

Plant Operations for Wastewater Facilities

PLANT OPERATIONS FOR WASTEWATER FACILITIES, Part A

Collection Chlorination Screening and Grinding Grit Removal Primary Sedimentation

An Instructor's Guide for Use of Instructional Material In Wastewater Technology Training Programs

Funded by

US ENVIRONMENTAL PROTECTION AGENCY
Monicipal Permits & Operations Division
Water Quality Control Manpower Training Branch
Academic Training Section

Awarded to

CHARLES COUNTY COMMUNITY COLLEGE

La Plata, Maryland

GREENVILLE TECHNICAL COLLEGE

Greenville, South Carolina

LINN-BENTON COMMUNITY COLLEGE

Albany, Oregon

ENVIRONMENTAL SYSTEMS ENGINEERING

Clemson University

Clemson, South Carolina

For Information

ON FUNDING OF INSTRUCTIONAL PROGRAMS

Academic Training Section
Water Quality Control Manpower Training Branch
Municipal Permits & Operations Division
US Environmental Protection Agency
Washington, DC 20460
703-557-7335

ON PROJECT ADMINISTRATION AND CURRICULA DEVELOPMENT

John H. Austin, Professor and Head Environmental Systems Engineering Clemson University Clemson, South Carolina 29631 803-656-3276

ON PROGRAM IMPLEMENTATION

Carl Schwing Charles County Community College La Plata, Maryland 20646 301-934-2251

James L. Chocklett Greenville Technical College Greenville, South Carolina 29606 803-242-3170

Peter C. Scott Linn-Benton Community College Albany, Oregon 97321 503-928-2361

Preface

Since 1970 Charles County Community College, Clemson University, Greenville Technical College and Linn-Benton Community College have been working together to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. Through their efforts a two-year wastewater technology instructional program based on performance objectives has been developed and implemented.

Through a grant from the Environmental Protection Agency called Criteria for the Establishment of Two-Year Post High School Wastewater Technology Programs (CEWT) the four colleges set up program criteria and curriculum guidelines which are available in two volumes:

Program Implementation Procedures

Volume II: Curriculum Guidelines, Criteria for Establishment and Maintenance of Two-Year Post High School Wastewater Technology Programs

As a result of the implementation of the instructional program at Charles County Community College, Greenville Technical College and Linn-Benton Community College, six guides for instructors based on the course descriptions in *Plant Implementation Procedures* and the general criterion behaviors of *Volume II* have been prepared. *Plant Operations for Wastewater Facilities*, printed in five parts, is the second in the series which includes:

Volume I Introduction to Environmental Technology

Volume II Plant Operations for Wastewater Facilities

Volume III Laboratory Control for Wastewater Facilities

Volume IV Management and Supervision Procedures for Wastewater Facilities

Volume V Process Interaction for Wastewater Facilities

Volume VI Advanced Waste Treatment

ACKNOWLEDGEMENTS

Since the beginning of the project many persons at the four cooperating institutions, as well as outside consultants have participated in the development of this program. Their efforts which have provided source material for this guide have been acknowledged in the volumes to which they made major contributions. Plant Operations for Wastewater Facilities has been written and produced by:

Technical Staff

K. C. Stoakes, Instructor, Environmental Technology Department, Linn-Benton Community College

John F. Wooley, Instructor, Environmental Technology Department, Linn-Benton Community College

John W. Carnegie, Chairman of Environmental Technology, Linn-Benton Community College

Fred L. Delvecchio, Director of Operator Training, Environmental Systems Engineering, Clemson University

John H. Austin, Professor and Head, Environmental Systems Engineering, Clemson University

Editorial and Production Staff

Ada Louise Steirer, Freelance Editor, Clemson, South Carolina

Marie N. Sims, Project Secretary, Environmental Systems Engineering, Clemson University

Charlotte Holmes, Typing Services, Clemson, South Carolina

Jan Willis, Editorial Assistant, Environmental Systems Engineering, Clemson University

Eleanor McLasky, Typist, Environmental Systems Engineering, Clemson University

Roma Norton, Typist, Environmental Systems Engineering, Clemson University Linda Flagg, Proofreader, Environmental Systems Engineering, Clemson University

Table of Contents

		P	age
PREFACE			iii
PERFORMANCE	OBJEC	CTIVES	1
INTRODUCTION	TO N	MODULES OF INSTRUCTION	3
GLOSSARY OF	VERBS	S	ç
MODULES OF I	NSTRU	UCTION	
Module	1	Collection	13
Module	2	Chlorination	31
Module	3	Screening and Grinding	52
Module	4	Grit Removal	71
Module	5	Primary Sedimentation	89
Module	6	Trickling Filtration	t E
Module	7	Aeration	rt E
Module	8	Secondary Sedimentation	it E
Module	9	Pond Stabilization	rt E
Module	10	Thickening	et O
Module	11	First Stage Digestion	rt C
Module	12	Second Stage Digestion	rt C
Module	13	Sludge Conditioning	rt C
Module	14a	Sludge Dewatering	rt I
Module	14b	Sludge Dewatering	rt I
Module	15	Solids Disposal	ct I
Module	16	Effluent Disposal	rt I
Module	17	Flow Measurement	ct I
Module	18	Pumping and Piping	rt I
Module	19	Electric Power	rt l
Module	20	Gas Power	rt B

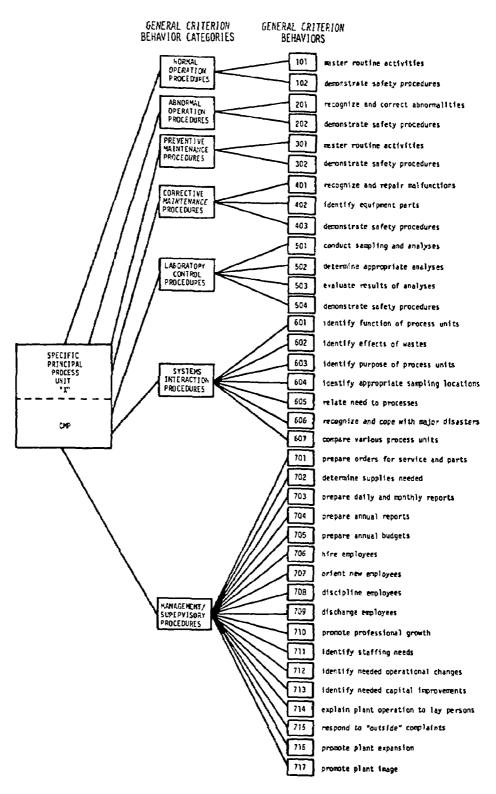


Figure 1: Relationship of general criterion behaviors (performance objectives) the general categories and composite model plant (CMP).

Performance Objectives

When the treatment plant operators, educators, consultants and representatives from professional water pollution control organizations came together to develop an effective instructional program, they recommended the use of performance or behavioral objectives because such objectives clearly outline:

- 1. What the student is expected to do as a result of the instructional program.
- 2. The conditions under which the student shall do it.
- 3. The standard of performance.

COMPOSITE MODEL PLANT

First, they developed a composite model plant (CMP) of twenty-two process units which is really many wastewater treatment plants in one model. Such a mix of process units seldom occurs in a treatment plant, but if a student becomes competent in the operation and management of the CMP he should be able to perform successfully in any treatment plant.

TASK ANALYSIS

Next, to ensure that the materials were specifically tailored to what the operator does on the job, a task analysis was conducted. They found that the tasks which an operator performs fell into seven general categories which were further divided into 37 tasks or general behaviors. (See figure 1, page vi.) The tasks were organized under:

- 1. Normal Operation Procedures.
 These include routine operating activities that do not vary significantly from day to day and that are designed to keep the plant functioning within a normal range of values. For example, the employee conducts routine samplings of the primary sludge and inspects pumping equipment and the wastestream to verify that the process is functioning properly.
- Abnormal Operation Procedures. These include activities of the plant employee that result from unusual and undesirable conditions of the wastestream. The abnormal procedures enable the plant employee to recognize when the wastestream is abnormal and to return it to an acceptable, normal condition. An abnormal wastestream results when a normal operation procedure is not properly applied, a corrective maintenance procedure is needed or management/supervisory procedures are poor. For example, the plant employee should recognize that a black septic primary sludge sample is an abnormal condition of the wastestream and take appropriate action.
- 3. Preventive Maintenance Procedures. These include routine maintenance activities of the plant employee which prevent major equipment breakdown and subsequent corrective maintenance. For example, the employee would lubricate bearings and other moving parts, replace worn components and adjust components of the primary sludge pumps.

- 4. Corrective Maintenance Procedures. These include maintenance activities of the plant employee that usually result from the breakdown or malfunction of a unit of equipment or a component. For example, the employee would notice whether the primary sludge pump is malfunctioning and know when and how to correct the disorder or when and how to refer the problem to plant maintenance personnel.
- 5. Laboratory Control Procedures.
 These include special and routine activities relating to laboratory analysis, the specification of sampling procedures and locations and the general management of the laboratory facilities. For example, the employee would collect primary sludge samples and conduct the analyses.
- 6. Systems Interaction Procedures. These include activities of the plant employee which relate the functioning of specific units of equipment to other process units and to the system as a whole. For example, the employee would determine how the effective functioning of the primary sludge pumps relates to digester performance.
- 7. Management/Supervisory Procedures. These include activities relating to employment practices, record keeping, plant operation policy and the establishment of a constructive and realistic rapport between the plant and the community it serves. For example, the employee would keep records on primary sludge pumping, keep an inventory of spare parts and evaluate the adequacy of maintenance procedures by shift personnel.

CURRICULUM DESIGN

After deciding what process equipment an operator must operate and maintain, and finding out what an operator does through

the task analysis, they listed the objectives a student must master to successfully operate a treatment plant. For example, the student will describe and perform the normal inspection procedure for the primary sedimentation unit including frequency of inspection conditions to look for and the actions he should take.

INSTRUCTOR'S GUIDES

The next step was the design of manuals to guide the instructor. In the guides varied learning activities and imaginative innovations which produce more learning than traditional teaching methods are emphasized. The instructional suggestions do not need to be followed slavishly, but should be modified and improved as much as possible.

The instructor's goal is to achieve the objectives of the curriculum by selecting activities which suit the student's needs and help him to master all the information and skills in the course. The most effective learning occurs when the student is a participant in the learning process, not a spectator.

An instructor should use learning activities which approximate the situations which the student will meet in the treatment plant. If it is not possible to teach in a treatment plant, simulated situations should be set up in the workshop or classroom so that the student can solve rather than discuss problems. Group discussion stinulated by visual materials is an effective learning technique. Lecturing, however, is inefficient. Because the student is not actively involved during a lecture, the instructor should use lectures sparingly.

Introduction to Modules of Instruction

In this instructor's guide the topics and ideas are presented as a series of modules, organized around the general objectives stated in the course descriptions for Plant Operation I, II, III and IV and the In-Plant Practicum which are found in the Program Implementation Procedures of the CEWT Program. Each module is designed to help the instructor plan a course of study for the operation of a treatment process using the CMP process unit. Each module is organized around sixteen objectives common to all processes.

The modules in Plant Operations for Wastewater Facilities are arranged in the order in which the CMP process units occur in the treatment plant. Each process is identified by a letter of the alphabet and the process unit is described in the heading of the module. If the instructor uses the modules in consecutive order, he and his students will follow the treatment of the wastestream from collection to its discharge into the receiving waters. Each module is designed so it can be used as a minicourse in a treatment process. Instructors are urged to group the modules to suit their individual curriculum needs and instructional situations.

Material in the modules can easily be adapted for courses which upgrade the training of operators in normal operation procedures, abnormal operation procedures, preventive maintenance procedures or corrective maintenance procedures by grouping the appropriate objectives from all the modules. For example, an instructor could develop a course

in corrective maintenance by grouping objectives 11 and 12 from each module.

INSTRUCTIONAL PROCESS UNITS

Each module assumes that the composite model plant unit will be used for instruction in the process. If the recommended unit is not available, an alternate process unit may be substituted and the instructional materials adapted. The recommended CMP units and alternate units for all the processes are listed in table 1, page 4. Two modules on sludge dewatering are included because it is impossible for a student to master operation of this process by learning to operate one process unit. Remember, however, that a student will be more adequately prepared to work in almost any treatment plant if he is trained on the CMP unit. When it is not possible to use the recommended unit, students should be informed about the operation and function of the unit and hands-on training should be conducted on the best alternate unit available.

PURPOSE OF THE MODULES

The modules in *Plant Operations for*Wastewater Facilities help the student
to learn how to operate all the process units in the wastewater treatment
plant. Normal operation, abnormal operation, preventive maintenance and
corrective maintenance procedures are
included. When the course is completed, he will know why each unit is

TABLE I

SPECIFIC PROCESS UNITS RECOMMENDED FOR USE IN IMPLEMENTATION OF THE TWO-YEAR POST HIGH SCHOOL WASTEWATER TECHNOLOGY INSTRUCTIONAL PROGRAM

Module	Process	CMP Unit	Recommended Teaching Unit	Alternate Teaching Unit
1	Collection	A	Combined system with industrial waste	Sanitary system with industrial waste
2	Chlorination	В	Vacuum chlorinator with automa- tic feed to pipe, pneumatic con- trol and electric evaporator	Vacuum chlorinator with automatic feed to pipe, electrical control and electric evaporator
		N	Vacuum chlorinator with automa- tic feed to pipe and closed-loop pneumatic control	Vacuum chlorinator with automatic feed to pipe and closed electrical control
3	Screening and Grinding	С	Mechanically cleaned bubbler control unit with grinder	Mechanically cleaned electrode control unit with grinder
4	Grit Removal	D	Aerated unit with bucket elevator	Aerated unit with screw conveyor
5	Primary Sedimentation	E	Rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper	Circular unit with telescopic valve drawoff, density meter time clock and trough with scraper
6	Trickling Filtration	F	Rotary distributor, standard rate unit with dosing tank	Rotary distributor, high rate unit
7	Aeration	G	Diffused air unit with swing-type diffuser producing fine bubbles	Mechanical aeration unit with turbine and sparger
8	Secondary Sedimentation	Н	Circular, peripheral-feed unit with suction	Circular, center-feed unit with suction
9	Pond Stabilization	I	Aerobic pond	Facultative pond
10	Thickening	J	Floatation unit with air	Floatation unit with vacuum
11	First Stage Digestion	К	Fixed cover, gas recirculation unit with external heat exchanger	Floating cover, gas recirculation unit with external heat exchanger

12	Second Stage Digestion	L	Floating cover unit with gas storage	Fixed cover unit
13	Sludge Conditioning	M	Chemical conditioning unit with counter-current elutriation	None
14a	Sludge Dewatering	0	Vacuum filter unit with cloth	Vacuum filter unit with coil
14b	Sludge Dewatering	0	Continuous feed centrifuge	None
15	Solids Disposal	P	Multiple hearth incinerator unit	Fluidized bed incinerator unit
16	Effluent Disposal	Q	Direct reuse system	Underground disposal system
17	Flow Measurement	R	Centralized recording and total- izing system including Parshall flume, Venturi meter, magnetic flowmeter and rotameter	None
18	Pumping and Piping	S	System with magnetically con- nected, pneumatically controlled, diesel driven, centrifugal pumps; speed reducer connected, electri- cally controlled, motor driven, positive displacement pumps and appropriate piping	None
19	Electric Power	T	System using delta transformers, generators, electrical switchgear, automatic circuit actuators on motors and telemetering with alarms.	System using Y transformers, generators, electrical switchgear, automatic circuit actuators on motors and telemetering with alarms
20	Gas Power	ប	System with internally produced gas with high pressure tanks and rotary positive displacement compressors	System with internally produced gas with high pressure tanks and reciprocating compressors

important to the treatment plant and how it affects and interacts with other process units in the treatment system.

STUDENT PREREQUISITES

Completion of Introduction to Environmental Technology and courses in basic mathematics and biology qualify the student to enter the course in Unit Operations for Wastewater Facilities. Concurrent courses in basic chemistry and laboratory control are suggested. (See pages 7 to 19 of Program Implementation Procedures.)

TERMINAL OBJECTIVE

When the student has completed the modules of instruction in this course, he should be able to do the following for each of the processes in the treatment plant:

- 1. Identify the process unit.
- 2. Describe the process unit in technical and nontechnical terms.
- 3. Describe the safety procedures for the process unit and explain how the procedures protect employees and visitors.
- 4. Identify the components of the process unit. Explain the purpose of each component, how the component works and why it is important.
- 5. Describe the normal operation procedures for the process unit components.
- 6. Perform the normal operation procedures for the process unit.
- 7. Describe and perform the start-up and shut-down procedures for the process unit.
- 8. Describe the abnormal operation procedures for the process unit.

- 9. Describe the preventive maintenance procedures for the process unit.
- 10. Perform the preventive maintenance procedures for the process unit.
- 11. Describe the corrective maintenance procedures for the process unit components.
- 12. Perform the corrective maintenance procedures for the process unit components.
- 13. Perform the safety procedures for the process unit and demonstrate how they protect employees and visitors.
- 14. Compare other process units to the composite model plant unit.
- 15. Name and locate the components of the process unit. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
- 16. Perform the abnormal operation procedures for the process unit.

RESOURCES

The listing of instructional resources suggests materials now available to instructors to accomplish the desired performance in the student.

Instructional materials 1 to 1866 are keyed to the reference, *Instructional Materials Available* which is available from:

Office of Water Program Operations US Environmental Protection Agency Washington, DC 20460

Two companion volumes to *Instructional* Materials Available, also available from EPA, offer suggestions for selecting audio-visual equipment:

Selecting Audio-Visual Equipment Selecting Instructional Media and Instructional Systems

The following journals list addresses of companies from whom literature about the process units which they manufacture can be obtained:

"Environmental Science and Technology" 1155 Sixteenth Street, N.W. Washington, DC 20036

"Water and Sewage Works" 434 South Wabash Chicago, IL 60605

"Water and Wastes Engineering" 666 Fifth Avenue New York, NY 10019

If suitable materials are not available, instructors are urged to develop their own resources.

FORMAT OF THE MODULES

The module begins with a statement of purpose which explains what the student will be studying. Next, all the objectives of the module and code numbers keyed to a computerized list of instructional resources are listed for the instructor's convenience.

Objectives. Each module includes sixteen objectives which bring the student to the performance level required by the terminal objective. The knowledge and skills demanded of the student become more complex as he progresses through the sixteen objectives in a module. He begins by identifying components and learning facts about the components and processes. He uses

these facts to develop concepts and ideas. Finally, he relates the concepts and ideas to each other so that he can make decisions about plant procedures.

A glossary of verbs which follows this introduction defines the verbs used in the objectives so that the instructor is aware of what he is instructing the student to do and so that his evaluation of the student is based solely on what is stated in the objective.

Conditions. The conditions define the circumstances under which the student performs and is evaluated and lists the information, equipment and assistance to which the student will have access. The best available learning and testing conditions should be used. A process unit in a treatment plant or workshop has more impact on the students than photographs and drawings. For example, if the student is to be given a process unit, unit components, photographs or diagrams of a unit, the instructor should provide a process unit. If a process unit is not available, he would use components of the unit in combination with photographs of those components which he does not have available. Line drawings and diagrams should not be used if photographs and manufacturers' illustrations are available.

Acceptable Performance. The acceptable performance expands the objective and details the steps a student must follow to reach the objective. To move on to the next objective, at least 70% of each step or category must be mastered with no repeated errors between modules. For example, no student can complete the course of study if he consistently fails to give attention to moving parts as he

performs safety procedures or to describe the odor as he evaluates the characteristics of the wastestream. In this section the instructor will find the main topics of his lesson plan and for the evaluation of the student's performance.

Instructor Activity. The instructor should get to know his class by working with small groups and with each student. He should encourage students to learn from each other as they work together. He should involve the student in the instructional and learning process. Instructional activities are paired numerically with student activities.

Student Activity. This is a listing of activities which the student will take part in, in order to accomplish the specified performance.

EVALUATION TECHNIQUE

The instructor may use or adapt the learning activities listed under instructor activity and student activity as evaluation techniques. The technique chosen should reflect what the objective asks the student to do. For example, if a student is asked to describe, the evaluation technique is a description. The student should be evaluated under the conditions and to the performance level required for each objective.

Glossary of Verbs

The glossary of verbs is included here so that the instructor will know exactly what the student is being asked to do to meet his objective. Notice the difference, for example, between the meanings of *identify* and *name*. When a student is asked to identify, the instructor is providing the name of the thing to be identified. But, when the student must name something, he must supply the name.

The list includes all the verbs from the objectives and the acceptable performance sections of all the modules, as well as some verbs used in the instructor and student activities.

	DEFINITION	APPLICATION
APPLY	To make use of as suitable, fitting or relevant.	Apply the preventive maintenance schedule for the second stage digestion unit.
CHECK	To inspect and ascertain the condition of, especially in order to determine that the condition is satisfactory.	Check the characteristics of each component.
COMMENT ON	To express an opinion or atti- tude about what has been seen or heard.	Comment on employee safety procedures.
COMPARE	To examine the character or qualities of, especially for the purpose of discovering resemblances or differences.	Compare other aeration units to the diffused air unit with swing- type diffuser producing fine bub- bles.
CONSIDER	To give thought to with a view to purchasing, accepting or adopting.	Consider availability of replace- ment parts, capital costs, ease of repair, efficiency, maintenance costs, and so forth.
CORRECT	To alter or adjust to bring to some standard or required condition.	Correct the malfunction.
DEMONSTRATE	To illustrate or explain in an orderly and detailed way with	Demonstrate the start-up proce- dures in a treatment plant.

many examples, specimens and

particulars.

	DEFINITION	APPLICATION
DESCRIBE	To represent by words written or spoken for the knowledge or understanding of others, to transmit an image of the identifying features, the nature and characteristics of objects, events and actions.	Describe the safety procedures for the screening and grinding unit.
DEVELOP	To produce or generate.	Develop a picture file of first stage digestion units.
DISCUSS	To talk about, to present in detail, to exchange views or information about.	Discuss treatment plant case histories.
EVALUATE	To examine and make a judge- ment about quality, signifi- cance, amount, degree or condition of.	Evaluate the wastestream for ab- normal conditions.
EXPLAIN	To make plain or clear, to present in detail.	Explain the purpose of each component, how the component works and why it is important.
IDENTIFY	To establish the identity of, pick out or single out an object in response to its name by pointing, picking up, underlining, marking or other responses.	Identify the components of the chlorination unit.
INDICATE	To state or express without going into detail.	Indicate whether the process unit is used for secondary sedimentation.
INSPECT	To view closely and critically, to determine quality or state, to detect errors or otherwise appraise.	Inspect a treatment plant.
LIST	To enumerate or specify.	List routine calculations for the pond stabilization unit.
LOCATE	To stipulate the position of an object in relation to other objects.	Locate the components of the trickling filtration unit.

APPLICATION

NAME

To supply the correct name, in oral or written form, for an object, class of objects, persons, places, conditions or events which are pointed out or des-

Name the components of the primary sedimentation unit.

cribed.

OBSERVE

To pay careful, directed, analytical attention to.

Observe the thickening process during a plant tour.

PERFORM

To carry out an action or pattern of behavior. (Implies an act for which a process or pattern of movement has already been established, especially one calling for skill or precision, or for the assignment or assumption of responsibility.)

Perform the normal operation procedures for the grit removal unit.

POINT OUT

To indicate the position or direction of, especially by extending a finger toward the thing so indicated, to direct someone's attention to.

Point out characteristics which distinguish the first stage digestion unit from other units.

RECOMMEND

To mention or introduce as being worthy of acceptance, use or trial, to advise. Recommend procedures to correct the unsafe conditions.

SELECT

To choose something from a number or group usually by fitness, excellence, or other distinguishing feature. Select the reference materials and tools needed to perform the corrective maintenance.

MODULE 1

COLLECTION

A combined system with industrial waste

Composite Model Plant Unit A

PURPOSE:

In this module the student will learn to perform all the activities in the objectives as they apply to a combined system with industrial waste. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

- 1.1 Identify the collection system.
- 1.2 Describe the collection system in technical and nontechnical terms.
- 1.3 Describe the safety procedures for the collection system and explain how the procedures protect employees and visitors.
- 1.4 Identify the components of the collection system. Explain the purpose of each component, how the component works and why it is important.
- 1.5 Describe the normal operation procedures for the collection system components listed on page 17.
- 1.6 Perform the normal operation procedures for the collection system.
- 1.7 Describe and perform the start-up and shut-down procedures for the collection system.
- 1.8 Describe the abnormal operation procedures for the collection system.
- 1.9 Describe the preventive maintenance procedures for the collection system.
- 1.10 Perform the preventive maintenance procedures for the collection system.
- 1.11 Describe the corrective maintenance procedures for the collection system components listed on page 17.
- 1.12 Perform the corrective maintenance procedures for the collection system components.
- 1.13 Perform the safety procedures for the collection system and demonstrate how they protect employees and visitors.
- 1.14 Compare other collection systems to the combined system with industrial waste (composite model plant unit A).
- 1.15 Name and locate the components of the collection system listed on page 17. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

1.16 Perform the abnormal operation procedures for the collection system.

RESOURCES:

116 120 121 307 3 125 141 143 144 308 309 551 316 317 320 321 324 421 459 511 552 553 937 990 1033 1034 554 1318 1399

<<<<>>>>>>

OBJECTIVE 1.1:

Identify the collection system.

CONDITIONS:

Given a system, model of a system or a photograph of a system.

ACCEPTABLE PERFORMANCE:

The student will:

Indicate whether the system is used for collection.

INSTRUCTOR ACTIVITY:

1. Point out characteristics which identify the collection system.

STUDENT ACTIVITY:

1. Develop a picture file of collection systems. Mark distinguishing characteristics.

<<<<<>>>>>

OBJECTIVE 1.2:

Describe the collection system in technical and nontechnical terms.

CONDITIONS:

Given photographs of the collection system.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the collection system, explaining the

meaning of:

collection system force main system gravity flow system

sewer

sewer system sewerage

Describe the purpose of collection.

Describe how the kind of collection system affects: primary sedimentation pond stabilization pumping and piping

INSTRUCTOR ACTIVITY:

- 1. Use diagrams, photographs and slides to describe the collection system.
- 2. Describe the collection system during a tour of the system. React to the student's description of the system.

STUDENT ACTIVITY:

- 1. Describe the collection system while viewing photographs, diagrams and slides.
- 2. Observe and describe the collection system during a tour of the system.

<<<<<>>>>>

OBJECTIVE 1.3:

Describe the safety procedures for the collection system and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the collection system, commenting on: High-risk activities entering or leaving manholes

working alone working in excavations

Sources of danger

cave-ins electricity

explosive solvents

flooding

heavy construction equipment

infection ladders manhole covers

open channels or pits oxygen deficiency

Sources of danger (continued) rotating and reciprocating equipment toxic gases traffic Safety equipment blower dewatering equipment exhaust fans explosion proof lights explosive gas detector first-aid kit flashing lights harness oxygen deficiency meter protective clothing self-contained breathing apparatus shoring equipment traffic barriers traffic cones

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:

- 1. Discuss collection system case histories.
- 2. Describe the conditions in a collection system and ask for evaluation.
- 3. Describe the safety procedures for each operation and maintenance procedure.
- 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:

- 1. Read case histories and comment on employee safety procedures.
- 2. Evaluate conditions which the instructor has described. Suggest remedies.
- Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the collection system.
- 4. Identify sources of danger and high-risk activities pictured in slides.

<<<<<>>>>>

OBJECTIVE 1.4:

Identify the components of the collection system. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a collection system, system components or a diagram, model or photographs of a system and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

Identify components of the collection system and associated equipment:

catch basin regulator dosing tank screen fire-fighting equipment sewer tap first-aid kit sewers branch flap gate house connection collector inverted siphon interceptor manhole lateral manhole cover main trunk outfall pipe tap line pipe joint weir pump station

Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out and name components in diagrams, photographs or models.
- 2. Arrange photographs or models of components in the workshop for student identification.
- 3. Point out and name components during a tour of the system.
- 4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

- 1. Identify the components which the instructor names on diagrams, photographs or models.
- 2. Identify the components at stations in the workshop in writing.
- 3. Identify components during a tour of the system.
- 4. Explain the purpose of each component, how the component works and why it is important.

OBJECTIVE 1.5:

Describe the normal operation procedures for the collec-

tion system components listed on page 17.

CONDITIONS:

Given a collection system or slides or photographs of a collection system, a list of components of the system, a checklist of characteristics and a normal operation

procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is furnished to be a supposed to the component in furnished to be a supposed to the component in the component is a supposed to the component in the component is a supposed to the component in the component is a supposed to the component which is a supposed to the component which the component which is a supposed to the component which is a supp

nent is functioning normally, commenting on:

corrosion position erosion pressure exfiltration slope flow velocity

infiltration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

making adjustments

deciding about corrective maintenance

reporting to supervisors reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the collection system.

List routine calculations for the collection system.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

- 1. Describe the characteristics of the components of the collection system.
- 2. Describe the normal operation procedures for the collection system. Use color pictures.
- 3. Describe the normal operation procedures during a slide show of components of the collection system.

4. Describe and explain the normal operation procedures during a tour of the system. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Develop a checklist, listing the components of the collection system and their normal characteristics.
- 2. Develop a manual of normal operation procedures.
- 3. Describe the normal operation procedures during a slide show of components of the collection system.
- 4. Observe and describe the normal operation procedures during a tour of the system.

<<<<<>>>>>

OBJECTIVE 1.6:

Perform the normal operation procedures for the collection system.

CONDITIONS:

Given a collection system, the manual of normal operation procedures which the student has developed for the collection system and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

- 1. Observe the student demonstrating normal operation procedures in a dry run on a collection system.
- 2. Observe the student performing normal operation procedures on a collection system.

STUDENT ACTIVITY:

- 1. Demonstrate the normal operation procedures in a dry run on a collection system.
- 2. Perform and explain the normal operation procedures on a collection system.

<<<<>>>>>

OBJECTIVE 1.7:

Describe and perform the start-up and shut-down procedures for the collection system.

CONDITIONS:

Given a mock-up, model or photograph of a collection system.

ACCEPTABLE PERFORMANCE:

The student will:

Start up and shut down the components of a collection system, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

- 1. Demonstrate and perform the start-up procedures.
- 2. Demonstrate and perform the shut-down procedures.
- 3. Observe the student performing the start-up procedures.
- 4. Observe the student performing the shut-down procedures.
- 5. Observe the student as he evaluates his start-up procedures.
- 6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

- 1. Describe the start-up procedures in a dry run.
- 2. Describe the shut-down procedures in a dry run.
- 3. Perform the start-up procedures.
- 4. Perform the shut-down procedures.
- 5. Evaluate the operation of the collection system to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
- 6. Evaluate the operation of the collection system to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<>>>>>>

OBJECTIVE 1.8:

Describe the abnormal operation procedures for the collection system.

CONDITIONS:

Given a wastestream in a collection system or color photographs of a wastestream, a checklist of the conditions of the wastestream and system records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

acidity level color odor DO oil floating material pH

flow septic sewage foam settleable matter grease temperature industrial wastes toxic gases

Describe the cause and effect of the abnormal condition.

velocity

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:

operational changes reporting to supervisors sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in system records and case histories.
- 3. Describe and explain the abnormal operation procedures during a slide show.
- 4. Describe and explain the abnormal operation procedures during a tour of the system. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.

- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in system records and case histories.
- 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
- 4. Evaluate and explain the condition of the wastestream during a tour of the system. Describe and explain the abnormal operation procedures.

<<<<<>>>>>

CBIECTIVE 1.9:

Describe the preventive maintenance procedures for the collection system.

CONDITIONS:

Given a collection system or pictures and drawings of a collection system and reference materials, including: inspection records manufacturer's maintenance guides preventive maintenance schedule system drawings and specifications

ACCEPTABLE PERFORMANCE:

The student will:

Describe these preventive maintenance procedures for the collection system:

Cleaning tap line catch basin weir dosing tank Inspection flap gate manhole house connection Lubrication inverted siphon flap gate manhole pump station outfall regulator pipe Mechanical adjustment pipe joint flap gate pump station pump station regulator regulator screen weir sewer tap Painting sewers flap gate branch manhole

reen weir

ewer tap Painting

ewers flap gate

branch manhole

collector pump station

interceptor regulator

lateral weir

main Replacement

trunk fire-fighting equipment

Replacement (continued)
first-aid kit
flap gate
manhole cover
pump station
regulator
screen
weir

Wear measurement manhole sewer

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the preventive maintenance procedures for the collection system.
- 2. Describe and explain the preventive maintenance procedures during a slide show.
- 3. Describe and explain the preventive maintenance procedures during a tour of the system.

STUDENT ACTIVITY:

- 1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
- 2. Observe, describe and explain the preventive maintenance procedures during a slide show.
- 3. Observe, describe and explain the preventive maintenance procedures during a tour of the system.

<<<<<>>>>>

OBJECTIVE 1.10:

Perform the preventive maintenance procedures for the collection system.

CONDITIONS:

Given a collection system and tools and reference materials, including:

inspection records

manufacturer's maintenance guides

preventive maintenance schedule system drawings and specifications

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the collection system, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe student inspection of a collection system.
- 3. Observe the student performing the preventive maintenance procedures on a collection system.

STUDENT ACTIVITY:

- 1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
- 2. Inspect a collection system. Evaluate and explain the preventive maintenance procedures.
- Perform and explain the preventive maintenance procedures on a collection system.

<<<<<>>>>>

OBJECTIVE 1.11:

Describe the corrective maintenance procedures for the collection system components listed on page 17.

CONDITIONS:

Given a collection system or a mock-up, photographs or drawings of a collection system, the manual of operation procedures which the student has developed for the collection system, tools and reference materials, including:

catalogue of replacement parts equipment catalogues manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

flow

Describe how an operator evaluates each component of the collection system for corrective maintenance, commenting on:

position

pressure

slope velocity

corrosion
erosion
exfiltration

infiltration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures for the collection system, using diagrams and pictures.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Describe and explain the corrective maintenance procedures during tours of the system.

STUDENT ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Observe, describe and explain the corrective maintenance procedures during a tour of the system.

<<<<<>>>>>>

OBJECTIVE 1.12:

Perform the corrective maintenance procedures for the collection system components.

CONDITIONS:

Given a collection system or system components, the operation procedures manual which the student has developed, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the collection system for corrective maintenance, explaining why a component has malfunctioned and commenting on:

corrosion position erosion pressure exfiltration slope flow velocity

infiltration

Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:

evaluation of capabilities of plant personnel to perform the procedures

selection of replacement parts

record keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates a collection system.
- 3. Observe the student performing the corrective maintenance procedures on a collection system.

STUDENT ACTIVITY:

- 1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
- 2. Evaluate the components for corrective maintenance.
- 3. Perform and explain the corrective maintenance procedures on a collection system.

<<<<<>>>>>

OBJECTIVE 1.13:

Perform the safety procedures for the collection system and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the collection system, commenting on:
 high-risk activities sources of danger safety equipment

Explain how the procedures protect employees and visitors.

Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the safety conditions in a collection system.
- 3. Observe the student performing the safety procedures on a collection system.

STUDENT ACTIVITY:

- 1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
- 2. Evaluate safety conditions in a collection system and recommend corrective procedures.
- 3. Perform the safety procedures on a collection system.

<<<<<>>>>>

OBJECTIVE 1.14

Compare other collection systems to the combined system with industrial waste (composite model plant unit A).

CONDITIONS:

Given a process unit and reference materials, including: equipment catalogues laboratory reports manufacturer's bulletins

manufacturer's operation manuals

system maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit A with: a sanitary system with industrial waste. a combined system without industrial waste. a sanitary system without industrial waste.

Consider:

availability of replacement parts capital costs dependency on surrounding environment ease of repair efficiency flow-handling capabilities maintenance costs nuisance to neighbors operational costs operational skills personnel requirements reliability resistance to upset sensitivity of controls space requirements waste-handling capabilities

INSTRUCTOR ACTIVITY:

- 1. Prepare a chart for tabulation of information about the systems.
- 2. Compare composite model plant unit A with the other systems.
- 3. Help the student to collect information for reports on the advantages and disadvantages of each system.

STUDENT ACTIVITY:

- 1. List information about the systems on a chart.
- 2. Compare the systems in a panel discussion.
- 3. Write a report on the advantages and disadvantages of each system.

<<<<<>>>>>

OBJECTIVE 1.15:

Name and locate the components of the collection system listed on page 17. Name and select the reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a collection system, system components or a diagram, model or photographs of a system and reference

materials, including:

contractor's plans of the collection system

manufacturer's maintenance guides operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

Name and locate the components of the collection system.

Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out components of the collection system on diagrams, photographs or models.
- 2. Listen to the student naming the components and the applicable reference materials during a tour of the system.
- Name and display the reference materials which describe the collection system and normal operation procedures.

STUDENT ACTIVITY:

- 1. Name the components which the instructor points out on diagrams, photographs or models.
- 2. Name the components which the instructor points out during a tour of the system and name the reference materials which apply to the components.
- Name and select the reference materials which describe the collection system and normal operation procedures.

<<<<<>>>>>

OBJECTIVE 1.16:

Perform the abnormal operation procedures for the collection system.

CONDITIONS:

Given a wastestream in a collection system and reference materials, including:

industrial waste records

operation logs

operator manuals system performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions,

commenting on:

acidity level color odor DO oil floating material pH

flow septic sewage foam settleable matter grease temperature industrial wastes ice velocity

Select the references he needs to return the wastestream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

- 1. Observe the student as he evaluates the wastestream in the collection system.
- 2. Describe the references needed to correct abnormal conditions of the wastestream.
- 3. Observe the student performing the abnormal operation procedures in simulated situations and in the collection system.

STUDENT ACTIVITY:

- 1. Evaluate the wastestream in the collection system.
- 2. Select the references needed to correct abnormal conditions of the wastestream.
- 3. Perform the abnormal operation procedures in simulated situations or in the collection system.

<<<<<>>>>>

MODULE 2

CHLORINATION

A vacuum chlorinator with automatic feed to pipe, pneumatic control and electrical evaporator or a vacuum chlorinator with automatic feed to pipe and closed-loop pneumatic control

Composite Model Plant Units B and N

PURPOSE:

In this module the student will learn to perform all the activities in the objectives as they apply to a vacuum chlorinator with automatic feed to pipe, pneumatic control and electrical evaporator or to a vacuum chlorinator with automatic feed to pipe and closed-loop pneumatic control. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

- 2.1 Identify the chlorination unit.
- 2.2 Describe the chlorination process in technical and nontechnical terms.
- 2.3 Describe the safety procedures for the chlorination unit and explain how the procedures protect employees and visitors.
- 2.4 Identify the components of a chlorination unit. Explain the purpose of each component, how the component works and why it is important.
- 2.5 Describe the normal operation procedures for the chlorination unit components listed on page 35.
- 2.6 Perform the normal operation procedures for the chlorination unit.
- 2.7 Describe and perform the start-up and shut-down procedures for the chlorination unit.
- 2.8 Describe the abnormal operation procedures for the chlorination process.
- 2.9 Describe the preventive maintenance procedures for the chlorination unit.
- 2.10 Perform the preventive maintenance procedures for the chlorination unit.
- 2.11 Describe the corrective maintenance procedures for the chlorination unit components listed on page 35.
- 2.12 Perform the corrective maintenance procedures for the chlorination unit components.
- 2.13 Perform the safety procedures for the chlorination unit and demonstrate how they protect employees and visitors.
- 2.14 Compare other chlorination units to the vacuum chlorinator with automatic feed to pipe, pneumatic control and electric

evaporator (composite model plant unit B) and the vacuum chlorinator with automatic feed to pipe and closed-loop pneumatic control (composite model plant unit N).

2.15 Name and locate the components of the chlorination unit listed on page 35. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

2.16 Perform the abnormal operation procedures for the chlorination unit.

RESO	URCES	:
------	-------	---

3	116	120	125	141	143	144	307	308	309	316
317	320	321	324	421	459	472	489	511	543	551
552	553	554	700	702	851	937	966	967	968	969
970	972	974	975	976	977	978	979	980	984	985
990	1033	1034	1 399	1408						

<<<<<>>>>>

OBJECTIVE 2.1

Identify the chlorination unit.

CONDITIONS:

Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE:

The student will:

Indicate whether the process unit is used for chlorination.

INSTRUCTOR ACTIVITY:

1. Point out characteristics which distinguish the chlorination unit from other process units.

STUDENT ACTIVITY:

1. Develop a picture file of chlorination units. Mark distinguishing characteristics.

<<<<<>>>>>

OBJECTIVE 2.2:

Describe the chlorination process in technical and non-technical terms.

CONDITIONS:

Given a list of chlorine application points and a diagram of application points.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the chlorination unit, explaining the

meaning of: chlorine

chlorine contact chamber

chlorine system

closed-loop residual control

Point out the application points for:

upsewer chlorination prechlorination plant chlorination post-chlorination

Describe the purpose of chlorination at each location.

Describe how chlorination affects:

collection system prechlorination primary sedimentation trickling filtration aeration

pond stabilization effluent disposal pumping and piping

INSTRUCTOR ACTIVITY:

- 1. Use diagrams, photographs and slides to illustrate chlorination application points.
- 2. Point out application points and the effects of chlorination at the application points during a plant tour.

STUDENT ACTIVITY:

- 1. Point out and describe calorine application points on plant diagrams.
- 2. Observe and describe the application points and the effects of chlorination at the application points during a plant tour.

<<<<<>>>>>>

OBJECTIVE 2.3:

Describe the safety procedures for the chlorination unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the chlorination unit, commenting on: High-risk activities changing cylinders removing debris from channels replacing valves and pigtails working alone Sources of danger acid wastes automatic switches caustic wastes electrical equipment explosive gases hot pipes moving parts open channels and pits open doors and covers slippery walks or stairs tools toxic gases Safety equipment chlorine leak detector deluge shower emergency repair kit eyewash fire extinguisher first-aid kit gas mask lockout tags and keys protective clothing railings rope self-contained breathing apparatus stair treads ventilation system

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:

- 1. Discuss treatment plant case histories.
- 2. Describe the conditions in a plant and ask for evaluation.
- 3. Describe the safety procedures for each operation and maintenance procedure.
- 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:

- 1. Read case histories and comment on employee safety procedures.
- 2. Evaluate conditions which the instructor has described. Suggest remedies.
- Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the chlorination unit.
- 4. Identify sources of danger and high-risk activities pictured in slides.

<<<<<>>>>>

OBJECTIVE 2.4:

Identify the components of a chlorination unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a chlorination unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

Identify components of the chlorination unit and associated equipment:

air-storage tank pigtail alarms adapter chlorine pressure cap evaporator level flex line leak detector yoke analyzer pneumatic control chart drive recording chart compressor regulators container chlorine pressure cylinder injector vacuum drive belt water pressure evaporator rotameter float rupture disc fire-fighting equipment first-aid kit scale gas mask valves hoist cylinder motorheader pressure reducing pen vent fan

Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out and name components in diagrams, photographs or models.
- 2. Arrange photographs or models of components in the workshop for student identification.
- 3. Point out and name components during a plant tour.
- 4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

- 1. Identify the components which the instructor names on diagrams, photographs or models.
- 2. Identify the components at stations in the workshop in writing.
- 3. Identify components during a plant tour.
- 4. Explain the purpose of each component, how the component works and why it is important.

<<<<<>>>>>

OBJECTIVE 2.5:

Describe the normal operation procedures for the chlorination unit components listed on page 35.

CONDITIONS:

Given a chlorination unit or slides or photographs of a chlorination unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

color pressure corrosion sound flow temperature motion vacuum odor vibration position

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

making adjustments
deciding about corrective maintenance
reporting to supervisors
reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the chlorination process.

List routine calculations for the chlorination process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

- 1. Describe the characteristics of the components of the chlorination unit.
- 2. Describe the normal operation procedures for the chlorination unit. Use color pictures.
- 3. Describe the normal operation procedures during a slide show of components of the chlorination unit.
- 4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Develop a checklist, listing the components of the chlorination unit and their normal characteristics.
- 2. Develop a manual of normal operation procedures.
- 3. Describe the normal operation procedures during a slide show of components of the chlorination unit.
- 4. Observe and describe the normal operation procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 2.6:

Perform the normal operation procedures for the chlorination unit.

CONDITIONS:

Given a chlorination unit, the manual of normal operation procedures which the student has developed for the chlorination unit and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

- 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
- 2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
- 2. Perform and explain the normal operation procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 2.7:

Describe and perform the start-up and shut-down procedures for the chlorination unit.

CONDITIONS:

Given a mock-up, model or photograph of a chlorination unit and a chlorination unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE:

The student will:

Start up and shut down a chlorination unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

- 1. Demonstrate and perform the start-up procedures in a treatment plant.
- 2. Demonstrate and perform the shut-down procedures in a treatment plant.
- 3. Observe the student performing the start-up procedures in a treatment plant.
- 4. Observe the student performing the shut-down

procedures in a treatment plant.

- 5. Observe the student as he evaluates his start-up procedures.
- 6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

- 1. Describe the start-up procedures in a dry run in a treatment plant.
- 2. Describe the shut-down procedures in a dry run in a treatment plant.
- 3. Perform the start-up procedures in a treatment plant.
- 4. Perform the shut-down procedures in a treatment plant.
- 5. Evaluate the operation of the chlorination unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
- 6. Evaluate the operation of the chlorination unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<>>>>>>

OBJECTIVE 2.8:

Describe the abnormal operation procedures for the chlorination process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

COD

Evaluate the wastestream for abnormal conditions, commenting on:

BOD flow chlorine demand industrial wastes chlorine residual odor

odor pH

coliform composition

septic sewage toxic gases

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:

operational changes reporting to supervisors sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures during a slide show.
- 4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
- 4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

<<<<<>>>>>>

OBJECTIVE 2.9:

Describe the preventive maintenance procedures for the chlorination unit.

CONDITIONS:

Given a chlorination unit or pictures and drawings of a chlorination unit and reference materials, including:

inspection records

manufacturer's maintenance guides

plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Describe these preventive maintenance procedures for the chlorination unit: Cleaning Replacement alarms pen chlorine pressure valve Lubrication evaporator level compressor leak detector hoist analyzer motor chart drive Mechanical adjustment compressor air-storage tank container alarms cylinder chlorine pressure drive belt evaporator level evaporator leak detector fire-fighting equipment analyzer first-aid kit chart drive gas mask hoist compressor container motor drive belt pen evaporator pigtail gas mask adapter hoist cap motor flex line pneumatic control yoke regulators pneumatic control chlorine pressure recording chart injector vacuum regulators water pressure chlorine pressure rupture disc injector vacuum scale water pressure valves rotameter float cylinder rupture disc header scale pressure reducing valves vent fan cylinder Painting header air-storage tank pressure reducing compressor vent fan Wear measurement motor scale

valve

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the preventive maintenance procedures for the chlorination unit.
- 2. Describe and explain the preventive maintenance procedures during a slide show.
- 3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

- 1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
- 2. Observe, describe and explain the preventive maintenance procedures during a slide show.
- 3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 2.10:

Perform the preventive maintenance procedures for the chlorination unit.

CONDITIONS:

Given a chlorination unit and tools and reference materials, including:

inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the chlorination unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe student inspection of a treatment plant.
- 3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
- 2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
- Perform and explain the preventive maintenance procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 2.11:

Describe the corrective maintenance procedures for the chlorination unit components listed on page 35.

CONDITIONS:

Given a chlorination unit or a mock-up, photographs or drawings of a chlorination unit, the manual of operation procedures which the student has developed for the chlorination unit, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the chlorination unit for corrective maintenance, commenting on:

color pressure corrosion sound flow temperature motion vacuum odor vibration position

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures for the chlorination unit, using diagrams and pictures.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

<<<<<>>>>>

OBJECTIVE 2.12:

Perform the corrective maintenance procedures for the chlorination unit components.

CONDITIONS:

Given a chlorination unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the chlorination unit for corrective maintenance, explaining why a component

has malfunctioned and commenting on:

color pressure
corrosion sound
flow temperature
motion vacuum
odor vibration
position

Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the components in a treatment plant.
- 3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
- 2. Evaluate the components for corrective maintenance.
- 3. Perform and explain the corrective maintenance procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 2.13:

Perform the safety procedures for the chlorination unit and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment. ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the chlorination

unit, commenting on:
 high-risk activities
 sources of danger
 safety equipment

Explain how the procedures protect employees and

Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.

2. Observe the student as he evaluates the safety conditions in a treatment plant.

3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate safety conditions in simulated situations and recommend corrective procedures.

2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.

3. Perform the safety procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 2.14:

Compare other chlorination units to the vacuum chlorinator with automatic feed to pipe, pneumatic control and electric evaporator (composite model plant unit B) and the vacuum chlorinator with automatic feed to pipe and closed-loop pneumatic control (composite model plant unit N).

CONDITIONS:

Given a process unit and reference materials, including:

equipment catalogues laboratory reports manufacturer's bulletins

manufacturer's operation manuals

plant maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit B with: a vacuum chlorinator with automatic feed to pipe,

electrical control and electrical evaporator.

- a solution feed chlorinator with discharge to pipe.
- a solution feed chlorinator with discharge to channel.
- a solution feed chlorinator with discharge to basin.
- a vacuum chlorinator with electrical evaporator and discharge to channel.
- a vacuum chlorinator with electrical evaporator and discharge to basin.
- a chlorinator with manual control.

Consider:

availability of replacement parts capital costs dependency on surrounding environment ease of repair efficiency flow-handling capabilities maintenance costs nuisance to neighbors operational costs operational skills personnel requirements reliability resistance to upset sensitivity of controls space requirements waste-handling capabilities

INSTRUCTOR ACTIVITY:

- 1. Prepare a chart for tabulation of information about the units.
- 2. Compare composite model plant units B and N with the other units.
- 3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:

- 1. List information about the units on a chart.
- 2. Compare the units in a panel discussion.
- Write a report on the advantages and disadvantages of each unit.

<<<<<>>>>>

OBJECTIVE 2.15:

Name and locate the components of the chlorination unit listed on page 35. Name and select reference materials

which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a chlorination unit, unit components or a diagram, model or photographs of a unit and reference materials, including:

contractor's plans of the chlorination unit manufacturer's maintenance guides operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

Name and locate the components of the chlorination unit.

Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out components of the chlorination unit on diagrams, photographs or models.
- 2. Listen to the student naming the components and the applicable reference materials during a plant tour.
- 3. Name and display the reference materials which describe the chlorination unit and normal operation procedures.

STUDENT ACTIVITY:

- 1. Name the components which the instructor points out on diagrams, photographs or models.
- 2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.
- 3. Name and select the reference materials which describe the chlorination unit and normal operation procedures.

<<<<<>>>>>

OBJECTIVE 2.16:

Perform the abnormal operation procedures for the chlorination unit.

CONDITIONS:

Given a wastestream in a treatment plant and reference

materials, including:

industrial waste records

operation logs operator manuals

plant performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions,

commenting on:

BOD flow

chlorine demand industrial wastes

chlorine residual odor COD pH

coliform septic sewage composition toxic gases

Select the references he needs to return the wastestream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

1. Observe the student as he evaluates the wastestream in a treatment plant.

2. Describe the references needed to correct abnormal conditions of the wastestream.

3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:

- 1. Evaluate the wastestream in a treatment plant.
- 2. Select the references needed to correct abnormal conditions of the wastestream.
- 3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<>>>>>

MODULE 3

SCREENING AND GRINDING

A mechanically cleaned bubbler unit with grinder

Composite Model Plant Unit C

PURPOSE:

In this module the student will learn to perform all the activities in the objectives as they apply to a mechanically cleaned bubbler unit with grinder. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

- 3.1 Identify the screening and grinding unit.
- 3.2 Describe the screening and grinding process in technical and nontechnical terms.
- 3.3 Describe the safety procedures for the screening and grinding unit and explain how the procedures protect employees and visitors.
- 3.4 Identify the components of a screening and grinding unit. Explain the purpose of each component, how the component works and why it is important.
- 3.5 Describe the normal operation procedures for the screening and grinding unit components listed on page 55.
- 3.6 Perform the normal operation procedures for the screening and grinding unit.
- 3.7 Describe and perform the start-up and shut-down procedures for the screening and grinding unit.
- 3.8 Describe the abnormal operation procedures for the screening and grinding process.
- 3.9 Describe the preventive maintenance procedures for the screening and grinding unit.
- 3.10 Perform the preventive maintenance procedures for the screening and grinding unit.
- 3.11 Describe the corrective maintenance procedures for the screening and grinding unit components listed on page 55.
- 3.12 Perform the corrective maintenance procedures for the screening and grinding unit components.
- 3.13 Perform the safety procedures for the screening and grinding unit and demonstrate how they protect employees and visitors.
- 3.14 Compare other screening and grinding units to the mechanically cleaned bubbler unit with grinder (composite model plant unit C).
- 3.15 Name and locate the components of the screening and grinding unit listed on page 55. Name and select reference materials which explain the normal operation procedures, the purpose of

each component, how the component works and why it is important.

3.16 Perform the abnormal operation procedures for the screening and grinding unit.

125 RESOURCES: 116 120 141 143 144 307 308 309 316 317 321 324 511 552 320 421 459 551 553 554

937 990 1033 1034 1399

<<<<<>>>>>

OBJECTIVE 3.1: Identify the screening and grinding unit.

CONDITIONS: Given a unit, model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE: The student will:

Indicate whether the process unit is used for screen-

ing and grinding.

INSTRUCTOR ACTIVITY: 1. Point out characteristics which distinguish the

screening and grinding unit from other process units.

STUDENT ACTIVITY:

1. Develop a picture file of screening and grinding

units. Mark distinguishing characteristics.

<<<<<>>>>>

OBJECTIVE 3.2: Describe the screening and grinding process in technical

and nontechnical terms.

CONDITIONS: Given photographs of the screening and grinding unit.

ACCEPTABLE PERFORMANCE: The student will:

Describe the screening and grinding unit.

Describe the purpose of screening and grinding.

Describe how screening and grinding affects:

grit removal

primary sedimentation

trickling filtration aeration pond stabilization first stage digestion solids disposal effluent disposal pumping and piping

INSTRUCTOR ACTIVITY:

- 1. Use diagrams, photographs and slides to describe screening and grinding.
- 2. Describe the screening and grinding process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:

- 1. Describe the screening and grinding process while viewing photographs, diagrams and slides.
- 2. Observe and describe the screening and grinding process during a plant tour.

<<<<<>>>>>>

OBJECTIVE 3.3:

Describe the safety procedures for the screening and grinding unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the screening and grinding unit, commenting on:
High-risk activities

entering deep wells
hoisting gates
making adjustments with switch in automatic
position
replacing shear pins
retrieving debris from channels
Sources of danger
acid wastes
caustic wastes
electrical equipment
explosive gases
moving parts

Sources of danger (continued) open doors or covers slippery gratings slippery walks toxic gases welding torch Safety equipment first-aid kit harness lockout tags and keys oxygen deficiency meter protective clothing railings rope stair treads ventilation system

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:

- 1. Discuss treatment plant case histories.
- 2. Describe the conditions in a plant and ask for evaluation.
- 3. Describe the safety procedures for each operation and maintenance procedure.
- 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:

- 1. Read case histories and comment on employee safety procedures.
- 2. Evaluate conditions which the instructor has described. Suggest remedies.
- Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the screening and grinding unit.
- 4. Identify sources of darger and high-risk activities pictured in slides.

<<<<<>>>>>>

OBJECTIVE 3.4:

Identify the components of a screening and grinding unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a screening and grinding unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

Identify components of the screening and grinding unit and associated equipment:

alarm flushing water system

bar-screen enclosure grinder bar rack limit switch

belt drive motor chain rake

channel inlet gate rake-cleaner channel outlet gate control section rake drive screen belt

drain system shaft

fire-fighting equipment speed reducer first-aid kit sprocket

flushing valve

Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out and name components in diagrams, photographs or models.
- 2. Arrange photographs or models of components in the workshop for student identification.
- 3. Point out and name components during a plant tour.
- 4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

- 1. Identify the components which the instructor names on diagrams, photographs or models.
- 2. Identify the components at stations in the workshop in writing.
- 3. Identify components during a plant tour.
- 4. Explain the purpose of each component, how the component works and why it is important.

<<<<<>>>>>

CBJECTIVE 3.5:

Describe the normal operation procedures for the screening and grinding unit components listed above.

CONDITIONS:

Given a screening and grinding unit or slides or photographs of a screening and grinding unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

capacity motion
color odor
corrosion position
depth sound
deterioration temperature
flow vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

making adjustments deciding about corrective maintenance

reporting to supervisors reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the screening and grinding process.

List routine calculations for the screening and grinding process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

- 1. Describe the characteristics of the components of the screening and grinding unit.
- 2. Describe the normal operation procedures for the screening and grinding unit. Use color pictures.
- 3. Describe the normal operation procedures during a slide show of components of the screening and grinding unit.

4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Develop a checklist, listing the components of the screening and grinding unit and their normal characteristics.
- 2. Develop a manual of normal operation procedures.
- Describe the normal operation procedures during a slide show of components of the screening and grinding unit.
- 4. Observe and describe the normal operation procedures during a plant tour.

<<<<<>>>>>>

OBJECTIVE 3.6:

Perform the normal operation procedures for the screening and grinding unit.

CONDITIONS:

Given a screening and grinding unit, the manual of normal operation procedures which the student has developed for the screening and grinding unit and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

- 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
- 2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:

1. Demonstrate the normal operation procedures in a dry run in a treatment plant.

2. Perform and explain the normal operation procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 3.7:

Describe and perform the start-up and shut-down procedures for the screening and grinding unit.

CONDITIONS:

Given a mock-up, model or photograph of a screening and grinding unit and a screening and grinding unit with a manufacturer's operation nanual.

ACCEPTABLE PERFORMANCE:

The student will:

Start up and shut down a screening and grinding unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

- 1. Demonstrate and perform the start-up procedures in a treatment plant.
- 2. Demonstrate and perform the shut-down procedures in a treatment plant.
- 3. Observe the student performing the start-up procedures in a treatment plant.
- 4. Observe the student performing the shut-down procedures in a treatment plant.
- 5. Observe the student as he evaluates his start-up procedures.
- 6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

- 1. Describe the start-up procedures in a dry run in a treatment plant.
- 2. Describe the shut-down procedures in a dry run in a treatment plant.
- 3. Perform the start-up procedures in a treatment plant.
- 4. Perform the shut-down procedures in a treatment plant.
- 5. Evaluate the operation of the screening and grinding unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
- 6. Evaluate the operation of the screening and grinding unit to determine whether correct shut-down

procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<>>>>>

CBJECTIVE 3.8:

Describe the abnormal operation procedures for the screening and grinding process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

floating material level

flow toxic gases

industrial wastes

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:

operational changes reporting to supervisors sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- Describe and explain the abnormal operation procedures during a slide show.
- 4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
- 4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

<<<<<>>>>>

OBJECTIVE 3.9:

Describe the preventive maintenance procedures for the screening and grinding unit.

CONDITIONS:

Given a screening and grinding unit or pictures and drawings of a screening and grinding unit and reference materials, including:

inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Describe these preventive maintenance procedures for the screening and grinding unit:

Cleaning belt drive chain chain

channel inlet gate channel inlet gate channel outlet gate channel outlet gate control section grinder

drain system motor flushing valve rake

flushing water system rake-cleaner grinder rake drive Lubrication screen belt chain speed reducer motor sprocket Painting

bar-screen enclosure channel inlet gate channel outlet gate

motorReplacement alarm

rake drive speed reducer sprocket

Mechanical adjustment alarm

bar-screen enclosure bar rack

Replacement (continued) screen belt bar-screen enclosure shaft bar rack speed reducer belt drive sprocket chain Wear measurement channel inlet gate bar rack channel outlet gate belt drive fire-fighting equipment chain first-aid kit grinder flushing valve motor flushing water system rake rake-cleaner grinder limit switch screen belt motorshaft rake speed reducer rake-cleaner sprocket rake drive

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the preventive maintenance procedures for the screening and grinding unit.
- 2. Describe and explain the preventive maintenance procedures during a slide show.
- 3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

- 1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
- 2. Observe, describe and explain the preventive maintenance procedures during a slide show.
- 3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 3.10:

Perform the preventive maintenance procedures for the

screening and grinding unit.

CONDITIONS:

Given a screening and grinding unit and tools and refer-

ence materials, including:

inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the screening and grinding unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe student inspection of a treatment plant.
- 3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
- 2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
- 3. Perform and explain the preventive maintenance procedures in a treatment plant.

<<<<<>>>>>>

OBJECTIVE 3.11:

Describe the corrective maintenance procedures for the screening and grinding unit components listed on page 55

CONDITIONS:

Given a screening and grinding unit or a mock-up, photographs or drawings of a screening and grinding unit, the manual of operation procedures which the student has

developed for the screening and grinding unit, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the screening and grinding unit for corrective maintenance, commenting on:

capacity motion
color odor
corrosion position
depth sound
deterioration temperature
flow vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

- Describe and explain the corrective maintenance procedures for the screening and grinding unit, using diagrams and pictures.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

OBJECTIVE 3.12:

Perform the corrective maintenance procedures for the screening and grinding unit components.

CONDITIONS:

Given a screening and grinding unit or unit components, the operation procedures canual which the student has developed, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the screening and grinding unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:

capacity color

motion odor

corrosion depth

position sound

deterioration

temperature

flow

vibration

Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:

evaluation of capabilities of plant personnel to perform the procedures

selection of replacement parts

record keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the components in a treatment plant.
- 3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
- 2. Evaluate the components for corrective maintenance.

3. Perform and explain the corrective maintenance procedures in a treatment plant.

<<<<<>>>>>

CEJECTIVE 3.13:

Perform the safety procedures for the screening and grinding unit and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the screening and grinding unit, commenting on:

high-risk activities sources of danger safety equipment

Explain how the procedures protect employees and visitors.

Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the safety conditions in a treatment plant.
- 3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
- 2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
- 3. Perform the safety procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 3.14:

Compare other screening and grinding units to the mechanically cleaned bubbler unit with grinder (composite model plant unit C).

CONDITIONS:

Given a process unit and reference materials, including:

equipment catalogues
laboratory reports
manufacturer's bulletins
manufacturer's operation manuals
plant maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit C with:

- a mechanically cleaned electrode control unit with grinder.
- a mechanically cleaned timer control unit without grinder.
- a mechanically cleaned electrode control unit without grinder.
- a mechanically cleaned float control unit without grinder.
- a mechanically cleaned manual control unit without grinder.
- a mechanically cleaned bubbler control unit without grinder.
- a mechanically cleaned timer control unit with grinder.
- a mechanically cleaned float control unit with grinder.
- a mechanically cleaned manual control unit with grinder.
- a comminution unit.

Consider:

availability of replacement parts capital costs dependency on surrounding environment ease of repair efficiency flow-handling capabilities maintenance costs nuisance to neighbors operational costs operational skills personnel requirements reliability resistance to upset sensitivity of controls space requirements waste-handling capabilities

INSTRUCTOR ACTIVITY:

- 1. Prepare a chart for tabulation of information about the units.
- 2. Compare composite model plant unit C with the other units.
- 3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:

- 1. List information about the units on a chart.
- 2. Compare the units in a panel discussion.
- 3. Write a report on the advantages and disadvantages of each unit.

<<<<<>>>>>

OBJECTIVE 3.15:

Name and locate the components of the screening and grinding unit listed on page 55. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a screening and grinding unit, unit components or a diagram, model or photographs of a unit and reference materials, including:

contractor's plans of the screening and grinding unit manufacturer's maintenance guides operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

Name and locate the components of the screening and grinding unit.

Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out components of the screening and grinding unit on diagrams, photographs or models.
- 2. Listen to the student naming the components and the applicable reference materials during a plant tour.
- 3. Name and display the reference materials which describe the screening and grinding unit and normal operation procedures.

STUDENT ACTIVITY:

- 1. Name the components which the instructor points out on diagrams, photographs or models.
- 2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.
- Name and select the reference materials which describe the screening and grinding unit and normal operation procedures.

<<<<<>>>>>

OBJECTIVE 3.16:

Perform the abnormal operation procedures for the screening and grinding unit.

CONDITIONS:

Given a wastestream in a treatment plant and reference

materials, including:

industrial waste records

operation logs operator manuals

plant performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions,

commenting on:

floating material level

flow toxic gases

industrial wastes

Select the references he needs to return the waste-

stream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

- 1. Observe the student as he evaluates the wastestream in a treatment plant.
- 2. Describe the references needed to correct abnormal conditions of the wastestream.
- 3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate the wastestream in a treatment plant.

- 2. Select the references needed to correct abnormal conditions of the wastestream.
- 3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<>>>>>>

MODULE 4

GRIT REMOVAL

An aerated unit with bucket elevator

Composite Model Plant Unit D

PURPOSE:

In this module the student will learn to perform all the activities in the objectives as they apply to an aerated unit with bucket elevator. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

CBJECTIVES:

- 4.1 Identify the grit removal unit.
- 4.2 Describe the grit removal process in technical and nontechnical terms.
- 4.3 Describe the safety procedures for the grit removal unit and explain how the procedures protect employees and visitors.
- 4.4 Identify the components of a grit removal unit. Explain the purpose of each component, has the component works and why it is important.
- 4.5 Describe the normal operation procedures for the grit removal unit components listed on page 74.
- 4.6 Perform the normal operation procedures for the grit removal unit.
- 4.7 Describe and perform the start-up and shut-down procedures for the grit removal unit.
- 4.8 Describe the abnormal operation procedures for the grit removal process.
- 4.9 Describe the preventive maintenance procedures for the grit removal unit.
- 4.10 Perform the preventive maintenance procedures for the grit removal unit.
- 4.11 Describe the corrective maintenance procedures for the grit removal unit components listed on page 74.
- 4.12 Perform the corrective maintenance procedures for the grit removal unit components.
- 4.13 Perform the safety procedures for the grit removal unit and demonstrate how they protect employees and visitors.
- 4.14 Compare other grit removal units to the aerated unit with bucket elevator (composite model plant unit D).
- 4.15 Name and locate the components of the grit removal unit listed on page 74. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
- 4.16 Perform the abnormal operation procedures for the grit removal unit.

RESOURCES:	221	116 222 421	223	224	307	308	309	316	317	320	321
	-	1399	423	/	,,_	,,,		, , ,			

<<<<<>>>>>>>

OBJECTIVE 4.1:

Identify the grit removal unit.

CONDITIONS:

Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE:

The student will:

Indicate whether the process unit is used for grit removal.

INSTRUCTOR ACTIVITY:

1. Point out characteristics which distinguish the grit removal unit from other process units.

STUDENT ACTIVITY:

1. Develop a picture file of grit removal units. Mark distinguishing characteristics.

<<<<<>>>>>

OBJECTIVE 4.2:

Describe the grit removal process in technical and non-technical terms.

CONDITIONS:

Given photographs of the grit removal unit.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the grit removal unit, explaining the meaning of:

grit chamber grit collector grit removal unit grit tank

Describe the purpose of grit removal.

Describe how grit removal affects:
 primary sedimentation
 aeration
 secondary sedimentation
 pond stabilization
 first stage digestion
 second stage digestion
 solids disposal
 flow measurement
 pumping and piping

INSTRUCTOR ACTIVITY:

- 1. Use diagrams, photographs and slides to describe grit removal.
- Describe the grit removal process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:

- 1. Describe the grit removal process while viewing photographs, diagrams and slides.
- 2. Observe and describe the grit removal process during a plant tour.

<<<<<>>>>>

OBJECTIVE 4.3:

Describe the safety procedures for the grit removal unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the grit removal unit, commenting on:
High-risk activities
adjusting moving parts
hand removal of grease
working in unventilated areas
Sources of danger
air hoses
belts
electrical equipment
moving parts
open tanks

Sources of danger (continued)
slippery walks
smooth treads
water hoses
wet treads
Safety equipment
life preserver
protective clothing

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:

- 1. Discuss treatment plant case histories.
- 2. Describe the conditions in a plant and ask for evaluation.
- 3. Describe the safety procedures for each operation and maintenance procedure.
- 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:

- 1. Read case histories and comment on employee safety procedures.
- 2. Evaluate conditions which the instructor has described. Suggest remedies.
- 3. Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the grit removal unit.
- 4. Identify sources of danger and high-risk activities pictured in slides.

<<<<<>>>>>

OBJECTIVE 4.4:

Identify the components of a grit removal unit. Explain the purpose of each component, how the component works and why it is important.

COMDITIONS:

Given a grit removal unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

Identify components of the grit removal unit and associated equipment:

air filter baffle air pressure relief valve belt

blower motor mounting bucket piping chain pressure gage controller receiving hopper coupling shaft diffuser shaft bearing drain system shoe electrical control equipment silencer fire-fighting equipment speed reducer first-aid kit sprocket gate valve tank gear box tightener guide rail valve manifold weir motor

Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out and name components in diagrams, photographs or models.
- 2. Arrange photographs or models of components in the workshop for student identification.
- 3. Point out and name components during a plant tour.
- 4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

- 1. Identify the components which the instructor names on diagrams, photographs or models.
- 2. Identify the components at stations in the workshop in writing.
- 3. Identify components during a plant tour.
- 4. Explain the purpose of each component, how the component works and why it is important.

<<<<<>>>>>

OBJECTIVE 4.5:

Describe the normal operation procedures for the grit removal unit components listed on page 74.

CONDITIONS:

Given a grit removal unit or slides or photographs of a grit removal unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

agitation position color sound corrosion temperature motion velocity odor vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

making adjustments deciding about corrective maintenance reporting to supervisors reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the grit removal process.

List routine calculations for the grit removal process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

- 1. Describe the characteristics of the components of the grit removal unit.
- 2. Describe the normal operation procedures for the grit removal unit. Use color pictures.
- 3. Describe the normal operation procedures during a slide show of components of the grit removal unit.
- 4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Develop a checklist, listing the components of the grit removal unit and their normal characteristics.
- 2. Develop a manual of normal operation procedures.

- 3. Describe the normal operation procedures during a slide show of components of the grit removal unit.
- 4. Observe and describe the normal operation procedures during a plant tour.

<<<<<>>>>>

CBJECTIVE 4.6:

Perform the normal operation procedures for the grit removal unit.

CONDITIONS:

Given a grit removal unit, the manual of normal operation procedures which the student has developed for the grit removal unit and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

- 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
- 2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
- 2. Perform and explain the normal operation procedures in a treatment plant.

<<<<<>>>>>

CBJECTIVE 4.7:

Describe and perform the start-up and shut-down procedures for the grit removal unit.

CONDITIONS:

Given a mock-up, model or photograph of a grit removal unit and a grit removal unit with the manufacturer's operation manual.

-CCEPTABLE PERFORMANCE:

The student will:

Start up and shut down a grit removal unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

- 1. Demonstrate and perform the start-up procedures in a treatment plant.
- 2. Demonstrate and perform the shut-down procedures in a treatment plant.
- 3. Observe the student performing the start-up procedures in a treatment plant.
- 4. Observe the student performing the shut-down procedures in a treatment plant.
- 5. Observe the student as he evaluates his start-up procedures.
- 6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

- 1. Describe the start-up procedures in a dry run in a treatment plant.
- 2. Describe the shut-down procedures in a dry run in a treatment plant.
- 3. Perform the start-up procedures in a treatment plant.
- 4. Perform the shut-down procedures in a treatment plant.
- 5. Evaluate the operation of the grit removal unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
- 6. Evaluate the operation of the grit removal unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<>>>>>

OBJECTIVE 4.8:

Describe the abnormal operation procedures for the grit removal process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

floating material level

flow septic sewage grit settleable matter ice suspended solids

industrial wastes velocity

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:

operational changes reporting to supervisors sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures during a slide show.
- 4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.

4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

<<<<>>>>>>

OBJECTIVE 4.9:

Describe the preventive maintenance procedures for the grit removal unit.

CONDITIONS:

Given a grit removal unit or pictures and drawings of a grit removal unit and reference materials, including: inspection records manufacturer's maintenance guides

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

sprocket

tightener

Describe these preventive maintenance procedures for the grit removal unit:

Cleaning Mechanical adjustment air filter air pressure relief air pressure relief valve valve baffle baffle blower belt bucket blower chain bucket coupling chain diffuser controller drain system coupling gate valve electrical control piping equipment receiving hopper gear box sprocket guide rail tank motor weir pressure gage Lubrication shaft blower shaft bearing chain silencer coupling speed reducer gear box sprocket motor tightener shaft valve speed reducer weir

Painting

diffuser

Painting (continued) gear box manifold motor motor mounting piping shaft sprocket tank Replacement air filter air pressure relief valve belt bucket chain coupling diffuser electrical control equipment fire-fighting equipment first-aid kit	gear box pressure gage shoe silencer speed reducer sprocket tightener valve weir Wear measurement belt bucket chain coupling gate valve shaft shoe speed reducer sprocket tightener
--	---

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the preventive maintenance procedures for the grit removal unit.
- 2. Describe and explain the preventive maintenance procedures during a slide show.
- 3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

- 1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
- 2. Observe, describe and explain the preventive maintenance procedures during a slide show.

3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 4.10:

Perform the preventive maintenance procedures for the grit removal unit.

CONDITIONS:

Given a grit removal unit and tools and reference materials, including:

inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the grit removal unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe student inspection of a treatment plant.
- 3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
- 2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
- 3. Perform and explain the preventive maintenance procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 4.11:

Describe the corrective maintenance procedures for the grit removal unit components listed on page 74.

CONDITIONS:

Given a grit removal unit or a mock-up, photographs or drawings of a grit removal unit, the manual of operation procedures which the student has developed for the grit removal unit, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the grit removal unit for corrective maintenance, commenting on:

agitation position color sound corrosion temperature motion velocity odor vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures for the grit removal unit, using diagrams and pictures.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

<<<<<>>>>>

OBJECTIVE 4.12:

Perform the corrective maintenance procedures for the

grit removal unit components.

CONDITIONS:

Given a grit removal unit or unit components, the operation procedures manual which the student has developed,

tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the grit removal unit for corrective maintenance, explaining why a component

has malfunctioned and commenting on:

agitation position color sound corrosion temperature welocity

odor vibration

Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:

evaluation of capabilities of plant personnel

to perform the procedures selection of replacement parts

record keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the components in a treatment plant.
- 3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
- 2. Evaluate the components for corrective maintenance.
- Perform and explain the corrective maintenance procedures in a treatment plant.

<<<<<>>>>>

O5JECTIVE 4.13:

Perform the safety procedures for the grit removal unit and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the grit removal unit, commenting on:
 high-risk activities
 sources of danger
 safety equipment

Explain how the procedures protect employees and visitors.

Recommend corrective procedures and correct the unsafe conditions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the safety conditions in a treatment plant.
- 3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
- 2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
- 3. Perform the safety procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 4.14:

Compare other grit removal units to the aerated unit with bucket elevator (composite model plant unit D).

CONDITIONS:

Given a process unit and reference materials, including:

equipment catalogues laboratory reports manufacturer's bulletins

manufacturer's operation manuals

plant maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit D with:
an aerated unit with screw conveyor.
an aerated unit with air lift.
an aerated unit with clam shovel.
a velocity control unit with screw conveyor.
a velocity control unit with bucket elevator.
a velocity control unit with clam shovel.
a surface overflow unit with screw conveyor.
a surface overflow unit with bucket elevator.
a surface overflow unit with rake.

Consider:

a cyclone unit.

availability of replacement parts capital costs dependency on surrounding environment ease of repair efficiency flow-handling capabilities maintenance costs nuisance to neighbors operational costs operational skills personnel requirements reliability resistance to upset sensitivity of controls space requirements waste-handling capabilities

INSTRUCTOR ACTIVITY:

- 1. Prepare a chart for tabulation of information about the units.
- 2. Compare composite model plant unit D with the other units.
- 3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:

- 1. List information about the units on a chart.
- 2. Compare the units in a panel discussion.
- 3. Write a report on the advantages and disadvantages of each unit.

<<<<<>>>>>>

OBJECTIVE 4.15:

Name and locate the components of the grit removal unit listed on page 74. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a grit removal unit, unit components or a diagram, model or photographs of a unit and reference materials, including:

contractor's plans of the grit removal unit manufacturer's maintenance guides operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

Name and locate the components of the grit removal unit.

Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out components of the grit removal unit on diagrams, photographs or models.
- 2. Listen to the student naming the components and the applicable reference materials during a plant tour.
- Name and display the reference materials which describe the grit removal unit and normal operation procedures.

STUDENT ACTIVITY:

- 1. Name the components which the instructor points out on diagrams, photographs or models.
- 2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.
- Name and select the reference materials which describe the grit removal unit and normal operation procedures.

<<<<<>>>>>>

OBJECTIVE 4.16:

Perform the abnormal operation procedures for the grit removal unit.

CONDITIONS:

Given a wastestream in a treatment plant and reference

materials, including:

industrial waste records

operation logs operator manuals

plant performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions,

commenting on:

floating material level

flow septic sewage grit settleable matter ice suspended solids

industrial wastes velocity

Select the references he needs to return the waste-

stream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

1. Observe the student as he evaluates the wastestream in a treatment plant.

2. Describe the references needed to correct abnormal conditions of the wastestream.

3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate the wastestream in a treatment plant.

2. Select the references needed to correct abnormal conditions of the wastestream.

3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<>>>>>

MODULE 5

PRIMARY SEDIMENTATION

A rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper

Composite Model Plant Unit E

PURPOSE:

In this module the student will learn to perform all the activities in the objectives as they apply to a rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

- 5.1 Identify the primary sedimentation unit.
- 5.2 Describe the primary sedimentation process in technical and nontechnical terms.
- 5.3 Describe the safety procedures for the primary sedimentation unit and explain how the procedures protect employees and visitors.
- 5.4 Identify the components of a primary sedimentation unit. Explain the purpose of each component, how the component works and why it is important.
- 5.5 Describe the normal operation procedures for the primary sedimentation unit components listed on page 93.
- 5.6 Perform the normal operation procedures for the primary sedimentation unit.
- 5.7 Describe and perform the start-up and shut-down procedures for the primary sedimentation unit.
- 5.8 Describe the abnormal operation procedures for the primary sedimentation process.
- 5.9 Describe the preventive maintenance procedures for the primary sedimentation unit.
- 5.10 Perform the preventive maintenance procedures for the primary sedimentation unit.
- 5.11 Describe the corrective maintenance procedures for the primary sedimentation unit components listed on page 93.
- 5.12 Perform the corrective maintenance procedures for the primary sedimentation unit components.
- 5.13 Perform the safety procedures for the primary sedimentation unit and demonstrate how they protect employees and visitors.
- 5.14 Compare other primary sedimentation units to the rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper (composite model plant unit E).
- 5.15 Name and locate the components of the primary sedimentation unit listed on page 93. Name and select reference materials

which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

5.16 Perform the abnormal operation procedures for the primary sedimentation unit.

RESOURCES:

3	116	120	125	141	143	144	202	203	219	220
221	222	223	224	307	308	309	316	317	320	321
324	421	459	511	551	552	553	554	937	990	1033
1034	1399									

<<<<<>>>>>>

OBJECTIVE 5.1:

Identify the primary sedimentation unit.

CONDITIONS:

Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE:

The student will:

Indicate whether the process unit is used for primary sedimentation.

INSTRUCTOR ACTIVITY:

1. Point out characteristics which distinguish the primary sedimentation unit from other process units.

STUDENT ACTIVITY:

1. Develop a picture file of primary sedimentation units. Mark distinguishing characteristics.

<<<<<>>>>>

CESECTIVE 5.2:

Describe the primary sedimentation process in technical and nontechnical terms.

CC::DITIONS:

Given photographs of the primary sedimentation unit.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the primary sedimentation unit, explaining the meaning of:
 primary basin
 primary clarifier
 "sed" tank
 sedimentation unit

Describe the purpose of primary sedimentation.

Describe how primary sedimentation affects:
trickling filtration
aeration
secondary sedimentation
pond stabilization
thickening
first stage digestion
second stage digestion
sludge conditioning
sludge dewatering
solids disposal
effluent disposal
flow measurement

pumping and piping

INSTRUCTOR ACTIVITY:

- 1. Use diagrams, photographs and slides to describe primary sedimentation.
- 2. Describe the primary sedimentation process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:

- 1. Describe the primary sedimentation process while viewing photographs, diagrams and slides.
- 2. Observe and describe the primary sedimentation process during a plant tour.

<<<<<>>>>>

OBJECTIVE 5.3:

Describe the safety procedures for the primary sedimentation unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the primary sedimentation unit, commenting on: High-risk activities lifting and lowering objects with ropes and pulleys making adjustments with switch in automatic position raking floating materials from tank surface working inside tank without a buddy working near open pits and tanks Sources of danger acid wastes caustic wastes electrical equipment explosive gases falling objects moving parts open pits radiation skimming sprays slippery walks and stairs smooth treads tanks toxic gases water hoses wet treads Safety equipment barricades dosimeter explosion proof flashlight first-aid kit handrails ladders life preserver lockout tags and keys protective clothing stair treads

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:

- 1. Discuss treatment plant case histories.
- Describe the conditions in a plant and ask for evaluation.
- 3. Describe the safety procedures for each operation and maintenance procedure.
- 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:

- 1. Read case histories and comment on employee safety procedures.
- 2. Evaluate conditions which the instructor has described. Suggest remedies.
- 3. Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the primary sedimentation unit.
- 4. Identify sources of danger and high-risk activities pictured in slides.

<<<<<>>>>>

OBJECTIVE 5.4:

Identify the components of a primary sedimentation unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a primary sedimentation unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

baffle

Identify components of the primary sedimentation unit and associated equipment:

rail

belt. shaft chain shear pin clutch shoe density meter skimmer arm drive motor skimmer trough fire-fighting equipment sludge well first-aid kit sluice gate flight sprocket gear box switch gear telescopic valve grease pit influent gate time clock limit switch valve piping

variable speed drive water seal unit pulley

pump weir

Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out and name components in diagrams, photographs or models.
- 2. Arrange photographs or models of components in the workshop for student identification.
- 3. Point out and name components during a plant tour.
- 4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

- 1. Identify the components which the instructor names on diagrams, photographs or models.
- 2. Identify the components at stations in the workshop in writing.
- 3. Identify components during a plant tour.
- 4. Explain the purpose of each component, how the component works and why it is important.

<<<<<>>>>>

OBJECTIVE 5.5:

Describe the normal operation procedures for the primary sedimentation unit components listed on page 93.

COMMITTIONS:

Given a primary sedimentation unit or slides or photographs of a primary sedimentation unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

biological growth position color pressure corrosion sound motion temperature odor vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

making adjustments deciding about corrective maintenance reporting to supervisors reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the primary sedimentation process.

List routine calculations for the primary sedimentation process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

- 1. Describe the characteristics of the components of the primary sedimentation unit.
- 2. Describe the normal operation procedures for the primary sedimentation unit. Use color pictures.
- Describe the normal operation procedures during a slide show of components of the primary sedimentation unit.
- 4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- Develop a checklist, listing the components of the primary sedimentation unit and their normal characteristics.
- 2. Develop a manual of normal operation procedures.
- 3. Describe the normal operation procedures during a slide show of components of the primary sedimentation unit.
- 4. Observe and describe the normal operation procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 5.6:

Perform the normal operation procedures for the primary sedimentation unit.

COMDITIONS:

Given a primary sedimentation unit, the manual of normal operation procedures which the student has developed for the primary sedimentation unit and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

- 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
- 2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
- 2. Perform and explain the normal operation procedures in a treatment plant.

<<<<<>>>>>

CBJECTIVE 5.7:

Describe and perform the start-up and shut-down procedures for the primary sedimentation unit.

CONDITIONS:

Given a mock-up, model or photograph of a primary sedimentation unit and a primary sedimentation unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE:

The student will:

Start up and shut down a primary sedimentation unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

- 1. Demonstrate and perform the start-up procedures in a treatment plant.
- 2. Demonstrate and perform the saut-down procedures in a treatment plant.
- 3. Observe the student performing the start-up procedures in a treatment plant.
- 4. Observe the student performing the shut-down procedures in a treatment plant.
- 5. Observe the student as he evaluates his start-up procedures.
- 6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

- Describe the start-up procedures in a dry run in a treatment plant.
- 2. Describe the shut-down procedures in a dry run in a treatment plant.
- 3. Perform the start-up procedures in a treatment plant.
- 4. Perform the shut-down procedures in a treatment plant.
- 5. Evaluate the operation of the primary sedimentation unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
- 6. Evaluate the operation of the primary sedimentation unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<<>>>>

GBJECTIVE 5.8:

Describe the abnormal operation procedures for the primary sedimentation process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

BOD level COD odor color oil floating material pH

flow septic sewage foam settleable matter grease suspended solids temperature industrial wastes velocity

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:

operational changes reporting to supervisors sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures during a slide show.
- 4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

- 1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
- 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
- 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.

4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

<<<<<>>>>>

OBJECTIVE 5.9:

Describe the preventive maintenance procedures for the primary sedimentation unit.

CONDITIONS:

Given a primary sedimentation unit or pictures and drawings of a primary sedimentation unit and reference ma-

terials, including: inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Describe these preventive maintenance procedures for

the primary sedimentation unit:

Cleaning Mechanical adjustment baffle baffle chain belt density meter chain drive motor clutch flight density meter gear box drive motor grease pit flight pump gear box rail influent gate skimmer trough limit switch sludge well pulley sluice gate pump telescopic valve shaft shear pin variable speed drive skimmer arm weir Lubrication sprocket chain switchgear clutch telescopic valve drive motor time clock gear box valve variable speed drive pump

pump variable speed of sprocket water seal unit valve weir

valve variable speed drive

flight Painting shear pin drive motor gear box shoe sprocket piping qımq Wear measurement switchgear belt chain telescopic valve clutch variable speed drive flight weir Replacement pump baffle rail belt shoe chain skimmer arm fire-fighting equipment sprocket first-aid kit switchgear

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

INSTRUCTOR ACTIVITY:

- 1. Describe and explain the preventive maintenance procedures for the primary sedimentation unit.
- 2. Describe and explain the preventive maintenance procedures during a slide show.
- 3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

- 1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
- 2. Observe, describe and explain the preventive maintenance procedures during a slide show.
- 3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

<<<<<>>>>>

OBJECTIVE 5.10:

Perform the preventive maintenance procedures for the primary sedimentation unit.

CONDITIONS:

Given a primary sedimentation unit and tools and refer-

ence materials, including:

inspection records

manufacturer's maintenance guides plant drawings and specifications preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the primary sedimentation unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe student inspection of a treatment plant.
- 3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
- 2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
- 3. Perform and explain the preventive maintenance procedures in a treatment plant.

<<<<<>>>>>>>

OBJECTIVE 5.11:

Describe the corrective maintenance procedures for the primary sedimentation unit components listed on page 93.

CONDITIONS:

Given a primary sedimentation unit or a mock-up, photographs or drawings of a primary sedimentation unit, the manual of operation procedures which the student has developed for the primary sedimentation unit, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the primary sedimentation unit for corrective maintenance, commenting on:

biological growth position color pressure corrosion sound motion temperature odor vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

- Describe and explain the corrective maintenance procedures for the primary sedimentation unit, using diagrams and pictures.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

- 1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
- 2. Describe and explain the corrective maintenance procedures during a slide show.
- 3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

<<<<<>>>>>

OBJECTIVE 5.12:

Perform the corrective maintenance procedures for the primary sedimentation unit components.

CONDITIONS:

Given a primary sedimentation unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:

catalogue of replacement parts

equipment catalogues

manufacturer's maintenance guides manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the primary sedimentation unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:

biological growth position color pressure corrosion sound temperature odor vibration

Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:

evaluation of capabilities of plant personnel to perform the procedures selection of replacement parts

record keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the components in a treatment plant.
- 3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
- 2. Evaluate the components for corrective maintenance.
- Perform and explain the corrective maintenance procedures in a treatment plant.

<<<<<>>>>>

OBJECTIVE 5, 13:

Perform the safety procedures for the primary sedimentation unit and demonstrate how they protect employees and

visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety

equipment.

ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the primary sedimen-

tation unit, commenting on: high-risk activities

sources of danger safety equipment

Explain how the procedures protect employees and visitors.

Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

- 1. Set up simulated situations in the workshop.
- 2. Observe the student as he evaluates the safety conditions in a treatment plant.
- 3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

- 1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
- 2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
- 3. Perform the safety procedures in a treatment plant.

<<<<<>>>>>>

OBJECTIVE 5.14:

Compare other primary sedimentation units to the rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper (composite model plant unit E).

CONDITIONS:

Given a process unit and reference materials, including: equipment catalogues

laboratory reports

manufacturer's bulletins
manufacturer's operation manuals
plant maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit E with:

- a circular unit with telescopic valve drawoff, density meter time clock and trough with scraper.
- a rectangular unit with sight glass, direct drawoff and trough with scraper.
- a rectangular unit with sight glass, direct drawoff and helical skimmer.
- a circular unit with sight glass, trough with scraper and direct sludge drawoff.
- a circular unit with sight glass, trough with scraper and telescopic valve drawoff.
- a rectangular unit with helical skimmer and density meter time clock.
- a rectangular unit with helical skimmer and telescopic valve drawoff.

Consider:

availability of replacement parts capital costs dependency on surrounding environment ease of repair efficiency flow-handling capabilities maintenance costs nuisance to neighbors operational costs operational skills personnel requirements reliability resistance to upset sensitivity of controls space requirements waste-handling capabilities

INSTRUCTOR ACTIVITY:

- 1. Prepare a chart for tabulation of information about the units.
- 2. Compare composite model plant unit E with the other units.
- 3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:

- 1. List information about the units on a chart.
- 2. Compare the units in a panel discussion.
- 3. Write a report on the advantages and disadvantages of each unit.

<<<<<>>>>>>

OBJECTIVE 5.15:

Name and locate the components of the primary sedimentation unit listed on page 93. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a primary sedimentation unit, unit components or a diagram, model or photographs of a unit and reference materials, including:

contractor's plans of the primary sedimentation unit manufacturer's maintenance guides operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

Name and locate the components of the primary sedimentation unit.

Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

- 1. Point out components of the primary sedimentation unit on diagrams, photographs or models.
- 2. Listen to the student naming the components and the applicable reference materials during a plant tour.
- Name and display the reference materials which describe the primary sedimentation unit and normal operation procedures.

STUDENT ACTIVITY:

- 1. Name the components which the instructor points out on diagrams, photographs or models.
- 2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.

3. Name and select the reference materials which describe the primary sedimentation unit and normal operation procedures.

<<<<<>>>>>

OBJECTIVE 5.16:

Perform the abnormal operation procedures for the primary sedimentation unit.

CONDITIONS:

Given a wastestream in a treatment plant and reference

materials, including:

industrial waste records

operation logs operator manuals

plant performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

BOD level cOD odor color oil floating material pH

flow septic sewage foam settleable matter grease suspended solids ice temperature industrial wastes velocity

Select the references he needs to return the wastestream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

- 1. Observe the student as he evaluates the wastestream in a treatment plant.
- 2. Describe the references needed to correct abnormal conditions of the wastestream.
- 3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

TUDENT ACTIVITY:

- 1. Evaluate the wastestream in a treatment plant.
- 2. Select the references needed to correct abnormal conditions of the wastestream.