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SECTION 1

INTRODUCTION

This report summarizes work completed through a cooperative agreement between the
National Center for Atmospheric Research (NCAR) and the Environmental Protection Agency
(EPA) to study methods for analyzing extreme climate events. The overall goal of this project
is to develop statistical models for extreme climate events that will be useful for the construc-
tion and application of scenarios of future climate. The results of this study will provide
methods for determining how the likelihood of extreme climate events may change as other
more general climate parameters (e.g., the mean or variance) change.

Research in the first year focused on the general problem of expressing climate change in
terms of the likelihood of extreme events. A statistical "paradigm" for climate change was
formulated, and theoretical properties of the relative sensitivity of extreme events were
derived. During the second year, these theoretical results were extended to treat more realistic
situations for climate variables (e.g., autocorrelation, finite samples). The interpretation of the
theory in terms of a "spatial analogue” for climate change was also begun. Research in the
third year concentrated on refinements that naturally arise in actual applications or case
studies of extreme climate events. For instance, the accuracy of approximations based on
extreme value theory was investigated for extreme maximum and minimum temperature
events, and a specialized treatment for extreme precipitation events was devised. Finally, as

another analogue for climate change, the so-called "heat island effect” was considered.
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These accomplishments are summarized in greater detail in Section 2. Their possible
extensions and their implications for the generation of scenarios of future climate are
discussed in Section 3. A list of papers produced under this cooperative agreement is given in
Appendix 1, and a reprint of an article that appeared in Climatic Change is included as

Appendix 2.
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SECTION 2

SUMMARY OF ACCOMPLISHMENTS

2.1. General theory

Appreciation of the need for a statistical paradigm for climate change arises when
considering how the relative frequency of extreme events might change as more conventional
statistics, such as the mean or standard deviation, change. A climate variable X is assumed to
have a probability distribution with a location parameter p and a scale parameter c. If this
distribution were the normal, then p would be the mean and ¢ the standard deviation. Climate
change is envisioned to involve a combination of two different statistical operations: (i) the
distribution is shifted, producing a change in location (p); and (ii) the distribution is rescaled,
producing a change in scale (6).

Figure 1 illustrates this concept for one hypothetical choice of distribution. The two forms
of climate change are included: (i) a change in the location parameter p to a new, in this case
larger, value p’; and (ii) a change in the scale parameter G to a new, in this case larger, value
o". Especially noteworthy is how much these distributions differ in the tails, the shape of
which determines the probability of extreme events. Katz (1991) treated this statistical
paradigm for climate change in more detail.

Some standard statistical theory for extremes can be applied to reveal some broad
generalizations that can be made about the relative sensitivity of extreme events to the

location and scale parameters. Attention is focused on two specific types of extreme events:
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(1) the exceedance of a threshold [event E, = {X > c}, where the constant ¢ denotes a

threshold]; and

(ii) the maximum of a sequence of length n exceeding a threshold [event E, =

(max(X,, X,, ... X,) > c}].

The sensitivity of an extreme event to the location parameter p or the scale parameter G is
defined to be the corresponding partial derivative of the probability of the event; that is,
dP(E)/dp or OP(E)/dG. Because extreme events vary in their likelihood, it is reasonable to deal
with the relative sensitivity, [0P(E)/0p)/P(E) or [dP(E)/0G]/P(E), comparing the sensitivity of
an event to its probability.

Katz and Brown (1992a) show that the relative sensitivity of an extreme event (either E,
or £,) to the scale parameter 0 becomes proportionately greater than its relative sensitivity to
the location parameter p as the event becomes more extreme (i.e., the larger the threshold c).
Moreover, in many instances, the relative sensitivity of an extreme event to both p and o in-
creases as the event becomes more extreme. These theoretical properties are illustrated in the
next subsection for an extreme temperature example.

Some of the theoretical results for extreme event E, (i.e., the maximum of a sequence
exceeding a threshold) are based on large sample approximations that do not directly take into
account certain prominent statistical features, like autocorrelation, of climate time series.
Nevertheless, simulation studies show that these results are actually quite robust (Katz and

Brown, 1992b). These results are also presented in the next subsection.



2.2. Extreme temperature example

Extreme high temperature events of a form known to be deleterious to the corn crop in
the midwestern U.S. are considered (Mearns et al., 1984). The July time series of daily
maximum temperature at Des Moines, Iowa is utilized (mean p = 30 °C, standard deviation ©
= 3.9 °C). Figure 2 shows plots of the relative sensitivity of extreme event E, to p and © as
the threshold c increases (i.e., as the event becomes more extreme). In this application, the
event E, corresponds to the temperature exceeding a threshold on a given day in July. These
curves are based on the assumption of a normal distribution for daily maximum temperature.
The relative sensitivity of E, to p increases at an approximately linear rate, whereas the
relative sensitivity to © increases at an approximately quadratic rate, for large threshold c.

Figure 3 shows plots of the relative sensitivity of extreme event E, to p and o as the
threshold ¢ increases. In this application, the event E, corresponds to the temperature ever
exceeding the threshold within the entire month of July (i.e., n = 31). These curves are based
on the assumption of a Type I extreme value distribution for the maximum of a sequence
[i.e., a distribution function of the form G(x) = exp(-e™)] (Katz and Brown, 1992a). The
relative sensitivity of E, to p is approximately constant, whereas the relative sensitivity to ¢
increases at an approximately linear rate, for large c.

To convert these results into more concrete terms, Table 1 gives the probability of event
E, for a threshold of ¢ = 38 °C, when p and © are changed by % 0.5 °C. Relative to the
current probability of 0.020, P(E,) changes by roughly twice as much for a change in 0 as for
the corresponding change in p. Table 1 also includes the probability of event E, for the same

threshold and changes in p and ©. Again, the relative changes in P(E,) are roughly twice as
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large when 6 is varied as when p is varied. Unlike event E, which always remains rare for all
of the values of p and © considered, event E, becomes quite likely when o is increased and
somewhat rare when G is decreased.

As mentioned previously, the Type I extreme value distribution serves only as an
approximation in determining P(E,). By means of a simulation study, the exact relative
sensitivity of the maximum of a finite sequence of a normally distributed, autocorrelated time
series can be determined. It is more convenient to actually perform the simulation in terms of
the hazard rate of the exact distribution of the maximum (i.e., the hazard rate H for a
distribution function F is H(x) = F'(x)/[1 - F(x)]). Katz and Brown (1992a) established that
this hazard rate curve has the same shape as the relative sensitivity of the extreme event E, to
the mean p.

Figure 4 shows the simulated hazard rate for the exact distribution of the maximum of a
sequence of length n = 30 with a first-order autocorrelation coefficient of ¢ = 0.5 (for the Des
Moines application, n = 31 and ¢ = 0.58). For comparison sake, the hazard rate for the Type
I extreme value distribution (i.e., equivalent to the dashed curve in Figure 3) and the hazard
rate for the exact distribution of the maximum of a sequence of n = 30 normally distributed,
independent observations (i.e., ¢ = 0) are also included in Figure 4. It is evident that these
curves are quite similar, with any discrepancies for the exact curve being in the direction of
even more sensitivity than either the asymptotic theory or the exact theory under indepen-

dence would predict. Katz and Brown (1992b) treated this issue in more detail.
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2.3. Regional analysis/Spatial analogue

One approach to the interpretation of the assumptions on which the theoretical results
presented in Section 2.1 are based involves the so-called "spatial analogue” for climate
change. Actual differences in climate across space are substituted for hypothetical changes
over future time horizons. This concept is similar to the "regional analysis" approach that is
employed in hydrology, for instance, to estimate flood probabilities.

Time series of daily maximum temperature for July at 30 sites in the U.S. Midwest and
of daily minimum temperature for January at 28 sites in the U.S. Southeast were subjected to
such a regional analysis. Figure 5 gives a plot of the relative frequency of the maximum
temperature on a given day in July exceeding a threshold of ¢ = 35 °C (i.e., event E,) versus
the standardized threshold of (c - p)/c for each of the 30 stations in the Midwest. Here the
location and scale parameters, p and G, were estimated using the sample means and standard
deviations of the July daily maximum temperatures for the individual stations. The points fall
remarkably close to a smooth decreasing curve, in agreement with our statistical paradigm for
climate change (Section 2.1). Similar results were obtained for the analogous case of January
minimum temperature in the Southeast (Brown and Katz, 1991).

As an additional check, Figure 6 gives a plot of the relative frequency of the temperature
ever exceeding ¢ = 35 °C during the entire month of July (i.e., event E,) versus the same stan-
dardized threshold. The plot has a greater degree of scatter than Figure 5, in part because
these relative frequencies are based on a much smaller sample (i.e., only one observation for

each July instead of 31 for event E|). Nevertheless, the indication of an underlying relation-
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ship is present. Again, similar results were obtained for minimum temperature (Brown and
Katz, 1991).

These checks have served so far to help interpret our stansucal paradigm for climate
change. Additional conditions, however, were imposed in examining the relative sensitivity of
extreme events. In particular, the relative sensitivity of extreme event E, (i.e., the maximum
of a sequence exceeding a threshold) was derived through the Type I extreme value approxi-
mation (Figure 3). Further regional analysis of the same daily time series of July maximum
temperature was performed to investigate whether this approximation is appropriate. When the
two parameters of the Type I extreme value distribution are derived indirectly by assuming a
normal distribution for daily maximum temperature, the approximation is quite inaccurate
(Brown and Katz, 1992). Although this behavior indicates that the conventional assumptions
about the statistical properties of time series of daily maximum temperature do not all hold, it
does not necessarily conflict with our statistical paradigm for climate change.

In this regard, Figure 7 shows the results when the parameters are estimated directly from
the monthly maxima. The event E, of the maximum exceeding a threshold of ¢ = 37.8 °C is
considered for each of the 30 midwestern sites. There is reasonably good agreement between
the theoretical probabilities based on the Type I extreme value distribution and the observed
relative frequencies. For minimum temperatures in the Southeast, the Type I approximation is
not as accurate, with the Type III extreme value distribution (i.e., a distribution function of
the form G(x) = exp[-(-x)"], & > 0, x < 0) being a considerable improvement. Although no
simple physical explanation for this disagreement exists, such behavior for daily minimum

temperature extremes has been noted previously (e.g., Faragé and Katz, 1990). Because the
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Type I distribution requires an additional shape parameter, our statistical paradigm for
climate change might need to be made more complex to encompass this situation. Brown and

Katz (1992) provided further details on these issues.

2 4. Extreme precipitation events

Katz and Garrido (1992) employed a somewhat more specialized approach to address the
issue of how the frequency of extreme precipitation events might change with an overall
change in climate. Such an approach is required, because the forms of distribution generally
fit to precipitation totals do not satisfy the location and scale model on which our statistical
paradigm for climate change is based (Section 2.1). Nevertheless, results that are qualitatively
similar to those stated in Section 2.1 and illustrated in Section 2.2 can still be obtained in this
case.

The climate variable, Y say, represents the precipitation totaled over a month or season.
The extreme event of interest is the total precipitation exceeding a threshold ¢, say E = {Y >
c}, referred to as the "right-hand tail event." Analogous to the approach followed in Section
2.1, the relative sensitvity of event E is defined with respect to the median (rather than the
location parameter or mean) and to the scale parameter of the distribution of total precipita-
tion Y. The median is adopted as a measure of central tendency, because the distribution of
total precipitation has a substantial degree of positive skewness.

A technique based on a power transformation to normality is employed to account for this
skewness. Here X = Y°, for some 5, 0 < s < 1, is assumed to have a normal distribution with

mean p, and variance G, [written N(gy, 6,>)] (Katz and Garrido, 1992). Let my denote the
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median of the distribution of total precipitation Y [i.e., m, satisfies Fy(m,) = 1 - Fy(m,) = 1/2,
where Fy denotes the distribution function of Y]. This median m, is related to the mean p, of
the normal distribution for the transformed variable X by m, = p,’, where r = 1/s. Analogous
to the relative sensitivity to the location parameter previously treated (Section 2.1), the
relative sensitivity of the right-hand tail event E to the median my is [0P(E)/om,)/P(E).

The scale parameter, A say, of the distribution of total precipitation Y is introduced by
considering a new random variable Y, = AY, 0 < A < oo, representing a multiplicative effect.
The relative sensitivity of the right-hand tail event E to the scale parameter is defined as
{[OP(E)/ON)/P(E})} |-, Where E, = {Y, > ¢} is the analogous extreme event for the rescaled
variable Y,. The partial derivative is evaluated at A = 1, because this value corresponds to an
instantaneous change from the current climate. In effect, an additional parameter A has been
included in the power transform distribution of total precipitation ¥ (Katz and Garrido, 1992).

Figure 8 shows the relative sensitivity of the right-hand tail event E to the median and to
the scale parameter for summer total precipitation at Segovia, Spain. Both relative sensitivities
increase as the event becomes more extreme (i.e., as the threshold ¢ increases). Moreover, the
relative sensitivity to the scale parameter is greater than that to the median for virtually all
values of the threshold ¢, and it increases at a much faster rate as ¢ increases. Similar results
are obtained for the relative sensitivity of the left-hand tail event (i.e., {Y < c}) to the median

and to the scale parameter (Katz and Garrido, 1992).
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2.5. Heat island effect

Another analogue for climate change is the "urban heat island," in which real temporal
climate changes associated with human activity have been produced inadvertently for local
environments. As metropolitan areas develop, a warming can occur that is comparable in
magnitude to that anticipated for the enhanced greenhouse effect (i.e., 2-3 °C according to
Changnon, 1992). This heat island has been detected in cities across the globe, ranging from
the tropics to high latitudes and, to a lesser extent, in relatively small communities.

Research on the heat island effect has dwelt on average temperatures, with little mention
of any changes in variability or in the frequency of extreme events. One notable exception is
the recent work by Balling ef al. (1990). They examined the trend in the occurrence of
extreme maximum and minimum temperatures at Phoenix, Arizona, an area that has experi-
enced a marked heat island effect in recent decades. Among other things, the inadequacy of a
statistical model for climate change in which simply the mean (or location parameter) is
allowed to change (i.e., the variance or scale parameter is held constant) was established.
Although changes in the mean are apparently sufficient to explain the trend in occurrence of
extreme minimum temperatures, such a model overestimates the frequency of extreme
maximum temperatures.

A reanalysis of the same Phoenix temperature data has been performed. The goal is to
establish whether our statistical paradigm for climate change (Section 2.1), allowing for a
change in variance or scale, could satisfactorily explain the observed trend in the occurrence
of extreme maximum temperatures. Figure 9 shows the trend in summer (July-August)

standard deviation of minimum and maximum daily temperatures. For minimum temperature,
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the slight apparent increase in standard deviation makes only a minor contribution to the
decrease in the frequency of extreme low temperature events. On the other hand, the more
substantial decrease in the standard deviation for maximum temperature does make a major
contribution to the frequency of extreme high temperature events. In particular, it explains
why the change in the mean alone results in too high a frequency of extreme high temper-
atures. Tarleton and Katz (1993) included further details on this example.

The urban heat island, thus, provides a real-world application in which changes in
variability need to be taken into account to anticipate changes in the frequency of extreme
events. Of course, as pointed out by Balling et al. (1990), the heat island effect is not
necessarily analogous to the enhanced greenhouse effect. Further, being situated in a desert
region, the heat island effect for Phoenix is not necessarily typical of that for other urban

areas.
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SECTION 3

EXTENSIONS AND IMPLICATIONS

A myriad of ways exist in which this study of extreme events and climate change could
be extended. For instance, all of our work has concentrated on time series of a single climate
variable treated in isolation. It would be natural to consider simultaneously the extremes of
two or more variables, either different variables (such as temperature and precipitation) for
the same site or the same variable at several locations (e.g., fields of temperature or precipita-
tion). Other more specialized approaches could also be taken. For example, extreme precipita-
tion events could be more systematically studied by developing an underlying stochastic
model (i.e., on a daily or hourly time scale) for the precipitation process. It would be more
physically meaningful to change these basic model parameters (e.g., the frequency or intensity
of "storms"), using probabilistic methods to induce the effects on any extreme events of
interest.

As it stands, this study has significant implications for scenarios of future climate.
Stochastic weather generators that are convenient to employ for simulating climate variables,
such as daily maximum and minimum temperature and precipitation amounts, do exist (e.g.,
Richardson, 1981). Such models were originally intended to be used to simulate time series
for the present climate. However, these models have not been extensively validated with
respect to their ability to reproduce the frequency of extreme events. In particular, our results

concerning the lack of fit of the Type I extreme value distribution to extreme minimum
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temperature events in the U.S. Southeast (Section 2.3) would appear to cast doubt upon the
use of Richardson’s model when extremes are of importance. Specifically, this model
essentially represents both time series of daily minimum and maximum temperature as first-
order autoregressive processes having normal distributions. Under these assumptions, the Type
I extreme value distribution is known to be a good approximation for the maximum or
minimum of a sequence (i.e., as generated by Richardson’s model). In other words, the Type
III extreme value distribution that sometimes arises in practice as a better fit to extreme
minimum temperature events could not be reproduced by Richardson’s model.

Recently, it is becoming increasingly popular to utilize these same stochastic weather
generators to simulate time series for a changed climate (Wilks, 1992). But it would be
potentially misleading to apply such models by changing only those parameters (e.g., mean
values) for which some information about future changes is currently available. For instance,
Richardson’s model requires the specification of the means and variances of the normal
distributions for daily maximum and minimum temperature, as well as their contemporaneous
cross correlation coefficient and individual first-order autocorrelation coefficients (technically,
these parameters are conditional on whether or not precipitation occurs). As our results
convincingly establish, attention needs to be devoted to how these other model parameters
(especially variances) might change as well. Without this information, stochastic weather
generators may produce scenarios of future climate whose frequency of extremes turns out to

be far off the mark.
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TABLE 1

Probability of extreme events, E; and E,, with threshold of ¢ = 38 °C associated with changes
in mean p and standard deviation ¢ of July daily maximum temperatures at Des Moines, Iowa

(current climate of p = 30 °C and 6 = 3.9 °C) [Source: Katz and Brown, 1992a].

|| Change in p Change in 6 P(E) P(E,)
O O (Relative Change) (Relative Change)
0 0 0.020 0.492
0.5 0 0.027 (+347%) | 0.612 (+24.5%)
0 +0.5 0.034 (+70.8%) | 0713 (+44.9%)
0.5 0 0015 (-277%) | 0.384 (-22.0%)
L 0 0.5 0.009 (-540%) | 0.264 (-46.2%)
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Figure 1. Hypothetical distribution of a climate variable with location parameter p and scale
parameter o (solid line); location parameter p* and scale parameter 6 (dashed line); and

location parameter p and scale parameter ¢~ (long and short dashed line) [Source: Katz and
Brown, 1992a].

PROBABILITY DENSITY FUNCTION

CLIMATE VARIABLE X
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Figure 2. Relative sensitivity of extreme event E,, temperature exceeding threshold on given
day in July, to mean (dashed line) and standard deviation (solid line) [Source: Katz and
Brown, 1992a].
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Figure 3. Relative sensitivity of extreme event E,, temperature ever exceeding threshold

during entire month of July, to mean (dashed line) and standard deviation (solid line) [Source:
Katz and Brown, 1992a).
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Figure 4. Simulated hazard rate for the exact distribution of the maximum (dotted curve) from
a time series of length n = 30 with a first-order autocorrelation coefficient ¢ = 0.5. Curves
showing theoretical hazard rates for the exact distribution of the maximum under indepen-
dence (dashed curve) and for the Type I extreme value distribution (solid curve) are included
for comparison [Source: Katz and Brown, 1992b).
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Figure 5. Relative frequency of extreme event E,, temperature exceeding ¢ = 35 °C on given day in July, versus standardized
threshold (c - p)/o for 30 stations in the U.S. Midwest [Source: Katz and Brown, 1992a].
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Figure 6. Relative frequency of extreme event E,, temperature ever exceeding ¢ = 35 °C during entire month of July, versus stan-
dardized threshold (¢ - p)/o for 30 stations in the U.S. Midwest [Source: Katz and Brown, 1992a].
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Figure 7. Observed relative frequencies of extreme event E,, temperature in July ever
exceeding ¢ = 37.8 °C, versus probabilities estimated using Type I extreme value distribution
with location and scale parameters fit directly to monthly maxima (for 30 stations in the U.S.
Midwest) [Source: Brown and Katz, 1992).
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Figure 8. Relative sensitivity of right-hand tail event E (i.e., summer total precipitation exceeding threshold c) to the median (solid
line) and to the scale (dashed line) as a function of ¢ at Segovia, Spain [Source: Katz and Garrido, 1992].
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Figure 9. Time series of standard deviation of daily maximum (solid line) and minimum (dashed line) temperature for July-August
at Phoenix, Arizona, for the period 1948-1990 [Source: Tarleton and Katz, 1993).
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EXTREME EVENTS IN A CHANGING CLIMATE:
VARIABILITY IS MORE IMPORTANT THAN AVERAGES

RICHARD W KATZ and BARBARA G BROWN
Environmental and Societal Impacts Group, Nanonal Center for Atmosphenic Research®, Boulder,
CO 80307, US A

Abstract. Extreme events act as a catalyst for concern about whether the chimate
is changing Statisucal theory for extremes 1s used to demonsirate that the
frequency of such cvents is relatvely more dependent on any changes in the vana-
bility (more generally, the scale parameter) than in the mean (morc generally. the
locathon parameter) of chimate Morcover, this sensitivity 1s relatively greater the
more extreme the event These results provide additional support for the conclu-
sions that cxpenments using chmate models need to be designed to detect
changes in chimate vanability, and that policy analysis should not rcly on scenanos
of future chimate involving only changes 1n means

1. Introduction

Recent hot spells and droughts, as well as evidence of a gradual warming trend in
global mean tcmperaturc (Hansen and Lebedeff, 1987, 1988), havc led to a
heightened awareness of possible greenhouse gas-induced chmate change.
Although it is natural that socicty tends to notice the extremes and vanability of
wcather, chmate change experiments, based on the use of general circulation
modcls (GCMs) of the atmosphere, have to date dwelt on potential changes 1n
average climate (Schlesinger and Mitchell, 1987, Schneider, 1989) Likewise,
cfforts to cstablish the statistical significance of apparcnt changes 1n the observed
chmatc have only been successful in detccting changes in average conditions (e g,
Solow and Broadus, 1989)

Assessments of the cconomic impacts of global chmate change also focus on
averages, rather than on vanabihity or extremes (Adams er al., 1990). But the
pnmary impacts of climate on society result from extreme events, a reflection of the
fact that chimatc 1s inherently vanable (Parry and Carter, 1985). A hot spcll duning
the summer of 1983 in the midwestern U.S. resulted 1n a substantial decrease n
com yiclds (Mcarns ef al , 1984). Frcezes dunng the winters of 1983 and 1985
killed a sigmficant fraction of the citrus trees in the state of Flonda (Miller and
Glantz, 1988) Droughts are a frequent cause of adverse socictal impacts, for
instance, the recurrent episodes of famine in Afnca (Glantz, 1987).

In spitc of the need to examine how the frequency of extreme events might
change as the mcan chmate changes (Wigley, 1985; Matchell et al , 1990), altcmpts
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to quantify the nature of such relationships have been rare (Meams ef af, 1984;
Wigley, {988). Here some standard staustical theory for exircmes is applied to
reveal some amazingly broad gencralizations that can be madc about the relative
sensitivity of cxircme events to the mean and vanabihty (more pgencrally, the
location and scale parameters) of chimate. The extrcme events considercd in-
clude the exccedance of a threshold by a chmate variable. (1)) on a particular
occasion; or (ii) on one or more occasions within a certain time penod (1.e., by the
maximum value of a sequence of observations). In esscnce, our results indicate
that (1) extreme evenls are relatively more sensitive 1o the vanabiiity of chmate than
1o ils average, and (i) this sensitivity 1s refatively greater the more extreme the
event.

2. Statistical Model for Climate Change

Just as the need for a paradigm to monitor global climate change has been recog-
mzed {Wood, 1990), a prolotype modcl 15 nceded 1o dcefine climate change in
stauistical terms. A given climate vanable X has somc probabitity distribution (with
distnbution function Fy(x) = P{X < x}), posscssing a locarton paramcter p1 and a
scale parameter o that 15, the distribution of the standardized variable

X—p
g

Z= (1)
1s assumed to not depend on aither g or . In the speaial case of F, being the
normal distrnibution, the location paramecter g is simply the mean and the scale
paramcter ¢ 1s simply the standard deviation. For nonnormal distributions, 1t 15
more meaningful from a statistical perspective to dcal with locauon and scale
paramectcrs, rather than with the mean and standard deviation.

The relation (1) implies that the distnbution function F; can be expressed in
terms of the distnbution function F; of the standardized vanable Z as

Fy(x) = Fpl(x— u)/o] (2)

Differentiating (2), the probability density function of X, F;(a), can be expressed
as

Fr(x)= (1/o)F:l(x — u) o). (3)

By usc of (2) and {3), properucs of location and scale parameter distnbutions can
be obtaned directly from those for the simpler standardized vanable (1).

Climate change 15 envisioned o involve a combination of two different statistical
opcrations: (1) the distnbution function Fy s shifted, producing a change in loca-
won u, and (n} F, is rescaled, producing a change in scale ¢ Figure 1 illustrates this
concept for one arbitrary choice of F, that happens 1o be positively skewed For
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this particular distribution, the location parameter u is the mode, rather than the
mean, whercas the scale parameter o 1s equivalent (o the standard deviauon (i e.,
the samc cxcept for a constant muitiple). The two hypothetical forms of chimate
change are also included in Figure 1: (1} a change in the locaticn paramcter 4 1o a
ncw, tn this case larger, value u*; and (i) a change 1n the scale parameter o (o a
ncw, in this casc larger, value ¢*. These new values, u* and o*, havc been inten-
tionally sclected so that the probability density functon evaluated at the original
location parameter value u 15 identical for both changes. What 1s remarkable 15 how
much these distnbutions differ in the tails, the shape of which determunes the
probabibty of extreme events. Katz (1991) treated this model for chimate change in
morc detail.
Aticnuon is focused on two specific types of extreme events:

{) the exccedance of a threshold jevent E, =X > ¢},.where the constant ¢
denotces a threshold),

(1) thc maximum of a scquence exceeding a threshold Jevem E; = {max(.X,, X;,
e X))

PROBABILITY DENSITY FUNCTION

CLIMATE VARIABLE X

Fig 1 Hypothcucal distnbutson of a chmate vanable with location parameter p and scale parametes
o {solid linck location pasameter 4° and scale paramcter o {dashed line), and location parameter s
and scale paramcicr o* (long and short dashed linc)
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CLIMATE VARIABLE X

TIME ¢

Fig. 2. Hypothetical chimate time senes (sohid line) of length n= 11, along with threshold valuc ¢
(dashed linc) used to definc extreme cvenis

Figure 2 shows a hypothetical climate time series of length n = 11. Since X, < ¢, the
event E, did not occur at the particular time ¢ = 6. On the other hand, since the
threshold was cxcceded on at Icast one occasion (actually by both X, and X), the
event E, did occur.

In the notation previously introduced, the probabihty of the extreme event E, 1s
given by

P(E\)=1 - Fx(c). 4)

If the sequence {X;, X3, ..., X,} consists of independent and identically distnibuted
random variables, then the probabitity of the extreme event E, 1s given by

P(E))= 1 = |Fx(o))" &)
Rather than rely on this exact expression (5), the theory of extreme values (Lead-
better et al, 1983) can be invoked to produce an approximation that holds even
when the sequence 1s autocorrelated, as is typical of climate vanables. Specaifically,

P(EZ) =1- G'“n(c— bn)lo (6)
for large sequence length n. Here Gis onc of three possible extreme value distnbu-
tions:

(i) Type I (or Gumbel)
G(x) = exp(—c™), "M
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(1) Type Il (or Fréchet)
G(x) =cxp(—x~°), a,x>0, (8)
(i) Type NI (or Weibull)
G(x) =cxpl—(—x)?], a>0, x<0. &)

In (6), a, > 0 and b, arc normalzing constants that depend on the original distn-
bution Fy.

For the most part, we will assume that the approximation (6) holds for G being
the Typc 1 extremc value distnibution (7). This assumption 1s valid if Fy 1s any one
of the distnbutions commonly fit to climatc vanablcs (c g., exponcntial, gamma,
lognormal, normal, squared normal, Weibull) (Essenwanger, 1976). Neverthceless,
the Type 11 or 1l extreme value distributions have sometimes been found to pro-
vidc a better fit in practice to the empinical distnibution of the maximum of chmate
scquences (c g., Farago and Katz, 1990). Tiago de Ohvesra (1986) and Buishand
(1989) review the application of the theory of extremce values to chimatology.

3. Secnsitivity of Extreme Events

We arc intcrested in how the probability P(E) of an extreme event E would change
as the location or scalc paramcters, 4 or o, change. The sensuiviry of an cxtreme
cvent to the location or to the scale is defined to be the corresponding partial den-

vative of the probability of the cvent, that 1s, dP(E)/du or dP(L)/ do. Since
extreme events vary in their hkehhood, it is reasonable to deal wath the relanive sen-

sy,
[ew],pw, or [a"w)]/p(g), (10)
u do

companng the scnsitivity of an event to its probability.

1. Extreme Event I,

Using (2)-(4), it follows that the two scnsitivittes can be cxpresscd as

AE) Loy an
ou

ar(,) (C—F) Fi(c) (12)
do o

Companng (11)and (12),
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OP(E,) _ (C—# IP(E,) a3
do o du

Equation (13) implies that the (relative) sensitivity of an extrcme event to the scale
becomes proportionately greater than its (rclative) sensitivity 1o the location as the
event becomes more extreme (i e, the larger the threshold c). Since the (relative)
sensitivity to the scale 1s always greater than the (relative) sensitivity to the location,
provided (¢ — #)/o > 1, this condition could cven be taken as an objective critcnion
for what constitutes an ‘extreme’ event.

Another important issue concerns whether the relative sensitivity of an extreme
event to the location (or to the scale) increases or decreases as the event becomes
more extreme. One way o attack this problem involves recogmzing that the rclative
sensitivity of event E, to the location is mathematically equivalent to the so-called
‘hazard rate’ or ‘failure rate’ for distnbution function Fy; namely,

Fi(x)
1 = Fi(x) 49

In fact, 1t follows directly from (11) that

H(x)=

[ﬂ(—E—)] /P(E,)= H(c) (15)
ou

The hazard rate is a fundamental measure in engineering studics of system reliabih-
ty (Hillier and Lieberman, 1986), representing the ‘rate’ of occurrence of the event
{X = x) given that X 2 x.

The question of whether the relative sensitivity of E, to u increases as the
threshold c increases 1s equivalent to asking whether F, has a hazard ratc H(x)
that 1s an increasing function for large x, a question that is commonly addressed in
the statistical literature (Johnson and Kotz, 1970). For instancc, since thc normal
distnbution has a hazard ratc that 1s an increasing function [in particular, 1/ (x)
increases at an approximately incar rate for large x|, the relative sensitivity of E, to
4 increases as ¢ increases 1n this case. However, other forms of distnibution F, have
hazard rates that are not stnctly increasing functions, implying that the relative scn-
sitivity of E, to u nced not always increase For instance, the cxponential distnbu-
tion has a constant hazard rate, and the Weibull distnbution has cither a stnctly
increasing or strictly decreasing hazard rate, depending on the value of its shape
parameter.

Equation (13) implies that, if the relative sensitivity of extreme event E; to the
location either increases, remains constant, or decrcases at slower than a hincar rate
as the event becomes more extreme, then the relative sensitivity to the scale must
increase For instance, if F, were the normal distnbution, then the relative sensitivi-
ty of £, to o would increasc at an approximately quadratic rate for large ¢. If T,
were the exponcntial distnbution, then the relative sensitivity 1o o would increasc
at a hnear rate.
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3.2. Extreme Event E,

If we make use of the large~-sample approximation (6), then the same rclation (13)
betwceen the scnsitivity to the location and scalc parameters, 4 and g, also holds for
extreme event £,, no matter which of the three types of extreme value distributions
(7)-(9) ariscs. Morcovcr, analogous to (15), the relative sensitivity of £, to u 1s the
samc as the hazard ratc, not for F,, but for the appropriate choice of extreme value
distnbution G. For the Typc I extremc valuc distribution (7), the hazard rate 15 an
incrcasing function {with /(x) being approximately constant for large x]. Consc-
quently, 1n many cases the relative scnsitivity of E, to u should increase as the
threshold c increascs. The Type II extreme value distribution (8) has a hazard rate
H(x) that is dccreasing for large x. So 1t 1s possible in some circumstances that the
rclative scnsitivity of £, to u would decrease as c increascs.

Equation (13) can again be employed to infer the relative sensitivity of E, to the
scale parameter o from that of E, to u. If the Type 1 extreme valuc approximation
{7) wcre cmployed, then the relative sensitivity of E, to o would increase at an
approximatcly hncar ratc as ¢ increases. If the Type Il extreme value approximanon
(8) were cmployed, then the rclative sensitivity of E, to o would gradually level off
to a conslant Katz and Brown (1989) presented a more techmical discussion of the
rclative sensitivity of cxtrcme event £,

3.3 Other Extreme Events

Although only two forms of extreme event, namely £, and E,, have been exphc-
itly treated here, the theoretical results concerning relative sensiuwvity apply much
morc generally. For instance, a perfectly analogous theory exists for the event of
faling below a relatively small threshold, say X < ¢ (analogous to extreme cvent
L,), and for the cvent of thc mimmum valuc of a sequence falling below a
threshold, say min(X,, X,, ..., X,) <c (analogous to extremc cvent E,) It 1s
common to consider how often a threshold ¢ 1s cxceeded for a climate time scnes
X,, Xs..... X,. Then t, = n[l — Fy(c)]is the mean number of excecdances, and it1s
straightforward to show that the rclative sensiivity of t, to 4 and o 1s the same as
that for event E,. Morcover, the number of excecdances has an approximate
Poisson distnbution Kaiz and Brown (1989) showed that somewhat analogous
results can be obtained concerning how these Poisson probabilities change as a
function of u and o.

4. Extreme High Temperature Events

We consider extreme high temperature events of a form known to be deletenous to
the comn crop 1in the midwestern US (Meams ef af , 1984) In this region the corn
crop is subject to chmatc conditions closc to its tolerance limuts, cspecially high

tempcratures dunng the particularly sensitve phenological stage of tassching (typ-
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cally, during the month of July). The July time sentes of daily maximum temperature
at Des Moincs, lowa 1s utilized (data previously analyzed by Mcarns eral, 1984). It
is assumed that Fy 1s the normal distribution, so that the location parameter u 15
the mean and the scale parameter o is the standard deviation. The 31 years of his-
torical data indicate that u is about 30 °C and ¢ is about 3.9 *C. Thresholds of
¢ = 35 and 38 °C are of special intcrest.

Figure 3a shows plots of the relative sensitivity of extreme event E,, the tcm-
perature exceeding a threshold ¢ on a given day in July, to 4 and o as ¢ increases
(ie., as the event becomes more extreme). As specified by (13), thc two curves
intersect when the threshold is one standard deviation above the mean. The scpara-
tion between the two curves becomes greater as c increascs, as anticipated, with the
rclative sensitivity to u increasing at an approximatcly linear rate in contrast with
the approximately quadratic rate for the relative sensitivity to o. Strictly spcaking,
the relative sensttivity curves shown in Figure 3a apply only to infinitesimal changes
in either u or 0. To convert these results into more concrete terms, Tablc I gives the
probability of event E, for a threshold of ¢ = 38 *C when 4 and o are changed by
1 0.5 °C. Rclative to the current probability of 0.020, P(L,) changes by roughly
twice as much for a change in o as for thc corresponding change in 4.

Figure 3b shows plots of the relative sensitivity of extreme event E,, the tem-
perature ever exceeding ¢ within the entire month of July (i, n=31),to 4 and ¢
as a function of c. These relative sensitivitics are based on the use of the Type |
extreme value approximation for the maximum (7), with thc normalizing constants,
a, and b,, for the case of F, being thc normal distribution (scc Leadbetter et al,
1983, p. 14) Again, the two curves intersect at the point specificd in (13) More

TABLE 1 Prohabihty of extreme events, E, and
E,. with threshold of ¢=38°C assocrated with
changes in mcan y and standard deviation o of July
daily maximum tempcratures at Des Moincs, lowa

Change in Probabthity of extreme

u o cvent (relative change)

Q) ("C) P(Ey) r(E,)

[\ (i 0020 0492

+H5 o 0027 0612
(+34 7%) (+24 5%)

0 +05S 0034 0713
(+70 8%) (+44 9%)

05 0 0015 0384
(=27 7%) (=22 0%)

0 -05 0009 0264

(-54 0%) (—46 2%)

* Currentclimalcof u=30°Cand o= 39'C
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g 3 Rclative sensiivity of extreme cvent to mean (dashed hne) and standard deviation (solid line)

versus threshold ¢ (a) event E,, temperature exceeding threshold on given day in July, (b) cvent £,
temperature ever excecding threshold duning entire month of July
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importantly, the two relative sensilivities rapidly separatc as the cvent becomes
more extreme. As the theory has established, the relative sensitivity to u increascs,
but gradually levels off to a constant, whereas the relative scasitivity o o increascs
at an approximately linear rate for large c¢. Table I also includes the probabihty of
event E, for the same threshold and changes in # and 0. Again, the relative changes
n P(E,) arc roughly twicc as large when o is varied as when u 1s vancd. Unhike
event E, which always remains rare, ecvent E, bccomes cither quite hikcly or
somewhat rare depending on these seemungly small changes in o.

Since the relative sensitivity curves shown in Figure 3b are based on an approxi-
mation denved in extreme vatue theory, the question anscs as to the rcalism of the
application to time serics of dally maximum tcmperaturc. Using a first-order
autoregressive process (o represent daly maximum tempcrature (thc samc
stochasuc model assumed by Meamns er al.. 1984), both the cffects of taking the
maximum over a rclatively smalil sample (1.e., n = 31 days) and the positive day-to-
day autocorrclation of daily tempcerature were invesuigated in a simulation study. At
Icast qualitatively, our theoretical results turn out to be quite robust. Morcover, any
discrepancics that exist appear to be in the direction of cven greater actual relative
sensitivity than the theory predicts (Katz and Brown, 1992)

As a check on the plausibility of our assumptions about climate change (Scction
2), the rclative frequency of occurrence of thesc two cxtreme cvents was rccorded
at 30 sites wathin the midwestern US that possess relatively long records of daily
maximum temperature (1c., 40-90 ycars). Figurc 4 gives plots of thesc rclative
frequencics versus the standardized threshold (¢ — #)/o for ¢ = 35 °C. Because
dailly maximum temperature 1s known to have an approximatcly normal distnbu-
tion (c g., Mearns et al., 1984), the location and scalc paramectcers u and o werc csti-
mated by the sample mean and standard deviation of the July ime scrics at the cor-
responding site. If a change in the future climate were analogous to a spatial reloca-
tion, then our model for climate change would imply that the scatter plot for cvent
E, simply represents the nght-hand tail of the distnbution of daily maximum tem-
perature 1 — Fy Since the points (Figure 4a) fall rcmarkably closc to a smooth
dccrecasing curve, these results serve as motivation for our statistical concept of
chmatc change. The plot for cvent E, (Figurc 4b) has a greater degree of scattcr, in
part because these relative frequencics were obtained from a much smaller sample
(1¢., only onc observauon for each July instcad of 31 for cvent E;) Nevertheless,
the indication of an underlying rclationship 1s present Brown and Katz (1991)
presented a morc extensive validation of this chimate change modecl.

S. Implications and Extensions

These theorctical results conceming the relative sensitivity of cxtreme cvenls to the
average and vanability (or, more generally, location and scale paramcters) of
climate are quite compelling. Of course, our statstical modcl for climate change

may be an oversimplification of the aclual circumstances of future climate change
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Fig 4 Rclative frequency of extreme cvent versus standardized threshold (¢ — g )/o for 10 stattons in
the US Midwest (a) event L. temperature exceeding ¢ = 15 °C on given day n July. (b) event I,
temperature cver exceeding ¢ = 35 °C duning entire munth of July
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Moreover, since the theory only deals with sensitivities (i.e., partial derivatives), it
does not eliminate the possibility that the magnitude of the change in the mcan
could be enough larger than that for the variance to still have a dominant effect on
the actual change in the frequency of extreme cvents.

Sull, the implications for chmate change experiments that rely on GCMs are
clear. More emphasis nceds to be placed on the validation of such modcls in terms
of their ability to rcproduce climate variability, not just the mean climate. Expen-
ments specifically designed to detect changes in the overall vanability of climate
also remain to be performed (Katz, 1988a; Rind et al., 1989, Meamns et al., 1990).
Discussion of the generation of scenarios of future chmate is common (Lamb,
1987; Katz, 1988b), but so far, the enhanced grecnhouse cffcct in terms of changes
in the overall vanability of climate is not well known.

There are also some lessons for policy analysis that attempts to deal with the
societal impacts of chmate change. Assessments that rely on scenarios of futurc
climate involving only changes in mean values or that infer changes in the frequen-
cy of extreme events from only changes in means (i.c., holding the vaniability of
climate constant) are suspect. Although it is true that climatc modclcrs arc current-
ly unable to provide policy analysts with much information on how either the vana-
bility of climate or the frequency of extreme events would change, these issues necd
to be addressed before impact assessments for grecnhouse gas-induced climate
change can be expected to gain much credibulity.

The charactenzation of the sensitivity of cxtreme events to climate change could
be extended to situations more representative of climate vanables. Besides con-
sidering small samples and autocorrelation (as in work in progress mentioned in
Section 4), results could be obtained that allow for Jdiurnal or scasonal cycles.
Further, extreme events mnvolving chimate vanables with nonnormal distributions
(e g., ‘drought’ or ‘flood’ cvents dcfined 1n terms of total precipitation) would con-
stitute interesting case studies. Although some of the distnbutions treated do not
fall within the framework of location and scale parameter familics, quite analogous
results have been derived (Garrido and Katz, 1992). Waggoner (1989) has at-
tempted to study this issue for precipitation, but without making any explicit usc of
the theory of extreme values. Finally, more complex forms of cxtreme cvents such
as ones that take into account the duration of an excursion above a threshold (e g,
runs of consecutive hot days as in Mearns et al , 1984) or below (c.g , cold spells as
in LeBoutillier and Waylen, 1988) could be investigated.

The issue of how to venfy the apphcability of this theory to actual climate
change remains problematic. Nevertheless, several observational studies of chmate
could be performed that should at least produce some complcmentary results. For
instance, the spatial analogue introduced in Section 4 would provide onc technique
for examining relationships between the probability of extreme events and statistics
such as means and vanances (sec Brown and Katz, 1991). Anothcr approach
would nvolve the study of how thc frequency of extreme events has changed for
sites which are known to have alrcady expenienced a change in chmate over ime -
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one such instance is the so-called ‘heat island’ effect associated with the growth of
aitics (Balling et al., 1990).
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