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FOREWORD

Environmental measurements are required to determine the quality
of ambient waters and the character of waste effluents. The En-
vironmental Monitoring and Support Laboratory (EMSL)-Cincinnati

conducts research to:

° Develop and evaluate techniques to measure
the presence and concentration of physical,
chemical, and radiological pollutants in
water, wastewater, bottom sediments, and
solid waste.

(] Investigate methods for the concentration,
recovery, and identification of viruses,
bacteria, and other microorganisms in water.

° Conduct studies to determine the responses of
aquatic organisms to water quality.

° Conduct an Agency-wide quality assurance pro-
gram to assure standardization and quality
control of systems for monitoring water and
wastewvater.

This publication, Choosing Cost-Effective QA/QC Programs for
Chemical Analysis, reports the results of EPA's literature search
and review, visitations to government and private laboratories,
and analysis of QA/QC issues and data. Federal agencies, states,
municipalities, universities, private laboratories, and industry
should find this study useful in developing QA/QC programs for
environmental analysis.

Robert L. Booth, Director
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ABSTRACT

This report was submitted in fulfillment of contract number 68-03~-
2995 by Radian Corporation under the sponsorship of the U.S. En-
vironmental Protection Agency (USEPA). The report covers a per-
iod from November, 1980 to January, 1985.

The Environmental Monitoring and Support Laboratory, U.S. En-
vironmental Protection Agency, Cincinnati, has the responsibility
for developing quality control procedures which could be incor-
porated into a laboratory quality assurance program designed to
support its ongoing analytical method development research and
monitoring programs. Radian Corporation was contracted to review
current quality assurance (QA) and quality control (QC) programs
and develop guidelines for QA/QC practices for the USEPA 600
series methods for chemical analysis of toxic organic pollutants
(proposed December 3, 1979, Federal Register, 44 (233), pp. 69464-
69575). Use of the proposed analytical procedures "would be re-
quired for filing applications for National Pollutant Discharge
Elimination System (NPDES) permits, for State certifications, and
for compliance monitoring under the Clean Water Act."

The major tasks of this project were:

[ A literature search to identify current QA/QC
practices for inorganic and organic chemical
methods

° An evaluation of ongoing guality assurance
programs

° Development of a model to determine the type

and level of QA/QC effort required for var-
ious uses of particular analytical methods
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The primary objective of this report is to provide guidance for
choosing cost-effective QA/QC programs for chemical laboratories.
It describes general principles of QA/QC, the specific tools
available, and the information needed to choose appropriate tools
for specific needs. The report does not give detailed discus-
sions of how to apply each quality control tool; references are
given for more detailed information.

The report is not targeted at any particular type of laboratory
(e.g., EPA contractor) or any specific analytical method. The
USEPA 600 series methods are used for exemplary purposes in the
report.
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SECTION 1

INTRODUCTION
PROJECT BACKGROUND

The Environmental Monitoring and Support Laboratory, U.S. En-
vironmental Protection Agency, Cincinnati office, has the respon-
sibility for developing quality control procedures which could be
incorporated into a laboratory quality assurance program designed
to support its ongoing analytical method development research and
monitoring programs. Radian Corporation was contracted to review
current QA/QC programs* and develop guidelines for QA/QC prac-
tices for the USEPA 600 series methods for chemical analysis of
toxic organic pollutants.

CONTENTS OF TEHIS REPORT

The primary objective of this report is to provide guidance for
choosing cost-effective analytical QA/QC programs. To this end,
the report describes:

) General principles of quality control that
provide a conceptual framework for QA/QC pro-
gram design (Section 2)

o Alternate tools available for analytical
quality control with qualitative guidance
for ensuring their effectiveness (Section 3)

*QA = quality assurance, the system of activities whose purpose
is to provide assurance that the quality-control job is
being done effectively. '

QC = quality control, the system of activities whose purpose 1s
to provide a quality of product or service that meets the
needs of users.



) Decision-directing formulae for determining
the type and frequency of QA/QC activities

needed to achieve specified quality targets
(Secticn 4)

° Formulae for determining quality targets ap~-
propriate for particular end-use needs (Sec-
ticn 4)

1 Procedures for evaluating and improving the

cost-effectiveness of quality assurance pro-
grams (Section 4)

® An approach to structuring QA/QC programs for
methods whose results may be put to different
uses (Section 5).

The decision-directing formulae are presented graphically to
facilitate use. They are illustrated with examples based on
self-monitoring or requlatory applications.
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SECTION 2
GENERAL QA/QC PRINCIPLES

This section discusses general concepts and approaéhes found use-
ful by the quality control profession in over fifty years of ac-
cumulated experience. The principles described are qualitative,
but serve as guides to quantitative evaluations of QA/QC pro-
grams. They 2lso are helpful guides in starting quality programs
for new test methods (where information needed for quantitative
decisions may be lacking) or for choosing minimal programs for
methods whose results are put to many uses.

DEFINITION OF QUALITY AS FITNESS FOR USE

Juran (1) says that "0f all concepts in the gquality function...,
none is so far-reaching or vital as 'fitness for use.'"™ The in-
terpretation of quality as fitness for use rather than confor-
mance to specifications (another common interpretation) shows the
importance of: '

® Basing quality targets on end-use needs

) Building flexibility into QC programs for
products with multiple uses,

Methods for relating quality control objectives to end-use needs
are discussed in Section 4; methods for building flexibility into
required gquality control programs are provided in Section 5.

It is common practice to put the products of analytical chemistry
- test results - to many uses. For example, the EPA Handbogk
for Analvtical Ouality Control in Water and Wastewater Laborator-
les (2) lists seven uses of analytical data:



° Planning

] Permitting

) Compliance

° Enforcement

° Design

° Process Control

[ Research and Development

These uses involve such activities as characterizing variability
in pollutant concentrations, comparing measured concentrations to
regulatory limits, comparing concentrations from different treat-
ment systems, and studying changes in pollutant concentrations
over time. Because of the many uses that can be made of environ-
mental data, it is not possible to design a single QA/QC program
that will be cost-effective for every application, Fitness for
use requires that at least some aspects of a guality program be
tailored to the circumstances and needs of each problem. For
example, low level contamination may not be important when com-
paring concentrations from different treatment systems, but may
be critical when comparing concentrations to regulatory limits.

TOTAL QUALITY CONTROL

QA/QC programs are most effective when they are comprehensive,
that is when they are involved in every stage from the develop-
ment to the use of a product or service (3 - 4). A comprehensive
analytical QA/QC program involves method developers, producers of
materials and equipment, laboratory managers, analysts, guality
control personnel and users of analytical results. The work of
these people must be coordinated to ensure that all parties are
aware of and carry out their responsibilities and communicate
their knowledge to others in the program (4). Juran and Gryna
(5) provide an excellent discussion of organization for quality.



Much of the rest of this report is devoted to QA/QC activities
and responsibilities in the application of a test method. How-
ever, several steps must be taken in the development and imple-
mentation of a method if routine quality control activities are
to be fruitful. Method development should include ruggedness and
interlaboratory testing (both are discussed in Section 3).

Method implementation in a laboratory should include materials
and equipment testing, analyst training and evaluation, and
method validation (these topics also are discussed in Section 3).

Quality~-related efforts in method development and implementation
are important because they can prevent problems from occurring in
method application. In addition, they provide cost and quality
information needed to design effective QA/QC programs for partic-
ular problems.

RESOURCE ALLOCATION

An efficient QA/QC program allocates resources to problems in
proportion to their seriousness. To design an efficient program,
therefore, one must determine the relative seriousness of quality-
related problems; for example, estimate the proportion of total
variation attributable to each component of a measurement system.
The relative costs of QA/QC activities also must be identified.
Designing an effective program usually is an iterative process,
because understanding of costs and sources of problems in a test
method increases with experience.

The American Society for Quality Control (ASQC) publishes a use-
ful guide to evaluating quality costs (6). It separates these
costs into three categories:



® Prevention - costs of activities to prevent
poor quality from occurring (e.g., training
costs, costs of ruggedness testing).

) Appraisal -~ costs of evaluating outgoing
quality (e.g., costs of estimating recovery
from spiked samples).

) Failure - direct and indirect costs of labo-
ratory errors (e.g., costs of rerunning im-
properly analyzed samples, costs of incorrect
requlatory decisions).

Detailed discussions of the three types of costs are given in
references (5 - 7); included are methods of identifying opportun-
ities for savings (either by eliminating activities whose costs
are disproportionate to their benefits, or by introducing activi-
ties with high cost-effectiveness). PFailure costs can be the
most serious but also may be most difficult to quantify.

Cost improvements usually come through preventive actions aimed
at specific quality problems (6). Thus, it is important to use
quality appraisal data not only to document out-going gquality,
but to identify the existence both of correctable problems whose
causes can be eliminated and prevented from recurring, and of ex-
ceptional quality whose causes can be identified and dissemi-
nated. Preventive measures are cost effective because "doing it
right the first time" saves reworking, trouble-shooting and other
failure costs.

Procedures have been developed to tie the level of quality con-
trol effort automatically to the size of the quality problem.
Skip-lot procedures, for example, are designed to reduce QC test-
ing when recent quality has been good, and to increase testing if
quality subsequently deteriorates., Such procedures are appealing
because they provide an incentive for maintaining good perfor-
mance. Skip-lot procedures are described in Appendix A,



PROCESS CONTROL

The idea of process control was developed in the manufacturing
industries but has been found useful in many other applications.
The need for process control arises from the universal fact that
quality varies -among items produced. Since it generally is im-
practical to measure the gquality of every item, quality usually
ie described in terms of properties of its statistical distribu-
tion (e.g., by the average and standard deviation estimated from
a sample from the distribution). An important consideration with
this method is that stable quality distributions do not naturally
exist in a laboratory, and when thefe is no stable distribution,
simple descriptive methods do not apply.

One purpose of process control is to ensure the existence of a
stable quality distribution. This goal is achievea by separating
causes of variation into "common causes" (variation associated
with the analytical system) and "special causes" and dealing ap-
propriately with each. Common causes, often called chance
causes, typically result in relatively small, random errors.
(Ranaom changes in the testing environment, test procedure ana
instrument performance are examples of chance causes.) Little can
be done to reauce chance variation outside of making basic
changes in the analytical process. However, variation cue to
common causes follows statistical laws; it is precictable in a
statistical sense. In process control, therefore, when quality
varies in a manner that might reasonably be producea by chance
causes (i.e., conforms to predicted statistical gatterns), it is
assumea that no special causes are present and the proauction
process is "in control.” When quality variation does not conform
to preaictea statistical patterns, on the other hand, it is con-
clucea that at least one special cause (often called assignable
cause) is present. Special causes typically result in relatively



large, systematic errors. (Examples ot such causes are systema-

tic differences among workers, equipment, or materials, contami-
nation or reagents, and systematic changes in environmental con-

ditions over time.) Detecting, eliminating and preventing the
recurrence or special causes are basic process-control activi-

ties.* The ASQC cost-reducing guide (6) describes process control
as a "vital part of a prevention-oriented quality system."

Wernimont (10) and Mandel (1ll) give excellent descriptions of the
importance oL process control in measurement. To appreciate this
importance, one must make a distinction between:

A measurement method - the specifications of
the equipment and materials to be used, the
operations to be performed and the conditions
under which they are to be carried out (some-
times called the "protocol")

Measurement processes - realizations of the
measurement method in different conditions
and circumstances (i.e., the application of
the method in different laboratories).

Eisenhart (l2) stresses the need to view measurement as a produc-
tion process and the importance or maintaining the process in a
state of statistical control. Murphy (13) says:

Capability of control means that either the
measurements are the product of an identi-
fiable statistical universe... or, if not,
the physical causes preventing such an iden-
tification may themselves be identified and,
if desired, isolated and suppressed. Incapa-
bility of control implies that the results ot
measurement are not to be trusted as indica-
tions or the physical property at hand - in
short, we are not in any verifiable sense
measuring anything.

*See (8) and (9) for more details on the concept of process con-

trol.

Control charts are a tool commonly used to describe,

attain and maintain process control. Their use is described in
Section 3.



This often—qudted statement makes clear the importance of process
control in analytical QA/QC.

MEASURES OF ANALYTICAL QUALITY

There are several different measures of analytical quality cor-
responding to the different kinds of errors that can occur in
analytical work:

] Systematic errors

° Random errors

e¢ Detection errors (false positives or false
negatives)

° Total failures (instances when no result

can be reported because of lost samples
or other mistakes).

The importance of each kind of error depends on the application
and on the magnitude or frequency of the error. For example,
detection errors may be of primary concern in screening studies,
whereas systematic errors may be of primary concern in estimating
pollutant concentrations.,

The following concepts can be used to quantify the seriousness of
the errors in a particular measurement process:

® Bias - the direction and amount by which
measurements tend to differ from the true
value of the quantity of interest; a measure
of systematic error

° Precigsion - the degree of mutual agreement
between independent measurements made under
prescribed like conditions; a measure of ran-
dom error

10



) Sensitivitvy - the probability of detecting
a compound when it is present in a sample; a
measure of infrequency of false negatives

° Specificity - the probability of not de-
tecting a compound when it is not present in
a sample; a measure of infrequency of false
positives

° Completeness - the amount of valid data ob-
tained from a measurement system compared to
the amount expected to be obtained under nor-
mal operations; a measure of infrequency of
total failures.

An in-control measurement process must exist for these concepts
to be uniquely quantifiable; otherwise, estimates obtained at one
time will not reflect quality at other times.

There is no consensus on most of the definitions given above.
For example, bias, as defined, is sometimes referred to as accu-
racy,* and there are several definitions of sensitivity (15).
Because of the lack of agreement on terminology, published "pre-
cision and accuracy" data should be accompanied by a description
of how computations were done and the circumstances under which
results were obtained (15).

SIMPLICITY

Harold F. Dodge, near the end of a distinguished career in gqual-
ity control, noted that "...there was one thing that seemed to
stand out, and it was this: 1If you want a method or system used,
keep it simple!"™ (16). Dodge's advice should be kept in mind
when adapting QA/QC procedures to analytical quality control.

For example, the effectiveness of the simple plotting techniques
called control charts can be greatly impaired if charts are re-
quired for too many parameters,

*ASTM (14) recommends the use of the terms bias and precision to
describe the accuracy of a measurement process. 1In this usage,
accuracy reflects both systematic and random errors.
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Hamaker (l17) stresses the importance of simplicity in discussing
mathematical models used to optimize quality programs. He notes
that the many publications treating quality control as an eco-
nomic problem "have never been applied on a scale worth mention-
ing." He gives the following reasons for this failure:

. The techniques are too complicated for prac-
tical purposes. "Simplicity is the keystone
of successS..."

® They are based on unrealistic assumptions
(which often must be made to ensure mathema-
tical tractability).

Hamaker's comments show the futility of attempting to formulate a
mathematical model encompassing all aspects of laboratory qual-
ity control.

The practical approach to designing cost-effective quality con-
trol programs involves: '

° Identifying and setting tolerances and con-
trols for critical steps in the test method

° Setting quality targets based on end-use
needs

° Using statistical methods and models to

choose effective quality control tools to
achieve gquality targets

° Periodically reviewing the effectiveness of

the QA/QC system and making improvements
based on experience.

Potential quality control tools are discussed in the next sec-
tion, and methods for choosing cost-effective quality control
programs are discussed in Sections 4 and 5. The time-tested
principles discussed in this section provide a conceptual
framework for these later sections of the report. |
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SECTION 3
QA/QC TOOLS

Commonly used QA/QC tools are discussed in this section in terms
of :

e Purposes and potential benefits

e Information required to judge effectiveness

e Qualitative guidance for etfective use

e Sources of further information

Among the possible reasons for using a quality control tool are
documentation, appraisal, control or improvement of quality, and

prevention ot quality problems. Some tools serve more than one
of these purposes. The methods available are not all suitable
for every job (1).

For the sake or brevity, some well-documented activities, though
important, are not discussed in this section. These include
(with references for further information):

° Chain-of-custody procedures (2 -~ 5)

° Data handling and reporting (2, 5 - 8)

] Organization (1, 9 - 12)

°® Preventive maintenance (2, 12 - 13)

° Training (1 - 2)

These activities all serve to prevent'quality problems from
occurring.

Lo



The topics that are covered include:

Blanks

Calibration

Control charts
Interlaboratory studies
Material controls
Method development
Performance and system audits
Reference materials
Replication

Sampling

Spike~recovery studies
Study planning
Surrogate compounds

Validation

A brief subsection is devoted to each topic.
category identifiers for measured values are given where appro-

priate.

convenience.

References

USEPA's QA audit

References are listed at the end of each subsection for
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BLANKS

Blanks are an appraisal tool used to check for bias due to con-
tamination. They sometimes are used also to correct statisti-

cally for such bias. Two kinds of blanks are commonly employed
(e.g., see (1)):

° Laboratory reagent blank (LRB)* - a solution
prepared in the laboratory from inert sub-
stances and treated exactly as a laboratory
sample for the parameter being measured, in-
cluding all preparations, holding times, and
other pre—analysis treatments. Sometimes
called method blank.

° Field reagent blank (FRB)* - a solution pre-
pared from inert substances and treated as a
field sample in all aspects, including expos-
ure to the sample bottle, holding time, pre-
servatives and other pre-analysis treatments.
Sometimes called field blank.

The blank often consists of diétilled (reagent) water when water
samples are being analyzed (2). Field blanks provide a more com-
prehensive check for contamination than method blanks because
they are exposed to the full sequence of sample-handling proce-
dures.

Effective use of blanks, in terms of the type of blank and fre-
quency of analysis, requires knowledge of the contamination prob-
lems present or most likely to occur. <Contamination problems can
differ in frequency of occurrence, magnitude and stability over
time. Following are some different patterns of contamination and
examples of their possible causes:

*L,RB and FRB are the EPA QA audit category identifiers for the
measured values of the blanks.
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° Constant from sample to sample - may be
caused by contamination of solvents, rea-
gents, or glassware

. Differences among batches of samples - may be
caused by inconsistencies in practices of dif-
ferent sampling teams

® Random changes from sample to sample - may be
caused by inconsistent analytical practices,
or lack of method ruggedness.

Observation of patterns and types of contamination can help to
identify and eliminate causes (see (3) and (4) for discussions of

potential causes).

Qualitative Guidance

1. Differences between blank and sample procedures can cause
bias., It generally is necessary to confirm experimentally
that identical procedures are unnecessary (2).

2. Blank results, like any analytical results, are subject to
analytical error. Therefore, use of blank results to cor-
rect sample results can introduce added variation, correla-
%ion or bias, depending on the correction procedure used

5).

3. Extrapolating blank results to other samples can be mis-

leading if the contamination process is unstable (differs
from sample to sample).

4. The frequency of analysis of blanks can be reduced when
experience demonstrates that preventive measures have made
contamination unlikely.

S. Analysis of blanks for quality documentation is ineffec-
tive when contamination consistently occurs at the same
level (apart from analytical error). Once the existence
of such contamination is identified, one should seek to
eliminate its causes rather than continue to document its
existence.
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CALIBRATION

The calibration function for an analytical method is the mathema-
tical relationship between the analytical response (Y) and the
sample concentration (X). The simplest (and most desirable (1))
relationship is ¥ = bX, where b is the calibration constant or
response factor. A number of questions arise concerning the cal-
ibration function, namely:

° What is its mathematical form (e.g., linear)?

® What is the range of validity (e.g., linearity)?
] How is it best estimated experimentally?

® How stable is the relationship?

General discussions of calibration problems can be found in
references (2) to (5). Two alternative calibration schemes are
offered in many analytical methods:
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l. Ex.ernal standard calibration, and

2. Internal standard calibration.

Both the external and internal calibration procedures in each of
the methods require the preparation of calibration standards at
multiple concentration levels for each parameter. The levels
should bracket the expected range of concentrations in samples to
be analyzed.

Statistical methods have been developed for evaluating and ensur-
ing calibration effectiveness. Response surface methods (6) are
designed to optimally identify the form of and estimate mathema-
tical relationships.* Regression methods have been used to de-
velop estimating equations for calibration constants in commonly
occurring functional forms (see (5) and (7 - 9)). The use of op~
timum design and estimation procedures can minimize the effect of
calibration error on the bias and precision of analytical re-
sults.

Statistical estimation ot the calikration function can be illus-
trated with the relationship

Y = bX (3.1)

definea above. The object of caljbration is to estimate the
response factor, b. Suppose that n calibration samples are ana-
lyzed, ana that the result on the ith sample, which has known
concentration Xj(>0), is Yj. Suppose that the standard deviation
of Y is proportional to the concentration (as is the case for
many chemical methods). That is, Var(y) = X 202, fThen the weigh-
ted regression estimator of the response factor is

N n -
b = 3; I R =R (3.2)
im1

*The form and range of validity of the calibration function
should be identified during method development.
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with R{ = ¥j/X3(5). Rj if often called a response factor and
thus R, the weighted regression estimator, is the mean response
factor. Calibration effectiveness can be evaluated using the
estimated variance of b, s?/n, where

n
s2= =—— § (R, - R)? (3.3)
(n-l) i=1 i

However, there is another way of evaluating calibration effec-
tiveness that is more directly related to end-use quality. The
calibration function is used to estimate the concentration of
routine samples by observing Y and computing

X = ¥/b. (3.4)

It can be shown (10) that the standard deviation of a concentra-
tion estimated in this manner is approximately

-
_ ~ 2 3
Std. Dev. (X) = l_xg%ﬁ (1 + l\] (3.5)

ny
This formula, with b and c? replaced by their estimates b and
s?, can be used to judge the impact of calibration error on
analytical precision (e.g., the effect of the number of calibra-
tion samples, n).

For example, if b = 10 based on 3 standard injections, and o=
15% for repeated injections, then

ks
sea. vev. (i » | B (1 U] - oo

i.e., the standard deviation of concentrations estimated using b
based on 3 concentrations will be about 1.7% of the estimated
concentration.
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Estimating methods are also available for other commonly occurr-
ing functional forms of the calibration curve (see reference (6)
for further information). Using the wrong functional form can be
a significant source of analytical bias. Two alternate forms
that snould be considered are linear with non~zero intercept and
non-linear curves. Natrella (5) describes procedures to evaluate
if those alternative models are appropriate and gives estimating
formulae for each functional form.

Another important consideration is the frequency of calibration.
Many analytical methods require verification of the calibration
curve each day that analyses are done using one or more calibra-
tion standards. If the response for any parameter differs by
more than x percent from the predicted response, the test must be
repeated with a fresh standard, or a new calibration curve pre-
pared. Variation in calibration constants can be a significant
source of analytical variation and too infrequent recalibration
can result in analytical bias. Conversely, too frequent recali-~
bration of a stable system can inflate analytical precision and
result in less accurate data. To determine an effective calibra-
tion schedule, the pattern of variation in calibration constants
(response factors) must be studied.

Control charts (see next section) can be effective in monitoring
the variation in calibration constants or response factors. His-
torical cata on the variation in response factors over time can
be used to develop a cost-effective strategy for calibration
checks and recalibration.

Qualitative Guidance

l. Use of the wrong functional form in calibration (e.g., using
zero intercept when the intercept is nonzero) can be a ser-
ious source or bias (11 - 12).
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Differences between calibration sample and regular sample
can cause bias. For example, the calibration procedures
recommended in some methcds do not include the sample prep-
aration, clean-up, or extraction phases of the methods.
Wilson (4) discusses the possible problems which can arise
when calibration standards are treated differently than sam-
ples in an analytical method. Biases in the steps that are
skipped in the calibration process will not be corrected for
by the calibration curve. Additional quality control pro-
cedures like spiked samples and surrogates are required to
evaluate potential biases in the steps not included in the
calibration process.

At least three different concentrations covering the range
of interest should be used in initial calibrations to allow
a check ot wnether the calibration functicn is linear. If
the function is found to be consistently linear, the minimum
number ot calibration standards required to bracket the ex-
pected concentrations in samples to be analyzed should be
used.

The order ot analysis of calibration samples should be ran-
aomized to avoid biasing estimates of calibration constants
(3).

Variation in calibration constants (e.g., changes in b in
(3.1) over time) can be a serious source of analytical error
(13). Caitibration results can be monitored to check stabil-
ity (e.g., using control charts).

Too infrequent recalibration of an unstable system can re-
sult in analytical bias. However, an unstable system is
best dealt with by identifying and eliminating causes of
instability (l14). One cause of unstable calibration is un-
stable calibration standards (11).

Too frequent recalibration of a stable system can damage
precision. More freqguent recalikration does not guarantee
better quality (l5). Determining an effective calibration
schedule requires characterizing the pattern of variation in
response factors (e.g., by estimating variance components
for response factors - within day, between day, etc.).

Calibration data is an important potential source of infor-
mation on analytical precision (16). However, repeated
readings on portions of the same sample may not give a
realistic evaluation ot calibration accuracy (repeated
readings do not reflect aifferences due to matrix effects,
for examgle (17)}.
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10.

Weighted least squares (regression) methods for estimating
calibration constants are preferable to "eyeball" methods
since their effectiveness can be quantified (5). (Note that
regression estimates for common calibration functions can be
computed from simple formulae as illustrated above).

Extrapolation of the calibration function beyond the stan-
dard concentration used in developing the function can lead
to biases. This is true at very low concentrations (where
background interference may play an important role) as well
as at high concentrations (where linearity may not hold).
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CONTROL CHARTS

Control charts are graphical methods for monitoring and improving
analytical quality (e.g., bias and precision) over time. They
are process-control tools that can be arplied to spiked sample or
reference material recoveries, calibration constants, or other QC
test results. They can be used to document data quality, detect
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the existence or gquality problems (special causes), motivate bet-
ter performance ana improve the analytical process. Control
charts are most useful when the same analysis is being performed
on many samples over time (l). General information on control
charts is given in (2) and (3). Information on the application
of control charts to analytical work is contained in references
{4) to (7).

The following information is required to make effective use of
control charts:

° The pattern of statistical variation expected
in a process (needed to choose testing fre-
quency) (8)

° The number ot parameters measured by a method
(multivariate parameter reduction procedures
or multivariate control charts should be con-
sidered if the number of parameters f£or each
sample is too large to effectively monitor)

o Process control targets (e.g., the average
percent recovery of a method)

° The approximate probability distributions of
QC test statistics (needed to set realistic
control limits) (9) and (10).

The patterns ot variation in a process may vary among laborator-
ies, so this information must be developed in individual labora-
tories. Distributional models and benchmark quality information
should be produced by method developers. Quality targets should
be based on end-use needs.

Different kinds of control charts are available for controlling
different aspects of analytical quality (e.g., bias or preci-
sion). The key element ot any chart, however, is the control
limits that indicate the magnitude of random variation that can
be expectea to occur when quality objectives are being met or
when the analytical process is stable.
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One of the most commonly used control charts is the X ("X-bar")
chart for controlling the process average. The use of this chart
requires periodic performance of n QC tests (e.g., determination
of n spiked-sample recoveries). The average of each set (sub-
group) of test results,

_ n
R = 2 3 x, (3.6)

is plotted on a chart of the form illustrated in Figure 3-1. The
center-line on the chart indicates the QC target, uo (e.g., the
desired average percent recovery). The upper and lower control
limits (UCL and LCL) are given by

UCLEY = uo + 30/nf (3.7)
and
LCLY = Ho - 36/nt (3.8)

where o is the short-term standard deviation of the process. The
control limits are set so that the chance of X falling outside
these limits is small when the process mean equals the target
value. When the process mean is different from the target, the
chance of X falling outside the control limits increases with
increasing deviations from the target. Thus a point outside the
control limits is taken as evidence that the process is "out-of-
control”; these special causes of quality problems are investi-
gated and corrected if they can be found.

X-Bar charts with n=1 are commonly used in laboratories to moni-
tor percent recovery, blank concentrations, and calibration para-
meter estimates.



6¢

X - AVERAGE PERCENT RECOVERY

® UCL

X
X
X X X
X
X Target (un)
X X
X X
LCL
-t ————————————————
5 10 15 20

TIME PERIOD

X In Control
QD Out of Control (special cause)

Figure 3-1. X Control Chart Illustration



The following are two forms of control charts commonly used to
check analytical precision by means of duplicate analyses:

° R.charts- based on the range,
R = IX1 -Xg(, (309)

of duplicate analyses. These charts are ap-
propriate when precision is independent of
concentration or when only a narrow range of
concentrations is of interest (as may be the
case in compliance monitoring for NPDES per-
mits). The upper control limit for an R
chart based on duplicate analysis is

UCLR = 3.690’, (3010)

where ¢ is the desired short-term process
standard deviation (3).

o RSD charts - based on the percent relative
standard deviation (coefficient of varia-
tion),

RSD = 100R/ 2 X, ‘ (3.11)

of duplicate analyses (R and X are defined
above). This chart can be used when the pro-
cess standard deviation is proportional to
concentration and it is necessary to analyze
samples with a wide range of concentrations
(as may be the case in contract or research
laboratories). An approximate method for de-
termining the upper control limit of an RSD
chart as a function of the desired RSD is de-
scribed in reference (ll). One alternative
to the RSD control chart is an R chart on the
logarithms of duplicate analyses (l12). Addi-
tional information on control charts for pre-
cision can be found in references (2) and
(3).

Other types of control charts which are useful in laboratory ap-

plications include the Difference Control Chart (13) and the Cum~
ulative Sum Chart (14). These charts are more complicated to set
up and use than the X-Bar and R charts, but they may be more ef-

fective in identifying special causes in some cases.
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All of the control charts discussed above apply to a single qual-
ity characteristic (e.g., the average percent recovery of a sin-
gle compound). When a method measures several constituents of
each sample, as do all the 600 series methods, one QC approach is
to keep a separate control chart for each compound measured. But
this approach has the following shortcomings:

o It requires a great number of control charts
for some methods. Table 3-1 shows the num-
bers of compounds measured by 1979 versions
of USEPA's 600 Series GC and GCMS methods for
pollutant analysis. Much greater numbers of
compounds are now of interest in ground-water
contamination.

° The risk of violating the control limits of
at least one control chart
are met increases with the number of charts
kept. Thus, the chance of receiving false
out-of-control signals can be large for meth-
ods that measure many parameters. The effect
of the number or analytes on the false out-of-
control error rate is illustrated in the fol-
lowing table, which assumes that analytical
errors are uncorrelated and that the out-of-
control error rate for each single analyte is

5%.
- Sample~wise
2 9.8 |
5 22.6
10 40.1
25 72.3
50 92.3
100 99.4

For example, if one measures 100 compounds
with uncorrelated analytical errors, one is
practically certain to get at least one out-~
of~-control signal when the alpha-level for
each compound is 5%. The results in the
table represent the worst case, as one would

i
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TABLE 3-1. NUMBERS OF COMPOUNDS COVERED BY USEPA WASTEWATER METHODS

Number EPA Method
of Compounds Numbers¥*
2 603,605
3 607
4 609
5 611
6 606
7 602
9 612
11 604,625(A)
16 610
25 608,625(P)
29 601
30 624
47 625(B/N)

*A, P and B/N indicate the acid, pesticides and base/neutral fractionms of
Method 625.
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not expect analytical errors to be uncorre-
lated. Information on the intercompouna
correlation structure for multi-compound
analytical methods is not readily available.

[ Separate charts can give conflicting signals
" as to whether the measurement process is in
control.

These problems show the need for some form of aata summarization
before applying control charts to multi-compound test methods. .

One method of taking the number of analytes into account (based
on Bonferron's ineguality) merely widens control limits on indi-
viaual charts so that the sample-wise error rate has the aesired
value (or less). This is done for the X chart simply by using
the Z-value corresponding to a/p, where a is the desirea sample-
wise chance of a false out~of-control signal and p is the number
of analytes. Table 3-2 gives appropriate Z-values for selectea
numbers of analytes. The drawback of this approach is evident in
the way Z increases with p for given a, thereby decreasing the
power of the individual X chart. This method is incorporated by
EPA for wastewater analysis using Methoas 1624 ana 1625 (15).
These GC/MS methods typically involve the routine analyses of all
the analytes (30 or more) included in the scope of the methods.

Another approach to manage the sample-wise error rate, and thus
summarize false out-of-control signals, is to retest for analytes
that are out-of-control before taking further action. If the
second test result is in control, then take no further action.
The probability of a false out-of-control signal for a particular
analyte thus becomes o? where a is the chance of a false out-of-
control signal for a single analyte. The power of the control
chart to detect special causes is also reducea with this ap-
proach. EPA (15) uses this approach for Wastewater Methods 601-
613, 624, and 625. These methods incluace analyses of a large
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TABLE 3-2.

AR

BONFERRONI 2-VALUES FOR MULTIPLE TESTS

RN

Sample-Wise Chance of False Out-of-Control Signal

Number of (9 in percent)
Analytes 5 2,5 1 0.5
1 1.645 1.960 2,326 2.576
2 1.960 2.241 2.576 2.807
5 2,326 2,576 2.878 3.090
10 2,576 2.807 3.090 3.291
25 2.878 3.090 3.353 3.540
50 3.090 3.291 3.540 3.719
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number of analytes, but in typical use, only a subset of the
analytes are actually monitored.

A third method of controlling an analytical process with a large
number of analytes is a multivariate control chart. The basic

iuea ot a multivariate control chart is to summarize the quality
information in measurements on several parameters into a single
statistic that can be plotted on one control chart. The multi-
variate statistic takes interparameter correlations into account,
thereby increasing sensitivity to departures from quality tar-
gets. Because the multivariate chart is based on a single sta-
tistic, its control limits can easily be set to provide the de-
sired protection against false out-of-control signals. The mul
tivariate chart saves paperwork and chart analysis efforts when
the process is in control (i.e., most of the time in a well-run
laboratory). When it gives an out-of-control signal, results forv
inaividual compounds can be scrutinized, if necessary, to iden-
tify the quality problem. Overall, then, the multivariate con-
trol chart provides a cost-effective way to interpret complex QC
data.

Multivariate quality control methods have been used to some ex-
tent in the manufacturing and processing inaustries for many

years (16). The universal availability of computers has removed
the primary obstacle to more widespreaa use.

The multivariate control chart called the X2 (chi-squared) chart
can be used under the same conditions as the X chart. The only
additional information needed is the correlations (or coyari-
ances) petween tests on different compounds in the same sample.
These can be estimatea from historical QC data from an in-control
measurement process (e.g., using data from old X charts, exclud-
ing out-of~-control points). Suppose that a test method measures
p parameters on each QC sample, obtaining results X,, « + « xp.
Let vjj be the variance (square of the standard deviation) for



4
the ith and jth compounds. Then the matrix of variances and co-
variances of X,, . . . , Xp is V = [vj4]. If we denote the ma-
trix inverse of V by V-1 = [vi]], and we assume that V is known
(estimated from a large amount of data), then the statistic to
use for a multivariate control chart is

the ith compound, and let Vi) -e the covariance cetween tests on

x? =n .g .g (ii - R;) (ij - Rg)vij (3.12)
i=1 =1 ,
where n = number of results averaged,
P = number of compounds tested,
Ri = QC target for compound i,
Xj = average result for that compound, and

vij = (i,j)th element of V~!.

To compute this statistic requires inverting the matrix V (once,
before starting the X% chart); this can be done with readily
available computer scftware.

In routine application, Equation 3.12 shows that computation of
the x* statistic requires only arithmetic operations. Deviations
from target for any compound contribute to the value of the sta-
tistic. The value of X? is plotted on a single chart. The main
cifference in appearance compared to the X chart is that the con-
trol limits are not equidistant from the centerline. The x? con-
trol limits are obtained from tables of the chi-squared distribu-
tion with p degrees of freedom.

Table 3-3 gives UCL, LCL and centerline values for different p's
of interest for USEPA 600 series methods. For example, for
Method 606 (phthalate esters), which measures p = 6 compounds on
each sample, Table 3-3 gives UCL = l14.4, LCL = 1.24 ana center-
line 5.35. The tabled contrcl limits were chosen to given 5%
probability of a false out-of-control signal.
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TABLE 3-3. PARAMETERS FOR Xz CONTROL CHARTS

Number of USEPA
Compounds Method Control Chart Parameters
(p) Number LCL Centerline UCL
2 603,605 .051 1.39 7.38
3 607 o .216 2.37 9.35
4 609 484 3.36 11.1
5 611 831 4.35 12,8
6 606 1.24 5.35 14.4
7 602 1.69 6.35 16.0
8 2.18 7.34 17.5
9 612 2.70 8.34 19.0
10 3.25 9.34 20.5
11 604,625(4) 4,40 10.3 21.9
16 610 6.91 15.3 28.8
25 608,625(P) 13.1 24,3 40.6
29 601 16.0 28.3 45.7
30 624 16.8 29.3 47.0
47 625(B/N) 30.0 46.3 67.8

e

Note: LCL, Centerline and UCL are the 2.5, 50 and 97.5 percentiles of the
x? distribution with p degrees of freedom. A, P and B/N indicate the
acid, pesticide and base/neutral fractions of Method 625.
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As with the X chart, when variances (and covariances) are esti-
mated from just a few sample results, control limits must be com~
puted froem a different distribution. In the multivariate case
the distribution to use is Hotelling's T ? distribution.

To illustrate the application of a x? chart to wastewater data,
consider USEPA Method 605 for benzidines (l17). This method mea-
sures p = 2 compounds, benzidine and 3,3'~-dichlorcbenzidine, by
high performance ligquia chromatography with electrochemical de-
tection. The interlaboratory study for the method (18) showed
average percent recoveries of 63 and 67 percent. An analysis of
the recoveries from distilled water reported in that study showed
a between-compound correlation of about 0.7. Now if we assume
that a laboratory has relative standard deviations 25 and 30 per-
cent for the two compounds, then the variance-covariance matrix
is

r~

.02438 .0222
.0222 .0404

(e.g., Vv (.63 x ,25)* = ,0248 and v, = .63 x .25 x .67 x .30 x
.7 = ,0222), and the inverse of V is

I 79.4 -43.6

-43.6 48.7

If we use the average percent recoveries from the interlaboratory
study for QC targets and analyze n = 1 QC sample per day, control
chart values can be obtained from the formula

*= 79.4(X - .63)° + 2(-43.6) (X, - .63)(X, - .67)

, (3.13)
+ 48.7 (X, - .67)

(by Equation 2.12).
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Table 3-4 shows twenty simulated recoveries for benzidine and
3,3'-dichlorobenzidine. All results were generated using rela-
tive standard deviations of 25 and 30 percent and a correlation
of 0.7. The following mean recoveries were used in the simula-
tion: samples 1 to 5 and 11 to 15, 63 and 67 percent; samples §
to 10, 63 and 27 percent; and samples 16 to 20, 40 and 80 per-
cent. Thus, the simulation illustrates results when the measure-
ment process is on target, when it is off target for one com-
pound, and when it is off target in opposite directions for the
two compounds. The x® statistic, calculated using equation 3.13,
is shown in Table 3~4 for each sample. To compute the x* value
for sample 1, for example, substitute 0.72 and 0.60 into formula
3.13 for X, and X, to get 1.3.

Figure 3-2 shows X-charts for each compound and a multivariate
control chart. Control limits for X-charts from equations (3.7)
and (2,8) are 32 and 94 percent for benzidire and 38 and 106 per-
cent for 3,3'-dichlorobenzidine. The centerline and control
limits for the multivariate chart are from Table 3-3 with p = 2.

There were two out-of-control perioas in the simulated process.
In the first, represented by samples € to 10, mean recovery for
3,3'-dichlorobenzidine was 27% (40% below the target). The %~
chart for 3,3'-dichlorobenzidine shows two results below the LCL
during this period (samples 7 and 8). The multivariate chart
shows four results above the UCL during the same period (samples
67719 and 10).

The other out-of-control period is represented by samples 16 to
20. Mean recoveries for benzidine and 3,3'-dichlorobenzidine
were 40 and 80 percent during this period (both off target, one
below and one above). The X chart for benzidine shows one point
below the LCL in this episode (sample 17). The x* chart has two
points above the UCL in the same period (samples 17 and 20).
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TABLE 3-4. SIMULATED PERCENT RECOVERIES FOR EXAMPLE

Sample Recovery for Recovery for x?
Number Benzidine¥* 3,3'=Dichlorobenzidine* Statistic
1 72 60 1.3
2 33 64 6.5
3 41 53 2.0
4 78 73 1.2
5 67 72 0.1
6 70 34 7.6
7 60 25 7.7
8 41 14 7.4
9 69 30 9.0
10 73 31 10.0
11 65 51 1.6
12 89 82 2.9
13 66 103 5.2
14 75 104 3.9
15 90 68 5.8
16 42 62 2.8
17 28 71 10.8
18 60 97 5.1
19 37 70 6.1
20 54 106 11.0

measured concentration x 100

* = 3
Recovery prepared concentration
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Figure 3-2. Multivariate Chart Example
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In general the X% chart is more sensitive to changes in quality

than the separate X-charts. This improved sensitivity is evi-
denced in the simulation by the fact that more x 2 points are out-

side the control limits during out-of-control episodes. Further
information on multivariate control charts is given in References
(19) to (21).

Qualitative Guidance

1.

The samplicity and visual impact ot control charts can be

lost if charts are required on too many parameters. There
is no use generating more data than can be handled effec-

tively (22).

The reasons for out-of-control results must be identified,
corrected and documented if control charts are to be an ef-
fective analytical process control tool.

Timely plotting of results and follow-up is needed for ef-
fective corrective action (23).

Control 11m1ts based on a small amount of data (used to es-
timate o) “may differ greatly from what they should be"
(24). As a consequence, a larger than expected proportion
of results may fall outside these control limits even when
the process is in control.
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INTERLABORATORY STUDIES

There are three reasons for conducting interlaboratory studies

(1):

° Evaluate a test method (usually the final
stage of method development)

o Compare alternative methods

] Evaluate laboratory performance (to ensure

compatibility among laboratories).
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For general information on interlaboratory studies, see refer-
ences (1) to (5).

The benefits of interlaboratory studies depend on their purpose.
Method evaluation (validation) studies document method perfor-
mance under a variety of laboratory conditions; they provide in-
formation on bias and ptecision needed for QC and end-use plan-
ning. Validation studies sometimes uncover short-comings in test
methods. Laboratory evaluation studies identify laboratories
with exceptional performance - both good and bad. Eliminating
causes of exceptionally bad performance improves interlaboratory
precision. Studying laboratories with exceptionally good perfor-
mance can uncover means of improving the performance of all labo-
ratories. Interlaboratory comparisons can provide motivational
and educational benefits (6). They are "one of the most effec~-
tive elements ot a quality assurance plan® (7).

The information needed to plan an effective method validation
study includes the likely population of user laboratories, types
of samples to which the method will be applied, ranges of concen-
tration of interest, and maximum estimation error tolerable in
bias and precision estimates to be derived from the study. In-
formation needed to plan an effective laboratory evaluation pro-
gram includes the magnitude of differences it is important to
detect and the tolerable level of risk of not detecting such
aifferences.

Qualitative Guiaance

l. The first concern in planning a method validation study "is
to ensure that a workable method exists, as described by a
protocol, and that the participating laboratories have
achieved a state of statistical control® (Mandel, (3), p.2).
Lack of process control is likely to result in long-run
variation within laboratories, which in turn results in
larger between-laboratory differences. '
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Only when the methcd protocol is in final form should an
interlaboratory study be undertaken to estimate method bias
and precisaion (5).

“One practice to be avoided is that of selecting a group of
laboratories judged to be those best qualified ana equipped
for the interiaboratory study." Precision estimates should
be obtained under the conditions in which the method will be
used in practice (4).

Effective method validation requires the use of appropriate
statistical methods for design and analysis (2) - (5). The
following items should be investigated: magnitudes of rela-
tive biases between laboratories, distributional models for
recovery variation, relationships of bias and precision to
sample concentration, and differential response of labora-
tories to different concentrations or matrices (interac-
tions) .

For convenience of use, validation results should be summar-
ized to the greatest extent consistent with statistical
analyses. The reporting of test method bias should be pre-
ceded by a test for significance (e.g., a statistical test
of whether average recovery differs from 100 percent) (5).
Analysis of variance (2) can be used to determine the degree
of summarization reasonable for a particular compound. Mul-
tivariate analysis of variance (8) can be used to acetermine
the degree of summarization reasonable across compounds mea-
sured by the same method (e.g., is the average percent re-
covery the same for all the compounds?). Appropriate use of
either of these techniques requires an appropriate statisti-
cal model derived from the way the study was conducted.

Some observers of validation studies believe that there is
too great a tendency to discard outlier results in analyzing
validation data (e.g., see (10)). Inappropriate outlier-
screening procedures can bias results of statistical analy-
ses. (Most outlier tests assume that results are normally
distributed; this is not true for all analytical dGata.) Car-
rying out analyses both with and without suspect observa-
tions is one way to evaluate the impact of discarding out-
liers (11).

Revicions or refinements in a test method can make results
of previous validation studies obsoclete (9).

In evaluating laboratories one should look for patterns over
time or across samples, not overstress results on a single
sample. Youden develored methods for analyzing interlabora-
tory performance data (l2).
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10.

1ll.

12.

"A coordinating laboratory is ...mandatory for the existence
of an interlaboratory gquality assurance program® (13).

Presenting samples blind to the analyzing laboratory gives
the most realistic results (13).

Rapid feedback to participating laboratories is important to
ensure that evaluations affect performance (14).

Laboratories with better than average performance (e.g.,
nearer 100 percent average recovery) should not be consid~-
ered better unless they can show why their performance is
better (15).
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MATERIAL CONTROLS

Controls on the quality of materials and supplies used in the
laboratory are a major means of preventing quality problems.

The general ocbjectives are to purchase materials of satigfactory
quality ana ensure that their quality does not deteriorate.
Methods for achieving these objectives include: |

o Specifying quality needs to suppliers

° Testing delivered materials
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) Examining supplier (vendor) gquality control
data

o Optimizing purchasing methods (e.g., using
central purchasing (1) or limiting the number
of suppliers (2))

°® Monitoring the quality of stored materials.

Information on quality needs in terms of purity, stability, etc.,
should be obtained during method develorment. General informa-
tion on material controls can be found in references (3) to (5).

Qualitative Guidance

1.

“Beware of changes” in handling procedures, suppliers,
batches of materials, etc. (6). Overlapping of changed
conditions (e.g., analyzing a given sample using materials
from both old and new suppliers) provides protectzon against
quality problems.

Documentation of the source, age and quality of materials
is an important tool for identifying causes of gquality
problems.

Within-laboratory screening of the quality of delivered
materials is not as effective as documented vendor process

controls (2).
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METHOD D&VELOPMENT

According to Deming (1), method development has three stages:
obtaining, improving and understanding a response. Improving ang
understanding a response require experimental investigations to
identify and control, at optimum levels, factors with significant
effects on quality. Thus ruggedness tests and interlaboratory
(validation) studies are important aspects of method development.
The latter subject was discussed in the Interlaboratory Studies
section. Ruggedness tests are discussed below.

Method validation studies provide information on the following
important aspects of guality control (2 - 3):

° Critical steps in the method (with
performance tolerances)

o Appropriate calibration procedures

® Expected recovery for the method

) Variance components for the method

) Distributional model for analytical results

(for setting control limits)

e Groupings of analytes measured by the method

(by similarity of average recovery and
precision)

Youden describes the relationship between ruggedness and inter-
laboratory tests.
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Ruggedness tests are experiments that determine whether a meas-
urement process is sensitive to small changes in operating condi-
tions. Among the factors that should be evaluated are:

L Environmental conditions
° Analyst training and experience
° Calibration function (form, stability, and

range or validity)
° Interferences and matrix effects (5)
) Materials (purity and stability)

. Options in the methoa (e.g., calibration pro-
cedures, types ot equipment, GC columns)

Ruggedness tests identify ana set tolerances for critical factors
in a method (6); they also identify factors that do not require
close control (thus saving unnecessary control efforts). Werni-
mont (7) describes ruggedness testing methods and cites examples
of their application.

The following experimental cesign for Method 625 follows Youden's

recommended approach (8) and is presented as an example of the
ruggedness test procedure:

(1) Select seven factors which potentially effect the results of
Method 625 with two values of scrutiny for each factor (see Table
3-5, .

(2) Obtain enough effluent sample with some compounds present to
prepare 17 samples for extraction. Extract one sample to deter-
mine background levels. Spike selected base/neutral and acid
compounds to achieve two approximate levels for each compound:
approximately three times the method detection limit and ten
times the cetection limit.
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TABLE 3-5. FACTORS FOR RUGGEDNESS TEST FOR METHOD 625

e

Factor to be
vVariea

Value 1

e

Value 2

Calibration Pro-
cedure

GC/MS Operator

Method of CGlass-
ware Cleaning

Extraction Tech-
nigue

Concentration
Rate

pH of First Ex-
traction

Instrument Tuning

Internal Calibra-~
tion (A)

Operator 1 (B)
Firing (C)
Separatory Fun-
nel (D)

Fast (E)

11.0 (F)

High End of Cri-
teria (G)
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External Calibra-
tion (a)

Operator 2 (b)

Chromic Acid
Wash (c¢)

Continuous (d)

Slow (e)

13.0 (f)

Low End of Cri-
teria (g)




(3) Extract and analyze the set of eight low level samples and
eight high level samples using the design matrix in Table 3-6.

(4) Analyze the set of data for each level of compounds using
procedures described by Youden (8) to determine the effect of
each factor. Estimate the precision of the method using the
study results. If this precision estimate is unsatisfactorily
large, the interlaboratory study should not be done until modifi-
cations are made to the method. The analysis of the factor ef-
fects will suggest where the modifications are needed.

Effective method development is an important means of preventing
quality problems from occurring. It provides the cost and qual-
ity information needed to design analytical programs that ensure
end-use effectiveness.

Qualitative Guidance

1. Options in a method that are not demonstrated experimentally
to be equivalent are a potential source of bias (5).

2. Careful attention must be paid to design and analysis of
ruggedness tests to obtain required information at a reason-
able cost (1, 7 - 8).

3. Minimizing the complexity of the analytical procedure is an
effective way to build ruggedness into a method (9).
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TABLE 3-6. DESIGN MATRIX FOR METHOD 625 RUGGEDNESS TEST
T e

Value of each Factor

. {see abov o s
Test Factor: A B C D E F G
(a) (B) (C) (D) (E) (F) (G)

(A) (B) (c) (D) (e) (£) (g)
(A) (b) (C) (d) (E) (£) (g)
(a) (b) (¢) (d) (e) (F) (G)
(a) (B) (<) (d) (e) (F) (g)
(a) (B) (c) (d) (E) (£) (G)
(a) (b) (C) (D) (e) (£) (G)
(a) (b) (¢) (D) (E) (F) (g)
e e

@ ~N oUW =
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PERFORMANCE AND SYSTEM AUDITS

Performance audits are quantitative evaluations of laboratory
performance based on the analysis of test samples. System audits
are qualitative evaluations of laboratory QA/QC programs. Per~-
formance and system audits can be conducted either by an outside
agency (e.g., for certification purposes) or by personnél of the
laboratory itself (for in-house review of QA/QC effectiveness).
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Performance audits may be identical to the laboratory evaluations
aescribed in the Interlaboratory Studies section, or they may in-
volve only a single laboratory (e.g., & contracter for a particu-
lar project). They are based on quantitative acceptance limits
for analytical results (e.g., see reference (l)). Systems audits
usually involve: 1) reviews of QA manuals and other evidence of
organization, ana 2) on-site evaluations to confirm the existence
of procedures and facilities and to discuss any shortcomings
identified. Checklists are commonly used to facilitate systems
audits (examples are given in references (1) to (4)).

Performance and system audits give the user of laboratory ser- -
vices assurance that proper emphasis is placed on producing ana-
lytical results of suitable quality. They encourage periodic up-
dating of QA plans and procedures in light of past performance,
new knowledge and anticipated needs.

Qualitative Guidance

1. Test samples tend to receive extra attention (unless pre-
sented blind), so audit results may reflect a laboratory's
capability, not its routine performance level (5).

2. Acceptance limits should take into account phe number of
parameters to be tested; the chance of failing at least one
limit by chance increases with the number of parameters
tested.

3. In large-scale performance audits involving many laborator-
ies, obtaining uniform audit samples may be difficult. Var-
iation among audit samples sent to different laboratories
should be taken into account when comparing laboratory per-
formance.

4. The use of general checklists may encourage the use of over-

elaborate QA/QC programs not tailored to end-use needs and
thus not cost-effective.
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REFERENCE MATERIALS

Reference materials are materials with well-characterized proper=-
ties (concentrations certified by the National Bureau of Stan-
dards (NBS), USEPA, etc.) that can be used to maintain accuracy
in an individual laboratory or to maintain compatibility among
different laboratories.* Uriano and Gravatt (1) discuss the rcle
of reference materials in analytical chemistry. Interesting ex-
amples ot the use of reference materials are described by Uriano
and Cali (2). Use of reference materials has been called “the
simplest and most reliable means of checking accuracy (3)." Ref-
erence materials are not available for some analytes (4 - 5).

*The USEPA QA audit category iaentifiers for the certltxed and
laboratory measured value of a field reference stanaarc are FRC
and FRM,
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Qualitative Guidance

1.

Inaccurate reference materials can be a serious source of
quality problems (6 - 7).

A reference material cannot make a poor method good, but it
can reveal the method's deficiencies (2).

Analysis of reference materials shows the presence, but not
the cause, of quality problems. A system for identification
and elimination of causes of guality problems is necessary
for effective use of reference material results.

"Without statistical control of measurement processes in
individual laboratories, ...reference materials may be of
little value in establishing and maintaining accuracy in
multilaboratory networks" (1).

For the best test of accuracy, any standard submitted to
the laboratory should be disguised so it is not given more
care and attention than routine samples (3).

When feasible, the purity and homogeneity of reference
material should be documented.

References

Uriano, G. A. and C. C. Gravatt, "The Role of Reference
Materlals and Reference Methods in Chemlcal Analysis,"“ CRC

. 6(4), 1977,
pPp.361-411.

Uriano, G. A. and J. P. Cali, "Role of Reference Materials
and Reference Methods in the Measurement Process." 1In:
Valication of the Measurement Process, ACS Symposium Series
No. 63, American Chemical Society, Washington, D.C., 1977,

Skogerboe, R. K. and S. R. Koirtyohann, “Accuracy Assurance
in the Analysis of Environmental Samples." 1In: AcQuIracy

; NBS Special Publication 422,
U.S. Department of Commerce, National Bureau of Standards,
1976, pp. 199-210.

Josephson, J., "Reference Materials."

Environmental
Science and Technology, 15(12), pp. 140&8-1412, 1981.

58



S. Alvarez, R., et al, "NBS Standard Reference Materials:

Update 1982," Analytical Chemistry 54(12), 1982, pp.
1226 A-1243A.

6. Watts, R. R., "Proficiency Testing and Other Agpects of a
Comprehensive Quality Assurance Program."” In: Qptimizing
Chemical Lahoratory Performar ] h the Appl] : 3

Quality Assurance Principles, Association of Official
Analytical Chemists, Arlington, VA, 1980, pp.87-115.

7. Horwitz, W. L., R. Ramps and K. W. Boyer, "“Quality Assurance
in the Analysis of Foods for Trace Constituents,” lgux%al
iat] Kb r 63(6),

1980, pp.1344-1354.
REPLICATION

Three purposes of replication are to:

o Estimate the relative contribution of steps
in a test method to overall method precision

e Test for changes in the precision of a mea-
surement process over time (e.g., using con-
trol charts)

o Improve the preczs;on of estimated concen-

trations by averaging results of replicate
analyses.

Although replication can be done at any stage of the measurement
process, the most common forms of replication involve:

[ ] Laboratory replicates ~ multiple aliquots of
the same environmental sample, each of which
is treated exactly the same throughout the
laboratory analytical procedure.*

] Field replicates - multiple samples taken at
the same time and place under identical cir-
cumstances, each of which is treated exactly
the same throughout the field and laboratory
analytical procedures.*

*The USEPA QA audit category identifiers for laboratory auplicate
results are LDl and LD2. Additional replicate results are de-
noted LD3 through LD9. The USEPA QA audit category iden identi-
fiers for fiela duplicate results are FDl and FD2.
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Other types of replicates occur as modifications of laboratory
replicates or field replicates. For example, if duplicate in-
Jections of an extracted sample are done, this would not be con-
sidered a laboratory replicate since all of the analytical steps
were not replicated. The duplicate injections could be used to
evaluate the analytical precision attributable to the instrument
and quantification steps of the method.

In general, field replicates can be most useful in evaluating
variation attributable to the sampling, sub-sampling, handling,
and storage aspects of an analysis. But the difference between
analytical results for field replicates will also include varia-
tion attributable to laboratory factors such as extraction, ana-
lysts, reagents, instrumentation, etc. Laboratory replicates
which are obtained after the sample is in the laboraory by
splitting the sample, will contain sub-sampling variation ana
variation due to the analytical method. When both field regli-
cates and laboratory replicates are done, the results can be
analyzed to estimate the proportion of variation contributed by
laboratory and field factors (1 - 3).

General discussions on replication are contained in references
(1) to (3). The amount and type of replication required to meet
specific quality objectives is discussed in Section 4 of this
report.

Qualitative Guidance

l. Obtaining meaningful precision estimates through replication
requires that the measurement process be in statistical
control (4).

2. The number of replications should always be reported with

precision estimates "“as should the specific portion of the
measurement process to which they apply (5)." '
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The possibility that precision may depend on concentration
should be considered in planning a precision study. When
random errors in the measurement process are multiplicative,
precision tends to be proportional to concentration; in this
case, it is convenient to express precision in terms of rel-
ative standard deviations. For example, in USEPA Method
624, the analytical result is a product of a response factor
and ratios of peak areas to concentrations for the standard
and unknown. The result is affected by sample concentration
and dilution, which are multiplicative processes, also (6).

Replicates must be independent to give useful precision in-
formation. Duplicate determinations on the same sample ex-
tract made at nearly the same time may not be independent
(and they are not affected by the problems of most concern -
those caused by changes in performance over time (7 - 8)).

A practical difficulty in obtaining useful QC test results
is ensuring that replicated samples have nonzero concentra-
tions (9). This issue can be of major importance when
planning an environmental study.

The best strategy for checking precision may not be the best
for improving concentration estimates by averaging.

1f replicate analyses are subject to different systematic
errors, their average may be worse than an individual read-
ing for estimating the true concentration (10).

In a measurement process with large bias and good precision,
replication is not an effective strategy for improving con-
centration estimates (1l1l).
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SAMPLING PROCEDURES

Sampling procedures can play a major role in quality control for
chemical analysis. But the laboratory analyst often has little
involvement in the sampling process. When an invalid sample is
sent to a laboratory, no type or degree of quality control can
produce valid analytical results. Potential sampling problems
occur during sample selection, reduction or mixing, storage,
Ereservation, or pretreatment. The plan for sample selection is
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critical in meeting objectives of the sampling/analysis program
(Study Planning section).

A sample is a portion of material taken from a larger quantity of
material (universe) to represent that universe. Sampling methods
kange in sophistication from grab sampling to automatic continu-
ous sampling. Both engineering and statistical considerations
influence the choice of a sampling procedure. The quality issues
in sampling are broad in scope with different critical considera-
tions in each type of application. Detailed information on qual-
ity control for sampling procedures is given in references (1)

to (8). Three necessary steps in any sampling program for chemi-
cal analysis are:

1) description of the universe to be represented
by the sample(s),

2) The mechanics of selecting and withdrawing
sample material, and

3) The preparation of the laboratory sample from
the sampled material.

Qualitative Guidance

l. One important issue in sampling is the decision on whether
to combine individual sample increments (compositing) prior
to analysis. The issue (often discussed as grab sampling
versus continuous sampling) is discussed in references (9)
and (10). The following general guidelines can be given:

) Individual samples should be used when varia-
bility or extreme concentration levels is the
important issue. .

® The statistical characteristics of a single analy-
sis of a composite sample can be quite different
than the arithmetic average of the analysis of each
individual sample. ‘

] Composite sampling can be very'cost-effective

when average concentration level is the im-
portant issue.
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Sampling bias (due to stratification or seasonal changes in
the universe) or variabilty (due to heterogeneity o©f the

universe) can seriously reduce the end-use quality of analy-
tical results.

Sample loss or contamination can cause serious systematic
errors in concentration estimates, so sample handling prac-
tices are as important to end-use quality as procedures for
obtaining samples (5).

Although it is a distinct problem from analytical variation,
the effect of sampling error must be considered in judging
the end-use effectiveness of any analytical program. When
sampling variation is large, precise control of analytical
error alone does not result in high end-use quality.
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SPIKE-RECOVERY STUDIES

The analysis of spiked samples is an appraisal tool that can be
used to:

° Determine the bias and precision of a test
method (e.g., through interlaboratory studies)

° Determine the accuracy of the measurement pro-
cess in a particular laboratory

] Test for changes in analytical quality in a
laboratory ‘

Appendix B to this report discusses important statistical issues
in spike~recovery studies. Important chemical issues include
procedures to physically add the spike materials, impact of al-
ternative solvents, the chemical equivalence of the spiked por-
tion of analyte x and the amount of analyte x already in the
sample, chemical and solvent interferences, preservation, ana
holding times for spiked samples. These issues must be specifi-
cally addressed for each particular spike-recovery study because
they can significantly affect analytical results. ‘
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Effec
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level

tive planning of spiking studies requires knowledge of the
s of concentrations of interest, likely background concen-
ons, and the relationship of recovery tc concentration (if
nt reccvery is independent of concentration, fewer spike

£ may be required).

The percent recovery of the spiked compound is commonly defined

SP-1.0
$ Recovery = 100 x L“%gk“g,

LSO = the measured concentration ¢f the comgound in
the original environmental sample (prior to

LSA = the amount by which the concentration cf the .
ervironmental sample increases due to addi-
tion ¢f the pure compound (spiking),

LSF = the measured concentration for the spiked

LSA ana LSF are USEPA's (A audit category icentifiers.)

There are several alternative definitions of percent recov-
ery, each with advantages and disadvantages (see Appendix

When backgrouna concentrations are comparable to spike
levels, estimates of method bias or precision based.on

recovery Gata can make a method lock worse than it is (see

ky
where
spiking),
samgple
(LsC,
Qualitative Guidance
l'
B).
2.
Appendix B).
3.

Statistical uncertainty in recovery data should be consia-
ered vwhen ceciding whether that data indicate that a method
is werse than desired (e.g., has an average recovery ciffer-
ent from 100 percent (1)).
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Since contamination changes statistical properties of per-
cent reccvery, blank samples sheould always be analyzed along
with spiked samples to check whether background concentra-
tion is truly zero.

The use of fixed (“blind") spike levels yenerally should ke
avoided. Though it is more convenient for the laboratory,
this practice can result in low average spike/background
ratios that drastically reduce the power of quality control
tests or cause false out of control signals (see Appendix
B).

Proportional spiking is preferrable when spiking in samples
with a possible background. The spike to background ratice
should be greater than 1 (Appendix B).

In spiking proc¢rams for QC testing purposes, continuea
analysis cf samples Spiked at the same level can lead some
analysts to develop "an attitude of expectation" (2) that
limits the usefulness of results. This problem car be
avoidea by varying spike levels enough to make analyses
challenging, yet not enough to affect precision appre-
ciably (when [recision depends on concentration).

QC samples spiked with concentrations or with combinations

of compounas that 4o not normally occur may not give a rea-
listic reflection ¢f analytical quality. For example, a sam-
ple spiked with all the compounds measured by EPA Method 624
may be easily identified by an analyst as & QC sample.

Appropriate spiking levels depend on enda-use needs. Fcr
example, in self-monitoring by NPDES permitees, a spike
level rear the compliance limit mey provide the most
relevant QC information. .
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STUDY PLANNING

Study planning (experimental aesign) in analytical programs pro-
vides answers to such guestions as:
® How many samjles ghculd be analyzed?

() How should samples be distributed to labora-
tories for analysis?

[ In what order shoula samples be analyzed
within a laboratory?

) What are the most important sources ¢f errcr
in a laboratory?

General considerations in study planning are discussed in refer-
ences (1) to (5).

Stucdy plerring provices several Lenefits:

® Obtains the best information for a given cost.

° Ensures that study results will provide answers
to gquestions of interest.

° Permits evaluaticn of analytical guality while
performing analyses for proyram purposes (e.g.,
see (5)).

° Enables a laboratory to balance sample workloads.

Principles of study planning can be applied to élready-ccmpleteé
stuaies to evaluate the range of applicability of their results.

The information required for effective study planning incluaes
quantitative study objectives, resources available, factors that
can affect responses of interest, measures of analytical quality.
and appropriate statistical models.
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Qualitative Guidance

1.

A common shortcoming of unplanned studies is confusing
(confounding) factors so that effects cannot be attributed

to specific causes. For example, if different laboratories
analyze samples from different treatment facilities, differ-
ences in results may reflect either facility or laboratory
differences.

Study planning for program purposes is primarily a user
responsibility, but it requires laboratory input of analy-
tical quality information.

Effective study planning requires expertise in the area of
application and in applied experimental design. Expertise
in both areas is rarely found in a single person.
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SURRCGATE COMPQOUNDS

A surrogate compound is a compound added to an original environ-

mental sample that is not one of the materials found in the sam-

ple.*

Percent recovery of the surrogate compound is used as an

indicator of the quality of results for compounds of interest

(1) .

Surrogates are a potential means of testing the quality of

*The USEPA QA audit category iaentifier for the amount adaed is
LS2; the iadentifier for the amount measured is LSl.
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every analytical result. Effective use of surrogates reguires
appropriate compounds for the problem at hand and sufficient re-
covery data to set realistic control limits.

The selection of an appropriate surrogate for a particular ana-
lyte is a problem for the chemical expert. The valication and
guantification of the relationship can be done through appro-
priate experiments ana statistical analysis. Data shoula be
collected over a wiae range of analytical performance, purposely
allowing analytical "mistakes." Data can be screened for appro-
priate surrogates using correlation analysis and the relation-
ships quantified using regression analysis (2).

Qualitative Guiaance

l. The effectiveness of particular surrogate compounas for
detecting problems in analyses of interest should be aemon-
strated experimentally before their use is required. Trials
with in-control measurement processes 4o not test the abil-
ity of surrogates to detect quality problems (since problems
are not present).

2. Shortcomings in the purity ana stability of surrogates or
in spiking proceaures can cause misleaaing results.

3. Surrogate control limits should take into account the number
of surrogate compounds employed.
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VAL IDATION

The term "valiaation"” is used in several senses in the guality
control literature. 1In the sense of making analytical results
valid, it can encompass all of quality control (1 - 3). 1In the
sense of determining the validity of analytical results, it also
can include a broad range of activities. However, in this sec-
tion validation is used to describe the process that a laboratory
(or analyst) is required to follow to demonstrate the ability to
apply a method, before using it to analyze real samples. Exam-
ples of such validation procedures are discussed in (4) ana (5).
Their chief benefit lies in uncovering problems in time to pre-
vent their affecting production samples. Objective validation
procedures are based on quantitative decision criteria designea
to detect serious problems, yet minimize the occurrence of false
signals of trouble.

Cne aspect of method validation is a ruggedness study (see Sec-
tion on Method Development). The product of a method validation
should be preliminary assessment of the analytical method's bias,
precision, sensitivity, specificity, and completeness. Typically
a method validation study will include reference standards for
analysis and spiking to assess bias, repeated analysis to assess
precision, analysis of low-level samples to assess sensitivity,
ana the analysis of "blank" matrices to assess specificity. The
principles of study planning (see Study Planning section) should
be used in developing an experimental protocol for method valida-
tion.

Valication of a method on a particular matrix may be needed in an
indiviaqual laboratory if a similar matrix was not included in the
method valication study. Comparing method performance on the ma-
trix to its performance on spiked reagent water is a key aspect
of such a valication effort. Equivalence of bias ana precision
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on reagent water and sample matrices simplifies laboratory QC,

since correction for background is not necessary in analyzing
spike recoveries from reagent water.

Qualitative Guidance

l.

Test samples must be presented blind to the analyst for
realistic evaluation to occur.

Acceptance procedures ana criteria should be based on sta-
tistical principles of experimental desiygn to ensure that
problems of interest are likely to be detected.
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SECTION 4
MEASURING QA/QC COST EFFECTIVENESS

Measures of analytical quality, such as bias and precision, are
useful to the laboratory for evaluating and maintaining its per-
formance. However, since factors in addition to analytical qual-
ity often affect the usefulness of results, more comprehensive
criteria are needed for measuring end-use effectiveness. The
purpose of this section is to present methods for evaluating the
cost-effectiveness of particular QA/QC activities from the fol-
lowing viewpoint:

® The effectiveness of a QC procedure cannot be
judged without igentifying, in terms of quan-
titative objectives, the reasons for its use

° The quality objectives for a QC procedure
should be based on end-use needs

® A cost-effective procedure is one that
achieves quality targets at reasonable cost
(within available resources and at no greater
cost than alternative procedures)

° | End-use needs generally are flexible enough
to allow an adjustment of QC targets, if
necessary, to keep costs reasonable

From this viewpoint, two kinds of tools are needed to develop
cost-effective QA/QC programs: 1) means of identifying reason-
able QC targyets based on end-use needs, and 2) means of evalu-
ating procedures for achieving specified QC targets.

Decision-directing formulae for evaluating QA/QC procedures and
choosing targets are presented in the Achieving QC Targets sec-

tion and End=-Use Quality section, respectively. Most of these
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tormulae assume that analytical results are normally distributea.
Sometimes analytical measurements, especially trace level analy-
sis, cannot be modeled using the normal distribution. When the
normal distribution assumption is inappropriate, the formulae
usually can be made applicable through a data transformation
(e.g., taking logarithms of analytical results). Information on
identifying statistical distributions ana choosing data transfor-
mations can be found in most applied statistics books (e.g., ref-
erence (1)).

ACHIEVING QC TARGETS

In this section it is assumed that QC targets have been specified
and that it is necessary to develop effective measures to achieve
these targets. The targets should be specified in terms of bias,
precision, sensitivity and specificity (as defined in the Meas-
ures of Analytical Quality section), and should consist of both
gesirea quality levels and deviations that are considered import-
ant to detect when they occur. Accuracy problems (bias or impre-
cision) generally are handled differently than detection problems
(sensitivity or specificity) so these topics are discussed sepa-
rately in the Achieving Accuracy Targets and Achieving Detection
Targets sections. The relationship of laboratory size to the
frequency of QC tests is discussed in the Achieving Accuracy
Targets section.

Achieving 2 T !

The collection of QC activities called process control (see Pro=-

cess Control section) is aimed at achieving accuracy targets. A

key step in process control is detecting serious problems as soon
as possible after they occur. Control charts (see Control Charts
section) are the most commonly used detection tool. Thus, ensur-
ing the effectiveness of control charts at detecting bias and
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precision problems is a key to achieving accuracy targets. Two
questions that arise in the use of control charts are:

o How many analyses should be included in each
subgroup?

[ How frequently should control chart tests be
made?

Tools for answering these questions are described below.

In order to use QC test results effectively to decide when bias
is present, it is helpful to set control limits as described in
the Control Chart section. Using "3 sigma" limits on the average
(X) of n readings, the probability of not detecting a bias of
size b when analytical readings are normally distributed with
standard deviation o is*

P = ¢[3-JAb/o] - ¢[-3-Jnb/0] ' (4.1)

The probability of detecting a bias of size b in m independent
tests (each based on an average of n readings), therefore, is

Ppp =1 - p0 | (4.2)

Figure 4-1 (based on End-Use Quality section) shows the probabil-
ity of detecting bias via an X-chart, as a function of the amount
of bias and the number QC tests included on the chart. Figure
4~1 can be used to answer the following kinds of questions:

l. How many tests are needed in a specified
period in oraer to reliably detect a bias of
specifiea size?

Suppose it is desirable to detect within a
week a change of 20 ppb in the concentration

*P(x) = (2‘")-31r B édt is the cumulative distribution function

of the standard normal distribution. (x) is tabled in most ap-
plied statistics books (e.g., (1)).
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of a calibration standard. 1If 0=10 ppb for
the analysis of calibration standards and
each test is based on duplicate analyses
(n=2), it is necessary to pe:fcrm about §
tests per week to have 95% chance of detect-
ing a bias of 20 ppb. (20J2/10=2.8, and

m=5 gives a 95% chance of detection at this

value).

what size bias can be reliably detected with
a given number of tests?

Suppose the QC test procedure is based on the
analysis of a single spiked sample (n=l).
Then one test (m=1) can detect a bias of 46
percent recovery with 95% probability when o
=10%. (For m=1,ynb/o=4.6 7ives a rrobabkility
of 95%. Solve for b when n=l1 and 9 =10.)

How many replicate analyses are needed for a
single test (m=1l) to reliably detect a speci-
fied bias?

For a 95% chance of_detecting a biag of 25
ppb when o=10 ppb, X should be based on n=4
readings. (SolveVnb/o=4.6 for n when b=25
and 0 =10.) :

what is the probability of detecting a speci-
fied bias in a single QC test (m=1l)?

Suppose b=40% recovery is considered a ser-
ious bias and 0=10% recovery is the analyti-
cal precision. Then a single spiked-sample
recovery (n=1l) will detect a bhias of 40% with
probability about 84%. (Jynb/o=4, and at this
valuf the curve for m=1l in Figure 4-1 is at
84%.

what is the probability of detecting a ser-
ious contamination problem in the laboratory
in a single method blank analysis (m=n=l)?

Suppose a contamination level of 15 ppb is
considered serious enough to require correc-
tive action, and experience has shown that it
is possible to control contamination at an
average level of 5 ppb. 1If o=3 ppb, then a
single method blank analysis will detect a
shift in contamination from S ppb to 15 ppb
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(a "bias" of 10 ppb) witn probability 62%.
(dnb/c=3.3, and at this value the curve for
m=1 in Figure 4-1 is at 62%.).

It can be seen from these examples that Figure 4-1 provides a
means of judging the effectiveness of X-charts applied to many QC
measurements aimed at detecting analytical bias (including spiked
samples, reference samples, standards, calibration constants and
blanks).

The effectiveness of multivariate control charts for detecting
bias (see Control Charts section) is more complicated to describe
because of the many combinations of biases that can occur for the
different analytes of interest. For the most general case, the
chance of detecting bias is a function of

A= b'v-p (4.3)

where D' = (b,, ..., bp) is the vector of biases for the p dif~

ferent analytes and V is the matrix of variances and covariances
of the analytes. 1In the case of bias in a single analyte, (4.3)
reduces to

A= b2/g2(1-R2) | (4.4)

where b is the bias, ¢ is the analytical standard deviation and R
is the multiple correlation between results for the biased ana-
lyte and the remaining analytes. The chance of detecting a spe-
cified bias using a X* chart can be obtained from tables of the
noncentral X° distribution with p degrees of freedom (e.g., ref-
erence (2)). The same quantity for a T2 chart can be evaluated
using the noncentral F distribution (e.g., reference (2)) as
shown by Anderson (3). 1In general, increasing A implies increas-
ing chance of detecting a problem.
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The range control chart on duplicate analyses described in the
Control Charts section is a common means of checking for changes
in analytical precision. The probability of not detecting a
change in the analytical standard deviation from the target value
(cg) to a larger value (0;) is given by

P = Prly? < 6.8logkb, ] (4.5)

The chance of detecting a deterioration in precision in m points
on the range chart, therefore, is given by (4.2) with P defined
by (4.5).

Figure 4-2 is a graphical representation of (4.5) showing the
chance of detecting a given deterioration in precision as a func-
tion of the number of R-chart points. It can be used to answer
the following questions:

1. How many sets of duplicate analyses are
needed in a specified period to reliably
detect a specified increase in 0?

If it is necessary to detect a quadrupling of
o within a week (G /0g=4), Figure 4-2 shows
that about 6 R-chart points would give a 95%
chance of detection.

2. What size change in precision can be reliably
agetecteda with a given number of tests?

A single test (m=l1) has only about a 50%
chance of detecting a 5-fold increase in g.
With four tests, the chance of aetecting a
5-fold increase is about 95%.

The results above for control charts assume that accuracy prob-
lems persist at the same level - once they occur - until cor-
rected. If accuracy problems occur intermittently, they are mor-«

*p can be found from tables of the cumulative chi-squared dis-
tribution with one degree of freedom (since the range of dupli-
cate analyses equals times the standard deviation). Formula
(4.5) assumes that analytical readings are normally distributed.
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difficult to detect (but their impact is less serious). Models
have been developed to evaluate the effectiveness of control
charts when quality problems occur in a random manner (4 - 6),
but they are primarily of academic interest (see Simplicity sec-
tion).

Effective process control requires that problems be corrected
once they are discovered. If no effort is made to eliminate per-
sistent problems, much of the effectiveness of control charts
will be lost.

Another way of looking at the effectiveness of a QC test is in
terms of the average number of tests required to detect a speci-
fied problem. This quantity is often referred to as the average
run length or ARL of the test. Figure 4-3 shows the ARL as a
function of the probability of detecting a problem in a single
test. The figure can be related to the earlier results for X and
R charts by

ARL = P/(1-P), (4.6)
where P is given by (4.1) or (4.5).

To illustrate the ARL concept, recall that in the fourth X-chart
example, the chance of detecting a bias of 40% recovery on a sin-
gle test was 0.84. The chance of detecting a bias of 20% in the
same example is 0.16. Using (4.6) or Figure 4-3, it can be seen
that an average of over five tests would be required to detect
this 20% bias. If one test were run per day, this means that an
average of one workweek would pass before the bias was discov-
ered. If a test were run every 20 samples, on the average over
100 samples would be analyzed before the problem was detected.
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These last examples illustrate another question that arises with
many QC activities; namely, should the frequency of QC tests be
based on the elapsed time or the number of samples analyzed be-
tween tests? The answer depends on the nature of the quality
problems likely to occur. For example, if calibration constants
tend to remain stable within a day but change between days, QC
testing on a day-to-day basis is reascnable. On the other hand,
if the occurrence of bias due to GC column deterioration is re-
lated to the number of samples analyzed, basing the fregquency of
QC tests on the number of samples analyzed is reasonable.

Laboratory size can be an important factor in determining the
relative costs of quality control when it is appropriate to base
QC testing frequency on the elapsed time between tests. For ex-
ample, if recalibration is required each day analyses are done,
the laboratory analyzing ten samples per day will have much
smaller calibration costs than the laboratory analyzing two sam-
ples per day (on a per sample analyzed basis). On the other
hand, the impact of laboratory size is minimal when it is appro-
priate to base QC testing frequency on the number of samples
analyzed between tests. Unfortunately, many quality problems in
trace analysis are time-related; e.g., instability of calibration
constants and standards, environmental changes and contamination.
Thus, small laboratories tend to have a cost disadvantage when it
comes to achieving specified QC targets.

In summary, the decision-directing formulae in this section can
be used to choose effective means of achieving QC targets for
analytical accuracy, but only if the targets are specified in
quantitative terms as to desirable and undesirable quality
levels. Guidance for relating targets to end-use needs is pro-
vided in the End-Use Quality section.
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Detection problems generally are handled by defining nondetects
and detects in a manner that minimizes the rate of occurrence of
these problems. Two limits have been defined for this purpose
(7) 2

® Critical level - the level of test result
that reliably indicates the presence of a
compound

° Detection limit - the true concentration at

which a test method reliably detects the pre-
sence of a compound.

The critical level protects against false positives (saying a
compound is present when it isn't) due to background noise. It
should be large enough that samples not containing a compound
seldom give that large a test result. Then, when a result ex-
ceeds the critical level, one can reasonably conclude that the
compound is present. The criticai level usually is expressed as
a multiple of the standard deviation of background noise (7).

The detection limit addresses the problem of false negatives
(saying a compound is not present when it is). The detection
limit does not apply to individual test results the way the cri-
tical level does: it is a property of a test method that should
be used in applying that method. For example, requlatory limits
cannot practicably be set below the detection limit (a compound
must be detectable at a given level or one cannot check whether
it is being held at that level). The detection limit should be
reported whenever an analyte is not detected in a sample to indi-
cate the possible level of the analyte (if the analyte is pres-
ent, its level probably is below the detection limit).
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Critical levels and detection limits are commonly determined from
distributional models (7 - 8). There are alternative methods
less dependent on distributional assumptions; for example, Ragel
(9) illustrates one method.* Regardless of what method is used
to estimate these limits, the method and conditions of experimen-
tation should be reported along with results.

USEPA's operational definition of the Method Detection Limit is
described in reference (10). Further discussions of limits for
detection and quantification are in References (1l - 13).

END-USE QUALITY

It was noted in the Definition of Quality as Fitness for Use sec-
tion that uses of analytical data include estimating concentra-
tions, setting and enforcing regulatory limits, and comparing
concentrations from different sources. Measures of effectiveness
for each of these uses are described below. The statistical
tools discussed in this section can be used to set rational tar-
gets for laboratory QC and to ensure effective end-use quality
through a comprehensive QA/QC program. '

Evaluating Effectiveness in Estimation Problems

The following are examples of problems involving estimation using
analytical results:

e Describing treatment system performance
e Establishing a calibration curve

® Setting achievable regulatory limits

*Statistical techniques for handling dose-response problems are
applicable, also.
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e Describing contamination levels in a laboratory

e Documenting average recovery in a laboratory

The answers to these problems are called estimates because they
are affected by systematic and random errors in the analytical
results (and possibly by detection errors and total failures as
well). The purpose of this section is to provide tools for eval-
uating the impact of analytical errors on estimates of different
environmental and analytical parameters of interest,

The following questions arise in estimation problems:

. How effective is a given estimation procedure?

° What estimation procedure gives acceptable re-
sults for the least cost?

] What estimation procedure gives the best results
for a given cost?

Methods for answering these questions are described below.

One measure of the effectiveness of an estimation procedure is

the maximum probable error, the largest error that will occur
with specified probability in repeated applications of the pro-

cedure.* Estimators often are averages of independent test re-
sults. For such estimators we can say approximately that the
probability is P that the estimation error is no more than

E = zpo/ns | (4.7)

where n is the number of results averaged, ¢ is the appropriate
standard deviation or measure of precision of the procedure, and

*This criterion only evaluates the impact of random error on
estimation. The impact of systematic error can be determined
separately if the bias of the measurement process is known.
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Zp is the appropriate percentile of the standard normal distribu-
tion (11).* For P = 9$5%, 2p = 1.96. This formula should be used
in planning estimation studies to ensure that useful results will
be obtained. Formula (4.7) can be rearranged to give the number
of tests required for an estimator with specified maximum prob-
able error:

n= 2,0 /E% (4.8)

For example, if a maximum error of 10ppb is desired with 95%
confidence and o= 10ppb, (4.8) indicates that n = 4 tests are
needed.

If o depends on concentration, prior knowledge of concentration
may be required to use these formulae. One exception is when the
relative standard deviation is constant with respect to concen-
tration;** then the formulae can be applied by interpreting ¢ and
E as relative standard deviation and relative error, respec-
tively. For example, suppose it is desirable to estimate the
average recovery in a laboratory with 95% confidence that the
estimate will be within 10 percent of the true value if the rela-
tive standard deviation is 20 percent. Then (4.8) shows that

n=1.962(20)2%/103a16
analyses are required.

Formula (4.8) can be evaluated using the nomograph in Figure 4-4.
For example, to find the n needed to achieve a maximum error of

*The formula is exact if analytical results are normally dis-
tributed and o is known. If results are not normally distri-
buted, the formula improves as an approximation as n increases.

**One case in which RSD is constant with respect to concentration
is when analytical results are lognormally distributed.
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10 ppb, as in the first example above, first find the point where
the diagonal intersects the line through E = 10 ppb and P = 95%.
Then the line through this point and c=10 ppb cuts the n scale

at the required value, n = 4.

Formula (4.7) also can be evaluated using the nomograph. For ex-
ample, to determine the maximum probable error that will occur
with 95% probability based on n = 4 tests when ¢=20 ppb, first
find the point where the diagonal and the line through n = 4 and
o=20 intersect, then extend the line through this point and P =
95% to find E = 19.6 ppb.

The n value indicated by (4.8) sometimes will be infeasible for
economic reasons. In such cases, the nomograph facilitates find-
ing E and P combinations that yield a practical n. Particular
choices of n can be evaluated by finding the diagonal point on
the line connecting n and 0, then finding E and P values on lines
through this point.

For example, if n = 30 is desirable from a cost standpoint and
0=20 percent, then the following approximate E and P combinations
are possible:

SR R ~E-
9 percent 99%
8 percent 95%
7 percent 90%
6 percent 75%

It can be seen from the nomograph that n increases with increas-

ing confidence level (P) or decreasing error (E). For fixed n
and 0, smaller error requirements mean that a lower confidence

level must be accepted.
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All factors in the formula except ¢ can be varied by the user.

The standard deviation is characteristic of an in-control measure-
ment process - it can be changed only by changing the process.

One valuable result of process control is that it allows one to
know o through experience with the process. Process control gives
assurance that the past value of o is relevant to future analy-
ses,

When ¢ is unknown, the American Chemical Society's Committee on
Environmental Improvement (12) recommends use of the N-N~N rule;
that is, run an equal number of field samples, field blanks and
spiked blanks. This rule generally will not be cost-effective
since it is not tied to either analytical precision or end-use
requirements. In most cases some knowledge of ¢ should be avail-
able, if not from studies of the method of interest, then from
studies of related methods or from expert opinion (13). One re-
sponsibility of method developers is to provide preliminary es-
timates of important variance components, so that reliance on
such sources will not be necessary. Two other approaches avail-
able when there is no information on analytical precision are two-
stage estimation procedures (14) and pilot studies to estimate
the ¢ values to substitute into formula (4.8), The pilot study
approach is less practical because a large number of tests are
required to obtain a good standard deviation estimate (over 30
analyses are required to ensure 90% confidence that the error in
an estimated standard deviation will be less than 50 percent of
the true value (2)).

Cochran (14) describes a simple model for determining a cost-
effective sample size (n) when estimation cost is given by

C = Co+C,n + C, [b*+ o7/n], (4.9)
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where

n = number of samples analyzed

¢ = analytical standard deviation
b = analytical bias

Co = overhead cost

C, = cost per sample analyzed

C, = cost of estimation error

The formula assumes that the cost of estimation error for an es-
timate based on n replicate samples is proportional to the mean
squared error of estimation (this includes both bias and preci-
sion). It can be shown that the value of n that minimizes (4.9)
is

n = (C,0%/C,) (4.10)

Note that bias does not affect the optimum n (since replication
does not reduce bias). The major difficulty with applying this
model lies in identifying the cost of estimation error, C,.

Even if the cost of estimation error cannot be quantified as
Cochran's model requires, more effective allocation of resources
may be possible (compared to (4.8)) when detailed knowledge of
sources of variation is available. Then a replication strategy
can be based on variance component and analytical cost informa-
tion. For example, consider the problem of deciding how many ex-
tractions to run on a sample and how many analyses to perform on
each extraction. Let

standard deviation due to extraction

g, =

o, = standard deviation due to analysis
C: = cost/extraction

C, = cost/analysis

n, = number of extractions/sample

n, = number of analyses/extraction.
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Then the cost of analyzing a sample is
C=n,C, + nn,C, (4.11)

and the variance of the estimated sample concentration (the aver-
age of n n, analytica. results) is

g®*=0,¢/ny 402" /nin, (4.12)

Suppose we need to estimate a sample concentration within + E
with confidence P. The most economical allocation of extractions
and analyses to meet this requirement is (15)

2 2y 8
n, = (Ci02°/C20:1°) (4.13)

and
ny = z3(c,? + 0.*/n:)/E** (4.14)

For example, if C, = $48, C, = $20, o, = 10ppb, 0, = 15ppb, P =
95% and E = 20ppb, then n;, = n, = 2. That is, if two extractions
are done and two analyses are run on each extraction, the averagé
of the four analyses will have a maximum error of + 20ppb with
95% confidence. The cost per sample will be $176.

If the maximum allowable cost is fixed, then the best n, is still
determined by (4.13), but n, is based on the cost constraint

n, £ C/(C; + n.Cy (4.15)

If the maximum allowable cost in the above example is $90, then
n, = 2 and n = 1. Thus one extraction and two analyses would be

*Formula (4.14) assumes that analytical results are normally dis-
tributed and ol and ¢2 are known. It can be used when vari-
ance components are proportional to concentration by interpret-
ing the ¢'s as relative standard deviations and E as relative
error.
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done on each sample at a cost of $88; the maximum probable error
would be + 29ppb with 95% confidence.

Figure 4-5 is a nomograph for determining n through formula
(4.13). The values of C2/C1 and C2/0: are computed, then the
line through these values gives n, on the middle scale. After
obtaining n:, ni can be obtained by the other nomograph (Figure
4-4) with o?=01? +022/n,. To use the nomograph for the above
example, read n, = 2 where the line through C,/C, = 0.4 and 0. /0,
= 1,5 crosses the middle scale in Figure 4-5. With n, =2, 0=
(10% + 152/2)% = 14.6. Then m; = 2 can be found using Figqure 4-4
with a maximum error of 20ppb and confidence level 95%.

Bennett and Franklin (15) discuss allocation problems of this
kind with any number of stages.

Several complications that can occur in the application of this
scheme to environmental analyses are beyond the scope of the
methods discussed above. These include:

° Correlations between samples or analyses

° Measurement of several parameters on the same
sample

° Use of composite sampling procedures in place

of arithmetic averages.

Correlations, such as can exist between wastewater samples taken
on successive days, make formulas in this section invalid in de-
ciding on the number of days to sample. Examples of methods for
aealing with such correlations are given in references (16) to
(18) . When several parameters are measured on a sample, the
methods of this section can be applied separately for each para-
meter. If results for different parameters conflict, one can
pick the result that works best for all parameters or the result
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for the most critical parameter (if one exists). Evaluating com-
posite sampling procedures is more difficult than evaluating pro-
cedures discussed here (references (19) - (22) give details).

Evaluating Effecti in Requl

The effectiveness of requlatory programs aimed at limiting water
pollution depends on the quality of analytical data available, as
well as on the incentives for compliance (23 - 24). The discus-
sion here focuses on detecting violations when they occur. How-
ever, unless detecting violations helps induce desired behavior,
‘the measures of effectiveness discussed may be meaningless in
terms of accomplishing regulatory objectives.

A common regulatory use of test results is to check whether con-
centrations of particular compounds exceed regulatory limits.
Bias and imprecision in test results can cause two errors in this
application: to wrongfully conclude that a violation has occur-
red, or to wrongfully conclude that one has not occurred. a
statistical tool commonly used to show the effectiveness of com-
pliance-testing procedures is the operating characteristic (0C)
curve. An OC curve shows the probability of concluding from com-
pliance data that a facility is in compliance, as a function of
the true concentration of the compound of interest. OC curves
depend on the compliance procedure and on the bias and precision
of the sampling and analytical procedures used.*

Figure 4-6 shows OC curves for a procedure that determines com-
pliance by comparing a single analytical result (e.g., the meas-
ured concentration for a monthly NPDES self-monitoring sample) to
a compliance limit of 100ppb. The two sets of curves show the
impact of bias (60 and 90 percent recovery). The three curves

*See Duncan (25) for a discussion of OC curves for different
compliance procedures.
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within each set show the impact of precision (10, 20 and 40 per-
cent RSD). When the true effluent concentration is 150 ppb, the
figure shows that the chance of compliance can range from 1 per-
cent (90 percent recovery with RSD = 10 percent) to 87 percent
(60 percent recovery with RSD = 10 percent). When the true con-
centration is 50 ppb, however, the chance of compliance is vir-
tually 100 percent in all cases illustrated. Thus, the impact of
analytical quality depends on the relative magnitudes of the true
concentration and the compliance limit.

Table 4-1 gives formulae for computing OC curves for three dis=-

tributional models that occur commonly in analytical QC. The
second model was used to produce Figure 4-6.

In general, OC curves show how random and systematic errors in
sampling and analysis affect compliance decisions. The magnitude
of ranaom variations affects the steepness of the curve; i.e.,
the ability of the procedure to distinguish between different
concentrations. More variation results in less aiscriminating
power, as can be seen by comparing curves for RSD = 10 percent
and RSD = 40 percent. The effect of bias is to shift the curve
left or right, depending on the direction of bias. (In cases
where variability changes with concentration, bias also affects
the steepness of the curve.) It can be seen in Figure 4-6 that
negative recovery bias shifts the curves to the right; i.e.,
makes the compliance procedure easier to pass.

Figure 4-7 is an example of an OC curve for two nitrosomine com-
pounds analyzed using USEPA Method 607. The compound recovery
and precision values were calculated from data presented in the
method development study. The lognormal model from Table 4-1 was
used in generating the curves. The compliance limits are hypo-
thetical. The impact of bias (recovery <100 percent) and the
effect of laboratory replication on compliance can be seen from
these curves.
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TABLE 4-1. FORMULAS FOR COMPUTING OC CURVES

Distributional Model 0C Curve Formula¥*
Normal, comnstant variance Pa = ¢ [(100L-ryp)/1000]
Normal, constant RSD Pa = $[100(100L-ryu)/ruRSD]
Lognormal Pa = 3 [(log L~u')/co']
* L = compliance limit.
U = true concentration (same units as L).
0 = standard deviation (same units as L).
T = gverage percent recovery.
RSD = relative standard deviation (1000/U4).
p' = log [100p/r(1+(RSD/100)2 %] (logarithmic scale).
g' = [log (1 +(RSD/100)2)]% (logarithmic scale).
¢(*) = cumulative distribution function of standard normal

distribution (see Equation 4.1).
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In summary, OC curves are useful for the following purposes:

® Show the impact of analytical quality on reg-
ulatory effectiveness (an aid to setting QC
targets)

°® Evaluate the effectiveness of a particular

compliance—-testing procedure

® Compare performance of alternative compliance-
testing procedures

o Show the operational meaning of regulations
(e.g., what concentrations must be maintained
to ensure minimal risk of noncompliance (26)).

The first use is most obviously’ related to analytical quality;
however, all uses are related to end-use quality and thus are
properly of concern in a total quality control program.

The OC curve concept can be combined with cost data to evaluate
the cost effectiveness of different QA/QC programs {(27). For ex-
ampl. suppose the probabilities of passing a compliance limit at
a given actual concentration above the limit are P, and P, for
an original and a more costly and effective procedure, respect-
fully. If the costs of the two alternatives are Co and C,, the
cost per violation detected under the original procedure is Co/ (1~

Po)r and the marginal cost of additional violations detected by
the other procedure is

MC = (Cq - C,)/(Pg - P,) | (4.16)

A plot of marginal cost versus actual concentration can be used
to compare QC alternatives.

To illustrate the use of marginal cost to evaluate the cost-ef-

fectiveness of a QC activity, consider bias correction based on
recoveries from spiked samples and precision improvement via
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replication. For replication, the probabilities in (4.16) are
given (assuming the second model in Table 4-1 holds) by

P = $[100 b(100L~-ry)/ruRSD] (4.17)

where n is the number of replicates. P, is given by (4.17) with
n=l. For recovery correction,

Po = ¢[100(100(1-4)~r)/cRSD] (4.18)
and

P. = §[-1004/RSD(1+(1~-d) 2/n)4] (4.19)

1

where n is the number of spiked-sample analyses and d = (u=L)/u
(again assuming the second model) .* In both cases costs are pro-
portional to the number of samples analyzed, so C,~Cqo = n-1 for
replication and C -Co = n for spiked sample analyses.**

The marginal cost of replication (cost of additional violations
detected by replicating laboratory analyses) is illustrated in
Figure 4-8 as a function of (coded) actual concentration. The
figure shows that the minimum cost per additional violation de-~
tected through duplicate analyses (n=2) is about 12 times the
cost of detecting a violation based on a single analysis. Mar-
ginal costs are even higher when the actual concentration and
analytical quality are such that the compliance decision is
either clearcut or difficult. For example, suppose the average
recovery is 60 percent, the relative standard deviation is 20
percent, the actual concentration is 1735 ppb and the compliance

*Compliance is determined by comparing X/(Y/L) tg the compliance
limit L; where X is the analytical reading and Y is the average
recovery of n samples spiked at concentration L.

**The baseline cost (Co,) is assumed to be 1 for convenience.
This means that all results here are expressed as relative to

Co.
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limit is 100 ppb. Figure 4-8 srows trh:t the marginal cost of
duplicate analyses is about 25 times the cost for a single
analysis (d=-0.24 and the curve for n=2 gives MC=25 at this
point).

The marginal cost of recovery correction is shown in Figure 4-9
for the case in which average recovery is 60 percent and relative
standard deviation is 20 percent. The figure shows that the cost
per additional violation detected through recovery correction is
less than the cost per violation detected without this QC measure
unless noncompliance is so clearcut that analytical gquality does
not affect detection. Based on Figures 4-8 and 4-9, therefore,
it appears that bias correction can be more cost-effective than
replication in some regulatory applications. Of course, the cost-
effectiveness of bias correction declines as the magnitude of
analytical bias declines (e.g., as average recovery approaches
100 percent). Cost-effectiveness for other values of r and RSD
can be evaluated through the eguations given above.

The marginal cost approach can be used to evaluate other QA/QC
activities besides those described if one can determine the sizes
of Co and C; and the impact of QC on the average recovery and
relative standard deviation (r and RSD). 1In general, marginal
costs can be put into perspective by comparing them to costs of
failing to detect violations (if these can be quantified). The
conclusions from marginal cost analyses also depend, as illus-
trated above, on analytical quality and on concentrations likely
to be encountered.

One way of improving compliance-testing efficiency by relating
sampling and analytical effort to the concentration encountered
is through double sampling plans. These are two-~stage plans that
allow a compliance decision on the first stage (e.g., based on
analysis of a single sample) if results are clearcut (far from



the compliance limit). If the first-stage result is near the
compliance 1limit, the second stage (e.g., analysis of another
sample) is reguired and the compliance decision is based on the
average of results from both stages. Double sampling plans can
be constructed to have the same operating characteristics as
single-stage plans (28 - 29). Their advantage is that they re-
quire fewer analyses on the average than one-stage plans with
comparable operating characteristics, especially when most true
concentrations tested are far from the compliance limit.

Evaluating Effectiveness in Comparison Problems

Another common use of analytical data is to compare concentra-
tions resulting from different conditions or sources. Examples
of this use are subcategorization of an industry for regulatory
purposes (15), treatability studies to compare effectiveness of
alternate wastewater treatment systems, and special QC studies to
compare recoveries from different instruments in a laboratory.
These applications call for statistical tests of whether differ-
ences exist between facilities, treatments, or instruments
(though estimates of the magnitudes of differences are probably
of interest, also).

Making effective comparisons using analytical data depends on
proper study planning as much as on analytical quality (30). The
quality of comparisons can be affected by the number of analyses,
the way samples are allocated to laboratories or analysts for
analysis, the order in which samples are analyzed within a labo-
ratory, and the statistical technigques used to evaluate results.
The assistance of someone experienced in experimental design,
therefore, is helpful in ensuring effective experimental compar-

isons.
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A thorough discussion of measures of effectiveness of comparisons
is beyond the scope of this report.* The basic statistical meas-
ure of effectiveness for such problems is power: the probability
of detecting existing differences of specified size. The evalua-
tion of power for a particular comparison depends on the study
plan, the associated statistical model and the values of parame-
ters in the model (e.g., variance components).

The concept of power can be illustrated with the problem of com~
paring two concentrations; for example, the concentrations of a
particular compound in effluents from two manufacturing facili-
ties. The decision of whether the facilities differ in effluent
concentration may not be clear-cut because of sampling and analy-
tical variation. Such variation can cause one to conclude that
the facilities are different when they are not or are the same
when they are different. A statistical test of whether two fa-
cilities differ can be designed to limit the probability of
wrongfully deciding they are different.** Then for the decision
rule so defined, one can compute the probability of detecting
differences of given size (i.e., the power of the procedure).

Power curves for common statistical test procedures are readily
available (32). They can be used to evaluate the effectiveness
of a particular procedure or to choose the most effective study
plan to detect specified differences.

To illustrate the use of the power concept in study design, sup-
pose we must determine the number of samples (n) to take from
each of two facilities to test for different effluent concentra-
tions. If the total standard deviation of analytical results is
o, then a sample size of approximately

*See Davies (31), for example, for more details.
**See Snedecor and Cochran (ll), Chapter 4, for details of the
two~-sample problem.
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n= 2oz(za+ zg) 2782 (4.17)

is required to detect a difference d with probability (1-8),
given that the risk of falsely concluding that the facilities
differ is a.* For example, if o= l0ppb, the desired risk of
falsely finding a difference is a = .05, and the desired proba-
bility of finding a difference of d = 10ppb is 1 -8 = .95, then
22 independent samples are needed from each facility.

In general, evaluating the effectiveness of comparisons through
power is best done by someone experienced in applied statistics.
Success requires ability to identify an appropriate statistical
model based on the study design, the nature of the data, and
knowledge of the physical and chemical processes involved.

CONCLUDING REMARKS ON QA/QC EFFECTIVENESS

Feedback from users to laboratory quality control programs is in-
valuable in setting realistic goals for laboratory QA/QC. Exper-
ience of users in applying the methods described in the End-Use
Quality section will reveal whether shortcomings in analytical
quality cause end-use problems, such as necessitating excessive
replication to obtain estimates of required precision.

Laboratories, on the other hand, must produce results of consist~
ent, known quality and must communicate quality parameters to
users of analytical results to enable them to apply the tech-
niques described in the End-Use Quality section.

*See Snedecor and Cochran (1, p.l113) for details. Zgy and 2z, are
percentiles of the standard normal distribution, which is tabled
in any applied statistics book (e.g., (1)).
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SECTION 5
CHOOSING COST-EFFECTIVE QA/QC PROGRAMS

Designing an effective quality control program for an official
analytical method is complicated by the following factors:

® The method will be applied in many laborator-
ies, each with potentially different costs

and quality problems

S There may be many different uses and users of
analytical results, each with possibly dif-
ferent quality needs

° Users may be unable to specify quality needs
(at least until experience is gained in the
use of a method)

e The method may measure many parameters on
each sample; gquality control needs for dif-
ferent parameters may conflict.

In such a setting, a single QA/QC program cannot be cost-effec-

tive for every application. One reasonable way to avoid requir-

ing superfluous efforts is to establish a two-tier program on the
following basis:

o Minimal - QC steps needed regardless of use

° Additional - QC steps tailored to end-use needs

The cost-effectiveness of QA/QC programs can be improved further
by basing levels of QC effort in both the minimal and additional
phases on reasonable QC targets f{as discussed in Section 4). The
development of a minimal program is discussed in the Minimal QA/
QC Programs part of Section 5; the selection of additional QA/QC
procedures is discussed in the Additional QA/QC Efforts part of
Section 5. The USEPA 600 series methods are used to illustrate
the principles discussed in these sections.
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MINIMAL QA/QC PROGRAMS

Establishing a minimal QA/QC program reguires:

e Identifying possible uses of data
° Identifying quality needs common to all uses

o Selecting QA/QC activities to satisfy the
common needs

) Picking appropriate levels of effort for each
selected activity

The results of this iaentification process will differ among ana-
lytical methods, so a detailed gquantitative prescription cannot
be given. However, qualitative guidance is proviaed, with exam-
ples using USEPA's 600 series methods for wastewater analysis.

The needs of a minimal QA/QC program include:

° Organization
® Appraisal

) Process control

° Interlaboratory compatibility

"The most important factor in setting up quality control is the
establishment of the organization to do the job (l)." Sources of
information on guality control organization were listed in Sec-
tion 3.

The development and implementation of a laboratory quality con-
trol program must begin with a review of the goals and philoso-
phies of the laboratory's management. Quality objectives can be
quite different, qepending on management's objectives for a QC
program. Laboratory QC goals will be related to the organiza=-
tion's position and reputation. QC goals could be oriented to:
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® Minimum cost for quality control,

® Generation of laboratory data of known quality,

° Generation of laboratory data at an established
quality level,

o Maintenance of schedules (productivity), and

e Matching quality goals to end-use needs.

The quality objectives of management must be stated prior to im-
plementing a specific quality control program. In addition to
stating objectives, management's quality goals will be defined by
QA organization, QC budgets, and other restrictions on potential
QA/QC activities.

The concepts of total quality control (1) involve all relevant
personnel in QA/QC activities from laboratory managers and ana-
lysts to users of analytical aata. The concept that everyone in
the organization affects quality is good, but clear accountabil-
ity and responsibility for quality control must also be delin-
eated. Personnel performing the quality functions should have
sufficient authority and organizational freedom to iaentify
quality problems and initiate solutions.

Laboratories which use the 600 series methods for self-monitoring
or regulation will include:

e Industrial laboratories,
° Contract laboratories, and
° Government laboratories.

Each of these types of laboratories ranges in size from a single
analyst/single equipment laboratory to a large laboratory with
many analysts and types of equipment. Figure 5-1 depicts pos-
sible organizational sructures for these extremes. For the very
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for Laboratories
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small laboratory, the single analyst is responsible for imple-
menting, analyzing, and reporting all quality control, while the
organizational management assumes quality assurance responsibil-
ity. For the large laboratory, a Quality Assurance Director re-
porting to the organizational management is responsible for QA
activities. Quality Control Coordinators are designated in each
laboratory to implement the specific QC activities in each area.
These QC coordinators report QC results and summaries to the QA
Director, as well as to the supervisor in their specific area.

Other QA/QC organizations can be developed which fit the specific
organizational structure of the laboratory. The key requirement
is that QA/QC personnel have the responsibility and organiza-
tional freedom to effectively implement the QC program.

Each laboratory using the 600 series methods should have a Qual-
ity Control Manual. The use of the 600 series methods can be
incorporated in the laboratory's general QC manual or a specific
manual can be prepared for these applications. The manual shoula
document all aspects of the laboratory QA/QC, including each of
the following areas:

1. QA/QC policies and objectives

2. QA/QC organization and personnel

3. Sampling and sample custody procedures

4. Analytical methods and method validation

5. Calibration procedures

6. Quality control tests and freguency

7. Data handling, valication, and reporting

8. QC reporting, review, and corrective action .
procedures

9. QA auditing procedures
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The QC manual should be kept up to date as personnel, method, and
procedural changes occur.

Appraisal of guality is necessary to document that satisfactory
results are being produced, to detect quality problems and to
proviae information needed by users for planning and evaluation.
The most important measures of analytical quality under labora-
tory control are bias and precision. Other quality measures of
interest are frequencies of false positives or negatives (detec-
tion problems). Appraisal alone is of little value, however,
because without process control there is no fixed guality to
document. Process control is needed to ensure that quality es-
timates obtained at one time reflect the quality produced at
other times (which is essential for planning purposes).

The average recovery demonstrated in method validation should be
the ultimate laboratory target (i.e., zero bias relative to the

. average for the method). However, achieving a constant, docu-
mentea average recovery (even if different from the method aver-
age) is an important first step in analytical QC, because within-
laboratory control is a prerequisite to controlling between-labo-
ratory differences. In addition, for applications such as NPDES
compliance monitoring, bias corrections can be made effectively
if the amount of bias is well documented (which generally will be
possible only if bias is constant over time).

The appropriate precision target depends on circumstances oOf
analysis and use. Within-day, between-day ana longer run var-
iance components in a laboratory are the basis for precision
targets. Benchmark estimates of these parameters should.be ob-
tained in method validation studies. 1In NPDES monitoring, the
importance of the magnitude of analytical precision declines the
farther the true concentration is from the compliance limit.

However, maintaining a constant level of precision is important
in every case.
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Compatibility of results produced in different laboratories is
necessary for comparisons of results over space or time to be
meaningful (2, 3). Whether special steps are necessary to
achieve interlaboratory compatibility depends on the test method.
Valiacation studies for most analytical methods indicate that
interlaboratory differences are an important source of error.

When data is generated by more than one laboratory for the same
purpose and relative biases between laboratories cannot be eli-~
minated, it sometimes is possible to allocate analyses to labora-
tories so that differences of interest can be separated from
between~laboratory differences. However, within-laboratory con-
trol of bias is important in this case too.

Interlaboratory QC customarily consists of periodic analyses of
round-robin samples provided by a coordinating laboratory to
check for relative bias between laboratories. Quarterly or an-
nual samples are sometimes specified. One potential problem with
the round-robin approach in the 600 method case is the vast num-
ber of different matrices with which laboratories must deal. A
possibly more practical agproach to controlling interlaboratory
bias is a program to insure that laboratories use equivalent
standards, combined with use of methods in which the equivalence
of any options is conclusively demonstrated.

Any quality control program must be a combination of preventive
measures that keep quality problems from occurring and of QC
tests that provice feedback on the quality of analytical results
being produced. It generally is more cost-effective to concen-
trate efforts on prevention rather than appraisal, but some test-
ing is always needed.
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The best means of achieving QA/QC needs depends on the tools
available for a method. For example, standard reference mater-
ials, one widely recommended appraisal tool, are not available
for many environmental applications. The best choice also de-
pends on resources available and the kinds of quality problems
that prevail.

The best approach to choosing the types of QC tests to run rou-
tinely from those possible is to select the minimum number needea
to detect problems of the types and sizes that are important to
getect. This is accomplished by selecting those tests that are
most comprehensive in the types of problems their results will
reflect. When these tests indicate the presence of a quality
problem, then one can run supplemental tests if necessary to
identify the source of the problem.

To illustrate this approach, the types of tests recommended for a
minimal QC program for the 600 series methods would include:

° Response factor stability - reflects changes
in instruments or standards

' Spiked sample recoveries - reflects recovery
bias (including contamination) and long-run
recovery variation

) Duplicate analyses - reflects short-run
recovery variation (precision)

Field spiking into reagent water would be the best procedure, if
practicable, since field spikes are exposed to more potential
problems than laboratory spikes. Use of reagent water avoids
backgrouna problems, so is preferable (in the absence of‘matrix
effects). Duplicate spiked samples are preferable to duplicate
environmental samples (again, if absence of matrix effects per-
mits) because of the difficulty of ensuring that duplicate en-
vironmental samples contain the analytes of interest. Use of
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spike recoveries of surrogate compounds is another type of QC
test that has potential value for routine use, prcvided suitable
surrogates are available for a method.

The minimal approach just described can be supplemented with
other types of tests, when necessary, to discover the source of
a problem. For example, the cause of bias uncovered by a spiked
sample recovery might be identifiable by analyzing a laboratory
blank to check for contamination.

The approach just described contrasts with the comprehensive ap~
proach in which periodic tests are done to check for every dif-
ferent kind of potential problem; e.g., reagent waer and matrix
spikes, field and method blanks, standard checks, response factor
tests, etc. (4). The drawback of the comprehensive approach is
that it requires extensive testing in all laboratories, whether
they experience quality problems or not. Thus, it can require a
great deal of wasted QC-testing effort in laboratories that take
effective action to prevent quality problems from occurring.
Careful use of a very few different kinds of QC tests can provide
sufficient quality documentation and general quality appraisal
in any laboratory, provided additional tests are performed when
needed for diagnostic purposes.

ADDITIONAL QA/QC EFFORTS

Elements of a minimal program applicable to all laboratories were
described in the previous section. However, "quality control
procedures will ordinarily need to be custom made for each situa-
tion and, perhaps, for each laboratory (5)." A detailed discus-
sion of how to tailor QA/QC programs for specific uses was given
in Sections 3 and 4. (For other sources of information on QA
project plans, experimental design and general quality control,
see references (6) to (12)). A general description and two ex-
amples are given below to illustrate the design process.
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The Decisi p

Figure 5-2 is a flowchart outlining steps involved in tailoring a
quality control program for a particular use. The central fact
is that specific, quantitative objectives can be identified that
permit the use of the statistical design methods describea in
Section 4. The initial application of these methods may indicate
the need for an overly costly program; if so, guality needs will
have to be re-examined to iaentify changes that permit a feasible
program. Successful program design requires interaction between
laboratories and users of results.

The selection of the analytical method will be the limiting fac-
tor for many types of chemical analysis. Sometimes ony one ac-
cepted method is available. The 600 series methods provide al-
ternative methods for analyzing a specific pellutant. The basic
choice is between one or more of the gas-liguia or high perfor-
mance liguid chromatography methods or one or more of the mass
spectrometer methods, Some of the methods include optional pro-
Ccedures, apparatus, and materials. Modifications of the methods,
beyond those expressly permitted in the written method procea-
ures, are considered as "major” modifications. Any such modi-
fications must be approved as an alternate test procedure.

The choice of a GC versus a GC/MS method for each pollutant
offers the individual laboratory flexibility in selection of
methods. Compared to the GC/MS methods, the GC methods are sim-
ple, require inexpensive equipment, and ao not require sophisti-
cated operators. The GC/MS methods generally require less sample
clean-up ana preparation. GC methods are most advantageéus when
the laboratory has had prior experience with the sample matrix,
the matrix is relatively clean, and only a few of the priority
pollutants are expected to be present in the sample.
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Combining GC and GC/MS methods may be cost-effective in some lab-
oratories. The GC methods could be used routinely. Samples
could be reanalyzed by GC/MS whenever a pollutant concentration

exceeds a regulatory limit or an unusual pattern of GC peaks is
observed.

Examples

The process of identifying the additional QA/QC activities needed
in a particular application can be illustrated with the problem
of performing chemical analyses for self-monitoring under NPDES

permits. The quality needs in this application and the QA/QC ac-
tivities that satisfy these needs are discussed below.

l. Bias - Underestimating effluent concentra-
tions increases the chance of compliance at a
given concentration, so negative bias is the
pPrimary concern in permit enforcement. Po-
tential sources of negative bias are sampl-
ing, sample-handling and analytical proce-
dures. Sampling procedures are dealt with in
NPDES permits, and analytical bias should be
controlled by the minimal QC program. There-
fore, handling loss apparently is the only
cause of negative bias requiring additional
QC activity. This problem can be checked by
periodic analysis of field-spiked samples.
Testing frequency probably should be based on
the number of samples between tests (the im-
pact of incorrect compliance decisions due to
handling loss is proportional to the number
of samples affected).

2. Precision - Precision is not of as much con-
cern in self-monitoring as bias because the
chance of compliance when the true concentra-
tion exceeds the compliance limit remains low
regardless of the precision (assuming bias is
negligible; see Evaluating Effectiveness in
Regulatory Problems section). Precision-
control measures in the minimal program
should be adequate in this application.
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3. Contamination - The effect of contamination
is to increase the apparent concentrations in
monitoring samples, so contamination has an
adverse impact on permittees. There are two
ways to deal with contamination. One option
is to test blanks ana use the blank readings
to correct sample readings for contamination.
This approach increases the variation in mon-
itoring test results when the contamination
level is high enough to affect compliance de-
cisions. Therefore, it can decrease the per-
mittee's chance of compliance at some accept-
able concentrations and decrease the chance
of detecting noncompliance at higher concen-
trations. The other option is to eliminate
the causes of contamination. The permittee
probably should be allowed to choose a stra-
tegy for handling contamination, since re-
quiring the analysis of blanks is not cost-
effective for laboratories without contamina-
tion problems. Cost-effectiveness also will
be affected by laboratory size and frequency
of blank analyses.

In general, the decision to require a particular QA/QC activity
should depend on how the quality problem addressed by that activ-
ity affects the permittee. If a problem such as contamination
makes compliance more daifficult, it probably is not necessary to
require QC activities to control the problem. Pointing out op~-
tions, but allowing permittees to choose a solution, is the cost-
effective approach. If a problem such as handling loss makes
compliance easier, however, QC steps aimed at controlling the
problem should be required. By this reasoning, analysis of field-
spiked samples is probably the only additional QC activity war-
ranted in self-monitoring for NPDES permits.

A second example of identifying additional QA/QC needs involves
the use of analytical results from treated wastewater samples to
set effluent limitation guidelines (see (13) for an illustra-
tion). The objective is to set limits that can be achieved a
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high percentage of the time by facilities in a particular indus-
trial category using appropriate treatment technology. This re-
gquires making reasonable allowance for between-facility, process,
sampling and analytical variation. This was done in reference
(14) by estimating the 99th percentile of effluent concentrations
for several facilities. An appropriate measure of end-use qual-
ity in this case would be the error in estimating the 99th per-
centile from sample data subject itself (possibly) to both random
and systematic errors. Since enforcement would be based on the
method used to set the guidelines, method bias is not a problem.
Biases due to sample loss or contamination, however, could result
in unrealistic limits, so these sources of bias should be checked
(e.g., through field blanks and field spikes). Another concern
is to obtain samples that adequately reflect the variation char-
acteristic of each facility. The sampling strategy that can be
followed depends on the cost of obtaining and analyzing samples
(the high cost of analyzing organic priority pollutants typically
limits sampling to three consecutive daily samples (15); several
years' daily samples may be available for other parameters (14)).
A third concern is the possibility that interlaboratory variation
could become confused with other sources of variation, such as
facilities or samples. This problem can be avoided by effective
assignment of samples to laboratories. A final consideration is
the choice of appropriate statistical methods for data analysis.
For example multivariate analysis can be used instead of indepen-
dent analysis of each compound (see (l4) for another example).

In summary, the additional quality control tools apparently
needed in the effluent guidelines problem are field blanks and
spikes, study planning, ana appropriate statistical estimation
methodads. '

Other examples of selecting QA/QC efforts are given in References
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APPENDIX A
SKIP-LOT PROCEDURES

The basic idea of skip-lot procedures is that the amount of ap-
praisal effort required in a quality control program depends on
the quality being produced. A process that produces consistently
high quality requires less monitoring than one that frequently
experiences quality problems. Skip~lot procedures provide objec-
tive rules for deciding the frequency of appraisal needed. They
are applicable to any continuous production process in which the
items produced are expected to be of similar quality, and quality
is not deliberately changed depending on the level of appraisal.

The basic procedure was developed by Dodge (l).* It is illus-
trated in Figqure A-1l in terms of analyzing blanks to check for
contamination. The procedure switches between analyzing one
blank with every sample and analyzing one blank with every f
samples; the current level depends on whether recent performance
has been acceptable. The procedure is described by the parame-
ters i and f (defined in the figure).

One statistical property of skip-lot procedures, which is useful
because it reflects their economic impact, is the average frac-
tion inspected (in the case of blanks, this is the average per-
centage of samples with which blanks are analyzed). It can be
shown that when quality is unacceptable, the skip-lot procedure
requires a blank to be analyzed with every sample (or group of

*The original procedure as applied to individual units was called
a "continuous sampling plan” by Dodge.
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samples). When quality is very good, on the other hand, a blank
will be required with only one in f samples (or sample groups).
Intermediate quality levels result in intermediate average frac-
tions inspected.* This dependence of appraisal costs on produc-
tion quality provides an economic incentive to produce good

quality.

Another statistical property of skip-lot procedures is the aver-
age outgoing quality (ACQ) as a function of quality produced. 1In
the case of blanks, the AOQ is the expected average percent of
samples with unacceptable contamination that are undetected due
to skipping (testing at rate f£). This property also depends on
the level of quality being produced. However, it can be shown
mathematically that the AOQ for a given skip-lot plan has a maxi-
mum value, called the AOQL. The ACQL for blanks would be the
maximum average percentage of samples with unacceptable contami-
nation undetected due to skipping. Skip-lot plans usually are
chosen based on AOQL's. Some plans with AOQL's of 5 and 10 fper-
cent are shown in the figure.

Dodge and Perry (2, 3) developed skip-lot procedures to apply to
collections of units which are tested based on a subsample of the
units. This procedure could be applied to batches of samples;
for example, a blank could be run with each batch until suffi-
cient acceptable results were obtained, then one in £ batches
could be tested. This approach would be appropriate when quality
problems tend to affect all samples in a batch similarly (e.g..,
field contamination).

*It is possible to derive a mathematical expression for the
average fraction inspected in terms of i, £ and the probability
of detecting a problem in an individual test (l).
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A further generalization of skip-lot procedures allows more than
one level of skipping inspection (4). This approach can permit
further savings, but is more difficult to administer (especially
when there are several quality parameters of interest; e.g., sev-
eral potential contaminants to check).

In conclusion, skip-lot procedures can be developed for monitor-
ing any monitorable aspect of analytical quality. They result
in the greatest savings when high-quality production is common.
They provide an incentive to produce high quality as long as
quality reguirements are set at achievable levels.

The skip—-lot philosophy is incorporated in the Environmental Pro-
tection Agency's Test Procedures for the analysis of poellutants

in wastewater (5). The frequency of spiked sample and QC check
sample analysis is dependent on quality performance. After dem-
onstrating the ability to perform acceptable analysis, the "start-
up test", QC checks are reduced to ten percent of the samples
analyzed. Further reduction is possible if all test criteria are
met.
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APPENDIX B
DESIGN AND ANALYSIS OF SPIKE-RECOVERY STUDIES

In spiked (fortified) sample studies, known amounts of a compound
or compounds of interest are added to aliguots of a sample, and
the percentage of analyte recovered by a test method is used to
evaluate the performance of that method. The Environmental Pro-
tection Agency (EPA), for example, uses spiking studies in method
development (e.g., (1)) and has proposed the use of spiked sam~
ples in quality control programs under National Pollutant Dis-
charge Elimination System (NPDES) permits (2). Thus the proper
conduct and interpretation of spiking programs is critical to the
development and implementation of the analytical methods upon
which important environmental programs are based.

Spiking is particularly useful in wastewater analyses because the
variety of sample matrices and the number of analytes of interest
in each sample make realistic standard reference materials diffi-
cult to produce. Spiking permits flexibility in the choice of
sample matrix and in the combinations and levels of analytes that
can be evaluated. The usefulness of spiked~sample analyses is
not limited to wastewater or environmental samples, however, and
proper interpretation of data from such analyses (percent recov-
ery data) is important whatever the application. Analytical re-
sults from these studies usually are evaluated in terms of per-
cent recoveries of the spiked material. The possibility of non-
zero background levels in spiked samples raises the following
questions:
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° How should percent recovery be defined and
calculated?

® What are the best spike levels in relation to
background concentrations?

In this Appendix, statistical properties of percent recovery
data, when analytical bias and precision are proportional to
sample concentration, are described. The impact of the presence
of the analyte of interest in the unspiked sample (i.e., nonzero
background concentration) is examined and some of the potential
pitfalls in the interpretation of percent recovery data in method
development and quality control applications are discussed.

DEFINITION OF PROBLEM

It is commonly found that in the region of applicability of
methods of trace analysis, both precision and bias are propor-
tional to concentration. That is, analytical results have mean
and variance

E(X) = pB
(B.1)
V(X) = (pBCA)zr

where B is the true sample concentration, 100p is the percent re-
covery of the method, and 100Cp is the analytical coefficient of
variation (or RSD). An important function of within-lab QC is to
keep p and Cp constant; ideally, p=1 and Cp is small.

Percent recovery often is controlled through the analysis of
spiked or fortified samples by comparing measured concentrations
to spike levels. One must understand the statistical properties
of percent recovery data to use it effectively. Statistical
properties of such data depend on the following factors:
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° the value of initial sample concentration
(background concentration),

o the method of determining spike level (fixed
or proportional to background), and

o the magnitude of spike employed.

These factors should be taken into account in interpreting per-
cent recovery data but often are not.

A number of definitions of percent recovery have been used in
QA/QC. programs. The following three definitions are considered
here (1):
Definition 1: R, = 100 y/T (zero background)
Definition 2: R, = 100 (¥-X)/T (nonzero background)

Definition 3: R3 = 100 (Y-X)/hX (nonzero background)
where

X = measured background concentration
Y = measured spiked-sample concentration

T = jincrease in concentration due to spiking when spike level is
fixed

hX = increase in concentration due to spiking when spike level is
h times measured background.

The first definition applies (for example) to spiked reagent
water samples for which background concentration is zero (unless
there is contamination). This definition is often applicable in
collaborative studies that determine the p and C values achiev-
able with an analytical method. The second and third definitions
apply (for example) to wastewater samples with positive back-
ground concentrations. These definitions are applicable in QC of
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routine sample analyses to control percent recovery in natural
matrices.

ZERO BACKGROUND - DEFINITION 1

If the original sample concentration is zero and the spike level
is T, the assumed properties of the measurement process (B.l) can
be used to show that

E(R,) = 100p
(B.2)
CV(R,) = 100Cp

Thus recovery data of this type accurately reflects the assumed
properties. This is the only case in which this will prove to be
true.

Definition 1 can give misleading results if presumably clean sam-
pPles are contaminated. If samples are contaminated with amount
B, then the true concentration of spiked samples is B+T and

E(R,) = 100p(1+B/T)
(B.3)
= 100p + (100pB)T~?

In this case, R, is a biased estimator of 100p; the bias de-
creases with increasing T. Using an average of such results to
set control limits gives unrealistic limits at low T values. If
results are available for two or more spike levels (T values),
one can regress R, on T"!; the intercept is an unbiased estimator
of 100p. This approach is useful for some organic compounds
(e.g., phthalates) that are very difficult to keep from contam-
inating laboratory environments.

Contamination changes the variance of R, to
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V(R,) = (100pCa) 2(1+B/T)2 (B.4)

Note that variation in R, is large at low spike levels, but ap-
proaches the assumed value as T increases. The coefficient of
variation equals the assumed value for any T, however.

The contamination level B was assumed to be constant in (B.3) and
(B.4). If B varies randomly from sample to sample, the bias of
R, is a function of the mean contamination level. The variance of
R, reflects variation in contamination as well as analytical var-
iation. The coefficient of variation no longer has the correct
value.

NONZERO BACKGROUND ~ DEFINITION 2

If background concentration B is constant, using (B.l)

E(R,) = 100p
and (B.5)

V(R,) = (100pCa) [ (B/T)% +(1+B/T)?)

Thus R, has the correct mean value regardless of B or T, but
V(R,) depends on the ratio of B and T. As T/B increases, V(R3:)
approaches the correct value. |

The consequence of this result is easily seen through some exam-
ples. Table B-1 shows the impact of T /B on Var (R,) and the ex-
pecteda range in recoveries for three czzes (m= n = 1), The
expected range in recovery is based on a 9% percent tolerance
interval for a normal distrituticn:

100 p £ 1.96 \] Var (R,)
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9¢1

TABLE B-1. IMPACT OF SPIKE TO BACKGROUND RATES ON VARIABILITY
OF PRECENT RECOVERIES (Definition 2)

Spike to Background Expected Range in Percent Recoveries*

Ratio (T/B) Var (R,) (p=1.0Cy =0.1) (p=1.0Cy =.2) (p=.5C4 = .2)
Zero background (100 c)? (80,120) (60,140) (30,70)
100 1.02 (100 Cy)? (80,120) (60,140) (30,70)
50 1.04 (100 cy)? (80,120) (59,141) (30,70)
10 1.22 (100 Cu)?2 (78,122) (56 ,144) (28,72)
5 1.48 (100 C,)?2 (76,124) (51,149) (26,74)
1 5.00 (100 C,)? (55,145) (10,190) (5,95)
0.5 13.0 (100 c,)?2 (28,170) (-44,240) (-22,122)
0.1 221 (100 c,)? (-200,400) (-500,700) (-247,347)
0.05 841 (100 C,)? (-480,680) (~1100,1300) (-530,630)
0.01 20,200 (100 c,)? (~2700,2900) (~5600,5800) (-1400,1500)
0.005 80,400 (100 c,)? (~5600,5800) (-11,200,11,000) (-5600,5700)

*95% tolerance interval for percent recoveries with assumed values for p and C, [Tolerance
limits = 100 p + 1.96 ,IVar (R,)]



As can be seen from Table B-l, when T/B = 1, Var (R,) is five
times the zero-background value; when T/B = 0.1 Var (R,) is about
221 times the zero-background value.

Suppose the background is not constant, i.e., B varies from sam-
ple to sample with

E(B) =8

(B.6)
V(B) = (BCp)?

(100Cg is the between-sample coefficient of variation.) Then the
variance of R, across samples is

V(R,) = (100pCp)?[1+(K+1)2+2Cp2]KR™? (B.7)

where K=T/p (the ratio of spike level to average background con-
centration). It can be seen that V(R:) is larger than the true
variance, 100pCp. Figure B-1 shows

SD(R,)/SD(R,) = [1+(R+1l)2+2Cg?]Y%/K (B.8)

versus K for different between~sample coefficients of variation
(CVg=100Cg) . The following points should be noted from the
figure:

. For any Cg value SD(R,) is large when K < 1.

® Cg has little effect on SD(R,) when K > S,

) Increasing Cg makes SD(R;) much larger when K < 1.

Between-sample variation generally is large for environmental
samples (CVp= 200% is not an unreasonable value). This variation
cannot be controlled since measuring concentrations of unspiked
samples (X values) is the laboratory's primary function.
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An example of the difficulty one can have with fixed spike levels
appeared in a report on the effectiveness of wastewater treatment
systems of 5 organic chemicals plants (2). A fixed spike level
of 10,000 ppb was used in one laboratory. The measured back-
ground concentration on one sample was so high that the estimated
K-value was 0.01; the calculated percent recovery for this sample
was -7000 percent. This result obviously should have been exclu-
ded from percent recovery statistics but was not. It reflected
poor spiking practice, not poor analytical performance.

Another example of potential misinterpretations of data from a
spiking study can be found in reference (3). 1In this article,
spiking studies were used to assess the performance of labora-
tories. The authors concluded that overall performance by the
five labs in the study was poor. In one test, an unknown fresh-
water sample was analyzed with and without spikes of various
minerals. The estimated spike/background ratios for the six
minerals were as follows: 0.14, 1.1, 0.21, 5.0, 0.71, and 5.0.
Some of the variability in recoveries attributed in the article
to poor lab performance may have been due to the statistical
properties of recoveries with low spike/background ratios.

Because of this potential problem the use of fixed-level spiking
procedures is not recommended. Though they give an unbiased es-
timator of percent recovery, they can give results that are too
variable to be useful for QC purposes.

NONZERO BACKGROUND -~ DEFINITION 3

In this definition,

R, = 100 (Y-X)/hX

3
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the spike level is a multiple (h) of the measured background con-
centration. The obvious motivation for this procedure is that it
controls (within limits of the analytical method) the spike/back-
ground ratio.

Suppose that the true concentrations of original and spiked sam-
ples are B and hX+B and that analytical error is lognormally dis-
tributed. It has been shown (Reference (2)) that

E(R,) = 100p (1+Cp*/hp)
and ‘ (Bog)
V(R,) = (100pCp)2 [ (hp+Cpa?+1)2+(Cp%+1)%1/(hp?)

Note that B is not in the equaticn for V(R;). Thus this percent
recovery definition has an advantage over R, in that V(R;) does
not depend on between-sample variation. :

The ratio of standard deviations of R, and R, is
SD(R,)/SD(R,;) = [(hp+Cp2+1)2 +(Cp2+1)s J%/hp (B.10)

This ratio is plotted in Figure B-2 as a function of hp and Ca.
At hp=1 and Cp=0.25, SD(R,) is 2.34 times the actual value.

The following properties can be noted from (B.9) and Figure B-2:

[ Ry is a biased estimator of percent recovery
whose bias increases with increasing Cp and
decreasing h.

) SD(R;) increases as hp decreases or Cp in-
creases.

) Ca has little effect on SD(R,) for hp > 5.
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Note that hp = E(Y-X)/E(X); that is, hp is the ratio of average
spike level to average background concentration.

Based on the results discussed above, definition R, generally is
preferrable to definition R,. However, one must choose the h
value properly or R, has deficiencies too. Note that p must be
considered in choosing h because V(R,) is determined by hp, not
by h alone. For example, h must be twice as large when p = 1/2
as when p = 1 to give the same V(R,).

COMMENTS AND CONCLUSIONS

1.

It is desirable for a test method to have P = 1 (i.e.,
expected recovery of 100%) and var (R) small, and that these
parameters have the same value for all concentrations of
interest.

In statistical terms, percent recovery data from zero back-
ground samples is easiest to interpret. The mean and var-
iance of this data reflect the mean and variance of the
measurement process. Such data should not be used naively
to set control limits for percent recovery data from posi-
tive background samples, however, because of the statistical
effects of positive background that were demonstrated in R:
and R;. (Matrix effects on method performance are another
consideration.) Since contamination changes statistical
properties of Ri, blank samples should always be analyzed
along with spiked samples to check whether background con-
centration is truly zero.

The use of fixed ("blind") spike levels generally should be
avoided. Though it is more convenient for the laboratory,
this practice can result in low average spike/background
ratios that drastically reduce the power of QC tests or
cause false out of control signals (depending on how control
limits are set). The fact that V(R,) depends on between-
sample variation also reduces the usefulness of data from
this procedure.

Proportional spiking is preferrable in the positive back-
ground case. But low h values must be 2vcided 2r R, will be
biased and will be too variable to be useru. Zc: QC pur-
poses. The EPA hanabook (4) recommends n=l: Pa:rett and
Youden (%) recommencec n=t.z. -.3 and 1. Larger values
should be considerzc.
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One way to choose spike levels is to cover the range of con-
centrations of interest, then find samples with background
levels that are small compared to the chosen spike levels.
If this is done, the recovery definition used will not af-
fect conclusions. In some sjituations samples with low back-
ground levels may be difficult to obtain, however.

Another way to select spike levels is to make them multiples
of estimated background levels, but small multiples can give
misleading results. Samples still must be chosen carefully
in this approach, or large multiples may lead to spike
levels outside the range of interest.

Some analytical methods specify that one spike level shoula
equal the initial background concentration. At this low
multiple (k=1), R is more variable than at higher levels andg
s2? overestimates the recovery variance. These properties
could lead one to conclude that the recovery mean or var-
iance of a method were different at low concentrations.

This would needlessly complicate quality control procedures,
since the apparent aifferences would be due to the spike and
background levels used.

In some situations (e.g., studying the properties of a
methoa near the detection limit), it may be difficult to
obtain low background levels in the sample matrix of in-
terest. Dilution of sample matrices shoula be considered.
If it becomes necessary to perform spiking studies with a
low spike/backgrouna ratio, the statistical properties of
the recoveries should be considerea in interpreting the re=-
sults and in comparing them to results at other concentra-
tions or in other matrices.
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