U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT
ON
FALL LAKE
LAKE COUNTY
MINNESOTA
EPA REGION V

WORKING PAPER No. 116

PACIFIC NORTHWEST ENVIRONMENTAL RESEARCH LABORATORY

An Associate Laboratory of the

NATIONAL ENVIRONMENTAL RESEARCH CENTER - CORVALLIS, OREGON
and

NATIONAL ENVIRONMENTAL RESEARCH CENTER - LAS VEGAS, NEVADA

REPORT
ON
FALL LAKE
LAKE COUNTY
MINNESOTA
EPA REGION V
WORKING PAPER No. 116

WITH THE COOPERATION OF THE

MINNESOTA POLLUTION CONTROL AGENCY

AND THE

MINNESOTA NATIONAL GUARD

JULY, 1975

CONTENTS

		<u>Page</u>
For	reword	ii
Lis	t of Minnesota Study Lakes	iv,
Lak	e and Drainage Area Map	vi
Sec	tions	
I.	Introduction	1
II.	Conclusions	1
III.	Lake Characteristics	3
IV.	Lake Water Quality Summary	4
٧.	Literature Reviewed	8
VI.	Appendix	9

ii

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to fresh water lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS*

In this report, the first stage of evaluation of lake and water-shed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

^{*} The lake discussed in this report was included in the National Eutrophication Survey as a water body of interest to the Minnesota Pollution Control Agency. Tributaries were not sampled, and this report relates only to the data obtained from lake sampling.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states.

ACKNOWLEDGMENT

The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Minnesota Pollution Control Agency for professional involvement and to the Minnesota National Guard for conducting the tributary sampling phase of the Survey.

Grant J. Merritt, Director of the Minnesota Pollution Control Agency, John F. McGuire, Chief, and Joel G. Schilling, Biologist, of the Section of Surface and Groundwater, Division of Water Quality, provided invaluable lake documentation and counsel during the course of the Survey; and the staff of the Section of Municipal Works, Division of Water Quality, were most helpful in identifying point sources and soliciting municipal participation in the Survey.

Major General Chester J. Moeglein, the Adjutant General of Minnesota, and Project Officer Major Adrian Beltrand, who directed the volunteer efforts of the Minnesota National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY

STUDY LAKES

STATE OF MINNESOTA

LAKE NAME	COUNTY
Albert Lea	Freeborn
Andrusia	Beltrami
Badger	Polk
Bartlett	Koochiching
Bear	Freeborn
Bemidji	Beltrami
Big	Stearns
Big Stone	Big Stone, MN; Roberts, Grant, SD
Birch	Cass
Blackduck	Beltrami
Blackhoof	Crow Wing
Budd	Martin
Buffalo	Wright
Calhoun	Hennepin
Carlos	Douglas
Carrigan	Wright
Cass	Beltrami, Cass
Clearwater	Wright, Stearns
Cokato	Wright.
Cranberry	Crow Wing
Darling Elbow	Douglas
Embarass	St. Louis
Fall	St. Louis
Forest	Lake
Green	Washington Kandiyahi
Gull	Kandiyohi Cass
Heron	Jackson
Leech	Cass
Le Homme Dieu	Douglas
Lily	Blue Earth
Little	Grant
Lost	St. Louis
	OU. LOUIS

LAKE NAME

Madison Malmedal Mashkenode McQuade Minnetonka Minnewaska

Mud Nest Pelican Pepin

Rabbit Sakatah Shagawa Silver Six Mile Spring St. Croix

St. Louis Bay
Superior Bay
Swan
Trace
Trout
Wagonga
Wallmark
White Bear
Winona
Wolf
Woodcock
Zumbro

COUNTY

Blue Earth Pope St. Louis St. Louis Hennepin Pope Itasca Kandiyohi St. Louis

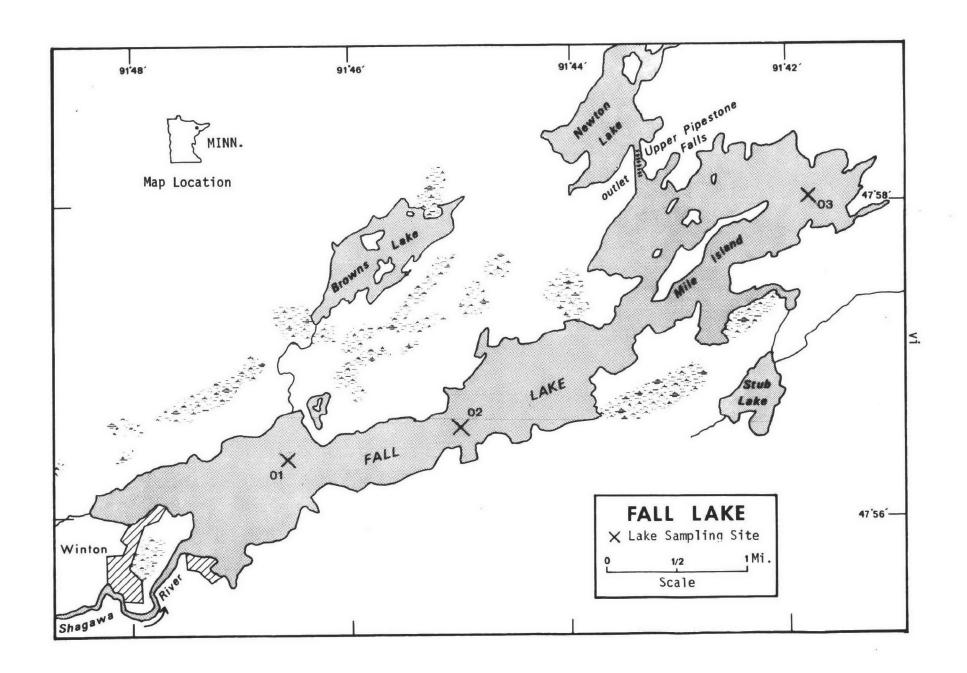
Goodhue, Wabasha, MN; Pierce, Pepin, WI

Crow Wing Le Sueur St. Louis McLeod St. Louis

Washington, Dakota

Washington, MN; St. Croix,

Pierce, WI


St. Louis, MN; Douglas, WI St. Louis, MN; Douglas, WI

Itasca Todd Itasca Kandiyohi Chisago Washington Douglas

Beltrami, Hubbard

Kandiyohi

Olmstead, Wabasha

FALL LAKE

STORET NO. 2730

I. INTRODUCTION

Fall Lake was included in the National Eutrophication Survey as a water body of interest to the Minnesota Pollution Control Agency.

Tributaries were not sampled, and nutrient sources were not evaluated.

Therefore, this report only relates to the lake sampling data.

II. CONCLUSIONS

A. Trophic Condition:

Survey data and observations indicate Fall Lake is mesotrophic. Of the 60 Minnesota lakes sampled in the fall when essentially all were well-mixed, seven had less mean total phosphorus, eight had less mean dissolved phosphorus, and 13 had less mean inorganic nitrogen. For all samplings of the 60 lakes, 12 had less mean chlorophyll <u>a</u>, and 22 had greater mean Secchi disc transparency. Essentially no depression of dissolved oxygen with depth occurred at any sampling time.

Phytoplankton numbers were quite low, and diatoms were dominant in all samples. No problem aquatic plants or algal blooms were observed by Survey limnologists.

B. Rate-Limiting Nutrient:

A loss of over 20% of the inorganic nitrogen occurred in the algal assay sample between the time of collection and the beginning

of the assay, and the results are not representative of conditions in the lake at the time the sample was taken (10/22/72).

The lake data indicate nitrogen limitation at all sampling times; i.e., the mean N/P ratios were 11/1 or less, and nitrogen limitation would be expected.

III. LAKE CHARACTERISTICS

A. Morphometry*:

1. Surface area: 2,173 acres.

2. Mean depth: 13.0 feet.

3. Maximum depth: 32 feet.

4. Volume: 28,249 acre-feet.

B. Precipitation**:

1. Year of sampling: 37.1 inches.

2. Mean annual: 36.7 inches.

^{*} MN Dept. of Conservation lake survey map; mean depth by random-dot method

^{**} See Working Paper No. 1, "Survey Methods, 1972".

IV. LAKE WATER QUALITY SUMMARY

Fall Lake was sampled three times during the open-water season of 1972 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake (three in July) and from a number of depths at each station (see map, page vi). During each visit, a single depth-integrated (15 feet or near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the last visit, a single five-gallon depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll <u>a</u> analysis. The maximum depths sampled were 17 feet at station 1, 18 feet at station 2, and 18 feet at station 3.

The results obtained are presented in full in Appendix A, and the data for the fall sampling period, when the lake essentially was well-mixed, are summarized in the following table. Note, however, the Secchi disc summary is based on all values.

For differences in the various parameters at the other sampling times, refer to Appendix A.

A. Physical and chemical characteristics:

FALL VALUES

(10/22/72)

<u>Parameter</u>	<u>Minimum</u>	<u>Mean</u>	Median	Maximum
Temperature (Cent.) Dissolved oxygen (mg/l)	4.6 10.8	5.0 11.0	5.2 11.0	5.2 11.0
Conductivity (µmhos) pH (units) Alkalinity (mg/l)	50 7.0 15	51 7.0 17	50 7.0 17	55 7.1 18
Total P (mg/l) Dissolved P (mg/l)	0.018 0.011 0.060	0.021 0.014 0.069	0.020 0.012 0.070	0.025 0.021 0.070
NO ₂ + NO ₃ (mg/1) Ammonia (mg/1)	0.050	0.051	0.050	0.060
		ALL VAL	<u>UES</u>	
Secchi disc (inches)	48	62	63	72

B. Biological characteristics:

1. Phytoplankton -

Sampling Date		ninant nera	Number per ml
07/08/72	1. 2. 3. 4. 5.	Melosira Tabellaria Fragilaria Anabaena Asterionella Other genera	633 271 192 170 90 384
		Total	1,740
09/07/72	1. 2. 3. 4. 5.	Melosira Lyngbya Kirchneriella Tabelllaria Dinobryon Other genera	434 325 144 144 132 <u>676</u>
		Total	1,855
10/22/72	1. 2. 3. 4. 5.	Melosira Flagellates Dinobryon Fragilaria Asterionella Other genera	1,340 361 361 256 136 618
		Total	3,072

2. Chlorophyll \underline{a} - (Because of instrumentation problems during the 1972 sampling, the following values may be in error by plus or minus 20 percent.)

Sampling Date	Station <u>Number</u>	Chlorophyll <u>a</u> (µg/l)
07/08/72	01 02 03	5.9 6.2 14.8
09/07/72	01 02	6.5 4.9
10/22/72	01 02	7.0 5.0

V. LITERATURE REVIEWED

Schilling, Joel, 1974. Personal communication (compendium of information on Minnesota lakes). MPCA, Minneapolis.

VI. APPENDIX

APPENDIX A

PHYSICAL and CHEMICAL DATA

STORET RETRIEVAL DATE 74/10/30

273001 47 56 10.0 091 46 38.0 FALL LAKE 27 MINNESOTA

FROM OF				00300 D0 MG/L	00077 TRANSP SECCHI INCHES			11EP	ALES		1202 FEET DEP	тн	
	0F	E DEPTH FEET	00010 WATER TEMP CENT			00094 CNDUCTVY FIELD MICROMHO	00400 PH SU	00410 T ALK CACO3 MG/L	0063 0 N02&N03 N-TOTAL MG/L	00610 NH3-N TOTAL MG/L	00665 PHOS-TOT MG/L P	00666 PHOS-DIS MG/L P	
72/07/08			20.5	7.6	60	50K	6.70	11	0.030	0.040	0.019	0.011	
		55 0012 55 0017	19.8 19.3	6.8 6.1		50K 50K	6.70 6.80	12 13	0.02 0 0.03 0	0.030 0.200	0.026 0.033	0.010 0.013	
72/09/07			.,,,	0.1	60	60	7.00	12	0.020	0.070	0.025	0.010	
		30 0004	17.2	8.3		55	7.00	15	0.030	0.060	0.024	0.012	
72/15/22		30 0015	16.6	7.8		58 50	7.00	15	0.030	0.070	0.027	0.016	
72/10/22	09		4.6	11.0	48	50 50	7.00	15	0.060	0.050	0.019	0.011	
		00 0004	4.6	11.0 11.0		50 50	7.05 7.05	16 15	0.070 0.070	0.050 0.060	0.025 0.021	0.016 0.012	

DATE FROM TO	OF	•	DEPTH FEET	32217 CHLRPHYL A UG/L
72/0 7 /08				5.9
72/09/07	13	30	0000	6.5. 7.0.

K VALUE KNOWN TO BE LESS THAN INDICATED

J VALUE KNOWN TO BE IN ERROR

STORET RETRIEVAL DATE 74/10/30

273002 47 56 30.0 091 45 00.0 FALL LAKE 27 MINNESOTA

						11EP/	ALES	2111202 0010 FEET DEPTH				
DATE FROM	TIME OF	DEPTH	00010 WATER TEMP	00300 DO	00077 TRANSP SECCHI	00094 CNDUCTVY FIELD	00400 PH	00410 T ALK CACO3	00630 8004500 N-TOTAL	00610 NH3-N Total	00665 PHOS-TOT	00666 PHOS-DIS
TO	DAY	FEET	CENT	MG/L	INCHES	MICROMHO	SU	MG/L	MG/L	MG/L	MG/L P	MG/L P
72/07/08	10 2	5 0000	20.8	8.0	66	50K	7.10	11	0.020	0.140	0.016	0.009
		5 0010	20.7	9.8		50K	6.80	11	0.020	0.050	0.021	0.010
72/09/07	13 5	5 0000			72	58	7.10	16	0.030	0.080	0.018	0.011
	13 5	5 0004	17.2	8.2		55	7.10	13	0.040	0.080	0.016	0.009
	135	5 0015	17.1	7.9		55	7.00	13	0.040	0.080	0.016	0.009
72/10/22	09 2	5 0000				50K	7.00	17	0.070	0.050	0.020	0.012
	09 2	5 0004	5.2	11.0		50K	7.00	18	0.070	0.050	0.020	0.014
	09 2	5 0012	5.2	10.8		50K	7.05	18	0.070	0.050	0.023	. 0.021
	09 2	5 0018	5.2	11.0		55	7.10	17	0.070	0.050	0.018	0.011

DATE FROM	T I I	_	DEPTH	32217 CHLRPHYL
10			FEET	υĜΖL
72/07/08	10	25	0000	6.2
72/09/07	13	55	0000	4.9.
72/10/22	09	25	0000	5.0

J VALUE KNOWN TO BE IN ERROR

K VALUE KNOWN TO BE LESS THAN INDICATED

STORET RETRIEVAL DATE 74/10/30

273003 47 50 00.0 091 40 00.0 FALL LAKE 27075 MINNESOTA

DATE FROM TO							11EP	ALES		1202 FEET DEP	тн	
	TIME OF DAY		00010 WATER TEMP CENT	SECCHI	00077 TRANSP SECCHI INCHES	RANSP CNDUCTVY ECCHI FIELD	00400 PH SU	00410 T ALK CACO3 MG/L	00630 NO26NO3 N-TOTAL MG/L	00610 NH3-N Total MG/L	00665 PHOS-TOT MG/L P	00666 PHOS-DIS MG/L P
72/07/08	10 5	0 0018 0 0012 0 0000	21.8 20.6 19.8	8.0 6.4 10.6	66	50K 50K 50K	6.90 6.80 6.70	12 14 13	0.040 0.030 0.030	0.080 0.060 0.060	0.014 0.019 0.019	0.009 0.010 0.009

32217 DATE TIME DEPTH CHURPHYL FROM 0F TO DAY FEET UG/L

72/07/08 10 50 0000 14.8J

> K VALUE KNOWN TO BE LESS THAN INDICATED

J VALUE KNOWN TO BE IN ERROR