM-	PPM .	PPM	#/# -	"POINT"	PRES	
FURNACE EXIT	6073.	600-0	****	****	****	588.1	0.053	113.5	0.0	
FLOAT . RFD EX	3409.	128.0		589.4	****	559.6	0.173	150.1	-12.2	
NOX -SCRUB IN	3260.)·	671.3	901.6	777.8	0.173	150.1	1.4	
NOX SCRUB EX	3291.	128.0		920.6	1226.1	398.4	0.184	153.2	0.0	
NOX SCRUB.DATA	TEMP.	FLOW		RFORMANO		PRAY SLU	RRY ANAL			
NON SOMOSTOM	F	#/MIN	SO2 AB		****					
MAKEUP WATER	60.0	0.48	NOX AB	SORP	-37.13	MGO,GM	/100ML		662	
	60-0	1-20	NOX1 A	BSORP -	-35-99-		SOL FOT . M			
PRODUCT LIQ.	132.0	1.70	NOX2 A	ABSORP	48.78	MGS031	TOTAL) . N			
RECTRC. L 10.	132.0	-680.	GA-S- VE	L.FPS -	1.6	- MGSO4;				
			L/G,GA		89.2		12, MOLA			
NO2 FLOW DATA			L/G,#/		12.5		12, MOL#			
NO2 FLOWRATE	#/MIN	0.06	PRES.D	DRΠP,WG	0.1	TSS,GM		16.		
NO2/NO(PDS	BASISI	0.14				NITRIT	E/NITRAT	E 6.0	00	
NU2/NO(FC &	ROTO)	1.45				_			•	
ATERIAL BALANCE	=				**		EUP MGD			
		ULFUR N	MAGNESIUM	WATER	NITROGE	N	SLURRY	CONC.,G	M MGU/10	OML = 4.00
NOX SCRUBBER	S					N .	SLURRY	CONC.,G	M MGU/10	00ML= 4.00
NOX SCRUBBER INPUT,#/HR	\$\ * *	***	1.73	578.3	0.85	N -	SLURRY	CONC.,G	M MGU/10	00ML= 4.00
NOX SCRUBBER	\$\ * *					N -	SLURRY	CONC.,G	M MGU/10 	00ML= 4.00
NOX SCRUBBER INPUT,#/HR	\$ **: 0 	*** • 06	1.73	578.3	0.85	N	SLURRY 	CONC.,G	M MGU/10 	00ML= 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERECYCLED SLURE	\$ **: 0 	*** • 06 	1.73	578.3	0.85	N .	SLURRY 	CONC.,G	M MGU/10	00ML= 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERECYCLED SLURE	\$#: 0 FRTIES !	*** •06 OF 7•90	1.73	578.3	0.85	N -	SLURRY 	CONC.,G	M MGU/10	00ML= 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERECYCLED SLURE	ST **: O FRTIES RY CROMHOS	*** •06 OF 7•90 3600	1.73	578.3	0.85	N .	SLURRY		M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERECYCLED SLURE PH CONDUCT.MIC	ST **: O FRTIES RY CROMHOS	*** •06 OF 7•90 3600	1.73	578.3	0.85	N .	SLURRY	CONC G	M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPE RECYCLED SLURE PH CONDUCT.MIC	ST **: O FRTIES RY CROMHOS	*** • 06 	1.73	578.3	0.85	N	SLURRY	CONC . • G	M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPE RECYCLED SLURE PH CONDUCT.MIC	**: OFRTIES RY CROMHOS	*** • 06 OF 7•90 3600	1.73	578.3	0.85	N	SLURRY	CONC . • G	M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPE RECYCLED SLURE PH CONDUCT.MIC SPECIFIC GE	**: OFRTIES RY CROMHOS RAVITY	*** • 06 OF 7•90 3600	1.73 1.08	578.3	0.85	N	SLURRY	CONC . • G	M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPE RECYCLED SLURE PH CONDUCT.MIC SPECIFIC GE NOX = PDS AF NOX*1 = SALTSE NOX*2 = FUEL C	STANTANA CELL AN	*** .06 .07 .90 .3600 .1.01	1.73 1.08	578.3	0.85	N	SLURRY	CONC . • G	M MGU/10	OML = 4.00
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPE RECYCLED SLURE PH CONDUCT.MIC SPECIFIC GE	**: OFRTIES RY CROMHOS RAVITY NALYSIS MAN ANA CELL AN	*** .06 7.90 3600 -1.01	1.73 1.08	578.3	0.85	N	SLURRY	CONC G	M MGU/10	OML = 4.00

FF15000 F 82015C68

IHC2101 PROGRAM INTERRUPT(P) OLD PSW IS

RUN NUMBER 6-L	DA	TE 9-22	2-71	TIME OF	DAY 15	45			***	-	
FLUE GAS DATA	FLOW #/HR	TEMP.	SO2 PPM	SO3 PPM	NOX PPM	FLYASH GR/DSCF	HUM. #/#	DEW POINT	DRY Flow #/HR	STAT PRES	-
PRIMARY AIR	491.	110.0					0.010	F 61.2		IN.H20 13.5	
SECONDARY ALR	5027.	708.8					0.010	74.3		_	
FURNACE EXIT	5947.	480.0	****	****	****	*****	0.056	115.6		=	
PART.SCRB.INLET	5947.	410.0		****	****	****	0.056	115.6			
PART.CYC.EXIT	3721.	134.0			****		0.122	139.8			
VENT ABS.INLET	****	****			****		***	***			
ABS CYC.EXIT	****	****		****	****	****	*****	****			_ `
FLOATING BED IN	3721.	136.0		****	****	****	0.122	139.8			
	4124		***			*****				13.5	
P.P. EXIT ORIF.	4124.	125.0	1308.8	****	****	****	0.151	148.7			
SCRUBBER STREAM DATA			•			VEN	TURI ABS	ORBER	FBA		
PARTICULATE	TEMP,	F FLO	OW . GPM	GAS	ABSORB		P.F FLOW		TEMP F	LOW,#/M	
MAKEUP WATER	60.0) (0.0	MAK	EUP WA	TER **	***	***	60.0	1.0	
PRODUCT LIQ.	135.0	()- . 0	MAH	CEUP-MG	O 'St**	***	3-2		- 3.2	
RECIRCULATED LIQ.	136.0	20	0.02	PRO	DOUCT L	IQ. **	***	***	132.0	0.0	
			-	REC	. (SPRA	Y NOZ) **	***	**	132.0	0.0	
•				REC	.(FLOW	NOZ.)	** 	***		380.0	.
FURNACE PERFORMANCE		•	CRUBBER	PERFORMA	ANCE	PART.	VENT A	BS.	FLOAT.BE	D	
HEAT RELEASE, BTUTHR	0.569		_	SORB.EFF		***	~ ***	**		**	
% FUEL AS COAL		96.5	FL YASH	1 COL.EFF		****	***	***	***	**	
COAL FLOW RATE,#/HR	4	51.4		SSORB.EFF		****	***	***	***	**	
NAT.GAS FLOW,#/HR		B.9		SORB.EFF		****		**	***		
% EXCESS AIR		17.1		ELOCITY.F		99.6	**	**		. 4	
OXYGEN, %URY, MEAS.		3.60		\S,GAL/MO	F	20.3	***	**	_	. 9	
CO2, 8DRY-CALC.		4.96		15,#/#	•	2.7-		***		• 5	
HUMIDITY,#/# - CALC	• 0	.056	PRES.	OROP, IN. W	ıG	3.3	**	***	3	• 3	
SO2 ABSURPTION PARAMETER	RS						SULFATE	FORMA	TION PARA	METERS	
VENTURI ABSORBER		FLC	DATING BE	D ABSORE	SER						-
			andre organization a sure					., GM-M		****	
KGA,#MOLETHR-FT3;			A, #MOLE/			****			•••	****	
SULFITE/SO2-MOL/MOL			JLFITE/SC			***		T FURN		3.60	
SUMP RESID.TIME,MIN	= *****	.≠ \$ŧ	JMP RESID).TIME+M]	[N =	***		T ABSO		**	
**** MEANS ITEM NOT	MEASHDE	n					02 A	T ABSO	кн.ех= *	***	
TTTTT DEANS LIED NOT	MEASUKE										

RUN NUMBER	6-L	DATE 9-22	-71 TI	ME OF DAY	1545	
MATERIAL BALANCE	FS					INPUT FOR EQ KIN.PROG.
HATERIAE BAEANO	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS	u
FURNACE	3021 3	***************************************				INPUT FLOWS, #ATOMS/100#FEED
- INPUT,#/HR	16.70		33.40	297.6	5622.	CARBON 0.465347
OUTPUT,#/HR			*****	316.8	5630.	HYUROGEN 0.545518
				72000		DXYGEN 1.394520
PART.SCRUBBER			•			NITROGEN 5.057571
INPUT,#/HR	****		*****	379.	5630.	SULFUR 0.008851
OUTPUT # # / HR	****		****	405.	3316.	
				_		FEED RATE, #/SEC= 1.64
SO2 ABSORBERS						·
INPUT #/HR		***	****	~660 .	3316.	ENTHALPY; BTU/# = -3087.
OUTPUT,#/HR		*****	*** **	541.	3582.	
*						
*SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/	MAKE	JP MGO COMPO	SITION
PRODUCT COMP.	100ML	LITER	1 00ML	SLU	RRY CONC G	M MGD/100ML = *****
				MGO	PRESLAKED.	NO=0, YES=1 0
TOTAL,	****	****		% St	AKED TO MG(OH)2,MEAS. = *****
COMBINED	* * * * *	****				
FREE	***	****		PROD	UCT MG BASE	PHYSICAL PROPERTIES
MONO(TOTAL)	***	****		AC 11	STRENGTH,	PH = ****
MONO(DISSOLVE	D) ****	***	***	SP.	GRAVITY, HYDR	OM. = *****
MONO(SOLID)	****	* * * * *	*****			
BISULFITE	****		***			
MGO	***	****	***			
SULFATE	****	****	****	PART	ICULATE SCRU	BBER PRODUCT
MAGNESIUM	***	****			STRENGTH .	
FLYASH			****	FLY	ASH CONC. GM	/100ML = ****
SOLIDS.MG			****			
COAL COMPOSIT	ION-MASS				·-	
640000	0 7150					
=	0.7150					
	0.0485					
	0.0817					
	0.0370	·			• •	
A SH	0.0740					

0.0438

WATER

RUN NUMBER 6-	L D	ATE 9-22-71	TIME !	DF DAY 1	545				
FLUE GAS DATA	FLOW TEM	P. SO2	NOX I	I I XOV	V0X≠2	HUM.	DEW	STAT	
	#7HR F	Ма		т т м. ф	PPM	#/#	POINT	PRES	
							F	IN.WG	
FURNACE FXIT	5947. 480	•			****	0.056	115.6	0.0	-
FLOAT.BED EX	4124. 125				***	0.151	148.7	13.5	
NOX SCRUB IN	3927. 164				***	0.151	148.7	1.4	
NOX SCRUB EX	3980. 120	.0 22.8	***	****	***	0.167	150.4	0.0	
NOX SCRUB.DATA	TEMP. FLOW	SCRUB.PER	FORMANCE	SPR	AY SLURR	Y ANALY	SIS		
	F #/MIN	SOZ ABS	ORB. 98	.26					
MAKEUP WATER	60.0 0.48	NOX ABS	ORP37	.13	MGD,GM/1	OOML	-0.0		
MAKEUP MGO	60.0 3.40	NOX1 A	SORP -35	.99	MGSD3(S0	M. (DIJ	0.0	-	
PRODUCT LIQ.	124.0 4.25	NOX2 A	SORP 48	.78	MGSO3 (TC	TAL),M	0.0		
RECIRC. LIO.	124.0 1250	"GAS VEL	:FPS " 1.	.9	MGS04,MC	LAR	0.0		
		L/G,GAL	/MCF 137	.7	4G(NO2)2	, MOLAR	0.0		
NO2 FLOW DATA		L/G7#7#			MG(NO3)2		₹ 0•0		
NO2 FLOWRATE			OP WG 0		TSS.GM/1		0.0		
NO2/NO(PDS				- 1	NITRITE	NITRATE	0.0		
NO2/NO(FC &	ROTO) ***	*							
MATERIAL BALANCE				**	MAKEL	IP MGO C	OMPOSITI	I ON	
	SULFUR	MAGNES 1UM	WATER N	TROGEN		_		MGO/100ML=	0.0
NOX SCRUBBER									
INPUT,#/HR	4.90			***					
OUTPUT,#/HR	0.08	0.0	72.8 **	***	-				
PHYSICAL PROPE	RTIES OF								
RECYCLED SLURR	Y								
PH CONDUCT HIS	0.0	^							
CONDUCT.MIC	ROMHOS	0.	de reguestados de Polónio addicido a Mario			· ·			
	ROMHOS		dr. ng. elledissis d'Addies albeids i Mar						
CONDUCT.MIC	ROMHOS		to real relations of Problem and Problem . Clin						
CONDUCT.MIC	ROMHOS								
CONDUCT.MIC	ROMHOS								
CONDUCT.MIC SPECIFIC GR	ROMHOS AVITY 0:								
CONDUCT.MIC SPECIFIC GR	ROMHOS AVITY O:					-	-		-
CONDUCT.MIC SPECIFIC GR NOX = PDS AN NOX = SALTSM	ROMHOS AVITY O: ALYSIS AN ANALYSIS	g	er ny nikolaina di Nidon albinda e di				-		-
CONDUCT.MIC SPECIFIC GR	ROMHOS AVITY O: ALYSIS AN ANALYSIS	g				-			
CONDUCT.MIC SPECIFIC GR NOX = PDS AN NOX = SALTSM	ROMHOS AVITY O. ALYSIS AN ANALYSIS ELL ANALYSIS	g					-		

__

. -

- ---

and the second of the second		-	-			-	•			
RUN NUMBER 7-C	DATE 9-	-23-71	TIME OF	DAY 11	30					
FLUE GAS DATA	FLOW TEMP	s S S S S S S S S S S S S S S S S S S S	S 03	NO X	FLYASH	HUM.	DEW	DRY	STAT	
FLUE GAS DATA	#/HR F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRES	
	,						F	#/HR	IN.H20	
- PRIMARY AIR	491. 110.	0	-=			0.012	67.8	485		
SECONDARY AIR	4608. 710.	0				0.012	66.5	4554.	5.3	
FURNACE EXIT	-5482 ·560	0 1799:0	·· ****	****	*****				0.1	
PART.SCRB.INLET	5482. 470.	.0 *****	****	* * * *	****	0.052	113.0		2.7	
PART.CYC.EXIT	3546. 138.	.0 1614.5		****	=	0.131	142.0	3136.	-6-8	
VENT ABS.INLET	****			***	*****	****	****		*****	
ABS CYC.EXIT	****		***		***				-	
FLOATING BED IN	3546. 138.	•0 ****	****	****	***	0.131	142.0		-6.8 13.5	
		****				0.160	147.7	3202•	-13.5	
P.P. EXIT ORIF.	3715. 130.	.0 21.2	***	563.	*****	0.160		3202•	-13.7	
	- *				VEN	TURI ABS	ODRED	FBA		
SCRUBBER STREAM DATA	TEMP E	FLOW, GPM	CAS	ABSORE		IP, F FLOW		TEMP,F FI	OW.#/M	
PARTICULATE	•	0.0		KEUP WA			***	60.0	0.6	
MAKEUP WATER	60.0	0-0		KEUP MO			3.6		3.6	
- PRODUCT LIQ.	138.0	20.02		ODUCT	,		***	136.0	0.0	
RECIRCULATED LIQ.	150.0	20.02			Y NUZ) **		**	136.0	0.0	
				C. (FLOW			***		380.0	
	-							-		
FURNACE PERFORMANCE		SCRUBBER	PERFORM	IANCE	PART.	VENT A	BS.	FLOAT.BE		
THEAT RELEASE, BTU/HR	0.510E 07	S0-2 -A	BSORB - EF	÷F~ -	10:26	··***	*** "	9 8.		
% FUEL AS COAL	96.1		H COL.EF	F	****		***	***		
COAL FLOW RATE, #/HR	402.6		BSORB.EF		****		***	***		
NAT.GAS FLOW.#/HR	8.9		BSORB.EF		****		***	***		
% EXCESS AIR	20.0		ELOCITY		96.0		***	_	• 2	
OXYGEN, %DRY, MEAS.	4.20		AS, GAL/N		21.0		***	57		
CO2, SDRY-CALC.	14-42		AS;#/#		2-8		***		.t	
HUMIDITY, 4/# - CALC	. 0.052	PRES.	DROP, IN.	WG	3.1	***	***	*	• 7	
						CIH CATE	EODMA	TION PARA	METERS	
SO2 ABSORPTION PARAMETE	RS	FLOATING B		000		SULFATE	FURMA	IION FARA	TET ENS	
VENTURI ABSORBER		FLUATING C	DEU ADSUR	KOEK		רחאר	GM-M	NIF/1= +	****	
	· · · · · · · · · · · · · · · · · · ·	KGA;#MOLE	-/40=FT-7-		28-8-			SULF= +		
KGA,#MOLE/HR=FT3, - SULFITE/SO2-MOL/MOL	- *****	SULFITE/S					T FURN		4.20	
SUMP RESID.TIME, MIN	- ******	SUMP REST					T ABSO		***	
20ML KE2ID+IIME + MIN	, 	Jum Redi	,,	- 4 - 1		_	AT ABSO		***	
**** MEANS ITEM NOT	MEASURED					- - ·				
TTTTT ILMIGO ITCH NOT	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

RUN NUMBER	7-C	DATE 9-23	-71	TIME OF DAY	1130	
MATERIAL BALANCE	ES			•		INPUT FOR EQ KIN.PROG.
	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS	
FURNACE		-		-		INPUT FLOWS, #ATOMS/100#FEED
INPUT,#/HR	14.90		29.80	253.1	5203.	CARBON 0.450212
OUTPUT,#/HR		*****	****	272.3	5210.	HYDROGEN 0.560042
		•	-			OXYGEN 1.396197
PART.SCRUBBER						NITROGEN 5.071530
INPUT,#/HR	9.81		*****	335.	5210.	SULFUR 0.008542
OUTPUT,#/HR	5.30		****	411.	3136.	
				بتسليم سا		FEED RATE, #/SEC= 1.51
SO2 ABSORBERS						
INPUT;#7HR		·····**	****	663.	3136.	ENTHALPY,BTU/# = -1315.
OUTPUT,#/HR	0.07	****	****	513.	3202.	
•		-	•			•
*SO2 ABSORBERS-	GM S02/	GM-MULE/	GRAM/	MAKEUI	MGO COMPO	SITION
PRODUCT COMP.	100ML	LITER	1:00ML			M MGO/100ML = ****
				MGO 1	PRESLAKED,	NO=0, YES=1 0
TOTAL	1.41	0.2209		8-SL	AKED TO MG!	OH)2, MEAS. = *****
COMBINED	1.41	0.2209		-		
FREE	0.0	0.0		- PRODUC	CT MG BASE	PHYSICAL PROPERTIES
MOND(TOTAL)	1.41	0.2209		- ACID	STRENGTH,	PH = 8.10
MONO(DISSOLVE	D) 1.52	-0-2375	2:47	O SP.GF	RAVITY, HYDR	OM. = +++++
MONU(SOLID)	-0.11	0166	-0.35	3		
BISULFITE	0.0	0:0	-0.00			
MGU	0.79	0.1230	0.49	2		
SULFATE	****	***	***	* PARTIC	CULATE SCRU	BBER PRODUCT
MAGNESIUM	2.20	0.3439		- ACID	STRENGTH ,	PH = 5.50
FLYASH			****	# "FLYAS	SH CONC. GM	7100ML = ++++
SOL I DS, MG			2.09	3		
COAL COMPOSIT	ION-MASS					
		•		· -		
	0.7150					
	0.0485					
	0.0817					
	0.0370					
	0.0740	_				
WATER	0.0438	-			= •	

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

	RUN NUMBER 7	-c	DAT	E 9-23-7	I TI	ME OF DAY	1130						
	FLUE GAS DATA	FLOW	TEMP.	S02	NOX	NOX≠1	NOX#2	HUM.	DEW	STAT			
			· ·	- PPM		· · · PPM	PPM	#7#	POINT	PRES -			
									F	IN.WG			
	FURNACE EXIT	5482.	560.0	1799.0	****	****	733.2	0.052	113.0	-0.1		-	
	FLOAT.BED EX	3715.	130.0	21.2	563.4	****	695.6	0.160	147.7	-13.5			
	NOX SCRUB IN	3772.	164.0	****	504.1	324.2	714.4	0.160	147.7	1.4			
	NOX SCRUB EX	3816.	128.0	8.3	550.4	311.1	629.8	0.174	151.6	0.0			
	NOX SCRUB.DAT	A TEMP.	FLOW	SCRUB . PI	ERFURMAN	CE SP		RRY ANAL	YSIS				
		F	#7MTN			61.02							-
	MAKEUP WATER	60.0	0.81		BSORP.	-9.17	MGO, GM	/100ML	0.	587			
-	MAKEUP-MGO		-1.05		AB SORP	4.04	-	SOLID) .M		03-1			
	PRODUCT LIQ.		2.90		ABSORP			TOTAL),M					
	RECTRC. Liq.	130-0-	1250-					MOLAR				·	
				L/G,G	AL/MCF	142.2	MG (NO 2	2, MOLA	R 0.0	096			
	NO2 FLOW DATA			L/G,#	/-#	19.9	MG (NO3)	12, MOLA	R 0.0	000			
	NO2 FLOWRATE	E,#/MIN	0.0	PRES.	OROP,WG	0.1	TSS+GM	/100ML	3.	326			
	NO2/NO(PDS	BASISI	-0.11				NITRIT	E/NITRAT	- ****	* *			
	NO2/NO(FC &	ROTO)	0.0										
- M	ATERIAL BALANCE	<u></u> .				**	MAK!	UP MGO	COMPOST	T T (DA)			
, ,	ATENTAL BALANC		ULFUR MA	AGNES IUM	WATER	NITROGEN				MGO/10	OMI =	4.00	
	NOX SCRUBBER		OCT O	40.46 5 1011	WATER	WITHOULI		SEOFICE	CONC & FO	1 1460710	17172	4.00	
	INPUT,#/HR		.07	1.51	629.7	0.75						-	
	OUTPUT,#/HR			0.81	567.6	0.87							
<u>-</u> -			~									.	·
	PHYSICAL PROP	ERTIES (D F										
	RECYCLED SLURI	RY											
	PH		8.15							•			
	CONDUCT.MI	CROMHOS	6870	•									
	SPECIFIC GI	RAV ITY	- 1.01	2			-		··· · ·	-	•		
													₩
	NOX = PDS A												
	NOX+1 = SALTS												
	$NOX \neq 2 = FUEL $	CELL AN	ALYSIS										

** OXIDIZED NITROGEN ONLY

RUN NUMBER 8-B	ם	ATE 9-23	-71	TIME OF	DAY 13	145	-			
FLUE GAS DATA	FLOW	TEMP.	\$02	\$03	NOX	FLYASH	HUM.	DEW	DRY	STAT
	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRE'S
								F	#/HR	IN.H20
PRIMARY AIR	488.	115.0		<u></u>			0.011	64.7	483.	14.9
SECONDARY AIR	4602.	710.0					0.014	70.4	4541.	5.6
FURNACE EXIT	5485.	590.0	1688.7	****	***	* * * * * *	0.055	114.5	5200.	0.• 0
PART.SCRB.INLET	5485.	485.0	****	***	****	****	0.055	114.5		2.7
PART.CYC.EXIT	3535.	138.0	1557.1	****	****	****	0.137	143.3	3109.	-8.1
VENT ABS.INLET	****	****	****	****	****	****	****	****		****
ABS CYC.EXIT	****	****	****	****	***	****	****	****		. ****
FLOATING BED IN	3535.	138.0	****		****	*****	0.137			-8.1
FLOATING BED EX	··3703 .	00	~~*****	***	****	****	-0-167	148.7		
P.P. EXIT ORIF.	3703.	130.0	13.2	****	580.	****	0.167	148.7	3174.	-14.9
SCRUBBER STREAM DATA						VEN	TURI ABS	ORBER	FBA	
PARTICULATE	TEMP	.F FL0	W.GPM	GAS	ABSORE	BER TEM	P.F FLOW	#/M	TEMP.F FI	LOW,#/M
MAKEUP WATER	60.	•	•0		KEUP WA		*** **	***	60.0	1.0
PRODUCT LIQ.	140.		r.o			0-St **	***	3.2	0-0	3.2
RECIRCULATED LIQ.	140.		78		DOUCT L			***	137.0	0.0
			-	RE	C. (SPRA	Y NOZ) **	*** **	***	137.0	0.0
				RE	C.(FLOW	NOZ-)	**	***		385.0
FURNACE PERFORMANCE		ç	CRUABER	PERFORM	ANCE	PART.	VENT A	BS.	FLOAT.BE	D
HEAT RELEASE, BTU/HR	0.52	3E 07		ASOR B. EF		7.79	***	***	99.	15
% FUEL AS COAL		96.2		H COL.EF		****	***	***	***	**
COAL FLOW RATE, #/HR		413.5		BSORB.EF		****	***	***	***	¢*
NAT.GAS FLOW,#/HR		8.9		BSORB.EF		****	***	***	***	* *
% EXCESS AIR		17.5		ELOCITY,		96.3	***	***	6	. 2
DXYGEN, TDRY, MEAS.		3.70	LIQ/G	AS,GAL/M		20.7	• •	***	58	-
CO2, ZDRY-CALC.		14.86		AS,#/#		2.8	•	***	_	• 2
HUMIDITY,#/# - CALC	•	0.055	PRES.	DROP, IN.	WG	3.3	***	***	4	
SO2 ABSORPTION PARAMETE	RS						SULFATE	FORMA	TION PARA	METERS
VENTURI ABSORBER		FLC	DATING B	ED ABSOR	BER				•	
								GM-M		***
KGA,#MOLE/HR-FT3,	_=	**K(A, MOLE	/HR-FT3		31.4	MOLT	TOTAL	SULF= *	444
SULFITE/SO2-MOL/MOL			JLFITE/S	D2-MOL/M	OL =	25.08	O2 A	T FURN	. EX.=	3.70
SUMP RESID.TIME, MIN			JMP "REST	D.TIME,M	IN =	****	1 02 A	T ABSO	RB.IN= +	***
							02 4	T ABSO	RB.FX= *	* * * *
**** MEANS ITEM NOT	MEASUR	ED								

							-
RUN NUMBER 8-	-В	DATE 9-23	3-71 TI	ME OF DAY	1345		
MATERIAL BALANCES						INPUT FOR EQ	KIN.PROG.
-	SULFUR	MAGNESTUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS,	#ATOMS/100#FEED
- INPUT,#/HR	15.30		30.60	265.5	5193.	CARBON	0.462460
OUTPUT,#/HR	9.18		*****	284.7	5200.	HYDRƏGEN	0.558342
	-	-	·			OXYGEN	1.394766
PART.SCRUBBER			-			NITROGEN	5.060255
INPUT,#/HR	9.18		***	321.	5200.	SULFUR	0.008780
OUTPUT,#/HR	5.06		****	426.	3109.		
						FEED RATE,#	/SEC= t.51
SO2 ABSORBERS							
INPUT,#/HR ·	5.06	··- · · 4 . 51	- ***	····673:	- ~3109.	····ENTHALPY,BT	U/# =
OUTPUT,#/HR	0.04	****	*****	529.	3174.		
*		•					
+SO2 ABSORBERS-	GM S02/	GM-MOLE/	GRAM/	MAKEL	JP MGO COMPO	SITION	
PRODUCT COMP.	100ML	LITER	100ML	SLUI	RRY CONC G	M MGO/100ML =	4.00
				MGO	PRESLAKED,	NO=0, YES=1	0
··· ·TOTAL·; - ·· ·	2.23	0-3480		% S	LAKED-TO MG C	11H) 27MEAS =	****
COMBINED	2.23	0.3480					
FREE	0.0	0.0		PRODU	JCT MG BASE	PHYSICAL PROPER	TIES
MONO(TOTAL)	2.23	0.3480		ACII	STRENGTH,	PH = 8.0	5
MONO(DISSOLVED)	1.12	0.1750	1.820	SP.	GRAVITY; HYDR	OM. = ****	***
MONO(SOLID)	1.11	0.1730	3.669				
BISULFITE	0-0	0.0	· · · O-• O		·		
MGO	0.85	0.1329	0.532				
SULFATE	***	* * * * * *	***	PART	ICULATE SCRU	BBER PRODUCT	
MAGNESIUM	3.08	0.4809		ACI	STRENGTH ,	PH = 6.3	5
FLYASH			****	FLY	ASH CONC. GM	/100ML = ***	*
SOLIDS, MG			2.640				
COAL COMPOSITION	N-MASS					-	
CARBON O.	7150						
	0485						
	0817						
	0370						
	0740						
	0438			-			

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 8-	В	DAT	TE 9-23-7	1 TI	ME OF DAY	1345			- -		
FLUE GAS DATA	FLOW "#7HR"		SO2	NOX PPM	NOX+1	NOX+2	HUM。 ************************************		STAT		
		•	, ,	• • • • •	, , , ,	, , , ,	#	F	IN.WG		
FURNACE EXIT	5485.	590.0	1688.7	****	*****	759.6	0.055	114.5	0.0		
FLOAT.BED EX	3703.					873.6	0.167		-14.9		
NUX SCRIJB IN	3719.			906.0		****		148.7	1.4		
NOX SCRUB EX	3759.	128.0		947.5	566.9	****		152.5	0.0		
NOX SCRUB.DATA	TEMP.	FLOW	SCRUB.PI	ERFORMANO	CE S	PRAY SLUI	RRY ANAL	YSIS		·	
	F	#/M1N	SO2 A1	BSORB. 1	****					-	
MAKEUP WATER	60.0	0.81	NOX A	BSORP.	-4.58	MGO, GM	/100ML	0.76	2		
MAKEUP MGO	60.0	2.00	NOX1	AB'SORP	29:33	MG'S 03 (1	SOLID) , M	0006	2		
	130.0	2.90		ABSORP	11.84	MGSD3 (TOTAL),M	0.006	5		
"RECIRC. LIO.	130:0	1250.		EL-FPS-	1.8	MGS04,		0.019	2		·······
					143.8		12, MOLA		8		
NO2 FLOW DATA			L7G7#7		20.2) 2', " MOLTA!				
NO2 FLOWRATE			PRES.	OROP,WG	0.1	TSS.GM.		3.03			
NO2/NO(PDS					-	" NITRIT	E/NTTRAT	E 6.533		·	
NO2/NOTFC &	ROTO)	0.46									
MATERIAL BALANCE NOX SCRUBBER		ULFUR A	MAGNES I UM	WATER	** NITROGE			COMPOSITI CONC.,GM		4L= 4,	.00
INPUT,#/HR	0.	-04	2.88	-694-6	1:32	•					
OUTPUT,#/HR	0.	• 14	0.95	573.9	1.44		_				
PHYSICAL PROPE RECYCLED SLURR		DF					-	<u>-</u>		-	
PH CONDUCT.MIC SPECIFIC GR		8.20 6000		· · · ·	-			- · .			<u></u>
SPECIFIC GK	WATIA	1.00	JO								
				<u>-</u>	-						·
						_					
NOX = PDS AN	212Y IA										
NOX = FOS AN	_	- 272									
NOX+2 = FUEL C											
HON'E - TOLE O				-			,				
** OXICIZED NI	TROGEN	ONLY									

• •						=	_				
RUN NUMBER 9-D	D	ATE 9-23	-71	TIME OF	DAY 15	00					
FLUE GAS DATA	FLOW	TEMP.	SO2	\$03	NOX	FLYASH	HUM.	DEW	URY	STAT	
	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/4	POINT	FLOW	PRES	
								F	#/HR	IN-H20	
PRIMARY AIR	486.	120.0					0.012	66.0	481.	14.9	
SECONDARY AIR	4587.	717.5					0.012	67.4	4531.	5.7	
FURNACE EXIT	5464.	590.0	698.0	* ****	****	****	0.053	113.8	51 87 °		
PART.SCRB.INLET	5464.	490.0	***	****	***	****	0.053	113.8		2.7	
PART.CYC.EXIT	3543.	138.0	698.0	****	****	*****	0.137	143.5	3116.	-6.8	
VENT ABS.INLET	****	****	****		***		****	****		***	
-ABS CYC.EXIT	****	****			***	****		***		***	•
FLOATING BED IN	3543.	138.0	*****		****	****	0.137	143.5		-8.1	
- FLOATING BED EX	3.7.05 :	0.0	****		***		0.166	148.7			
P.P. FXIT ORIF.	3705.	130.0	4.2	****	0.	*****	0.166	148.7	3177.	-14.9	-
SCRUBBER STREAM DATA						VEN	TURE ABS		FBA		
PARTICULATE	TEMP	.F FL0	CW, GPM	GAS	ABSORE	BER TEM	P.F FLOW	,#/M	TEMP,F F		
MAKEUP WATER	60.	-	0.0	MA	KEUP WA	TER **		* * *	60.0	0.6	
PRODUCT LIQ.			0	MA	KEUP MO	0 St. **	***	3.2	0-0	3 2	
RECIRCULATED LIG.	138.		0.02	PR	ODUCT L	_IQ. **	**	**	137.0	0.0	
KEO!KOOEKED EFG				RE	C. (SPR	Y NOZ) **	*** **	***	137.0	0.0	
				RE	C.(FLO	NOZ.)	* *	***		380.0	
FURNACE PERFORMANCE			SCRUBBER	PERFORM	IANCE	PART.	VENT A	BS.	FLOAT.BE	D	
HEAT RELEASE, BTU/HR	0.51	9E 07		BSORBEEF		=0.0	*****		99.	40	
T FUEL AS CUAL	0.71	96.2		H COL.EF		****	***	***	***	**	
COAL FLOW RATE,#/HR		410.1		BSORB.FF		***	***	***	***	**	
NAT.GAS FLOW,#/HR		8.9		BSURB.EF		****	**	***	***	**	
T EXCESS AIR	_	18.1		ELOCITY		96.1	* ***	***	6	. 2	
DXYGEN, %DRY, MEAS.		3.80		AS.GAL/N		21.0	***	***	57	• 3	
CO2; **DRY-CALC*		14.77		AS,#/#		2-8-		***	·· - - 6	-2	
HUMIDITY, #/# - CALC	•	0.053		DROP, IN.		3.3		***	4	.7	
NOZ ABSORPTION PARAMETE	RS						SULFATE	FORMA	TION PARA	METERS	
VENTURI ABSORBER	-		DATING B				CONC	. , GM-M		****	
- KGA;#MOLE/HR=FT3; "	***	***K1	GAT#MOLE	/HR-FT3	=	3-37			-SULF= -*		
SULFITE/SO2-MOL/MOL	=	*** SI	JLFITE/S	02-MOL/N	10L =			T FURN		3.80	
-SUMP RESID.TIME, MIN	= ***	*** -SI	UMP RESI	D.TIME,	AIN =	****		T-ABSO		****	
							02 /	AT ABSO	RB.EX= *	***	
**** MEANS ITEM NOT	MEASUR	RED									

RUN NUMBER	9-D	DATE 9-23	J-71	TIME OF DAY	1500	·	
MATERIAL BALANC	ES					INPUT FOR EQ KIN.PROG.	
	SULFUR	MAGNESTUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS, #ATOMS/100#FEED	
INPUT,#/HR	15.17		30.35	257.9	5180.	CARBON 0.459998	
OUTPUT,#/HR	3.78		****	277.1	5187.	HYDROGEN 0.561502	
	•					0XYGEN - 1.395050	
PART.SCRUBBER			•			NITROGEN 5.062521	
INPUT,#/HR	3.78		****	340.	5187.	SULFUR 0.008732	-
OUTPUT,#/HR			****	426.	3116.	30c1 0h 0.008132	
					31101	FEED RATE #/SEC= 1.51	
SO2 ABSORBERS						TEED RATE # SEC - 1.51	
INPUT #7HR	·2 - 2 · 2 · 7 ·		****		3116	ENTHALPY,BTU/# = -1499.	
OUTPUT,#/HR		****	****	527.	3177.	ENIMALPY DIU/# = -1499.	
*		***		JE 10 	- -		
*SO2 ABSORBERS-	GM S02/	GM-MOLE/	GRAM/	MAVELL	P MGO COMPO	CITION	
PRODUCT COMP.	100ML -		" 100ML				
	TOOME	LIILK	TOOML				
TOTAL,	++++	*****				ND=0, YES=1 0	
COMBINED	****	****		* 2F	ARED TO ME	OH)2,MEAS. = *****	
FREE	***	****			CT MC 0465	Dunctott Doops St. Co.	
MUND(TOTAL)	****	****				PHYSICAL PROPERTIFS	
MONO (DISSOLVE		****	****		STRENGTH,		
MONO(SOLID)	****	****	****		RAVITYFHYDR	(OM. = *****	_
BISULFITE	****	****		•			
MGD	****	****	***				
			***	-			
SULFATE	****	****	****	1 10017		JBBER PRODUCT	
MAGNES IUM	****	***			STRENGTH 1		
FLYASH			****	TEIR	SH CONC. GN	1/100ML = ****	
SOL IDS MG		~~~~	****	*			
COAL COMPOSIT	ION-MASS						
OURE COM USIT	1014 11433					•	
CARBON	0.7150						
	0.0485		-				
	0.0817						
	0.0370					and the state of t	
	0.0740						
	0.0438		-				
TO LO	010130						- •

RUN NUMBER 9-D	DATE 9-23-	71 TIM	E OF DAY	1500					
FLUE GAS DATA FLOW		NOX	NOX≉1	NOX+2 PPM	HUM. #/#	DEW POINT	STAT PRES		
#/HR		PPM	PPM-	PPH	#/#	F	IN.WG		
	590.0 698.0) - - *** **	****	*****	0.053	113.8	0.0		
FLOAT.BED EX 3705.			****	****		148.7	-14.9		
FLOAT.BED EX 3705.			937.1	*****	0.166		1.4		
NOX SCRUB EX 3758.			857.8	773.6		152.6	0.0		
NUA SCRUB EA 37301	120.00			-			' -		
NOX SCRUB.DATA TEMP.		PERFORMANC	E Si	PRAY SLU	RRY ANAL	YSIS			
MAKEUP WATER 60.0			30.08	MGU . GM.	/100ML	0.9	900		
- MAKEUP MGD 60.0			8.46			- 0-0	031		
PRODUCT LIQ. 130.0			11.84		TOTAL) .M		37		
TRECTRC. 110- 130-0	–	VEL-FPS -		MGSO4+1	MOLAR	- 0.0	134		
MEGINOU EIGH IDOUG			43.7	MG (ND2)2, MOLA	R 0.0	124		
NO2 FLOW DATA	L/G,		20.2	MG(NO3	12, MOLA	R 0.0	003		
NO2 FLOWRATE, #/MIN	0.06 PRES	DROP,WG	0.1	TSS,GM			373		
NO2/NO(PDS BASIS)	****			NITRIT	E/NITRAT	E 41.3	33		
NO2/NO(FC & ROTO)	** * * *								
MATERIAL BALANCE			**		EUP MGO			4 00	
	ULFUR MAGNES IU	M WATER	NITROGE	N	SEURRY	CUNC . , G	M MCO/100ML=	4.00	
NOX SCRUBBER									_
-	3.31	709.9	1.50						_
OUTPUT # # / HR O	1.17	575.0	1.11						
PHYSICAL PROPERTIES									
RECYCLED SLURRY	.								
REGIOEES SESTA									
PH	8.20								
CONDUCT.MICROMHOS	6080.								
SPECIFIC GRAVITY									
								-	
							_		
			-				-	— · ·	
NOX = PDS ANALYSIS									
NOX41 = SALTSMAN ANA									
NOX+2 = FUEL CELL AN	IALYSIS							-	
-									

** OXIDIZED NITROGEN ONLY

RUN NUMBER 10-G	D	ATE 9-2	4 - 71	TIME OF	DAY 12	00				
FLUE GAS DATA	FLOW	TEMP.	S 0 2	\$03	NOX	FLYASH	HUM.	DEW	DRY	STAT
	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRES
								F	#/HR	IN.H20
PRIMARY AIR	482.	110.0					0.008	56.9	478.	14.9
SECONDARY AIR	4640.	690.0					0.012	66.9	45.85.	5.2
FURNACE EXIT	5516.	490.0	1783.4	****	****	****	0.053	113.7	5239.	
PART.SCRB.INLET	5516.	410.0	*****	****	****	*****	0.053	113.7		2.7
PART.CYC.EXIT	3639.	130.0	1595.7	***	****	*****	0.119	139.2	3251.	-8.1
VENT ABS.INLET	****	****	=	****	_****	*****	****	****		****
ABS CYC.EXIT	***	****	* * * * * * *	***	***	****	*****			****
FLOATING BED IN	3639.	130.0			****	****	0.119	139.2		-8.1
	3798-					*****	-0.147			-14.9
P.P. EXIT ORIF.	3798.	125.0	4.1	****	609.	*****	0.147	145.0	3312.	-14.9
SCRUBBER STREAM DATA						VEN	TURI ABS	DRBER	FBA	
PARTICULATE	TEMP	.F FL	DW,GPM	GAS	ABSORB		_		EMP F - F	LOM##7M
MAKEUP WATER	60.	0	0.0	MA	KEUP WA	TER **	*** **	***	60.0	0.6
PRODUCT LIQ.	132-	0	0 -0	M-Д	KEUP MG	0-St **	***	3.5	0.0	3.5
RECIRCULATED LIQ.	132.	0 1	9.78	PR	ODUCT L	IQ. **	*** **	***	130.0	0.0
				RE	C. (SPRA	Y NOZJ **	***	***	130.0	0.·0
		_		RE	C. (FLOW	NOZ.)	-	***		385.0
FURNACE PERFORMANCE			SCRUBBER	PERFORM	ANCE	PART.	VENT A	BS.	FLOAT.BE	D
HEAT RELEASE, BTU/HR	0.52	4E 07		SORB. EF		10.53	***	***	99:-	
% FUEL AS COAL		96.2		+ COL.EF		****	***	***	***	**
COAL FLOW RATE, #/HR		414.1	SO 3 - A1	SORB.EF	F	****	***	***	***	**
NAT.GAS FLOW,#/HR		9.1	NOX A	SORB.EF	F	****	***	***	***	* *
T EXCESS AIR		18.1	- GAS VE	ECOCITY,	FPS	96.3	** **	***		· 3· ·
OXYGEN, %DRY, MEAS.		3.80	LIQ/GA	AS, GAL/M	CF	20.7	***	***	57.	• 5
CO2, BORY-CALC.		14.77	LIQIGA	15,#/#		2.7	***	***	6	.1
HUMIDITY,#/# - CALC	•	0.053	PRES.	OROP, IN.	WG	3.5	***	***	5	. 2
2 ABSORPTION PARAMETE	RS						SULFATE	FORMAT	ION PARA	METERS
VENTURI ABSORBER		FL	DATING "BE	ED ABSOR	BER					
TKGA,#MOLE/HR=FT3,	"三"水水压虫	**************************************	GA,#MOLE7	FHD=FT3		40.9		.,GM-MC	LE/L=	***
			JLFITE/SO		OL =	28.05		T FURN.	_	3.80
		_								
SULFITE/SO2-MOL/MOL		女女 C!	IND. BECAL]_ [! M M	IN =	22222	U2.Y	T ARCHO	R.TN- ***	6 会会会 - · · · · · · · · · · · · · · · · ·
		** SI	JMP" REST	J. TIME, M	IN =	*****		T ABSOR		*****
SULFITE/SO2-MOL/MOL	= ****	-	JMP" RESTU	J. TIME, M	IN =	*****		T ABSOR		***

RUN NUMBER	10-G	DATE 9-24	-71 T	THE OF DAY	1200	
MATERIAL BALANCE	S SULFUR	MAGNESTUM	FLYASH	WATER	DRY GAS	INPUT FOR EQ KIN.PROG.
FURNACE						INPUT FLOWS, #ATOMS/100#FEED
INP UT•#/H R OUTPUT•#/HR	15.32 9.77		*****	257.6 277.2	5232	CARBON - 0.459919
UU17U14#/AK	7.11		*****	211.2	5239.	HYDROGEN 0.528744
PART.SCRUBBER						NITROGEN 5.062600
" TNPUT , #7 HR	9.77		****	340.	5239	SULFUR 0.008727
OUTPUT,#/HR	5.42		****	388.	3251.	
						FEED RATE, #/SEC= 1.52
SO2 ABSORBERS						
INPUT,#/HR	5.42	7.41	*****	625.	3251.	ENTHALPY,8TU/# = -1857.
OUTPUT,#/HR	0.01	****	****	486.	3312.	
* *SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/	MAKEU	P MGO COMPOS	SITION
PRODUCT COMP.	-1:00ML -	titer -	1:00ML-			M-MGO/100ML = 5.80
					PRESLAKED, N	
TOTAL;	3.05	0.4764		8 SL	AKED TO MG (3H)2,MEAS. = *****
COMBINED	3.05	0.4764		22.0244		
FREE	0.0	0.0				PHYSICAL PROPERTIES
MONO(TOTAL)	3,05	0.4764			STRENGTH, F	
MONO(DISSOLVED MONO(SOLID)	1.71	0.2670	2.177	SP-61	RAVITY , HYDR C	DM. = 1.0200
BISULFITE	0.0	0.2670 	5.660			
MGO	0.59	0.0921	0.368			
- SUL FATE	******		**********	· 0.40-7-1-	C +41 A-F G- G-G-D 14G	BBER PRODUCT
MAGNESIUM	3.64	0.5684			STRENGTH ,	- :
FLYASH			****		SH CONC. GM	
SOL IDS , MG			3.161	ı Eva,	on conc. on	100%
COAL COMPOSITI	ON-MASS					
CARBON O	.7150					
	.0485					
_	.0817					
	·0370					
	.0740					
	.0438	-				

SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 10) – G	DATE	9-24-71	L	ME OF DAY	1200					
FLUE GAS DATA	FLOW		S 02	NOX	NOX*1	NO X # 2	HUM.	DEW	STAT		
	#7HR	F	PPM	PPM -		РРМ	#7-#	POINT	PRES		
5								F	IN.WG		
FURNACE EXIT	5516.		1783.4			692.4	0.053	113.7	0.0	-	•
FLOAT BED EX	3798.		4.1	608.8		645.6	0.147	145.0	-14.9		
NOX SCRUB IN	3761.		****	766.0		729.9	0.147	145.0	1.4		
NOX SCRUB EX	3807.	122.0	*****	1709.5	491.6	655.0	0.161	149.4	0.0		
NOX SCRUB.DATA	TEMP.	FLOW	SCRUB.PE	RFORMAN	ICE S	PRAY SLU	RRY ANAL	YSIS			
	F	#/MIN	SOZ AB		****						
MAKEUP WATER	60.0	0.81	NOX AB		****	MGO, GM	/100ML	0.	562		
MAKEUP MGO	60.0	2.90	NOXT A	BSORP	27.79	MGS031	SOL IDI	0.0	031		
PRODUCT LIQ.	123.0	4.00	NOX2 A	ABSORP	10.26	MGS03(TOTAL) . N	0.0	035		
RECIRC. LTQ.	123.0	1250.	GAS-VE	L.FPS	8	··· MGSO4;	MOL AR		0 70 -		
			L/G,GA	AL/MCF	145.4	MG (NO2	12, MOLA	R 0.0	055		٥.
NO2 FLOW DATA			L7G7#7		19.9	-MG(NO3	127 MOLA	R -0.0	006 -		
NO2 FLOWRATE	•		PRES.D	ROP,WG	0.1	TSS,GM	/100ML	1.	576		
NO2/NOI PDS						NITRIT	E/NITRA1	E 79.1	67	-	-
NO2/NO(FC &	ROTO)	0.65									
MATERIAL BALANCE					**			COMPOSI			
	S	ULFUR MA	GNES IUM	WATER	NITROGE	V	SLURRY	CONC.,G	M MGD/100M	L= 5.0	oo <u>;</u> -
NOX SCRUBBER	_										•
INPUT,#/HR				695.0	1.15						
OUTPUT,#/HR	O.	•08 C	.91	530.8	2.60						
PHYSICAL PROPE		OF									
RECYCLED SLURR	Y.	-									
PH		~ 0 2 5 -					·				
CONDUCT.MIC	рамиас	-8-25 660									
SPECIFIC GR											
SPECIFIC OF	MATIL	1.020	,								
										. <u>-</u>	
								•			
NOX = POS AN	ALYSIS										
NOX#I = SALTSM		LYSTS									
NOX+2 = FUEL C											
-	-										
** OXIDIZFD NI	TROGEN	CNLY									
											-

- - - -

. ---

. -

RUN NUMBER 11-H	D.	ATE 9-24	-71	TIME OF	DAY 1	330					
FLUE GAS DATA	FLOW	TEMP.	S02	\$03	NOX	FLYASH	HUM.	DEW	DRY	STAT	
	#/HR		РРМ	РРМ	PPM-	GR/DSCF	#/#	POINT F	#/HR	- PRES IN.H20	
PRIMARY ATR	480.	110.0					0.009	58.4	476.		
SECONDARY AIR	4702.	691.3					0.014	72.0	4636.	5.7	
FURNACE EXIT	5581.	540.0	1801.2	****	***	****	0.055	114.8	52 90 •	-0.1	
PART.SCRB.INLET	5581.	450.0	****	****	***	*****	0.055	114.8		4.1	
PART CYCLEXIT	3548	139.0	1465.8	****	****	****	0.129	141.6	3143.	-8.1	-
VENT ABS.INLET	****	****	***	****	****		****	****		****	
ABS CYC.EXIT	****	***	***	···· **	****	*****	***	****		****	
FLOATING BED IN	3548.	135.0	****	****	****	****	0.129	141.6		-8.1	
FLOATING BED EX	3721.	0.0	****	***	****		0.157	147.2		-14.9	
P.P. EXIT ORIF.	3721.	130.0	30.9	****	470.	*****	0.157	147.2	3214.	-14.9	
SCRUBBER STREAM DATA				-		VEN	TURI ABS	ORBER	FBA		
- PARTICULATE	TEMP	,FFt6	W,GPM	GAS	-ABSOR	BERTEM	P-F-FLOW	-#/M-1	EMP,F-Ft	OW , #/M	
MAKEUP WATER	60.	0 0	•0	AM	KEUP W	ATER **	*** **	***	60.0	0.6	
PRODUCT LIQ.	137.	0 0	0.0	MA	KEUP M	30 SL. **	***	3.2	0.0	3.2	
RECIRCULATED LIQ.	137.	0 19	.78	₽R	ODUCT	LIQ. **	***	***	136.0	0.0	
			·	RE	C-(SPR	44 NOZ-1-##	*	***	-136. 0 -	0-0	
				RE .	C. (FLO	W NOZ.)	**	***		385.0	
FURNACE PERFORMANCE		S	CRUBBER	PERFORM	ANC E	PART.	VENT A	BS.	FLOAT.BED)	
THEAT RELEASE, BTU/HR	0.52	9E07	SO2 A	SORB.EF	F	18-62	***	***	97. 8	9	
% FUEL AS COAL		96.2	FLYASI	4 COL.EF	F	****	***	***	****	**	
COAL FLOW RATE #/HR		418-3	503- A	BSORB.EF	F	******	***	***		**	
NAT.GAS FLOW,#/HR		9.1	NOX A	SORB.EF	F	****	***	***	***	**	
TEXCESS AIR		18-1		EtOCITY.		96.0 -	· <i></i>	***	6-	2	
OXYGEN, %DRY, MEAS.		3.80	LIQ/G	AS,GAL/M	CF	20.8	***	***	58.	3	
CO2, SDRY-CALC.		14.77	LIQ/G	4S+#/#		2.8	***	***	6-	2	
HUMIDITY,#/# - CALC	•	0.055	PRES.I	OROP, IN.	WG	5.7	***	***	5.	.6	
D2 ABSORPTION PARAMETER	RS						SULFATE	FORMAT	TION PARAM	IETERS	
VENTURT ABSORBER		FtC	ATING BI	ED ABSOR	BER		corc		35 41		
KGA,#MOLE/HR-FT3,	 \$\$\$	**KG	A,#MOLE	HR-PT3		 25. 7		.,GN-MC)LE/L=	**** ***	
SULFITE/SO2-MOL/MOL	= ***		LFITE/S		OL =	32.40		T FURN.		.80	
SUMP RESID. TIME, MIN			MP-RESTI	TIME M	IN -=	****		T ABSOR		***	
<u></u>				•	-			T ABSOF		***	

RUN NUMBER	11-н	DATE 9-24	-71	TIME OF DAY	1330		
MATERIAL BALANCE	ES					INPUT FOR EQ	KIN.PROG.
	SULFUR	MAGNESTUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS.	#ATOMS/100#FEED
INPUT,#/HR	15.48		30.95	271.0	5283.	CARBON	0.459979
OUTPUT,#/HR	9.96		*****	290.5	5290.	HYDROGEN	0.533617
				•		OXYGEN	1.395048
PART.SCRUBBER			•			NITROGEN	5.062540
I'NPUT,#/HR	9.96		****	354.	5290.	SULFUR	0.008731
DUTPUT,#/HR	4.82		****	406.	3143.		
						FEED RATE,#	/SEC= 1.54
SO2 ABSORBERS						-	
INPUT, #/HR	4:-82	6.68	***	622.	3143	- ENTHALPY, BT	U/#==2870
OUTPUT,#/HR	0.10	* * * * *	***	506.	3214.		
*		•	•	-	-		
*SO2 ABSURBERS-	GM SO2/	GM-MOLE/	GRAM/		P MGO COMPO	SITION	
PRODUCT COMP.	100ML	LITER -	1.00MF	SLUR	RY CONC G	SM MGD/100ML =	5.80
				MGO	PRESLAKED.	NO=0, YES=1	0
TOTAL,	4-06	0-6344	·····	8 SL	AKED- TO MG	OH) 2, MEAS. =	++++
COMBINED	4.06	0.6344		-			
FREE	0.0	0.0		- PRODU	CT MG BASE	PHYSICAL PROPER	RTIES
MONO(TOTAL)	4.06	0.6344		- ACID	STRENGTH,	PH = 8.0	00
- MONO (DISSOLVE	D) 1.38	0.2156	2.24	2 SP.G	R'AVITY, HYDR	10M. = ***	***
MONO(SOLID)	2.68	0.4188	8.87	78			
""BISULFITE		0-0	-0-0-				
MGD	1.25	0.1960	0.78	34			
SULFATE	****	*****	****	* "PARTI	CULATE SCRU	JBBER PRODUCT	
MAGNE S I UM	5.31	0.8303		ACID	STRENGTH ,		=
FLYASH			****	* FLYA	SH CUNC. GM	1/100ML = ****	
SOLIDS, MG			11.65	55			
COAL COMPOSIT	ION-MASS						
		-	-				
	0.7150						
	0.0485						
	0.0817			_			
	0.0370					**************************************	
_	0.0740						
"- WATER	0.0438						

*SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 1	1-H	DATE	9-24-71	TI	ME OF DAY	1330					
FLUE GAS DATA			SO2	NOX	NOX+1	NOX#2	HUM.	DEW	STAT		
	#/HR	F	PPM	PPM	РРМ	РРН	#/#	POINT F	PRES IN.WG		
FURNACE EXIT	5581.	-540. 0	1801-2	***	** ***	748-7	0.055	•	-0-1		
FLOAT.BED EX	3721.	130.0	30.9	469.5		664.4	0.157	147.2	-14.9		
NOX SCRUB IN	3688.				696.2		0-157-		1-4-		
NOX SCRUB EX	3736.	126.0	****	274.1	509.7	505.3	0.172	151.5	0.0		
NOX SCRUB. DAT	A TEMP.	FLOW #/MIN	SCRUB.PE		CE SP	RAY SLU	RRY ANAL	YSIS			
MAKEUP WATER	60.0	0.81	NOX AB	-	70.00	MGO,GM	/100ML	0.4	50		
MAKEUP MGO	60.0		NOX1-A		26.79		SOL TO 1 . M				
PRODUCT LIQ.	128.0	4.80	NOX2 A	BSORP	35.71	MG S 03 (TOTAL),M	0.00	33		
RECIRC. LIQ.	128.0	1250.	GAS VE	L.FPS	1.8	MGS04 ; 1				····	
			L/G,GA		146.4)2, MOLA		_		
NO2 FLOW DATA					-203						
NO2 FLOWRAT				ROP,WG	0.1	TSS,GM.		1.4			
- NO2/NO(PDS						-NITRIT	E/NITRAT	E 4-40	7		
NO2/NO(FC 8	KUIUI	0.65									
TERIAL BALANC	E				**	MAKI	EUP MGO .	COMPOSIT	ION		
		UL FUR MA	GNES-IUM -	-WATER	···NI-TROGEN					ML= -5-00	···
NOX SCRUBBER	₹										
- INPUT,#/HR			7.47						-		 .
OUTPUT,#/HF	0	•08 (94	554.0	0.52						
PHYSICAL PROF	PERTIES	DF									
RECYCLED SEUR		-									
· -PH CONDUCT.MI	CROMHOS	8.05 535.						- -		r	
SPECIFIC	RAVITY	1:050)	~							
							- <u>-</u>		•		
		<i>y</i>							_		
NOX = PDS A	NALYSIS	-									
NUA - FUS F	MANE 1313										
NOX+'I = SALTS	MAN- ANA	₩616									

** DXIDIZED NITROGEN ONLY

PRIMARY AIR 481. 110.0 0.010 62.7 476. 14.6 SECONDARY AIR 4704. 692.5 0.014 72.0 4638. 5.8 FURNACE EXIT 5583. 560.0 1741.8 **** ***** ****** 0.055 114.9 -5292. 0.0 PART.SCRB.INLET 5583. 460.0 ***** **** ***** ****** 0.055 114.9 2.7 PART.CYC.EXIT 3550. 138.0 1479.5 **** **** ***** ***** 0.132 142.3 31378.7 VENT ABS.INLET **** ***** ***** ***** ***** ***** ****	RUN NUMBER 12-A	DAT	E 9-24	-71	TIME OF	DAY 14	30					
PRIMARY AIR SECONDARY AIR 404. 692.5	FLUE GAS DATA			_					POINT-	FLOW	PRES	
SECONDARY AIR 4704. 692.5	PRIMARY AIR	481.	110-0					0.010				
FURNACE EXIT 5583. 560.0 1741.8 ***** ***** ***** 0.055 114.9 5292. 0.07 PART.SCRB.INLET 5583. 460.0 ***** **** ***** ***** 0.132 142.3 3137. 8.7 PART.CYC.EXIT 3550. 138.0 1479.5 **** **** ***** ***** 0.132 142.3 3137. 8.7 VENT ABS.INLET **** ***** **** **** **** **** ****											5.8	
PART_SCRB_INLET 5583. 460.0 ****** ***** ***** ****** 0.055 114.9 2. PART_CYC_EXIT 3550. 138.0 1479.5 **** **** ***** ***** 0.132 142.3 3137. **87 VENT ABS_INLET ***** ***** ***** **** **** ***** *****				1741-8	***	****	****			•	0.0	
VENT ABS. INLET ABS CYC.EXIT ABS CYC.EXIT FLOATING BED IN 3550. 135.0 ****** ****** **********************	PART.SCRB.INLET	5583.	460.0	****	** * *	***	****				2.7	
### #### #### ##### ##### ##### ##### ####	PART.CYC.EXIT	3550.	138.0	1479.5	****	***	*****	0.132	142.3	3137.	-8-1	
FLOATING BED IN 3550. 135.0 ****** ***** ***** ****** ****** 0.132 142.3 8. PLOATING BED EX 3713. 0.0 ***** **** ***** ****** ***** ***** 0.160 147.7 14. P.D. EXIT ORIF. 3713. 132.0 30.9 **** 502. ****** 0.160 147.7 320114. SCRUBBER STREAM DATA PARTICULATE TEMP, F FLOW, GPM GAS ABSORBER TEMP, F FLOW, #/M TEMP, F FLOW,	VENT ABS.INLET								****		****	
FUDATING BED EX 3713: 0:0 ***** ***** ****** 0:160 147.7					***	- - * * * * * -	****	****			****	
P.P. EXIT ORIF. 3713. 132.0 30.9 ***** 502. ******* 0.160 147.7 320114.* SCRUBBER STREAM DATA PARTICULATE PARTICULATE OO.0 0.0 MAKEUP MATER FEDW.#/M TEMP,F FLOW.#/M MAKEUP WATER 60.0 0.0 MAKEUP MATER ***** ***** 60.0 0.6 PRODUCT LIG. 138.0 19.78 PRODUCT LIG. ***** 3.2 0.0 3.2 RECIRCULATED LIQ. 138.0 19.78 PRODUCT LIQ. ***** ***** 136.0 0.0 REC. (SPRAY NOZ.) ***** ***** 136.0 0.0 REC. (FLOW NOZ.) ***** ***** 136.0 0.0 REC. (FLOW NOZ.) ***** ***** ***** ****** ****** ******											-8.1	
SCRUBBER STREAM DATA PARTICULATE PARTICULATE MAKEUP WATER 60.0 0.0 MAKEUP HATER FLOW, GPM - GAS ABSORBER FEMP, F FLOW, #/M TEMP, F FLOW, #/M MAKEUP WATER 60.0 0.0 MAKEUP HATER FEDOUCT LIQ. 138.0 19.78 PRODUCT LIQ. RECIRCULATED LIQ. 138.0 19.78 PRODUCT LIQ. REC. (SPRAY NOZ) REC. (SPRAY NOZ) REC. (FLOW NOZ.) REC. (FLOW NOZ.) FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE HEAT RELEASE, BTUVHR 0.529E 07 SOZ ABSORB.EFF 15.06 FURNACE PERFORMANCE PART. VENT ABSORB. FLOAT.BED FURNACE PERFORMANCE FUR											-14.9	
SCRUBBER STREAM DATA	P.P. EXIT ORIF.	3713.	132.0	30.9	****	502.	****	0.160	147.7	3201.	-14.9	
PARTICULATE MAKEUP WATER 60.0 0.0 MAKEUP WATER ***** ***** 60.0 0.0 MAKEUP WATER ***** ***** 60.0 0.0 MAKEUP WATER ***** ***** 60.0 0.0 RECIRCULATED LIQ. 138.0 19.78 PRODUCT LIQ. ***** ***** 136.0 0.0 REC. (SPRAY NOZ) ***** ***** 136.0 0.0 REC. (SPRAY NOZ) ***** ***** ***** ***** ***** ****	SCRUBBER STREAM DATA		_				VE	NTURI ABS	ORBER	FBA	- -	-
PRODUCT LIQ. 138.0 0.0 MAKEUP MGO St. **** 3.2 0.0 3.2 RECIRCULATED LIQ. 138.0 19.78 PRODUCT LIQ. ***** **** 136.0 0.0 REC.(SPRAY NOZ) **** **** 136.0 0.0 REC.(SPRAY NOZ) **** **** 136.0 0.0 REC.(FLOW NOZ.) ***** **** 136.0 0.0 REC.(FLOW NOZ.) ***** ***** ***** 385.0 SCRUBBER PERFORMANCE PART. VENT ABS. FLOAT.BED ABSORBER FLOAT.BED ABSORBER FLOAT.BED ABSORBER FLOAT.BED ABSORBER FLOAT.BED ABSORBER CONC.,GM-MOLE/L= ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME,MIN = ****** O2 AT ABSORB.IN= *****	PARTICULATE	TEMP, F	FLO	JW; GPM	GAS	ABSORE					COW-, #/M	
RECIRCULATED LIQ. 138.0 19.78	MAKEUP WATER	60.0	0	0.0	MA	KEUP WA	ATER +	***	***	60.0	0.6	
REC.(SPRAY NOZ) ***** ***** 136.0 0.0 REC.(FLOW NOZ.) ***** ***** 136.0 0.0 REC.(FLOW NOZ.) ***** ****** 136.0 0.0 REC.(FLOW NOZ.) ***** ****** 136.0 0.0 REC.(FLOW NOZ.) ****** ****** 136.0 0.0 REC.(FLOW NOZ.) ****** ******	PRODUCT LIQ.	138-0). 0		KEUP MO	0-SL*	***	3.2	0.0	3.2	
##### 385.0 FURNACE PERFORMANCE SCRUBBER PERFORMANCE PART. VENT ABS. FLOAT.BED #EAT RELEASE,BTU/HR 0.529E 07 SUZ ABSORB.EFF 15.06 ****** 97.91 ##### #### ##### ##################	RECIRCULATED LIQ.	138.0	19	7.78	PR	CODUCT L	.10. *	* * * * * *	**		0.0	
FURNACE PERFORMANCE HEAT RELEASE, BTU/HR 0.529E 07 SOZ ABSORB.EFF 15.06 ****** ****** ****** COAL FLOW RATE, #/HR 18.4 SOZ ABSORB.EFF 15.06 ****** ****** ****** ****** ***** ****					- RE	C. ISPRA	Y NOZ) *	***	***	136.0	0.0	
FURNACE PERFORMANCE HEAT RELEASE, BTU/HR 0.529E 07 SUZ ABSORB.EFF 15.06 ****** 97.91 * FUEL AS COAL 96.2 FLYASH COL.EFF ***** COAL FLOW RATE, #/HR 418.4 SUJ ABSORB.EFF ***** ***** ***** ***** ***** ****					RE	C.(FLOV	NOZ.)	**			385.0	
#EAT RELEASE, BTU/HR 0.529E 07 S02 ABSORB.EFF 15.06 ****** 97.91 % FUEL AS COAL 96.2 FLYASH COL.EFF *****	FURNACE PERFORMANCE		 S	CRUBBER	PERFORM	ANCE	PART.	VENT A)	
### FUEL AS COAL 96.2 FLYASH COL.EFF *****		0.529E										~
COAL FLOW RATE,#/HR 418.4 SO3 ABSORB.EFF ***** ***** ****** ****** ****** ******	-								***	=	_	
######################################							****	***	***	***		
OXYGEN, %DRY, MEAS. 3.80 LIQ/GAS, GAL/MCF CO2, %DRY-CALC. 14.77 LIQ/GAS, #/# HUMIDITY, #/# - CALC. 0.055 PRES. DROP, IN. WG 3.3 ****** 6.0 SO2 ABSORPTION PARAMETERS VENTURI ABSORBER FLOATING BED ABSORBER CONC., GM-MOLE/L= ***** KGA, #MOLE/HR-FT3, = ****** SULFATE FORMATION PARAMETERS CONC., GM-MOLE/L= ***** SULFITE/SO2-MOL/MOL = ***** SULFITE/SO2-MOL/MOL = ***** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME, MIN = ****** SUMP RESID.TIME, MIN = ******	NAT.GAS FLOW, #/HR		9.1	NOX AE	SORB.EF	F	****	***	***	***	**	
CO2, %DRY-CALC. HUMIDITY.#/# - CALC. O.055 PRES.DROP.IN.WG SULFATE FORMATION PARAMETERS VENTURI ABSORBER FLOATING BED ABSORBER CONC., GM-MOLE/L= ***** KGA, #MOLE/HR-FT3, = ****** SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME, MIN = ******	% EXCESS AIR	1	18.1	GAS VE	ECOC ITY	FPS	95.9	· · · · · · · · · · · · · · · · · · ·	*** .	6.	.2	
HUMIDITY,#/# - CALC. 0.055 PRES.DROP, IN.WG 3.3 ****** 6.0 SO2 ABSURPTION PARAMETERS VENTURI ABSORBER FLOATING BED ABSORBER CONC.,GM-MOLE/L= ****** KGA,#MOLE/HR-FT3, = ****** KGA,#MOLE/HR-FT3 = 25.7 MOL& TOTAL SULF= ***** SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME,MIN = ****** SUMP RESID.TIME,MIN = ****** O2 AT ABSORB.IN= *****						1CF			***	58	. 4	
SO2 ABSORPTION PARAMETERS VENTURI ABSORBER FLOATING BED ABSORBER CONC.,GM-MOLE/L= ***** KGA,#MOLE/HR-FT3, = ****** SULFITE/SO2-MOL/MOL = ***** SULFITE/SO2-MOL/MOL = ***** SUMP RESID.TIME,MIN = ****** SULFATE FORMATION PARAMETERS CONC.,GM-MOLE/L= ***** CONC.,GM-MOLE/L= ***** CONC.,GM-MOLE/L= ***** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80	-			_	3				***			
VENTURI ABSORBER FLOATING BED ABSORBER CONC.,GM-MOLE/L= ***** KGA,#MOLE/HR-FT3, = ****** SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = ***** SUMP RESID.TIME,MIN = ****** SUMP RESID.TIME,MIN = ****** CONC.,GM-MOLE/L= ****** MOLE TOTAL SULF= ***** SUMP RESID.TIME,MIN = ****** O2 AT ABSORB.IN= ******	HUMIDITY.#/# - CALC	. 0.	055	PRES.	DROP.IN.	WG	3.3	***	***	6	. 0	
CONC.,GM-MOLE/L= ***** KGA,#MOLE/HR-FT3, = ****** KGA,#MOLE/HR-FT3 = 25.7 MOL% TOTAL SULF= ***** SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME,MIN = ****** SUMP RESID.TIME,MIN = ****** O2 AT ABSORB.IN= *****		RS						SULFATE	FORMAT	ION PARA	METERS	
KGA,#MOLE/HR-FT3, = ****** KGA,#MOLE/HR-FT3 = 25.7 MOL% TOTAL SULF= ***** SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME,MIN = ****** SUMP RESID.TIME,MIN = ****** O2 AT ABSORB.IN= *****	VENTURI ABSORBER		FLO	DATING BI	ED ABSOR	RER						
SULFITE/SO2-MOL/MOL = ****** SULFITE/SO2-MOL/MOL = 31.77 O2 AT FURN. EX.= 3.80 SUMP RESID.TIME, MIN = ****** SUMP RESID.TIME, MIN = ****** O2 AT ABSORB.IN= *****		The state of the s										
SUMP RESID.TIME, MIN = ****** SUMP RESID.TIME, MIN = ***** O2 AT ABSORB.IN= ****												
	SUMP KESID. IIME, MIN	- 小小小女女女	· 50	JUL KE211	J • 1 1 ME • !	111/1 =	*****					
**** MEANS ITEM NUT MEASURED	**** MEANC ITCM NOT	MEASURE	`					U2 F	II ABSUK	D.EX= #	* * * * *	_

		-			•		
RUN NUMBER	12-A	DATE 9-24	4-71 TI	ME OF DAY	1430		
MATERIAL BALANCES						INPUT FOR EQ	KIN.PROG.
EUDAI ACE	SULFUK	MAGNESTUM	FLYASH	WATER	DRY GAS		
FURNACE	15-40 -			0747	- 5005	INPUT FLOWS, #ATO	
INPUT,#/HR	15.48		30.96	271.7	5285.	CARBON 0-4	
OUTPUT,#/HR	9.63		***	291.3	5292.		48169
PART.SCRUBBER							75048
TNPUT, #7HR	9.63	·	· ****		··· 5292.		62 53 9
OUTPUT,#/HR	4.85		*****	354 . 413.	JE 12 •	SULFUR 0.0)8 731
	4.00		*****	415.	3137.		
SO2 ABSORBERS						FEED RATE, #/SEC	= 1.74
- INPUT,#/HR	485	6.68	*****	6 3 0	···········	- ENTHALPY, BTU/#	
OUTPUT #/HR	0.10	*****	*****	512.	3201.	E-1111AE1 175107#	2 300 \$
*	-				3201.	*	
*SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/	MAKFI	IP MGO COMPO	SITION	
PRODUCT COMP.		-LITER-	- FOOML			M MGO/100ML -=	5 80
			2002		PRESLAKED.		0
TOTAL ;	4.54	0.7 089				DH	_
COMBINED	4.54	0.7089					
FREE	0.0	0.0		··· ·PRODU	CT MG BASE	PHYSICAL PROPERTIES	
MONO(TOTAL)	4.54	0.7089			STRENGTH,		
MONO(DISSOLVED)	136	- 0.2125	2.210		RAVITY HYDR		
MONO(SOLID)	3.18	0.4964	10.523		•		
BISULFITE	00	00					are the second at the second s
MGO	1.52	0.2375	0.950				
SULFATE	***	***	- ** ****	· · PARTI	CULATE SCRU	BBER PRODUCT	
MAGNESIUM	6.06	0.9464		ACID	STRENGTH ,	PH = 6.50	
FLYASH			*** *	FLYA	SH CONC . GM	/100ML = ****	
SOL I DS, MG			27.151				
COAL COMPOSITIO	IN-MASS						
1					•		·
	7150						
HYDROGEN OF	⁻ 0485 -			•		-	- -
	0817						
	0370	-27-17-0	·				
	0740						
WATER 0.	0438			-			

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 12-	-A	DATE 9-24-7	TIME	OF DAY	1430			-	
FLUE GAS DATA		MP. \$02	NOX	NOX#1	NOX+2	HUM.	DEW	STAT	
	#7HP 1	F"	— РРМ		PPM	#/#	POINT-	"PRES"	
FUDULEE	E						F	IN.WG	
FURNACE FXIT		50.0 1741.8		***	748.6	0.055	114.9	0.0	
FLOAT BED EX		32.0 30.9 55.0 *****		****	655.0	0.160	147.7	-14.9	_
NÜX SCRUB IN NOX SCRUB EX		55.0 ***** 26.0 ****		442.0 *****	842.2 617.6	0.160 0.174	147.7 151.9	1.4 0.0	
-						-			
NOX SCRUB.DATA	F #/M		ERFORMANCE Bsorb. **	24 ****	PRAY SLUR	KKY ANAL	4212		<u>-</u>
MAKEUP WATER	60.0 0.1			0.00	MGO,GM	/100ML	0.	512	
MAKEUP MGO	60.0 2.0		ABSORP **	****		SOL ID) ,M			·
	130.6 3.			6.67		TOTAL),M			
RECTRC: 110.	130-0 125	GAS V	EL-FPS	1.8	MGSO47	OL'AR	001	749	
		L/G,G	AL/MCF 14	6.2	MG (NO2)	2, MOLA	R 0.0	121	
NOZ FLOW DATA		L/G,#	/# 2	0.4	MG (NO3-)	2', MOLA	R- 0.00	28	
NO2 FLOWRATE	#/MIN O	.03 PRES.	DROP,WG	0.1	TSS,GM	/100ML	1.	500	
NO2/NO(PDS I	BASTS) **	**		-	NITRITI	/NITRAT	E 4.3	21	
NO2/NO(FC &	ROTO) O	. 67							
ATERIAL BALANCE				**		EUP MGO	COMPOSI	TION	
	SULFU	R MAGNES IUM	WATER	NITROGE	V	SLURRY	CONC., G	4 MGD/100ML=	5.00
NOX SCRUBBER									
INPUT,#/HR	0.10	3.60	671.0	***	-				
OUTPUT,#/HR	0.05	0.73	557.2	1.19					
BUYCLCAL BOOKE	RTIES OF								
PHYSICAL PROPE									
RECYCLED SLURR	Y								
		•95		- -	-				
RECYCLED SLURR	7				-				
RECYCLED SLURR	7 ROMHOS	•95 824• 1•010							
PH CONDUCT.MIC	7 ROMHOS	824.						•	
PH CONDUCT.MIC	7 ROMHOS	824.			·				
PH CONDUCT.MIC	7 ROMHOS	824.			-				
PH CONDUCT.MIC SPECIFIC GR NOX = PDS AN	7 ROMHOS AVITY	824. 1.010							
PH CONDUCT.MIC SPECIFIC GR NOX = PDS AN NOX*1 = SALTSM	7 ROMHOS AVITY ALYSIS AN ANALYSI	824. 1.010			-				
PH CONDUCT.MIC SPECIFIC GR NOX = PDS AN	7 ROMHOS AVITY ALYSIS AN ANALYSI	824. 1.010							
PH CONDUCT.MIC SPECIFIC GR NOX = PDS AN NOX*1 = SALTSM	ROMHOS AVITY ALYSIS AN ANALYSI ELL ANALYS	824. 1.010		-	-				

		7540			NO V	FLVACU	LIIM	DEW	DRY	STAT	
LUE GAS DATA	FLOW #/HR-	TEMP.	502	S03	NOX	FLYASH GR/DSC F	HUM。 · #7#	- POINT			
	#/HK	r	PPM	PPM	PFM	GK/ USCF	H / P	F	#/HR	IN.H20	
PRIMARY AIR	468	1-100-					- 0:017	76.9		14.9	
SECONDARY AIR	4822.	690.0					0.017	76.2	4744.	5.7	
FURNACE EXIT	5696		-1713.5	***	··· *** *	***	0 058-	116:1-	5386 -	-0.1	
PART. SCRB. INLET	5696.	460.0	*****		****	*****	0.058	116.1		2.7	
PART.CYC.EXIT	3381.	1.38.0			****	****	0.135	142.8	2980.	6.8	
VENT ABS.INLET	****	****	****			****	***	****		****	
ABS-CYC.EXIT	****		** *			***		****		***	
FLOATING BED IN	3381.	139.0	****	***		****		142.8		-10.8	
FLOATING BED EX	3547.	0-0				****				-14.9	
P.P. EXIT ORIF.	3547.	132.0	8.5	***	581.	****	0.164	148.2	3047.	-14.9	
		•			-		ITUDI ADC	00050	E O A		_
CRUBBER STREAM DATA					A D.C.O.C.		ITURI ABS		FBA	LOW9#/M -	
PARTICULATE	TEMP.	_	JW,GPM		ABSORE		IP, F FLOW	-			
MAKEUP WATER	60.0		0.0		KEUP WA			*** -2	60.0	0.6	
PRODUCT LIQ.	137.0	_).0			SO SL. **			127.0		
RECIRCULATED LIQ.	137.0) 19	78		ODUCT L			***	137.0	0.0	
	-					Y- NOZ-)**		• • •	1.3-70	0.0	
				RE	C. (FLOW	NOZ.J	₹ ₹	*** - ·		385.0	
HIDNACE DEDECTORMANCE			CRUBBER	DEDECOM	ANCE	PART.	VENT A		FLOAT.BE)	
URNACE PERFORMANCE HEAT RELEASE.BTU/HR	···~~~ ~~~								~ -99-		
% FUEL AS COAL		96.4		COL.EF		*****	***	***	****	-	
=		426.4		SORB.EF		****		***	***	¢*	-
	_	8.9	_	SORB.EF		*****		***	****	* 	
COAL FLOW RATE, #/HR			140 4 AL	30110421	•					_	
NAT.GAS FLOW,#/HR			G:A-SV F	I OCTTY.	FPS	91.9	- 444	***	6.	-0	
NAT.GAS FLOW,#/HR & EXCESS AIR		18-1		LOCITY,		91.9 21.7		***	60		
NAT.GAS FLOW,#/HR T EXCESS AIR OXYGEN,%DRY,MEAS.		18.1 3.80	LIQ/GA	S,GAL/M		21.7	***	***	-	. 6	
NAT.GAS FLOW,#/HR % EXCESS AIR OXYGEN,%DRY,MEAS. CO2,%DRY-CALC.	1	18.1 3.80 14.78	LIQ/GA	S.GAL/M	CF	21.7 2.9	***	***	60.	. 6	
NAT.GAS FLOW,#/HR T EXCESS AIR OXYGEN,%DRY,MEAS.	1	18.1 3.80	LIQ/GA	S,GAL/M	CF	21.7	***	*** ***	60.	. 6 . 5	
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, **DRY-CALC.** HUMIDITY, #/# - CALC	• (18.1 3.80 14.78	LIQ/GA	S.GAL/M	CF	21.7 2.9	*** ***	*** ***	60 4	.6 .5 .1	
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, %DRY-CALC. HUMIDITY, #/# - CALC ABSORPTION PARAMETE	RS	18.1 3.80 14.78 0.058	LIQ/GA LIQ/GA PRES.D	AS, GAL/M AS, #/# DROP, IN.	WG	21.7 2.9	*** ***	*** ***	60.	.6 .5 .1	
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, %DRY-CALC. HUMIDITY, #/# - CALC ABSORPTION PARAMETE	RS	18.1 3.80 14.78 0.058	LIQ/GA	AS, GAL/M AS, #/# DROP, IN.	WG	21.7 2.9	*** *** SULFATE	*** *** *ORMAT	60. 6. 4. ION PARAM	.6 .5 .1	
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, %DRY-CALC. HUMIDITY, #/# - CALC 2 ABSORPTION PARAMETE VENTURI ABSORBER	RS	18.1 3.80 14.78 0.058	LIQ/GA PRES.E	AS,GAL/M AS,#/# DROP,IN.	WG BER	21.7	*** *** SULFATE	*** *** FORMAT	60. 6. 4. ION PARAM	.6 .1 METERS	-
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, %DRY-CALC. HUMIDITY, #/# - CALC ABSORPTION PARAMETE VENTURI ABSORBER KGA, #MOLE/HR-FT3,	RS	18.1 3.80 14.78 0.058	LIQ/GA LIQ/GA PRES.E DATING BE	AS,GAL/M AS,#/# DROP,IN. ED ABSOR	WG BER	21.7 2.9	*** *** SULFATE CONC MOL8 02 A	*** FORMAT GM-MOI TOTAL T FURN.	60. 60. 61. 10N PARAM LE/L= ** SULF= **	.6 .5 .1 METERS ****	
NAT.GAS FLOW,#/HR 8 EXCESS AIR OXYGEN, %DRY, MEAS. CO2, %DRY-CALC. HUMIDITY, #/# - CALC 2 ABSORPTION PARAMETE VENTURI ABSORBER	RS = ****	18.1 3.80 14.78 0.058 	LIQ/GA LIQ/GA PRES.E DATING BE BA, #MOLE/ JLFITE/SO	AS, GAL/M AS, #/# DROP, IN. ED ABSOR MR-PT3 D2-MOL/M	BER	21.7	*** *** SULFATE CONC MOL8 02 A	*** FORMAT GM-MOI TOTAL T FURN.	60. 6. 4. ION PARAM LE/L= **	.6 .5 .1 METERS ****	

RUN NUMBER	13-A	DATE 9-27	7-71 T	IME OF DAY	1600		
MATERIAL BALANCE	S					INPUT FOR EQ KIN.PROG.	
	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS, #ATOMS/100#FEED	
INPUT.4/HR	15.78	*****	31.55	291.0	5378.	CARBON 0.460222	
OUTPUT##/HR	9.65		****	310.1	5386.	HYDROGEN 0.613882	
						DXYGEN1.395070	
PART.SCRUBBER			•			NITROGEN 5.062304	
INPUT,#/HR	9.65		****	373.	5386.	SULFUR 0.008743	
OUTPUT,#/HR	3.48		***	401.	2980.		
						FEED RATE, #/SEC= 1.57	-
SO2 ABSORBERS							
TNPUT;#/HR		5.67	***	628.	~~ 2980 . ~	ENTHALPY, BTU/# = -4283.	
OUTPUT,#/HR	0.03	* * * * * *	***	500.	3047.		
*						•	
*SO2 ABSORBERS-	GM SO2/	GM-MOLE/	GRAM/		JP MGO COMPO	-	
PRODUCT COMP.	100ML	LITER	1.00MF			M MGO/100ML = 4.70	
						NO=0, YES=1 0	
TOTAL		0:3080			AKED TO ME!	OH12, MEAS. = *****	
COMBINED	1.97	0.3080					
FREE	0.0	0.0				PHYSICAL PROPERTIES	
MONO (TOTAL)	1.97	0.3080			STRENGTH,		
MONDIDISSOLVED		0.1937	2.015	SP.G	RAVITY, HYDR	OM. = *****	
MONO(SOLID)	0.73	0.1143	2.423				
BISULFITE	0.0	0.0	0.0				
MGU	1.77	0.2760	1.104				
SULFATE	***	****	* ****			BBER PRODUCT	-
MAGNESIUM	3.74	0.5840			STRENGTH ,		
FLYASH			****		ISH CONC. GA	/100ML = ****	
SOL IDS, MG			5.635				
COAL COMPOSITI	ΠN-MΔSS						
01112 0011, 00111							-
CARBON O	.7150						
	.0485				-		
	.0817						
SUCFUR0	_						
	.0740						
	.0438					<u>.</u>	

^{*}SOLIDS FREE BASIS, MASS/VOLUME SOLUTION

FLUE GAS DATA	FLOW	TEMP.	SO2	NOX	NOX+1	NOV+3	1.11.134	0.EU		
TOU ONS DATA		F		PPM—		NOX*2	HUM。 #/#	DEW Point	STAT PRES	
	# F 11%	•	FFIT	FFM	FFM	rrn	# / W	FUINI	IN.WG	
FURNACE EXIT	5696.	- 570.0	··· 1713.5	****	*****	674.2	-0.058		=0.1	
FLOAT.BED EX	3547.	132.0				730.4		148.2	-14.9	
NOX SCRUB IN	3466.	166.0	****	5258	662.5		0 -16 4-		1.4	
NOX SCRUB EX	3509.	128.0	****	580.3	256.4	725.7	0.179	152.3	0.0	
NOX SCRUB.DATA	TEMP.	FLOW	SCRUB.PE	ERFORMAN	ICE SP	RAY SLU	RRY ANAL	2124		
	F	#7MIN			_			, 010		
MAKEUP WATER	60.0	0.81	NOX A	BSORP.	-10.36	MGO , GM	/100ML	0.4	975	
	··60 •0-		NOX1/	ABSORP	61.30	MGS031	SOLIDI,M			
	132.0	3.35		ABSORP	-9.15	-	TOTAL),M			
RECIRC: tio:	132.0	-12 70.					40LAR		292	
NOS FLOW SATA					156.2		2, MOLA			
NO2 FLOW DATA NO2 FLOWRATE		0 03	L/G,#7		22.0)2, MOLA			-
NO2/NO(PDS	•		PKE2.	OROP, WG	0.1	TSS, GM		11.7		
NO2/NO(FC &		0.63				NITRIT	E/NITRAT	E 5.88	39	
MATERIAL BALANCE										
-		HEHD M	AGNESIUM	WATED	** NITROGEN		EUP MGO		1 MGO/100ML=	£00
NOX SCRUBBER	3(JET OK 147	4011231014	MATEN	NIIKUGEN		SLUKKI	CUNC. 9 Gr	WGO/IOOML=	5-80
INPUT,#/HR	0.	.03	4.18	650.0	0.72		-			
OUTPUT,#/HR			1.54	535.0	0.86					
DHACLUM DOODL		 	• • • • • • • • • • • • • • • • • • • •							
PHYSICAL PROPE RECYCLED SLURR) F								_
RECICEED SCORN	•									
PH	-	8.15				•	-		•	
CONDUCT.MIC		397.	•							
SPECIFIC GR	AVITY	1.02	5							
				_				_	_	_
				_			-		-	
NOX = PDS AN	ALYSIS									
NOX+1 = SALTSM		vere								

RUN NUMBER 13-A DATE 9-27-71 TIME OF DAY 1600

** OXIDIZED NITROGEN GNLY

NOX*2 = FUEL CELL ANALYSIS

RUN NUMBER 14-I		ATE 9-2	/-/1 	TIME OF	DAY 17	700					
FLUE GAS DATA	FLOW	TEMP.	\$02	SO3	NOX	FLYASH	HUM.	DEW	DR Y	STAT	
	#/HR	F	PPM	PPM	PPM	GR/DSCF	#/#	POINT	FLOW	PRES	
DOIMARY ATO								F	#/HR	IN.H20	
PRIMARY AIR Secondary air	474.	120.0					0.016	76.1	467.	14.9	
FURNACE EXIT	4575. 5434.	691.3					0.017	77.0	4499.	6.0	
PART.SCRB.INLET	5434.	490.0	1704.6	* ****	****		-0.058	116.2	5138.	0.0	
PART.CYC.EXIT	3311.	139.0	****** 1587.7	****	***	****	0.058	116.2		4.1	
VENT ABS.INLET	****		_	****		***	0.142	144.3	2900.	-8.1	
ABS CYC.EXIT	****		***	****	****	****	****	***	~~~~	****	
FLOATING BED IN	3311.			****		****		****		****	
FLUATING BED EX						***	0.142	144.3		-8.1	
P.P. EXIT ORIF.	3480.	133.0	2.0	****	***	****				-16.3	
TO CALL ONLY	3400.	133.0	2.0	****	529.	****	0.171	149.4	2971.	-16.3	
CRUBBER STREAM DATA						1451		2225			
PARTICULATE	TEMP	.F F1-0	W.GPM -	CAS	ARCORD	VEN	TURI ABS		FBA		
MAKEUP WATER	60.0).O		KEUP WA	ER TEN			TEMP,F FL		
PRODUCT LIG.	13870					0 St. **		***	60.0	0.6	
RECIRCULATED LIQ.	138.0		78		ODUCT L			3.3 ***	0.0	3.3	
		•				Y NOZ) **		***	138.0 138.0	0.0	
		_				NOZ.		***	130.0	3.8	
URNACE PERFORMANCE		S	CRUBBER	P ER FORM	ANCE	PART.	VENT A	RS.	FLOAT.BEG)	
"HEAT RELEASE, BTU/HR	0.511	IE 07		SORB. EF		6.86		* * * · · ·	99-6		
% FUEL AS COAL		96.2	FLYASH	COL.EF	F	*****	***	* * *	****		
COAL FLOW RATE, #/HR	4	403.8		SORB : EF		***	****		****		
NAT.GAS FLOW,#/HR		8.9		SORB.EF		****	***		****	-	
% EXCESS AIR		18.6	GAS VE	LOCITY,	FPS	90-8-	***	*** -		-	
DXYGEN, %DRY, MEAS.		3.90	LIQ/GA	S.GAL/M	CF	22.0	***	***	0.		
CO2, %DRY-CATC.		14.68	L1Q/GA	5,#/#		3.0	***	***	0 -	_	
HUMIDITY,#/# - CALC.	. 0	0.058	PRES.D	RUP, IN.	WG	2.5	***	**	-15.	_	
ABSORPTION PARAMETER	₹S						SULFATE	FORMAT	ION PARAM	IETERS	- •
VENTURI ABSORBER		FEO	ATING BE	D-ABSOR	BER			•		~	. <u>-</u>
TKGA;#MOLE/HR-FT3;		**K.	A,#MULE/	HR=FT3		41,2			LE/L= ++		
"Only "IOCE / III I I I I			LFITE/SO			0.23		TUTAL	SULF= **		
	•					0.23 *****				90	
SULFITE/SO2-MOL/MOL		* 5H	MK KF2III	_ M F _ M							
		** SU	MP RESID	• 1 1 M E 9 M	114 –	*****		T ABSOR	B.IN=" **	***	

RUN NUMBER	14-1	DATE 9-27	7-71 TI	ME OF DAY	1700	
TATERIAL BALANCE!		MAGNESIUM	FLYASH	WATER	DRY GAS	INPUT FOR EQ KIN. PROG.
INPUT,#/HR	14.94	·· <u>********</u>	29.88	277.8	-5131	INPUT FLOWS, #ATOMS/100#FEED
OUTPUT,#/HR	9.16		27.00 *****	296.9	5131a 5138a	CARBON 0.457498 HYDROGEN 0.608727
) 1 J () 4	
PART.SCRUBBER						NITROGEN 5.064827
INPUT,#/HR	9.16		***	360.	5138.	SULFUR 0.008681
OUTPUT ##/HR	4.81		***	411.	2900.	
						FEED RATE,#/SEC= 1.49
SO2 ABSORBERS						
INPUT #/HR		5.67	***	638.	2900.	ENTHALPY, BTU/# = -4413.
OUTPUT,#/HR	0.01	****	***	509.	2971.	
* *SO2 ABSORBERS-	GM S02/	GM-MOLE/	GRAM/	MAVEL	ID MCG COMPOS	TTION
PRODUCT COMP.	1.00 ML	L ITER	100ML -		JP MGO COMPOS	1 MGO/100ML = 4.70
THOUGHT COIN C	IOOME	LIILN	TOUNE		PRESLAKED, N	
TOTAL; -	2.15	0-3359-				0H)2-MEAS. = *****
COMBINED	2.15	0.3359				
FREE	0.0	0.0		PRODU	JCT MG BASE F	PHYSTCAL PROPERTIES
MONO(TOTAL)	2.15	0.3359			STRENGTH, F	
MONO(D1-SSOL VED)	0 - 96 -	0.1500	1.560	SP.	GRAVITY.HYDRO)M. =
MONO(SOLID)	1.19	0.1859	3.942			
BISULFITE	0.0		0-0			THE REPORT OF THE PARTY OF THE
MGO	3.44	0.5368	2.147			
SULFATE	****	****	***		CULATE SCRUE	
MAGNESIUM	5.59	0.8728	4.4.4.4		STRENGTH ,	
FLYASH SOLIDS,MG			****	FLYA	ASH CONC. GM/	100ML = ++++
30L1034MG			11.272			
COAL COMPOSITIO	N-MASS					
CARBON 0	.7150					-
	0485					
	0817					
	0370					The state of the s
	0740					
	0438	_				

^{*}SOLIUS FREE BASIS, MASS/VOLUME SOLUTION

RUN NUMBER 14-I											
	D _i	ATE 9-27-71	TIM	E OF DAY	1700						
FLUE GAS DATA F	LOW TEM	P. SO2	NOX	NOX#1	NOX+2	HUM.	DEW	STAT			
· #	HR F	PPM -	· · · PPM- ·	PPM"	- PPM	# / #	POINT	PRES			
							F	IN.WG			
	-	.0 1704.6	***	****	648.7	0.058	116.2	0.0			_
	80. 133		528.6	***	614.9	0.171	149.4	-16.3			
	60. 166		1310.9	689.1	***	0.171	149.4	1.4			
NOX SCRUB EX 35	502. 129	*****	1076.8	492.4	****	0.186	153.5	0.0			
NOX SCRUB.DATA TE			RFORMANC	E S	SPRAY SLUP	RRY ANAL	YSIS				
	0.0 0.81			17.86	MGO, GM	/100ML	3.	350			
	0.0 1.20		B'SORP		MG\$031		0.0		-		
PRODUCT LIQ. 133				-9.15	MGS03 (TOTAL 1 . M	0.0	041			
RECIRC. LIQ133	-01270.	GAS-VE	L.FPS	-1.7	- MG SO4-1	MOL'AR	- 0.0	185			
		L/G,G	AL/MCF 1	55.9	MG(NU2	12, MOLA					
NO2 FLOW DATA	-	L/G #7		22.0		12, MOLA				•	
NOZ FLOWRATE,#/			DROP,WG	0.1	TSS,GM.		16.				•
NO2/NOL PDS BAS				•	NITRIT	EVNITRAT	E 5.7	50			٠.
NO2/NO(FC & ROT	(0)	6									
MATERIAL BALANCE				* *	MAKI	EUP MGO	COMPOSI	TION			•
MATERIAL BALANCE	SULFIJR	MAGNESIUM	WATER	## NITROGE		EUP MGO : Slurry	_		OOML=	10.20	
MATERIAL BALANCE NOX SCRUBBER		•		NITROGE	N		_		OOML=	10.20	·.
NOX SCRUBBEK - INPUT,#/HR	·0.01	4-41	619.1-	NITROGE	N		_		OOML=	10.20	·.
NOX SCRUBBER		•		NITROGE	N		_		00ML=	10.20	
NOX SCRUBBEK - INPUT,#/HR OUTPUT,#/HR	0.01	4-41	619.1-	NITROGE	N		_		OOML= 	10.20	
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI	0.01	4-41	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBEK INPUT,#/HR OUTPUT,#/HR	0.01	4-41	619.1-	NITROGE	N		_		00ML= 	10.20	
NOX SCRUBBEK INPUT.#/HR OUTPUT.#/HR PHYSICAL PROPERTI	0.01 0.13 ES OF	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBEK INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SCURRY	0.01 0.13 ES OF 8.2	4.41 3.77	619.1-	NITROGE	N		_		00ML = 	10.20	
NOX SCRUBBEK INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SEURRY PH CONDUCT.MICROM	0.01 0.13 ES OF 8.2	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBEK INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SEURRY PH CONDUCT.MICROM	0.01 0.13 ES OF 8.2	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBEK INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SEURRY PH CONDUCT.MICROM	0.01 0.13 ES OF 8.2	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SCURRY PH CONDUCT.MICROM SPECIFIC GRAVI	0.01 0.13 ES OF 8.2 1HOS 3	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SCURRY PH CONDUCT.MICROM SPECIFIC GRAVI NOX = PDS ANALY NOX*L = SALTSMAN	0.01 0.13 ES OF 8.2 HHOS 3 TY I.	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBER INPUT.#/HR OUTPUT.#/HR PHYSICAL PROPERTI RECYCLED SCURRY PH CONDUCT.MICROM SPECIFIC GRAVI	0.01 0.13 ES OF 8.2 HHOS 3 TY I.	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	
NOX SCRUBBER INPUT,#/HR OUTPUT,#/HR PHYSICAL PROPERTI RECYCLED SCURRY PH CONDUCT.MICROM SPECIFIC GRAVI NOX = PDS ANALY NOX*1 = SALTSMAN NOX*2 = FUEL CELL	O.01 O.13 ES OF 8.2 HOS 3 TY I.	4.41 3.77	619.1-	NITROGE	N		_		OOML =	10.20	

.

RUN NUMBER 15-A	DATE 9-	-28-71	TIME OF	DAY 13	25	_	., .,		
FLUE GAS DATA	FLOW TEMP	P. SO2	SO3	NOX PPM	FLYASH GR/DSCF	HUM. #/#	DEW POINT	DRY FLOW #/HR	STAT PRES IN.H20
PRIMARY AIR	471. 130.	.0				0.018	•	*/ IIK	
SECONDARY AIR	4538. 687	5				0.020	81.8	4450.	5.5
FURNACE EXIT	5396: "540	0 1675.5	****	**** -	***	0.061		5085.	0.0
PART.SCRB.INLET	5396. 440			****	****	0.061	118.1		2.7
PART.CYC.EXIT	3432. 139.			*****	***	_		3027	
VENT ABS.INLET	****			****		***	***		****
	****								****
FLOATING BED IN	3432. 135.	• •	***		*****	0.134	142.6		-8.1
FLOATING BED EX	3560 0								-14.9
P.P. EXIT ORIF.	3560. 130.	0 18.4	***	547.	****	0.162	147.9	3063.	-14.9
SCRUBBER STREAM DATA		· • • •				TURI ABS		FBA	
PARTICULATE		FLOW, GPM		ABSORE		P.F FLOW		TEMP, F FL	-
MAKEUP WATER	60.0	0.0		KEUP WA			**	60.0	0.7
PRODUCT LIQ.		00			10 -St-= ++			0.0	3.4
RECIRCULATED LIQ.	136.0	19.78		ODUCT L			***	135.0	0.0
				C.(SPRA C.(FLOW	Y NOZ) ** NOZ.)	**	**	135.0	385.0
FURNACE PERFORMANCE		SCRUBBER	PERFORM.	ANC E	PART.	VENT A		FLOAT.BEG)
HEAT RELEASE, BTU/HR	0-514E-07		BSOR B. EF		18.24	***	***	98	56
% FUEL AS COAL	96.2		H COL.EF	F	****	***	* * *	****	**
COAL FLOW RATE, #/HR	406.4		BSORB.EF		****	***	***	****	**
NAT.GAS FLOW.#/HR	8.9		BSORB.EF		****	**	***	****	**
% EXCESS AIR	17.1		ELOCITY,		93.4	***	**	. 6.	.0
OXYGEN, ZDRY, MEAS.	3.60	L1Q/G	AS,GAL/M	CF	21.4	***	***	60.	
CO2, TORY-CALC.	14.94		A5;#/#		2-9-		\$ **	6-7	
HUMIDITY,#/# - CALC	. 0.061	PRES.	DROP.IN.	WG	3.0	***	***	7.	. 2
102 ABSORPTION PARAMETE				_		SULFATE	FORMA	TION PARAM	1ETERS
VENTURI ABSORBER	ſ	LOATING B	ED ABSOR	BER-	-	CONC	GM-M	OLE/L= **	***
~ KGA,#MOLE/HR-FT3,	= +++++	KGA, #MOLE	HR-FT3		27.4			SULF= +4	
SULFITE/SO2-MOL/MOL		SULFITE/S			22.69				3.60
SUMP RESID.TIME, MIN		SUMP RESI			*****				***
			- · · · · · · · · · · · · · · · · · · ·						***
**** MEANS ITEM NOT	ME ASURED								

RUN NUMBER	15-A	DATE 9-28	-71 T	IME OF DAY	1325		
MATERIAL BALANCE	S					INPUT FOR E	KIN.PROG.
	SULFUR	MAGNESIUM	FLYASH	WATER	DRY GAS		
FURNACE						INPUT FLOWS	#ATOMS/100#FEED
INPUT,#/HR	15.04		30.07	291.5	5078.	CARBON	0.464768
OUTPUT,#/HR	8.90		****	310.6	5085.	HYDROGEN	0.634411
		•				- DXYGEN -	1.394469
PART.SCRUBBER			•			NITROGEN	5.058137
INPUT,#/HR	8.90		***	374.	5085.	SULFUR	0.008820
OUTPUT,#/HR	4.33		****	404.	3027.		
-			-		-	FEED RATE	/SEC= 1.48
SO2 ABSORBERS							
INPUT,#/HR	4.33	5.63	***	641.	3027:	ENTHAL PY , BT	TU/# = = =6030.
GUTPUT,#/HR	0.06	***	****	496.	3063.		
*							
*SO2 ABSORBERS-	GM SU2/	GM-MOLE/	GRAM/	MAKEL	JP MGO COMPO	SITION	
PRODUCT COMP.	100ML	LITER	100ML			SM MGD/100ML =	4.60
						NO=0, YES=1	0
TOTAL;	2 -88	0-4495				OHIZ,MEAS. =	*****
COMBINED	2.88	0.4495					
FREE	0.0	0.0		PRODU	JCT MG BASE	PHYSICAL PROPER	RTIES
MONU(TOTAL)	2.88	0.4495			STRENGTH.		
MONG(DTSSOLVED	0.86	0.1344	- 1-397		RAVITY HYDR		_
MONO(SOLID)	2.02	0.3151	6.680		• •	-	
BISULFITE	0.0	0.0	0.0				
MGO	3.55	0.5552	2.221				
SULFATE	***	****	****		CULATE SCRU	BBER PRODUCT	
MAGNES IUM	6.43	1.0047			STRENGTH ,		**
FLYASH		-	****			1/100ML = ***	·
SOL IDS,MG			11.985				
	ON-MASS						
	.0817						
	0.0370					T 47 Time at 1980 a 1980 in 19	
	.0740						
	.0438			·	 		
MMILN U							

^{*}SOLIDS FREE BASIS, MASS/VULUME SOLUTION

RUN NUMBER 15	-A	DAT	E 9-28-7	L <u>TI</u>	ME OF DAY	1325					
FLUE GAS DATA	FLOW	TEMP.	SO2	NOX	NOX+1	NOX+2	HUM.	DEW	STAT		
	**************************************		·PPM -	PPM	PPM"	PPM	#/#	POINT -	PRES		
FURNACE EXIT	5396.	540.0	1675.5	*****	* * * * * * *	705 5 -		F	I N. WG		
FLOAT BED EX	3560.	130.0		547.5		785.5 - 835.8		118.1	0.0		
NOX SCRUB IN	3518.	168.0			694.9	795.6	0.162	147.9 -147.9	-14.9 1.4		_
NOX SCRUB EX	3560.	128.0		1136.4		845.9	0.176	152.1	0.0		
NOX SCRUB.DATA	TEMP.	FLOW #/MIN		RFORMANI	CE S!	PRAY SLUP	RRY ANAL	YSIS			
MAKEUP WATER	60.0	0.81	NOX A		-16.93	MGO, GM	/100ML	-0.0)		
MAKEUP MGO		2:00	" "NOX-1" A		-32.10						
	130.0	3.00	NOX2 A	ABSORP	-6.33	MGS03(1	TOTAL),M				
RECIRC. LTQ.	130.0	1260.			1 . 7			0-200	61		
MOS SLOW DATA	_			AL/MCF			2. MOLA				
NO2 FLOW DATA NO2 FLOWRATE	4 /M TN		L/GT#7			- MG (NO3-1					
NO2/NO(PDS		0.04 0.78	PKE2.L	ROP, WG		TSS,GM		12.9			
NO2/NOTFC &		0.59				· NITRITE	ETNIIKAT	E 6 % 8.3	13		
MATERIAL BALANCE	St	JLFUR M	AGNES I UM	WATER	** NITROGE			COMPOSIT	ION NGO/100ML	.= 6.20	-
NOX SCRUBBER	_										
INPUT,#/HR OUTPUT,#/HR	0.		4-46 0-07	651.8 536.5	1.34 1.62						
PHYSICAL PROPE	 RTIFS (NF					·· ·				
RECYCLED SLURR											
PH CONDUCT.MIC	ROMHOS	- 8- 10 208							· - -		
"SPECIFIC" GR	AVITY	1.04	0			***************************************					
			-		-			-			-
NOX = PDS ANA			•			-					
NOX+1 = SALTSM/ NOX+2 = FUEL CE								- -			

** OXIDIZED NITROGEN ONLY

RUN NUMBER 16-K	DATE	9-28-1	71	TIME OF	DAY 15	00						
FLUE GAS DATA	FLOW T #/HR	EMP. F	SO2 PPM	SO3 PPM	NO X PPM	FLYASH GR/DSC	-		EW DINT F	DRY FLOW #/HR	STAT PRES	
PRIMARY AIR	471. 1	30.0 -					- - 0-	019	30.3	462.	14.9	
SECONDARY ATR									19.9	4449.	6.1	
FURNACE EXIT			1643.2	****	****	****		060 1			0.0	
PAPT.SCRB.INLET	5387. 4	60.0	****	****	****	****			7.5		2.7	
PART.CYC.EXIT	2580. 1	39.0	***	***	****	****			13.6	2269.	-5.4	
VENT ABS.INLET	***	***	****	***	****	*****	** **		***		****	
ABS CYC.EXIT	***	***	***	***	****	****	** ***	***	***		****	
FLOATING BED IN			****	****	****	****	** O.	137 14	43.6		-5.4	
FEDATING BED EX	-2759 · · ·	0.0	***	***	****	****	** -0- -	166 14	¥86-		-14.9	
P.P. EXIT ORIF.	2759. 1	28.0	14.2	****	628.	****	** O.	166 14	48.6	2367.	-14.9	
SCRUBBER STREAM DATA						\	VENTUR I	ABSURE	BER	FBA		
PARTICULATE	TEMP, F	FLOW	GPM	GAS	ABSORB	ER 1	TEMP,F	FLOW, #	/M T	EMP,F FI	OW,#7M	
MAKEUP WATER	60.0	0.0)	MA	KEUP WA	TER	****	****	k	60.0	0.8	
PRODUCT LIQ.	135.0	0.0)	"MA	KEUP MG	0 SL.	****	3	3 · -	0.0	3-5	
RECIRC LATED LIQ.	135.0	19.7	78	PR	ODUCT L	10.	****	***	*	133.0	0.0	
					C. (SPRA		***	****	k	133.0	0.0	
				RE	C.(FLOW	NOZ.)		***	¥		385.0	
FURNACE PERFORMANCE		SCF	RUBBER	PERFORM.	ANCE	PART.	. VE	NT ABS.	,	FLOAT.BEG)	
HEAT RELEASE, BTU/HR	0.511E	07	SO2 AB	SORB.EF	F	****	* *	****	k	***	* *	-
% FUEL AS COAL	96	•2	FLYASH	COL.EF	F	****	* *	***	k	***	**	
COAL FLOW RATE, #/HR	403	. 9	SO3 AB	SORB.EF	F	****	**	****	k	***	k 🛊	
NAT.GAS FLOW,#/HR	8	•9	NOX AB	SORB.EF	F	****	**	****	k	***	**	
% EXCFSS AIR	17		GAS VE	LOCITY,	FPS	69.	.9	****	k	4,	6	- -
OXYGEN, %DRY, MEAS.		70		S.GAL/M	CF	28.		***	k	78.		
CO2, TORY-CALC.	14.		LIQIGA			3.	.8	*****		· · · · · · · · · · · · · · · · · · ·	, 4	
HUMIDITY,#/# - CALC	0.0	60	PRES.C	ROP, IN.	WG	1.	.6	****	k	15.	.7	
SO2 ABSURPTION PARAMETER	RS		_				SUL	FATE FO	RMAT	ION PARAM	IETERS	
VENTURI ABSORBER		FLOAT	ING BE	D ABSOR	BER			CONC (· M _ MO	u = /		_
"KGA,#MOLE7HR-FT3",	= *****	KCY.	#MOLE	'HR-FT3	· •=	*****		CONC., C			****	
SULFITE/SO2-MOL/MOL				D2-MOL/MI		****		O2 AT F			3.70	
SUMP RESID.TIME, MIN				TIME, M		*****		02 AT A	-		****	
SOUL MESTO LITTLE THE		30111	NL JIU		A , 4	*****		02 AT A			***	
**** MEANS ITEM NOT	MEASURED							JE 71 P		DAFY- A	• • •	

RUN NUMBER	16-K	DATE 9-28	3-71 T	IME OF DAY	1500	-	
MATERIAL BALANCE						INPUT FOR EQ KIN.PROG.	
	SULFUR	"MAGNESIUM	FLYASH	WATER	DRY GAS-		•
FURNACE						INPUT FLOWS, #ATOMS/100#FEE	D
INPUT,#/HR	14.94	÷	29 . 89	285.6	5076.	CARBON 0.462322	÷
OUTPUT,#/HR	8.73		***	304.7	5083.	HYDROGEN 0.6377.65	
PART.SCRUBBER			•			NITROGEN 5.060390	
TNPUT ,#/HR	8.73		***	368.	5083.	SULFUR 0.008773	
OUTPUT,#/HR	****		****	311.	2269.		
500 40500506						"FEED RATE; #/SEC=""1.48"	
SO2 ABSORBERS							
INPUT;#/HR	***		****			ENTHAL PY, BTU/# = 5495.	
OUTPUT,#/HR	0.04	***	***	392.	2367.		
*SO2 ABSORBERS-	GM SO2/	CM-MOLE /	CD AM 4	44.54.511	D W40 60WD0		
PRODUCT COMP.	100ML	GM-MOLE/ LITER	GRAM/ 100ML		P MGO COMPO		
PRODUCT COMP.	TOOML	LIIEK	TOOML			M MG0/100ML = 4.60	-
TOTAL	2.91	0.4540	***********			NO=0, YES=1 0	
COMBINED	2.91	0.4540		4 3L	AKED TO MGT	OH12, MEAS:	
FREE	0.0	0.0		60604	CT: MC OACE	DIMETER DOODEDIES	
MONO(TOTAL)	2.91	0.4540				PHYSICAL PROPERTIES -	***************************************
MONO (DISSOLVED		4219·	-4.387		STRENGTH,		
MONO(SOLID)	5.61	0.8759	18.569		RAVITY, HYDR	OM. = - *****	
##SULFTTE		0-2062	3.836				
MGO	3.81	0.5955	28د و2				
SULFATE	***	*****	70℃ e 3		CH AFE CCO	BBER PRODUCT	
MAGNES IUM	6.72	1.0495			STRENGTH .		
FLYASH		" "	****		SH CONC. GM		
SOL TOS, MG			11.253		SH CUNC. GM	/100ML = ****	
300 103 1110			11.275				
COAL COMPOSITI	ON-MASS	_					
CARBON O	.7150						-
	•0485					_	
	.0817						
	0370						
	.0740						
	.0438		,	•		•	_
MAIL!!							

^{*}SOLIDS FREE BASIS, MASS/VCLUME SOLUTION

RUN NUMBER 16	-K	DAT	E 9-28-71	TI	ME OF DAY	1500				
FLUE GAS DATA	FLOW	TEMP.	S02	NOX	N()X+1	NOX*2	HUM.	DEW	STAT	
	#/HR	F	PPM	PPM	PPM	РРМ	# / #	POINT	PRES	
								F	IN.WG	
FURNACE EXIT	5387.	570.0	1643.2	****	*****	715.7	0.060	117.5	0.0	
FLOAT.BED FX	2759.	128.0	14.2	627.7	*****	403.2	0.166	148.6	-14.9	
NUX SCRUB IN	2726.	166.0	***	866.3	642.5	846.8	0.166	148.6	1.4	
NOX SCRUB EX	2763.	128.0	***	886.4	449.4	514.1	0.182	153.0	0.0	
NOX SCRUB.DATA	TEMP. F	LOW	SCRUB.PE	RFORMAN	CE SP	RAY SLUF	RRY ANAL	.YSIS		
	F #	/MIN	SO2 A	SORB.	****					
MAKEUP WATER		0.81	NOX A	SORP.	-2.32	MGO , GM		-0.0)	
MAKEUP MGO		1.20	NOX1 A		30.06	MG SO3 (SOL IDI • M			
PRODUCT LIQ.		3.00	NOX2 A		39.29	MGS03(1	TOTAL) • N	0.0		
RECIRC. LIQ.	130.0	800:	GAS VE	LIFPS "	1	MGS04 ,!		0.00		
			L/G,G/		125.3)2, MOLA		138	
NO2 FLOW DATA			L/G,#/		17.6)2, MOL			
NU2 FLOWRATE	•	0.02	PRES.	OROP.WG	0.2	TSS.GM		9.0		
NO2/NOI PDS		0.38				NITRIT	E/NITRAT	E 6.00	00	
NO2/ND(FC &	ROTO)	0.92					-			
ATERIAL BALANCE	•				**	MAKI	EUP MGD	COMPOSI	TION	
	SUL	FUR M	AGNES IUM	WATER	NITROGEN		SLURPY	CONC . , GA	4 MGO/100ML=	6.20
NUX SCRUBBER		-	-							
INPUT,#/HR	0.0		2.68	503.9	0.93					
OUTPUT,#/HR	0.0	13	0.09	427.6	1.03					
PHYSICAL PROPE	RTIES OF									
RECYCLED SLURR	Y							•		
PH		8.15							•	
CONDUCT.MIC	ROMHOS	340	•							
SPECIFIC GR	AVITY	1.03	8		-	•		•		-

NOX = PDS ANALYSIS

NOX*1 = SALTSMAN ANALYSIS NOX*2 = FUEL CELL ANALYSIS

** OXIDIZED NITROGEN ONLY

·						 	-			
RUN NUMBER 17-J	DATE 9-2	28-71	TIME OF	DAY 16	00					
FLUE GAS DATA	FLOW TEMP.	S 02	\$03	NOX	FLYASH	HUM.	DEW	DRY	STAT	
•	#/HR F	- PPM-	· PPM	PPM	GR/DSCF	#/#	POTNT	FLOW	PRES	-
PRIMARY AIR	472. 130.0)				0.018	F 78.7	#/HR 463.	IN.H2O 16-3	
SECONDARY AIR	4537. 690.0					0.021	83.1	4445.	6.1	
FURNACE EXIT	-5395580.1	1951-5	***	***	****	0.062	118.6	5081		
PART.SCRB.INLET	5395. 475.0	****	****	****	****	0.062	118.6		2.7	
	-33 7 3138.0	1692-4	****	****	*****	0.143	144.7	· 2951.	-8-1	
VENT ABS. INLET	****	* ****	****	***	****	****	***		****	
	-*****	* ***	****	****	***	****	****		****	-
FLOATING BED IN	3373. 132.0	_		***	****		144.7		-8.1	
						0.171			-16.3	
P.P. EXIT ORIF.	3495. 130.0	18.9	****	577.	****	0.171	149.4	2986.	-16.3	
SCRUBBER STREAM DATA					VEN	ITURI ABSO	RBER	FBA		
PARTICULATE	TEMP FF - FL	.OW, GPM	GAS	ABSORB		IP, F FLOW,		TEMP + F	LOW:#/M	
MAKEUP WATER	60.0	0.0	MA	KEUP WA		*** ***		60.0	0.8	
PRODUCT-LIQ	- 137.0	0:0		KEUP MG	0 St . **	·*** ·· · · · · · · · · · · · · · ·	-2- -	·· · ····0·· ··0· ····		
RECIRCULATED LIQ.	137.0	19.78	PR	ODUCT L	10. **	***	**	137.0	0.0	
-		-	RE	C. (SPRA	Y NOZ)++	***	**	137.0	00	
			RE	C. (FLOW	NOZ.)	***	* *		385.0	
FURNACE PERFORMANCE		SCRUBBER	PERFORM	ANCE	PART.	VENT AB	 S.	FLOAT.BE	D	
HEAT RELEASE, BTU/HR	0.514E 07		BSORB.EF		13.28	***		98.		
% FUEL AS COAL	96.1		H COL.EF		****	***	**	***		
COAL FLOW RATE, #/HR	405.9		BSORB.EF		****	· · ***	**	***	¢*	
NAT.GAS FLOW, #/HR	9.0	NOX A	BSORB.EF	F	***	****	* *	***	* *	
% EXCESS AIR	17.1	GA'S V	ELOCITY;	FPS · ·	92-1	- ***	**	5		
DXYGEN, %DRY, MEAS.	3.60	LIQ/G	AS, GAL/M	CF	21.7	***	* *	61	• 2	
CO2, %DRY-CALC.	14.94	LTQ/G	AS ,#/#	 -	2-9		**	6	•6	
HUMIDITY,#/# - CALC.	0.062	PRES.	DROP, IN.	WG	2.8	***	* *	8	• 6	
O2 ABSORPTION PARAMETER	RS					SULFATE	FORMAT	ION PARA	METERS	·
VENTURI ABSORBER	_	OATING B	ED ABSOR	BER						
							•		****	
KGA, #MOLE/HR-FT3,					27. 8-			SULF= +	***	
SULFITE/SO2-MOL/MOL		SULFITE/S			1.31				3.60	
SUMP RESIDETIME MIN	=-**	SUMP REST	D'.T'I ME ,"M	I'N - =-	***				***	
						02 AT	ABSOR	RB.EX= +	***	
**** MEANS ITEM NOT	MEASURED									

PUN NUMBER	17-3	DATE 9-28	3-71	TIME OF DAY	Y 1600		_	
MATERIAL BALANC	ES					INPUT FOR EG	KIN.PRO	G •
	SHLFUR	MAGNESTUM	FLYASH	WATER	DRY GAS			
FURNACE						INPUT FLOWS,	#ATDMS/100#	FEFD
INPUT,#/HR	15.02		30.03	295.1	5074.	CARBON	0.464699	
DUTPUT,#/HR	10.36		****	314.4	5081.	HYDROGEN	0.629736	
						OXYGEN	1.394463	
PART.SCRUBBER			•			NITROGEN	5.058205	
INPUT,#/HR	10.36		****	377.	5081.	SUL FUR	0.008817	
QUTPUT•#/HR	5.22		****	422.	2951.			
				_		FEED RATE . #	/SEC= 1.4	3
SO2 ABSORBERS						·		
INPUT.#/HR	5.22	" 5.38		"⁻ 6 56•	2951:	ENTHALPY, BT	U/# = = =63	72
OUTPUT,#/HR	0.06	****	*****	509.	2986.			
*								
*SO2 ABSORBERS-	GM 502/	GM-MOLE/	GRAM/	MAKEL	JP MGO COMP	POSITION		
PRODUCT COMP.	100ML	LITER	100ML	SLUF	RRY CONC	GM MGO/IOOML =	4.60	
				MGO	PRESLAKED,	NO=0, YES=1	0	
TOTAL,	2.86	70.4474		= - % St	LAKED TO MO	6(OH12; MEAS. ==	****	
COMBINED	2.86	0.4474		-				
FREF	0.0	0.0		- PRODU	JCT MG BASE	PHYSICAL PROPER	RTIES	
MONO(TOTAL)	2.86	0.4474	*	- AC I [) STRENGTH	PH = 8.0)5	
MONO(DISSOLVE	U) 0.06	0.0094	0.09	7 SP.(GRAVITY,HYD)ROM. = ****	***	
MONU(SOLID)	2.80	0.4380	9.28	6				
BISULFITE	0.0	0.0	0.0				•	
MGO	3.85	0.6020	2.40					
SULFATE	****	****	****			RUBBER PRODUCT		
MAGNESTUM	6.72	1.0494			STRENGTH		25	
FLYASH			***		ASH CONC. 0	5M/100ML =	*	
SOL I DS . MG			11.26	4				
COAL COMPOSIT	ION-MASS			- -				
CARBON	0.7150							
HYDROGEN	0.0485					_		•
	0.0817							
	0.0370							
A SH	0.0740							
WATER	0.0438							

^{*}SOLIDS FREE BASIS, MASS/VCLUME SOLUTION

	RUN NUMBER 17-J	DATE 9-28-71	TIME OF DAY	1600		
		LOW TEMP. SO2	NOX NOX*1	NOX*2 HUM.		ES
	FURNACE EXIT 53	95. 580.0 -1951.5		015	=	• WG
		95. 580.0 19 51.5 . 95. 130.0 18.9	****** ****** 576.6 ****	815.7 0.062 704.9 0.171		0.0
		56. 166.0 ****	- · - - -	704.9 0.171 856.0 0.171		6.3
_			1223.1 451.1	916.4 0.183		0.0
	NOX SCRUB. DATA TE			RAY SLURRY ANAL	YSIS	
	F-	# 7 · · · · · · · · · · · · · · · · · ·	ORB			
	MAKEUP WATER 60. MAKEUP MGO = 60.			MGO,GM/100ML	-0.0	
	PRODUCT LIQ. 130	.O - 0-85 NOX-1 AB .O 2.15 NOX2 AB		"MGS03(SOL-TD)		
				MGSO3 (TOTAL),M		
	KECIKES EIGS 150	L/G,GAL	₽₽\$	MG(NO2)2, MOLA		
	NO2 FLOW DATA	L/G;#/#		MG(NO3)2, MOLA		
	NO2 FLOWRATE,#/I			TSS,GM/100ML	20.148	
	NO2/NOT PDS BASE		01 7 10 012	NITRITE/NITRAT		
	NG2/NO(FC & ROTO			MITKITEMITKAT	4.014	
	MATERIAL BALANCE		**	MAKEUP MGO (COMPOSITION	
	NOX SCRUBBER	SULFUR MAGNESIUM	WATER NITROGEN	SLURRY (CONC., GM MG	0/100ML= 13 - 80
	INPUT,#/HR	0.06 4.22 5	97-6 1.62			
	OUTPUT,#/HR	0.02 0.10 5	1.75			
	PHYSICAL PROPERTION RECYCLED SLURRY	ES OF				
		8.50				
	CONDUCT • MICROMI SPECIFIC GRAVIT					
			-			

NOX = PDS ANALYSIS

NOX+1 = SALTSMAN ANALYSIS

NOX+2 = FUEL CELL ANALYSIS

** OXIDIZED NITROGEN ONLY