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CHAPTER 1 INTRODUCTION

The rise in the production of electric power has resulted in the attendant
generation of large quantities of waste heat. This waste heat is usually
disposed of either to the atmosphere through cooling towers or ponds or

to adjacent bodies of water. In order to properly manage the vast quantities
of waste heat which will be produced in the future, it is necessary to de-
velop a body of knowledge on the transport behavior and the effects of heat
on the total environment. One important item in this necessary body of
knowledge is the ability to predict the temperature distribution in the en-
vironment given the method of waste heat discharge and the characteristics
of the environment. The present investigation is concerned with the develop-
ment of prediction methods in the case when the waste heat is discharged
into a large body of water. In this case, two limiting schemes can be
envisioned for the method of discharge of heated water. First, one may
employ a multiport diffuser submerged at some depth to promote much
initial dilution such as is done for sewage. Alternatively, the other
extreme would be to 'float' the warm water on the surface, resulting in a
minimum of initial dilution while maximizing the rate of heat loss to the

atmosphere.

In order to properly evaluate the effects of various discharge schemes on
the environment, it is necessary to be able to predict the resulting tem-
perature distribution given the discharge scheme. This would also provide

a rational basis for the design of the discharge structure.

Of importance in this overall problem of excess temperature prediction

are the following phenomena and their interrelationships:

a) momentum of the discharge. For discharge schemes

employing relatively large efflux velocities, the behavior
of the effluent near the source is strongly influenced by this
momentum and the mixing phenomenon may resemble that

in a jet.

b) buoyancy of the discharge. Since the effluent is warmer

(and hence lighter) than that of the receiving waters, there



is a tendency for it to float on top of the ambient cooler

(and hence heavier) water.

c) dispersion due to ambient turbulence. Even in the absense

of momentum and buoyancy, the introduction of any mis-
cible tracer into a body of water would result in the dis-

persion of the tracer due to existing turbulence in the ambient.

d) ambient density stratification. The water in a typical lake,

reservoir or the ocean is often density stratified particularly
in the summer months. The stable stratification has the
profound effect of suppressing vertical turbulence and dis-
persion. In addition, the warm effluent, if discharged at

the surface, tends to float on top of the cooler ambient and

enhance the existing stratification.

e) ambient current structure. The effluent, other than undergo

motions induced by its own momentum and buoyancy, would
also be advected by any ambient currents which may be

there. These currents may change with time and location.

f) solid boundaries. The presence of boundaries (both the shore

and the bottom) also affects the dispersion of the effluent
and the resulting temperature distribution in the local

environment.

g) surface heat exchange. The warm effluent exposed to the

atmosphere would gradually lose heat to the atmosphere,

altering the temperature and density of the water, particularly

when there is wind.
When heated cooling water is released from a power plant through a dis-
charge structure, all the mechanisms discussed above and their inter-
relationships play a role in influencing the resulting temperature distri-
bution in the receiving water. However, different mechanisms would
dominate in different regions of the induced flow field. For example, near
the source of discharge, it can be expected that the momentum and buoyancy
of the effluent would be important in influencing the mixing process. On

the other hand, far from the source, it may be imagined that the ambient



currents and turbulence would be dominating factors and the dispersion may
be thought of as more or less passive. In between, all the mechanisms

may contribute to the dispersion process.

The phenomenon of dispersion and mixing of one fluid with another has been
studied by numerous investigators. There is, for example, a body of
knowledge on the dispersion of sewage effluent discharged from outfalls.
These can be applied, with some modifications, to the problem of the
transport behavior of heated water discharged below the surface. Also
there are some laboratory studies on the dispersion of heated water dis-
charged at the surface into a laboratory tank containing cooler water.

These investigations will now be briefly summarized.

a) Diépersion of Sewage Effluent. Present methods of ocean

sewage disposal typically discharges the effluent through a
multiport outfall diffuser submerged at about 200 ft. depth.
The mixing processes undergone by the effluent can be
divided into three separate phases. First, the effluent
undergoes jet diffusion through entrainment of the ambient
water as it rises in the form of a buoyant jet or plume.
Second, on reaching its terminal level of ascent which may
be the surface it spreads out horizontally due to the density
difference or difference in density stratification. Third,

it further diffuses in the prevailing ocean current. The
phenomenon of buoyant jets and plumes has been studied by
many investigators including Abraham (1963), Brooks and
Koh (1965) and Fan (1967). Almost all those investigations

are for the case when the ambient fluid is motionless.

The further passive diffusion of the diluted effluent in the
prevailing current has been studied by Brooks (1960) for

the case of vertical uniformity and constant current velocity
with the lateral dispersion characterized by a power de-
pendence on the plume width. Edinger and Polk (1969)

analyzed the similar problem including vertical variations



but all dispersion coefficients and currents were assumed

constant.

The second phase of the horizontal spreading phenomenon

has, to date, not been studied to nearly the same extent.

Some small scale laboratory experiments have been performed
by Sharp (1969), for the case when the spreading is on the

surface of a quiescent laboratory tank.

b) Studies on Thermal Dispersion on the Surface. The growing

concern over thermal pollution has lead to several laboratory
and theoretical investigations of the dispersion of heated
water discharged on the surface of a body of cooler ambient
water. Jen, Wiegel and Mobarek (1966), Hayashi and Shuto
(1967), and Stefan and Schiebe (1968) performed laboratory
experiments where the warm water was discharged from a
finite source horizontally into a quiescent cooler ambient.
Measurements were made for a variety of cases. Wada
(1966) and Hayashi and Shuto further advanced a theory for
this problem. However, it is applicable only for extremely
low discharges and small temperature differences. The
two-dimensional case of the same problem was also in-
vestigated experimentally by Stefan and Schiebe with several

interesting results.

From the above brief summary of previous work on the problem of prediction,
it is clear that no general method exists by means of which the temperature
distribution resulting from waste heat discharge can be predicted. It is

the purpose of the present investigation to advance the status of knowledge

on this problem. It should be pointed out that no general prediction method

is developed in this report. Rather, several simpler prediction models are
developed each applicable under differing circumstances. It is believed that
these models bring us closer to the time when a general model may be

formulated.



It will become obvious on reading the subsequent chapters of this report
that the general mixing and dispersion phenomenon which ensues following
the discharge of heated cooling water into a large body of water is highly
complex and thus difficult to analyze. Not only is the hydrodynamical
aspects complicated, the prevailing ambient conditions are usually not
deterministic and can only be statistically described. Moreover, the
interplay of the many mechanisms such as source momentum, buoyancy,
surface heat loss, ambient currents and so on, make the problem difficult
to describe even qualitatively. Therefore, before any attempt is made to
develop a general prediction model, it is necessary to examine the
significance and interrelationships between these mechanisms taken several
at a time. This then is the philosophy of the present investigation. It is
found that the interrelationship between these mechanisms are such that
the flow field is sometimes entirely different from what may be intuitively

expected.

This report has been divided into several chapters. Chapter 3 deals with
the initial and intermediate phases of mixing in the event the discharge is
made at depth. The problem of a row of equally spaced round buoyant jets
discharging at an arbitrary angle into an arbitrarily density-stratified body
of water is solved in Sec. 3.2. The unsteady surface spreading of a warm

fluid on top of a cooler ambient is analyzed in Sec. 3. 3.

Chapter 4 deals with the case when the discharge is made at the surface.
The two-dimensional case is treated in detail while the axisymmetric case
is also examined. The effects of source momentum, source buoyancy,
interfacial shear, surface heat exchange and entrainment are all included.
It is found that the flow field can be entirely different depending on the
relative importance of these mechanisms. In some cases, the flow field

is like a jet while in others, it is like a two-layered stratified flow. Under
certain conditions, the flow field consists of a jet type region near the source
followed by a stratified flow region with an internal hydraulic jump joining
the two. Given the source characteristics and the ambient conditions, the
model developed can predict the flow field and the temperature distribution

and also locate the hydraulic jump, if it occurs.



In Chapter 5, two mathematical models have been developed for the

case of passive turbulent diffusion from a continuous source in a uni-
directional current. The vertical dispersion is allowed to be an
arbitrary prescribed function of the vertical coordinate. The horizontal
dispersion is assumed to be proportional to the 4/3 power of the plume
width. In Section 5.3, a model is developed for the case of a steady
release into a steady environment with a shear current (PTD). In
Section 5.4, a model is developed for the case of a time varying release
into a time varying environment (UTD). In the latter model, the current

is unsteady but uniform,

Most of the models developed in this investigation represent generalizations
of previously existing models. For example, in Chapter 3, the previous
analyses on a single buoyant jet has been generalized to include a row of
jets which interferes and to include an arbitrary ambient density strati-
fication. In Chapter 5, the problem of dispersion from a continuous source
in a current has been generalized to include arbitrary vertical distributions
for current and vertical diffusivity. Previous models have assumed constant
current and constant diffusivities. In these cases, the solutions found are
as expected in the sense that they are qualitatively the same as those pre-
viously found. The model developed in Chapter 4, on the horizontal sur-
face buoyant jet, however, gives results which are qualitatively different
from previous investigations on either the ordinary jet or the submerged
buoyant jet. These results should be verified in the laboratory. Some
laboratory experiments on this phenomenon have been reported by Stefan
and Schiebe (1968), which showed some of the qualitative features found

in this investigation. These should be analyzed in more detail in the light

of the present findings.



CHAPTER 2. CONCLUSIONS & RECOMMENDA TIONS

In this report, several mathematical models have been developed for
predicting the distribution of excess temperature resulting from the
discharge of heated cooling water from power plants into large bodies

of water. The main conclusions and recommendations are as follows:

a) Initial mixing for subsurface discharge.

1. The flow field and mixing resulting from
a row of equally spaced round buoyant jets
discharging at an arbitrary angle into a
quiescent ambient with arbitrary density
and temperature stratification is formu-
lated. A computer program RBJ (Appendix A)
has been written to obtain the solution given
the jet characteristics and the ambient condi-

tions.

2. The flow field consists of two zones. Near
the source, the individual round jets behave
as if they were single jets. Further away,
they merge together and resemble a two-

dimensional slot jet,

3. The transition from one zone to the other is
taken to be either 1) when the round jet width
is equal to the jet spacing, or 2) when the
entrainment based on round jet analysis and

slot jet analysis are equal.

4. It is found that the two transitions give virtual-
ly identical results except in the small region

between the two transition points.



5. Due to the relatively large dilution ratios and
the fact that the temperature excess of the
discharge is usually only 10 to 20°F, a very
small density stratification is sufficient to
prevent the discharge from reaching the sur-
face. In that event, all the temperature ex-
cess is assimilated in the ambient subsurface

water.
It is recommended that

1. A parametric study be performed based on
the model developed (RBJ) to obtain the re-
sulting temperature excess distribution in

a variety of cases,

2. The model be extended to include end effects.
The model developed assumes infinitely many
equally spaced round jets. Practical multi-
port diffusers are of finite length. Thus it
is recommended that the effects of the end
jets be analyzed. It can be expected that the
effects would be most important for short
diffusers. However, the model RBJ should

give conservative results,

3. The model be extended to include an ambient
current. Presence of ambient current would
further contribute to the mixing of the effluent
with the receiving waters. This effect should
be analyzed by incorporating the current into

the model guided by available experiments.



4. The model be verified by laboratory investi-
gation. Although there has been much laboratory
investigation on single buoyant jets in linearly
stratified ambient, there is little on multiple
jets in non-linearly stratified water. Experi-
ments should be performed to verify the findings

from this model.
b) Intermediate phase for subsurface discharge.

1. In the event the buoyant jet reaches the free
surface, a model is developed to obtain
the spreading of the buoyant fluid on the

ambient (Sec. 3. 3).

2. In the two-dimensional case, the horizontal
extent of the spreading layer is found to grow
(after a brief initial period) at first linearly

with time t gradually becoming proportional
to t4/5

3. In the axisymmetric case, the radius of the
spreading layer is found to grow (after a brief

initial period) as t3/4
1/2

at first gradually becoming

proportional to t
It is recommended that
1. A laboratory investigation be performed to

verify the model and to obtain the coefficients

needed.



c) Surface horizontal buoyant jet.

1. The flow field induced and the dispersion
process in a horizontal buoyant jet discharged
at the surface is investigated in Chapter 4.
The interplay of source momentum, source
buoyancy, interfacial shear, entrainment,
and surface heat loss have all been in-
corporated in the model. The two-dimensional

case has been treated in detail.

2. The flow field is found to possess features
different from that of either an ordinary non-

buoyant jet or a fully submerged buoyant jet.

3. The type of flow field is found to depend on the
relative magnitudes of three parameters:
Fo’ the source densimetric Froude number,
k, the dimensionless surface heat exchange
coefficient, and R, the source Reynolds

number.

4. The parameter space can be divided into three
regions such that given Fo and R for example,

there exist two critical values for k, k s k
crt cr-

such that if k 5 k the flow field is of jet type.

crt’
If k < kc B the source is inundated. For
kcr- < k « kcr+’ the flow field consists of a jet

type region near the source followed by an
internal hydraulic jump. The flow field after
the jump resembles that in a two-layered

stratified flow.

10



5. The finding in 4. is of importance from
design considerations since; a) the tempera-
ture distribution is dependent on the type of
flow field, and b) inundation of the source
may lead to short circuiting the intake and

discharge of cooling water.

It is recommended that

1. Available laboratory experiments be analyzed
to verify the findings and determine the co-

efficients.

2. Further laboratory experiments be performed

to supplement those already available.

3. The analogous axisymmetric problem{( Sec. 4. 3)
be analyzed in detail to obtain the critical re-

lations in parameter space.

4. The analysis be extended to the three-dimensional
case.
d) Passive diffusion in a current.
1. Two mathematical models have been developed

in Chapter 5 resulting in two computer programs;
PTD (Appendix C) and UTD (Appendix D). In
both models, longitudinal dispersion is ignored.
lLateral dispersion is assumed to follow a 4/3
law. The vertical diffusion coefficient is allowed
to be an arbitrary function of the vertical co-

ordinate.

11



2. Program PTD treats the case of steady
release of contaminant into a steady uni-
directional shear current. Program UTD
treats the case of a time-variable release
into a time-varying uniform current. The
surface heat exchange coefficient, assumed
constant in PTD, is allowed to be time

varying in UTD.

3. Results from the models are as would be
expected. Larger diffusion coefficients

result in larger dispersion.

4. The presense of current shear was found

to enhance the dispersion process.

It is recommended that

1. The models be applied to a variety of cases
to further obtain the quantitative dependence

of the dispersion process on the parameter.

2. The model be extended to include the effects
of longitudinal diffusion and a time dependent
current shear. Moreover, the current should
be allowed to exist in two directions, so that
the current direction as well as magnitude

are functions of depth.
The models should also be extended to include

the possibility of current reversals and times

of slack (no current). The extension of the

12



models to include those effects can be
achieved by 1) formulating the dispersion
mode!l for an instantaneous source in a
general ambient and 2) superposing the

solutions to obtain the resulting contaminant

distribution.

13



CHAPTER 3 INITIAL MIXING AND SURFACE SPREADING DUE TO
SUBSURFACE DISCHARGE

3.1 Introduction

The heated cooling water containing the waste heat from a power plant is
often discharged into a neighboring body of water. The discharge may be
made at the surface or submerged at some depth. These may be thought
of as representing two different philosophies of alleviating the thermal
pollution problem. If the discharge is made at the surface then it is
possible to design the discharge structure in such a way that minimal
mixing occurs between the effluent and the ambient water. This promotes
a comparatively high rate of heat dissipation to the atmosphere. On the
other hand, if the discharge is made at depth, then it is possible to promote
much initial mixing reducing the temperature rise in the ambient. In

this case, however, the rate of heat dissipation to the atmosphere is
correspondingly much lower. Of course, it is also possible to design a
surface discharge scheme which results in much initial mixing. The sub-
ject of surface discharge will be treated in Chapter 4 of this report where
it will be shown that proper design to achieve given goals may be more

difficult than it first appears.

In this chapter, we shall investigate some aspects of the flow and mixing
phenomenon when the discharge is made at depth. Since the heated water

is slightly less dense than the ambient water, the efflux would tend to rise
towards the surface. The general mixing and flow field can be conveniently
divided into three phases: an initial phase of jet mixing where the momentum
and buoyancy of the efflux are of importance in governing the flow; a final
phase of passive turbulent diffusion where the ambient turbulence and currents
are dominant in the dispersion process; and an intermediate phase joining

the two. The final phase of passive turbulent diffusion will be investigated

in Chapter 5. In this chapter, we shall investigate the initial phase of jet

mixing and the intermediate phase.



3.2 Initial Mixing Phase: Multiple Submerged Buoyant Jets Discharged

into an Arbitrarily Stratified Ambient

The mixing phenomenon in buoyant jets and plumes have been studied by
numerous investigators. Morton, Taylor and Turner (1956) applied an
integral method to the problem of a buoyant plume discharged as a point
source into a linearly stratified ambient fluid. Brooks and Koh (1965)
analyzed the two-dimensional buoyant jet problem with application to the
design of a submerged ocean outfall diffuser. Fan (1967) examined the
more general case where the angle of discharge is arbitrary. Abraham
(1963) examined the same problem as Fan but using a slightly different
mechanism of entrainment. All these studies assume 1) similarity in the
flow pattern, 2) density differences are small so that the Boussineq
approximation is valid, 3) an entrainment mechanism which depends only

on the local mean flow, and 4) the ambient fluid is motionless.

For application to the practical situation, it is necessary to generalize
the models developed in several respects. First, all the previous studies
are for a single jet (either axisymmetric or two-dimensional). In a
practical case, there may be many jets spaced by a certain distance from
one another. Thus after an initial period, these jets would merge and
interfere with each other. Second, the ambient density stratification is
most likely not linear. Third, the ambient fluid may not be motionless
in the vicinity of the discharge. Finally, for application to thermal
discharges, it must be realized that the ambient density stratification
and the thermal stratification may be different as, for example, in the
case when salinity variations are also contributing to the density strati-

fication.

In this chapter, a general integral model is first developed which is
independent of the geometry of the jet (i. e., equally applicable to two-
dimensional or axisymmetric cases). The ambient density stratification
and temperature stratification are considered as independent and arbi-

trary (may be nonlinear). This model is then specialized to either the
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two-dimensional case of a slot jet or the axisymmetric case of a round
jet. The case of a row, of equally spaced round jets, is then examined.
Near the source, before jet interference, the individual round jets are
more or less separate and the axisymmetric case applies. At some point,
the individual jets would begin to merge and finally the two-dimensional
case would apply. The transition from one to the other occurs in an
intermediate zone where neither axisymmetry or two-dimensionality
obtain. In the model to be developed, the transition is taken to be sudden.
However, two different transition criteria were used and the results are

found to be virtually the same based on either criteria.
3.2.1 Formulation

Consider a jet oriented at angle eo to the horizontal issuing fluid of
density 01 and temperature Tl into an ambient of density stratification
pa(y) and temperature stratification Ta(y). Let Q1 be the discharge,

M1 the momentum flux, Fl the density deficiency flux, and Gl the tem-
perature deficiency flux at the source. Figure 3.1 illustrates the general
behavior of such a jet. The bending of the jet path is a result of the fact
that the discharge is buoyant. Define u* as the velocity, T* the temperature
and o* the density of the fluid. Since the ambient is motionless, u*

is assumed to be along the jet path. Let s be the coordinate along the
jet path, A-plane be the plane perpendicular to the jet path, and § the
angle of the jet path with respect to the horizontal. We now define the
volume flux Q, momentum flux M, density deficiency flux F and tem-

perature deficiency flux G as

Q = f o daA, (3.1)
A

M = 2—4 i} El—fu*zp*dA ~ fu*sz (3.2)
(6] (0] A A

F - J (o, - p)u da (3.3)
A

Note that M' is the true momentum flux while M is the kinemratic momentum

flux.
17



Figure 3.1 Definition sketch

Figure 3.2 Jet interference
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We note that in the vertical direction, a buoyancy force exists due to the
density difference between the jet fluid and the ambient fluid tending to

bend the jet. This force { is

f=g] (o, -0 an (3.5)
A

The conservation equations can now be written in terms of the variables.

The conservation of mass equation is

-— = E (3.6)
where E 1is the rate of entrainment of ambient fluid. Note that strictly
speaking, since the density is variable we should really have, instead of

Eq. (3.56)

i{ wp dA} = Ep (3.7)

However, all density differences are small and we may approximate the

Eq. (3.7) by (3.6)

The conservation of horizontal momentum flux is

d(M cos 8)

Is =0 (3.8)

For the vertical momentum, we must include the buoyancy force. Thus
4 (Msing) = f (3.9)
ds ’

The conservation of density deficiency flux equation reads

?ds‘{ Ju:k(po _ p*) dA_} = E(po'- pa) (3. 10)
A
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where o is a reference density (e. g., Py = pa(O)). Equation (3. 10)

can be written

d sie sk sl
ds { j u (p0 - pa) dA + Jr u (pa -p ) dA}ZE(pO— pa)
A

A
or
(po - pa)g_a + Q- E(:?a) + g—l:— = E(po - pa) (3.11)
Using Eq. (3.6), we finally have
% ddpsa Q (3.12)

Similarly, the conservation of temperature deficiency flux equation reads
L, - 1haa} = BT, - Ty 3.13)
ds blie T - o Ta (3.
A

which reduces, with Eq. (3.6), to

dT
4G a
ds - ds = (3. 14)

Equations (3.6), (3.8), (3.9), (3.12) and (3. 14) constitutes five equations

for the five unknowns Q, M, 8, F, G, as functions of s once we can
express E and f in terms of known quantities or these unknowns. To do

this we will make two more assumptions. First, we shall assume similarity
of the shapes of the velocity profile, temperature deficiency profile and
density deficiency profile in the plane A. In particular, it will be assumed
that the profiles are Gaussian. Thus, in the two-dimensional case (slot

jet) we assume

-nz/b2(5> (3. 15)
2

w (s, m) = u(s)e
x 'ﬂz/)\szb
o, - p (sam)=1[p, -p (s)]e (3.16)

20



s —nz/xsz (3.17)
Ta -T (s,n) = [Ta - T(s)] e

where u(s), p(s), and T(s) are the values along the jet centerline. n is
the coordinate normal to s, b(S) is the characteristic jet width, and )‘s
is a turbulent Schmidt number for the two-dimensional case. Similarly

in the axisymmetric case, we take

. 2,2
0 (s,r) = u(s)e ™ /P (3.18)
. _rz/xsz
py - P (s.7) = [p, - p(s)] e (3.19)
) 2322
T, - T (s,r) = [T, - T(s)]e t (3. 20)

Secondly, we shall assume that the entrainment function E is proportional
to the jet characteristic velocity u and the jet boundary (2 wb or 2L) and

the proportionality constant is g (qr for round jet and Qg for slot jet).

Substituting these expressions into the definitions for Q, M, F, G and f
(Eqs. (3.1) through (3. 5)) will give Q, M, F, G and { expressed in
terms of the quantities u, p, T and b. For example, substituting Eq.

(3.15) into (3. 1) gives

2

2
n/bdn

Q = L.[mu(s) e

where L is the length of the jet. Thus

© _2‘
Q = Lubf e d€ = J/m ubL

Similarly, substituting Eqs. (3.15) and (3. 16) into Eq. (3.3) gives

.0 —nz/xzbz - nzlb2
F = -
L] ue (o, - 0) dn
-
e (P rp%) (1% 1)
= Lu(pa - p)J‘ e dn
err
= Lu(p_ -p)b
a 1+x2
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In this fashion, Table 3.1 may be constructed;

TABLE 3.1
For Slot Jet
For Round Jet of Length L
Volume Flux Q T'rub'Z VT ubL
M? N
Momentum Flux M= o rrquZ/Z NaTW usz
o .
. .. )\rz 2 n)\z
Density Deficiency Flux F — Tub”(p_-p) SZ ub(p_-p)L
14\ @ BTSN &
T s
.. )\rz 2 i ’
Temperature Deficiency 5 mTub (Ta-T) SZ ub(T -T)L
Flux G 1+\ VERESY a
r s
2,2
Buoyancy Force f{ ﬂ)‘rb (pa -plg J XSbLg(pa-p)
Entrainment Function E Zﬂarub 2a ul
s

This table gives the transformation from the variables u, b, etc.
to the variables Q, M, etc. The inverse transformation is given
in Table 3.2. Moreover, it is possible to express E and { now in

terms of Q, M, etc. as shown in Table 3.3

The problem under consideration in this chapter is the mixing pro-
cesses involved for a row of round buoyant jets spaced a distance L
apart. lInitially, the jets are separate round jets. However, after

a while, they begin to merge and form more nearly a two-dimensional
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TABLE 3.2

Round Jet Slot Jet
Centerline Velocity u 2M/Q J2 M/Q
Norminal Half Width b Q/J/2mM QZ/[Jé’ﬁ LM]
1 1 _°
Density Deficiency p_-p F/Q > F/Q
a 2 b
A A
r s
Dilution Ratio S Q/Q, Q/Q,
1+X2r BRI 2
Temperature Deficiency >— G/Q _\/ Zs G/Q
T -T A X
a r s
TABLE 3.3
Round Jet Slot Jet
E 2/ 2m a J M 2.2 a  LM/Q
1, ° /14 % QgF
f ZM gRF —

V2 M

slot jet (see Fig. 3.2).

Thus in the calculations, it is necessary to

provide a criterion whereby the round jet analysis is switched to that

for a slot jet. Two such criteria are proposed.

assume that transition occurs when the width of the round jet becomes

equal to the jet spacing.

This shall be designated transition 1.

ferring to Table 3.2, this occurs when

Q2./2

N 2TM

= L or

23

= L“—/zrlz 0.885 L

JM

First, we may

Re-

(3.21)




Here the 'jet width" has been taken to be 2,/2 b. Alternatively, we may
assume that transition occurs when the entrainment as calculated by the
round jet theory or the slot jet theory becomes equal. This shall be de-

signated transition 2. Referring to Table 3.3, we see that this occurs

when

2J/2m a_ VM = 2”/70‘5 LM/Q
or Q@

2 . =

’V/M Qa N/.T

Since experimental values for ag and o, are 0.16 and 0. 082 respectively,

this is
Q - 0-16_ L = 1.1L (3.22)
JM 0.082 ./m

This occurs somewhat later than the first transition. Of the two transition
criteria, it is felt that the second is more reasonable since, in the first
one, it is necessary to define the '"jet width" which is somewhat arbitrary.
It has been found, however, that the two criteria gave virtually the same
results except for the region between transition 1 and 2. Thus the solution

is not sensitive to exactly where the transition is.

It should be noted that the independent variable of integration is s, the
distance along the jet path. However, the ambient conditions P, and Ta
are usually only given as functions of y. Thus the following two equations

are needed to allow conversion between s and x,y:

%;i = cos § (3.23)
?—]f = sin 6 (3.24)

The system of Egs. (3.6), (3.8), (3.9), (3.12), (3.14), (3.23) and (3. 24)

constitute seven ordinary differential equations for the seven unknowns,
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Q, M, 8, F, G, xand y as function of s. These equations may be solved

given the initial values of the unknowns at s = 0.

The initial conditions are given by the source conditions, namely, u_

the jet velocity, Do’ the jet diameter, Tl, the jet temperature, Py the

2

jet density, 60, the jet discharge angle. However, since the formulation
is in terms of the flux quantities Q, M, F, and G, these jet characteristics
must be converted to initial values in these variables. Moreover, it is
well known that there exists a zone of flow establishment extending a few
jet diameters during which the top hat profiles of velocity, density de-
ficiency and temperature excess change gradually to Gaussian form. In
this formulation, we shall start the integration from the beginning of the
zone of established flow. Thus it is necessary to relate the jet charac-
teristics to the flux quantities at this point. Albertson, et. al (1950), in
their experimental investigations on the round jet found that the zone of
flow establishment extends a distance of 6.2 jet diameters. Equating the
momentum flux at the beginning and end of the zone of flow establishment,
(assuming that the buoyancy force is negligible in such a short region),

we get

% D "u = J u:l:2 2rirdr =

Thus the initial value for Q is

- - Tp?2
Q, = mb "u = 5D "u
In other words, the volume flux at the beginning of the zone of established

flow is twice that at the source.

By assuming further that the ambient density is uniform in the zone of flow
establishment, we may equate the density deficiency flux at the beginning

and end of this zone to get



"

2
an uo(p - p)
1+7\r

Thus the initial value for F is

B 2
F1 - Do uo(pa - pl)

However, the centerline density deficiency is

1+>\2
_p: r (p

2)\2

r

a-pl)

For )\r = 1.16, o} -p = 0. 87 (pa_pl)'
Similarly,

G. =

ia 2
1 4 Do uo(Ta_Tl)

and the centerline temperature excess is

1+)\r2
T -T = (T - T.)
a Zer a 1

= O.87(Ta -T.)

1

The temperature excess and density deficiency are thus already decreased
to 87% of their values at the jet efflux due to their faster spreading. In
other words, the zone of flow establishment for temperature and density are
shorter than that for velocity. Since we are starting the calculations at

the end of the zone of flow establishment for velocity, the temperature
excess and density deficiency have already undergone some decrease,
namely 13%. Note that if )‘r = 1 (same spreading and length of zone of
flow establishment) then this decrease would be absent. This phenomenon

is shown schematically in Fig. 3. 3.
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Figure 3.3

ZONE OF FLOW
ESTABLISHMENT

Zone of flow establishment in a submerged jet.



3.2.2 Method of Solution and Examples

A computer program RBJ has been written in Fortran IV language to solve
the problem formulated in the previous section. A listing of the program is
included as Appendix A. The method of solution is to first obtain the initial
conditions Ql’ Ml’ Fl’ Gl’ from the given source characteristics. Then
the Egs. (3.6), (3.8), (3.9), (3.12), (3.14), (3.23) and (3.24) are integrated
with E and f as given by those for the round jet (column 2, Table 3. 3).
When transition is reached, given by either Eq. (3. 21) or (3.22), one simply
continues the solution but with E and f as given by those for the slot jet
(column 3, Table 3.3). The results obtained are then converted from the
variables Q, M, F, G,... to the physical variables u, p, T, and W, the
jet width which is taken to be Z\/-Z— b. The conversion is effected by the

relations in Table 3. 2.

The inputs to the program consists of the following:

u_ = jet velocity
D0 = jet diameter
Tl = jet temperature
Py = jet density (in gm/c.c.)
60 = jet discharge angle with respect to the horizontal,
(in degrees)
dj = jet discharge depth
L = jet spacing
a = entrainment coefficient for a round jet (usually
r taken to be 0.082) *
a = entrainment coefficient for a slot jet (usually taken
s
to be 0.16) =
A = spreading ratio for a round jet (usually taken to be
r 1.16) *
)‘s = spreading ratio for a slot jet (usually taken to be 1. 0)*
g = gravitational acceleration

The program is written in such a fashion that all the quantities are dimen-
sional. However, any consistant system of units may be used (FPS, MKS,
or CGS), except that density is always in units of gm/cc. The specification

* See Fan (1967)

28



of g, the gravitational acceleration is utilized as the indicator for the units.
Thus, for example, if g is specified to be 32. 2, then the system of units

which should be used is the FPS system.

In addition to the inputs above, it is also necessary to specify the density
and temperature profiles in the ambient. This is accomplished by speci-
fying a table of depth, temperature, and density. The program linearly
interpolates between specified values to arrive at the values for inter-
mediate points. For example, if the ambient is linearly stratified in
temperature and density, then only two points need to be specified one at the
surface, and one at the jet depth. When the two values coincide, then the

ambient is uniform.

Output quantities from the program consist of x, y, jet width, dilution,

jet temperature, jet density, ambient density, ambient temperature, and
temperature excess. The quantity jet width is taken to be 2,/2 b. Dilution

is the ratio of volume flux Q to that at the beginning of the zone of established flow.
Jet temperature, density and temperature excess are all centerline values.

These should be kept in mind when interpreting the results.

Example cases have been solved using the program RBJ and these cases
are summarized in Table 3.4. The solutions are shown graphically in
Figs. 3.4 to 3.6. The effect of the various parameters can be readily
seen from the figures. Figure 3.4 shows that the jet path for various
value of L, the jet spacing and Do’ the jet diameter in a uniform environ-
ment. It is readily seen that, as expected, decreasing Do or increasing
L, implying delayed jet intereference, bends the jet upwards. Figure 3.5
shows the jet excess temperature as a function of the vertical coordinate.
It is seen that the transition point is not of import except for a short zone
between the two transition points. Otherwise, the predictions of excess
temperature based on the two transition points are virtually identical. It
should be noted that in Fig. 3.5, the scale on y starts at y = 1. The jets
have already travelled horizontally quite a distance before reaching y = 1
(see Figure 3.4). Thus they have already achieved a significant reduction
in A T through entrainment. Also note that in most cases in Figure 3.5,
transition occured before y = 1. Since the excess temperature at discharge
is usually only a matter of 10 or ZOOF, and since the dilution is usually
quite large in a submerged jet, only a very small density stratification is

needed to suppress the jet from reaching the surface. This can be seen
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in Fig. 3.6. Inthese cases there is a temperature difference of but 0. 8°F
over a distance of 60 ft., yet when the jet temperature was 82. 4°F (jet
efflux excess temperature = 12. ZOF), the jet never even reached a vertical
distance of 60 ft. When the jet temperature is 89. 2°F (jet efflux excess
temperature = ZOOF), the jet does reach above the 60 ft. level. However,
it is stopped by the thermocline. It can be expected that if the ambient is
stratified, even very slightly, it would not be difficult to design an outfall

diffuser to always keep the discharge submerged.

TABLE 3.4

DO u Tl dj L Ambient Ta (y)
1 0.5 12.5 89.2 100 5 uniform 77°
2 0.5 12.5 89.2 100 10 uniform 77°
3 0.25 12.5 89.2 100 5 uniform 77°
11 12.5 89.2 100 5 uniform 77°
5 1 12.5 89.2 100 10 uniform 77°
6 1 12.5 89.2 100 20 uniform 77°
Non-uniform Ambient o 77OF
7 0.5 , 12.5 89.2 100 5 i J
20 ,. 7.7OF
i
40+ 70°F
i !
|
60 |
8 0.5 12.5 82.4 100 5 80 .
100 _69.2°F
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Predicted trajectories of multiple buoyant
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Figure 3.5a Predicted jet centerline excess temperature of
multiple buoyant jets in uniform environment.
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Figure 3. 5b Predicted jet centerline excess temperature of
multiple buoyant jets in uniform environment.
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3.3 Time Dependent Surface Spreading of a Buoyant Fluid

When the warm efflux discharged at some depth reaches the surface of the
ambient fluid, it may still possess some buoyancy and will thus spread on
the surface. The phenomenon of surface spreading can be likened to that
of a surface horizontal buoyant jet, which is treated in Chapter 4. There

it was found that if surface heat exchange is absent, no steady state solutions
may be found. In this section, the unsteady surface spreading problem will
be investigated. The analysis to be presented is very approximate and
should be viewed as providing only an order of magnitude estimate of the
phenomenon. No detailed flow field will be derived. Only the gross
properties of the spreading pool of buoyant fluid will be obtained. The
analysis further incorporates several coefficients on which no data is
available. Experiments on this phenomenon should be performed in the

future to verify the findings and provide estimates of the coefficients.

In this investigation, no surface heat exchange or entrainment of ambient
fluid will be included. In Chapter 4, it will be found that it is when surface
heat exchange is absent that a steady state solution cannot be found.
Moreover, the spreading layer thickens with time so that after an initial

period, entrainment may also be ignored.
3.3.1 Two-Dimensional Case

We assume that at time t = 0, a line source of strength Zqo per unit
length injects lighter fluid of density p onto a heavier quiescent ambient

fluid of density P, @s shown in Fig. 3.7. We make the following assumptions:

1. no entrainment of ambient fluid occurs;
2. as the buoyant fluid spreads, the shape of the interface is
similar from one instant to another; and

3. the pressure distribution is hydrostatic.

Under these assumptions, we now examine the motion of the pool as a whole.
Consider a half of the spreading pool at time t as shown in Fig. 3.8. For

simplicity, the similar shape will be taken to be rectangular. It will become
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Figure 3.7 Definition sketch.
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Figure 3.8 Definition sketch ,
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obvious later that taking it to be some other shape will not change the basic
features of the resulting equations but will only change some of the numerical

coefficients.

We now write the equation of motion for the buoyant fluid as a whole. The

time rate of change of the momentum of the center of mass is

4 {oa 3w}

where the symbols are as defined in Fig. 3.7. The driving force is the
pressure difference induced by the density difference. It can easily be
demonstrated that this is

1gap) a’

where Ap = Py - P The resistive forces of shear and hydrodynamic

drag are respectively

T(b - bo)

and

b! . . . . ..
Now we assume T = = ¢ where ¢ is an effective viscosity coefficient.

The equation of motion of the spreading pool is then

2 2 €
g—%[abb'] = lgapa® - Cpp 2 ()% - Sbib - b (3.25)
For Ap << p, Eq. (3.25) reduces to
C (b-b )
1 4 db, _ 1 , .2 D L2 € o |,
2 d—t[ab—d—t = 2 ' a - > a(b) - 0 2 b (3.26)
where g' = %9 g . Now, for no entrainment, we have the continuity relation
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ab = g t (3.27)

Hence Eq. (3.26) can be written

(3.28)

1od g by %t O %ol aby 72\ o) ap
2 grlAtgl =28 73 2 b \at/ \p/ gt a
This equation can be solved for b as a function of time t for given initial
conditions. The terms in Eq. (3.28) represent, respectively, the local
inertia, the pressure driving force induced by the density difference, the

hydrodynamic drag and the shear.

It can be expected that after a brief initial period (for which this analysis
is probably not valid), the inertia term —3_t (q t %) probably becomes

negligible. This initial period is followed by one when the hydrodynamic
drag is balanced by the driving pressure with the shear of secondary im-

portance. Then the equation is

C
2
bga® = —am? (3.29)

Note that this implies

(gg\z

=

a’s . (3. 30)
g'a C

D

The left hand side is simply a densimetric Froude number. In studies

of density currents (such as turbidity currents and cold fronts), it has been
found that this Froude number is constant and equal to approximately 2
corresponding to C = 0.5, a very reasonable number. Moreover, this

D
equation gives rise to the solution

]1/3t (3.31)

b = [2g' q

where upon
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2/3
o

1/3

q,t 9 q
1/3
(2g'q ) (2g")

constant (3.32)

For large time, it can be expected that the shear term dominates as the

resistive mechanism so that the pertinent equation is approximately

1 vaz . & b db
2 8 - p a dt (3~ 33)
With ab = q_t, we get
4 db ! 33
bEt_Z%ge’qut (3. 34)
with solution
1/5
r 5pg'q,” - 4/5
b = LTJ t (3. 35)
and
3 -1/5
roegla, - 1/5
a = }_T.J gy t (3. 36)

In summary, b, the horizontal extent of the spreading pool, increases
(after a brief initial period) linearly with distance while the thickness is
essentially constant. When the spreading has proceeded far enough for

4/5

viscous effects to dominate, the spreading rate decreases to t while
1/5

the thickness increases but slowly (t ). As time t * «, the thickness

would tend to infinity.
We now note that if the similarity shape is not a rectangle but is some

other shape, the same dependence on time will be found. Only the nu-

merical factors in the proportionality constants will be different.
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3.3,2 Axisymmetric Case

We now derive the equation for the axisymmetric case. Basically this is

the same physical phenomenon and hence the same assumptions will be made.
Thus, instead of a line source as in the two-dimensional case, a small
circular source is taken to be emitting buoyant fluid onto a heavier motion-
less ambient as shown in Fig. 3.9. Under the same assumpticns as in the
previous section, we consider a slice of the spreading pool at time t as
shown in Fig. 3.10. Instead of assuming a rectangular cross-sectional shape,
we shall assume an illipsoidal shape. The driving pressure force on the

section shown in Fig. 3. 10 can be found by integrating the pressure, thus

r
AF = J (p —’po) dA
A
where p is the pressure in the buoyant surface fluid and P, that in the

ambient and A is the projected area over which the pressure acts (see

Fig. 3.10).

Since pressure at the interface must be single-valued, it follows that

p = pga - 0gXx 0<x<a
A
{oga—,oogx 0<x<a (1-3?
Py = 0
a(l -ég)<x<a
Po
dA = (bdB) x dx
a(l —AQ)
s
Hence a(l-AQ) a%g
’ Po bd8 r Po  bdox
AF = | (p_ -p) xdx + pgx —— dx
.g) ° a(l-—A‘Q) .(j) a2l
A © Po
(1-=2)
(ao) gbde 3 _ Po oghdf 2 Ap,2
= n a 3 + 3 a (p )
(1-=8) o
o
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Figure 3.9 Definition sketch

Figure 3.10 Definition sketch
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For Ap << 1, we have
o

2

AF = (Ap)gb d8 3‘3— (3. 37)

The time rate of increase of momentum of the slice is

i{ mab® db
d

16 acJ 98

The shear and hydrodynamic drag forces are respectively

2 2
- u_)- _@ de
© a dt
and
pab  db °
CD 1 (a‘) ds

so that the equation of motion is

2 2
2 2 (b"-b )
d [ mab” db} AQ 2 ab  db. i o' db
P 16 @)= 3 8 b-CoTlg) T & (3. 38)
The continuity equation is
ram
- 15 (3.39)

Equations (3. 38) and (3. 39) can be solved for given parameters and given

initial conditions.

Again, if we assume that after a brief initial period, the local inertia
is negligible, so that the driving force is balanced by the hydrodynamic

drag, we get

1,2, ab .2
g'a’b = CD4(b) (3.40)

where g'-= gg%g
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or

The left hand side is again a densimetric Froude number.

equation is a e = [—3—]Q t, we have
bz(@)z N '[;E]Qt
a’ T 3Cc. & 3%
D
2m
4[ 3] 2
Letting = a7, we get
3C !
D
db , ~
X R

(3.41)

Since the continuity

(3.42)

If at time t =0, b = bo’ therefore the solution to Eq. (3.42) is simply

1
da./g QO

- T4 3/2
b *.\/bo + — t

(3. 43)

Thus, after a brief initial period, the diameter of the spreading pool grows

as t3/4. The thickness a 1is
217 2
 Fre  (HRe
= 5 = (
b 2 e Q. 5
b + t
o 3

which first increases and then decreases with time.

(3.44)

We next examine the solution for large time when the dominating resistive

force is the shear.
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P P AL
) . 8'Q, [3_]
Using the continuity Eq. (3. 39) and letting O = ——5 % , we get
3 _ ,7db
S LT
with solution
b = (2a)) /812 (3. 46)
The thickness a is then
2m 21
[51Q.t [51Q,
a = ———— = ———r— = constant (3.47)
b (2a))*
Thus, after a brief initial period, the diameter of the spreading pool
would grow as t3/4 gradually decreasing to tl/z while the thickness first

increases and then decreases tending to a constant value

21
(51,
T -
(Zal)“

3.3.3 Comparison with Experiments

The theory presented in the previous section on the axisymmetric time
dependent surface spreading can be compared with the experiments by
Sharp (1969). Sharp reported on the growth of the radius of the spreading
pool resulting from the surfacing of buoyant jets discharged at the bottom

of a laboratory tank. These results are summarized in Table 3. 5.
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TABLE 3.5

bg)'/? e(g)’/®
o QO1/5
1.5 1
2.3 2
3.4 4
4.3 6
5.2 8
5.4 10
8.8 20
11.9 30
14. 4 40
16.5 50

For bO << b, Eq. (3.43) (viscous effects negligible) can be written

1

1
b = (._.)2 (ngO)4 t3/4

or putting it in Sharp's notation

1/5 1 1\3/5 3/4
b(g') o 4oz Mg T (3. 48)
o 275 3 1 o 175 S :

(0] O

Figure 3.11 shows Sharp's data together with Eq. (3.48) with o = 3/4.
It should be noted that for small t and b, the influence of bO becomes
more important and one expects higher measured values of b than given
by Eq. (3.48). Since Sharp did not detail the initial values b for his
various experiments, no estimate can be given as to its influence. It is
clear however, that the agreement between Eq. (3.48) and Sharp's data is

reasonable.
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Figure 3.1l Comparison of theory with experiments for the

surface spreading of buoyant fluid.
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3.3.4 Numerical Solutions

The equations for surface spreading derived in the previous sections can
be solved numerically including all the terms. For example, in the
axisymmetric case, the Eqs. (3. 38) and (3. 39) can be combined and by
further normalizing the variables by letting t* = t/to, B = b/bo, where
4 1/3
9 bo

to = (m(:) ?

it can be written

2 2 2
a’s _ _lds , t* o 1.d8°% p8%e°-1) a8
dth: t¥ qt* 3 D 8" dt* L2 dt*
¥ B t"\
_ 3p?
here C'_ = > C K = = >
W D~ 3 D’ o 2mQ t_°
oo
This equation has been solved for the cases C'y=0.5, and K =0, 10—4,
10_3, 10-2 and are reproduced here as Fig. 3.12.
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3.4 Summary and Discussion

In this chapter, the initial and intermediate phases of mixing due to the
subsurface discharge of warm cooling water is investigated. A mathe-
matical model is developed to describe the initial phase of mixing. In

this model, a row of round jets equally spaced at some distance apart is
allowed to emit the warm water at depth into an ambient fluid which may be
stratified in an arbitrary manner. The model is based on an integral
approach similar to the ones used by previous investigators. The phe-
nomenon of jet interference is incorporated in the model. A computer
program RBJ based on this model is presented in Appendix A and can be
used to obtain the solution in any practical case. It is found that very little

stratification is enough to suppress the effluent from reaching the surface.

The intermediate phase of surface spreading of a buoyant fluid on top

of a heavier ambient is discussed in Section 3.3, The analysis is very
approximate and is performed primarily to obtain the time and length
scales of the problem. The results of the analysis can be used to pro-
vide a link between the buoyant jet portion of the phenomenon discussed
in Section 3.2 and the passive turbulent dispersion portion discussed

in Chapter 5. It should be pointed out that application of the analysis
requires the knowledge of several coefficients which can only be obtained
by experiments. These should be done in the future. Based on typical
values for the parameters, it can be inferred from the analysis that

the time scale of this intermediate phase is on the order of minutes.
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CHAPTER 4 SURFACE HORIZONTAL BUOYANT JETS

4,1 Introduction

In this chapter, we shall investigate the behavior of warm (and hence

buoyant) jets discharged horizontally at the water surface. The receiving

water is assumed stationary and uniform in density. The two-dimensional

case of a slot jet is analysed in detail. The axisymmetric case is also examined.
The phenomena of entrainment, source buoyancy and momentum, inter-

facial shear and surface heat exchange and all included in the model.

A number of interesting results are found. In particular, it will be seen

that the behavior of such jets can be drastically different from either an

ordinary nonbuoyant jet or a fully submerged buoyant jet.

The behavior of ordinary nonbuoyant jets has been studied quite exten-
sively. For example, Albertson, et al. (1950) have performed a series
of laboratory experiments on both slot jets and round jets. The detailed
results will not be repeated here since they are well known. It is found
that the flow field can be conveniently divided into two zones: the zone of
flow establishment near the source where the finite size of the source is
important followed by the zone of established flow where only the source
momentum flux is of importance. In the zone of established flow, the
velocity distributions were found to be similar from one station to another
with the shape well approximated by a Gaussian profile. It was also found
that the momentum flux stays constant with distance downstream while

the mass flux increases with distance downstream due to entrainment of

ambient fluid.

Investigations into the behavior of submerged buoyant jets and plumes

have also been studied quite extensively being stimulated by practical pro-
blems in engineering and meteorology, and more recently by the advent of
multiport submerged sewage outfall diffusers. Such studies have typically
employed an integral approach assuming similarity of velocity and buoyancy
profiles and assuming a certain entrainment mechanism. The primary
effect of the jet buoyancy is in supplying an added force so that the flux

of vertical momentum is no longer constant as was the case in nonbuoyant

jets but is related to the buoyancy force. Thus, in the case of a horizontal
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buoyant jet, the jet path is deduced to bend upwards due to this buoyancy,
These studies include Abraham (1963), Brooks and Koh (1965) and Fan

(1967), among many others.

An analysis of the problem of a row of submerged buoyant jets discharging
into an ambient fluid with an arbitrary density stratification is presented

in Chapter 3 of this report.

In the problem to be considered in this chapter, the buoyant source is
situated at the surface and is discharging horizontally. For a source

with sufficiently strong initial momentum, it is expectedthat near the
source the behavior might resemble that encountered in ordinary sub-
merged jets. However, further away, as the momentum diffuses through
jet mixing, the influence of the buoyancy would manifest itself in modifying
the horizontal momentum making this problem fundamentally different
from the submerged buoyant jet analysed heretofore. Another way of
visualizing the difference is as follows. If a source of pure buoyancy
exists at some depth, the resulting flow field is primarily vertical towards
the water surface. However, if a source of buoyancy exists at the water
surface, the resulting flow must be horizontal. The driving force hori-
zontally is due to the buoyancy which modifies the pressure distribution

which in turn provides the driving force for the horizontal spreading.

Another important point of departure between ordinary submerged buoyant
jets and the surface buoyant jet considered herein is that in the present
case, one needs to include in the formulation the effects of interfacial
shear. Some distance away from the source, after the momentum has
diffused, the buoyant fluid tends to simply float on the denser ambient.
Shear forces at the interface then play an important role in the dynamics
of the flow. This mechanism is not of import in ordinary submerged

jets since in that case, the flow belongs to the class of free turbulent flows

with typically Gaussian velocity profiles.

In the following sections of this chapter, the two-dimensional case of a

warm jet discharging horizontally at the surface of an infinite body of
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water will be investigated in detail. The interplay of source buoyancy,
source momentum, entrainment, interfacial shear and surface heat
exchange will be analysed. It will be demonstrated that if the mechanism
of surface heat exchange is absent such as in the case when the density
difference is induced by salinity, no steady state solution exists. The
source will be inundated by the discharge and the depth of inundation will
increase with time. When the mechanism of surface heat exchange is
included in the formulation, it is found that a steady state solution always
exists. It is further found that the general flow field may possess quite
different features depending on the relative importance of the various
parameters. For example, if the surface heat exchange coefficient K

is sufficiently large, then the flow field may resemble that in an ordinary
jet. On the other hand, for small values of K, the jet may not be able

to persist resulting in an internal hydraulic jump followed by a zone where
the flow is essentially that of a two layered stratified flow, The location
of the hydraulic jump is dependent not only on the source conditions but
also on downstream conditions which in this case of an infinite fluid is
replaced by the surface heat exchange and interfacial shear coefficients.
Under certain conditions, the source may be inundated and the zone of
stratified flow extends all the way to the source. However, with surface
heat exchange, a steady state still exists. The depth of inundation is then
governed by downstream conditions and is quite independent of the source

momentum.

The general flow field can thus be divided into several zones within each
different mechanisms dominate, keeping in mind that under certain conditions,
not all the zones may be present. At the source, the source momentum

may dominate and the flow field is likea jet. However, the buoyancy

reduces the entrainment rate so that the rate of increase of the jet thick-

ness decreases. Far from the source, interfacial shear becomes more
important and the flow field becomes controlled by downstream constraints
such as by a tailgate in a laboratory tank. In between, the flow field may

go through an internal hydraulic jump. In the case with heat exchange at

the water surface, this mechanism plays the role of downstream control

and plays a part in determining the location of the internal hydraulic jump.
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Although only the two-dimensional case is reported in detail here, the
general qualitative features of the flow field should remain valid for other
geometries. For example, in the axisymmetric case, one would expect
the possibility of a circular internal hydraulic jump. The equations and
some solutions for this case are also included in this chapter although

it has not been carried to the same amount of detail.

Previous investigations of related problems also include Wada (1966),

ILean and Whillock (1965), Hayashi and Shuto (1967), Jen, Wiegal and
Mobarek (1966) and Stefan and Schiebe (1968). Wada (1966) and Hayashi

and Shuto (1967) investigated theoretically the temperature distribution
when warm water was discharged from a rectangular outlet at the surface
of a semiinfinite motionless ambient. The inertia of the fluid was ignored
and the temperature distribution is the result only of the dispersion and
advection. Basically, the flow pattern was first obtained by ignoring the
density differences. Then the temperature distribution was deduced by
using the known flow pattern. Thus the analysis can only be applied for
very small temperature differences. Also entrainment was ignored thus
the analysis becomes less accurate for large Froude numbers. Laboratory
experiments were also performed by Hayashi and Shuto. The temperature
determined experimentally was found to be consistantly lower than that
predicted indicating the effect of entrainment. Iean and Whillock (1965)
and Stefan and Schiebe (1968) performed experiments on the two-dimensional
surface jet problem. Their results are consistant with the findings in the
present investigation. However, insufficient details were reported to allow
detailed quantitative comparison. Jen, Wiegal and Mobarek (1966) and Stefan
and Schiebe (1968) performed experiments on the three-dimensional surface
jet. Jen, et al. dealed primarily with the case when the source densimetric
Froude number is relatively large. They found that the jet excess tem-
perature first decreases due to jet mixing followed by a region where it
decreased at a faster rate. Stefan and Schiebe (1968) reported on similar
experiments for smaller values of the source densimetric Froude numbers.
Detailed measurements were reported. However no analysis of the data

was included.



This chapter has been divided into several sections. Section 4.2 treats

the two-dimensional case in detail. In Sec. 4.2.1, the assumptions and

the resulting equations are derived. These equations turn out to be a set

of nonlinear differential equations with four parameters. Some general
properties of these equations are discussed in Sec. 4. 2.2 where it will

be shown that the character of the solutions are strongly influenced by the
relative magnitudes of the parameters in the system. In particular, it

will be seen that for some combination of parameters, a continuous solution
does not exist. In Sec. 4.2.2, an approximate relation between the para-
meters will be derived which specifies the region in parameter space

where a continuous solution can be obtained. Section 4.2.3 examines the
solution to this system of equations for various values of the parameters.
In the event a continuous solution is not possible, it will be shown that an
internal hydraulic jump may be developed. The flow field before the jump,
the jump conditions, and the flow field after the jump will be derived and
discussed. The problem of matching the solutions at the jump is discussed
in Sec. 4.2.4. It will be found that for certain combinations of parameters,
no jump can be found to match the solutions indicating that the source is
actually inundated in these cases. A nomograph will be presented in Sec.
4,2.4 which divides the parameter space into three regions: a) the region
of jet-type solution, b) the region where the solution is characterized by

the presence of an internal hydraulic jump and c) the region where the source
is inundated. Section 4.2.5 summarizes the findings in the previous sections

and describes the procedure of finding the solution for given parameters

by using a computer program SBJ2 listed in Appendix B.

In Sec. 4.3, the analogous axisymmetric problem is investigated. The
equations are derived and some simplified cases solved. The general
features of the solution also depends on the relative magnitudes of the
parameters. However, the division of parameter space is much more
involved and has not been examined in detail. The detailed study of the
axisymmetric case paralleling that done for the two-dimensional case

should be performed in the future.
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4.2 Formulation and Solutions for the Two-dimensional Problem

Consider a two-dimensional surface source of buoyant fluid at the origin

as shown in Fig.4.1. Let the density of the ambient fluid, assumed infinite
in extent and motionless, be 0o Also, let the source be characterized by
a discharge velocity Uo’ source dimension hO and discharge density ey <

0g Assume that the source densimetric Froude number

UZ

o

O c -0
g( o l> ho
oF

is sufficiently large so that near the source, it can be expected that the
phenomenon is similar to that of an ordinary two-dimensional jet. Thus,
except for a zone of flow establishment, one would expect that the velocity
distribution is very nearly Gaussian. Entrainment of the ambient fluid
would occur along the jet and the jet dimension would grow with distance x.
Let U(x), o(x), h(x) be the mean velocity, density and thickness of the jet
at x. Laboratory experiments by Ellison and Turner (1959) indicate that,
unlike an ordinary nonbuoyant jet which expands linearly with x, the buoyancy
of the efflux tends to decrease the entrainment rate. In particular, it was
found that the entrainment coefficient e is a monotonic decreasing function
of the local Richardson number, Ri, defined as where

glo,-o) 2

. L4
Ri = —>— h/U". e = 5 4 (Uh)

o

Their experimental finding is reproduced here as Fig.4.2,and can be well

approximated by the formula

1.75
r 2 N
e = 0.075 42 ___ -1} 0 < Ri < 0.85
L l + Rl -
0. 85
0 otherwise

It is noted that entrainment ceases for Richardson number exceeding a certain

critical value Ricr. Thus the buoyant jet does not expand linearly with x,
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Figure 4.2

Entrainment coefficient e as function of Richardson

number Ri.
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but rather takes a shape as indicated in Fig.4.1. At some distance from the
source, when the local Richardson number reaches the critical value, the
jet ceases to expand and the phenomenon resembles a two-layered stratified
flow. ZFrom that point on (and probably some time before), the flow can no
longer be classified as a free turbulent flow and the mechanism of inter-
facial shear should play a part in determining the flow pattern. Itis seen
that for the maintanence of positive flow, the interface must possess a
slight positive slope in order to overcome the interfacial shear (see Fig.
4.3). This further suggests that at some x = X the interface may meet the
free surface, leading to the observation that no steady state solution may

exist for this problem.

We now note that as time goes on, X must increase to accommodate the
continuing efflux. Thus the maximum thickness of the buoyant fluid would
also increase. When this thickness exceeds that which can be provided
by the jet through entrainment, an internal hydraulic jump must occur.
As X increases further, the jump would occur sooner until a point is
reached when the source is inundated. From that point on, the source

momentum drops out of the picture entirely.

From the above discussion, it is seen that the phenomenon of a horizontal
buoyant jet discharged at the surface of a quiscent fluid of infinite extent
may possess features very similar to open channel flow. Near the source,
we may encounter jet type flow analogous to supercritical flow in open
channels while far away, the phenomenon is similar to subcritical flow in
open channels. The subcritical flow region can, therefore, be expected

to be influenced by downstream constraints. For example, in the event

a laboratory experiment is performed on this phenomenon, the conditions
at the downstream end of the tank or flume can strongly influence the

flow field.

In this investigation, we are concerned primarily with the case when the
buoyancy of the efflux is due to heat. In this case, there is the added
mechanism of surface heat exchange between the water and the atmosphere.

This mechanism now takes the role of imposing the downstream constraints.
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From the above discussions, it is seen that the flow field induced by a
surface horizontal warm jet can, in general, be divided into four zones
as shown schematically in Fig.4.4. Zone I is the zone of flow establish-
ment. Zone II is the supercritical region where the flow is basically a
jet with decreasing entrainment rate. Zone III is an internal hydraulic
jump while Zone IV is the subcritical region where interfacial shear and

surface heat exchange play dominant roles.

It should be remarked that not all these zones may be present in any given
situation. In particular, as will be shown later, Zones III and IV may be
absent if K, the surface heat exchange coefficient, is sufficiently large.

In that case, the flow field is similar to that in an ordinary jet. This is
reasonable physically since if K is very large, the buoyancy would be lost
to the atmosphere quickly and the resulting jet is virtually not buoyant.

On the other hand, if K is sufficiently small, it will be seen that the source
may be inundated and Zones I, II and IIIl may be absent. Thus, given all
the other parameters, there exists two critical values of K; Kcr+ and

KC _ with KC > Kcr-’ such that if K > Kcr+’ Zones 1Il and IV are absent
, Zones I, II, and 1IIl are absent. For K between KC and

-

Kcr+' all the zones are present. The model to be developed in the following

sections will predict whether all the zones are present and also locate the

r+
and if K <« K
cr

hydraulic jump when it occurs.

Since the mixing processes involved in the various zones are quite different,
the above discussion is of importance in design considerations. For ex-
ample, if it is desirable to achieve initial jet mixing so that the temperature
drops quickly, then the discharge structure must be designed so that the
source is not inundated. On the other hand, if maximum surface heat loss
is desired then it would be desirable to achieve inundation. However, the
depth of inundation should not be too large so as to cause the discharge to

interfere with the intake of the cooling water.

The formulation and the solutions to be presented in the following is pri-

marily concerned with Zones II and IV with a brief discussion of Zone III.
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The matching of the zones and the conditions under which some zones
are absent will also be discussed. However, no discussion will be given
on Zone I, the zone of flow establishment, since it is similar to the
corresponding zone in an ordinary jet which is well documented in the

available literature.

4.2.1 Derivation of Equations

In this section, the governing equations will be derived for the two-
dimensional surface horizontal buoyant jet. In the formulation presented

in this section, it will be assumed that

a) the velocity and density deficiency profiles in the vertical
direction are similar in shape

b) a steady state solution exists

c) Boussineq approximation: density differences are only
important in modifying the gravity term.

d) the flow is primarily horizontal (boundary layer assumption)

It should be pointed out that the similarity profiles to be used in Zones Il

and IV may be different.

Under these assumptions, the equations of motion are as follows:

Continuity:
du v
ox oy ( )
Momentum:
2 2 2 _ _ 13 . 31
% u’) + 3y (uv) = 5 3x + Ay (4. 2)
0 = - _ 44 (4. 3)
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Conservation of density deficiency:

olpn) . alev) o 2 530

aX ay’ Y asr (4. 4)

Q/

where x,y are the horizontal and vertical coordinates
u,v are the velocity components in the horizontal and vertical

directions

P is the pressure

T is the kinematic shear stress = shear stress/density
0 is the density

og is the density of the ambient {luid

D is the diffusivity

We shall now utilize the assumption of similarity and further specify

that

ulx,y) = Uk (EFD)

o(x,y) = p, - Tx) £ ()

where n(x) is the free surface elevation and h(x) a characteristic

thickness of the spreading layer. The function () specifying the shape

of the similarity profile will be left arbitrary. Examples may be f(J) =
2

- f1 0zl < 1
e © (near the source) or f(J)= '!

{far from the source).
Lo f] > 1

We now integrate the Egs. (4.1) through (4.4) fromy = -» toy = 7. In-

tegration of the continuity cquation gives
d — _g_n A 7( —
q*d—}:(Uh) = U dx- V(n) T ‘\,( co)
where

- .. D
Now the kinematic free surface boundary condition is 5—t~(y—7~i):0 ony = nix),
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d
_Ua-g + v(n =0

Thus,

V(— cc)

d —
E;((Uh) =

It is generally assumed that v(-«) (the entrainment velocity), is related to
U, the characteristic velocity, by an entrainment coefficient e which can

be a function of the Richardson number (Ellison and Turner 1959)

Thus

ad;(Uh) = §U (4. 5)

In a similar fashion, the other Ecs. (4.2), (4.3)and (4.4) canbeintegrated. The
only term requiring some explanation is the pressure integral. Irom

Eq. (4.3),

pY
plx,y) =-g: cix,g) dg
J

n
Letting ¢ = o - 6{x,y), andusing the similarity profile

8(x,2) = Tix) (=)

we obtain,

from which
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y_D

1ep dy o d oy IR e Th Yoy Ay
T gox Podx ~ (lx(rh) J f(f)ac- Th f(T_])?l—}.;JL——l{j} )
0
., Oop . . . .
As y #+ -, we expect x + 0 since there is no motion horizontally.
Thus
dn - & 4
dx p dx
o)
We now calculate
r e Ny rl’f_”n r 1 dr, )
2P = < Ty - roob Y reAvde Yory Yy e 2 90
j gaxdy J ] {(Th)'e - (Th) ] () -+ Th {( o )Lhz——il +h dx_” dy
—o - 0
n y-n n n
r J‘ h o .- [ v-1,y-m h' r y-m, dn dy
- _ 1 ; i UYy 220 2 dv P, et B 4
= - (Th) J dy f(-)dg + ThJ — ) T dy + Th.,l 1( o )d;: o
-® - ) )

After interchanging the order of integration for the double integral, and

carrying out one of the integrals, we get

0
rT2p , e { . v
- —1-‘J S'dy :—~—§ (Thz) -1 Lf(Qde + [Th) (Th)! CLZ
g dX x J 0,

-0 - 0

Note that L << 1 so that the second term on the right can be neglected
o
compared with the first,

Returning now to Eq.(4.2), and integrating with respect to y from - = to n,
and using the kinematic free surface boundary condition, we get

d .2 . _ d .. 2
E;(U h) = ala;(fh) + (TS—Ti)QZ
where
0 0

r r-2 1
o, = Vorf(Qdn/ 1Al s oy T T

1 p o = J r 2
© -~ ) { f (C_)dk:

- ¢o
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T and T, are the shear on the free surface and the interface respectively.
Equation (4. 4), when integrated with respect to y from -« to 1 gives
d - 28 _
4 (ThU) = o, D In— -a, H

where H 1is proportional to the rate of heat loss at the free surface.

To summarize, under the assumptions made, the equations governing

the surface spreading are
Continuity:
dx

d - e
——{(Uh} = aU (4. 6)

Momentum:

d 2. . d 2

a;(U h) = oy a;(Th ) + a ('rs - 'T.l) (4.7)
Heat balance:

4 (Thu) = - o, H (4. 8)

dx 2 )

The Eqs. (4.6), (4.7) and (4. 8) constitutes a set of three ordinary
differential equations for the unknowns U, T, and h subject to the given
conditions U = Uo’ T = To’ h = ho at x = 0. They are derived from the
Navier-Stokes equations by making the assumptions stated in the beginning

of this section.
Before these equations can be solved, it is necessary to specify the functions

H, 5 and T, s functions of the other unknowns. We shall neglect Ty

the shear at the free surface.
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For Ty we shall assume

where ¢ is an effective viscosity coefficient. In the analyses to be pre-
sented in the following sections, & is taken to be constant. However,

the general features of the solutions, as well as the method of solution,

are equally applicable when ¢ is not constant but depends on, say, U.

The critical relations to be derived in the following sections will be different
when ¢ is not constant. However, the procedure for finding them will be

similar.
For the quantity H, we shall assume
H = - KT

where K is an effective heat exchange coefficient. In this investigation
K will also be assumed constant. Again the general features of the solution
and the method of solution are also applicable when K is not constant

but depends on, say, the temperature.
4.2.2 General Discussion of the Equations and Solutions

Before analyzing quantitatively the flow field in the several zones, it is
instructive to examine some of the properties of Eqs. (4.6), (4.7) and

(4. 8).

It will be shown that for some combinations of input parameters, a
continuous solution cannot be found. In this section, the region in para-
meter space where a continuous solution can be obtained will be delineated.
In the event the parameters fall outside the region, then the solution is
either non-existent, or discontinuous or not source governed. These cases

will be discussed in detail in later sections.
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Normalizing the variables by the source conditions Uo’ h, T,

o o
w o 9 _h LT x
b e Tw=7 R
o o o o
-U h U aa, K
.. 0 o o© 2
and defining ¥ =—-F—— R=\_2F9 Kk =
2'1 ’ ’ s
° 1T b e a, U,

equations (4.6), (4.7) and (4.8) become, after dropping the *'s,

d g;h) - eu (4.6a)
dx ‘¢ "ZFO d "R h (4.7a)
d _

= (uhT) = - kT (4.8a)

For application to practical situations, it is necessary to obtain the

numerical values of the o's based on assumed form of f (). For ex-

. 1 -1
ample, 1ff(g):{o E<€_<10 ,thenazl,alz-zi—, az:l.
)

2
If, £(g)=e™S, theng=J=/2 , a = |

4(5‘

SL, % = 2J2F
O

It is seen that the dependence of the n's on the choice of f(¢) is rather

weak. In any event, the basic teatures of the solution will not change

with a change in the choice of f (). The proper basis of choosing f ({)

is a detailed set of experiments. Since this is lacking at present, we shall
choose the simplest form of f(¢), namely the first choice mentioned above
for our subsequent discussion. Choice of other forms of f({) will not change
the argument or method of solution or the basic features of the solutions
which follow although the numerical values will change slightly. When ex-
perimental evidence accumulates to allow a more accurate choice of £(¢),
the analysis may easily be repeated to obtain the solutions based on the

new f({).
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Equations (4.6a), (4.7a) and (4.8a) constitute three nonlinear ordinary
differential equations to be solved for the three unknowns u, h, and T
subject to the conditions u=h =T =1 at x = 0. The system of equations
depends also on three parameters Fo’ R and k. It will be shown later
that the character of the solutions are strongly dependent on the relative
magnitudes of these three paramters. Thus it is important tofirst in-

quire into the typical orders of magnitude of these parameters.

Typical values of the parameters K and ¢ are very small. One expects

K to be of order lO_5 or lO_4 ft/sec while ¢ to be of order 10—4 to 10-2
ftz/sec. Thus for Uo’ ho of order unity, ka~ O (10-4), and R ~ 0 (103).

Fo’ however, can vary over a wide range. Since TO is small, FO can

be expected to be relatively large. We are, therefore, primarily interested

in the case k very small and R large.

It can be readily shown that Eqs. (4. 6a), (4.7a) and (4. 8a) may be put into

the following form:

dT kT T
dx " un " °%n (4. 6b)
ey & BT k hT 1 1
2F_ 2 2F. 3 R hu
dh _ o u o u
dx 1 hT (4. 7b)
F oz !
o u
d dh
™ Cnle ! (4. 80)

It can be readily seen that the denominator in Eq. (4. 7b) is simply _lf -1
where F is the local Froude number which is the inverse of the Richardson
number. It now becomes obvious that for the existence of a continuous
solution, it is necessary that if F -+ 1, the numerator in 4. 7b must also tend to
zero. It will be seen in the following discussion that this necessary condition
is not satisfied except possibly fortuitously. On the other hand, for some
combinations of the parameters Fo’ k, R, the local Froude number never

approaches one so that a continuous solution does exist.

It is convenient to rewrite Eq. (4.7b) in the form

{2 1} ko, 11

o2 L 1L

dh 2F 2Fu R hu (4.9)
1
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We further note that

ThF = Fuz
o

Hence

Thus, F would increase or decrease according to whether

out T' ht
u T ~ h

is positive or negative. From (4.8a) we have

! k

h uh

[

T! h'
T

and from Eq. (4.6a) we have

u' _ e _ h'

u h ~ h
therefore,

F'_ e b,k

T3 -t w

Since h is always positive,

whether

3(e - h') + =
u

F would increase or decrease according to

is positive or negative. In particular, for F to increase, we need
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IE‘ > 3(h' - e)

Using Eq. (4. 9), this condition becomes

— > 3e + 2—1?,—% -R—iTu
Thus,

%>o if §>3e+7%%§%1 (4. 10a)
and % - 0 if _E - " (4. 10b)
and %FX_< 0 if _E < " (4. 10c)

With the help of Eqs. (4. 9) and (4. 10), we can now discuss the influences
of the parameters k, R, and Fo on the characteristics of the solution.
As was mentioned in the beginning of this section, we shall be concerned
only with the case when FO is fairly large, while k and 1/R are both very
small, since this is the case of practical interest. Note thath, u, F,

and e are all positive quantities for a valid solution.

If k=1/R =0, then Eq. (4.10c) i1s satisfied at x = 0 and F would decrease
and asymptotically approach the critical value Fcr at which e = 0 (see

Fig. 4.2 .

If k =0 and R # 0, then condition (4. 10c) is always satisfied. F would
continue to decrease past Fcr and reach F = 1 at which point —3—2 “+ o

leading to the non-existence of a continuous solution.

If L. 0 but k# 0, then we may have Eq. (4.10c) satisfied at x = 0.

R
Thus F decreases which implies e decreases. When it decreases
sufficiently so that k = 3eu, then F would increase again. Thus, F never
decreases below the value Fcr since if it does, e would be zero and F

would increase since (4. 10c) would be satisfied.
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Finally, we shall consider the most interesting case physically when both

fl{ and k are not zero. Suppose first that kis very large. In particular,

suppose k >3 e, t % Then (4. 10a) is always satisfied and we would have
F increasing all the time. When F becomes larger and larger, the solution
becomes more and more nearly that of an ordinary jet. On the other hand,
if k is very small, we would expect F to decrease initially. In that case,

u decreases, h increases and hu increases with x so that {4. 10a) becomes
more likely to be satisfied as x becomes larger. For sufficiently small

k, however, F would decreases to Fcr: l/RiCr at which point e = 0 and

hu becomes constant. The right hand side of condition (4. 10) then becomes,

6Fcr 1

2F +1 R(hu)
cr

It is clear that this may still be larger than g . The question then becomes
whether condition (4. 10c) is satisfied all the way to F = 1. If so, we expect
no continuous solution. Since both k and fl{ are small in practice a good
estimate can be derived for the critical value of k such that below that,

no continuous solution exists as follows: since e =0 for F <« Fcr’ the

critical value for k must be such that

2

Rhl

k =

where h. 1is the value of h at the critical point. For k and 1 small,

1 R
this value of hl can be assumed to be approximately equal to the asymptotic
value of h as x + » in the solution for k = E. 0. These solutions are

R
exhibited in Fig. 4.5 in Sec. 4.2.3. When this is done, it is found that the

critical relation may be approximate by

-0. 655
(kR) == 2.9 [Fo] (4.11)
Thus for
(kR) < 2.9 [F ]70-©55 (4. 11a)

o

we would encounter a discontinuous solution, while for

72



-0. 655
] (4. 11b)

(kR) > 2.9 [F_
we would have a jet type solution. However it should be pointed out that
even though we have called it a jet type solution, the flow field may appear
quite different from that in an ordinary jet. In fact, even if condition (4. 11b)
is satisfied, F, the local Froude number may first decrease and then
increase. The ordinary jet is characterized by a local Froude number of
infinity. Thus the jet region may behave somewhat differently until F

becomes quite large.

From the above discussion, it is seen that the flow field in a horizontal
buoyant jet at the surface can be very different from that in either an
ordinary non-buoyant jet or a submerged buoyant jet. For the case when

no heat loss occurs at the water surface, no steady state solution is possible.
The source will, sooner or later, be inundated. For non-zero heat ex-
change, a steady state can be found as will be demonstrated in the following
sections. Moreover, given all the other parameters, a critical value of

k, the surface exchange coefficient exists such that for values of k larger
than this,jet type solution may be found while for k less than this critical
value, the solution may be discontinuous. For k and —Il—{ very small, this
critical relation is given approximately by Eq. (4.11). In practical situations,
k is expected to be very small and the condition of (4. 1la) is likely to be
satisfied. In the following sections, this case will be considered in detail,
since it is the case of practical interest. It is also the case which results

in the most complicated flow pattern.

4.2.3 Solution of the Equations

In the beginning of Sec. 4.2, it was deduced from physical reasoning that
the flow field induced by a surface horizontal warm jet can be divided into
four zones as shown in Fig.4.4. In the general discussion in Sec. 4. 2.2,
it was found that a jet type solution may be expected if condition (4. 11b)

is satisfied. In that case, Zone II, the jet region extends all the way to
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infinity. If condition (4. 1la) is satisfied, we expect Zone II to extend

at most up to some distance from the source. It will be shown later in

Sec. 4.2.4 that there exists another critical relation between the parameters
such that if satisfied, Zone Il is absent entirely and Zone IV extends all

the way to the source, inundating it. In this section, we shall examine the

flow field in the Zones Ii, 1lI and IV separately.

(A) Zone I

Since k and —lli are usually very small, we shall first investigate the case

when both are zero. In that case, Eqgs. (4.6), (4.7) and (4. 8) become

e

d = -
—a-)—((Uh) = QU

d -
4z (UhT) = 0

d ”

d 2, _ 4 2
E;(U h) - (11 dX(Tl )

We shall consider U, h, T as mean quantities over the vertical and

. o (L-1<(C<O o o g
specify f(7) = 0 < -1 so that ¢ = ! and o) = - Z.Co. It can be

readily seen that choice ¢f f({) to be some other profile will only change
the coefficients a and oy slightly without affecting the essence of the

solution.

Let Uo’ ho’ T be the source conditions at x = 0 and define dimensionless
o

quantities u, h¥*, T* xx ag

?

u = U/U0 .
h* =h/h_
) (4.12)
T = T/To
x* = x/h
o
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Substituting into the equations and dropping *'s, the problem then becomes

d

Gx luh) = eu (4.13)
4 whT) = 0
d , 2. -1 d 2
T = g (T (.15
Ug o,
Fo = W (4.16)
O
with u=-h=T=1 at x = 0 (4.17)

From Ellison and Turner (1959, (see Fig.4.2),the quantity e is a function

of the local Richardson nura:ber wiich is the reciprocal of the local Froude

number
1 Th
Ri = = = -
E Z
a &
)

It can be approximated by the function

( {- i l}“ 81 < R
CCe U, R ’ S Per
i i S
. j i
c(Ri) = ¢ cr (4.18)
|
Lo ,  Ri > Ri
cr
where e, is the value of e at R’i = {, Ricr is the critizal Richardson
number beyond which e = 0, and n is an exponent. From the data, we

may deduce the following values for the parameters.

e =~ 0.075
O
Ri ~ 0.85 (4.19)
CcYr

n =~ 7/4
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Equations (4.13), (4.14) and (4.15), with e given by Eqs. (4.18) and (4. 19),
subject to the condition of Eq. (4. 17) constitutes an initial value problem
with only one parameter Fo' The solutions have been affected by using a
fourth order Runge-Kutta numerical scheme and are shown in Fig. 4. 5a.

for a variety of Fo's.

In the case k and —é are not zero, the Eqgs. (4.6), (4.7) and (4. 8) can also
be solved if condition (4. 11b) is satisfied giving rise to a jet type solution.
A computer program SBJZ2 written in Fortran IV language is included in .
Appendix B with which this solution mav be obtained. A few examples are
shown in Fig. 4.5b. In the event k and% are not zero but condition (4. 11b)
is not satisfied then it can be expected that an internal hydraulic jump
would occur either away from or inundating the source. The method of
finding the solution is to use the program SBJ2 twice, first to solve the

jet portion to the point of the jump and then to continue the solution by
re~initializing the program SBJZ2 with the parameters just after the jump.
The method of matching the solutions and locating the jump will be discussed
in Sec. 4. 2.5 after we have investigated the flow fields in Zones III and IV.

The case when the source is inundated will also be discussed in Sec. 4.2. 5.

It should be remarked that if k and —é are such that condition (4. 11b) is

. o . . ) 1
not satisfied, the solutions obtained herein for k = R

with the flow in Zone IV to within a good approximation.

= 0 may be used to match

(B} Zone III

From the general discussion, it is seen that an internal hydrauiic jump
is a possibility in the development of a surface layer. The conditions
across the jump will now be obtained. Consider ar abrupt internal
hydraulic jump with upstream condicions Py YUyo hl and downstream

conditions Do Uy h?_ as shown in Fia, 4,6,

Conservation of mass requires
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Figure 4.5a  Predicted jet thickness and density deficiency in
a surface horizontal buoyant jet for k = 1/R = 0
(two dimensional case).
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Figure 4.5a Continued.
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Figure 4.6 Definition sketch.
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where E = the volume of fluid entrained in the jump.

Conservation of momentum requires

ri

2 2
-014y hl + PP hz = |

where the integral extends over the vertical sides of the control surface

dotted in Fig. 4.6. We note that
ophy, = o3hy * p (b)),
where (Ah)2 is the jump of the interface.

. r
The integral J(pl - pz) dy 1is thus

2 2
0,8h; s W L W L)
R z
Since
p,h, - p;h
ool - 0Py
(Ah), =
0
O

the momentum conservation equation gives

2 2 27

b2

-

g 2 ‘
u, hy - pyuyhy =5 [plhl moph, o F

(ah),

-

In addition to the conscrvation equations for mass and momentum, there

is also the conservation equation for buoyancy.

(o, = py)uyhy (py = pp) uyh,

Thus

(4.22)

The three conservation Eqgs. (4.20), (4.21) and (4. 22) now allow the jump

conditions to be determined. For our purposes here, we will assume

E =0, i.e., no significant entrainment occurs in the jump.

Boussinesq approximation, we get
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and

The momentum equation, (4.21) then gives

U oh 7 ulz
—= =2 = 3 [/TT8F, - 1] where F| = ——— (4.23)
w, h, "2 17 1 o ¢
g( p >hl
o

Thus the velocity ratio and the thickness ratio are expressed in terms of

the upstream densimetric Froude number. We note that if Fl < 1,

h h
_2 < 1 while for Fl > 1, B—Z— > 1. To find if either or both are admissible,

h
wle note that the total hecad H 1upstrcaxn of the jump is

while that downstream is
u 2
Ly b, )

Hy =5t 5 ™

where zero head has Leen referred to the free surface upstream of the

jump. The difference o ~cad A= Hl - H2 is therefore

h 9
_ 1 2N¢ 2 bo
b= (13 KI)(hl" 1)h) 5

Thus, A is positive if h?/hl > 1 and negative if h27h1 < 1. But A being

negative implies a gain in total head in going across the jump which is
clearly impossible. Hence a jump can only occur if Fl > 1. The jump

considered herein is very simple. A more detailed theory of internal

hydraulic jumps in discrete layered fluids can be found in Yih (1965).
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(C) Zone 1V

Having found the solutions for Zones II and IIl in the previous subsections,
we must now consider Zone IV, It should be remarked here that the solution
obtained in Zone 1V would determine where the jump (Zone III) would occur,

In fact, it is possible that Zone II and IIl are completely absent if the source

becomes inundated.

In Zone IV, we have F < 1. Thus the entrainment is zero. The Egs.

(4.6), (4.7) and (4. 8) then become

d

—&(Uh) = 0

d

a—;{(UhT) = - KT

d 2 B ¢ d 2 U
E;:(U h) = -Zpoa_‘;(lh ) - i

Normalizing U, h, T with respect to the conditions at the beginning of

Zone I\’,Uo,ho, TO and dropping *'s as before, we get
d
—-— = 4,24
= (wh) = 0 (4.24)
4 (Thu) = - kT (4.25)
dx :
d 2 1 4 2 u 1l
- = e e = -— = 4.26
A S A B (4.26)
L K
where x = 0 corresponds to the beginning of Zone 1V, k =T and
U h o
o o

R =

€

Although Egs. (4. 24)and (4.25)are easily integrated, Eq. (4.26) does not allow
closed forn: solutions. To gain some physical insight into the situation,

we note that since in Zone 1V, we have Fo < 1, the momentum {lux is

very small. Thus we shall first examine analytically the solutions by

neglecting the inertia term. In that case £q. (4.26) becomies
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1

d A
2T ?BE(Th )= -

a
hR

The Eqs. (4.23) and (4. 24) readily integrate to

uh = 1

T = e—kx
so that we have

2F
di\’ (e_kx}lz) = - 20 = . LZ, (4: 27)
’ Rh h
2F

where y = = is a ratio of the source IFroude number to source Reynolds

number. It can be readily shown that the solution to Eq. (4.27) is

4 2kx 2v 2y -kx ™
= - — ==
h [1 2 Y T (4.28)
. o 2Y C 4 .
Note that if * > 1, then for sufficiently large x, h  becomes negative.

This implies there is no steady state solution. Since

2y _
k =~ kR

this condition is the same as

4eq Zc
ht 0 0 (4.29)

o) gTOK
If condition (4.29) obtains, no steady state solution exists. This means that
the internal hydraulic jump must occur so that the parameters following
the jump are such that
2
4 4€q; e,

hy 2 —7x%

(4.30)
g 2

where the subscript 2 in Eq. (4.30 )hasbeeninsertedto stress the factthat
these are the downstream conditions after the jump (and the initial conditions
for Zone 1V). 1If the solution in Zone II (jet region) is such that condition

(4. 30) canhot be met at all by an internal hydraulic jump, then the source

will be inundated to satisfy (4. 30).
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The considerations given on the previous page lead to the condition given
by Eq. (4.30) which involves the assumption that the inertia or momentum
flux of the flow is negligible compared with the pressure induced forces
and the viscous forces. This assumption may not be adequate under all
conditions. Return now to Eqgs. (4.24) through (4.26). We first integrate
Egs. (4.24) and (4.25) to get

uh =1
T = e—kx
Substituting these into Eq. (4.26), letting & = kx, s = —lE , and rearranging
we get
2; nte 3. s
dh o
g - (4.31)
dg __l_h3 |
FS T
o

This is a first order equation with two parameters Fo and e. Moreover,
since we are discussing Zone IV, FO < 1. It should be realized that for a

physically realizable solution, h must be bounded for all finite 2. We now

note that if L < s, then Eq. (4.31) does not possess any physically
2F,
. . . dh . . dh . .
realizable solution since 3% at = = 0 is not positive. If gF is negative
- . 2 dh _ . > . .
at some I, sayat = =0, (l.e., 537 < s) then % will stay negative until

the denominator changes sign since the numerator will never change sign

as long as %% < 0. But the denominator changing sign implies it becomes
zero for some = which leads to an infinite 3—2 . Thus d_}; > 0 everywhere

for proper solution. For proper solution, it is necessary (though not
1
sufficient) that FO < >3 The larger the s, the smaller can be the value
FO. Given the numerical value of s, there is then a critical value of FO
say F such that proper solution can exist only if F < F . This
ocr o ocr
value, F corresponds to the case when the energy lost in the internal
cr

hydraulic jump is minimum. We now proceed to find the critical relation

between Fo and s.

For purposes of discussion, it will be convenient to use the local

densimetric Froude number



2 F
.0
o Th 3

(5]

e

=

LU
55 -
g—}; - LF (4.32)
ds L 1
-
. 1 dh
We note that for proper solution T > 1 and H—g- > 0 always. Hence
-;—11‘: > s always. Since h'> 0, h is monotically increasing with =.
However, —-1F— may decrease to nearly 1 and then increase again. If this
occurs dh would become large unless the numerator also approaches

dz
zero. Thus we expect that as F = 1, % <+ s. In particular, if FO is

nearly 1 we must have s nearly 3. Thus we have found that one point on

the critical relation

is

To obtain the critical Froudenumber for other Fo < 1, we note that given
that we have the correct Fo for the given s, then integration of Eq. (4.31)

would continue with F increasing such that at 2 = F becomes almost

51
1 and from g, on, F decreases again. We note that we can solve the problem

from £= €, backwards in % and thus obtain F (s). Let h,, F,,
> 1 aF ocr 1 1
€1 be the values at £, when Fra 0 and Fl =1- 8 where § > 0. We
. >

now define new variables h:':, n by

h = ?1— , n ——:: + §1 ,
1
Eq. (4.31) then becomes
s 1 %4 n
. 7= - 5=h ‘e
g Py 2
dn T I, .n
T h "e' -1
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s N . . . .

Moreover, P from previous considerations. This equation subject
8 1

to h =

2
relaflion Fo or (s1 is deduced and plotted in Fig. 4. 7.

s Fl =1 - § has been solved and from the solution the critical

It must be pointed out that F is never equal to 1 anywhere in the flow field.
The critical Froude number FO or is just an upper bound for the existance
of a proper solution. In a practical situation, it can be expected that the
internal hydraulic jump would occur in such a location that the critical
relation is nearly satisfied, i.e., FO = Focr ~ & where § is a very small

quantity.

It is interesting to note that the critical relation derived herein is very

nearly the same as condition (4.30) for FO smaller than about 0.04.

The critical relation can be checked by attempting to solve the problem
with several values of FO in the neighborhood of FO or” This was done

for s =1, 2, 5and 10. The results confirm the critical relation obtained.

Thus, we have found that the solution in Zone IV (after an internal hydraulic
jump) is characterized by a) h is always increasing, b) F, the local
Froude number is always less than 1. Moreover, there exists a critical
relation between the Froude number Fo at the beginning of Zone IV to

the quantity s = _k}—;— where ho is the thickness of the buoyant layer at the
beginning of Zone I1V. This critical relation is shown in Fig. 4.7. For a

proper solution, the value of Fo must be smaller than FO Cl_(s).
4.2.4 Matching of Solutions

The solutions obtained in the previous section for Zones 1I, and IV must
be matched by the conditions in Zone III to give the overall quantitative
description of the phenomenon. We note that as the solution in Zone II
proceeds, we have the following quantities at each step of integration:

h, the jet thickness, T, the density difference, u, the velocity from which

we can obtain the local Froude number F. Let the subscript 1 be applied
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to all these quantities to denote the fact that they are upstream of the in-
ternal hydraulic jump. 1If the jump occurred at station Xy where the
solution variables are hl’ ug, Tl and Fl then from Eq. (4.23), Sec.

4.2.3, the variables just downstream of the jump would assume the values

h
AT e -
hZ—ZL,\/l+8Fl—l

—

2
u = ul
2 —_—
JI+8F, -1
8 F
_ 1
FZ - )

[
_“"/l + 8Fl - l_,
These quantities (immediately after the jump) must satisfy the critical

relation (Fig. 4.7) given by

Note that, in general, it is expected that as x increases, h2 decreases
while FZ increases. Thus s increases while FO or decreases. The
condition FZ < Fo or’ if satisfied at x = Xy would therefore also be
satisfied for x < Xy Thus the analyses given in the previous sections do
not give a unique location for the internal hydraulic jump. In order to
specify the location of the jump, it may be postulated that it will occur at
the farthest possible location from the source. This would correspond
to the smallest possible jump. However, this is only an assumption and
must be verified by experiments before it can be applied to a practical

problem.

It should also be pointed out that there may be no location where the con-

dition FZ < F is satisfied. In such a case, the implication is that
ocr
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F, is too large or Focr too small (or s = k° too large). The physical

interpretation of this situation is that the jump should have occurred even

before the source. In other words, the shear is too large and k too small
for the available source momentum to push the jump away. One expects

in this case that the source will be inundated.

The critical condition for which this occurs can be deduced if we note that
this critical state corresponds to the case when the jump occurs just at

the source. FZ at the source can be obtained by the relation

SFO
¥ =
r . -
Z 1+ 8F 0 - 3
- o _
Thus
FZ - Focr(b)
where
s = —=—
kh,
and
h, = ho[g{;nsFo - 13]

Thus given Fo, these relations together with the relation in Fig. 4.7
allows the determination of the critical condition for inundation. This

has been done and is shown in Fig. 4. 8.

At the other extreme, it is possible that the condition FZ < Focr is

always satisfied but FZ = Focr is not satisfied. This would be the case
when k is large compared with ¢ represented approximately by condition
{4.11b). As was discussed in Sec. 4.2.2, in this case the local Froude
number would actually increase with x. Thus FZ would be a decreasing
function of x and h2 would be an increasing function of x. This implies

s is a decreasing function of x and hence FO or would increase with x.
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Thus if FZ < Focr initially, it would remain so all the time for this case.
Physically this case corresponds to one when an internal hydraulic jump
is unnecessary. The flow is internally supercritical all the time and when
F becomes large, the flow field resembles an ordinary submerged jet.
However, it is envisioned that this situation would not be likely to obtain

in any physical case since k is usually very small.

Condition (4. 11) is also shown in Fig. 4.8. With this figure, it is now
possible to determine, before hand, from just the source conditions and
the environmental conditions, whether the solution is of jet type, includes

an internal hydraulic jump or the source is inundated.
4.2.5 Summary and Discussion

In the previous sections, the dispersion of heat resulting from the hori-

zontal discharge of a two-dimensional warm jet at the surface into a

quiescent cooler ambient is investigated. The effects of source momentum,
source buoyancy, entrainment, surfaceheatexchange, and interfacial shear are
all included. It is found that, unlike the case of submerged buoyant jets or sur-
face nonbuoyant jets, the source characteristics are not the only parameters
governing the flow. Downstream conditions can play an important role

in influencing the entire flow field possibly all the way to the source,
inundating the orifice. In this investigation, the case of an infinite

ambient fluid is examined and it is found that the surface heat exchange
mechanism can replace the necessary downstream conditions. In particular,
it is found that the relative magnitudes of the source Froude number FO,
source Reynolds number R, and the dimensionless heat exchange coefficient

k play an important role not only in the detailed quantitative description

of the flow field but also in determining the type of flow field. For example,
referring to Fig. 4.8, it is found that for given Fo’ if kR is larger than

the critical value given approximately by Eq. (4.11) (topline in Fig. 4. 8),
then the solution is of jet type. On the other hand, if kR is smaller than

the critical value given by the lower line in Fig. 4.8, then the flow field

is not like a jet at all. In fact, the source is inundated. For kR between these
two critical values, then the flow field consists of a jet type region near the
source and a two-layered stratified flow region farther from the source with an

internal hydraulic jump between these two regions.
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The analysis presented herein allows the determination of the flow field
given the source characteristics and the ambient heat exchange. A com-
puter program is given in Appendix B to solve the problem numerically.
First, the values k, R and FO are determined from the given source
conditions and heat exchange coefficient. Figure 4.8 should then be used
to determine the type of solution to be expected. If it is found that kR is
larger than the upper critical value, the program will give the solution.

If it is found that an internal hydraulic jump should occur, then it is
necessary to first run the program until the local Froude number be-
comes nearly unity. Then the output of the program is examined to deter-

mine the location where the condition

is just satisfied. This is then the location of the jump. The subsequent
flow field ma};; now be obtained by a second run of the program with FO:FZ,
k :uLZ = uil B_? , and R = ulth where uy, hl’ h2 are the values of u,
h and h2 at the location of the jump according to the first solution. Finally,
if it is found that kR is less than the lower critical value, then the source
will be inundated. Although the flow field in this case cannot strictly be
analyzed using the present technique especially near the source, still,

it is possible to obtain an approximate solution using this method by
requiring that inundation occurs to the extent such that hz, the dimensional

depth of inundation satisfies the condition

2
- q - €
FZ - T - Fo cr(kh )
g __Q_h3 2
0, 2
Kh
where q is the unit discharge. With this new value of FO =F,, k = T

R =3 | the program will give the solution.

™ |

It must be remarked here that the investigation described in the previous

sections are based on several assumptions. For example, the shear law
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adopted here is given by the relation

where ¢ is a constant, and cannot be justified rigorously. It seems
reasonable to assume that the shear should be an increasing function of
u and a decreasing function of h. The relation chosen clearly satisfies

these requirements.

The region where 1 may be of import is in Zone IV where it may in-
fluence the solution in such a way as to lead to either an internal hydraulic
jump or inundation of the source. In Zone IV there is no entrainment so

that uh = constant and thus the shear law chosen is equivalent to
T = constant u

This is equivalent to saying that the skin friction coefficient is a constant.
The skin friction coefficient in pipes and channels are generally found to
be a function of Reynolds number and surface roughness. Since there is
no entrainment, the Reynolds number in Zone IV is constant. Thus the

shear law adopted seems to be a reasonable choice.

The numerical value of ¢ to be chosen in a specific case is difficult to
assess since there is little data on the subject, although there are some
(e. g. Lofquist (1960)). On the other hand, there is an abundance of data
on the shear coefficient in pipes and channels (e. g., see Schlicting 1960,
Chapter 20). In addition, it has been found by Keulegan (1944) that in

the laminar case, the interfacial shear between two fluids for the case
when the upper and lower fluids are both of infinite extent can be given by

T = 0.196 puz(‘—‘vi)’

N

where u is the relative freestream velocity between the two fluids, p

is the density, v the kinematic viscosity and x the distance downstream.
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The corresponding shear law for the laminar boundary layer on a flat

plate according to the well known solution by Blasius is

ux -

2
= 0.332
T pu (v)

o=

Thus the shear at an interface is approximately one-half that at a solid
surface. Until adequate data on interfacial shear are available, it may be
proposed that the shear coefficient be taken to be half the corresponding
value for the case of a fluid-solid surface. If that is done, it is found
that the shear coefficient is of order 10™° or 1072 ftz/sec.

The surface heat exchange law chosen in this investigation is
H=-KT

The rate of heat transfer is taken to be proportional to the temperature
excess above the ambient which is assumed to be at the equilibrium
temperature. This is an often used approximation to a very complicated
phenomenon. Typical values of the measured rate of heat exchange, for
example, is Lake Hefner and Lake Colorado City indicate thatK is not a
constant but depends on the equilibrium temperature and wind speed.,
This is certainly not surprising. Typical values of K are of the order

107° ft/sec or 1074 ft/sec (Edington and Geyer, 1955).

In order to obtain the quantitative description of the flow field, it is
necessary not only to have the source characteristics but also the inter-
facial shear coefficient ¢, the heat exchange coefficient K and the entrain-
ment coefficient e as a function of the local Richardson number. The
formulation in this chapter assumes that the coefficients ¢, Kare constants
and the coefficient e(Ri) is as given by the experimental findings of Ellison
and Turner (1959). As data becomes more plentiful it may be found

that ¢ and K are not constants and e(Ri) is not as given by Ellison and

Turner. For example, ¢ may be a function of u, h whileK may be a



function of T. In that case, the formulation can be readily modified to
incorporate them. It is believed however, that the basic features of the
findings are valid and once adequate data is established to fully define the

coefficients, this model will provide a good quantitative description of
the flow field.
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4.3 Axisymmetric Surface Buoyant Jet

In this section, we shall investigate the axisymmetric analog of the surface
buoyant jet. A schematic diagram of this phenomenon is shown in Fig. 4.9

It can be expected that since the only difference is one of geometry, the
general physical nature of the phenomenon is the same as the two-dimensional
case. Thus for K, the surface heat exchange coefficient large, we expect

a jet type solution. For smaller K, there would be an internal hydraulic
jump. For K sufficiently small, the source may be inundated. For K= 0,

no steady state solution may exist.

The analysis to be presented in the following has not been carried out

to the same detail as in the two-dimensional case. The critical relations
between the parameters which divide the parameter space have not been
derived for this case. These critical relations are more involved because
there are now four parameters Fo’ R, E and k to be defined later.
Moreover, they are all independent whereas in.the two-dimensional case

E was absent and the parameters k and R were found to occur approximately
as a group kR for small k and 1/R. Thus the parameter space for the
axisymmetric case is basically four-dimensional, and the critical relations
are two three-dimensional surfaces in the parameter space. These
critical relations, however, can be found and should be done in the future,
In the following, the governing equations will be derived and solutions will

be found for some special cases.

We shall make the same basic assumptions as in the two-dimensional case.

The equations of motion are then as follows:

Continuity:

gu ,u , dw _ 4,

3T - 3z (4.33)
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Figure 4.9 Definition sketch.
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Momentum:

du du _ _1ldp , ot
u St + Waz = 5 r + Sz (4.34)
Lo g (4.35)
3 3 %5
r dz aZZ

The assumption of similarity implies

u(r,z) = U(r) f (20 (4.37)

o -p = T(r)f(ZD (4.38)

where 7)(r) is the free surface profile and h(r) is the characteristic depth
of the spreading layer. Integration of Eq. (4.35) with respect to z from -

to 7 using (4. 38) gives, as in the two-dimensional case,

z-n
¢ h
p = -pog(z-n)-!-gThJ! f(£) d¢
o
so that
1 23p _ dn g z-my 9 z-7m
'poar"'gdr'poThf(h)ar(h) (4.39)

We now integrate the Eqgs. (4.33), (4.34) and (4. 36) with respect to z
from -o to m. Equation (4.33) gives

’f.O
J

[cu

an
dr -

f(;)dg>+ w(n) - U

r| =

(Urh) (

[o

r
~

The Sf boundary condition is ;—t(z—n) = 0, which implies —U%? +w =0

onz =n. Therefore,

w 20
~c

%%(Uhr) = — where q = | f({) d{
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Introducing the entrainment coefficient e, we have
1 d e
? E(Uhr) = a 8]
Integration of Eq. (4.34) yields
2 u
ua ) R ) )
+ — = + -
{ar az(“’“) o Jdz = o, OF dz 1 - T
which gives
0 0
1 d 2 r Z - _g__ o e
= E(U hr) - J £7(0)d¢ = (Th . cf(Qde +
Po 20
-® -® (0]
FTs 7T
Letting
0 > A0 (.02
1/ £7(0)dC = a,, Qg / | A = oy,
- O-ao -x

we have

1 d .2 d
T ar (Uhr) =a; 37 (Th

Equation (4. 36) can be written

o <) Bu
—r(eu) + EZ(GW) + =

r

where § = Py - o}

)+ o, lrg - Ty

_ %8
= D
dz

Integrating with respect to z from -« to mn gives

a " : 1M
I 1) ewdzp + o

- -

_ pa8 "
Gudz—Dazl

-
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(4. 40)

0

-

(4.41)
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Now D—aﬁ— at 1 is the surface loss which we will assume to be, as

oz
before, -KT. Hence

%éi; (TUhr) = -Kq,T (4.42)

Equations (4.40), (4.41) and (4. 42) are the three equations for U, T and

h and are entirely analogous to Eqgs. (4.6), (4.7) and (4. 8) of the last
section for the two-dimensional case. It can be expected that the character
of the solutions are similar. Just as in the two-dimensional case, the
relative magnitudes of the parameters would influence the character of

the solutions. Rather than discussing the general problem, we shall

first examine some special cases. As in the two-dimensional case, we
shall assume Tg = 0.

Case l) T =0

For the case when the surface jet consists of the same fluid as the ambient,
then T = 0 and Eq. (4.42) is absent. The entrainment coefficient may

be taken constant and TS is negligible. Then the equations are

d - £
e (Uhr) = a Ur
d 2 B

a5 {(U"hr) = O

It can be readily shown that

and a Zh 2z

o o N\ 1
Uo=<ea/?

Thus the jet boundary grows linearly with r while the surface velocity

decreases as 1l/r.

It should be remarked that if K is very large, then this should represent

an approximate solution to the problem for large r.
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Case 2) Surface Plume; e =K =0

We next consider the case when the initial momentum at the source is
very small. This can only be the case if the velocity is very small.

Let Uo be the efflux velocity, ho be the thickness at the source radius
L then we are assuming

2nr h U = Q
oo o o

Under the assumption that e = 0 and K = 0, the equations become

d ]
a—r-(Uhr) =0
d _
—J;(TUhr) =0
d 2. N
ar (Th) = o

5la

Just as in the two-dimensional case, we assume that T, T € where ¢

is an effective viscosity coefficient. We further take

0 ~o < { < -1
r —_
He)y = { 1 -1 ¢ <0
so that a; = - 75—— . The equations then reduce to
o
d -4 -
a—r—(Uhr) = dr (UhrT) = O

d(Th®) -2¢P,
dr - g

U

h

With the conditions U=U , h=h , T=T atr =r , we get
o o o o

Uhr :Uohr, T=T
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and

. dh Zepo Uohoro
odr =~ g 2
hr
which integrates to
1
cp U r 4
4 “Yo"0 0 0o r
h = {ho - T in —
g J
o o
ho4g To N
we note that at r = rmax = ro exp l?p—(;—U'oTor—o-j , h = 0. Thus, this solution

is at best a quasi-steady solution. If we accept this quasi-
steady solution as a time dependent solution, we find that the amount of

fluid contained in the spreading layer is

,.rmax , T max h
VvV = ; h27r dr :ho J B—-err dr
0 o] ©
But
. 1 1
4 -4
b g0 )Ty, max
h o r ] roo
o max
so that
1 1
r 7 a1 -3
Vo= 2th r_ {gn —2 ) ; !—xm(i)_J xdx
rmax’ r X
o
T
max
For r >> 1 ,
ax
T 1
Z ’ 4
V « hr ’\ln o
o max r /
max
We observe that
“ 1
r %P Uohoro Tmax ™ *
h, = L T in =5 J
© €ls o
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As the pool spreads or as T ax increases the thickness h_increases.
O

As r + © sodoes h . However we note that h increases extremely
max o o

slowly with r . For example, let
max

1 1
T vy 2.3¢€p Uh r I
h = Aflog max) where A = r oo’
o r C gT J
o o
then for
r =10r ,h = A
max o o
while for
T = 10161- ,h =2A
max o) o

1f r, is but one foot, 10161'0 is 2 x 1012 miles which is eighty million
times the circumference of the earth! Thus for all practical purposes,
the thickness can be assumed constant at say 1. 5A. In practice, the
uncertainty in the value of the coefficient € and the many assumptions

involved in the formulation certainty justifies this replacement.

Case 3) Surface Plume, e =0, K # 0

We next examine the case where K # 0. The governing equations are

d

E(Uhl‘) = 0
4 (UhrT) = - KTr
dr r -

2€p
d 2. o U
T (Th) = - —— ¢

We again let U = Uo’ h = ho’ T = TO at r = r - Then the first two

equations give
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Uhr:Uhr = Q

o o
K(r2-1)
20
T=T e ©
O
K/2Q
Substituting into the third equation and assuming e °x 1, we get
K
a7 p2} o 2%% 1
dr th
Let
K = K _ ZGDOQ
20 0 YT T gT ’
o o
d —kr2 2 1
then = [e h’] = - vy
dr 2
hr
with solution
2 2kr 2 r 2
2 - - Bl
Rt = e S n te 0 gy [ o iT A
o J
r
o)
[‘r krz d
We note that the function I(r) = J e —r}; is a monotonically increasing
T
o
function of r. Thus for given ho, ro, and k, there may be a value of r
4 -2kr 2 4
such that I 1is larger than ho e o /2¥. In that case h~ becomes

negative and the solution needs interpretation; one expects inundation to a

new value of ho.

We now note that by letting x = (r/ro)z, then
2
kr
-x dx 2 2
kr 2
o



where El is the exponential integral which is tabulated.

2
4 _Zkro 2
Thus for legitimate solution, we need ho e > YEl(kro ), i.e.,
2 1
h o> |y o g ke 271
o L 1 o ']
2kr 2 2 ji
Thus for h_ > [Ye ° E (kr_®)!, we have
2 r
-2kr
h* = n % 2y [ e dr
o . by
o
2kr 2 2 1%
For ho <[Ye o El(kro )_’ , we expect the source to be inundated to
2 1
2kr y
the level g—\{e ° g (kr 2)_! .
L 1 o "

Case 4) Discussion of the General Case

From these special cases, it is seen that the features of the phenomenon
is analogous to the two-dimensional case. Rather than considering further
special cases, we shall discuss the general case. The insight gained in
examining the two-dimensional case and in the special cases treated in

this section will be utilized.
We recall the governing equations

%%(Uhr) - Ly (4. 40)

Qlo
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14,2 d ..,2

< —cT;(U hr) = oy E(Th ) - OLZ(T.l) (4. 41)
1 —d—(TUhr) = _Ka.T (4.42)
r dr T TR ‘

Let the conditions at the source be: at r = r s U = Uo’ h = ho, T = TO.
We now normalize the variables by these characteristic values. Thus

define u~ = U/UO; T = T/TO; h' = h/ho; r = r/ro. We get, dropping

PO

) ’5’
1 d
T E(uhr) = Eu (4. 43)
1 d 2 _ 1 d 2 l u
-I:' -CT;(LI hr ) = - ?—'O- E(Th ) - F’ Tl_ (4. 44)
1 d
T *a';(Tuhl') = - kT (4.45)
where
er -U 2 Uh 2 Kao,r
E = ° F = -2 R = 292 - 2o
hoa © C"lToho ea‘Zro Uoho

Thus the system depends on four parameters E, Fo, R, and k. The
parameter space is therefore four-dimensional. The critical relations
delineating the type of flow field are therefore three-dimensional surfaces

in the four-dimensional space.

The critical relations would divide the parameter space into three regions
such that given all other quantities, there are two critical values of k,

kcr+ and kcr For k > kcr+

This solution would become, for large r, nearly the same as the one discussed

, a continuous solution may be expected.
in Case 1. For k« kcr , one expects the source to be inundated and the
solution should resemble that discussed in Case 3. For k between these

critical values, a circular hydraulic jump would be encountered. The de-

tailed solutions would be more complicated than the two-dimensional case
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because the location of the jump is not only influenced by the four parameters
but also by the radial coordinate r.

It should be pointed out that although the assumptions made in deriving
these equations in the axisymmetric case, are basically the same as in

the two-dimensional case, there is a lack of experimental data on the

entrainment and shear coefficients. In the two-dimensional case, there

has at least been some experiments. Thus any results obtained herein

must be viewed with great caution. The system of equations 4. 43 through

4. 45 can be solved numerically for k > kcr+' Some example solutions

are presented in Figures 4. 10 and 4. 11.
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Predicted jet thickness in a surface horizontal
buoyant jet (axisymmetric case)



NORMALIZED DENSITY DEFICIENCY

T,

10”3
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Figure 4,11

r, NORMALIZED RADIAL COORDINATE

Predicted jet density deficiency in a surface
horizontal buoyant jet (axisymmetric case).
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4.4 Example Applications

We conclude this chapter by presenting some examples on the two-

dimensional problem.

Example 1
Given h = 1 ft.
° -1
U = 10 ft/sec.
o)
T
g—= = 1073 ft/sec2
6
e = 10_3 ftz/sec
K = 10—3 ft/sec
hence,
2
U
B o B X o -2 € B -2
FO——————gTh =10, k—U = 10 7, l/R—Uh =10
oo o) oo
Thus kR = 1. Examination of Fig. 4.8 shows that we are in the region

of parameter space where the solution is of jet type. Thus the program

2

SBJ2 would simply give the solution with input F =10, k= 10 %, 1/R = 1074

e, = 0.075. This particular solution was obtained and the quantity h/hO
is shown plotted in Fig. 4. 5b.

Example 2
Given ho = 10 ft.
U = 0.1 ft/sec
o
T
g \o = 107} fr/sec?
o
e = 10_3 ftz/sec
K = 10°° ft/sec
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then,

10-1. From Fig. 4.8, we expect inundation.

1
H

© 10

0
—h
gpo o

The inundation

would occur until a depth hZ’ such that the following condition is just

S S -4 I _
k = g - 10 7, R =
o
Thus kR =
satisfied.
<Uoho)2 €
T < Foer (KRR
o} 3 2
(g5>) hy
o
Thus
F = 1 < F (
2 10-4}1 3 ocr
2
4
Foo- 100 _ o 100,
2 h ocr h
2 2

The following table may be readily constructed:

h, F, = 10%/h,>
30 0.37

40 0.156
50 0.08

45 0.110
44 0.118

VN NN W

s = IOO/h2

.33
.5

.22
.27

Comparing the values of FZ and s with those on Fig. 4.7 reveals that h2

should be 44 ft.

Thus the source will be inundated to a depth of 44 ft.

To obtain the characteristics of the flow field and temperature distribution,

we simply use the program SBJ2 with FO
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Kh,

= = 4.4x10"
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o o
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and 1/R = Ee = 1073,

Example 3

Given hO = 10 ft
U = 0.1 ft/sec

0]
T
g—2 = 107% ft/sec?
po
e = 1073 ft%/sec
K = 2x 10°° ft/sec

This case differs from example 2 only in that the value of K is doubled.

We first calculate

UZ
- 0 _ K _ -4 _ € -3
Fo—h—T = 10, k——U = 2x10 7, l/R—Uh =10
o) o oo
g— h
Py ©

Thus kR = 0.2. Referring to Fig. 4.8, we see that an internal hydraulic

jump would develop. The program SBJ2 is thus first used with FO =10,

3

=2 X% 10—4, and 1/R = 10" °. Portions of the output is tabulated as follows.

Also the quantity s = K}€1 is calculated and inserted as the last column.
2
x/hO hZ/ho FZ s
1.0 4.03 0.175 1.24
6.0 4. 08 0.262 1.22
7.0 4. 07 0.278 1.23
8.0 4. 07 0.294 1.23

The values of F2 and s when referred to Fig. 4.7 shows that the jump
would occur at about x/hO = 7 or about 70 feet from the source. At that

point, the excess temperature is about 80% of that at the source and the
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flow rate about 25% more than that at the source. Thus we deduce that

after the jump, FZ = 0.278, h2, =41 ft, U, = 1.25 = 0.03 ft/sec. To

2 41
obtain the flow field after the jump, we may use SBJ2 again with FO = 0.278,
-5 -3
2 x 10 -4 _ 10 B -4
k ~ ~0.03  ~ 6.7 x 10 %, 1/R = 1.25—8X 10 where now the output

quantities are normalized to the values just after the jump and x is now

measured from the jump location.
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CHAPTER 5 PASSIVE TURBULENT DIFFUSION FROM A CONTINUOUS
SOURCE IN A STEADY SHEAR CURRENT OR AN UNSTEADY
UNIFORM CURRENT WITH UNSTEADY SURFACE EXCHANGE

5.1 Introduction

The mixing process undergone by the cooling water discharged from a power
plant can be divided into three stages, as discussed in Chapter 3. In
the case when the discharge is from a submerged outfall, these three

stages are (Fig. 5.1):

1. An initial mixing stage governed by the momentum and
buoyancy of the discharge.

2. An intermediate stage of dynamic spreading governed by
the buoyancy and the density stratification.

3. A final stage of essentially passive turbulent diffusion.

In this chapter we shall treat the third stage of passive turbulent dispersion
when the dilution and dispersion are primarily governed by ambient tur-
bulence and currents. This phenomenon is very similar to the case of

the mixing of sewage effluent from a submerged ocean outfall.

Two mathematical models will be established in this chapter for the cal-
culation of the distribution of excess temperature (or dilution of the effluent)
due to the effects of ambient turbulence and current, and surface heat ex-
change. The first model is for the case of the steady state passive turbulent
diffusion from a continuous source in a steady shear current as shown in
Fig. 5.2a. The second model is for an unsteady case where the current

and surface exchange coefficients are time-varying as shown in Fig. 5.2b.
However, in the second model the current is taken to be uniform with

depth,

Note that the location of the source can be below the water surface such as

in the case of an effluent field trapped by ambient density stratification.
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Effluent field established at water surface.
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Figure 5.1
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Effluent field trapped below water surface
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If this is the case then the excess temperature over the ambient will be
practically zero unless there is salinity difference. Since the models to be
developed are applicable not only to the prediction of excess temperature
distribution, but also to other water quality indicators, the case of sub-

merged source is also of practical interest.
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5.2 Derivation of Basic Equations

The basic relation governing turbulent passive diffusion is a conservation
equation for the diffusant: either heat content or a tracer concentration.

The mixing is assumed to be completely dominated by the ambient current
and turbulence characteristics. Thus, before the problem can be solved,

the environmental conditions must be known.

The models to be developed in this chapter are equally applicable to the
dispersion of heat or any other tracer (such as the concentration of coli-
form bacteria). However, there are some differences and therefore they

will be discussed separately.

5.2.1 The Problem for Excess Heat

The equation of conservation of heat content without internal heat source

is:
H H H
aHt+uat+vat+wat
at dx 3y e
oH oH oH
3 t 3 t d t
= 2 -t 2 —) + = .
dx (Kx Bx) * ay(Ky By) Bz( z Bz) (5.1)
where Ht = the total heat content above a given reference
heat content;
t = time;
X, V, Z = coordinates in longitudinal, vertical and transverse

directions (see Fig.s5, 2);
u, v, w = velocities in (x, y, z) directions;

KX,Ky,KZ exchange coefficients (eddy diffusivity plus mole-

i

cular diffusivity) in (x, vy, z) directions.

In a natural body of water, the vertical velocity v is usually small (except
near zones of strong upwelling and sinking flow). In this model, v 1is

taken to be zero. In addition, it is a reasonable assumption that the flow
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is predominantly in one direction, say x. Thus w is taken to be zero.

Equation (5. 1) then becomes

aHt BHt 3 aHt

5t T U Tax T 3By

oH aH

_ty . 9
v oy ) T ez KL 32

t

) + %(K ) (5.2)

The mechanism for surface heat exchange can be expressed as (Edinger

and Geyer, 1965)

3H

t
—_— = - K (T -
v 3y E( p E) (5. 3)

at y = 0, i.e., the water surface; where

KE = surface heat exchange coefficient;
Tp = surface water temperature;
E = equilibrium temperature.

At the bottom, the exchange of heat may be taken to be zero, i.e.,

at y = hb’ i.e., the bottom.

The equation governing heat exchange processes in the ambient without

any waste heat addition is simply:

3H AH 3H
._3 + u _a = i ( ___2 ) (5. 5)
at ox dy y oy

where Ha = heat content of the ambient water.

Note that in Eq. (5. 5) inhomogeneities in the horizontal directions are
neglected. In general this is a good approximation for a body of water
which is not too vast. The boundary conditions at the surface and bottom are

similar to Eqs. (5.3) and (5.4), i.e.,
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a
KY Sy = KE(Ta - E) aty = 0 (5. 6)
and
BHa
KY?};—:O aty':hb (5.7)

where Ta is the surface temperature of ambient water.

To obtain the relation for excess heat distribution, we simply subtract

Eq. (5.5) from (5. 2) to obtain

3H d3H fs) 3H 3 dH 3 3H

S b us— = 2 2y + 2 2y + =2 2=

ot U3k dx (Kx Bx) ay(Ky By) Bz(Kz az) (5. 8)
where H = Ht - Ha is the excess heat content due to waste heat addition.

The surface and bottom boundary conditions are then:

KYBB—H}; = Kg(T -T,) aty =0 (5.9)
and
Y%:O aty:hb {5.10)
Note that KE and E are assumed to be the same in Egs. (5. 3) and
(5. 6). For the temperature range encountered in the passive turbulent

diffusion stage, this is believed to be an adequate assumption.

Defining the excess temperature to be T, and assuming a constant specific

heat C, over the temperature range of interest, Egs. (5.8) to (5.10)

h
become
AT , 3T . 3 5 8T, 3y 3T, 2 j 2T
2T W2k W 2k 3 2k, A (5.11)
K
K g_?: g T=K.T aty = (5.12)
ydy  pCp
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and

K 3= =0 aty=h, (5.13)

£
5
o
L
)
b
)
[

KE/(p Ch)

density of water

©
1

5.2.2 The Problem for a Tracer

We now consider the corresponding problem where the dispersing sub-
stance is a tracer which is otherwise not present in the ambient water.

The conservation relation is:

dc dc dc 3¢ fa) 3¢ o) 3¢ 2 dc
2 by v 4w = 2 A = A = Oty
ot Uax "ay MhEY ax(Kx Bx) * By(Ky By) * az(Kz az) ch (5.14)
where ¢ = the concentration of the tracer
Kd = the decay coefficient of the tracer or the die-off rate.

(Clearly, K, = 0 for conservative tracers such as dye.)

d
Again, we assume v = w = 0. Equation (5.14) becomes

a—C-f‘u_a—c-:

- ac 3c
at dx X

dc 3 )

2%y + = Ly + & o5y . .
(Kx Bx) BY(KY BY) BZ(KZ dz ch (5. 15)
For tracers, such as dye, salt or radioactivity, there is no surface or

bottom exchange; hence
= =0 at y = 0 and y=hb (5.16)

The basic equations and boundary conditions are very similar between the
cases for excess heat and for a tracer. In fact, both problems can be
included in a single more general mathematical model. This is discussed

in the next section.
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5.2.3 The General Problem

The general equation governing either excess temperature or a tracer

substance (based upon Egs. (5.11) and (5. 15)) can be written

gec 8¢ 3 3¢ d dc 3 3¢
— + - = — _— + — Y~ v o¢ _
3t T 3% - 3x Kk BY(Kyay) t5,(K, 57) - Kye (5.17)
The general boundary conditions can be written

3¢ _ -

Ky 3y K.c aty =0
(5.18)

3¢ -
ay =0 at y = hb

In these equations, c is either the excess temperature or the tracer con-
centration. For a tracer without surface exchange, then Ke = 0; while

for the case of excess temperature or a non-decaying tracer Kd = 0.

Note that the problem is not yet posed completely. To fully define the
problem, the initial condition, and the source condition must be specified
along with the environmental characteristics such as u, Kx, Ky and KZ.
These will be discussed as we treat the two models separately in the

following sections.
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5.3 Steady Release in a Steady Environment

5.3.1 Formulation

For the case of steady release of waste heat or a tracer substance into

a steady environment, the governing equation (5. 17) becomes:

dc dc¢ s 3¢ o) Jel®
= = (K. =)+ 2K =)+ 2K o) -
U8 T G E0) ey 0, 85t 5, 3D - Ky (5-19)
In general, the term representing the longitudinal transport a—i—(Kxg—;) is
small in comparison with the transverse transport term a—a-(K —g—;—). Thus

the longitudinal transport is neglected. Equation (5.19) can then be written

as:

)+ 2k 2% -k c (5. 20)

8¢ _ 3
u - By(KyBy dz ' zdz d

The boundary conditions are of course, still given by Eq. (5.18).
5.3.1.1 Source Conditions

The source will be taken to be located at x = 0, at a depth y = Vo with
thickness hO and width Lo as shown in Fig. 5.3a. For the case of surface
release, y = Yo = 0 and the thickness is hO/Z as shown in Fig. 5. 3b.

The distribution of ¢ at the source is taken to be:

2

z

c{o,y,z) = ¢ X(o, yo) ex.p{- (5.21)

ma 002[1 ) 2(y Yo }]

where Cmax(o’ yo) = c(o, yo,O) (Note: Cmax(x’ y) = c(x,y,0).)

Equation (5. 21) defines the source distribution to be Gaussian in the
z-direction, and resembles an ellipse in the y-direction. This is the

assumed distribution used in the examples in developing the model. The
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actual distribution, if known, should replace Eq. (5.21) in a practical

application.
5.3.1.2 Environmental Characteristics

The environmental conditions relevant to the passive turbulent diffusion
phase as formulated above include the ambient turbulence characteristics,
represented by values of the eddy diffusivities KZ and Ky; the ambient
current structure, represented by u(y); and the surface exchange coefficient
KE' The current is a directly measurable quantity. Given the general
locale of the discharge, field data on u(y) can be gathered and used in the

prediction model. The other quantities, namely KZ, Ky,and K_.. are more

E
difficult to measure. In general, no direct measurements are made and

the values are usually inferred from other observable phenomena.

It is not the intention of this study to develop a detailed method of estimating
KE accurately. Studies on the heat transfer between the water environ-
ment and the atmosphere have been initiated and are being extended by
other investigators. Strictly speaking consideration of the heat exchange
processes at the water surface is very complicated. Factors which are

of importance include solar radiation, back radiation, conduction, con-
vection and evaporation. The introduction of the coefficient KE and the
equilibrium temperature (see Edinger and Geyer, 1965), lumps the effects
of all these mechanisms of heat transfer together. At present, this appears
to be the most practical method available. As better relations become

available, it should be possible to modify the models developed accor-

dingly.

The eddy diffusivities KZ (horizontal) and KY (vertical) are important in
determining the dispersion of the heated effluent. Like the coefficient KE’
these diffusivities are also empirical coefficients which depend on more
basic phenomena such as the turbulence structure in the fluid medium.

In turn, it can be expected that the turbulence structure depends on the

input of energy from the atmosphere through wind and waves, the density
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stratification or stability of the fluid medium and the current shear which
can supply the energy in generating turbulence. These diffusivities will

now be briefly discussed in the following subsections.
5.3.1.2a Horizontal Diffusion Coefficient KZ

In a large body of water, the horizontal diffusion coefficients are generally
governed by the ''4/3 power law'’, i.e., the horizontal diffusion coefficient
is proportional to the 4/3 power of the length scale of the diffusing patch
or plume:

4/3

K = A_L

z L (5.22)

2/3
m

where A is a dissipation parameter (c /sec or ft2/3/sec.)

L
L  is the width of the plume (usually taken to be 4OZ, o, being

the standard deviation of the concentration distribution).

Equation (5. 22) can be written in terms of o,

4/3

K = Ag (5.23)

z z
It should be noted that use of Eq. (5.23) results in a nonlinear governing

equation.

In the ocean, numerous field experiments have been performed to estimate
KZ. This is summarized in Fig. 5.4. It is seen that the value of AL is

z . 10_4 ft2/3/sec. Thus the value of A is
-2 ft2./3

in the neighborhood of 10~
in the neighborhood of 1072 - 6 x 10 /sec.

It should be pointed out that no effect of shear currents were removed in
the field experiments so that direct use of the data requires some caution.
It is believed that since the effects of shear is explicitly taken into account

3

in the present model, the lower value of A = 10~ ft2/3/sec might be more

appropriate.
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It can also be observed that the data indicates A to be larger when the

scale 0, is smaller. This is reflected in somewhat larger K_ values

for small L in Fig. 5.4 than those corresponding to A = 10-3 ft72/3/sec.
For our purposes, it may be assumed that A = lO_2 ft2/3/sec. When

more field data is available the model may be readily adapted to take

advantage of them.

The experimental data summarized in Fig. 5.4 are all for the case when
the diffusing pool is on the ocean surface. A few experiments have also
been performed for the case when the diffusing pool is at depth (Parr 1936;
Riley, 1951; Ozmidov, 1965; Munk, Ewing and Revelle, 1949; Kolesnikov,
Panteleyev, and Pisarev, 1964; Snyder, 1967; and Schuert, 1969). The
results generally indicate somewhat smaller values for the diffusivity.

It is generally recognized that the presence of a stable density gradient
damps out vertical turbulent fluctuations and hence vertical turbulent
transport. However, conflicting views exist for the effect of stability

on horizontal transport. The main difficulty is the lack of adequate field

data.

On the one hand, Parr (1936), Riley (1951), and Ozmidov (1965) suggested
that the horizontal diffusion coefficient increases with stability. Moreover,
they attempted to verify the hypothesis: Parr by using data on the distri-
bution of Atlantic Ocean waters flowing into the Caribbean Sea, while Riley
by analyzing salinity and temperature distributions in the ocean. On the
other hand, Munk, Ewing and Revelle (1949), Kolesnikov, Panteleyev,

and Pisarev (1964), Snyder (1967), and Schuert (1969) suggest the opposite,
i.e., the horizontal transport decreases with stability. Munk, et al. found
that in Bikini Lagoon at 50 meter depth, the value of horizontal diffusion
coefficient was only one-third of that near the surface. Kolesnikov found
by direct measurements, AL to be 0.01 cm2/3/sec. at the surface and

0.0046 cm?’

the value of AL dropped to one-quarter of the value at the surface.

3/sec:. at 500 meter depth. Snyder found that at 9 foot depth,

Schuert found that at 300 meter depth, the value of AL is about one order

of magnitude smaller than in surface waters.
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It can be seen from the above discussion that the dependence of K on
V4

stability is still controversial and unsettled. The diffusion model to be

developed herein, however, can be modified to incorporate a KZ as a

function of y, the vertical coordinate once a reliable relation is established.
5.3.1.2b  Vertical Diffusion Coefficient

In contrast with the relative abundance of data for horizontal diffusion
on the ocean surface, there is a scarcity of data for vertical diffusion.
Evaluation of vertical diffusion coefficients have typically been implicit,
e.g., based on the temperature and salinity distribution and their time
and space variations. The matter is further complicated by the wide
spread in the measured values, (from as low as 4 X 10_2 to as high as
200 cmz/sec). Moreover, no obvious relations were available between

the vertical diffusion coefficient and other readily measured parameters.

The presence of density stratification tends to supress vertical exchange.
Therefore, one expects the vertical diffusivity to be a monotonic de-
creasing function of density stratification. The presence of shear tends
to be destabilizing and increases vertical exchange. It can be expected
that for similar flows the vertical diffusivity should be a monotonic

non-increasing function of the Richardson number defined as

g dp
R. = o dy

i du,2

(3

Numerous proposed relations between KY and Ri are summarized in
Table 5.1. Unfortunately, these cannot be checked and the constants (8)

cannot be readily determined due to a scarcity of data on the shear.

Rather than relating KY to Ri which is the physically more logical approach,
it is also possible to attempt a correlation of KY with

1 do
p, Iy

e =

the density gradient alone. Strictly speaking, one would not expect a one-

to-one relationship to exist between KY and e.
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TABLE 5.1

Summary of Formulas on Correlation of Vertical
Diffusion Coefficient Ky with Richardson's Number

Ri (or Density Gradient €)

NOTE: KyO: Ky at Ri = 0, i. e., the neutral case B: proportionalility constant

varies from case to case

Rossby and Montgomery K =K ,(1+ B R.)-1
(1935)% y oy '
Rossby and Montgomery K =K ,(1+8 R.)—2
(1935)% y v '
Holzman (1943)% KY = KyO (1 -B Ri) Ri < _é_
Yamamoto (1959)% K =K (I -8 R,)/?2 1
y yO i Ri s §
-BRj
Mamayev (1958)* K =K e
y ( ) y v0
-3/2
Munk and Anderson K =K 0 (1 +8 Ri)
(1948) % y oy
B=3.33 based upon data by Jacobsen (191 3)
and Taylor (1931)
Harremoes (1968) KY =5x 10'3x €—2/3 cmz/sec
note: € in rn-l; approximate experimental
range 5x10 77 <e<15x10 m !
. B . 2
Kolesnikov, et al K =K .+ — in ecm®/sec
(1961) %5 y y min €
K and B are empirically determined
y min
to be:
=12, B =8.3x107" (1958 and
y 1960 observations)
=2, B=10.0x107" (1959
y min observations)

* As given by Okubo (1962)
*% As given by Bowden (1962)
*%%* The formulas presented in the translated version are apparently erroneous.
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All readily available data on KY where € is simultaneously measured
are collected and plotted as shown in Fig. 5.5. It can be observed that

almost all data fall within a factor of 10 of the empirical relation

-4
KY = lOe (Ky in cmz/sec; g in m_l) (5.24)
4x 107 m™t s ¢ < 107%m"!

It should be noted that Fig. 5.5 contains only those available data where

both KY and € are available.

The relation K = 10_4/6 can be deduced from the definition of the vertical
diffusion coeffic?rient'provided some assumptions are made. We assume that
diffusion occurs due to turbulence so that molecular diffusion may be ignored.
With the assumption that the density variations are small in the ocean, the

equation describing the variation of potential density is then

§E+u§9+v§Q+W§p_:_a_(K

9Py ; B (g °P 3 00
ot 3% Ay dz 3x ) (K )t (Kz )

X O 3y yoy 3z 3z

where u, v, w are the mean currents in the x, y, z directions respectively.

Since horizontal variation of p are usually much smaller than vertical

variations, we assume g—i = %% = 0; also, we will assume v = 0. Then

the equation becomes

2p - 8 x 20
ot ay(Kyay)

The term 2p is usually very small except for the near surface waters

at

which may undergo some diurnal changes. Thus we assume steady state.

Then

d 1 30
(K
By( Yay)

or

133



Ky . VERTICAL DIFFUSION COEFFICIENT,cm2 /sec

ITI]\I ITT] ljjlrf ll]i' [ ) e i | | IIL
. } KOLESNIKOV (1961) i
‘ —

\ & HARREMOS (1967)

- . JACOBSEN (DEFANT,I961) 4
Ok \ o FOXWORTHY (1968) PATCH

z e
w é B FOXWORTHY (1968) PLUME :
= » X, \ A FOXWORTHY (1968) POINT SOURCE ]
[[o] ) —
- —
— —
I o
r— -—
= -
- ~
0.1 p= j
b— -
b \

i Lhel cezi@e gty § Clepad iy igd i g iig
07 10°¢ 0% 10”4 1073 10°2 10

Figure 5. 5

€ *-1/p, dp/dy JDENSITY.GRADIENT, m"

Correlation of Ky with density gradient.

134

A-2-1642



ap

K == = constant
y oy
Hence
K - Constant
Y €

This is exactly the form of the relation between Kyand ¢ found depicted

in Fig. 5. 5.

It is proposed that unless independent field data is available, Eqg. (5.24)

be used to estimate Ky for application of the present model. It is realized
that this is approximate at best. However, it is, at present, the most
rational method available. Future studies and measurements may alter
thiszrelaltion. The region of applicability of this relation is 10_6 < e <

10 "m ~.

In the surface mixed layer of the ocean, the density gradient is often zero.
The empirical relation is certainly invalid since it implies an infinite

K . In this case, the vertical transport is governed primarily by the vertical
tu};bulence created by waves and wind. Relations between the vertical
diffusion coefficient Ky in the mixed layer and the surface wave char-

acteristics have been proposed by Golubeva (1963) and Isayeva and Isayev

(1963). Their relations can be summarized by
HWZ
K = 0.02
yl TW
where Kyl = vertical diffusivity at the surface
H = wave height
W
T = wave period
“l
Thus given the sea state, Kyl can be estimated. Fig. 5.6 shows the
relation between Kyl and sea state.
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in summary, data on vertical diffusivity are scarce. Although logically,
KY is expected to depend on Richardson number, for practical purposes,
the empirical relation Ky = 10_4/€ is proposed, subject to modification

as better data become available.

In general, Ky has its maximum value in the surface layer: in the open
ocean KY at the surface varies between 10 - 200 cmz/sec.; in coastal
areas, 10 - 50 cmz/sec.; in lakes, ~ 10 cmz/sec. Below the surface
mixed layer (or epiliminion) K drops to its minimum in the thermocline
(of the order of 1 sz/sec. in t}ge open ocean; in lakes, K_ may drop to
as low as 0. 05 sz/sec. ). Below the thermocline, KY m};y increase

again. Some typical values and K_ - profiles in lakes and reservoirs

have been determined by Orlob and Selna (1970).

5.3.2 Method of Moments

The problem posed in Sec. 5. 3.1 is complicated and cumbersome to solve
due to the three independent variables and the complexity of the coefficient
functions. This difficulty can be partially overcome by using the method

of moments.

Define moments of the distribution by:

co(x, y) = J c(x,v, z) dz (5.25)
{..m

cl(x, y) = J‘ zc(x,y, z) dz (5.26)
=

c,(x, y) = Jr zzc(x, y, z) dz (5.27)

The zeroth moment <, is the integrated amount of excess temperature or
tracer in the z-direction. The first moment cy is related to the z-

coordinate of the centroid of the c-distribution. In the present model,
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it is zero because of the symmetry of the distribution in the z-direction.
The second moment 5 defines the spread in the z-direction. The width
of the effluent field is usually taken to be 4OZ where GZZ = CZ/Co'
Multiplying Eq. (5.20) by zo, zz, and integrating over 2z, we obtain the

equations governing the moments:

aCo o) acO
vl E(KY Sy ) - cho (5.28)
dc 3¢
2 _ 3 2
u 3% - BY(KY 3y ) - KdCZ + ZKZCO (5.29)

An alternate to Equation (5.29) can be written in terms of o, as:

acz?‘ 3 aczz 1 aco aozz
— = =2 —_— —_— + .
u =7 ay(Ky Sy )y + ZKy <. Sy Sy ZKZ (5. 30)

The boundary conditions expressed in terms of the moments corresponding
to Eq. (5.18) are:

dc
O —_—
y 3y Keco
3
. BCZ ey ] aty=0 (5.31)
y 3y e’ 2
or 3o 2
K)’ 3y = 0 aty=0
and
2
dc dc 20
3; = af = ayz = 0 at y = hb (5.32)

The source condition expressed in terms of the moments corresponding to
Eq. (5.21) are:
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Al

r r Z(Y-Yo)q Zj

CO(O’ Y) = CO(O, YO) 11 = L __h_‘ (5. 33)
o
3/4
-2{y-y 2

cylo,y) = ¢ (o,y ) OZZ(O, v, {1 - L—h——o—j } (5. 34)

o

1

2(y-y )q2-°

2 r |

or OZ (o,y) = Gzz(o,yo) {1 - L—TO——O-_]’ j (5. 35)

Thus by the moment method, the number of independent variables is reduced
by one. Since the c-distribution in the z-direction is usually found to be

of Gaussian form both from field and laboratory experiments, the diffusion
process can be adequately described by knowing the zeroth and the second
moments. In fact, if ¢ is exactly Gaussian in the z-direction, then it is
completely specified by its zeroth and second moments. Equations for
higher moments can be formulated in a similar way. These are only
necessary if the c-distribution is distinctly non-Gaussian in the z-direction
In that case, for example, the third moment would indicate the skewness

of the distribution.
5.3.3 Limiting Solution for Cases with Zeroc Vertical Transport

If the effluent field is trapped within a strong thermocline where vertical
transport is small (for example, if KY is close to the molecular value),
a good approximation to the solution can be achieved by taking Ky = 0.
The proper criterion for the validity of this approximation is that the
vertical spreading over the distance of travel is small in comparison with

the vertical dimension of the source, i.e.,:

K — << h (5. 36)

where X, is the horizontal distance of interest;
u is the characteristic velocity; and

h0 is the source thickness.
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2
for Ky = 0.1 cm”/sec., u =15 cm/sec. (or 0.5 fps) and x, = 1,500

meters, ./ nyt/uo = 0. 3 m; therefore, for sources thicker than, say
10 meters, it will be sufficient to consider it as a case with zero vertical

transport.

For cases with zero vertical transport, an analytical solution can be ob-
tained as follows. Equation (5.28), when KY = 0, becomes

ac

o
u = = —cho (5.37)

Integrate with respect to x, noting that u is only a function of y:

K

B d
co(x, y) = co(o, y) exp { - - X (5. 38)
Equation (5. 30) becomes:
Bczz
L ZKZ when c, £ 0 (5.39)

Applying the 4/3 power law for K :

Eq. (5.39) becomes

30
u —Z_ - 2Ag 4/3 (5. 40)
AX Z

Integrating with respect to x, Eq. (5.40) gives:

5 2/3(x,y) _ %

. x + g (o, y) (5.41)

z

A 2/3
u

For a given set of source conditions, i.e., co(o, y) and oz(o, y), environ-
mental characteristics u(y), A, and the decay coefficient Kd, solutions

are given by Eqs. (5. 38) and (5. 41) if the vertical transport can be neglected.
The maximum concentration or excess temperature (assuming c¢ is Guassian

in z) is given by
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5.3.4 Dimensionless Equations and Numerical Solutions

For general cases with non-zero vertical transport, it is necessary to

(5.42)

resort to a numerical method of solution unless the environmental and

source conditions are very simple.

Before the numerical solution is attempted, the governing equations,

source conditions and environmental conditions will first be normalized

by defining dimensionless variables (quantities with primes) as follows:

Coordinates:

x' = x/x

y/ JK Xt/uo

Velocity: u' = u/uO
Vertical diffusion coefficient: K' =K /K
y y Vyo
N , 2/3
Dissipation parameter: A" = Axt/{oZ (0, yo)uo}

Exchange coefficient: K', = Ke“/xt/Kyouo

3 3 . 1 —
Decay coefficient: K q- det/uo
Zeroth moment: ¢y = CO/CO(O, Y,)
t: ‘o= ¢, /[c (o )Oz(oy)]
Second moment: cty, = ¢y ol Yyl O, 2 Yo
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Lateral spreading: o' = cz/cz(o, yo) (5. 52)

Maxim tion: ! =
aximum concentration ¢ ax Cmax/cmax(o’ yo) (5. 53)
CI
NOTE: ¢ = 2
max g
z
Here x, is the terminal x value of interest;
Kyo is a characteristic vertical diffusion coefficient; and
u is a characteristic current speed

For example, the characteristic values Kyo and u_ can be taken to be

their values at the free surface if the effluent is at the free surface.

The governing equations, (5.28), (5.29) and (5. 30), in dimensionless

form becomes:

dc! 3¢’
o = _a_ o 1 ]
u! Py 3y (Kly 5y ) - K i€ (5. 54)
dc! dc!
: 2 _ 9 2 .
u axl ayl(K'y ay[ ) + ZK ZC o - KldC]Z (5- 55)
ac'zz 3 BU'ZZ ac! ac'zz
1 _ 1 1 1
W T —ay.(K y 3y ) + 2K yo By By + 2K (5. 56)

The normalized boundary conditions corresponding to Eqs. (5. 31) and (5. 32)

become
ac!
1 o _ Y
y ay' e o
3
aC,2 j aty =0 (5. 57)
H 1 1
y oy’ e 2
or
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BU'Z
K y dy' 0 y=0
and
3c' dc' 0! 2
° - 2 = Z - 9 t vy = h'
ayl ayl ay.l a Y - b (5 58)
where

S JE xTa
h'y hy/ Kyoxt Y5

The normalized source conditions based upon Egs. (5.33) to (5.35) are:

2(y'-y' ) 42y 3

-
c'lo,y') = {1 —LTJ Ji (5. 59)
2(y'-yl) 42, 3/4
] H — i
c 2(o,y) = {1 - [mh,o | j | (5. 60)
and
L2 2(y'-y, )2, 2
o oy - o - [ P
o)
h'o
for y' =2 0 and y‘o - 5 < y' < y'o + h‘0/2
where
ylo - Yo/”/Kyoxt/uo ’ h'o - ho/“ Kyoxt/uo

Note that Egs. (5.54) to (5. 58) are identical in form to their corresponding
dimensional equations. The main effects of this normalization are: 1) the
region of interest in x is normalizedto 0 < x' < 1; 2) the source condition

is normalized; and 3) the u- and Ky-profiles are normalized.
Thus, the problem of the steady state distribution of excess temperature

(or tracer) resulting from a continuous source in a steady but non-uniform

environment is formulated in dimensionless form. A computer program
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(PTD) has been written based on the Crank-Nicolson Method and is included
in Appendix C. Given the input conditions h'o, y'o, Ky- and u-profiles,
K'e, K'd, h‘b, the problem can be solved by using the program.

Before discussing the example solutions obtained, we shall first choose

the various parameters and parameter functions to specify the problem.

The following values have been chosen as representative typical values:

A = 10—2 ft2/3/sec.

xt = 10,000 ft.

K = 10_2 ft. 2/sec:. (surface)
yo

u, = 1 ft/sec. (surface)

hb = 100 ft.

h = 20 ft.
o

GZ(O, yo) = 30 ft.

K_ = 107 £t/ sec.

From these,

/3(0. Y, uo] =~ 10

2
N = Axt/[oZ

-2
— / —
K! = K Xt/K u = 10

b 10

T
]
"

© JK x7uo

yo t

In the following discussion, the primes will be dropped for simplicity.
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The parameter functions Ky(y) and u(y) are chosen to be as shown sche-
matically in Fig. 5.7. The constant parameters YR’ YK2' YK3' VK4’

Bl’ BZ would specify the dimensionless Ky - profile while the constants
Yer Uy would specify the dimensionless u-profile. It should be pointed out
here that X, is more or less an arbitrary number. The program PTD
can be run for x from 0 to any value, not necessarily 1. Also, by proper
choice of y o the source may be located at the surface (yo = 0) or at any

depth (y _ > 0).

Guided by the numerical values mentioned in the preceeding paragraphs,

a total of 14 cases has been computed using the program PTD. The
parameters and parameter functions chosen for each case are summarized
in Table 5.2. As can be seen from the table, two different profiles were
selected for Ky and u as functions of y. The first is when it is constant
with depth. The second is when it takes on a shape judged typical of situations
when the ambient is density stratified. The identification code is designated
by two letters followed by three numbers. The first letter signifies whether
the Ky-profile is constant (C)or not constant (S or T). In case it is not
constant, S stands for the case when the source is at the surface and T the
case when it is submerged (in the thermocline). The second letter signifies
whether the velocity profile u(y) is constant (C) or not (N). The first
number, ny, refers to the value of \: A =1 corresponds to n, = 1 and

A =10ton, =2, thus, \ = lO(nl_l). The second number n. refers to

1 h 2
the value of Ke, by the relation Ke =10~ "2, The third number n, refers

-n 3
by the relation K =10 3.

to the value of K d

d
It should be noted that Cys the zeroth moment of the distribution is in-
dependent of A. Figures 5.8 a, b, and ¢ show co(y) plotted versus vy
for various values of x. Several different cases are shown on the same
graph to delineate the effect of various parameters. Figure 5. 8a is for
the case when KY is constant; Fig. 5.8b for the case when KY is not
constant and the source at the surface while Fig. 5. 8c for KY not constant
and source submerged. The effects of Ke and Kd and the current profile

can be observed by comparing the cases in each figure. The effect of
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u-profile

Figure 5.7 Profiles of Ky and u used in study.
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Table 5.2 Summary of PTD cases. (Ky = Vertical diffusivity; U = Current; 3 = Dissipation
parameter; Kg = Surface exchange coefficient; K4 = Decay
coefficient) All quantities dimensionless.



Ky—proﬁle can be seen by comparing Fig. 5. 8a with 5.8b. As can be seen
from these figures, the effects of the various parameters and parameter
functions are as expected. For example, Ke tends to decrease <, but
primarily at the surface, and the current shear tends to promote some -

what higher dispersion.

The effect of )\ on the solution is on the spread of the plume or in the value
of the second moment 5 Figures 5.9 a, b, and ¢ show the solution

9, = ,\,/C—ZTC—(—) plotted versus x for y = Yo It is readily seen that when

A goes from 1 to 10, the spread at x = 1 increases about ten times.

This is not surprising since )\ is proportional to the horizontal diffusion
coefficient. The effect of shear on o, can also be observed to promote

a somewhat larger value of o, as would be expected. Comparison of

Figs. 5.9 a and b with 5.9 ¢ shows that the effect of shear is correspondingly
larger when the source is submerged than when it is at the surface. This

1s because the value of the velocity at y = 3 for the TN - runs is only 0.7

times that for the TC-runs.

From the above discussion it is seen that the model developed did not yield
any profoundly different results than what can be reasonably expected. In
any practical situation, the parameters and parameter functions and the
source conditions may be different from those chosen. The program can be

readily modified to suit those conditions.

It should be reiterated here that the model which resulted in the program
PTD is for the case of a steady discharge into a steady environment. In
practice, the parameters Ke, u, and the source intensity are most pro-
bably not constant in time. In such a case, the program PTD should not be
used. In the next section of this report, a limited unsteady case will be

treated and discussed.
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Figure 5.8a  Vertical distribution of c_ (x,y) for PTD cases

CN 200, CC 200, CC 100,°CC 220 (Ky-profile
uniform).
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Vertical distribution of <, (x,y) for PTD cases SN 200,
SN 210, SC 100, SC 200 (Kyeprofile not uniform,
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Figure 5. 8b  Continued.
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Figure 5.8c  Vertical distribution of co(x, y) for PTD cases
TN 100, TN 120, TN 200, TC 100, TC 200, TC 202
(Ky=profile not uniform, subsurface release).
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5.4 Continuous Release of Heat into a Uniform But Time-Varying

Environment

In a natural water environment, the ambient current and the surface heat
exchange are usually not constant but varies with time. Also, the rate of
excess heat discharge may vary with time. Thus, the steady state problem
formulated in the previous section should be generalized to allow for these
variations in time. The general unsteady problem is very complex and
will not be solved here. In this section, a somewhat simpler unsteady
problem will be formulated and solved. In particular, the current and sur-
face heat exchange are allowed to be time varying, but are assumed to be
uniform in the space coordinates, i.e., no current shear will be considered.
The rate of excess heat discharge is also allowed to be time varying. It

is clear that this problem is substantially more complicated and cumber-
some from a computational point of view. For example, the time history
of variations of the input functions must be specified before the solution

can be obtained. The method of approach to solve this problem is similar

to the development in the previous section and will be summarized below.
5.4.1 Formulation

Neglecting longitudinal mixing as before, Eq. (5.17) becomes:

Be , 3¢ L A Bey 2 g e,
§t—+ Y3x C éy(KyBy) * az‘Kzaz) ch (5. 62)

Ac B ,
Ky%? = K_c aty =0 (5.63)
K 2 _ aty=nh (5. 64)

y 8y b

Note that u in Eq. (5.62) and K_ in Eq. (5. 63) are known functions of

time.
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The source condition at x = 0 is taken to be:

5.4.2 Method of Moments

Define moments as before (see Eqs. (5.25) to (5.27)) and integrate Eq.

(5. 62) with respect to z, we obtain:

Bco aco 3 Bco
—= 4 = = -
at Y% ay(Ky By) cho
dc 3dc Ac
2 2 _ 3 2
3 TV TEx T ay By Tay ) m Ko, T2k e

The governing equation for the lateral spreading o, is:

aczz fe]e; 2 o0 2 3dc_ 30 2

u—2 = z 4 g L
C
O

RN
Y ax BY(KY dy y

The boundary conditions for the moments are:

n
X
o

o
o

<
I
o

1l
=~
0

or

K z at y =0
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and

dc dc 30 2
°© . 2.2 _ aty = h (5.70)
dy dy dy Y =Dy :

The source conditions expressed in terms of the moments are

1
r 2(Y‘YO 2~ 3

-
CO(O,y,t) = FCO(t)ll -L_TI:-J j (571)
c2(0,y,8) = co(0,y, 0F (8 02 {1- —hoi] J (5.72)
2(y-y ) 2\%
2 2 o
Gz (O,y) = OZO {l _[TJ f (5.73)

for y2 0 and yo-ho/Z <y sy, + ho/Z

where F (t) is a prescribed function of time and ¢ = g (o,y ,o0).
co Z0 z o

Note that 9,0 h0 and Yy, are taken to be time independent. The time
variation of the excess waste heat release is given by the function Fco(t).
The time-varying environmental conditions, Ke and u, are represented
schematically as shown in Fig. 5.10.

pt
Note that the front of the effluent field is at a value of x given by J udt
as shown in Fig. 5.10 since the longitudinal mixing is neglected here’
Thus, the extent of the limit of the region of interest X, is related to the
limit of the time of interest t, by

tt

X = j u(t) dt (5.74)

t
o]

The region of solution to be covered is therefore
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Figure 5.10 Representative sketches in cases of unsteady
turbulent diffusion.
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t

t
o < x SJA u(t) dt (5.75)
o

Define a new independent variable £ by

(VA]

t
:x-fudt (5.76)

o)

Equation (5. 62) in (2, y, z, t) variables become:

3
K -
ay( y )+ (K ) - K. ¢ (5.77)

and the equations for the moments, Eqs. (5. 66) and (5. 67), become:

o _ 3 0
St - ay( v 3y ) a0 (5.78)
acz 3 BCZ

= = ) +2K ¢ - K ¢

at 3y y 3y z O d72

Equations (5.77) to (5.79) are all independent of the new variable

JY

However, the source condition is dependent upon £; i.e., Egs. (5.71)

t

to (5.73) apply at § = - J udt. Therefore, the number ol independent
o

variables has not been reduced by the Z - transformation although the

governing equations appear to be simpler. Along € = constant, we

are following a certain part of the effluent field downstream. In particular,
€=0 represents the front of the effluent field, i.e., following the very
first part of the release. Negative £ values represent following later
portions of release. Since longitudinal mixing (in x-direction) is neglected,
there is no exchange between adjacent portions in the x-direction. Thus,
we can treat the problem by investigating each portion of the release as it
travels downstream. For the portion released at time t = t;s the source

distributions are c¢ (o,vy, ti) and cz(o, Vs ti)' By solving Eqs. (5. 78) and

(
o
(5. 79) we obtain the solution for this portion of the release. Note that x

is related to the time variable t by:
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X = qu dt (5. 80)

By solving a number of cases with different t; from 0 to tes the solution

for the whole region of (x,t) is obtained.
5.4.3 Dimensionless Equations and Numerical Solutions

Dimensionless variables are defined as in Sec. 5. 3.4. In addition to those,

we also define:
1 —
t' = txt/uo (5.81)

The governing equations, (5.78), (5.79) and (5. 80), in dimensionless forms

are:
ac! dc'
at? - B%"(Kly ayc‘)) - Ky (5. 82)
dc! oc'
and 1
at
x' = J u' dt' (5. 84)

The boundary conditions are identical to those given by Egs. (5.57) and
! - 1
(5. 58) except K e " K e(t).

Again, the Crank-Nicolson method was employed in solving this problem
numerically. A Fortran IV program entitled "UTD'" was prepared and listed

in Appendix D to handle this particular mathematical model.

The unsteady problem (UTD) requires substantially more input data to

specify the problem than the corresponding steady problem (PTD). In
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particular, it is necessary to specify the functions F (t), u(t) and Ke(t),
all quantities being dimensionless. Moreover, the program requires a
substantially longer time on the computer particularly if the functions
Fco(t), u(t) and Ke(t) are specified for many values of t. Since the general
basic model is the same as that used in PTD, it can be expected that
similar results should obtain. Only a few cases have been run using UTD.
The results are similar to those of PTD. These results are difficult to
present in such a form as to give ready comparisons with those obtained
from PTD, since the solution depends on the previous history of Fco’
u, and Ke. Figure 5.11 shows one such comparison. The solid line in the
figure is co(x, o) from case PTD-CC-100. The points are from using UTD

with the following functions for Fco’ u, and Ke:

t u Ke Fco
0 1. 0.0 1

0.2 1. 0 1

0.4 1. 0.1 0.5
0.6 2. 0.1 0.5
0.8 1. 0.2 0.8
1.0 0.5 0 1.0
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5.5 Summary and Discussions

In this chapter, two mathematical models have been developed for the
calculation of the distribution of excess temperature due to the effects
of ambient turbulence, current, and surface heat exchange. Both models
assume passive diffusion and ignore longitudinal dispersion. The first
model (PTD) treats the case of a steady release into a steady unidirec-
tional shear current while the second model (UTD) treats the case when
the discharge, the ambient uniform current, and the surface heat
exchange coefficient are time varying. Two computer programs (PTD
and UTD) based on these models are listed in Appendices C and D.

With these programs, the excess temperature distribution can be

determined given the input conditions.

It should be pointed out that this model applies only after the initial
phases of mixing (jet mixing and surface spreading) has subsided and
the buoyancy of the discharge no longer influences the dynamics of the
flow. The initial phases of mixing have been treated in earlier chapters

of this report.

It was not possible to perform a detailed parametric study based on the
models within the scope of this investigation. This should be done in the

future.

Since in practical situations, the conditions are usually unsteady, the
second model (UTD) is likely to be more useful. However, in that model
the ambient current is assumed to be unidirectional and uniform whereas
in practice, shear currents are likely to occur. The model should
therefore be extended to include these effects. Such a model can be
developed by using the concept of superposition. Thus, the case of an
instantaneous release into a general environment should first be solved and
the results superposed. This method has the further advantage of in-

corporating the longitudinal diffusion which is ignored in the present models.
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It is recommended that this general model of unsteady passive
turbulent diffusion in an arbitrary unsteady environment be

developed in the future.
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CHAPTER 6 APPLICATION OF THE MATHEMATICAL
MODELS TO PRACTICAL PROBLEMS

In this report, several mathematical models and computer programs
have been developed for the prediction of the excess temperature dis-
tribution in a large body of water resulting from the discharge of heat
such as from power generation plants. Each of these models deals with

a specific portion of the mixing phenomenon.

Although all these models are more general than previously existing ones,
they cannot be regarded as complete. Moreover, no unified model is
available which can calculate the excess temperature distribution from
the beginning phase of discharge through the terminal stage of passive
turbulent dispersion. It is the purpose of this chapter to provide a prac-
tical guideline by which the various models developed herein can be used

in succession to arrive at the solution of practical problems.

Before discussing the practical application of these models, they will

first be briefly summarized. In Chapter 3, two mathematical models

have been developed. The first one (RBJ) solves the problem of mixing
involved in a sub-surface discharge of heated water through a multiport
diffuser from the discharge to the point when either the effluent reaches
the surface of when it reaches its terminal level of ascent. This model

is more general than previously available ones in that in includes jet inter-
ference and an arbitrary ambient density gradient. The second model de-
veloped in Chapter 3 deals with the time dependent surface spreading of

the effluent. The primary purpose of that model is to provide time and
length scales of the phenomenon. Application of this model requires several
numerical coefficients which are as yet not available. These should be ob-
tained by experiments in the future. In Chapter 4, the steady state surface
buoyant jet discharged horizontally is analyzed. The two-dimensional case
of a slot jet is analyzed in detail while the axisymmetric case is also in-
vestigated. The more realistic case of a slot jet of finite 1ength is not

solved and must await future studies. However, the two-dimensional case
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can be used in certain situations such as if the discharge slot is wide.

In any case, the predictions based on the two-dimensional model should

be conservative in the sense that the predicted temperature excess would

be larger than the actual one, since the model does not include lateral mix-
ing. In Chapter 5, again two models and computer programs are developed.
The first one (PTD) examines the steady passive turbulent dispersion in a
non-uniform current while the second one (UTD) examines the unsteady case.
However, while PTD allows the current to vary with depth, UTD assumes

a uniform, though time varying current. Previous models on this phase of

dispersion assumes constant diffusities and uniform and steady conditions.

It is strongly recommended that before these models and computer programs
are used in a practical situation, the individual using them thoroughly under-
stand the assumptions involved in their derivation and their limitations. This
can be achieved by studying the previous chapters of this report. With this
in mind, the following sections of this chapter are prepared to aid in the

practical applications of these models.

6.1 Subsurface Discharges

In the event the discharge of cooling water is made at depth, the program RBJ
(Chapter 3) should first be used to obtain the buoyant jet portion of the mixing
phenomenon. The reader is referred to Section 3.2.2 for a discussion on the
use of this program. This program terminates the calculation either when
the diluted effluent reaches the water surface or when it reaches its terminal
level of ascent. This can be seen from the output of the program. In either
case, the temperature excess, dilution ratio, and jet width at the end of this

phase are available from the program output.

Having obtained these quantities, the program PTD (Chapter 5) should be
used to continue the calculation. Besides the environmental conditions such
as water depth, the diffusities, and current profiles the program PTD also
requires knowledge of the initial conditions of ho’ Yo and Lo, the source

thickness, source level, and source width respectively. Y, should be taken
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as the terminal depth of ascent from RBJ if the pool is submerged or
zero if the pool is surfaced. It should be noted that since, in PTD,
the excess temperature is just being passively carried along, the flux
of excess temperature, which is proportional to the product u LO ho Crnax
at the source of PTD,is known from the flux of excess temperature

at the end of RBJ. Here u is the ambient current, Cmax the excess
temperature. Thus if we take Cmax to be the same as provided by RBJ,

then there is freedom in choosing only one of the two quantities LO and ho.
Two choices are available. First, Lo may be chosen to be the total

length of the diffuser plus the jet width. Second, ho may be chosen to be half %
the jet width at the end of RBJ. It is proposed that separate calculations

be made based on these choices and the worse of the two regarded as a
conservative estimate for design purposes. The reader is referred to

section 5.3.1.2 for a discussion of the environmental conditions., The
program PTD uses dimensionless quantities in order to minimize the

number of necessary inputs. These are defined in section 5.3.4., Also
included in section 5.3.4 are example solutions which should serve as a

guide on the use of the program. The output of the program include c,

and Cmax which are dimensionless plume width parameter and dimension-
less plume width parameter and dimensionless centerline temperature
excess, each normalized with respect to their values at the source center,
From these and the output from RBJ, the actual temperature excess and

plume width can be readily obtained.

6.2 Surface Discharge

In the event the discharge is made at the surface through a relatively wide
discharge structure, the programs SBJ2 coupled with PTD can be used

to provide an estimate of the excess temperature distribution. Since the
program SBJ2 is based on a two-dimensional slot jet, the prediction would
be more accurate the wider the actual discharge structure. In any event,

the effect of lateral spreading (not included in SBJ2) is to widen the plume
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which would promote a faster rate of dispersion. Thus the use of SBJ2

constitutes a conservative approach.

The calculations based on SBJ2 should be carried out to the point of the
internal hydraulic jurmp and from that point, the program PTD may be
used using the conditions from SBJ2 after the jump as the source conditions
for PTD. The source thickness for PTD may be chosen as the depth of
the flowing layer from SBJ2. The source width L0 can then be obtained by
a balance of the flux of excess temperature. In the event the source is
inundated, the new source conditions can be obtained in the manner as
described in example 2, section 4.4 This can then be used as the source
condition for PTD. The event that SBJ2 would predict a jet all the way is
not likely based on typical values of the relevant paramaters. In the un-
likely event it is the case, then PTD is not needed. SBJ2 itself would

probably provide a sufficient estimate of the temperature excess.

It should be reiterated that use of SBJ2 (two-dimensional) for a practical
discharge structure (not two-dimensional) would result in overestimates
of excess temperatures, thus leading to conservative designs. The three-
dimensional problem analogous to SBJ2 should be analysed in the future

to obtain a better prediction tool.

An alternative approach to the use of SBJZ2 for the initial mixing stage,
especially in the case of narrow discharge structures or in the event
SBJZ2 predicts a jet all the way, is to use simple submerged jet theory
(e.g. Albertson, Etal (1950) ) to calculate the dilution, based on which
the excess temperature can be obtained. The actual temperature should
be between the predictions based on these two alternatives (i.e. SBJ2-

PTD and simple jet theory.)

170



REFERENCES

Abraham, G., "Jet Diffusion in Stagnant Ambient Fluid'", Delft Hyd. Lab.,
Pub. No. 29 (1963).

Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H
of Submerged Jets', Trans. ASCE, 115 (1950).

., ""Diffusion

Bowden, K. F., "Turbulence', Chapter VI of ""The Sea" Vol. I edited
by M. N. Hill, Interscience Publishers, New York (1962).

Brooks, N. H., "Diffusion of Sewage Effluent in an Ocean Current'', Waste

Disposal in the Marine Environment, Pergamon Press, Inc., New

York, New York.

Brooks, N. H. and Koh, R. C. Y., "Discharge of Sewage Effluent from a
Line Source into a Stratified Ocean', XI Congress, Int'l Assoc.

for Hydr. Res. (1965).

Defant, A., '""Physical Oceanography', Vol. I, The MacMillan Co., New
York, New York (1961).

Edinger, J. E. and Geyer, J. C., "Heat Exchange in the Environment",
Research Project RP-49, Dept. of Sanitary Engineering and Water
Resources, The John Hopkins University, Baltimore, Maryland,
June (1965).

Edinger, J. E. and Polk, E. M., "Initial Mixing of Thermal Discharges
into a Uniform Current'', Report No. |, National Center for
Research and Training in the Hydraulic Aspects of Water Pollution
Control, Department of Environmental and Water Resources

Engineering, Vanderbilt University, Nashville, Tenn. Oct. (1969).

171



Ellison, T. H. and Turner, J. S., "Turbulent Entrainment in Stratified
Flows', J. Fluid Mech., Vol. 6, Pt. 3, Oct. (1959).

Fan, L. N., "Turbulent Buoyant Jets into Stratified or Flowing Ambient
Fluids'', Rept. No. KH-R-15, W. M. Keck Lab. of Hydr. and
Water Resources, Calif. Inst. of Tech., Pasadena, California

(1967).

Foxworthy, J. E., '"Eddy Diffusivity and the Four-thirds Law in Near-
shore (Coastal Waters)', Allan Hancock Foundation, Rept. 68-1,
Univ. of Southern California (1968).

Golubeva, V. N., "The Formation of the Temperature Field in a
Stratified Sea'', Bull. of Acad. of Sci. of the USSR, Geophy. Ser.
(Transl. by F. Goodspeed), No. 5, pp. 4670-4671 (1964).

Harremos, P., '"Diffuser Design for Discharge to a Stratified Water',

The Danish Isotope Center, Copenhagen, Denmark, 18 pages (1967).

Hayashi, T. and Shuto, N., ''Diffusion of Warm Water Jets Discharged
Horizontally at the Water Surface', Proc. XII Cong., Int'l Assoc.
for Hydr. Res. (1967).

Isayeva, L. S. and Isayev, I. L., ""Determination of Vertical Eddy Diffusion
in the Upper Layer of the Black Sea by a Direct Method'', Issue No. 2,
1963 series, Soviet Oceanography Trans. of the Marine Hydro-
physical Institute, Acad. of Sci. of the USSR, (Transl. by Scripta
Technica, Inc.) pp. 22-24 (1963).

Jen, Y., Weigel, R., and Mobarek, J., ""Surface Discharge of Horizontal
Warm Water Jet'', Proc. ASCE, J. Power Div., Vol. 92 (1966).

172



Keulegan, G. H., '"Laminar Flow at the Interface of Two Liquids",

J. Res. Nat. Bur. Stands., 32 (1944).

Kolesnikov, A. G., Ivanova, Z. S., and Boguslavska, S. G., ""The Effect
of Stability on the Intensity of Vertical Transfer in the Atlantic
Ocean'', Okeanologiya, Vol. 1, (4), English Translation (1961).

Kolesnikov, A. G., Panteleyev, N. A., and Pisarev, V. D., "Results
of Direct Determination of the Intensity of Deep Turbulent Exchange
in the Atlantic', Dokl. Akad. Nauk USSR, 155, No. 4, (Transl. by
Scripta Technica, Inc.), pp. 3-6 (1964).

Lean, G. H. and Whillock, A. Z., "The Behavior of a Warm Water Layer

Flowing Over Still Water', Eleventh International Congress, [AHR,
Leningrad (1965).

Lofquist, K., "Flow and Stress Near an Interface Between Stratified

Liquids'', Physics of Fluids, 3 (1960).

Morton, B. R., Taylor, G. L., and Turner, J. S., "Turbulent Gravita-
tional Convection From Maintained and Instantaneous Sources'',

Proc. Roy. Soc. London (A), 234 (1956).
Munk, W. H., Ewing, G. C., and Revelle, R. R., '"Diffusion in Bikini
Lagoon', Trans. Amer. Geophy. Union, 30, (1), pp. 59-66,

February (1949).

Okubo, A., "A Review of Theoretical Models for Turbulent Diffusion in
the Sea'', J. of Ocean. Soc. of Japan, 20th Anniv. Vol. (1962).

Orlob, G. T., "Eddy Diffusion in Homogeneous Turbulence', J. Hyd.
Div. Proc. ASCE, September (1959).

173



Orlob, G. T. and Selna, L. G., '""Temperature Variations in Deep
Reservoirs', J. Hyd. Div. Proc. ASCE, Feb. (1970).

Ozmidov, R. V., "Turbulent Exchange in a Stably Stratified Ocean'', Bull.
Acad. of Sci. of the USSR, Atm. and Oceanic Phys. Ser. 1, (Transl.
by D. and V. Barcilon), pp. 493-497 (1965).

Parr, A. E., "On the Probable Relationship Between Vertical Stability
and lLateral Mixing Processes'', J. Conseil, perman. internat.

explorat. mer., 11, No. 3 (1936).

Riley, G., '"Parameters of Turbulence in the Sea'', J. Marine Res., 10,
No. 3 (1951).

Schlichting, H., ''Boundary Layer Theory", McGraw Hill, New York,
New York (1960).

Schuert, E. A., "Turbulent Diffusion in the Intermediate Waters of the
North Pacific Ocean', J. Geophysical Research, 75 (1970).

Sharp, J. J., "Spread of Buoyant Jets at the Free Surface'', J. Hyd. Div.,
Proc. ASCE, May and Sept. (1969).

Snyder, W. H., "A Field Test of the Four-Thirds Law of Horizontal
Diffusion in the Ocean'', M. S. Thesis Dissertation, U. S. Naval

Postgrad. School, June (1967).

Stefan, H. and Schiebe, F. R., "Experimental Study of Warm Water Flow
into Impoundments, Part I, II and III'", Rept. 101, 102 and 103,
St. Anthony Falls Hydr. Lab., Minneapolis, Minn. (1968).

Wada, A., "A Study on Phenomena of Flow and Thermal Diffusion Caused
by Outfall of Cooling Water', Proc. 10th Conference on Coastal

Engineering, Tokyo, Japan, Vol. II, Sept. (1966).

174



Yih, C. S., ""Dynamics of Nonhomogeneous Fluids'', The MacMillan Co.
(1965).



AFPFPENDIX A

The problem discussed in Chapter 3 on the dispersion in a row of buoyant

jets can be solved using the program listed in this appendix. The numerical

integration utilizes a fourth order Runge-Kutta scheme. To facilitate the

use of the program, the following lists are prepared relating the names of

variables used in the text to those used in the program.

Input:

In Text

In Program

NC

DO

Uuo

TO

DENI1
THETAO
DJ

SPACJ
D(I=1, NC)
TA(I=1, NC)
DENA(I=1, NC)
ALPHAR
AILPHAS
LAMBDR
I.AMBDS
GRAVAC

177

Remarks
number of points for specifying
ambient
diameter of individual jets
velocity of jet discharge
temperature of discharge
density of discharge
angle of discharge
depth of discharge
jet spacing
depth at which ambient specified
ambient temperature

ambient density

gravitational acceleration



In Program

X

Y

JET WIDTH
DILUTION
JET TEMP
JET DENSITY
AMB DEN
AMB TEMP
DELTA T

178

Remarks



6L1

0001
0002
0003
00n4

noons
oCcnNeé
0007
0008
0009
0010
0011
0012
0013
0014
ootrs
0016
0017
ools

No19
nez2o0

0021
0022

0023

0024
0025

C

C

C

PROGRAM RRJ--ROW BUOYANT JET IN A STABLY DENSITY-STRATIFIED .
STAGNANT ENVIRONMENT

DIMENSIUN TA(S50)4D(50),DENA(SO) ET(50)+ED(50),YT(50)

DIMENSION Y(6),YP(6)

REAL LAMBDR,LAMBDS,M

COMMON LAMBNR,LAMBDS yMyHyALPHAR, ALPHASy, NC,ET,EDyPAT,GRAVAC,YT,IK

1y ICHEK,1QySPACY

204 READ (5,1) NC,D0O,U0,TO,DEN1,THETAO,DJ,SPACY
1 FORMAT(1110,7E10.5)

IF (DO) 242,43

2 CALL EXIT
3 READ (5,10) (D(U),TA[I) DENA(I)s1=1,4NC)
10 FORMAT(3F10.5)

READ (S,11) ALPHAR, ALPHAS,LAMBNR,LAMBDS,GRAVAC

11 FORMAT(8E10.5)

PAI=3,14159265
DG 999 1=14NC

969 YT(I)=NJy-D(I1)

THETA=THETAO*PAI/180.
ICHEK=0

L=0

CHECK PHYSICAL UNITS

IF (GRAVAC-900.) 97,97,98

97 IF (GRAVAC-30.) 101,99,99

IN FPS UNITS

99 WRITF (6,100) DO,UD, TO,DENL, THETAO,DJySPACY
100 FORMAT {7S5HIROW BUOYANT JETS IN AN ARBITRARILY DENSITY STRATIFIED

1STAGNANT FNVIRONMENT///5X, 13HJET DIAMETER=,1F6.2,4HFEET,5X,
?223HJET DISCHARGE VELOCITY=,1F6.2,8BHFFFT/SEC/S5X, 26HJET DISCHARGE T
IEMPERATURE=,1F6.2413HDFGREE FAHREN, SX, 22HJET DISCHARGE DENSITY=,
41F10.7, 11HGRAM PER ML/4X,18H JET DISCH. ANGLE=, LF6.2,8H DEGREES/
S5X,20HJET DISCHARGE NDEPTH=,1F6.2,4HFEET, 5Xe 16HJET SPACING C-C=,
61F6.244HFEET)

GO TO 110

IN MKS UNITS

101 WRITE (6,102) DPO,UO, TO, DENl, THETAO,DJ, SPACJ
102 FORMAT {75H1ROW BUDYANT JETS IN AN ARBITRARILY OENSITY STRATIFIED

1STAGNANT ENVIRNNMENT///5Xs 13HJET DIAMETER=, 1F6.2y6HMETERS,5X,
223HJET DISCHARGE VFLNCITY=,1F6.2,8HMFT./SFC/5Xy 26HJET DISCHARGE T



081

0029
0030

00131

co32
3033
0034
0035
0036
0037
0038
0039
0040

0041
0042
0043
0044

0045
G046
0047
0on4s
0049

c

3EMPERATURE=,1F5,2,13HDEGRFE CENYIG, SX, 22HJET DISCHARGE DENSITY=,
41F10.7» L11HGRAM PER ML/4X,18H JEY DISCH. ANGLE=, 1F6.2,8H DEGREES/
55X 420HJET DISCHARGE DEPTH=,1F6.2,6HMETERS, 5X,16HJET SPACING C-C=,
61F 6.2, 6HMETERS)
GO TO 110
IN CGS UNITS
98 WRITE (6,103) DO,UO, 7O, DEN1l, THETAQ,DJ, SPACJ
103 FORMAT (75H1ROW BUOYANT JETS IN AN ARBITRARILY DENSITY STRATIFIED
1STAGNANT ENVIRONMENT///5X, 13HJET DIAMETER=,1F6.2,4H CM.,5X,
223HJET DISCHARGE VELOCITY=,1F6.298H CM./SEC/5Xy 26HJET DISCHARGE 7
3EMPERATURE=,1F6.2,413HDFGREE CENTIG, SX, 22HJET DISCHARGE DENSITY=,
41F10.7y 11HGRAM PER ML /4X,18H JFET DISCH. ANGLE=, 1F6.2,8H DEGREFS/
55X 920HJET DISCHARGE DEPTH=41F64.2+4H CM.y 5Xs 16HJET SPACING C-C=,
A1F6.2,4H CM.)
110 WRITE (6,111)
111 FORMAT (///5Xe1HX310Xe1HY12XsI9HIET WIDTH, 6X¢BHDILUTION,6X,8HJET T
1EMP,4X, L1HJET DENSITY,6X,BHAMB DEN ,5X, BHAMB TEMP,4X,7HDELTA T)
S=0.
YO FIND REFERENCE TEMPERATURE AND DENSITY
IR=1
IF (DJ-D(IR)Y 112,113,114
112 TR=TA(IR)
DENR=DENAC(IR)
GO 70O 118
112 IR=1IR+1
IF (DJ-D(IR))} 112,113,117
114 WRITE (6,120
120 FORMAT(S5X,53H INSUFFICIENT DAYA ON AMBIENT DENSITY AND TEMPERATURE
1)
GO TO 204
117 SL={DJ-DUIR))/(D(IR=-1)-D(IR))
TR=TA(IR)+SL*{TA{IR-1)~-TA(IR)}
DENR=DENA(IR)+SL*(DENA(IR-1)-DENA{IR))
INITIAL CONDITIONS
118 Y(1)=PAI*DO*DD*UYO*0.5
M=Y{1)*Uy0%*0.5
VOLFJ=Y{(1)
H=M*COS{THETA)
Y{2)}=M&SIN(THETA)



181

0050
0051
0052
0053
0054
0055
0056
0057
0058

0059
0060
0061
0062
00613
0064

0065
QD66
0067
0068
0069
Q070
0071

0072
0073
0074
0015
0076
no77
0oc78
0079
0080

0081
0082
0083

O

912

301

302

303

304

20

22

21

513
203

Y(3)=Y(1)*{(DENR-DEN1)/DENR*0,5
Y(4)=Y{1)%({TR~-TO)/TR*D,.5
Y(5)=6.2%DN*COS{THETA)
Y{6)=6.2%¥D0XSIN{THETA)

1Q=0

IP=0

IK=2
SOLAM=(1.+LAMBDR*_AMBDR) /7 {LAMBDR*L AMBDR)
SQRLAM=SQRT (1. +LAMBDS*LAMBDS )/LAMBDS
CALCULATION OF DENSITY AND TEMPERATURE GRADIENTS
NCl=NC-1
NG 912 I=1,NC1

[1=1+1
DP1=YT(IL1)=-YT(I)
ET(I)=(TACIL)-TA(I)) /{TRXDPL)
ED(TI)=(DENA(CIL1)I-DENA(T) )/ (DENRXDPL)
CHOICF CF INTEGRATION STFEP
NS1=D00/20.
DS2=DJ/2000.
K=1
IF (DS1-DS2) 301,301,302
05=DS1
GO TO 303
bS=nsS2

INTEGRATION B8Y RUNGE-KUTTA METHOD
K=1
CALL RUNGS (S+DSe69Y42YP4L)
Y20=Y(2)
CALL RUNGS (SysDSe6+Y4YP,L)

IF (Y({2)*Y20) 20,21,21
K=K+1

IF (K-3) 21422,22

[F (ICHEK-1) 20445114204
CONTINUE
LOOP FOR TRANSITION POINT TWO

[F {ICHEK-2) 513,514,204

IF (ICHEK-1) 203,206,206
TRANW=SPACJ
ROUND JET SOLUTION



281

0084
0085
0086
0087
0088
0089
ocon
0091

0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102

0103
0104
0105
0106
0107
o108
0109
o110
0111
o112
0113
0l1l4
0115
0116
o117
0118
0l19
0120

514
531
532

530
533

207

220

221

401

920
906
901

900

905

IF (Y(6)-DJ) 530,531,531

WRITF (64532}

FORMAT (10X,20HTHIS IS FREE SURFACE)
GO TO 204

[F (IQ) 533,533,206
M=SQRT(H¥H+Y(2)%xY(2))

WIDTH=2, *Y{1)/SQRT(PAI*M)

IF (WIDTH-TRANW) 20742064206

PRINT SPACING CONTROL

SJP=2.*00

PI=1P*SJP

IF (S-P1) 220,221,221

GO TO 304

IP=IP+1

DENDIF=SQLAM®DENR*Y(3)/Y(1)
TDIF=SQL AM®TR®Y(4)/Y (1)
DILU=Y(1)/VOLFJ

IF (DENDIF) 401,920,920
DENDIF=DENDIF%*0.5

TOIF=0.5*TDIF

TO FIND AMBTENT DENSITY AND TEMPERATURE VALUES
Iy=2

IF (Y(6)=-YT(IY)}) 900,901,902
DENAA=DENA({1Y)

TAA=TA(TY)

1Y=1Y+1

GO TO 909

lYy={v~1

IF (Y{(6)-YT(IY)) 900,901,905
IYY=1Y+1
SYY=(Y(6)=-YTLIYY))/(YTLLY)=YT(IYY))
TAA=SYY*(TA{IY)-TACIYY))+TA(CLIYY)
DENAA=SYY*(DENA{IY)~-DENA{TYY))+DENA(IYY)
GO 70 909

1Y=1Y+1

GO TO 906

TJ=TAA-TDIF

DENJ=DENAA-DENDIF

TOIFM=-TDIF



€81

o121
0122
0123

0124
0125
0126

ovr27
0128
0129
0130
N131
0132
0133
0134
0135
0136
0137
D138
0139
0140
0141
0142
0143
D144

0145
0146

0147
0148
0149
0150
0151
0152
0153
0154

222

206
511

512

WRITF (64222) Y(5), Y{5),WIDTH, DILU, TJ, DENJ,DENAA, TAA,TDIFM
FORMAT (9G14.7)

GO TO 304

SLOT JET SOLUITON

CHECK TRANSITION POINT ONE OR TWO

IF (Y(6)-DJ) 522,+511,511
ICHEK=TCHEK+1

IF (ICHEK-2) 512,512,204

TRANSITION POINT TWO

$=S0

Y{l)=Y1

Y(2)=Y2

Y{3)=Y3

Y{4)=Ya4

Y{5)=Y5

Y(6)=Y6

Ip=1PC

IK=1IKC

1Q=0

Iy=1YC

L=0

K=KI

WRITE (64520}

FORMAT (10X, 20HTRANSITION POINT TwQ)
GO TO 303

Q=1

IFf (ICHEK-1) 240,241,241

TRANSITION POINT ONE

WRITE (6,1222)

FORMAT (10X, 20HTRANSITION POINT ONE)
STORF SCLUTIONS AS INITTAL CONDITIONS FOR TRANSITION POINT TWO
50=S

Yi=Y{l)

Y2=Y(2)

Y3=Y{(3)

Ya=Y(4)

Y5=Y(5)

Yé6=Y(6)

TRANW=2 .2 ALPHAS*SPACJIY/(PATXALPHAR)



781

0155
0156
0157
0158
0159

0160
0161

0162
N163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173

241

501

IPC=1P

KI=K

IKC=1K

ICHFK=ICHEK+1

Iyc=1y

PRINT SPACING CONTROL
PI=1P%*SJP

IF (S-PI) 304,501,501
IP=1P+1
M=SQRT(H*H+Y(2)%Y(2))
WIDTH=Y(1)%Y (1) /{SQRT{PAI)*M%SPACY) *2.
DENDIF=SQRLAMXDENR®Y (3)/Y(1)
TDIF=SQRLAMKTR%:Y(4)/Y(1)
DILU=Y(1)}/VOLFJ

IF (DENDIF) 402, 906,906

402 CONST=0.5%SQRT(PAI%*0.5)

DENDIF=CONST*DENDIF
TDIF=CONST*TDIF

GO TO 906

END



681

0n01
non2
0003
non4
0005

0006
0007
DOOR
0009
0010
oot
0012
or3
0014
0015
no1e
oo
on1s8
0019
0020
0021
0022
0023
ne2é
0025
0026
no27
0028
nnz29
6030

0031
0032
0033

0034
0035

814
B12
811

813

806
801

800

805

802

807
808

70

71

72

SUBROUTINE  DERIVE (SyN,Y,YP)
DIMENSION Y(6), YP(6)

DIMENSION ET(50),FD(50),YT(50)

REAL LAMBDR,LAMBDS, M

COMMON LAMBDR,LAMBRDS My Hy ALPHAR y ALPHAS, NC,ET,ED,PALI,GRAVAC,YT,IK
1, ICHFK,IQ,SPACJ

COMPUTATION OF NENSITY AND TEMPERATURE GRADIENTS AT Y
IF (Y(6)-YT(1)) 811,811,812
IF(Y{6)-YTINC)) 806,813,813

EDD=EN(1)

ETT=tT(1)

GO 7O 70

EOD=FED(NC-1)

FTYT=ET(NC-1)

GO 1O 70

IF (Y{(6)-YT(IK)) 800,801,802
EDD=(FD(IKI+ED(IK-1) ) %0.5
EYT=(ETUIKI+FET(IK-1})*0.5

IK=IK+1

G0 TO 70

IK=TK-1

IF(Y(6)-YT(IK)) R00,801,805

EDO=FD(IK)

ETT=CT(1IK)

TK=1K+1

GO YO 70

IK=IK+1

IF (IK-NC) B14,814,807

WRITE (6,808)

FORMAT{10X,25H THIS 1S THE FREF SURFACE)
RETURN

IF (IQ) 71,71,72

ROUND JET SOLUTILON
ENTRAN=2 . AL PHARXSQRT (2. %P AT %M)
CLAM=(1.+LAMBRDRXLAMBOR) /2.

G0 70 73

SLOT JET SOLUTION

ENTRAN=2 . %SQRT (2. ) ¥*ALPHAS*SPACJ*M/Y (1)
CLAM=SQRT((1.+LAMBDS*LAMBDNS)/2.)



981

00136
00137
0038
0039
0040
0041
0042
0N43
0044

73 SQROTM=SQRY(Y(2)*Y(2)4+H%H)
YP(1)=ENTRAN
YP(2)=CLAMR®GRAVAC*Y(11%Y(3)1/SQROTM
YP(3)=Y(1)*END%Y(2)/SQRAOTM
YP(4)=Y(1)*ETT%Y(2)/SQROTM
YP(5)=H/SQROTM
YP(6)=Y(2)/SQROTM
RETURN
END



L81

00Nl
0one

nonN3
N004
0005
0006
0007
0008
n009
0010
0011
0012
0013
0014
0015
0016
no17
0018
0019
0020
Q021
0022
0023
0024
Nno25

0026
on27
0028

SUBROUTINE RUNGBS (X4HyN,Y,YPRIME, INDEX)
DIMENSION Y(7)oYPRIME(T) 9 Z(T) o WLI{T) ¢W2(T)oW3(T)oWa(T)

CRUNGS - RUNGF-KUTTA SOLUTION OF SET OF FIRST ORDER 0.D.E. FORTRAN 11

OO0

6

DIMENSIONS MUST BE SET FOR FACH PROGRAM

X INDEPENDENT VARIABLE

H INCREMENT DELTA X, MAY BE CHANGED IN VALUE

N NUMBER OF EQUATIONS

Y DEPENDENT VARITABLE BLNDCK ONE DIMENS INNAL ARRAY
YPRIME DFRIVATIVE BLOCK ONE DIMENSIONAL ARRAY

THE PROGRAMMFR MUST SUPPLY INITIAL VALUFS OF Y({1) TO Y(N)
INDEX S A VARTABLE WHICH SHOULD BE SET TO ZERO BEFORE EACH
INITIAL ENTRY TQ THF SUBROUTINE, T.E., TO SOLVE A DIFFERENT
SET OF FQUATIONS OR TO START WITH NEW INITIAL CONDITIONS.
THE PROGRAMMER MUST WRITE A SUBROUTINE CALLED DERIVF WHICH COM-
PUTES THE DERIVATIVES AND STDRES THEM

THE ARGUMENT LIST IS SUBROUTINE DERIVE(XyN,Y,YPRIME)

IF (INDEX) 5,5,1

DO 2 I=1,N

WI(T)=H®xYPRIME(T)

2N =Y{1)+(WL(T)*.5)

A=X+H/2.

CALL DERIVE(A,NyZ,YPRIME)

DO 3 I=1,N

W2(1)=HxYPRIME(I)

ZAI)=Y{I)+.5%W2(1)

A=X+H/2.

CALL DERIVE(A4N,Z,YPRIME)

DO 4 I=14N

W3{T1)=H®YPRIME{])

ZAI)=Y{I)+W3 (1)

A=X+H

CALL NDFRIVE (A, N,Z,YPRIME)

DO 7 I=1,.N

W4 (I )=H®YPRIME(])

YOUI=YLI )4 ({2 ¥ (W2(II+W3(T)ID+WL(I)+Wa(T))/6.)

X=X+H

CALL DERIVF (XyNsY,YPRIME)

GO TO 6

CALL DERIVE (XyNyY,YPRIME)

INDEX=1
RETURN
END



APPENDIX B

The problem discussed in Chapter 4 on the two-dimensional surface buoyant

jet can be solved using the program listed in this appendix. The reader

should fully understand the investigation reported in Chapter 4 (Sec. 4.2)

before attempting to use this program. To facilitate the use of the program,

the following lists are prepared relating the names of variables used in the

text to those used in the program.

Input:
In Text In Program SBJ2
o E
CAY
FO F2
1/R EPS
XSTOP
D
D1
Output:
e E
o}
FO F2
X X
T T
u U
h > H
= u_
F = FO Th FR
hZ H2
FZ FR2
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Remarks

entrainment coefficient

dimensionless surface heat
exchange coefficient

densimetric Froude number
inverse of Reynolds number
value of x to stop integration

control variable for step size

' 11 1" 1 1N

dimensionless distance
dimensionless density deficiency
dimensionless velocity

dimensionless thickness
local densimetric Froude number

layer thickness after jump

Froude number after jump
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PROGRAM SBJU2-TWO NDIMENSIONAL SURFACE HORIZONTAL BUOYANT JET

e NeNeNal

ESP IS 1/RF
con1 DIMENSICN Y(3),YP(3)
non2 COMMON F oCAYF24,EPS,XSTOP, DX, DXP
00n3 1 READ(5,10,END=999) E,CAY,F2,EPS,XSTOP,D1,D
0004 10 FORMAT(TF10.6)
00ns WRITF(6,1N00) E4CAY,F2,4EPS
0006 1000 FORMAT(IHL g1 X4 2HE=gF 104 692HK=4F10.6¢3HF2=9F10.344HEPS=9F 1046477/

17X91HX 913Xy LHT 313Xy LHUy 13X 1HHy 13Xy 2HFRy 12X 4 2HH2 412X+ 3HFR2)
oon? XPRINT=0,0

acos [F{F2.LE.1.) XSTDP= 8./CAY
0Qna [F(F2.LE.1,) D1=0,1

0n1l1 DX=D1%0

012 DXP=DX-0.,00001

0013 X=0.,0

0014 Y{l)=1.0

0oLls Y{2)=1.0

0014 Y(3)=1.0

0017 N=3

o018 L=0

0019 CALL RUNGS(XsDXyNyYoYP,yL)
nG2n 3 CALL RUNGS({XyDXyNyY,YP,L)
0021 IF(XJLF.XPRINT) GO TO 3
0022 [F(XeGELLQs%N) DX=0,2%0
0023 ITF{XeGE.40s%D) DX=0.5%D
0nza4 [FIX.GE.100.%D) DX=D

or25 IF{XeGFE.200.%D) DX=2 %D
0026 TF{X.CE.500.%D) NDX=5.%D
0027 FF{X.GEL.1000.%D) DX=10.%D
0028 [F(X.GE.N) DXP=10.%NX-0,00001
0029 FR=Y(2)%Y{(2)/Y(L)/Y(3)*F2
0030 IF(FR.LEL.O.) GO TO 1

0031 H2H1=(SQRT(1.+R. *FR)-1.) /2.
0n32 FR2=FR/H2H]1%%3

00133 H2=H2H1%Y (3)

0034 XX=X+0.,00001
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NN35
00136
0037
Hnis8
no39
Q040
0041
0042
0043

100

11

999

WRITE(6,100)XX Y1)y Y(2)yY(3),FRyH24FR2
FORMAT(1IH 47Gl4a.7)

[F(F2.LT.1.) GO TO 11

IF{(FR.,LF.1a) GU TO ]

IF{X.GE.XSTNP) GN TN 1
XPRINT=XPRINT+DXP

G0 TO 3
CALL FXIT
END
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00Nt
0002

0003
0004
0005
0096
0007
0008
N009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

0026
0027
0028

SUBROUTINE  RUNGS (X oHyNyY,YPRIME, INDEX)
DIMENSION YU3) yYPRIME(3),Z(3)4W1(3),W2(3),W3(3),Wa(3)

CRUNGS - RUNGE-KUTTA SOLUTION OF SET OF FIRSYT ORDER 0.D.E. FORTRAN II

OO OON

NIMENSIONS MUST BE SET FOR FACH PROGRAM

X INDEPENNDENT VARIABLE

H INCREMENT DELTA X, MAY BE CHANGED IN VALUE

N NUMBER 0OF FQUATIONS

Y NDEPENDENT VARTABLE BLOCK ONE DIMENS IONAL ARRAY
YPRIME DERIVATIVE BLOCK ONE DIMENSIONAL ARRAY

THE PROGRAMMER MUST SUPPLY INITIAL VALUES OF Y(1) TO Y(N)
INDEX IS A VARIABLE WHICH SHOULD BE SET TO ZER(O BEFORE EACH
INITIAL ENTRY TO THE SUBROUTINE, I.E., TO SOLVE A DIFFERENT
SET OF EQUATIONS OR TO START WITH NFW INITIAL CONDITIONS.
THE PROGRAMMFR MUST WRITE A SUBROUTINE CALLED DERIVE WHICH COM-
PUTES THE DERIVATIVES AND STORES THEM

THE ARGUMENT LISY IS SURROUTINE DERIVE(XyN,Y,YPRIME)

IF (INDEX) 54541

DO 2 1=1,4N

WL(I)=H®YPRIME(I)

ZEU) =Y(T)+(W1(1)%,5)

A=X+H/2.

CALL DERIVE(AWN,Z.YPRIME)

00 3 I=1,N

W2(1)=HRYPRIME(T])

Z{1)=Y(1)+.5%W21( 1)

A=X+H/2.

CALL DERIVE(A,N,Z,YPRIME)

DO 4 I=1,4N

W3(T)=H®*YPRIME(I)

Z(L) =Y (I)+W3 (1)

A=X+H

CALL DERIVE (A,N,2,YPRIME)

DO 7 I=1,N

Wall)=H®YPRIME(I)

YD) =YD )4 ({24 (W2(T) 4R3I ) I+WL(T)#Wa(T))/6.)

X=X+H

CALL DERIVF (XyNysYyYPRIME)

GO TO 6

CALL DERIVE (XyN,Y,YPRIME)

INDEX=1
RETURN
END
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0001
o0on2
nen3
0004
0005
0006

onav
0008
n00N9

o001l
0002
00n3
0004
0005

SUBROUTINE DERIVE(XyNyY,YP)

DIMENSION Y(3),YP(3)

COMMON E CAYF24,EPS,XSTOP¢DX,DXP

EE=E*FUN(Y({1)%Y(3)/Y(2)/Y(2)/F2)
YP(1)=-CAYRY (1) /Y(2)/Y(3)-EE*Y(1)/Y(3)
YP(3)=(=2.%EF=-Y(3)%Y(3)%xYP(1)/2./F2/Y(2)/Y(2)-EPS/Y(3)/Y(2))/(Y(1)
LxY(3)/F2/Y(2)/Y(2)~1.)

YP{2)=Y(2)/Y(3)*{EE-YP(3))

RETURN

END

FUNCTION FUN(X)

IF(X.GE.0.85) FUN=0.

IF(XelTe0.85) FUN=(2./(1.4X/0.85)-1.0%%1.75
RETURN

END



APPENDIX C

The problem discussed in Chapter 5 on the passive turbulent dispersion
from a steady source can be solved using the program listed in this appendix.
The numerical scheme used is based on the Crank-Nicolson method. To
facilitate the use of the program, the following lists are prepared relating

the names of variables used in the text to those used in the program.

Input:
In Text In Program Remarks
-~ NEND A program control number. If
not equal to zero program will
continue, otherwise the program
will exit.
-- NDY number of variations of y-mesh
schemes
-- NDX number of variations of x-step
sizes
-- NEXP number if variables < lO_NEXP’
it will take it zero
A LAMBDA dimensionless quantity
O 1 T
Yo Y
ho HO 1 ih
u UFS 1R} "
o
Y YEI 1 It
el YE t1 "
ye YKl 1 1
yKl YKZ 1 t
yiz YK3 " "
YK4 YK4 1 1
51 BETAL " "
52 BETA2 " "
K CKE 5 11
e
K4 CKD " "



Input (continued):

In Text

Output:

See Input List

P
a o

aQa 0 <«

max

In Program

XDY(I)
NDYT(I)
NPR(I)

DY(I, J)

NYC{(1, J)

DX(I)

NXC(I)

NPX

IL.AMBDA
YO

HO

YK1
YK2
YK3
YK4
BETAI
BETA2
UFS
YE1
YE

KE

KD

cO
SIGMAZ

CMAX

196

Remarks

x to change y-mesh scheme
number of y-mesh changes

number of printout of the
y-mesh lines

mesh size in y constant for
NYC grids

number of grids that y has
mesh size DY

step size in x constant for
NXC steps

number of steps that x has
step size DX

number of x steps for one
printout

See Input List

t
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C PROGRAM PTD -PASSIVEF TURBULENT DIFFUSION OF A CONTINUQUS SDURCE
0001 INTFGCR OT

0002 REAL LAMBDA

0003 DIMENSION A(100)4B(100),4C(100),D(100)4F{100)4Y(100),CM(100,43),
1S0L{100,3),Y0{99),52(29),CMAX{99), DY{9,9), DX{9)yNYC(9,9),
INXC(9Q) yNTAB(9) 4 X1(9),4X2(9),C0(99),U(99)

0004 DIMENSION NOYT(9),YY{100) 4NPX(9)4XDY(9) NPR(T)

0005 COMMON LAMBDA,YOsHO s YFLlyYE4YK]19YK2,YK3,YK&yBETA]1,BETA2,4CKE,CKD,
1Y+ CMyUFS

0006 COMMON /HOLD/A4ByCyDyF,SOL,Y0,S87,CMAX,CDO

0007 0T=6

0008 100 READ (5, LINENDyNDYyNOX, NEXP

0009 1 FORMAT(1015)

0C10 PAI=3.14156927

0011 TESTXP=1./10.%%NEXP

0012 IF (NEND) 3,4,3

0013 4 CALL EXIT

0014 3 READ(S,2) LAMBDA,YD,HD UFSy YElsYE,YK14sYK29YK3,YK4,BETAL,BETAZ,
1 CKE,LCKD

0015 2 FORMAT (8E10.5)

0016 READ (5,834) {XDY(I) NDYT(T),NPR{I), I=1,NDY)

0017 834 FORMAT (8(F5.1413,12))

0018 832 DO 24 1=1,9

D019 DG 847 J=1,9

0020 DY(1,J)1=0.0

cc21 847 NYC(I,J)=0

No22 X1{I1)=0.0

0023 X2({11=0.,0

0024 DX{1)=0.0

0025 NXC(I)=0.

0026 24 NTAB{1)=0

0027 58 WRITE (OT4.6) LAMBDA,YO,HO,YK1l,YK2,YK3,YK4,BETAL1,BETAZ,UFS,
LYELyYECKELCKD

0028 6 FORMAT(OHILAMBDA =4G12.5+//7TH YD =4G12.5,15X,5H HO =,G12.5,//9H

1K,Y-PROF.,2X,4HYK1=.G 12.5'2)(,AHYK2='812.5'4HYK3=,GIZ. 572X14HYK4=1
2G12.592Xs6HBETAL=9612.542X,6HBETA2=,G612.5//9H U-PROF. 42Xs5HUFS =,
3G12e592X g 4HYEL1=3G124592Xy3HYE=,G12.5,//1TH SURFACE EXCHANGE,5Xy
45H KE =,612.5,//13H DECAY COEFF.,10X,5H KD =,G12.5/)

0029 NDY1=NDY-1
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00130
0031
0032
00133
0034
0035
00136
0037
00318
00139
0040
0041

0042
0043
0044
0045
0046
0047
G048
0049
0050
0051
0062
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

0065
0066

15
10

DO 110 1=1,NDY]

NSAV=NDYT(I)

READ (545) (DY{JyI)y NYC(JyI)oJd=1yNSAV)
WRITE (OT,111) I, XDY(I)

WRITE (OT47) (DY(JoIdy NYCUJsI)eJd=1yNSAV)
FORMAT (11045Xy6H X =4612.5)

CONTINUF

READ (5455) (DX(I)4NXC(I)yNPX{I)yI=1,NDX)
FORMAT (4(F10.5,215))

FORMAT (4(F10.5+415,45X))

WRITE (0OT,7) (DX(I)yNXC(I)y1=14NDX)
FORMAT (5(G12.5,15))

SEY UP TABLE

EKE=CKE*DY{1,1)

Y(1)=-DY(1,1)

y(2)=0.

K=2

NSAV=NDYT (1)

DO 10 I=14NSAV

DELY=0Y(1,1)

NUM=NYC(1,41)

NO 15 J=1,4NUM

K=K+1

Y{K)=Y{(K-1)+DELY

CONTINUE

NTAB(I)=K

NPRINT=NPR(1)+1

NTAB(NSAV)=0

M=K+1

Y(M)=Y(K)+DELY

Ml=M-1]

M2=M1-1

WRITE (OT,8) (Y{I),1=1,M)

FORMAT (/19H TABLE OF INITIAL Y/(8G13.5))
WRITE (0T,9) (NTAB(1),I=1,NSAV)

FORMAT (/TH NTAB =,516)

SET UP SOURCE CONDITIONS

DO 11 I=2,M1

AY=ABS(Y(I)-YD)
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0067
00sR
0069
0070
0071
0072
cn73
0074
0075
0076
on7r7
0078
0079
0CR0

0081
0082
00813

0084
0085

0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
D096
0097

0098
N0n99
0100
0111

(]

13

12

872
11

14

16

17

90 FORMAT(1H//3H X=,GlZ.S,//ySXylHYyllX,?HCO,11Xv7HSIGMA ZeTX

17)
WRITE (0T,491) (YOLI ’vCO(I)vSZ(I"CMAX(I’11=1'L)
491 FORMAT (4G13.5})

ALPHA1=0.5%HD

DO 13 J=1,3

CM(TI,J)=0.

FII-1)=CAY(I-1,1)
UCI=-1)=USUB(Y(1))

[F (AY-ALPHA1) 12,11,11
SAVI=SQRT (1.-(AY/ALPHAL)*%2)
CM{I4+1)=SQRT(SAV])
CMUT42)=SAVLI*CM(1,41)
CM{T,43)=CM(1,2)

DO 11 J=1,3

IF (ABS(CM(I,J))-TESTXP) 872,872,11
CM(1,J)=0.0

CONTINUF

SET BOUNDARY CONDITION AT X=0
DO 14 J=1,3
CMU1,J)=CM(3,J) =2 %CKEXDY(1,1)%CM(2,4)
CM(MyJ)=CM(M2,J)

LOOP ON NUMBER OF DELTA X-§
X=0,

IDY=2

PRINT SOURCE CONDITIONS

L=1

DO 17 I=2,NPRINT

IF (ABS(CM(I,1))~1.0E~08) 17,17,16
CO(LY=CM(I,1)

YO(L)=Y (1)
SZEL)=SQRT{CM(TI,2)/CM{I,1))
CMAX(L)=CM{I,1)/S7(L)

L=L+1

CONTINUE

L=L~1

WRITE (OT,90) X

DO 50 NDXL=1,NDX
DELX= DX(NDXL)

+ 4HCMAX,



00¢

01n2
0103

D104
n1ns
0106
0107
0108
0109
0110
o111l
0L12
o113
0114
0115
0116
0117
0118
0l19
0120
0121
0122
0123

0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135

0136

121

124
123

511
129
131

128
132

NUM=NXC (NDXL )

IF (ABS(X-XDY(IDY))-0.00001) 121,121,122
SET UP NEW Y TABLF
YY{1)=-DY(1,1DY)

YY(2)=0.

EXKE=CKE*DY(1,1DY)

K=2

NPRINT=NPR(INY)+1
NSAV=NDYT(IDY)

DO 123 1=1,NSAV
DELY=DY(1,1DY)
NUMM=NYC (1 ,1DY)

D0 124 J=1,NUMM

K=K+1

YY(K)=YY(K=-L)+DELY

CONTINUE

NTAB(I)=K

NTAB{NSAV) =0

MSAV=M

M=K+1

YY(M)=YY(K)+DELY

Ml=M-1

M2=M1-1

SET UP PROPER SOLUTION AT NISTANCE N*DX
LODP ON YY

IKK=2

DO 126 I=2,M

[ K=1TKK

DO 127 J=IK,MSAV

IKK=J

IF (ABSIYY(I)=Y(JU)})-0.00001) 129,129,511
IF (YY(1)=Y(J)) 128,129,127
DO 131 TJ=1,3
SOL(T,1J)=CM{J,y14)

GO TO 126

DO 132 1J=1,3

SOL(I TU)=(CMIJyTI)-CM(J=-1,1U))xLYYLD)=-Y(J=-1D)/(Y(I)-Y(JI=-1))4CM(U-

11,1J)
GO TO 126
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0137
0138

0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
Cla9

0150
0151
0152
0153
0154
0155
0156
0157
015R
0159
01560
0151
0162
0163
0164
0165
0166

0167
0148
0169

0170
0171

127
126

130

133

378

122

21

22

20

CONTINUE

CONTINUF

RESET BOtINDARY CONDITIONS

DC 130 IJ=1,3

SOL{M, T1J)=S0OL(M2,1J)
SOL(leJ)=SUL(3qXJ)-Z.*EKE*SUL(ZvIJ’
DO 133 [=14M

Y(I)=YY(1)

DO 133 1J=1,3

CM{TI,14)=S0L(I,1J)

DO 378 [=2,M1

UlI-1)=USuB(Y(l))

FII-1)=CAY(I-1,1)

IDY=1NY+]

SET UP MATRIX CNEFFICIENTS FOR A CONSTANT DELTA X
L=1

IDYY=IDY-]
X1(L)=0.5%DELX/DY (1, IDYY) %x%x?

DO 20 I=2,M1

J=1-1

IF (I-NTAB(L)) 21,22,21
AlJ)==X1(L)*F(J)

BOIY=X1UL)IE(F(I)Y+F (J))+000 ) +CKD*EDEL X
ClI)==-X1{LI%F(1)

GO TQ 20

X2(L)=DELX/(UY(L,IDYY)*DY(L+1,IDYY)*(DY(L,IDYY)+DY(L+1.IDYY)))

ALI)==X2 (L) *F(J) DY (L+1,1IDYY)
BUI) =X2 (L)X (DY (L IDYY)XF(1)+DY(L+1, IDYY)*F(J))+U(J)
CI)==X2 (LI*F(T)%DY(L,INYY)

L=L+1
X1{L)=0.5%DELX/DY (L, IDYY) %%
CONTINUE

SET UP BOUNDARY CONDITIONS
B{1)=B{1)-A(1)*EKE *2,
Ct1)=C{1)+A(1)
A(M2)=A(M2)+C(M2)
TRTIANGULATE MATRIX
A(M2)=A(M2)/R(M2)

DO 30 J=2,M2

+CKD*DEL X
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0172 I =M2-J+1

0173 BII)=B(I)=C(I)%*A(I+1)
0174 30 A(I)=A(1)/8B(1)
C LOOP IN X-COORDINATE
0175 D0 51 NTIME=1,NUM
0176 X=X+DELX
C LOOP OVFR NUMBER OF FQUATIONS
0177 DO 52 NFQ=1,3
C GENERATE NON-HOMDGENEOUS TERMS
0178 L=1
o179 NO 40 [=2,M1
0180 J=1-1
0181 [1=1+1
0182 IF (I-NTAB(L)) 41,427,441
0183 41 DEJI=CMTNFQI2U(J)+X1ILIX(F(I)*(CM(T14NFQ)-CM(T NEO))-F(JIX(CM(I,
INEQ)-CM(J,NFO)))
0184 GO TO 43
0185 42 DUJ)=CMUT JNEQ)*U(JI+X2(L)*(DY(LIDYY)*F(TI)}*(CM(T14NEQ)-CM(I,NEQ))~
IOY(L+1,IDYY)*F{J) % (CM{I,NEQ)-CM{J,NEQ)))
0186 L=L+1
0187 43 CONTINUE
0188 GO TO (4047L+72)4NEQ
0189 71 DCJI=D(JI+DELX*(CAYZ([4CMI*(SOL(T,41)+¢CM(I,1)))
0190 GO TO 40
0191 72 DCJ)=DUJ)+DELX®(CAYZ(T1,SOLI*(SOL(I,1)+CM(I,1)))
0192 40 CONTINUE
0193 D(M2)=D(M2)/B(M2)
0194 D0 66 J=2,M2
0195 I[=M2-J+1
0196 66 D{I)=(D(T)-C(I)*D(TI+1))/8B(1)
C COMPUTE SOLUTION VECTOR
0197 SOL(2,NFQ)=D(1)
0198 DO 67 [=2,M2
0199 IF (ABS(SOL(I,NEQ))-TESTXP) 881,881,67
0200 881 SOL(I,NFQ)=0.
n201 67 SOLUI+1,NEQ)=D(I)-A(T)%SOL{T,NEQ)
0202 8872 SOL{M,NEQ)=SOL(M2,NEQ)
0203 883 CONTINUE

0204 SOL{1yNEQ)=SOL(34NFQ)-2.*%EKF*SOL (2,NEQ)
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0715
0206
0207
0208

0209
0210
0211
0212
D213
0214
0215
0216
0217
0218
0219

0220
0221
0222
02723
D224
0225
02?26
0227
0228
0229
0230
0231
0232
0233
0234
0235

0236
0237
0?38
0239
0240

52

173

54

22?2
221

223

220

81

82

83

76
80

290

94

CUNTINUE

00 73 J=1,M
SOL{J92)1=0.5%(SOL(J42)+50L(J,43))
IF (MODUNTIME,NPX({NDXL))) 98,54,98
COMPUTE INTEGRAL OF CNH OVER DEPTH
N1=3

SUM=0.0

DC 220 T=1,NSAY

N2=NTAB(I)-1

IF (I-NSAV) 221,222,22)

NZ2=M2
SUML=(SOLINL-1,1)%U(NL1-2)+SOL(N2+1,1)%U(N2))/2.
DO 223 J4=N1,N2
SUML=SUML+SOL(J,y1)%U(J-1)

SUM=SUML *¥DY(1,INDYY)+SUM

N1=N2+2

COMPUYE DESIRED QUTPUT

L=1

DC B8O I=2,NPRINT

IF (ABS(SOL(I,1))-1.0E-08) 80,80,81
Yo(L)=vy(1)

corL)=scL(t, 1)
$22=SOL(1,2)/S0L(1,1)

IF (S12) 82,83,83
SZ(L)=~-SQRT(-522)
CMAX{L)=CO(L)/S7(L)

GO TO 76

SZ{L)=SORT(SZ2)
CMAX(L)=CO(L)/SZ(L)

L=L+]

CONTINUE

WRITE (0T7,290) X,SUM
FORMAT{1HL//TH X =9612.545X9BHI{CO%U)=9G12.5//5X,1HY,11X,3H CO,
18Xy THSIGMA Z, T7X,4HCMAX,/)
LM=t -1

[F (LM-38) 94,94,95

L1=1

L2=L-1

GO 7O 96
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0241 95 L1=1

0242 L2=38
0743 96 WRITE (OT,91)0(YO(L),CO(1),S7(1),CMAX(T)yI=L1,L2)
0244 91 FORMAT (4G13.5)
0245 IF (L2-LM) 97,98,98
0246 37 L1=39
0247 L?2=L-1
0248 WRITE (0QT,99)
0249 99 FORMAT (1H1//7/)
0250 GU TO 96
# SHIFT SOLUTION YO NEXT X-~STEP
0251 98 DO 92 J=1,2
0252 DO 92 I=1,M
0253 92 CM(1,J)=50L(1,J)
0254 DO 49 I=1,M
0255 49 CM(1,3)=CM(1,2)
0256 51 CONTINUE
0257 50 CONTINUE
07258 GO TO 100
0259 END
noni FUNCTION CAY(I,J)
c COMPUTF KY - VERTICAL DIFFUSION CNFFFICIENT
C UNTFORM CAY(=BETA?) IF YK& IS NEGATIVE
noonz REAL LAMBDA
0003 DIMENSICON Y(100),CM(100,3)
N004 COMMON LAMBDA YN eHO s YEL s YE 2 YKY 3 YK29YK34YK4,BETAL yBETA2,CKEZCKD,
1Y,CM,UFS
00ns P=(Y(1)+Y(J))/2.
0006 IF (YK4) 9,9,1
0007 1 IF (P-YK1) 2,2,3
0008 2 CAY=l.
0009 RETURN
0010 3 IF(P-YK2) 4,5,5
0011l 4 CAY=(RETALl*(YKLI-P)+(P-YK2))/(YKI-YK2)
nnie RETURN
0013 S IF (P=YK3) 647,7
0014 6 CAY= BETAl
0015 RETURN
0016 T 1F (P-YK4) 8,9,9
0017 8 CAY=(BETA2%(YK3-P)+BETAL*(P-YK&))/(YK3I~YK&)
0018 RETURN
0o1l9 9 CAY=BETA2
0020 RETURN

0021 END



s0¢

nonl
nenz
0003
0004

0095
0006
0007
0008
0009
no010
0011
0012
0013
0Ccla
6015
0016

0001

0002
0003

0004
0005
0006
0007
0008
0009
0010

10

(2080 o8

FUNCTION USUB(Y)

REAL LAMBDA

DIMENSION Z(100),CM(100,3)
COMMON LAMBDAZ YD s HO 3 YEL 9 YE WYKL 3 YK24YK3,YK4,BFTA>,BETA2,CKELCKD,
1Z7,CM,UFS

[F (UFS) 10,10,11

usuRs=0n.

RETURN

[F (Y=YE) 646,77

[F (Y-YF1l) 5,4,4

uUsSuUB=UFS

RETURN
JSUR=UFSX((Y-YE})/(YEL-YE))
RETURN

US“B=OQ

RETURN

END

FUNCTION CAYZ(L,CM)
COMPUTF K7
REAL LAMBDA
COMMON LAMBDA,YO,HOyYEL4YF,YK1yYK24YK3yYK44BETAL,BETA2,CKE,CKDy
1y
DIMENSION Y(100),CM(100,3)
[F (ABS(CM(L,1))-1.0E-08) 1,1,2
CAYZ=0.
RETURN
CAYZ=LAMBDAX (ABS(CM(L,2)/CM(Ly1)))%%0,666666667
RETURN
END



APPENDIX D

The problem discussed in Chapter 5 on the unsteady dispersion from
a continuous source can be solved using the program listed in this

appendix. The numerical scheme used is based on the Crank-Nicolson

method.

Input:
In Text In Program Remarks

NEND see list in Appendix C

NDY LR} 1] 1 1 1!

NDX number of variation of t-step
sizes

NEXP see list in Appendix C

NT number of times in specifying
u, K , F values

e co

NXPR number of variations of DXPR
sizes

LAMBDA See list in Appendix C

YO 1"

HO iR}

YK1 "

YKZ 1

YK3 Tt

YK4 1

BETAI1 "

BETA?Z2 "

CKD "

XDY(I) t to change y-mesh scheme

NDYT(I) see list in Appendix C

NPR(I) "

TI(I) times at whichu, K , F

s o : e co

specified

207



In Text

u

K
e

Fco(t)

Outeut:

In Program
U
CKE(I)
FC(I)
DXPR(I)

NXPRC(I)
DY(I, J)
NYC(L, J)

DX(I)

NXC(I)

TI

U

CKE
FC
LAMBDA
YO

HO
YK1
YK?2
YK3
YK4
BETAL
BETA2
KD
XPR
TPR

CcoO
SIGMZ
CMAX

208

Remarks

u at time TII)

Ke at time TI(I)

1 at time TI(I)
co

spacing in x for each printout,
constant for NXPRC steps

see above
y-mesh constant for NYC grids

number of grids that y has
mesh size DY

step size in t constant for
NXC steps

number of steps that x has
step size DX

See Input List

1t

x values for printout
t values for printout

see output list for Appendix C



6072

000Nl
0002
00n3

Nn0N4

0005
0006

0007
0008
neno
0010
D011
0012
0013
0014
0015

0016
oor7
0018
Cco1l9
0020
no21
D022
0023
0024
0025
002¢6
o027
0028
0029
0030
0Nn31
0032
0033

W

2

B34

835

730

336

31

PROGRAM UTD-~UNSTEADY TURRIHLENT NDIFFUSION OF A CONTINUOUS SOURCF
INTEGFR OF

REAL LAMRDA

NDIMENSION A(100),8(100),C(100),0(100),F(100),Y{(100),CM(100,3),
1SOL(100+3),Y0(99),S7(99) yCMAX(99), DY(949)y DX{(9)4NYC(9,9),
ZNXC(9) ¢y NTAB(O9) o X1(9) 4X2(9),CN(99),U({99)

DIMENSION T{99),T1{99),CKF(99),FC{99)}4XI(99),DXPR(I)4NXPRC(9)},
ITPR(99) 4 XPR(99),SOLIJ(100,3)

DIMENSTION NDYT(9),YY(100) NPX{9)4XDY(9)4NPR(9)

COMMON LAMBD A, YN HO, YKL YK2y,YK3,YK4yBFETA] BETA?, CKDy
1Y.CM

COMMNON /HDLD/A B 4CyDeFyS0OLyY04S7Z,CMAX,CO

0T=56

READ (S5, 1INEND¢NOY ¢ NDXyNEXPyNT ,NXPR
FORMAT(1015)

PAI=2,1415927

TESTXP=1./10.%%NEXP

IF (NEND) 3,4,3

CALL EXIT

READ(5,2) LAMBNDA,Y0,HO,
1CKD,TF

FORMAT (8F10.5)

READ (5,+834) (XDY(1)4NDYT(1),NPR{I), I=14NDY)

FORMAT (B(FS.14y13%,12))

READ (54835) (TI(I)yU{I)yCKE(TI)yFC(T),I=14NT)
FURMAT(4ELN.S)

TE=TI(NTY)

XiI(1)=0.

Js=2

DO 730 I=24NT
XI(I)=XT(I=1)+0.5%{(U{ D)+ I-1I)=(TI()-TI(I-1))

CONT INUF

WRITE (64336) (TTIH{IVyULDI)4CKELTI)»FC(T) o XI(1)y1=1,NT)
FORMAT (//712H TI3UsCKE4FC/{15,5G13.5))

READ {5431) (DXPRU{UI) NXPRC(I),I=1,NXPR)

FORMAT (4(E10.5,110))

K=2

XPR{1)=0(.

DO 32 I=1,4NXBR

YK1,YK2,YK3,YK4,BETAL,BETAZ,



1]

0034 NXPRCC=NXPRC(I)

0035 DXPRC=DXPR(I)

0036 DO 33 Jy=1,NXPRCC

0037 XPR{K)=XPR{K-1)+DXPRC

no3e I[F (XPR(K)=XI(NT)) 331,331,332

0039 331 K=K+1

nO4O 33 CONTINUE

0041 32 CONTINUE

0042 332 NXPR1=K-1

0043 832 DO 24 I=1,9

0044 DO 847 J=1,9

0045 DY(1,J)=0.0

0046 847 NYC(1,J)=0

0047 X1(11=0.0

0048 X2(1)=0.0

N049 DX{I)=0.0

0050 NXC(I)=0.0

0051 24 NTAB(1)=0

0052 58 WRITE (0OT,6) LAMBDA,YNyHD,YK1,YK2,YK3,YK4,RETALl,BFTA2,
1CKD

0053 6 FORMAT(OHLLAMBDA =4G12.5+//TH YO =,6G12.5915X,5H HO =4G12.5,//9H

lKY-PRDF.,2X.4HYK1=,G[?.5,?X ,"HYKZ'—"G12-57‘QHYK3='61?05' 2X,4HYK4=.
2G12.5¢2X 4 6HBFTAL=3G12.5¢2X6HBETA?=,G12.5//13H DECAY COFEFF.4y10Xs5H
3 KD =,G12.5/)

0054 NDY1l=NDY-1
0055 DO 110 I=1,NDY1
0056 NSAV=NDYT(]I])
0057 READ (5+5) (DY(Js1)y NYC(JyI)yJI=14NSAV)
0ose WRITE (OT,111) 1, XOVY(I)
0059 WRITF (OT,7) (DY{JyI)y NYC(J,I),J=1,NSAV)
0060 111 FORMAT (110,5X,6H X =4G12.5)
0061 110 CONTINUE
0062 READ (5455) (DXUI)yNXC(I),yI=14NDX)
0063 55 FORMAT (4(EL0.5,110))
0064 5 FORMAT (4({F10.5,15495X))
0065 WRITE (0OT,7) {DX{I)yNXC{I),I=1,NDX)
0066 7 FORMAT(5(G12.5,110))
C MAIN LONP OVER TIME OF RELEASES

0067 NT1=NT-1



112

0068
0069
00710
no71
0072
00713
0074
0075
0076
onr?
0078
0079
NnoRo
00131
0082
0083
00R4

0085
No3gs
0087
0n8s
0089
0cao
0091
0092
0093

0094
0095
€096

0097 .

noosg
0039
0100
0101
n10?2
c103
0104

c

740

37

36

39

34
38

1002
333

101

DO 107 NTI=1,NT1
XINTI=XT{(NTI)

DO 740 I=NTI,NT
XI{T)=XI(I)-XINTI
TPR(1)=0.

J=JS
NXPR11=NXPR1+1

DC 38 I=2,NXPR11
IF (XPR(TI)-XI(J)) 34,36,35
J=J+1

[F{J-NT) 37,137,139
TPRIT)=TI(J)

GO TO 38
TPR(1)=-1.2345
NXPR2=[~1

G0 TD 1002

TPRUD)I=TI(J-DI+(TI(J)-TILI=-1) ) ®(XPRII)=-XT(J-1))/{XTLI)-XTI(I=-1))

1-TI(JS-1)

CONTINUE

WRITE (6,4333) (I,XPR(I),TPR(I),1=1,NXPR2)
FORMAT (8HIXPR,TPR/(1542G15.5))
MT=2

TIN=TI(NTI)
TF1=TF-TIN

IF (TF1) 100,100,101
FC1=FC(NTI)}
RKE=CKF(NTI)

SET UP TABRLE
EKE=RKE*DY(1,1)
Y(1)=-DY(1l,1)
Y{2)=0.

K=2

NSAV=NDYT(1)

DO 10 I=1,NSAV
DELY=DY(I,1)
NUM=NYCI(I,1)

DO 15 J=1,NUM

K=K+1
Y{K)=Y(K=-1)+DELY



21¢

N10s
0106
0107
0108
o109
n1to
0111
0112
0113
0114
N115
0116

o117
0118
0119
0120
0121
0122
01?23
N124
n125
0126
0127
0128
n129
0130
0131

0132
0133
0134

0135
0136

0137
0138
0135

15
10

13

12

872
11

14

CONTINUE

NTAB (1) =K

NPRINT=NPR(1)+1
NTAB(NSAV) =0

M=K+1

Y{M)=Y(K)+DELY

Ml=M~1]

M2=M]1-1

WRITE (DT48) (Y(1)yl=1,4M)

FORMAT (/19H TABLE OF INITIAL Y/(8G13.5))

WRITE (0T,9) (NTAB(I),1=1,NSAV)

FORMAT (/7H NTAD =,516)

SET

UP SOURCF CONDITINNS

NO 11 I=2,M1
AY=ABS(Y(I)-Y0)
ALPHA1=0,5%H0
NO 13 J=1,3

CM(

I'J)=O.

FII-1)=CAY(I-1,1)

IF (AY=-ALPHAL1) 12,11,11
SAVI=SQRT(1l.~-(AY/ALPHAL ) **2)
CM{TI,1)=SQRT(SAVLI)*F(C1
CM{T,2)=SAV1*CM(I,1)
CM(143)=CM(],2)

00 11 J=1,3

IF

(ABS(CM(I,J))-TESTXP)

CM(T1,J)=0.0
CONTINUE
SET BOUNDARY CONNDITION AT X=0

no

14 J=1'3

872,872,11

CMU14J)=CM(3,4J)-2.%xFKF®CM(2,J)
CM(M,J)=CM(M2,J)
LOCOP ON NUMBER NF DFLTA X-S
X=0,

INDY=2

PRINT SOURCF CONDITIONS

L=1

DO 17 I=2yNPRINT

IF

(ABS(CM(I+1))-1.0E-08)

17417,16



€17

0140
0141
0142
0143
0144
0145
0146
0147
0148

0149
0150
0151
0152
0153
0154

015%
N156
0157
n158
N159
0160
0161
0162
0153
0164
0165
0166
0167
0168
0169

0170

0171
0172
0173
0174

OO0

16

17

90

491

121

124
123

CO(L)=CM{I,1)

Yo(L)=Y(I)

SZIL)=SORT(CMII,2)/CM(I,1))
CMAX{L)I=CM(T,1)/SZ(L)

t=L+1

CONTINUE

L=L-1

WRITE (OT,90) TIN
FORMAT(1H//1SHIRELEASE TIME =4G12.5//95X91HY11X42HCO, 11X,y 7THSIGMA
12y 7TX94HCMAX, /)

WRITE (0CT,491) (YO(I),CO(I),SZ(1),CMAX(T)yI=1,L)
FORMAT (4G13.5)

DO 50 NDXL=14NDX

DELX= DXINDXL)

NUM=NXC (NDXL)

IF (ABS{X-XDY{INY})-0.C0001) 121,121,122
SET UP NEW Y TABLE

YY(1)=-DY(1,IDY)

YY{(2)=0.

EKE=RKE%XDY(1,1DY)

K=2

NPRINT=NPR{IDY)+1

NSAV=NDYTL{IDY)

DO 123 J=14NSAV

DELY=DY(I,1IDY)

NUMM=NYC (1,1IDY)

DO 124 J=1,NUMM

K=K+1

YY(K)=YY(K-1)+DELY

CONTINUF

NTAB{I)=K

NTAB{NSAV)=0

MSAV=M

M=K+1

YY(M)=YY(K)4DELY

Ml=M-1

M2=M1-1

SET UP PROPER SOLUTION AT DISTANCE N*DX
LOOP ON YY



vie

0175 I[KK=2

0176 DO 126 I=2,M
0177 IK=TKK
0178 DO 127 J=1K,MSAV
0179 IKK=J
0180 IF (ABS(YY(I)-Y(J))-0.00001) 129,129,511
0181 511 IF (YY(I)-Y(J)) 128,129,127
0182 129 DO 131 1J=1,3
0183 131 SOL(I IJ)I=CM(J,y1J)
0184 GO Tn 126
0185 128 DO 132 1J4=1,3
0186 132 SOLUT T =(CMIJy TI)=CMUI=1 3 TINIRLYY(I)=Y(J=1))/(Y(J)=Y(J=1))+CM{J-
11,14}
o187 GO TO 126
n188 127 CONTINUF
0189 126 CONTINUE
c RESET BOUNDARY CONDITIONS
0190 00 130 14=1,3
Ot9l SOL(MyI1J)=SOL(M2,1J)
0192 130 SOL(1,1J)=SOL(3,1J)=-2.%FKE*SOL(2,14)
0193 DO 133 [=1,M
0194 Y{I)=YY(1)
0195 DO 133 1J=1,13
0196 133 CM(T,1J)=SOL(I,1J)
o197 DO 378 I=?72,M]
0198 378 FII-1)=CAY(I-1,1)
0199 IDY=IDY+]1
C SET UP MATRIX COEFFICIFNTS FOR A CONSTANT DELTA X
0200 122 L=1
0201 IDYY=IDY~-1
0202 X1{L)=0.5%DFLX/DY{1,IDYY)*%x2
0203 DO 20 1=2,M1
0204 J=1-1
0205 IF (I-NTAB(L)) 21,22,21
na2ne 21 A(J)=-X1(LI%F(J)
0207 BEI)=X1(L)I*®(F(TI)+F(J))+1.00 +CKD*DELX
0208 COII==XT(LI*F(T)
0209 GO 70O 20

0210 22 X2(L)=DELX/Z (DY (L IDYYI®DY(L+1,IDYY)*(DY(L, IDYY)4DY(L+1,IDYY)))



C1¢

D211
n212
0213
0214
0215
0216
0217
0218
0219
0220

0221
0222
0223
N224
0225
0226

0227
0228
0229
nz23o
0?7231
0232
0233
N234
0235
0236
0237
0238
0239
0240

0241

N242

07243
0244
0245

20

30

1001

109
107

735
108

106
733

132
103

A(JI==X2(LI*F(J)*DY(L+1, IDYY)
BLJII=X2(L)*(DY(L,IOYY)AF(1)+DY(L+1,I0YY)*F({J))+1.00 +CKD*DELX
CeI)==X2(L)*F(I)*DY(L,1DYY)
L=L+]
X1(L)=0.5%DELX/OY(L,IDYY)*%2
CONTINUE

C(l)=C(1)+A(1)

B1=8(1)

Al=A(1)

A(M2)=A(M2)+C(M2)

TRIANGULATE MATRIX
A{M2)=A(M2)/B(M2)

M3=M2-1

N0 30 J=2+M3

I=M2-J+1
B{I)=B{I)-C(T)*A(I+1)
A(I)I=A(1)/B(1)

LOOP IN X-COORDINATE

DO 51 NTIME=1,NUM

X=X+DELX

IF(X-TF1) 1001,19201,102
XT=X+TIN

IR=1

IF (XT=TI(IR)) 106,108,107
IR=1R+1

IF (IR-NT) 109,109,735
IR=IR-1

RKE=CKE({IR)

GO 7D 103

IF (IR-1) 733,733,732
RKE=CKE(1)

GO 10 103

RKE=CKF (IR)={(TI(IR)-XTY/(TI(IR)-TI(IR-1))*(CKE(IR)-CKE(IR-1))
EKE=RKE%®DY(1,IDYY)

SET UP BOUNDARY CONDITIONS
B{1)=Bl-Al*EKE *2,
B{1)=B(1)-Cl1)*A(2)
A{1)=A1/B{(1)

LOOP OVFR NUMBER OF EQUATIONS



024¢

0247
0748
N249
n?2s50
0251
0262

0253
0254

02585
0256
0247
0258
0259
0260
Nz2ahl
0262
0263
0?64
0265

0266
0267
0268
0269
0270
0271
0272
0273
N274
0275
0276
0277
n2718
0279
0280

DO 52 NEQ=1,3
GENERATF NON-HOMOGENEDUS TERMS
L=1
DU 40 1=2,M1
J=1-1
[1=1+1
IF (I-NTAB(L)) 41,42,41
41 D(J)=CM(I,NEQ)*I.OO+XI(L)*(F(l)*(CM(llyNFQ)-CM(loNEQ))—F(J)*(CM(I'
INEQ)-CM(J4NEQ)))
GO TO 43
42 D(J)=CM(IpNEQ’*l.OO+X2(L)*(DY(L,IDYY)*F(l)*(CM(IlnNEQ)-CM(I'NEQ))-
LOY(L+1,TOYY)®F (J)*(CM(1,NEQ) -CM(J4NEQ)))
L=L+]
43 CONTINUE
GO TO (404714,72),4,NFQ
7L DI =DCJII+DELX#(CAYZ (I CMI*(SOL(T,1)+CM(I,1)))
60O T0 40
72 DUII=DLJI)I+DELX*(CAYZ (1,SOLI*(SOL(I,1)4CM(I,1)))
40 CONTINUF
D(M2)=D(M2)/B(M2)
NGO 66 J=2,M2
[=M2-J+1
66 DUDI=(D(I)-C(IV%D(T1+1))/B(])
COMPUTE SOLUTION VECTOR
SOL{2,NFQ)=DI(1)
DO 67 1=2,M2
IF (ABS(SOL(I4NEQ))-TFSTXP) 881,R81,67
881 SOL(I,NEQ)=0.
67 SOLCI+1,NEQ)=D(I)-A(T)%SOL(I,NFQ)
I[F (ABS({SOL(M2+1,NEQ))-TESTXP) B82,R882,883
882 SOL(M?2+1,NEQ)=0.0
883 CONTINUF
SOLIM,NFQ)=SOL(M2,NFQ)
SOLU1,NEQ)I=SOL(34NEQ) -2, *EKE %SOL (2,NEQ)
52 CONTINUE
D0 73 J=1,M
73 SUL{J42)=0.5%(SOL(J,2)+SOL(J,43))
I[F (X=TPP(MT)) 98,301,301
301 COREF=(X=TPR(MT))/DLCLX



L1

0281
0282
0283
D284
0285
0286

nz287
02838
0289
0290
N291
N292
0293
N294
0295
0296
0297

Nn298
0239
0300
0301
0302
0303
0324
0305
0306
0307
0308
0309
0310
0311
0312
0313

0314
0315

731

54

222
221

223

220

81

H2

83

16
80

290

XPRR=XPR (MT)

TPRR=TPR(MT)+TIN
MT=MT+]
DO 721 T=14M
SCLULT, D) =S0L(T,1)-(SOL(T,1)-CM{TI,1))*COFF
SOLU(T2)=SOL(I,2)-(SOLLT,2)-CM(1,2))*COFF

COMPUTE
Nl=

3

SUM=0,0
DO 220 I=1,NSAV
N2=NTAB(1)-1

IF

(I-NSAV)

N2=M2

SUML=(SOL(N1-1,1)+SOLI(N2+1,1))/2.

22142224221

DO 223 J=N1,N2
SUML=SUM1+SN1(J,1)
SUM=SUMI*DY (1, IDYY)+SUM
N1=N2+2
COMPUTE DESIRED QUTPUT

L=1

DG 80

IF

YC(L)=Y(TI)
Co(L)=saLulr,
SZ2=SOLULT 42} /500Ul 1)
(S§22) 82,83,83
SZ(L)==-SQRT(-522)
CMAX(L)=CO(L)/SZ(L)

GO 1O 76
SZ(L)=SORT(S72)
CMAX(L)=CO(L)/SZ(L)
L=L+1
CCNTINUE

If

WRITE

(0T,290)

I=24yNPRINT
(ARS(SOLU(I,1))-1.0F~-08)

INTEGRAL OF CO OVER DEPTH

80,80,81

TINSFC1yTPRRyXPRR,SUM

FORMAT(1H1//18H TIME OF RELEASE =4G12.595X,20H AMOUNT OF RELFASE =
19G12.5¢5X,s7TH TIME =4G12.545X,5H
25X e LHY 311X 93H COB8Xy THSIGMA Z,7X4HCMAX,/)

LM=L-1

Ik

(LM-38)

94494 ,95

X =4G12.545X,//8H 1(C0O)

=y612.5//



817¢

0316 94 Ll=1

0317 L2=L-1
N318 GO TO 96
0319 a5 Ll=1
0320 L2=38
0321 96 WRITE (OT491MIYOUT)sCOUT)oSZ{T)CMAXL{T)yI=L 140 2)
0322 91 FURMAT (4G13.5)
0323 IF (L2-LM) 97,98,98
0324 97 L1=39
0325% L2=L-1
0326 WRITE (OT7,99)
n327 99 FORMAT (LH1//7)
0328 GO TO 96
C SHIFT SOLUTION T NEXT X-STFEP
0329 98 PO 92 J=1,2
0330 DO 92 I[=]1,M
03131 92 CM(I,J)=S0L(I,J)
0332 DD 49 I=1.M
0333 49 CM(1,3)=CM(T1,2)
0334 IF(TPR(MT)) 102,51,51
03135 S1 CONTINUF
0336 50 CONTINUE
0337 102 JS=JS+1
0338 GO 70 100

N339 END



612

00N}

nonz
D003
NoN4

0005
0006
nont
0008
n009
0010
oo
0012
0013
No14
0015
0016
0o0otL?Y
ocis8
0019
oe2o
0021

0001

non2
nen3
00N4
0005
C006
00207
QONR
no0ng
0610

—

W

FUNCTINN CAY(I,J)

COMPUTE KY - VERTICAL DIFFUSION COEFFICIENT
UNIFORM CAY({=BFTA2) IF YK4 IS NEGATIVE
REAL LAMBDA

DIMENSION Y(100),CM(100,3)

COMMON LAMPDA, YO 4HO, YKl,YK2,YK3,YK4,BRETA1,BETA2, CKD,
1Y,CM

P=(Y(I)+Y(J))/2.

IF (YK4) 9,9,1

IF (P-YK1) 242,73

CAY=1.

RETURN

[IF(P-YK2) 44545
CAY=(BFTAL*(YK]1-P)+(P~YK2))/{YK]-YK2)
RETURN

IF (P=YK3) 647,47

CAY= BFTA1l

RETURN

CAY=(RETA2*{ YK3-P)+BETAL*(P-YK4) )}/ (YK3-YK4)
RETURN

CAY=BETA?2

RETURN

END

FUNCTION CAYZ(L,CM)

COMPUTE K7

REAL LAMBDA

COMMON LAMBDA, YO ,HO, YKLy YK2,YK3,YK4,RFTALl,BETAZ, CKD
DIMENSION CM(100,3)

[F (ABS(CM{Ly1))-1.0FE-08) 141,42

CAYZ=0.

RETURN

CAYZ=LAMBDA® (ABS(CMIL,2)/CM{L,41)) )*%0,666666667
RETURN

END
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ABSTRACT: Mathematical models for heated water outfalls were developed
for three flow regions. Near the source, the subsurface discharge into
a stratified ambient water issuing from a row of buoyant jets was solved
with the jet interference included in the analysis. The analysis of the
flow zone close to and at intermediate distances from a surface buoyant
jet was developed for the two-dimensional and axisymmetric cases. Far
away from the source, a passive dispersion model was solved for a two-
dimensional situation taking into consideration the effects of shear
current and vertical changes in diffusivity.

A significant result from the surface buoyant jet analysis is the
ability to predict the onset and location of an internal hydraulic jump.
Prediction can be made simply from the knowledge of the source Froude
number and a dimensionless surface exchange coefficient.

Parametric computer programs of the above models are also developed
as a part of this study.

This report was submitted in fulfillment of Contract No. 14-12-570
under the sponsorship of the Federal Water Quality Administration.
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