EPA-450/3-76-038b November 1976

BACKGROUND INFORMATION
ON HYDROCARBON
EMISSIONS FROM MARINE
TERMINAL OPERATIONS
VOLUME II: APPENDICES

Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

BACKGROUND INFORMATION ON HYDROCARBON EMISSIONS FROM MARINE TERMINAL OPERATIONS VOLUME II: APPENDICES

by

CE Burklin, JD Colley, and M.L. Owen

Radien Corporation 8500 Shoal Creek Blvd. P O. Box 9948 Austin, Texas 78766

Contract No. 68-02-1319 Task No. 56

EPA Project Officer: William L. Polglase

Prepared for

ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

November 1976

This report is issued by the Environmental Protection Agency to report technical data of interest to a limited number of readers. Copies are available free of charge to Federal employees, current contractors and grantees, and nonprofit organizations - in limited quantities - from the Library Services Office (MD-35), Research Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

This report was furnished to the Environmental Protection Agency by Radian Corporation, 8500 Shoal Creek Blvd., P.O. Box 9948, Austin, Texas 78766, in fulfillment of Contract No. 68-02-1319, Task No. 56. The contents of this report are reproduced herein as received from Radian Corporation. The opinions, findings, and conclusions expressed are those of the author and not necessarily those of the Environmental Protection Agency. Mention of company or product names is not to be considered as an endorsement by the Environmental Protection Agency.

Publication No. EPA-450/3-76-038b

TABLE OF CONTENTS

VOLUME I

				Page	
1.0	INTR	ODUCTIO	N	1	
	1.1	Object	ives	1	
	1.2	Approa	ch	1	
	1.3	Report	Contents		
2.0	EXEC	UTIVE S	UMARY	5	
	2.1 Results				
		2.1.1	Background Information on Marine		
			Terminals in the Houston-Galveston		
			AQCR	5	
		2.1.2	Background Information on Marine		
			Terminals in the Los Angeles AQCR	9	
		2.1.3	Emissions		
		2.1.4	Emission Control Technology	12	
			Economics of Emission Control		
	2.2		sions		
			endations	16	
3.0	BACK	GROUND	INFORMATION ON MARINE TERMINALS	18	
	3.1	Relati	ve Quantities of Crude Oil and Gasoline		
		•	orted by Marine Terminals in the United		
		•		18	
	3.2		Terminals Transferring Crude Oil and		
	_		ne in the Houston-Galveston Instrastate		
				20	
			Exxon Baytown Refinery Marine Terminal	24	
			3.2.1.1 Gasoline Loading System	24	
			3.2.1.2 Crude Oil Loading/Unloading	-	
			System	31	

			2826
	3 2.2	Shell Deer Park Refinery Marine	
		Terminal	34
		3.2.2.1 Gasoline Loading System	34
		3.2.2.2 Crude Oil Unloading System	36
	3.2.3	AMOCO Texas City Refinery Marine	
		Terminal	38
		3.2 3 1 Gasoline Loading System	38
		3 2.3.2 Crude Oil Unloading System.	40
	3.2.4	ARCO Houston Refinery Marine Terminal.	43
		3.2.4.1 Gasoline Loading System	43
		3.2.4.2 Crude Oil Unloading System	43
	3.2.5	Texas City Refining Texas City Refinery	
		Marine Terminal	46
		3.2.5.1 Gasoline Loading System	46
		3.2.5.2 Crude Oil Unloading System	49
	3.2.6	Crown Central Houston Refinery Marine	
		Terminal	49
		3.2.6.1 Crude Oil Unloading System	49
	3.2.7	Charter Oil Houston Refinery Marine	
		Terminal	51
		3.2.7.1 Gasoline Unloading System	51
		3.2.7.2 Crude Oil Unloading System	51
	3.2.8	Marathon Texas City Refinery Marine	
		Terminal	51
		3.2.8.1 Gasoline Loading System	53
		3.2.8.2 Crude Oil Unloading System	53
3.3	Shipsi	de Equipment and Transfer Procedures .	53
	3.3.1	Crude Oil and Gasoline Loading of Ships	53
	3.3.2	Crude Oil and Gasoline Loading Onto	
		Barges	58

				<u>Page</u>
		3 3.3	Crude Oil and Gasoline Unloading	
			from Tankers	59
3.	4	Quanti	ties of Crude Oil and Gasoline Trans-	
		ferred	in the Houston-Galveston Area	63
3.	5	Project	ted Quantities of Crude Oil and Gasoline	2
		Transfe	erred in the Houston-Galveston Area	
		Through	n 1985	67
3.	6	Cruise	History Information for Ships and	
		Barges	Which Transferred Crude Oil or Gasoline	<u> </u>
		in the	Houston-Galveston Area During 1975	73
		3 6.1	Effects of Cruise History on Hydro-	
			carbon Emissions from Marine Loading	
			of Gasoline and Crude Oil	74
		3.6.2	Types of Marine Vessels Used in Trans-	
			ferring Crude Oil and Gasoline in the	
			Houston-Galveston Area	76
			3.6 2.1 Marine Tankers	76
			3.6.2.2 Intercoastal Barge	77
			3 6.2.3 Ocean Barge	
		3.6 3	Vessels Servicing Houston-Galveston	
			Marine Terminals	77
		3.6.4	Hydrocarbon Emissions From a Gasoline	
			Tanker Cruise	80
		3.6.5	Analysis of Tank Arrival Conditions for	_
			Vessels Loading Gasoline and Crude Oil	
			in the Houston-Galveston Area	82
3	7	Marine	Terminals Transferring Crude Oil and	
			ne In the Metropolican Los Angeles Area	84

			Page
3.7.1	Backgrou	nd Information on Marine	
	Terminal	s Transferring Crude Oil	
	and Gaso	line in the Southern	
	Californ	ia Area	84
	3.7.1.1	Shoreside Equipment and Trans-	
		fer Procedures-Gasoline	36
	3.7.1.2	Shoreside Equipment and Trans-	
		fer Procedures-Crude Oil	8 7
3.7.2	Shipside	Equipment and Transfer Pro-	
	cedures	for the Los Angeles AQCR	89
3.7.3	Quantiti	es of Crude Oil and Gasoline	
	Transfer	red in the Los Angeles AQCR	90
3.7.4	Projecte	d Unloading of Alaskan Crude	
	Oil in the	he Los Angeles AQCR	91
	3.7.4.1	Port Site for Unloading Alaskar	ı
		Crude Oil in the LA AQCR	94
	3.7.4.2	Types and Sizes of Tankers De-	
		livering Alaskan Crude Oil	
		from Valdez to the Los Angeles	
		AQCR	94
	3.7.4.3	Projected Quantities of Alaskar	n
		Crude Oil to be Unloaded in the	2
		Los Angeles AQCR	97
	3.7.4.4	Characteristics of Alaskan	
		Crude 0il	97
3.7.5	Similari	ties and Differences in Marine	
	Terminal	s Located in the Los Angeles	
	AQCR and	the Houston-Galveston AQCR	100
	3.7.5.1	Los Angeles County	100
	3.7.5.2	Ventura County	102

				Page
			3.7.5.3 Santa Barbara County	103
4.0	MARI	NE TERM	NAL EMISSIONS	105
	4.1	Emissio	on Characteristics	105
		4.1.1	Source and Mechanism	105
		4.1.2	Effects of Loading Rate	110
		4.1.3	Effects of TVP	113
		4.1.4	Effects of Cruise History	114
		4.1.5	Composite Vapor Profiles	115
		4.1.6	Chemical and Physical Properties	118
	4.2	Source	Testing Results	126
		4.2.1	Industry Testing	126
		4.2.2	Radian Testing	131
		4.2.3	Conclusions	132
5.0	EMIS	SION CO	NTROL TECHNOLOGY	133
	5.1	Vapor	Control Unit	134
		5.1.1	Refrigeration	134
		5.1.2	Absorption	139
		5.1.3	Incineration	143
		5.1.4	Alternative Vapor Recovery Units	147
		5.1.5	Vapor Control Unit Installation	148
		5.1.6	Inercing	148
		5.1.7	Composite Vapor Profile	149
	5.2	Shores	ide Vapor Collection	151
		5.2.1	Design	151
		5.2.2	Efficiency	155
		5.2.3	Cost	155
		5.2.4	Safety	155
		5.2.5	State of Development	156

			Page	
5.3	Shipside Vapor Collect	ion	156	
	5.3.1 Design		157	
	5.3.2 Efficiency		159	
	5.3.3 Cost		159	
	5.3.4 Safety		160	
	5.3.5 Salient Conside	rations	160	
5.4	Alternative Control St	rategies	161	
	5.4.1 Ullage Hatch Co	ndensers	161	
	5.4.2 Ship Boiler Inc	ineration	161	
	5.4.3 Foam		162	
	5.4.4 Product Cooling		162	
	5.4.5 Controlled Load	ing	162	
ECONOMICS OF EMISSION CONTROLS				
6.1	Establishment of Cases		154	
6.2	Methodology		170	
6.3	Results		172	
	6.3.1 Fase Case		172	
	6.3.2 Sensitivity to	Cost Inputs	174	
	6.3 3 Sensitivity to	Unit Size	176	
	6.3.4 Sensitivity to	Vessel Mix	177	
TEST	PLAN DEVELOPMENT		179	
7.1	Objective		179	
7.2	•			
	7.2.1 Results Format.		181	
	7.2.2 Parameters		182	
	7.2.3 Required Level	of Sampling	184	
	•			
	ECONO 6.1 6.2 6.3 TEST 7.1 7.2	5.3.1 Design	5.3.4 Safety. 5.3.5 Salient Considerations. 5.4 Alternative Control Strategies 5.4.1 Ullage Hatch Condensers. 5.4.2 Ship Boiler Incineration. 5.4.3 Foam. 5.4.4 Product Cooling. 5.4.5 Controlled Loading. ECONOMICS OF EMISSION CONTROLS. 6.1 Establishment of Cases. 6.2 Methodology. 6.3 Results. 6.3.1 Fase Case 6.3.2 Sensitivity to Cost Inputs. 6.3.3 Sensitivity to Unit Size. 6.3.4 Sensitivity to Vessel Mix. TEST PLAN DEVELOPMENT. 7.1 Objective. 7.2 Approach. 7.2.1 Results Format. 7.2.2 Parameters. 7.2.3 Required Level of Sampling. 7.2.4 Test Program - Instrumentation	

				2556
7.3	Sampli	Ing Procedure		192
	7.3.1	Test Measurements	<i>:</i>	192
		7.3.1.1 Vented Vapor Concentration	n	-
		' Profile		192
	7.3.2	Recorded Information - Data Sheets		197

BIBLIOGRAPHY

CONVERSION FACTORS

VOLUME II

			<u> : 226</u>
APPENDIX	I	VESSELS TRANSPORTING CRUDE OIL AND GASOLINE IN THE HOUSTON-GALVESTON AREA	I - 1
APPENDIX	II	VAPOR CONTROL SYSTEM COST DATA	II-1
APPENDIX	III	RESULTS FROM INDUSTRY TEST PROGRAMS .	III-1
APPENDIX	IV	INDUSTRY TEST DATA	IV-1
APPENDIX	V	RADIAN EMISSION TESTING RESULTS	V-1
APPENDIX	VI	RADIAN EMISSION TEST DATA AND TRIP REPORTS.	VI-1
APPENDIX	VII	INDEPENDENT ANALYSIS OF VAPOR RECOVERY SYSTEM COSTS	VII-1

LIST OF TABLES

		?age
3.2-1	Marine Terminals Transferring Crude Oil or Gasoline in the Houston-Galveston AQCR	22
3.2-2	Gasoline Pumping System Lineups	26
3.2-3	Lines and Pumps for Marine Loading of Gasoline - AMOCO Texas City	38
3.2-4	Maximum Gasoline Loading Rate at Texas City Refining's Marine Docks	46
3.4-1	Quantity of Gasoline Loaded at Marine Terminals in the Houston-Galveston Area.	54
3.4-2	Reid Vapor Pressure of Gasolines Loaded at Marine Terminals in the Houston-Galveston Area .	63
3.4-3	Quantity of Crude Oil Loaded at Marine Terminals in the Houston-Galveston Area.	
3.4-4	Quantity of Crude Oil Unloaded at Marine Terminals in the Houston-Galveston Area	68
3.4-5	Average RVP of Crude Oil Unloaded at Marine Terminals in the Houston-Galveston Area	69
3.5-1	Projected Quantities of Gasoline to be Loaded at Marine Terminals in the Houston-Galveston Area Through 1985	70

LIST OF TABLES (Continued)

			<u>Page</u>
.3 . :	5-2	Projected Quantities of Crude Oil Loaded at Marine Terminals in the Houston-Galveston Area Through 1985	71
3.	5 - 3	Projected Quantities of Crude Oil Unloaded at Marine Terminals in the Houston-Galveston Area Through 1985	72
3.	6-1	Effect of Ship Cruise History on Arrival Hydro- carbon Concentration Prior to Gasoline Loading	75
3.	6-2	Emission Factors for Gasoline and Crude Oil Loading by Tank Arrival Condition	33
3.	7 - 1	Marine Terminals Transferring Crude Oil or Gasoline in the Metropolitan Los Angeles AQCR	85
3.	7 - 2	Quantity of Gasoline Loaded at Marine Terminals in the Los Angeles AQCR	92
3.	7 - 3	Quantity of Gasoline Unloaded at Marine Terminals in the Los Angeles AQCR	92
3.	7 – 4	Quantity of Crude Oil Loaded at Marine Terminals in the Los Angeles AQCR	93
3.	7 - 5	Quantity of Crude Oil Unloaded at Marine Terminals in the Los Angeles AQCR	93
3.	7-6	Projected Alaskan Crude Oil Tanker Fleet	96

LIST OF TABLES (Continued)

		Page
	Composition of Vapor in Equilibrium with North Slope Crude Oil	99
4 1-1	Chemical Composition of Gasoline Loading Vapors.	123
4 1-2	Composition of Vented Vapors, Vol. % Crude Oil Loading Test, 5-8-76, Avila Terminal, Tanker Lion of California	124
4.1-3	Chemical Composition of Aviation Gasoline Vapor	125
4.2-1	Summary of Petroleum Industry Testing Programs on Marine Loading Emissions	127
4.2-2	Summary of Results Hydrocarbon Emissions from Marine Loading Motor Gasoline	129
4 2-3	Summary of Results Hydrocarbon Emissions from Marine Loading Aviation Gasoline	130
6.1-1	Statistics on the Proposed Houston-Galveston Vapor Recovery Systems	165
6.1-2	Summary of Cost Data for Marine Terminal Controls	167
6.1-3	Summary of Case Parameters	169
6 2-1	Results of Study on Vapor Recovery Economics	171

LIST OF FIGURES

		Page
3.1-1	Transportation of Crude Oil, 1974	19
3.1-2	Transport of Gasoline	21
3.2-1	Location of Marine Terminals in the Houston-Galveston AQCP	23
3.2-2	Exxon Baytown Refinery Marine Terminal	25
3.2-3	Gasoline Loading Lines To Docks 1 and 2	27
3.2-4	Gasoline Line Manifolding at Dock l	23
3.2-5	Gasoline Line Manifolding at Dock 2	29
3.2-6	Crude Oil Lines To/From Docks 2 and 5	32
2.2-7	Crude Line Manifolding at Docks 2 and 5	33
3.2-8	Shell Deer Park Manufacturing Complex Marine Terminal	35
3.2-9	Gasoline Loading Lines to Shell's Marine Docks	37
3.2-10	AMOCO Texas City Refinery Marine Terminal	39
3.2-11	Gasoline Lines to AMOCO Texas City Marine	41

LIST OF FIGURES (Continued)

		Page
3.2-12	Crude Oil Unloading Lines - AMOCO Texas City	
3.2-13	ARCO Houston Refinery Marine Terminal	44
3.2-14	Gasoline Loading Lines To Docks A and B ARCO Houston Marine Terminal	45
3.2-15	Crude Oil Loading Lines for ARCO Houston Marine Terminal	47
3.2-16	Texas City Refining Marine Terminal	48
3.2-17	Crown Central Houston Refinery Marine Terminal.	50
3.2-18	Charter Oil Houston Refinery Marine Terminal .	52
3.3-1	Tank Capacities and Manifold Arrangement of the S.S. "Pasadena"	56
3.3-2	Grade A Cargo Tank Vent System	57
3.3-3	Single Skin Tank Barge	60
3.3-4	Grade B Cargo Tank Vent System	61
3.7-1	Offshore Terminal	88
4.1-1	Example Profile of Gasoline Loading Emissions .	107
4.1-2	Example Profile of Gasoline Ballasting Emissions	109

LIST OF FIGURES (Continued)

		<u>Page</u>
4.1-3	Effect of Initial Fill Rate on Vapor Blanket Profile	111
4.1-4	Hydrocarbon Profile Prior to Ballasting an Empty Tank	115
4.1-5	Hydrocarbon Profile of a Ballasted Tank	115
4.1-6	Hydrocarbon Profile of an Empty Tank After Ballast Discharge	115
4.1-7	Example Composite Vapor Profile for Loading Sequential	i19
4.1-8	Example Composite Vapor Profile for Simultaneous Loading	119
4.1-9	Vapor Pressures of Crude Oil	121
4.1-10	Vapor Pressures of Gasolines and Finished Petroleum Products	122
5.1-1	Refrigeration Vapor Recovery Unit	135
5.1-2	Absorption Vapor Recovery Units	140
5.1-3	Incineration Vapor Control Unit	144
5.1-4	Vapor Profiles of the Feed and Product of a Vapor Recovery Unit	150

LIST OF FIGURES (Continued)

		Page
5.2-1	Typical Vapor Collection System	153
5.3-1	Ship-Side Vapor Collection System	158
7.3-1	Location of Sample Probe	193
7.3-2	Sample Points Relative to True Ullage (Concentration) and Vapor Profile (Composition)	194

APPENDIX I

VESSELS TRANSPORTING CRUDE OIL
AND GASOLINE IN THE HOUSTONGALVESTON AREA

VESSELS TRANSPORTING CRUDE OIL AND GASOLINE IN THE HOUSTON-GALVESTON AREA

Appendix I contains information supplied by owners of the larger marine terminals in the Houston-Galveston area concerning the marine tankers which visited their docks to transfer crude oil or gasoline. The responses were not consistent in the type of information presented. Data on vessel names, DWT, ownership, service, quantity loaded in 1975, number of cargo tanks, and number of visits in 1975 were obtained in different responses. Very little information was obtained on the specific barges that transferred gasoline and crude oil in 1975 in the Houston-Galveston area.

TABLE I-1 SHIPS UNLOADING CRUDE OIL AT EXXON'S BAYTOWN REFINERY IN 1975

Vessel Name	DWT	Ownership
Alchiba	28,315	Foreign
Argolis	53,520	Foreign
Buckeye	46,194	Foreign
Carcape	76,996	Foreign
Capetan Mathios	30,200	Foreign
Capto	62,150	Foreign
Caspain Trader	75,669	Foreign
Carolyn Jane	NA	NA
Ekaterini	69,119	Foreign
Esso Torino	70,324	Foreign
Esso Stuttgart	50,420	Foreign
Esso Lorraine	51,628	Foreign
Esso Phillipines	69,742	Foreign
Esso Puerto Rico	33,581	Foreign
Esso Antwerp	76,209	Foreign
Esso Bremen	50,900	Foreign
Esso Koln	50,640	Foreign
Esso Karachi	20,987	Foreign
Esso Albany	22,367	Foreign
Esso Lincoln	50,769	Foreign
Esso Stockholm	52,425	Foreign
Esso Everett	NA	Foreign
Esso Roma	37,698	Foreign
Esso Brasilia	38,154	Foreign
Esso Milano	70,310	Foreign
Esso Castellon	76,290	Foreign
Esso Mukaishima	22,500	Foreign
Esso Coral Bagles	NA	Foreign
Esso Guam	22,360	Foreign

TABLE I-1 (Continued) SHIPS UNLOADING CRUDE OIL AT EXXON'S BAYTOWN REFINERY IN 1975

DWT	Ownership
51,926	Exxon
40,910	Exxon
40,872	Exxon
75,649	Exxon
56,800	Foreign
38,200	Foreign
38,275	Foreign
58,543	Foreign
62,281	Foreign
31,500	Foreign
59,412	Foreign
56,023	Foreign
70,983	Foreign
NA	NA
77,874	Foreign
52,600	Foreign
34,300	Foreign
74,883	Foreign
69,874	Foreign
69,119	Foreign
49,751	Foreign
	51,926 40,910 40,872 75,649 56,800 38,200 38,275 58,543 62,281 31,500 59,412 56,023 70,983 NA 77,874 52,600 34,300 74,883 69,874 69,119

NA - Not Available

TABLE I-2 SHIPS LOADING GASOLINE AT EXXON'S BAYTOWN REFINERY IN 1975

Vessel Name	Service	Ownership
Exxon Bangor	Multiple	Exxon
Exxon Baton Route	Multiple	Exxon
Exxon Boston	Multiple	Exxon
Exxon Gettysburg	Multiple	Exxon
Exxon Houston	Multiple	Exxon
Exxon New Orleans	Multiple	Exxon
Exxon Philadelphia	Multiple	Exxon
Exxon San Francisco	Multiple	Exxon
Exxon Chester	Multiple	Exxon
Exxon Jamestown	Multiple	Exxon
American Trader	Multiple	American Charter
Anja	Multiple	American Charter
Bald Butte	Dedicated	American Charter
Sealift Atlantic	Multiple	American Charter
Sealift Mediterranean	Dedicated	American Charter
Shenandoah	Dedicated	American Charter
Sealift Caribbean	Dedicated	American Charter
William J. Fields	Multiple	American Charter
Tampico	Multiple	American Charter
Eagle Transporter	Multiple	American Charter
Wilke	Multiple	American Charter
Hess Voyager	Multiple	Hess Shipping Co.
Gulf Solar	Dedicated	Blackships, Inc.
Mobil Aero	Multiple	Mobil Oil Corp.
Texaco Florida	Dedicated	Texaco, Inc.
Texaco California	Dedicated	Texaco, Inc.
Texaco Maryland	Multiple	Domestic Tankers
Shoshone	Dedicated	Military Sealift Command

TABLE I-2 (Continued) SHIPS LOADING GASOLINE AT EXXON'S BAYTOWN REFINERY IN 1975

Vessel Name	Service	Ownership
Millicoma	Dedicated	Military Sealift Command
USNS Yukon	Multiple	Military Sealift Command
Sealift Arctic	Dedicated	Military Sealift Command
Sealift Indian Ocean	Multiple	Military Sealift Command

TABLE I-3
SHIPS LOADING CRUDE OIL AT EXXON'S
BAYTOWN REFINERY IN 1975

Vessel Name	<u>Ownership</u>	Quantity Loaded (103bbl)
Exxon Baltimore	Exxon	1,457 3
Exxon Jamestown	Exxon	835.1
Exxon Lexington	Exxon	1,447.8
Exxon Philadelphia	Exxon	3,120.1

TABLE I-4
SHIPS LOADING GASOLINE AT SHELL'S
DEER PARK REFINERY IN 1975

Vessel Name	Gross Capacity (103bbls)	Number of Cargo Tanks
Key Tanker	156	33
Perryville	204	27
Tullahoma	207	27
Colorado	260	30
Pasadena	230	24
Seabulk Challenger	320	18
Valley Forge	322	27

TABLE I-5

TYPICAL SHIPS CHARTERED BY SHELL FOR

DELIVERING CRUDE OIL TO DEER PARK

Vessel Name	DWT	Number of Cargo Tanks	Ownership
Oliva	55,000	21	German
Michael Carras	59,000	33	Greek
Helfrid Billner	47,000	15	Swedish

TABLE I-6
SHIPS LOADING GASOLINE AT AMOCO'S
TEXAS CITY REFINERY IN 1975

Vessel Name	Ownership	Number of Visits At Texas City in 1975
AMOCO Delaware	AMOCO	20
AMOCO Connecticut	AMOCO	20
AMOCO Virginia	AMOCO	7
Mobile Gas	Mobil	1
Mobile Fuel	Mobil	1
Mobil Power	Mobil	1
Hess Petrol	Amerada Hess	3
Hess Voyager	Amerada Hess	2
E.M. Quenny	Keystone Shipping	3
American Eagle	American Foreign St	eamship l
Exxon Florance	Exxon	11
Trinity	NA	2
F. Hoskins	NA	1
LaGetty	NA	2
Corsair	NA	
TOTAL		77

NA - Not Available

TABLE I-7 SHIPS UNLOADING CRUDE OIL AT AMOCO'S TEXAS CITY REFINERY IN 1975

Vessel Name	Ownership	Number of Visits to AMOCO Texas City
Kini	Foreign	9
Maria	Foreign	8 -
Pella	Foreign	2
Baraolla	Foreign	1
Adreana Fassio	Foreign	1
Thomas Q	Foreign	1
Verconella	Foreign	1
Donold	Foreign	3
Perikem	Foreign	1
Persepolis	Foreign	4
Crinis	Foreign	2
Conqueror	Foreign	7
Exxon Munchen	Exxon	1
Alvega	Foreign	9
Alkes	Foreign	6
Exxon Ghent	Exxon	1
Tamba Mara	Foreign	4
Triposis	Foreign	4
Varanger	Foreign	1
Tasso	Foreign	2
Desert Song	Foreign	4
Ocean Challenger	Foreign	1
Sally II	Foreign	2
Petro Pan	Foreign	1
Attica	Foreign	1
Texaco Alaska	Texaco	2

TABLE I-7 (Continued) SHIPS UNLOADING CRUDE OIL AT AMOCO'S TEXAS CITY REFINERY IN 1975

Vessel Name	Ownership	Number of Visits to AMOCO Texas City
Dauntless Colocotronas	Foreign	2
Fearless Colocothronas	Foreign	2
St. Thomas	Foreign	2
Cosmonaîtis	Foreign	2
AMOCO Yorktown	AMOCO	2

TABLE I-8 OCEAN BARGES LOADING GASOLINE AT AMOCO TEXAS CITY IN 1975

Vessel Name	Ownership	Number of Visits to AMOCO Texas City
Esther Moran	Moran Towing Co.	32
Clipper	NA	1
M. Ingram	Ingram Barge Co	1

NA - Not Available

TABLE I-9 INTERCOASTAL BARGES WHICH LOADED GASOLINE AT AMOCO'S TEXAS CITY TERMINAL

Vessel Name	Ownership	Number of Visits to AMOCO Texas City
Duncan L: Hines	Hines, Inc.	10
James R. Hines	Hines, Inc.	29
Thomas W. Hines	Hines, Inc.	6
Billy Waxler	Waxler Towing	14
Ray Waxler	Waxler Towing	10
Achilles	Sabine Towing	1
Apollo	Sabine Towing	1
Atlas	Sabine Towing	14
Poseidon	Sabine Towing	28
Zephyr	Sabine Towing	12
Lady Kimberly	Inland Oil & To	cans. l
Lady Linda	Inland Oil & T.	cans. 7
Lady Patricia	Inland Oil & Ti	cans. 2
Exxon Baytown	Exxon	13
Exxon Bayport	Exxon	1
Exxon Brownsville	Exxon	3

TABLE I-10 SHIPS LOADING GASOLINE AT ARCO'S HOUSTON REFINERY IN 1975

Vessel Name	ARCO or Company Charter	Time or Trip Charter	Not Controlled By ARCO
	,		
Atlantic Prestige	✓		
Atlantic Heritage	✓		
Atlantic Enterprise	\checkmark		
Edgar M. Queeny		\checkmark	
Monmouth		✓	
Phillips Washington			✓
Texaco Illinois			✓
Texaco Montano			✓

TABLE I-11 BARGES LOADING GASOLINE AT ARCO'S HOUSTON REFINERY IN 1975

Vessel Name	ARCO or Company Charter	Time or Trip Charter	Not Controlled By ARCO
GDM-60	•		✓
Exxon 119			✓
Ellis 2003			✓
Petrochem	✓		
REB 2202		✓	
AD 315		✓	
T10-500		✓	
Patco 507			✓
SMT 416		✓	

TABLE I-12 SHIPS UNLOADING CRUDE OIL AT ARCO'S HOUSTON REFINERY IN 1975

Vessel Name	ARCO or Company Charter	Time or Trip_Charter	Not Controlled By ARCO
Kenai Peninsula	✓		
Clairhall		✓	
Ibeaux .			✓
El Steininger	✓		
Atlantic Challenger	✓		
Vardis V			✓
Capetan Mathios		✓	
Esso Jamestown			✓
Esso New Haven			✓
Apollonian Wave		✓	
Grigorousa			✓
Esso Karachi			✓
Tassos			✓
Romelia			✓
St. Thomas			✓
Mikton		✓	
World Promise			✓
Zaria		✓	
Afran Neptune		✓	
Llangorse			✓
Coranado		✓	
Albisola		✓	
Lady Clio		✓	
Cepheus		✓	

APPENDIX II

VAPOR CONTROL SYSTEM COST DATA

VAPOR CONTROL SYSTEM COST DATA

The cost data presented in Appendix II represent "best estimates" and are based upon the best cost information available. There are no marine loading vapor control systems currently in use for gasoline transfers from which to draw cost information. Although tanktruck loading emission control systems are in operation, they are much smaller and are designed to cope with a different set of problems.

EXXON COMPANY

System Information

System: Refrigeration
Size: 50,000 bbl/hr

Shoreside Costs

Ship to shore connection	\$1,920,000
Vapor collection system	\$2,280,000
Installed vapor recovery unit	\$4,030,000
Off sites	\$1,460,000
	\$9,690,000

Vessel Modification Costs

Ship \$350,000/ship Barge \$ 85,000/barge

All Exxon Vessels \$4,000,000

Operating Costs (a	innual)	35x10°	ЪЪЪ	L/yr
(shoreside)				
Depreciation			\$1,	607,000
Labor			\$	393,000
Maintenance			\$	260,000
Utilities			\$	30,000
Overhead			\$	331,000
Taxes			\$	170,000
			\$2.	791,000

Operating Costs (annual) (Continued) (vessel) \$ 424,000 Retrofitting \$ 147,000 Maintenance \$ 343,000 Loading Delay \$ 750,000 Recovered product credit \$ 134,000 Total \$4,321,000/yr

Reference 13

AMOCO OIL COMPANY

System Information

System: Refrigeration Size: 18,000 bbl/hr

Shoreside Costs

Labor	\$1,360,000
Contengencies	\$ 325,000
Engineering	\$ 300,000
Dock platforms	\$1,200,000
Piping & Supports	\$ 500,000
Water seals	\$ 150,000
Vapor hoses	\$ 45,000
Instrumentation	\$ 90,000
Pressure storage system	\$ 30,000
Vapor recovery unit	\$1,000,000
	\$5,000,000

Ship Modification Costs

3 ships at 300,000	\$ 900,000
35 barges at 50,000	\$1,750,000
1 ocean barge	\$ 150,000
	\$2,800,000

Operating Costs (annual)	20x10 ⁵	bbl	/yr
Electric power		\$	64,000
Labor		\$	35,000
Maintenance		\$	200,000
Chemicals		\$	1,000
Recovered product credit		\$	-75,000
		\$	225,000

<u>ARCO</u>

System Information

System: Refrigeration Size: 16,000 bbl/hr

Shoreside Costs

	\$5,700,000
Off-sites	\$1,200,000
Installed vapor recovery unit	\$2,100,000
Vapor collection system	\$2,400,000

Ship Modification Costs

Modification of two ships \$ 300,000

EDWARDS ENGINEERING

System Information

System: Refrigeration Size 20,000 bbl/hr

Shoreside Costs

Vapor collection system \$ 200,000 Installed vapor recovery unit \$ 700,000

MARATHON OIL COMPANY

System Information

System: Absorption

Size: 30,000 bbl/hr

Shoreside Costs

\$ 450,000 Vapor collection system Installed vapor recovery unit \$ 850,000 \$1,300,000

SHELL OIL COMPANY

System Information

System: Absorption Size: 25,000 bbl/hr

Shoreside Costs

Onsite Capital	\$2,000,000
Offsite Capital	\$2,500,000
Non-capital Expense	500,000
	\$5,000,000

Ship Modification Costs

Cost for 7 vessels \$800,000 to \$1,200,000

Operating Costs

Electi	cicity			\$ 36,000
Water	(supply	& waste	treatment)	\$ 12,000
Fuel				\$ 92,000
				\$ 140,000

UNUN ETE STSTVESESNEN VIUROWIANEN TILAPLERROETE GONON CARSENCY Re Researcit i Triging the March Carcal (22 7711)

PLRIAMEMENTICACTIVIPSES

PeremanentoRositions dedontifiedebelowevere ifilededudining hoheeperiod

FeBehruary, 1191977otoeEebruary828191977

Ti TitleŞeSerte ErGrade	obatatio	An Announcement on Nu Mumber Co	Ar Azes fof O Gonsidetat i	Ap hphiticant ion Se Selected	So Sourcefof Ap Apptheant
In Environmenta En Engineer IS GS-80D-707	MIDMIDAD	EP EPATRT #6762222	EPEPN±Wide	D.DSeSennett	CSCSegeg.
In Rivinomenta In Engine er 38 68-80 D 7 07	MD MDAD	EP RPA4RIF6762 828	EP EPN÷W ice	D.DLe Layhand	CS CS e Reg.
3 eSectetarý S (Sterio) 39 63-1818 404	MDMDAD	ЕР ЕРАТВТР 676-6106	EPEPAGNC	V.V./iW112himms	Va VadnAntict
Peresonane Madamt Spapec. ISSS-6201-212	PM PMD	EP EPATRIF67637 314	EP EPA÷Wi ede	A.ABo Bdyd	Va Va AnAnnct
En Environ mentaEcSchentis BSCS-3D30D707	t ES ESE D	EP EPATRIB 471417	EP EPA÷W ice	W.WMaMacDovell	CSCSegeg.
Ch Chémida E n Erigins er 18 68-9893-7 07	ESESED	EP EPATRIF676 2121	EP EPA÷W irde	H.HDa Davenport	CS CS e Reg .
`ePersonieStätäfiingrspe K731214111	с РМ Р МО	EPEPREREF772427	EP EPACNC	B.BPiRtley	Va Va &n Amact
Perensomie Itatalijng pape GSG242111	c PM PMD	EPEPATRIFF477427	EPEPAGNC	D.DWe Westmerehand	Va Va&nAmnct
Ch Chemida En Engineer GSG89893313	IERERL	EPEPATRIFF771212	IERERL	S.SRaRakes	Va VadnAmict
ReResearchh@hemist CSGS-32320313	IERERL	EPEPATRT777313	IERERL	L.LJo nahns on	Va Vad n amict
Ch Ghémida Engingins er GS G\$9893313	IERERL	EP EPATRER 777414	IERERL	J.JJoñezes	Va Vad n Amact
Ch Chémida EnEriginacer GS GS-9893-21 3	IERERL	EPEPREREF777414	IEKERL	N.NKa Ķāpban	Va Va dn Amict

le, Series & Grade	Location	Announcement Number	Area of Consideration	Applicant Selected	Source of Applicant
earch Chemist 1320-13	HERL	EPA-RTP-77-3	EPA-NC	J. Huisingh	CS Reg.
logical Lab Tech	HERL	EPA-RTP-77-2	EPA-NC	E. Rogers	Vac Annet
logical Lab Tech	HERL	EPA-RTP-77-2	EPA-NC	M. Bercegeay	CS Reg.
logical Lab Tech 404-5	HERL	EPA-RTP-77-1	EPA-NC	S. Carter	CS Reg.
logist 401-7	HERL	EPA-RTP-76-133	EPA-NC	M. Daniel	Vac Annet
puter Aid 335-3	HERL	EPA-RTP-77-8	EPA-NC	B. Hodges	CS Reg.

APPENDIX III

RESULTS FROM INDUSTRY TEST PROGRAMS

RESULTS FROM INDUSTRY TEST PROGRAMS

The tables and figures presented in Appendix III summarize the emission test data collected by the petroleum industry concerning hydrocarbon emissions from marine terminal operations. Test data collected by the petroleum industry are presented in Appendix IV.

FIGURE III-1 B.P. TEST DATA
HYDROCARBON EMISSIONS FROM LOADING A 215,000 DWT TANKER

FIGURE II-2 B.P. TEST DATA
HYDROCARBON EMISSIONS FROM LOADING A 54,000 DWT CRUDE TANKER

III-4

TABLE III-1

AMOCO GASOLINE LOADING TEST RESULTS

PERCENT CASOLINE VAPOR IN AIR EMITTED FROM TANKERS DURING LOADING

Ship	Date	Port	Previous	Ambient	RVP	<u>%</u>	Vapor in Air Comp	partment
	(1974)		Cargo	Temp	Present			
Wisconsin	2/26	W	Gasoline	41	<u>Cargo</u>	Empty 9	Half Full	Almost Full
Wisconsin	2/26	W	Half Ballast	41		14		
Wisconsin	3/14	W	Gasoline	46		6	6.5	24
Delaware	3/26	TC	Gasoline	57	11	7		
Delaware	3/26	тс	Half Ballast	57	11	4		
Connecticut	March	TC	Gasoline	82	10.5	4	9.4	27
Connecticut	3/9	TC	Ballast	70	11.5	1.1		
Virginia	3/13	TC	Gasoline	66	13.5	0	.5	
Delaware	4/8	тс	Gasoline	77	11	2.8	3.4	4.6
			Butterworth					
Wisconsin	5/31	W	Gasoline	67		19	19	64
Virginia	6/5	TC	Casoline	86	11.3	1.2	2.9	6.8
Wilm. Getty	6/26	TC	Gasoline	78		7.4	7.4	25
Connecticut	8/2	TC	Gasoline	80	11		11.4	40
Indiana	8/13	W	Gasoline	68			7	47
Barge St 132	8/13	TC			9.2		1.2	50

TABLE III-2

ATLANTIC RICHFIELD COMPANY

VARIOUS EMISSION EFFECTS RATED ACCORDING TO EMISSION MAGNITUDE

Group	Lifting/Compartments	Comment	Average Emission Factor 1b/1000 gal	Average Percent Hydrocarboos Volume
Α	1./7C, 5P	Fast Loading, Low TVP, Clean Compartments	0.40	2.1
В	3./1C, 4C, 7C, 11C	Fast Loading, Medium TVP Clean Compartments	0.52	2.6
С	2./1S, 9S	Slow Loading, High TVP Clean Compartments	0.92	4.2
D	2./5S, 7S, 8S	Slow Loading, High TVP, Partially Clean Compartment:	1.51 _s	6.9

TABLE III-3

SHELL OIL TEST DATA

MARINE LOADING VAPOR EMISSIONS (MOTOR GASOLINES) DEER PARK, TEXAS

Test No.	<u>1</u>	2	<u>3</u>	4	<u>5</u>
Ship	Valley Forge	Valley Forge	Valley Forge	Valley Forge	Valley Forge
Compartment Sampled	6 S	4 S	ıc	68	18
Month	Oct.	Oct.	Oct.	Oct.	Nov.
RVP (PSI)	12.0	12.0	13.5	12.0	13.3
<pre>[emperature(°F)</pre>	77	79	77	75	54
True Vapor Pressure (PSI)	8.6	8.9	9.7	8.3	6.3
Previous Cargo	Gasoline	Gasoline	Gasoline	Gasoline	Gasoline
Compartment Capacity (bbls @ 98% Full) 15,485	11,653	33,264	15,485	13,020
Cleaning Method	a	a	а	а	None
Initial HC Concentration	1.1%	0.1%	0.9%	4.3%	8.2%
Emitted Hydrocar	bons				
Max. Concentration	on 67.4%	59.2%	65.3%	50.1%	59.5%
Avg. Concentration	on 6.3%	6.9%	7.0%	8.3%	16.6%
Avg. Molecular W	t. 64	65	63	67	61
Lb/1000 Gallons Loaded	1.38	1.52	1.50	1.90	3.61
Tons HC/Ton Loaded (Assuming 6 lb/g	.00023 allon)	0.00025	.00025	.00032	.00060

a = hand hosing for 20 minutes

TABLE III-4

EXXON TEST DATA

HYDROCARBON EMISSIONS FROM TANKERS AND BARGES DURING MOTOR GASOLINE LOADING AT BAYTOWN (1975)

Vessel	Tank Condition	Volume % Hydrocarbon	Volume % Loaded Into Vessel and Tank Type	Weighted Average % Hydrocarbon (As Butane)	Annual Amount* Loaded, M Gal	Annual Em <u>i</u> asion, M Lb	Emission Factor (Lb/1,000 Gal)
	Effectively Gas-Freed	3.24	50.4				
Tanker	Ballasted	6.96	8.8	6.43	1,134** (81.3%)	1.67+	1.47
	Empty, Not Cleaned	10.26	40.8]			
	Effectively Gas-Freed	5.69	11.2				
Barge (Port Everglades)	Ballasted	9.08	32.3	11.71	146** (10.5%)	0.39+	2.66
Lver grades)	Empty, Not Cleaned	14.40	56.5				
Barge	Empty, Not Cleaned	18.35	100.0	18.35	114** (8.2%)	0.48+	4.14

Total = 2.54

* Numbers in parentheses = volume % of total 1975 motor gasoline marine loading; M = 1,000,000.

** Average 1972, 1973, and 1974 loadings:

Tanker loadings = 1,198 M gallons (82.3%).

Port Everglades loadings = 188 M gallons (12.9%).

Other barge loadings = 70 M gallons (4.8%).

+ Average 1972, 1973, and 1974 emissions:

Tanker emissions = $1.76 \frac{\text{M}}{\text{M}}$ pounds/year. Port Everglades emissions = $0.50 \frac{\text{M}}{\text{M}}$ pounds/year. Other barge emissions = $\frac{0.29 \text{ M}}{2.55 \text{ M}}$ pounds/year.

TABLE III-5

EXXON TEST DATA

HYDROCARBON EMISSIONS FROM TANKERS AND BARGES DURING AVIATION GASOLINE LOADING AT BAYTOWN (1975)

Vessel	Tank Condition	Volume X Hydrocarbon	Volume X Loaded Into Vessel and Tank Type	Weighted Average X Hydrocarbon (As Butane)	Annual Amount* Loaded, K Gal	Annual Emission, M l.b	Emission Factor (Lb/1,000 Cs1)
	Effectively Gas-Freed	1.63	50,2			!	
Exxon Tanker	Empty, Uncleaned; Previous Cargo: Avgas	6,66	19.2		22.7** (40.5%)	0.027+	1.47
	Empty, Uncleaned: Previous Cargo: Mogas	10.64	30.6				
	Effectively Gas-Freed	1.63	50.2	4.13	21.1**	0.020+	1.13
Orher Tanker++	Empty, Uncleaned; Previous Cargo: Avgas	6.66	49.8	4.13	(37.6%)	0.020	
Barge	Empty, Uncleaned; Previous Cargo: Mogos	18.35***	100.0	18.35	12.3** (21.9%)	0.052+	4.25

Total = $0.099 \approx 0.10$

- * Mumbers in parentheses = volume % of total 1975 aviation gasoline marine loading; $\overline{M} = 1,000,000$.
- ** Average 1972, 1973, and 1974 loadings:

Exxon Tanker Loadings = 23 M gallons (36.5%).

Other Tanker Loadings = 33 M gallons (52.4%).

Barge Loadings = 7 M gallons (11.1%).

- *** Burge assumed same as motor gasoline,
- + Average 1972, 1973, and 1974 emissions:

Exxon Tanker Emissions = 0.03

Other Tanker Emissions = 0.04

Barge Emissions = 0.03

Total = 0.10

"Other Tanker" category represents tankers owned or leased by the Military Scalift Command to transport primarily jet fuel and aviation gasoline.

TABLE III-6 EXXON LOADING EMISSION CORRELATION

$$E = \left[\frac{C \cdot V}{100}\right] + \left[P \cdot A \cdot (G-U)\right]$$

where

- E is the total volume of pure HC emitted in ft³ at the loading conditions,
- C is the appropriate arrival HC concentration (%) selected from the table below
- V is the volume of cargo loaded in ft³,
- P is the true vapor pressure (TVP) of the cargo in psia,
- A is the surface area of the cargo in ft²,
- G is the HC generation coefficient value of $0.36 \text{ ft}^3/(\text{ft}^2 \cdot \text{psia})$,
- U is the final true ullage correction in $ft^3/(ft^2 \cdot psia)$, from Figure III-3.

The Exxon correlation is based principally upon gasoline loading data.

Cargo Tank Arrival Condition Category	Average Arrival HC Concentration (Vol %)	Range of Arrival HC Concentration (Vol %)
Cleaned	2.5	0 - 5.0
Dirty	5.0	2.0 - 8.0
Empty and Undisturbed	8.0	2.5 - 13.5

FIGURE III-3 HYDROCARBON GENERATION COEFFICIENT.
FINAL ULLAGE CORRECTION TO THE
EXXON CORRELATION

TABLE III-7 WOGA TEST PROGRAM CALCULATED HYDROCARBON -EMISSION VALUES CRUDE OIL LOADING TEST, 5-8-76, AVILA TERMINAL, TANKER: LION OF CALIFORNIA

Cargo Tank	Gallons Oil Loaded	Total Vapor Vented, SCF	Volume Hydrocarbon	Hydrocarbon Vented, SCF	Molecular Weight of HC	HC Emission Lb/1000 Gal
3P	164,262	21,811	3.4	742	53.5	0.64
3S	164,262	21,640	3.8	822	57.5	0.76
7P	157,080	20,850	2.1	438	55.3	0.40
7S	157,080	20,714	2.1	435	63.1	0.46
Wing Tanks	642,684	85,015	2.9	2437	56.9	0.57
3C	365,652	47,989	5.3	2543	70.3	1.28
7C-OVA	354,732	46,562	5.9	2747	62.3	1.27
Center Tanks	720,384	94,551	5.6	5290	66.1	1.28
Centers and Wings	1,363,068	179,556	4.3	7727	63.2	0.94
3C	365,652	47,989	5.3	2543	70.3	1.28
7C-Gascope	354,732	46,562	7.4	3446	62.3	1.60
Center Tanks	720,384	94,551	6.3	5989	65.7	1.44
Centers and Wings	1.363.068	179,556	4.7	8426	63.2	1.03

Reference 22

TABLE 111-8

AMOCO TEST RESULTS

RESIDUAL HYDROCARBON CONCENTRATIONS IN UNLOADED CRUDE BARGES

С	rude	High Island	Point Comfort	Johnson Bayou	Forked Island	Trinidad	Sun-B	Zueitona	Empire	Essider
G	ravity	31.6°	39.4°	46.4°	46.6°	33.1°	43.1°	40.5°	30.4°	36.2°
R	VP	1.7	3.7	5.5	6.8	2.4	4.2	4.8	3.0	7.3
D	eck Temp.	82°F	86°F	84°F	84°F	86°F	88°F	88°F	91°F	82°F
Н	alf-Way Down									
	C_1	_	1.4	3.3	4.8	2.5	.9	.9	1.4	.7
	C ₂	.1	.5	2.6	5.1	1.0	.8	.4	. 3	. 2
	C ₃	.1	.7	2.7	5.8	.7	.9	.7	.5	.5
	iC ₄	trace	.3	.8	2.1	. 2	. 3	.2	. 2	-
	nC 4	_	.3	.7	1.8	. 2	. 4	.6	.3	3
	C ₅ +	_	.7	1.2	3.0	-	.9	.7	.3	.2
II	CO ₂	.1	-	. 2	. 4	. 2	.1	. 2	-	-
H	Inert	.9	.9	.8	.7	.9	.9	1.1	.9	.9
Ļ	Total HC	. 2	3.9	11.3	22.6	4.6	4.2	3.5	3.0	1.9
Ĺ	N_2	77.9	75.1	69.1	60.2	74.4	74.8	75.3	75.7	76.6
	02	20.9	20.1	18.6	16.1	19.9	20.0	20.1	20.4	20.6
6	" Off Bottom									
	C_1	_	2.7	6.8	7.0	4.0	4.5	1.6	2.8	1.7
	C_2	1.0	2.5	9.3	9.9	3.3	5.4	2.0	1.3	3.2
	C ₃	1.7	4.6	11.4	12.1	3.6	8.6	5.2	2.5	8.0
	iC ₄	1.0	2.8	3.9	4.6	1.3	3.4	2.0	1.0	2.5
	nC ₄	1.2	2.6	3.6	3.9	1.5	3.7	4.4	1.7	5.4
	C ₅ +	2.7	3.3	4.6	5.0	1.8	4.2	5.0	2.0	4.0
	CO ₂	_	_	. 4	.6	.6	. 4	.3	_	-
	Inert	.9	. 8	.6	.5	.8	.7	1.1	.8	.7
	Total HC	8.8	18.5	39.6	42.5	15.5	29.8	20.2	11.3	24.8
	N ₂	71.1	63.6	46.9	44.5	65.5	54.5	62.1	69.2	58.7
	02	19.1	17.1	12.5	11.9	17.6	14.6	16.6	18.7	15.8

APPENDIX IV

INDUSTRY TEST DATA

AMOCO

ARCO

EXXON

SHELL

INDUSTRY TEST DATA

Appendix IV presents a cross section of the test data collected by the petroleum industry concerning hydrocarbon emissions from marine terminal operations. The test data were supplied by Arco, Amoco, Exxon, and Shell.

AMOCO TEST RESULTS

(Reference 3)

IV-3

VAPOR BLANKET HEIGHT vs DEPTH OF FILL

AMOCO ILLINOIS - NOV.6,1974 WHITING, INDIANA

NORMAL FILLING RATE - FIRST FOOT 3-4 MINUTES AMBIENT TEMP. 55° - VAPOR TEMP. 73°

FIGURE 1

VAPOR BLANKET HEIGHT vs DEPTH OF FILL

AMOCO-ILLINOIS — NOV.6,1974 WHITING, INDIANA

SLOW INITIAL FILL - 1 FOOT IN 20 MINUTES THEN NORMAL FILL RATE

AMBIENT TEMP. 55 - VAPOR TEMP. 62

GASOLINE VAPOR EMITTED DURING FILLING AMOCO ILLINOIS NOV.6, 1974

GASOLINE VAPOR EMITTED DURING LOADING

AMOCO CONNECTICUT TEXAS CITY — NOV.21,1974

AMOCO REGULAR

- NORMAL FILL RATE 2 HOURS 20 MIN. TO FILL
- ★ SLOW INITIAL FILL RATE 6 INCHES IN 6 MINUTES

 THEN NORMAL FILL 2 HOURS 20 MIN. TO FILL

GASOLINE VAPOR EMITTED DURING LOADING

AMOCO WISCONSIN - WHITING, INDIANA NOV.22,1974

FILLING RATE 4300 BPH

AMBIENT TEMP. 41° - FUEL TEMP. 42°

● NORMAL FILL RATE
★ SLOW INITIAL FILL - 6" IN 6 MINUTES

EFFECT OF SLOW FINAL LOADING GASOLINE VAPOR EMITTED DURING LOADING

AMOCO WISCONSIN — WHITING, INDIANA DEC.5,1974 — NORMAL LODING BATE 4200 BPH AMBIENT TEMP. 37° FULL TEMP. 42° RVP 11.8 PSIA

FILL FIRST FOOT IN 15 MINUTES — THEN NORMAL FILL X FILL FIRST FOOT IN 14 MINUTES — THEN NORMAL—

FILL LAST 2 FEET IN 16 MINUTES

FIGURE 6

GASOLINE VAPOR EMITTED DURING LOADING

AMOCO INDIANA — DEC.27,1974 WHITING, INDIANA

AMBIENT TEMP. 36° - FUEL TEMP. 36°

FILL RATE 4400 BPH RVP 12.8 PSIA

O NORMAL FILL

★ FILL FIRST FOOT IN 8 MINUTES — THEN NORMAL — LAST 2 FEET SLOWLY

FIGURE 7

ARCO TEST RESULTS

(Reference 6)

ATLANTIC RICHFIELD COMPANY

TABLE I

S/S ATLANTIC ENTERPRISE, FEBRUARY 13, 1975 VOLATILE PRODUCT LOADING AND EMISSION DATA

COMPARIMENT 8s LOADING INFORMATION ls 7ธ 9s 5 s 7,272 AMOUNT, BARRELS 4,401 7,590 7,573 7,493 TIME, HOURS 17.6 17.9 16.0 15.7 17.2 Clear Gasoline Clear Gasoline Clear Gasoline CARGO Clear Gasoline Clear Gasoline PREVIOUS CARGO Furnace Oil Regular Gasoline Clear Gasoline Premium Gasoline Furnace Oil Strip Dry Butterworth Flood Bottom PRETREATMENT Flood Bottom Butterworth Strip Dry Strip Dry Strip Dry Strip Dry TEMPERATURE, CARGO, OF 70 70 70 70 70 AMBIENT, OF 45-70 45-70 45-70 45-70 45-70 46 46 FINAL HEIGHT OF LIQUID, FT. 44 46 46 RVP, PSIA 13.5 13.5 13.5 13.5 13.5 HYDROCARDON CONCENIRATIONS 58.5 58.5 EQUILIBRIUM VAPOR, MOL PERCENT 58.5 58.5 58.5 AVERAGE EMISSION*: 8.2 4.95 5.5 3.4 MOL PERCENT 7.0 0.50 PARTIAL PRESSURE, PSIA 0.73 0.81 1.0 1.2

*FROM FIGURES 1-5 INCLUSIVE

PWW: lk

3/7/75

۲.,-	.		7	, .				··;]							-		•						
-	-	<u> </u>	-	· ·	<u> </u>				- <u> </u>	=	-1:1			-					_		-		- 1		
===	-		<u> </u>		==				==	\equiv	\equiv	==:	!	==	-::	- -		:::			-			-:	
					E	<u>+</u> -		7	ATL	ידער	IC 1	RTC	HET	ET D	മ	мра	ΝV				==	<u> </u>	: -	- : -	_=
			置															1	1						
						1 -:]	FIG	URE	1					į	==	===	: <u>-</u>	====		
						薑			S	/s /	ג דייי	יייאב	TC 1	ENI	יפקי	RTS	7								
									=/					DAD:			=			=					
						Ē.,	F	EBF	RUAI	ΥŢ	3.	19	75,	COV	PAI	₹ <u>I</u> MI	NT	15	[
			⇟			≢ [™]	OL I	ER	_F.V.	. H;	DK	XA	RBOI	N VS	<u> </u>	PER	CF.N	r F	بلبال	==					
																				≣					
							Αĭ	ÆR	AŒ	PEI	RCE1	TT I	IYDI	ROC?	\RB(4.9	5							
						声 ,	KEY																		
						≝ :									•					\equiv					
							4	⊢ ME	EAST	JREI	W C	ГТН	OX	(GE)	1 M	ETE	R								
						E	•	AA C	VAL	ZEI	יש כ	TH	MA	ss s	SPF.	CITR	OMF™	ľRY				量			
				HE.																		ΕΞ			
	\equiv	50		!!!! !!!;;		 				≡										=					
																	===					#			
		40																				1			
3																		\equiv				#=			
8											===			量			〓					#		F	
YDROCAFBON			17								11 1											3=			
Ę	H			#		-		==	==		===		≣				三								
-				1117																					
MOL PERCEVIT						-)		==							\equiv			量							
ER				1																					
1 H	Ħ			==	≓			ļ		=		===	==:		===		===	===	===						
₹		29 -		π=								<u> </u>		1.1.	- F						\equiv				
	==			45		#E	_ =		==			:::			<u> </u>		==								
					4:::							; ;	. ::		.::=	! -	1===	===			且	\equiv			
				当三		畫:				==-		-			: .	===	<u> </u>] ==			7	ŧΞ			
		10						=	-=	=:=		- .Ξ:	===		===						ž				
			- 1	#::	=:	1-77						<u> </u>		==	11.	1 - : -	Ē			1		=			
]=:		F: .:=		==:	=					:							===			
							-		-	==		==	.=:	T=-:-	=			5	·-			1::-			
	-	- :	\top					<u> </u>				<u></u>		<u> </u>				<u>.</u>	-:-		-			i=	- ::::=
- 1			7	. !	+	-		<u> </u>	1	-		1	-	•		<u>;</u>	 	:			<u>: </u>	:	=-:	·	
				<u>.</u> 			20 . = -	<u> </u>	-		0 ,	<u>-</u> ::.:		60			<u> -:-</u>		0			:: 1	n=		
			==	= = =				===		=			 	1	<u> </u>										
				⋥. .=	1	-++1				E	EM.	[. المهت	· Ft	بكبلا	===							1::-			
量							量	E	臣	=			11.11	121 11	μΞ		-==					=		3-7-7	5

ATLANTIC RICHTELD COMPANY FIGURE 2 S/S ATLANTIC ENTERPRISE GROUNE LOADING FERCANT 13, 1975 OUPPARTMANT SERVICE PROCESSOR TO PROCEED FULL AVERAGE HYDROCARBON PERCENT=5.5 NEY + MEASURED WITH OXUGEN METER O ANALYZES BY MASS SPECTROSETRY 36 36 37 38 39 30 30 30 30 30 30 30 30 30	[中国] [] [] [] [] [] [] [] [] []	
ATLANTIC RICHTELD COMPANY FIGURE 2 S/S ATLANTIC DYTERPRISE GASILINE IDADING FERRIARY 13, 1975 CUPPARTMENT 55 MOL PERCENT HYDROCARBON PERCENT-5.5 KEY HEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY O ANALYZES BY MASS SPECTROMETRY 36 36 37 38 39 30 30 30 30 30 40 40 40 40 40		
FIGURE 2 S/S ATLANTIC EMERPRISE GSOLINE LOADING PERRIAW 13, 1975 COMMARMENT 55 NOL PERCENT HYDROCARRON IN EMISSIONS VS. PENCENT FULL AVERACE HYDROCARRON PERCENT= 5, 5 KEY + MEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY 50 50 60 70 70 70 70 70 70 70 70 7		
S/S ATLANTIC ENTERPRISE GSOLINE LOADING FERRIAN 13, 1975 COMPARTMENT 55 MOL PERCENT HYDROCARBON PENCENT=5.5 AVERACE HYDROCARBON PERCENT=5.5 KEY MEASURED WITH OXYGEN METER ANALYZES BY MASS SPECTROMETRY 50 30 40 40 40 40 40 40 40 40 4	MEANTE ACTION ON PANY	<u>:- - - - - - - - - - </u>
S/S ATLANTIC ENTERPRISE GSOLINE LOADING FERRIAN 13, 1975 COMPARTMENT 55 MOL PERCENT HYDROCARBON PENCENT=5.5 AVERACE HYDROCARBON PERCENT=5.5 KEY MEASURED WITH OXYGEN METER ANALYZES BY MASS SPECTROMETRY 50 30 40 40 40 40 40 40 40 40 4	FIGURE 2	
GSALINE LADON FERRIANY 13, 1975 COMPARTMENT 55 MOL PERCENT HYDROCATEON IN ENISSIONS VS. PERCENT FULL AVERAGE HYDROCATEON PERCENT= 5.5 KEY + MEASURED WITH OXYCEN METER O ANALYZES BY MASS SPECTROMETRY 40 40 70 70 70 70 70 70 70 70		
PERCENT 13, 1975 COMPANIENT 5S MOL PERCENT HYDROCARBON IN EMISSIONS VS. PERCENT FULL AVERAGE HYDROCARBON PERCENT= 5.5 KEY + MEASURED WITH OXIGEN METER O ANALYZES BY MASS SPECTROMETRY 50 50 20 20 20 20 20 20 20 20		
MOL PERCENT HYDROCARRON IN RMISSIONS VS. PERCENT FULL AVERACE HYDROCARRON PERCENT 5.5 KEY + MEASURED WITH OXIGEN METER O ANIALYZES BY MASS SPECTROMETRY 50 50 40 40 40 40 40 40 40 40		
MOL PERCENT HYDROCARBON IN EMISSIONS VS. PERCENT FULL AVERAGE HYDROCARBON PERCENT=5.5 KEY + MEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY 50 50 50 20 20 20 20 20 20 20	COMPARIMENT 5S	
AVERACE HYDROCARSON PERCENT=5.5 KEY H MEASURED WITH OXYCEN METER O ANALYZES BY MASS SPECTROMETRY 50 50 70 70 70 70 70 70 70 70	MOL PERCENT HYDROCARBON IN EMISSIONS VS. PERCENT FUL	T THE PARTY OF THE
NEY + MEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY 30 30 70 20 20 40 60 30 100 PERCENT FULL 179		
+ MEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY 50 40 40 20 20 20 20 40 60 80 100	AVERAGE HYDROCARBON PERCENT= 5.5	
+ MEASURED WITH OXYGEN METER O ANALYZES BY MASS SPECTROMETRY 50 40 40 20 20 20 20 40 60 80 100	KEY	
O ANALYZES BY MASS SPECTROMETRY 50 50 40. A0. A0. A0. A0. A0. A0. A0		
400 400 40 40 40 100 100 100 100 100 100	+ MEASURED WITH OXYGEN METER	
400 400 40 40 40 100 100 100 100 100 100	O MATURE BY LOCA COMME	
40	O AVALYZES BY MASS SPECTROMETRY	
40		
40		
700 20 40 60 80 100 PERCENT FULL		
700 20 40 60 80 100 PERCENT FULL		
700 20 40 60 80 100 PERCENT FULL		
700 20 40 60 80 100 PERCENT FULL		
700 20 40 60 80 100 PERCENT FULL		
20 20 40 60 80 100 PERCENT FULL		
20 20 40 60 80 100 PERCENT FULL	z = = = = = = = = = = = = = = = = = = =	
20 20 40 60 80 100 PERCENT FULL		
20 20 40 60 80 100 PERCENT FULL	3	
20 20 40 60 80 100 PERCENT FULL		
10 20 40 60 sc 100 PERCENT FULL		
10 20 40 60 80 100 PERCENT FULL		
10 20 40 60 80 100 PERCENT FULL		
10 20 40 60 80 100 PERCENT FULL		
10 20 40 60 80 100 PERCENT FULL		
20 40 60 80 100 PERCENT FULL	2	
20 40 60 80 100 PERCENT FULL		
20 40 60 80 100 PERCENT FULL		
20 40 60 100 100 PERCENT FULL		
20 40 60 80 100 PERCENT FULL		
20 40 60 100 PERCENT FULL		
20 40 60 80 100 PERCENT FULL		
20 40 60 80 100 PERCENT FULL 5-75	and the second of the second o	
20 40 60 80 100 PERCENT FULL 5 75		
20 40 60 80 100 PERCENT FULL 5.75		· : _ : : - : - : - : - : - : - : - : - : - :
PERCENT FULL 5-7-75	1 1 1 1 1 20 1 1 40 1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		<u>lll</u>
-17 1 G	PERCENT FULL	
-T7 1 K		
	-11 1 K	

7,17,111 7,17,117,117			- ••	<u> </u>	
	ATLANTIC RICHFIELD COMPANY				.,.===
	The state of the s		:-	- : : -	
	FIGURE 3				
	S/S ATLANTIC ENTERPRISE	===	-::-		
	GASOLINE LOADING				
	FEBRUARY 13, 1975	\equiv			
	COMPARIMENT 7S				
MOL PER	ENT HYDROCARBON IN EMISSIONS VS. PERCENT FUL	L			
	AVERAGE HYDROCARBON CONCENTRATION = 7.0				
	7.0				
KEY		===			
_	MEASURED WITH OXYGEN MEITER				
'	PLASORED WITH OXIGEN METER	=			
•	ANALYZED WITH MASS SPECTROMETER				
Δ	ANALYZED WITH GAS CHROMOTOGRAPHY	\equiv			
		===			
50					
		⋾⋣			
40		1			
		#			
z line line		*			
NO 30		1:			
§ 30					
O COLONIA					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		*			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		*			
DERCIENT 20					
ğ					
¥ ====================================					
10					
		=			
	<u> </u>	==			
1:50 0 1:50		! -			
	2b 6b -	3:0	n		
	PERCENT FULL	-1-		7-75	
	TV 17				

<u> </u>		1 -:-	•					ATL	INA	ばく	RIG	FI	EID	∞	PAN	•							1	
		 		ATLANTIC RICHETELD COMPANY											- 									
1.5.		-===	:	FIGURE 4									!	.∺ I		. : 1								
		E = E												. = . :	$\neg \tau$	===								
			•	S/S ATLANTIC ENTERPRISE										===	<u> </u>	- -								
			:					_					DADI		_						-=-	-: <u>-</u> :	-= -	- =====
									F	EBR	UARY	7 1	3, 1	97 5								==:	-= =	
									7	COM	PARI	MĐ	VT R	<u> </u>	_									
			MO	L P	ERC	ENT	HY	DRO	CAR	BON	ĪN	EM	ISSI	ŽNS	vs.	PEI	RCEN	T_FUI	г.т.			===	===	〓
																			=					
						AV	ERA	Œ	HYD.	ROC	ARBO	N (ENT	RATT	ON=8	3.2							
																••••						===	==	
				1	KEY																			
				-					•															
					-	+ 1	MEAS	SUR	ED 1	WIT:	XO F	YŒ	N M	TE:	R									
			•						'						• `						Ħ			
					(o 2	ANA	LYZI	ED 1	WIT:	H MA	SS	SPF	איזי	OMET	ETR								
			•											• v		\ ,	,							
			7							= =		\equiv	===	#	$\equiv \equiv$				\equiv	=		===		
								\equiv					<u> </u>	#]=			\equiv	\equiv				
								\equiv	\equiv										\exists					
			$\mp \equiv$					\equiv					====	#		<u> </u>	==		$\equiv \downarrow$	\equiv				
				\equiv				\equiv	==		===	\equiv	===		===	$\exists =$			_/	\equiv			==	
	50							Ш											1			===		
																			\pm					
								.				==		\equiv		#			\blacksquare	\equiv				
				==					===			==		=	===	=	==		#	==				
								\equiv				-							1	==				
				===															\blacksquare					
	40		-												 	=t.==		i — —	± :±					
						_													+					
		-						\equiv											Ħ				==	
S																								
ENO.																								
RECONS																								
CARBONS																								
ROCARBONS																								
YDROCARBONS	30																							
HYDROCARBONS	50																							
NT HYDROCARBONS	30																							
CENT HYDROCARBONS	30																							
ERCENT HYDROCARBONS	30																							
PERCENT HYDROCARBONS	30																							
DL PERCENT HYDROCARBONS	30																							
MOL PERCENT HYDROCARBONS	30																							
MOL PERCENT HYDROCARBONS	30			,															3					
MOL PERCENT HYDROCARBONS	20																							
	30			,															3					
	20																							
	26																							
	20																							
	20				 				*															
	20																							
	20				 													j						
	20				 													j						
	20				 			= = = = = = = = = = = = = = = = = = =	-									j						
SECOND HYD	20				 				-									j						
SECOND HYD	20				* • • • • • • • • • • • • • • • • • • •		-	: I										j		0				
SECOND HYD	20				* • • • • • • • • • • • • • • • • • • •		-		-									j		0-				
SECONT HYD	20	G = 1							0			60						j		O				
SECONT HYD	20	G = 1							0			60						j		0				
SECONT HYD	20	G = 1							0	CEN		######################################						j		0				

	.:.=
ATLANTIC RICHTELD COMPANY	
FIGURE 5	
	==
S/S ATTANTIC ENTERPRISE	
GASOLINE LOADING FEBRUARY 13, 1975	
COMPARIMENT 9S	〓
MOL PERCENT HYDROCARBON IN EMISSIONS VS. PERCENT FULL	
AVERAGE HYDROCARBON PERCENT=3.4	
KEY	\equiv
+ MEASURED WITH OXYGEN METER	
O ANALYZED WITH MASS SPECTROMETRY	
△ ANALYZED WITH GAS CHROMATOGRAPHY	
50	
	〓
	壨
ADBOCARBOAS SOLUTION SOL	壨
A DE MARIA DE LA PERMANA DE LA	
TOW 20 20 20 20 20 20 20 20 20 20 20 20 20	
	〓
= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	-11-
- \$₹ - {\$#####\$} - }	11 1
PERCENT FULL	
IV-19	

ATTANTIC RICHFIELD COMPANY

TABLE I

VOLATILE PRODUCT LOADING AND EMISSION DATA

S/S AROO PRESTIGE, APRIL 28, 1975

LOADING INFORMATION		COMPART	MENT	
Amount, Barrels Time, Hours	$\begin{array}{c} \frac{1C}{10011} \\ 1.7 \end{array}$	4C 12974 3.8	7C 12974 3.5	11C 8912 2.0
Average Fill Rate BPH GPM	5889 4122	3414 2390	3707 2595	4456 3119
Cargo Previous Cargo Pretreatment	Clear Gasoline Furnace Oil Flood Bottom Strip Dry	Clear Gasoline Leaded Gasoline Butterworth Hot Wash Strip Dry Ballasted	Clear Gasoline Leaded Gasoline Butterworth Hot Wash Strip Dry Ballasted	Clear Gasoling Furnace Oil Flood Bottom Strip Dry
Temperature, Cargo ^O F ,Ambient ^O F Final Height of	87 80-84 45.7	87 80-84 45.7	87 80-84 45.7	87 80-84 45.7
Liquid, Feet RVP, PSIA TVP, PSIA	9.7 8.0	9.7 8.0	9.7 8.0	9.7 8.0
HYDROCARBON CONCENTRATIONS Equilibrium Vapor Mol Percent Average Dmission*	54.4	54.4	54.4	54.4
Mol Percent Partial Pressure PSIA	2.8 0.41	3.0 0.44	1.8 0.43	2.6 0.38

^{*}Based on "mol percent hydrocarbon versus percent full" curves.

ATLANTIC RICHFIELD COMPANY

TABLE II

SUMMARY OF SAMPLE DATA FROM UNLEADED GASOLINE LOADING TEST-S/S ARCO PRESTICE

APRIL 28, 1975

			PERCENT	HYDROCARBON	
COMPARI-	TIME	PERCENT	MASS	GAS	
MENT	P.M.	FULL	SPEC.	CHROM.	MOL. WEIGHT MASS SPEC.
70	2.45	2	0.03	0.03	50.13
7C	2:45	2	0.03	0.03	58.13
7C	3:20	28	0.04	0.06	56.66
7C	4:52	71	0.13	0.16	57.01
7C	5:22	88	0.22	0.63	55.03
7C	5:55	96	17.44	24.0	57. 86
7C	6:05	98	39.07	33.0	56.67
4C	2:48	3	0.02	_	58.11
4C	3:30	22	0.03		58.11
4C	5:00	65	0.24	-	51.38
4C	6:15	92	8.78	-	55.26
			34.20	_	
4 C 4C	6:26	97 90		-	56.78
	6:32	99	38.73	-	56.95
1C	6:35	4	0.98	-	65.99
1C	8:00	96	25.76	-	55.03
1C	8:05	98	23.69	-	55.16
110	6:10	5	0.13	-	65.95
11C	7:50	96	24.84	_	59.90
	7:54	99	24.68	_	
11C	/:34	ככ	24.00	_	56.01

GJZ:1k 8/22/75

45:		
	FIGURE 3	
	ATLANTIC RICHTIELD COMPANY	
	S.S. ARCO PRESTICE	
	UNIEADED GASOLINE LOADING	
	APRIL 28, 1975	
	COMPARIMENT 7C	
	MOL PERCENT HYDROCARBON IN EMISSIONS	
	VERSUS PERCENT FULL	
	73.000	
	AVERAGE HYDROCARBON PERCENT=1.8	
	MADIANT HIDIOGRAPH INCRIT 110	
	KEY: O ANALYZED BY MASS SPECTROMETRY	
	A MAILUTED BY CAS CUCMMUTOCOADUV	
	ANALYZED BY GAS CHROMATOGRAPHY + MEASURED WITH OXYGEN METER	
S S		
25		
Z III		A
8		
8		
HYDROCARBONS 65		
PERCENT		
8		
Ž TO		
1.5		
10		
	· 	
1016	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	20 30 50 90	100
	PERCENT FULL	

EXXON TEST RESULTS

(Reference 13)

TRUE ULLAGE (FEET)

TRUE ULLAGE (FEET)

TRUE 'ULLAGE (FEET)

TRUE ULLAGE (FEET)

TRUE ULLAGE (FEET)

SHELL TEST RESULTS

(Reference 18)

S. S. VALLEY FORGE COMPARTMENT 65 10/19/74

S.S. VALLEY FORGE COMPARTMENT 45 10/19/14

	100	1					I I	1	1-:		
•								!		-:=::=:	
		1	<u> </u>	<u></u>		! :===		· —————		:==:-:	
			::::::::::::::::::::::::::::::::::::::						;	:	=======================================
			. : -: : 	::::::i		: :	! :				
						· · · · · · · · · · · · · · · · · · ·		1			
		====						F		===;===;	
				=====			1:				
		127.211.72		:	==;==						
	_		:= == ; == : : =							==:::::::::::::::::::::::::::::::::::	
4	80									;	
0	-								:		
to	80										
Ċ					=====				=::::=		
ار انس	•	===	. ==== : : : : :	-1-11:11:11:11:11:11:11:11:11:11:11:11:1			=======================================		===:==;	==::;	:=::=:
.`			,	;							
0		1:=:=	T- :T'= :: =	: == :==							:==:==
0				···!							
K											.===/1
Q	, .			;						==:=: ::=:::::	7.7
ゝ	60	·;							,	1	
•		====== !								=====:	
₹.											
											:/::
F-		=====================================									
>											
PENLEN				·=::::::::::::::::::::::::::::::::::::							7
7											
خ									====:		-7:12-3
19	110				·	1					
ζ.	40				.::::==			=====1	==:=:=:		7:===
1ª				:							/
		{ <u></u> }								~ /	
		== : ===	::==:		::=:=:=		 :,			===::::/	
		<u> </u>	<u> </u>						<u></u>	/_	
			:== ;====		:::::::::::::::::::::::::::::::::::::::					:==:=:./;.	
			• • • • • • • • • • • • • • • • • • • •		:::::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::		====:=:	:::::::::::::::::::::::::::::::::::::::	:::: <i>:</i> ::::/. }:	
		:;==-:								 /-:-	
				== ;							
	20				 -	: = :- : : : :					
•	25		::: .		:==;=== (=======================================				:/::	
			=======================================	=: =: 7.13	::::===================================				===::==================================	: /:	
		======;				;		;-		/	
			: -:::-:::		.====;	: :: = := := := :					
										/	
		1111		==:-:::::::::::::::::::::::::::::::::::						7===:	
	ĺ									A	====
	i		: =====	F							
	- 1	:2: [=====			
	0			-	***************************************			-			
	C	•	20		- 40)	60	a - 1	8	3	100
	C	•	2.0							-	,00
					PET	CENT	FUL	l-			

GASOLINE mol 20 - (7)(0) + (1)(2) + (1)(33) - (1)+ (6.4) = 6.82 12.0 RUP 79° LIQT. E.F. = (1.83)(61)(6.8) 5600 BBLIHR

(459+79

(459+79)

S. S. VALLEY FORGE COMPARTMENT IC 10/19/74

FIG 3

GASOLINE MATS = (.8)(3) + (.05)(7)+(.05)(12)+(.1)(40)= 2.4+.35+.6+1
13.5 RUP = 7.35%

77% NOT.
6000 BBLIHR E.F. = (1.83)(61)(7.35)

1.53 14/1039af

S.S. VALLEY FORGE COMPARTMENT 65 10/31/74

GASOLINE Mol ? = (5) (80) + (10) (.1) + (30) (.1) = 4+1+3=8

12.0 RUP

75°F LQT. E.F. = (1.83) (61) (8)

5500 BBL/HR

S. S. VALLEY FORGE COMPARTMISIT 15 * 11/13/74

FIG 6

GASOLINE MORZ=(7)(80)+(1)(17)+(05)(70) H(05)(45)+(1)(13)=
13.3 RUP

5.6 +1.2 +1.0 +2.3 + 6.3 = 16.4 20 muly
2000 BBL/HR E, F = (1.83)(61)(16.4)

* RETURNED AS UNLOADED - NO BALLAST, HOSING OR CLEANING

APPENDIX V

RADIAN EMISSION TESTING RESULTS

RADIAN EMISSION TESTING RESULTS

The figures in Appendix V graphically present the test data collected by Radian on hydrocarbon emissions from gasoline loading onto ships, barges, and ocean barges and on hydrocarbon emissions from crude ballasting. Sampling trip reports which detail the test procedures applied and the testing conditions are presented in Appendix VI.

APPENDIX VI

RADIAN EMISSION TEST DATA AND TRIP REPORTS

Project No. 200-045-56

13 May 1976

MEMORANDUM

TO: Distribution FROM: J. D. Colley

SUBJECT: Sampling trip to Shell, Deer Park, meeting notes with

Exxon, Crown Central Petroleum, and Charter International

Oil.

On May 3, Milton Owen and myself left for Houston to sample a gasoline loading operation at Shell's Deer Park marine facility. On May 4, we visited with Shell's Shipping Coordinator, Don Lanning, and toured the Shell tank farm and dock areas. Wednesday, May 5, we met with Lee Fuller, John Bentz, and Bruce Nichols of Exxon's Environmental Group and toured their terminal. Then on Thursday, we visited Crown (Bill Warnement) and Charter (Bill Miles) and inspected their marine facilities. The remainder of this memorandum summarizes the results of the testing at Shell and presents an outline of the meetings and tours between Radian and Shell, Exxon, Charter, and Crown personnel.

SHELL

Plans had been made with Shell Oil to sample the loading of Super Shell and Shell Regular into the tanker "Pasadena" on Tuesday, May 4. Monday morning Don Lanning notified Radian that the tanker was a day early and was expected to arrive at their docks by noon Monday. Milton Owen and I loaded the equipment and left for Deer Park as soon as possible. We arrived about an hour

13 May 1976 JDC.swm Page 2

before the tanker was to be loaded and set up our equipment for testing.

After talking with the Chief Mate of the "Pasadena", Mr. Knox, we decided that it would be possible to sample the loading of three carge tanks with Super Shell (1C, 7C, and 7S). The test runs went smoothly and we sampled tank 1C beginning at 7:50 p.m. and finished with tank 7C at midnight. Although the data have not been fully processed at this time, a preliminary examination indicates a vapor concentration profile similar to that seen in the test results from the literature. The "Pasadena's" cargo tanks 1C, 7S, and 7C had a less than 1 percent uniform hydrocarbon concentration prior to the loading. The final hydrocarbon concentration was 43 percent for tank 7S; 45.5 percent for tank 1C; and 47 percent for tank 7C. The primary reason for the difference in the final vapor concentration is thought to be the loading rates. Tank 7S was loaded the fastest, while tanks 7C and 1C took over twice as long to load.

The RVP of the gasoline was 10 2 psi and its initial loading temperature was 73°F.

Tuesday, Milt and I met with Don Lanning, Shell's Shipping Coordinator. He showed us around the Shell tank farm and the dock site. We discussed with him the dockside equipment at their terminal and the operating procedures there. We traced with him to path of the Shell gasolines from storage to blending to pumping of the product either to the bulk pipeline or to the marine dock. The pumps which deliver the gasoline to the docks are located within the tank farm area. These pumps are of the

centrifugal type and they can deliver gasoline at the rate of nearly 6,000 barrels per hour each. They operate at 150 psi.

At the terminal itself, there are four docks either of which they can each load gasoline. Also, the Shell refinery receives approximately one-half of its crude oil from ships and barges.

Mr. Lanning indicated that approximately twelve tankers are chartered by Shell to serve the Deer Park refinery on a regular basis. The collection system for Shell's proposed vapor recovery unit will consist of flexible hoses which would transfer the vented gasoline vapors from these ships to four recovery units located next to each of the four docks. He claimed that the system has been designed to be compatible with the Exxon ships which must mate with the Exxon vapor recovery system. He said the two systems are somewhat different. Mr. Lanning agreed to supply a rough schematic of the piping which transfers gasoline to the docks from the refinery and crude oil from the docks to the tank farm. Additional information concerning Shell's marine terminals (which will be supplied to Radian by Shell personnel in the near future) will describe the facility and the operations in more detail.

In summary, this sampling visit and tour should be very valuable in completing the program. The data we gathered on the loading operation appear to agree with data observed from past tests by other companies. Shell's Deer Park marine facility is one of the largest of its kind. The sampling and tour along with further cooperation by Shell personnel in providing Radian with more detailed information on their terminal will go a long way toward achieving the objectives of this program.

Data Sheet I Survey of Shore-Side Information

General	Inform	nation
---------	--------	--------

- 4 - 162
Date May 3, 1976
Name of vessel 55 Pasadina
Terminal Shell Deer Park MG Complex
Product(s) loaded Sign Shell Rotor Gasile
/
Terminal Information
Storage tank number
Storage tank size
Type of roof
Length of time stored
Tank color; age,
Storage temperature
Pump type <u>Centrifigil</u> Pump size
Pump nominal rate April 5 CCC Will/wr
Tump nominal race
Ambient Conditions
Air temperature
Weather conditions flow to partly stouly, 5-10 mills wind
, , , , , , , , , , , , , , , , , , , ,
Prepared by: David Colley
Prepared by: David Colley
ı

Data Sheet II

Survey of Vessel Information

<u>Information</u>
Date

Name of vessel 5.5 Pasa dena
Name of vessel 5.5 Pasa dena
Type of vessel: ship barge
Total number of cargo tanks 24
Vessel size (DWT) 35,000
rior Cargo Information
Prior cargo Gasoline in 7CE 75; Jet Alverosine) in 1C.
Prior cargo RVP
Where unloaded
Date unloaded
Does cargo tank have stripper lines
<i>'</i>
essel In-Transit Conditions
Type cleaning and/or ballasting for each tank All tanks were
vapor-freed by butterworth, up and ballasting followed by blow drying
Open or closed hatches
Ratings on PV valve 0.5ps. Vac., 2.5ps. pressure
Time at sea
repared by: David Calley

Date Cargo	M Tan	/ / :	3, 1976 1 C		Product Loading	Loaded Rate	ı <u>Su</u>	per 5 4,3e	hell bb	RVi2=	=· C. 2
ı.	Hyd	rocarbor	n Profile Pric		ading % LEL			% Gas			
	Bot Mid Top		level)	 	4 4 4 4 4			\[\left\) \[\left\] \[\left\] \[\left\] \[- -		
II.			ket Depth r Level of Ta	nk							
		Time	Ullage (ft)	% LEL	% Gas	Vapor	T(°F)	Liquid	T(°F)		
	В.		er Level of Ta		% Gas	Vapor	T(°F)	Liquid	T(°F)		

Date . Cargo	Tank	May	3, 19	<u>76</u>		Product Loading	Loade Rate	d <u>Su</u> Viinied	er 51 From 4	TEC 4	RUP = = 7460	19.2
I.	Hydr	ocarbo	n Profile	Pric	r to Lo	ading						
					_	% LEL			% Gas	_		
	Bott	om			_	4			=(-		
	Midd	lle			_	4			<1	<u>-</u>		
	Top	(deck	level)		-	4			=1	-		
II.	Vapo	or Blan	ket Deptl	1								
			r Level	_	nk							
	•					. w á.	1 **	m (m/9m\		
		Time	Ullage	(tt)	% LEL	% Gas	Vapor	T(F)	Liquid	T(*F)		
			 			 						
			<u> </u>		<u> </u>	<u> </u>	J		<u></u>			
	В.	At Upp	er Level	of T	ank							
		Time	Ullage	(ft)	% LEL	% Gas	Vapor	T(°F)	Liquid	T(°F)		
			}				ļ	 -				
							 					
		~	 		 	 	 		 			

Date		11/2/	3 17	26		Product	Loaded S	per Stell,	RVP=15.2
Cargo	Tank	No /	75			Loading	Rate	50 WW/1.0	
I.	Hydr	ocarbo	n Profile	e Pric	or to Lo	ading		·	
					_	% LEL		% Gas	
	Bott	om				4		</td <td></td>	
	Midd	lle				4		</td <td></td>	
	Top	(deck	level)		_	4		~/_	
II.	Vapo	or Blank	ket Depth	1					
	Α.	At Lowe	r Level	of Ta	nk_				
		Time	Ullage	(ft)	1 % LEL	1% Gas	Vapor T(°F)	Liquid T(°F)	
	•					 			
					•		<u> </u> 	+	
	В.	At Upp	er Level	of T	<u>ank</u>				
		Time	Ullage	(ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)	
								 	
				 -					
								 	
					·				
					I	1		1	

Data Sheet III (Cont.) Recorded Data

Date May 3, 1976	Product Loaded	Suren	5h.ll	2717 =16	2
Cargo Tank No 10	Loading Rate	4300	10/01/11		

III. Hydrocarbon Concentration on Vented Vapors

Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T (°F)
11752a	Empty				
	55				
1750	\$ 48 6"	3	<1	99	73°F
1800	45	_3	=1	99	<u> </u>
1820	40	Z	=1	99	
1845	35	Z	<1	93	
1968	30	Z	<1.	9 1-	
1930	25	2	<1	96	
195C	20	Z	<1	9.1	
2555	18	7	<	96	
20 68	16	3	=1	9.5	
2016	14	7	<)	38	
2025	12	12	<1	8.7	
2535	10	14	Z	36	
2538	9	2)	Z	35	
2543	8	76	4	84	
2048	7	>100	9	34	
2852	6		26	53	
Z056	5		43	83	
2653	4'6"		45.5	83	
	3				
	2				
	-1				

lllage >

Data Sheet III (Cont.) Recorded Data

Date _	Max	3, 1976	Product Loaded Super Shill RVP=18.2	_
Cargo	Tank No	7C	Loading Rate Vivied from 4520 40 7450 W	61/12r

III. Hydrocarbon Concentration on Vented Vapors

	Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T (°F)
		Empty			<u> </u>	
		55				
		50				
		45				
		40				
		35				
		30		•		
		25				
	2110	20	12	< (84	
Z	2120	16-17	15	<1	79	
sed 70 June : ite	2330	15	85	3	7/	
gives the	2337	路 (3	87	#3	72	
- 77	2343	昼 11	90	5	7.2	
		10	·		Ta	
	2 348	9	>100	75	73	
	2350	8		1.7	74	
	2354	7		20	75	
	2356	6		35	75	<u> </u>
	2466	5		46	75	
nal Ullage -	2461	4'6"		47	75	78
,		3				
		2				
		1				

Data Sheet III (Cont.) Recorded Data

Date May 3, 1976	Product Loaded Siper Shell RUP = 10.2
Cargo Tank No 75	Loading Rate 2750 66//x.c

III. Hydrocarbon Concentration on Vented Vapors

Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T (°F)
	Empty				
	55				
	50				
	45				
	40				
	35				
2212	30	7	`<1:	77	
2225	25	1.1	<[77	
2240	20	14	1	76	
	18				
2255	超15	24	1	75	
2362	題13	25	İ	74	
2313	是山	34	2	74	
•	10				
2315	9	46	2	73	
2317	8	>160	4	73	
2321	7		10	7.3	
2324	6		24	23	
2325.	5		3.7	23	
2327	4'6"		43	73	77
	3			, , = =	
	2				
	-1				

21 June 1976

MEMORANDUM

TO: Distribution

FROM: J. D. Colley

SUBJECT: Trip Report - AMOCO Oil Company, Texas City, Texas May 26-28, 1976

I. Purpose

The purpose of this trip was to measure and record the hydrocarbon emissions from the ballasting of a crude oil tanker and the loading of gasoline onto a tanker at AMOCO Oil Company docks and Marathon Oil Company docks in Texas City, Texas.

II. Place and Date

AMOCO Texas City refinery marine dock No 40, May 27 (crude ballasting), AMOCO dock No. 32, May 28 (gasoline loading), and Marathon dock No. 22, May 28 (gasoline loading).

III. Attendees

AMOCO: Captain Larkin

Captain Park (M/V Ocean Challenger)
Captain Skibba (S.S. AMOCO Virginia)

Bill Bulger, N Y. Office (M/V Ocean Challenger)

Howard Husa, Engineer

Jim Ross

Radian: David Colley

Clint Burklin

EPA: Bill Polglase, ESED

IV. Discussion

A. M/V Ocean Challenger

The M/V Ocean Challenger is a Class A tanker of approximately 53,000 DWT. It is owned by AMOCO Petroleum Corporation, has a Korean crew, and sails under the Liberian flag. Currently the ship is in service between the Caribbean and the AMOCO Texas City refinery. On this particular voyage, the ship had arrived at Dock 40, a dock used exclusively by AMOCO to handle crude oil, on Tuesday May 25, to unload Trinidad (Galeota crude-RVP 2.8) and Essider (Lybian crude-RVP 6.4). The average unloading rate was approximately 14,000 barrels per hour. The tanker had nine center tanks and seven port and starboard wing tanks.

Prior to taking hydrocarbon measurements on the tanker's ballasting operation, a meeting was held with Captain Park and his first mate to discuss the purpose of our visit. Communication was difficult with them, however, we determined that 40 percent of the ship's capacity would be ballasted and we obtained a ballasting diagram showing the final ullage of each tank to be ballasted. From this information a preliminary sampling strategy was decided upon. Data was to be taken on the hydrocarbon concentration profile of as many tanks as possible prior to ballasting. Then the probe would be positioned near the open ullage hatch and the rented vapor concentrations recorded for a selected tank.

At 4:00 a.m. all the crude oil had been discharged from the tanks. We began taking measurements at this time with our MSA Gascope, Model 53. Simultaneous readings were taken by AMOCO using a similar type measuring instrument which was calibrated to read hydrocarbons as percent butane. Their readings were generally lower than our readings since our gascope was calibrated to read in percent methane.

Because of interference with internal structures in certain cargo tanks, we were able to drop the sampling probe to the bottom of only six cargo tanks, before ballasting operations began. Access to each tank was through the 10½ inch diameter ullage gauging opening which was located 40 inches above deck level and atop the tank manhole hatch cover. Measurements recorded from our gascope are presented on data sheets at the end of this report.

Several points worth noting are.

Higher concentrations were observed in tanks 6C and 10C than in the other tanks sampled. This was because 6C had arrived only half full of crude thereby providing a large vapor space above the crude for light hydrocarbons to evaporate into. Also it was reported that the steam coils in the tank were in poor repair and possibly leaking steam. The reason tank 10C had higher than average hydrocarbon concentrations is that strippings from the bottoms of all the other cargo tanks were pumped to this tank and collected before being pumped ashore.

A hydrocarbon concentration versus depth analysis was run on tank 4C at two times which were separated by

several hours. Data taken prior to ballasting on this tank showed a vapor blanket of about 2-3 feet thick ranging in concentration from 6 to 40 percent. After about 5 or 6 hours another test was made. The tank had been ballasted to a 34 foot ullage by then. The measurements indicated that the blanket was now about 6-7 feet thick ranging in concentration from 7 to 36 percent. Several factors could account for this: (1) initial ballast water inlet agitating and dispensing the vapor blanket in the bottom of the tank, (2) evaporation of volatile hydrocarbons from the crude oil heel left in the tank, and (3) vertical diffusion of these vapors into the empty compartment.

Forty percent of the cargo space was ballasted. This is a larger amount than was expected. Various sources estimate the amount of ballast typically taken on at dock for crude tankers to be 20 to 30 percent.

Ship personnel mentioned that the crude cargo tanks are washed with oil (similar to butterworthing with water) to remove the heavy ends (waxes, paraffins, tars, etc.) which stick to the tank walls. More information about this operation is needed since little detail was obtained during the discussion. Hydrocarbon concentrations in a tank "cleaned" in this manner could increase substantially due to this operation.

Ballast water was pumped into each tank at a relatively slow rate. Rough calculations indicate the water was pumped in at 2,000-3,000 barrels per hour.

The M/V Ocean Challenger is classified as a type "A" tanker. For this class of ships the displaced vapors from the cargo tanks can be vented through a manifold system which includes a P/V valve and a flame arrestor at masthead level (approximately 55 feet above deck). All tanks, however, were vented not through this system, but through their ullage measuring hatches during ballasting.

The residual hydrocarbon concentration in the cargo tanks did not appear to be a function of crude RVP.

B. S.S. AMOCO Virginia

This ship is owned by AMOCO Oil Company, has an American crew and sails under the American Flig. The ship is approximately 20,000 DWT and has 27 cargo tanks - 9 center tanks and 9 port and starboard tanks. The Virginia had just returned from a trip to Wilmington, N C. and Savannah, Georgia. The return trip took 4 days. The cargo unloaded at those ports was fuel oil (1, 2, 3, and 9 tanks across) and gasoline (4, 5, 6, 7, and 8 across). Deballasting operations were completed at approximately 2:45 a.m.

Points worth noting include:

A full range of arrival conditions were found in the tanks. Tanks 1, 2, 3 and 4 wings had a less than 1 percent arrival hydrocarbon concentration, tank 5C had a 9 percent concentration, and tanks 7C and 8C had a 20-21 percent concentration. The differences were due to the prior cargo and degree of cleaning each tank had had. Tanks 1, 2, and 3 across had all previously carried a non-volatile product fuel oil. Number 4 port and starboard wing tanks had been gas freed so the crew could enter them for necessary repair work. Tank 5C had carried gasoline on the previous voyage but had been ballasted, vented and washed on the return trip. Tanks 7C and 8C had carried gasoline previously but had been left uncleaned.

The typical loading sequence used to fill three tanks across with the same product was discussed with one of the mates onboard the Virginia. said that all three tanks are brought up roughly at the same level until an ullage of 15 to 20 feet is reached in the center tank. Then flow to it is shut off and the two wing tanks are topped off (filled to their final height). After they are finished, loading is resumed into the center tank until it too is topped off. The mate said this sequence is followed for two reasons. difficult to top off three tanks than two and should any problem arise while topping the wing tanks, flow can be easily diverted into the larger center tank until the problem is worked out.

While talking to the Chief Mate onboard the Virginia, the ballasting of the ship on its return voyage was discussed. He said that the ship is ballasted once at the port that it discharges its cargo, but that it usually dumps this ballast (if over 100 miles from shore) and takes on a fresh ballast. This operation, he explained, cleans the cargo holds and also allows the ship to discharge ballast into port waters rather than return them to the refinery for disposal. This aids the ship in reducing its turnaround time in port since the slop line at most docks can handle only a small discharge rate.

Measurements taken during the loading of the Virginia are presented at the end of this trip report.

V. Conclusions

From observations made during this sampling trip, several conclusions may be drawn.

- (1) Factors which cause higher residual hydrocarbon concentrations in crude oil cargo tanks prior to ballasting are: (a) partially loaded tanks; (b) pumping strippings from the ships tanks into a designated tank prior to final unloading causes higher concentrations in that tank; and (c) washing crude cargo tanks with oil.
- (2) Based on the data taken onboard the M/V Ocean Challenger, the RVP of the crude oil unloaded has no effect on the residual hydrocarbon concentration of the empty tanks.

- (3) Factors which cause higher emission levels for gasoline loading onto a tanker include: (a) prior cargo, (b) extent of cleaning (ballasted once or twice, vented, blown dry, butterworthed, stripped); (c) initial loading rate; (d) product RVP and temperature; (e) ambient temperature; and (f) fill time.
- (4) The hydrocarbon emissions from the loading of gasoline onto a tanker can be substantially reduced by ballasting, washing, and venting cargo tanks on the return voyage.

MEASUREMENTS TAKEN ABOARD

M/V OCEAN CHALLENGER AND

SS AMOCO VIRGINIA

Data Sheet I Survey of Shore-Side Information

Genera		

	Date Min 3	
	Name of vessel	
	Terminal Form Toke	
	Product(s) loaded Mostatel. Counts sing english	1031.25
	•	
Terminal	Information	
	ا م مه سه ن	
	Storage tank number	
	Storage tank size	
	Type of roof Faring Ton-	
	Length of time stored	
	Tank color; age,	
	Storage temperature	
	Pump type	
	Pump size	
	Pump nominal rate	
Ambient C	Conditions	
	Air temperature	بر د راده سود س
	Weather conditions	
Prepared	by:	
-		

Data Sheet II

Survey of Vessel Information

Gener	al Inf	ormation

	Date
	Name of vessel for Challenge
	Type of vessel: ship barge
	Total number of cargo tanks
	Vessel size (DWT) 52 coo D 37
	355,905 332
Prior Carg	o Information
	Prior cargo Traine Lacia France
	Prior cargo RVP 77. 1. (2) - 3.5 and 1 Friends - prince
	Where unloaded
	Date unloaded
	Does cargo tank have stripper lines
Vessel In-	Tra.sit Conditions
vesser III-	TIA. SIL COMMICIONS
	Type cleaning and/or ballasting for each tank
	Open or closed hatches
	Ratings on PV valve,
	Time at sea
Prepared b	y:

Date _			134 27	ــــــــــــــــــــــــــــــــــــ	Product	Loaded	-	
Cargo	Tank	No	· · · · · · · · · · · · · · · · · · ·	.	Loading	Rate -	timels were	circlinesus
						·	Franks Levisis	14,000 bil
I.	Hydr	ocarbo	n Profile Prio					, , , , , , , , , , , , , , , , , , , ,
				,	% LEL		% Gas	
	Bott	Om		_				
	Midd			_				
			1 1 \	_				
	rop	(deck	level)	_			-	
				,				
II.	Vapo	r Blan	kets Depth Hy	Úrscur	-60n I	Profile of	expert tank	
			Tan					ر بربور آن مربور آن مربور آنس م
	•		Depth	~		on empry	-4.2"	ان المراجعة المراجعة المراجعة ا
		Time		% LEL		Vápor T(°F) Liquid T(°F) <u> </u>
			\(\text{C} \)		25	_		- دولار -
			75] c			-
			2.0		2 1			-
			.7		7.5	-		- -
			27		7.5	<u> </u>		_
					11			-
		 -			11			-
								-
								_
					<u> </u>			-
						,		
	В.	At Upp	er Level of Ta	ank 4C	no.	designed to		
		Time	Depth	% I.F.I.	l% Gas	Vapor T(°F) Liquid T(°F)
			5;	/8 BOB	10 CG 5	Tupor IX I	/ J.	<u> </u>
			, - ;		1			- -
			;		,			_
			7, -					-
			3.5					_
					· · · · · ·			-
								- -
								_

Date	N'2, 27			Product				
Cargo	Tan	k No			Loading	Rate de fai	sale from .	ir de sineous
							و لمرا مدس د	
I.	Hyd	rocarbo	n Profile Prio	r to Lo	ading			
			· - · · · · · · · · · · · · · · ·	_	% LEL		% Gas_	
	Bot	t on						
	Mid	dle		_	<u></u>			
		(deck	level)	-				
	106	(40011	10,017	-				
II.	Vap	7F-513a	et barti 4	l droce	4 r 0	Frotile of	emply tan.	É
•						. , , <i>j</i> .	1.1	
	Α.	A COMP	Meizut 2000	nk 4C	بمسكانه	ing Eurasia	<i>``</i>	
		Time	Utraine (ft)	% LEL	1% Gas	Vapor T(°F)	Liquid T(°F)	
			13"		رد (5.			
			? 1."		3 <i>+</i>			bannet was a
			33"		ဒော			37 20/202
			41 "		7+			
			.57.11		110		<u> </u>	
			かこ "			<u> </u>	ļ	
			77"		7			
					<u> </u>			
					<u> </u>			
					ļ			
					<u> </u>	<u> </u>	<u> </u>	
	~							
	В.	AC Upp	er Level of Ta	ank SC	3~1/			
		Time	D:p:~	9 IFI	l % Cas	Vapor T(°F)	lliquid T(°F)	
		11me	, (LL)	/6 LLL	E C	Vapor I(I)	Biquiu I(I)	
			27.2		=			
			577		=			
			(8			
					ļ			
						 		
					 			
							<u> </u>	
						 		
					<u> </u>	 		

Date _		1	111 200		Product	Loaded				
Cargo	Tank	No			Loading	Rate	/	100	- in-	III'IATTAEDIUS
							د) دموه کو	وترا بن .		D 201/113
I.	Hydr	ocarbon	Profile Pri	or to Lo	ading				-	
				_	% LEL			% Gas	_	
	Bott	om		_						
	Midd	le							-	
	Top	(deck l	evel)	_					-	
									-	
II.	Vapo	E Blank	et Depth o	1,6000	مر سری	Popula	of=	ر مغرام اسرجمعرا	/ ۵. پېښتونو	
			the T							
	А. 7							•		
		Time	Ustage (ft)	1-% LEL		Vapor	T(°F)	Liquid	T(°F)	
				 	1-	<u> </u>				
					 				 _	
			, - <u>-</u>							
					 	<u> </u>				
				-}	 					
				+		 				
								·		
				<u> </u>		<u> </u>				
	В.	At Top	televel of	70	3 110	27				
		Time	Ullage (ft)	ि अंग्रहा	i % Cas	l Vanor	ጥ/°ፑነ !	Liquid	T(°F)	
		lime	Ultage (It)	% LEL	% Gas	vapor	1(,)	Elquia	1(1)	
					4					
					٤					
				 	 	ļ				
				 						
					 					
				- 	 	ļ				

Date						Product	Loaded				
Cargo	Tank No					Loading Rate					
I.	Hydr	ocarbo	n Profile	e Prio	or to Lo	ading					
					_	% LEL		% Gas			
	Bott	om			_						
	Midd	lle									
	Top	(deck	level)		_						
II.	Vanc	r Blan	ket Dept	.	1/200	بدئ في معر	Bris of	Smith, Ta	71. Č		
			r Level								
	•		Dreer.					172- 21 m/9p\			
		Time	U C C	(ft)	% LEL		Vapor I(F)	Liquid T(°F)			
			7.13		 	12			This want		
			7.55					•	2.2 42.6		
			.٠-٠٠			7.6					
									70 10 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1		
						<u> </u>			UM - (-)		
						ļ		 	2007 2 (-1 2007 200 100 200 200 200 200 200 200 200 200		
					ļ	ļ		<u> </u>			
						ļ	<u> </u>	<u> </u>	معروا للم اليوم ميس الع		
			ļ		 -	 	 	 	·· · · · · · · · · · · · · · · · · · ·		
			<u> </u>		 	 		 	•		
			<u> </u>		<u> </u>						
	В.	At Upp	er Level	of T	ank						
		Timo	1111200	(F+)	! % 1 E I	19 Cas	Vapor T(°F)	Liquid T(°F)			
		111111	Ullage	(LL)	/6 LLL	% U23	Vapor I(I)	Ciquia I(I)			
											
			·		L						

ESSE		CHI CHL	Libor	2	 		VOYAG	E NO_	-0-		ATE	25th.	1976	
0RT_	Teas ait	y, Tens.			VOYAGE NO DATE 127 25th, 1976									
TANK		PORT				CENTER			1		STARBOA	RD,		
NG.	IMMAGE/ULLAGE	BARRELS /	W	7	IMMAGE/ULLAGE	BARRELS	w	Ŧ	IN NA	0E/ UL LAGE	BARREL	W	T	
J	1-49	2688.1	ESSI	5ÉR			ļ	<u> </u>	د_	L-49		1 G.5º		
2	3-12	2892-4	T1212	10/11	EM	PTY			<u>.</u>	<u>5-23</u>	2867	9 72	ممود	
3	1-50	1690.7	£ 55.	DER	1-49	3471.	ا کی	مقد	1	l - 49	1691.	9 55	الاقوار	
4	1-53	1687.2	TRIN	DAD	1-52		E 53		,	(- 53	1687	2 71811	المرحاد	
5	1-52		77210		5M1					25س	1688.	4 7814	10417	
6	1-49	3383.1	G 551		9-13	1741.	TIZIN	070		-49	5385.	3 656	الم تعر	
7	1-54	3143.0	€ \$\$1°		1-49	3471.	71210	CA CO	1	-49	3154.	4 556	:>512	
8	n 4				1-43	3485	ادع تي ا	PIR						
9	n cn				1-14	3/83.2	وه ي ا د	10312		,				
10					1-09	3557.	TRIN	10213						
11		,	erd	,1		1								
12			F	211	- :1:5	1/25)	, .		ا ئ ثون				
						OMPUTATI		,-102.	~ / /					
PR	DDUCT	TANKS		ROSS	TEMP	OŘR. E	NET	s	\.P1	BARR PER		NET T	ONS	
													<u> </u>	
					1.					-				
· · · · · · · · · · · · · · · · · · ·	0	RAFT	·											
CAR	10: s	TART	FINI	\$ H	}		(AF	DEA TER LO			TERMINA DEFO	TION RE DISCH	ARGE)	
Forwar	0						Core							
Aft							Fuel					 		
Mean					1		Wat			+				
HOG/SA					f		Stor							
HOG/SAC					1			wable	Dwt					
Salini F. W. A	ty							/Shor						
MSW					S									

Note: Hog/Sag Allowance (inches) = 2/3 Hog/Sag (inches)
For Hog, Allowance is subtracted from Draft
For Sag Allowance is added to Draft

VI-28

_____ OFFICER_

Ballast Patrern (ullage level in meters)

40% of ships capacity bollasted.

<u>Data Sheet I</u> <u>Survey of Shore-Side Information</u>

General Information

Date
Name of vessel Spirito Vistorial
Terminal Aprece - Term Gi
Product(s) loaded
•
Terminal Information
Storage tank number
Storage tank size
Type of roof
Length of time stored
Tank color; age,,
Storage temperature
Pump type
Pump size
Pump nominal rate
Ambient Conditions
Air temperature 4. /// // // //
Air temperature G. 137
Prepared by:

Data Sheet II

Survey of Vessel Information

Genera	al	Information

1	Date 5/25/7'5
1	Name of vessel Virginia (firson)
,	Type of vessel: ship barge
•	Total number of cargo tanks 27
1	Vessel size (DWT) 75 DUT
Prior Carg	o Information
;	Prior cargo <u>Con legalina ledgeran</u>
	Prior cargo RVP
:	Where unloaded it ministen little and frame frame
•	Date unloaded
	Does cargo tank have stripper lines
Vessel In-	Transit Conditions
	Type cleaning and/or ballasting for each tank
	Open or closed hatches
	Ratings on PV valve,
	Time at sea
Prepared b	y:

	Tank No			roduct	Loaded) <u>Estindeti</u> Sono	BELL
		n Profile Prio				·	
	Bottom Middle Top (deck)	level)	- -	LEL		% Gas O C	
II.		r Level.of Tan	% LEL	%-Gas F -> C 7.	Vapor T(°F)	Liquid T(°F)	Proceeding 200 in Suitable
		er Level of Ta		% Gas	Vapor T(°F)	Liquid T(°F)	3.7.

ī	Date	1	1. 2 .2		Product	: Loaded) مردا در و در استران می از استر	4.2F3_
		Tank No						
:	ı.	Hydrocarbo	n Profile Pric	or to Lo	ading			
				_	% LEL		% Gas	
		Bottom		_				
		Middle		_				
		Top (deck	level)	-				
1	ιι.	Vapor Blank	ket Depth					
	•	A. At Lowe	r Level of Ta	<u>nk</u>				Proc ni.
		Time	المنافقة (ft) Ullage (ft)	% LEL	% Gas	; Vapor T(°F)	; Liquid T(°F)	ر در
_		6:5	43		177			1/2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2
Emper	•	212	+3 +3	3.5	2	 	 	3 *
4141		6:15	+3	3.5	2			151
					 	 	 	
					,			
							 	
								
						<u> </u>		
		B. At Upp	er Level of Ta	ank				
		Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)	Proce animate about high high his
		9:10	12		-27	7835		15315 (1) 31 "
		9:13	1, 16.7		35	!		3/3/
		2:.4	1.7		3	*		41
leaving o	W							
in orugin		9:27	12		+9	91 F	≈ , 3 ° ;;	11
-		3.3.			49			21
			7/37		7	 		₹' •
		9.3			9			1/ 2/ 3:
		.: - :			i,		L	• '

Data Sheet III Recorded Data

. ~ = ~

Date _			1. :=	·		Product	Loaded		, ~ £ ~
Cargo	Tank	No	4P			Loading		5.5.0	
I.	Hvdr	ccarbor	n Profile	e Pric	or to Lo	ading			
	<u>7</u>		<u> </u>			% LEL		% Gas	
	Pote				_	-			
	Bott				-				
	Midd	lle			_				
	Top	(deck 1	level)		_				
II.	Vapo	or Blank	cet Depth	<u>1</u>					
	A. :	At Lowe	r Level	or Ta	<u>nk</u>			,	Abele ruften
		Time	Ullage	(ft)	% -LEL	\% Gas	Vapor T(°F)	Liquid T(°F)	Acces wifeen
		5:15	39'		-	7	方: 5F		1'
		5:35	371 331			1	1		
		2:35				2	7		
		<u>5:35</u>	ت		1-	1	77.15		. – –
						 	<u> </u>	 	
						 		 	,
			_						•
				·		†			,
									•
			<u> </u>			ļ		ļ	
					L	<u> </u>			•
	В.	At Upp	er Level	of Ta	ank				
									For hair
		Time		(ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)	42512 21911
		7:35				12%	71		. / .
		7.7.				21%	7/	 	3
						7-1-			
						 			•
							_		• _
								_	-
									-
								ļ	-
						 		 	-
				·		 			-

Date Cargo	/// Tank	No _	<u>\$</u> 50			Product Loading	Loaded _ Rate		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
I.	Hydr	ocarbo	n Profile	e Prio	or to Lo	ading				
	Bott Midd Top		level)		- - -	<u>% LEL</u>			% Gas 9 % 9 %	
II.			ket Depti	<u>h</u>	_					
		Time	r Level Ullage サビスシー 3公	(ft)	% LEL	% Gas	Vapor T(72-72-72-72-72-72-72-72-72-72-72-72-72-7	°F)	Liquid T(°F)	Prote height Lione suffice 2' 2'
		Time	Ullage	(ft)	% LEL	% Gas	Vapor T((°F)	Liquid T(°F)	<u>)</u> - - - - -

Data Sheet III Recorded Data

Cargo Tank No	_			23/76			Loaded			
	Cargo	Tani	C NO			Loading	Kate	7000	10-12-64	<u>~</u>
Bottom	I.	Hydi	rocarbor	n Profile Pri	or to L	oading				
Middle Top (deck level) 7/ 11. Vapor Blanket Depth A. At Lower Level of Tank Time Ullage (ft) X LEL X Gas Vapor T(°F) Liquid T(°F) 2 2 4 3 3 2 4 1/2 2 2 3 + 1 2 5 1/2 2 3 2 2 1/2 2 1/2 3 2 2 1/2 2 1/2 3 2 2 1/2 2 1/2 3 2 2 1/2 2 1/2 3 2 2 1/2 2 1/2 3 3 3 2 4 5 3 1/2 2 1/2 3 3 3 4 5 3 1/2 3 3 3 3 4 5 3 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 3 3 4 5 7 1/2 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					•	% LEL		% Gas		
Time Ullage (ft) X LEL X Gas Vapor T(°F) Liquid T(°F) Z LEL X Gas Vapor T(°F) Liquid T(°F) Liquid T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas X Let X Gas X Let X Gas X Let X Gas X Let X Let X Gas X Let X Let		Bott	om		_			<u> </u>		
Time Ullage (ft) X LEL X Gas Vapor T(°F) Liquid T(°F) Z LEL X Gas Vapor T(°F) Liquid T(°F) Liquid T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas Vapor T(°F) Z LEL X Gas X Let X Gas X Let X Gas X Let X Gas X Let X Let X Gas X Let X Let		Midd	ile					2/		
A. At Lower Level of Tank Time Ullage (ft)		Тор	(deck 1	level)						
A. At Lower Level of Tank Time Ullage (ft) % LEL % Gas Vapor T(°F) Liquid T(°F) 2:45								•		
Time Ullage (ft) % LEL % Gas Vapor T(°F) Liquid T(°F) 2:15	II.	Vapo	or Blank	et Depth				an	no - E	2 4,4
B. At Upper Level of Tank Time Ullage (ft) Z LEL Z Gas Vapor T(°F) Liquid T(°F) 12 12 12 12 12 12 12		Α.	At Lowe	r Level of Ta	<u>ank</u>					
B. At Upper Level of Tank Time Ullage (ft) Z LEL Z Gas Vapor T(°F) Liquid T(°F) 12 12 12 12 12 12 12			Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	;Liquid 1	r(°F)	
2 2 4 2 1 2 1 2 1 2 2 2 2								 		
1					+7					- · .
2			2/22		 					
2/52 37 26 1/9 3/6 3/6 3/7 29 3/8					 		Ţ 			المراجع
2.52 37 2.6 1/2 3.6 3.6 3.7 1/2 3.3 3.6 3.7 1/2 3.7 1/2 3.7			2, 1, -		+					
B. At Upper Level of Tank Time Ullage (ft)			7.53							
3.65 3 3 3 37 108 3.77 5 43 1/8 B. At Upper Level of Tank Time Ullage (ft) % LEL % Cas Vapor T(°F) Liquid T(°F) 4.53 17.67 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					 			 		سه ۱۹
B. At Upper Level of Tank Time Ullage (ft)				: -	 					
B. At Upper Level of Tank Time Ullage (ft) 7 LEL 7 Gas Vapor T(°F) Liquid T(°F)		,		3 %	†			- 		
Time Ullage (ft) % LEL % Gas Vapor T(°F) Liquid T(°F)		•	= 1.17							
7:25 17'6" 22 57' 7:25 7:25 7:25 7:25 7:25 7:25 7:25 7:25		В.	At Upp	er Level of 1	ank		L.,	-, I,		
7:05 /			Time	Ullage (ft)	7 LEL	% Gas	Vapor T(°F)	Liquid	r(°F)	
7/05 / 2 2 2 2 2 2 2 2			4.53	17.6.	 	12=	> 7 -			
				17.	 	+:				
2/2			7.23	1:	 	 ;	227			
207	ساريش برائد		71/1		 	13		- 		1, 15 1110
207	· - ,•		=======================================		 		3 -			
2.7 C2.2 C2.2 C2.2 C2.2 C2.2 C2.2 C2.2 C					+	7 7	-,-			
20 CO 620	* 14				 	1 ::				
20 See See See See See See See See See Se						 		 		
			11 4 4		<u> </u>	2.1				in the second
					 	37		1		
6:10			/: ~			7 :	630			
6110						, , ,	66			
		,	6:10	~		· · · · ·	*			

VI-36

Date _		R/2	1, 35			Product	Loaded	i	2	1.00	
Cargo	Tank	No	72			Loading	Rate			1.00	
I.	Hydr	ocarbon	n Profile	Pric							
					_	% LEL			% Gas	_	
	Bott	om			_				24	_	
	Midd	lle			_				<u> </u>		
	Top	(deck	level)		_				<u></u>	_	
II.	Vapo	r Blank	ket Depth	<u>l</u>							
	A. At Lower Level of Tank										
		Time	Ullage	(ft)	% LEL	% Gas	Vapor	T(^F)	Liquid	T(°F)	
						 			 		
									 		
											
					L	1	!		<u> </u>		
	В.	At IInn	er Level	of T	ank						
	٥.										
		Time	Ullage	(ft)	% LEL	% Gas	Vapor	T(°F)	Liquid	<u>T(°F)</u>	
											
		-						· · · · · ·			
			1								
						-					
						T			r		

Up coming Trip

Looked at Homeco

A - Amoro El surcedo

B - imoro Jupa Fleman

C - Empry for Balliar

Loaded at Marathon

D - Armsco 91 unhadia

E - leaded Fremium

F - Direct

Amoco Super Pirmium 11.1
A-91
Regular
?

Previous Trip

	1	
A,x	4,x	AX
A,×	z A,X	<i>4</i> ,×
A,×	3 A,X	4,X
€,×	+ ×,€,s	€.`X
€,×	EX	€,⊀
F.X	EX	F,×
Y, D, S	, C,y	y,D,S
C,y	y,c,s	C. Y
B,x	₹ B,x	B,X

A . R.R. Diese!

B - Diesel

C - Amcco Super Premium

D - Amoco ?: unleaded

E - Regular - house brancl

F - Ballast during trip

S - Split unleadings =50% delivered to each port

X washed & verified.
Y not washed

SAMPLING TRIP REPORT

Gasoline Loading - Exxon's Port Everglades

On 3 June 1976 David Colley and Clint Burklin visited the Exxon port facilities in Baytown, Texas for the purpose of measuring hydrocarbon emissions during the loading of Exxon's ocean barge; the Port Everglades. The Port Everglades is a barge in that it is pushed by a detachable tugboat, however it is as large as many tankers. Its tanks have 43 ft ullages, and the barge's size is 30,000 DWT

The Port Everglades had just returned from a delivery of motor gasoline to Tampa, Florida. Tanks 1 center, 3 port, and 3 starboard were ballasted on the return voyage. The return voyage took 4 to 5 days. None of the empty cargo tanks had been cleaned. Because of limited crew availability, tank cleaning and vapor freeing is not a standard practice on ocean barges.

Products were loaded onto the Port Everglades in much the same manner as tanker loadings. Ballast water was completely discharged prior to taking on products. The ship to shore connection was made with 8"-10" rubber hoses. Three products were loaded simultaneously at individual pumping rates of 10,000 bbl/hr.

The Port Everglades is equipped with automatic ullage gauges, all of which were in good working condition. Each gauge window was equipped with an internal windshield-wiper for removing condensate. These ullage gauges worked well, and were used by the crew for monitoring tank levels. However, each tank was topped of visually by sighting through the ullage caps.

The sampling data taken by Mr. Colley and Mr. Burklin are presented on the following data sheets.

Data Sheet I Survey of Shore-Side Information

General Information

Name of vessel Exxon Port Everglades Terminal Exxon Baytown Refinery Docks	
Name of vessel Exxon Port Everglades	
Terminal Exxon Baytown Refrage Docks	
Product(s) loaded Exxon Extra, Unleased, and Regular	Gasoline
Terminal Information	
Storage tank number $\#8/8$, $8/6$, $73/$	
Storage tank size	
Type of roof	
Length of time stored	
Tank color; age,	
Storage temperature	
Pump type	
Pump size	
Pump nominal rate 10,000 bb/hr wax per pump	
Ambient Conditions	
Weather conditions Windy 10-15 mph	
Prepared by: David Colley	

Data Sheet II

Survey of Vessel Information

General	Information

Date June 3, 1976	
Name of vessel Exxon Port Everglades	
Type of vessel: -ship integrated barge/tow	
Total number of cargo tanks 12	
Vessel size (DWT) 30,000	
,	
Prior Cargo Information	
	,
Prior cargo Exxon Reguldo, Extra, sul unlesded brasses Prior cargo RVP Where unloaded Tampa, Florida Date unloaded Does cargo tank have stripper lines yes	ine
Prior cargo RVP	
Where unloaded Tampa, Flovida	
Date unloaded	
Does cargo tank have stripper lines <u>VES</u>	
/	
Vessel In-Transit Conditions	
Type cleaning and/or ballasting for each tank	
ballisted touts 10 and 3 wings Open or closed hatches	
Open or closed hatches/	
Ratings on PV valve,	
Time at sea	
Prepared by: Danid Lolley	

Date	ate _	June	3 .976		Product Loaded							
Reading 5 taken 3-4 hrs after dikallocking Hydrocarbon Profile Prior to Loading * LEL	argo T	Tank No	<i></i>		Loading Rate							
<pre></pre>							ile ila de un					
<pre></pre>	. F	Hydrocarbo	n Profile Pric	r to Lo	ading	~ , a , pac ~	was ring					
Bottom Middle Top (deck level)												
Middle Top (deck level)	r	Bottom			<u> </u>							
Top (deck level)												
				_								
	I	Top (deck)	level)									
						•						
II. Vapor Blanket Death Hydrocarbon Profile Prior to Leading	ı. y	Vapor Blanker Death Hydrocarbon Profile Prior to Leading										
√	4											
The Lower Level of Tunk 10		A. At Lower Level of Tank Tank IC										
Time Ullage (ft) % LEL % Gas Vapor T(°F) Liquid T(°F)		Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)					
5 6			.5	ļ								
15 6			15				 					
22'16" 12			1			 	 					
25 14 27'6" 27				<u> </u>		 						
$\frac{276''}{30}$						 						
35 35				ļ		}						
44'3" 35			(14/3"									
						 						
					 							
· ·		_ 4 .										
	-			. —	í , c	•						
B. At Upper Level of Tank Is	1	At Upp	er Level of To	ank la	nk (2						
Time Ullage (ft) % LEL % Gas Vapor T(°F) Liquid T(°F)		Time	Ullage (fr)	% J.F1.	l % Gas	Vapor T(°F)	Llaquid T(°F)					
5 9			5	70 202	9	1000-2007	121422 1 1 1 1					
10		~	10		4							
20 9					9							
30 10			30		10							
40 //					11							
43			43		11							
				1								
						 	 					
							 					

Date _		une.	3 1976		Product	Loaded				
Cargo	Tank	No	,		Loading Rate					
			Reading	5 Take	n 3-	4 hrs	after	deballasting		
I.	Hydr	ocarbo	n Profile Pric	or to Lo	ading	- Tán	k IP	•		
	Bottom #43				% LEL			% Gas		
	Bott	om	' .9 4	3 <u> </u>	12					
	Midd	le	25		11					
	Тор	(deck	level) 45		9					
II.	Vapo	r Blan	ket Depth	ydroew	مرح بدوط	efile	PAISE	to Loading		
	A. <u>A</u>	At Lowe	r Level of Ta	mk ⊤a	Tank 2C					
		Time	Ullage (ft)	2 LEL	% Gas_	Vapor	T("F)	Liquid T(°F)		
			5		21					
			15		21					
	,		30 43		22	 				
					100	 				
										
	,				 	 				
						 	·			
	в.	At Upp	er Level of T	ank Ta	ınk Z	2P				
		Time	Ullage (ft)	% LEL	% Gas	Vapor	T(°F)	Liquid T(°F)		
			.5		21					
			43		22					
			——————————————————————————————————————							
										
										
						 				
										

Date _	Tue 3	,1976		Product	Loaded			
	Tank No							
	I	Readings to	ikin 3-	4 hrs	after defeall	asticus		
I.	Hydrocarbo	n Profile Prio	r to Lo	ading	Tank 3C	1		
				4 1 FT		% Gas		
	Bottom	11 luge 43 35	<i>→</i>	100				
	Middle	35	_ ح	100		<u> </u>		
		level) 5		O C				
			<u> </u>	<u> </u>				
TT.	Vacor Blan	ket Depth Hy	linecarb	on Dog	file Prim 4	to Leadin		
	A- At Lowe	er Level of Ta	nk Tai	nk 31	つ			
	Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)		
			51	2				
		25	58	2				
	· _	35	100	4	<u> </u>			
			<u> </u>	11		1		
	-	42	7100	12	 			
		 				<u> </u>		
				 				
					,			
					<u> </u>			
	B. At Uno	er Level of L	mk Ta	nk 3	5			
	_Time	Ullage (ft)		% Gas	Vapor T(°F)	Liquid T(°F)		
		7.0	30	<u></u>				
		30 35 42	>100	3				
		35	7100	7				
		- 4	~ (() ()					
	 -	<u> </u>						

				<u> </u>				

Date	June	3, 1976		Product	Loaded	
Cargo	Tank No	J		Loading	Rate	
0-180		Readings	taken	3-4	hrs after	Liballastray
I.	Hydrocarbon	n Profile Prio	r to Lo	ading	- Tank 4C	/
		lillage ([% LEL		% Gas
	Bottom	42	_			20
	Middle	25				20_
	Top (deck)	level) 5				20
II.	Vapor Blan	ker Depth H	the ear	bon P.	eofile Pric	or to Loading
-		r Level of Ta				·
	Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)
		41		732		
		40		32	<u> </u>	
		35 30		トラス	<u> </u>	
		2.5		27		
		20		5 2		
		10	50			
		<u></u>		· · · · · · · · · · · · · · · · · · ·		
	Dr. A. L. II			6/10	>	
	b. At opp	er Level of Ta	mk lau	ck 41		
	_Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T(°F)
		41		41		
		35		38 36		
		25	·	34		
		2.C 15 1C		15		
		1 C		10	 	
		7		6		

		4						1	
r	Date (Tune 3.1	976 1C		Product	Loaded Exx	con Re	rular	
	- 'arao'	Fank No	1.0		Loading	Para aliny	. 10 00	11/12	1/1
,	Jargo				LOGUINS	177 m	A LLy Co	0 1717	17 45
1	I. <u>j</u>	Hydrocarbon	n Profile Prio	r to Lo	ading				
					% LEL		% Gas	_	
	1	Bottom					35		
		Middle		_				_	
			>	_					
		Top (deck :	level)	_			(c	_	
1	II. y	Vapor Blank	ket Depth						
				_		11 11	1		
	4	A. At Lowe	r Level of Ta	nk —	- Far	t initial 1	cad -		Broke
		Time		l % LEL	l % Gas	Vapor T(°F)	Liquid	T(°F)	Prolie Height Augue
		111110	Ollage (10)	<u> </u>	18 GES		33,030		Lique
		CEIT	42		32	93 83			12'
		8503	40		35	83			
		cc33	39		35	8.2	 -		9
		6038 6042	33° 37		35	81			1098765
		00 49	36		35	80			6
		r @ 55	35		35	30			š~
		0181	34		36_	87			4
		5166	33		77	80	ļ		3
		<u>6112</u> C117	32		45' 5"5"	90 79	<u> </u>		ے
			31	i	1.3.2		<u> </u>		1
		B. Aî Upp	er Level of Ta	<u>ank</u>					.
		Time	111200 (ft)	7 IFI	l % Cae	Vapor T(°F)	Liquid	T(°F)	Prohe Ht. Above Liquid
		0210	22 22	A D.D.D.	12	1402 1(17	Diquid		MIT, NO DO DE LIGHTER
~ ;	JIL	C230	19		14				
5ku	ctore_	> 0245	18		14				
Shu	st off	6347			34				
Shu Shu gravitated I of I. quid that to correct imp	164	-> USY4	13		77		 		
of I mid int	¢ IP	(500	1 (0	 	56				
to correct im	preper li	4 (~€				
	 /)			42 36 35				
Į	vo Flou wto Fan	ĭ.]			36		ļ- -		
11	nto Ha	n /		ļ	35_		ļ		

	Hydr Bott Midd	No	Profile		r to Lo		Loaded Race	18,	% Gas	·	<u>~</u>	
II.	A. 2			of Tar (ft)	_	% Gas	Vapor 7 S		Liquid	T(°F)	Probe 4+ above 1'4 sur 6 5 4 3 2	生
	B.	At Upp	er Level			% Cas	Vapor	T(°F)	Liquid	T(°F)		

Data Sheet III Recorded Data

Date _ Cargo	Inc. 4, 197 Tank No 3P	<u>6</u>	Product Loa Loading Rat	ded Eccon Universial
I.	Hydrocarbon Profil	e Prior to Lo	pading	
	<i>5</i> . <i>1</i>	(ye (ft) -	% LEL	% Gas
	Borrom	42	> · C <u>@</u>	12
	Middle	25	23	
	Top (deck level)	5	51	

II. Vapor Blanket Depth

A. At Lower Level of Tank

Time	Ullage	(ft)	%	LEL	1 %	Gas	Vapor	T(°F)	Liquid	T(°F)
					 		1		 	
	<u>' </u>				 		<u> </u>		<u> </u>	
					 		 		<u> </u>	
			- -		┼─		 		<u> </u>	
									İ.	
					-				 	
	<u> </u>				<u> </u> 		1		:	

B. At Upper Level of Tank

Time	Ullage (ft)	% LEL	% Cas	Vapor T(°F)	Liquid T(°F)
5132	19		4	78	
C135	18		4		
C(35)	17		į.		
6142	16		9		
C145	15		19		
0.47	14		31		
€149	13		4 (5		
C152	2		56	,	
5154	1		(c Z	7	
-					
		\			

Probe

H+. abere 1. aunci

?
?
?
?
!5

Data Sheet III (Cont.) Recorded Data

Date	ME	4 1976	Product	Loaded	Exxon	Unlested
Cargo Tanl	c No _	<i>'38</i>	Loading	Rate _		

III. Hydrocarbon Concentration on Vented Vapors

Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T (°F)
	Empty				
	55				
	50				
	45				
	40				
	35	<u> </u>	<u></u>		
	30.				
£250	图 16	50	2	-	
<u>6254</u>	28 15	54	2		
EZ55	理 14	106	2		
0257	B 13	2100	4		
0380	连 12		6		
c 303	夏 / i	ļ	3		
E 3 E 5	10	<u> </u>	12		
<u>6367</u>	9	ļ <u>-</u>	21		
0310	8	ļ	47		
€ 312	7	 	49		
8 315	6	-	51		
	. 5	<u> </u>	ļ		
	4	 	ļ	·	
	3	<u> </u>	ļ		
	2	ļ	ļ		
	11		<u> </u>		<u> </u>

SAMPLING TRIP REPORT

Gasoline Loading - Exxon Barge No. 119

On 15 June 1976 David Colley and Clint Burklin visited the Exxon port facilities in Baytown, Texas for the purpose of measuring hydrocarbon emissions from the loading of gasoline onto barges.

The Exxon Barge No. 119 is a typical product barge with 6 cargo tanks 12 ft. deep. At the time, E.B. 119 was in dedicated service delivering gasoline to facilities along the Houston Ship Channel. For these gasoline loading tests, the E.B. 119 had returned from unloading gasoline just two hours previously. The short elapse time between unloading and loading operations for EB-119 have potentially lowered its loading emissions.

The sampling data taken by Mr Colley and Mr. Burklin are presented on the following data sheets.

<u>Data Sheet I</u> <u>Survey of Shore-Side Information</u>

General Information

Date June 15, 1976
Name of vessel Exxon Bange No 119
Terminal Exxon Barton, Refinery Docks
Name of vessel <u>Exxon Baye 1'c 119</u> Terminal <u>Exxon Baylana</u> Refinery Docks Product(s) loaded
Terminal Information
Storage tank number
Storage tank size
Type of roof
Length of time stored
Tank color; age
Storage temperature
Pump type
Pump size
Pump nominal rate
Ambient Conditions
Air temperature 80°F
Weather conditions Party cloudy, 10-17 mph wind
(/ ' / '
$r \sim 1$
Prepared by: David Colley
,

Data Sheet II

Survey of Vessel Information

General	L Inf	ormat	ion

	Date
	Name of vessel Exxon Bank No. 119
	Name of vessel Ecron Brane No. 119 Type of vessel: ship barge
	Total number of cargo tanks 6 max hlige = 12
	Vessel size (DWT)
Prior Ca	rgo Information
	Prior cargo Motor Gaseline
	Prior cargo RVP
	Prior cargo RVP Where unloaded Houston, Texas
	Date unloaded June 14, 1976
	Does cargo tank have stripper lines
Vessel I	n-Transit Conditions
	Type cleaning and/or ballasting for each tank
	no cleaning
	Open or closed hatches
	Ratings on PV valve,
	Time at sea 2 h sur 3
	The state of the s
Prenared	by: David Calley
rrepared	or
	/

Date _	· 	June	15,1976		Product Loaded					
			10		Loading Rate					
I.	Hydr	ocarbo	n Profile Prio	or to Lo	ading					
				_	% LEL			% Gas	_	
	Bott	om	12 'ullage	_				_4_	<u>-</u>	
	Midd	le	•	_						
	Top	(deck :	level)	_					_	
II.	Vapo	r Blan	ket Depth							
	Α.	At Lowe	r Level of Ta	<u>nk</u>						
		Time	Ullage (ft)	% LEL	% Gas	Vapor	T(°F)	Liquid	T(°F)	
				 				<u> </u>		
	В.	At Upp	er Level of T	ank						
		Time	Ullage (ft)	% LEL	% Gas	Vapor	T(°F)	Liqui	т(°F)	
										
				<u> </u>			 			
								 		
			 	 	 	 				

Data Sheet III (Cont.) Recorded Data

Date	Product Loaded
Cargo Tank No ZP	Loading Rate

III. Hydrocarbon Concentration on Vented Vapors

Time	Ullage (ft)	% LEL	% Gas	Vapor T(°F)	Liquid T (°F)
	Empty				
	55				
	50				
	45				
	40				
	35		<u></u>		
	30		<u> </u>		<u> </u>
	25				
	20				
	18		<u> </u>		
	16		<u> </u>		
	14	}		<u></u>	
6305	每11	>150	6	81	
0317	10	>166	8	81	
0314	9	<u></u>	10	81	
£328.	8		15	8 C	
0337	7		23	80	
0345	6		34	80	
0350	5		42	80	
0355	4		50	80	
0400	3		53	80	74
	2				
_	1		1		

APPENDIX VII

INDEPENDENT ANALYSIS OF VAPOR RECOVERY SYSTEM COSTS

INDEPENDENT ANALYSIS OF VAPOR CONTROL SYSTEM COSTS

1.0 INTRODUCTION

In the course of conducting this program to investigate the control of hydrocarbon emissions from marine terminal operations it has become evident that cost is a major issue in evaluating the feasibility of available emission control technology. Vendor and oil company cost estimates differ significantly on the cost to install a safe reliable vapor control system. In an attempt to place these wide cost ranges in perspective, the EPA has contracted Radian to conduct an independent analysis of vapor control system cost data.

Radian's approach to the cost analysis was to prepare a detailed design of each of the marine transfer vapor control systems likely to be installed in the Houston-Galveston area, and to have these designs costed by a cost estimating consultant experienced with the installation of hydrocarbon processing equipment in the Houston-Galveston area.

The two vapor control systems most likely to be installed in the Houston-Galveston area are the refrigeration system and the absorption system. The refrigeration system recovers by condensation at cryogenic temperatures. The absorption system recovers hydrocarbons from marine transfer vapors by absorption into a lean oil. This lean oil is normally a refinery product stream.

Because several sizes, types, and arrangements of equipment may be used to construct vapor control systems, the systems to be costed in this study were separated into basic components or modules which were costed individually. These modules represented the most common sizes and processing configurations expected to be

encountered in the Houston-Galveston area. Radian was able to investigate the economic impact of size, equipment selection, and processing configuration by investigating the individual contribution of each module to the total system cost.

The engineering-construction firm selected by Radian Corporation to estimate the cost of marine vapor control systems was Ref-Chem Corporation of Odessa, Texas. Ref-Chem Corporation is widely experienced in the engineering, construction, and maintenance of chemical and petroleum processing units in the Texas Gulf Coast area.

Sections 2.0 and 3.0 of this appendix discuss the design and cost results of a refrigeration vapor recovery system and of an absorption vapor recovery system.

2.0 REFRIGERATION SYSTEMS

2.1 Cost Basis

This section presents the refrigeration unit design which provided the basis for the cost estimates generated by Ref-Chem Corporation.

Refrigeration vapor recovery systems recover hydrocarbons from marine loading vapors by condensation at cryogenic temperatures and at atmospheric pressure. Figure 2.1-1 presents the flow diagram of a typical refrigeration vapor recovery system. For simplification the refrigeration vapor recovery system has been divided into six distinct components termed modules. A consists of the equipment required to transfer hydrocarbon vapors collected onboard marine vessels to the shoreside vapor recovery This ship-to-shore connection is normally effected by the use of either a large diameter hose or by a marine loading arm. Module B consists of the vapor collection lines which convey hydrocarbon vapors from the ship-to-shore connector to the vapor condenser unit. Module C is the vapor condenser. In the vapor condenser, hydrocarbons and moisture are condensed from the hydrocarbon vapors yielding a purified air stream containing less than 5 volume percent hydrocarbons. Recovered hydrocarbons and water are returned to the refinery. The lines conveying refrigerant brines and fluids from the refrigeration unit to the condenser compose Module D. Module E is the package refrigeration unit which provides the refrigeration capacity for the condensers. Module F comprises all of the utilities required to operate the vapor recovery system.

Each of these vapor recovery system modules has also been separated into several cost cases which address the cost of

FIGURE 2.1-1 REFRIGERATION VAPOR RECOVERY SYSTEM

different module sizes or module configurations. These cost cases are characterized by the following module discussions.

Module A: Ship to Shore Connection

Module A consists of the equipment required to transfer hydrocarbon vapors collected onboard marine vessels to shoreside vapor recovery units. In cost cases Al, A2, and A3, a 50 ft. long flexible (yet not collapsible) hose is used for the ship-to-shore connection. The hose is constructed of a gasoline vapor resistant material and terminates on each end with a standard SCH 40 flange. The hoses for cost cases Al, A2, and A3 are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively. The cost of an air driven hoist for hose handling is also included in each of these three cost cases.

Cost cases A4, A5, and A6 are the cases employing a hydraulic-actuated loading arm to achieve the ship-to-shore connection. Loading arms for the three cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph respectively. The cost cases include the costs associated with construction on crowded existing marine loading docks

Module B: Vapor Collection Line

Module B investigates the cost of the equipment required to convey hydrocarbon vapors from the ship-to-shore connector (Module A) to the vapor recovery unit (Module C). Cost cases Bl, B2, and B3 address the cost of installing short runs of vapor collection piping from the ship-to-shore collector to dock mounted vapor condensers. Pipe fittings, pressure alarms, and safety equipment are included in the cost. The three cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

Cost cases B4, B5, and B6 address the cost of installing 1000' runs of vapor collection piping from the ship-to-shore connector to centrally-located, shared vapor condensing units. Pipe fittings, pressure alarms, safety equipment, and condensate drains are included in the cost. The three cost cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph respectively.

Module C. Vapor Condensing Units

Cost case C1, C2, and C3 investigate the cost of installing dock mounted vapor condensing units for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively. Costs include purchase, transportation, and mounting of the units on crowded existing docks. It was assumed that a barge mounted crane was needed for the construction work.

Cost cases C4, C5, and C6 investigate the cost of installing centrally-located, shared condensing units located inland from the docks. These cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph respectively.

Module D. Refrigeration Lines

Module D investigates the cost of installing refrigerant and defrost fluid piping between the refrigeration unit and the condensation units. The piping materials were selected to withstand exposure to methylene chloride, glycol-water, and trichloroethylene fluids at temperatures down to -100°F. Pipe insulation specifications met the requirements provided by the refrigeration unit manufacturer. Two additional pipelines were included in the Module D design for conveying condensed water from the condenser to the refinery wastewater systems and for conveying condensed

hydrocarbons from the condenser to refinery product storage tanks. Cost case Dl represents the cost case for centrally-located, shared condensers and specifies pipe lengths of 100 ft.

Module E: Refrigeration Units

Module E investigates the cost of purchasing and installing the refrigeration units which supply the cooling capacity for the vapor condensers. Costs included in Module E are purchase and transportation of the refrigeration units, preparation of the refrigeration unit site, removal of the units from transport trucks to their foundation, and connection of utilities and piping to the units. The refrigeration unit sites consist of curbed concrete foundations, sidewalks, lighting, fire water supply, and spill drains. Cost cases El, E2, and E3 represent refrigeration units sized to control ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph respectively.

Module F: Utilities

Module F comprises several miscellaneous utility items which will be necessary in the installation of a refrigeration vapor recovery system. Cost case Fl addresses the cost required to install sumps, drains, and sewers for the removal of spills, runoff, and wastewater. Process water lines are included in this cost case. The length of the utility lines in Cost case Fl are 3000 ft.

Cost case F2 addresses the cost for expanding the local electrical substation capacity by 2 megawatts. The voltage reduction was assumed to be from 12.8 kv down to 480 v.

2.2 Cost Estimates

Table 2.2-1 presents the cost estimates generated by Radian Corporation for the installation of a completely operable refrigeration vapor recovery system in the Houston-Galveston area. These cost estimates are based on the refrigeration vapor recovery system design basis developed by Radian Corporation which was outlined in Section 2.1. In developing the cost estimates for each cost case, Ref-Chem Corporation considered four cost centers. These cost centers were.

- · Direct costs
- · Indirect costs
- · Contingency allowances
- · Contractor fee for overhead and profit

Direct costs include expenditures for labor, materials, equipment and subcontractors used in constructing the various modules. Indirect costs include equipment rentals, consumable supplies, temporary facilities, support labor, and move in - move out. A contingency cost was added to the estimate to provide allowances for cost items not considered elsewhere.

A major cost item not included in the cost estimates is engineering and design. Consultation with several industrial sources indicate that engineering and design work on chemical processing facilities will characteristically cost approximately 10 percent of the construction costs.

TABLE 2 2-1

CONSTRUCTION COST ESTIMATES FOR THE

REFRIGERATION VAPOR RECOVERY SYSTEM COMPONENTS (1976)

Icem		em	Cost (3)	
Module	A	Snip-to-Shore Connection		
Case	1	Rupper hose 12,300 ppn	19 000	
Case	2	Rupber nose 25,000 bpn	20,000	
Case	3	Rupber nose 50,000 bpn	21,000	
Case	4	Loading arm 12,500 bon	68,000	
Case	5	Loading arm 25,000 bon	77,000	
Case	ó	Loading arm 50,000 bon	34,000	
4oaule	3	Vapor Collection Line		
Case	1	On the dock condenser 12,500 oon	3,000	
Case	2	On the dock condenser 25,000 bon	13,000	
Case	3	On the dock condenser 50,000 opn	24,000	
Case	4	Central condenser 12,500 bph	96,000	
Case	5	Central condenser 25,000 bph	175,000	
Case	6	Central concenser 50,000 ppn	258,000	
:!odule	С	Vapor Condensing Units		
Case	1	Located on the cock 12,500 oon	35,000	
Case	2	Located on the tock 25,000 bpn	163,000	
Case	3	Located on the dock 50,000 opn	324,000	
Case	4	Located centrally 12,500 bpn	87,000	
Case	5	Located centrally 25,000 opn	165,000	
Case	ó	Located centrall, 30,000 bph	324,000	
Aocule	c	Refrigerent Lines		
Case	1	On the dock concenser	193,000	
Case	2	Central condenser	34,000	
!fodule	Ξ	•		
Case	1	•	445,000	
Case	2	25,000 oph	339,000	
Case	3	ρα 000,0č	1,623,000	
Module	ŗ	Utilities		
Case	I	Nater, wastewater, and product lines to the refinery	91,000	
Case	2	Electric substation	26,000	

2.3 Cost Analysis

The cost of candidate refrigeration vapor recovery system arrangements for construction in the Houston-Galveston area can be analyzed by compiling the appropriate cost estimates for refrigeration system modules presented in Section 2.2.

Table 2.3-1 presents the construction costs for five candidate refrigeration systems. A comparison of the costs for System I and for System II indicate that the impact of minor equipment substitutions such as the use of rubber loading hoses instead of automatic loading arms has very little overall impact on the total cost for a refrigeration vapor recovery system. In addition, a comparison of costs for individual dock mounted condensers (System I) and costs for centrally located common condensers (System III) indicate that the individual condensers are approximately 10% more expensive. It has been suggested that individual condensers are much safer than common condensers.

Table 2.3-2 compares the cost of five potential refrigeration systems on a relative size basis. As expected, the costs for larger vapor recovery systems are lower on a unit capacity basis than the costs for smaller systems. The 12,500 bph system is projected to cost \$806,000 per 10,000 bph and the 50,000 bph system is projected to cost \$775,000 per 10,000 bph. However, the estimated cost range between the least expensive and most expensive refrigeration vapor recovery system applicable to the Houston-Galveston area on a capacity basis is approximately 10%. The cost of all of these systems can be approximated as \$800,000 per 10,000 bph of capacity.

TABLE 2.3-1 COMPARISON OF COSTS FOR REFRIGERATION VAPOR RECOVERY SYSTEMS

System I. Two individual dock located condensers with a capacity of 25,000 bph each and a central refrigeration unit with a capacity of 25,000 bph Automatic loading arms.

Item	Unit <u>Cost</u>	<u>No.</u>	Cost
A-5	77,000	2	154,000
B-2	13,000	2	26,000
C-2	163,000	2	326,000
D-1	193,000	2	386,000
E-2	839,000	1	839,000
F-1	91,000	1	91,000
F-2	26,000	1	26,000
	.	TOTAL LESS ENGINEERING	1,848,000
	(GRAND TOTAL	\$2,033,000

System II: A 25,000 bph system with individual dock condensers identical to System I except for the use of rubber hoses on the ship-to-shore connection.

TABLE 2.3-1 (cont'd.) COMPARISON OF COSTS FOR REFRIGERATION VAPOR RECOVERY SYSTEMS

	Unit		
<u>Item</u>	<u>Cost</u>	No.	Cost
A-2	20,000	2	40,000
B-2	13,000	2	26,000
C-2	163,000	2	326,000
D-1	193,000	2	386,000
E-2	839,000	1	839,000
F-1	91,000	1	91,000
F-2	26,000	1	<u>26,0</u> 00
	TOTAL LES	SS ENGINEERING	1,734,000
	GRAND TO	TAL	\$1,907,000

System III Central 25,000 bph condenser and refrigeration unit servicing two docks. Automatic loading arms.

Item	Unit Cost	<u>No .</u>	Cost
A-5	77,000	2	154,000
B-5	175,000	2	350,000
C-5	165,000	1	165,000
D-2	34,000	1	34,000
E-2	839,000	1	839,000

TABLE 2.3-1 (cont'd.) COMPARISON OF COSTS FOR REFRIGERATION VAPOR RECOVERY SYSTEMS

F-1	91,000	1	91,000
F-2	26,000	1	26,000
	TOTAL	LESS ENGINEERIN	G 1,659,000
	GRANI	TOTAL	\$1,825,000

System IV: Four individual dock located condensers with a capacity of 25,000 bph each and a central refrigeration unit with a capacity of 50,000 bph. Automatic loading arms

	Unit		
<u>Item</u>	Cost	<u>No .</u>	Cost
A-5	77,000	4	308,000
B-2	13,000	4	52,000
C-2	163,000	4	652,000
D-1	193,000	4	772,000
E-3	1,623,000	1	1,623,000
F-1	91,000	1	91,000
F-2	26,000	1	26,000
		TOTAL LESS ENGINEERING	3,524,000
		GRAND TOTAL	\$3,876,000

TABLE 2.3-1 (cont'd.) COMPARISON OF COSTS FOR REFRIGERATION VAPOR RECOVERY SYSTEMS

System V: One individual dock located condenser and a refrigeration unit each with a capacity of 12,500 bph.

Automatic loading arm.

Item	Unit <u>Cost</u>	<u>No .</u>	Cost
A-4	68,000	1	68,000
B-1	8,000	1	8,000
C-1	85,000	1	85,000
D-1	193,000	1	193,000
E-1	445,000	1	445,000
F-1	91,000	1	91,000
F-2	26,000	1	26,000
	TOTAL LE	ESS ENGINEERING	916,000
	GRAND TO	DTAL	\$1,008,000

TABLE 2.3-2
SUMMARY OF EXAMPLE REFRIGERATION VAPOR
RECOVERY SYSTEM COSTS

System	Cost \$	Capacity bph	Relative Cost \$/10,000 bbl
System I	2,033,000	25,000	813,000
System II	1,907,000	25,000	763,000
System III	1,825,000	25,000	730,000
System IV	3,876,000	50,000	775,000
System V	1,008,000	12,500	806,000

3.0 ABSORPTION SYSTEMS

3.1 Cost Basis

This section presents the absorption unit design which provided the basis for the cost estimates generated by Ref-Chem Corporation.

Absorption vapor recovery systems remove hydrocarbon vapors from marine loading vapors by absorbing the hydrocarbons into a lean oil stream. The system selected by Radian Corporation for detailed cost analysis utilizes a tray absorber for the oil/vapor contactor. The system operates at near atmospheric pressure and boosts the lean oil absorptivity by chilling the lean oil to 40°F. Figure 3.1-1 presents the flow diagram of an absorption vapor recovery system.

For simplification the absorption vapor recovery system has been divided into eight distinct components termed modules. Module A consists of the equipment required to transfer hydrocarbon vapors collected onboard marine vessels to the shoreside vapor re-This ship-to-shore connection is normally effected covery system. by use of either a large diameter hose or by a marine loading arm. Module B consists of the vapor collection lines which convey hydrocarbon vapors from the ship-to-shore connector to the vapor absorption column. The lean oil absorber and directly associated equipment Module D consists of the piping, valves, and compose Module C. pumps required to transport lean oil from the refinery storage area to the vapor recovery system. Module E is the refrigeration unit which is used to chill the lean oil prior to its introduction to The air eductor and associated air compression the absorber. equipment required to draw ship loading vapors through the absorber compose Module F. Module G comprises the piping, valves, and pumps

used to return rich oil effluent from the absorber to the refinery product blending area. Module H comprises all of the utilities required to operate the vapor recovery system.

Each of the vapor recovery system modules has also been separated into several cost cases which address the cost of different module sizes or configurations. These cost cases are characterized in the following module discussions.

Module A: Ship-to-Shore Connection

Module A consists of the equipment required to transfer hydrocarbon vapors collected onboard marine vessels to shoreside vapor recovery units. In cost cases Al, A2, and A3, a 50 ft long flexible (yet not collapsible) hose is used for the ship-to-shore connection. The hose is constructed of a gasoline vapor resistant material and terminates on each end with a standard SCH 40 flange. The hoses for cost cases Al, A2, and A3 are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph respectively. The cost of an air driven hoist for hose handling is also included in each of these three cost cases.

Cost cases A4, A5, and A6 are the cases employing a hydraulic-actuated loading arm to achieve the ship-to-shore connection. Loading arms for the three cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively. The cost cases include the costs associated with construction on crowded existing marine loading docks.

Module B: Vapor Collection Lines

Module B investigates the cost of the equipment required to convey hydrocarbon vapors from the ship-to-shore connector (Module A) to the vapor recovery unit (Module C). Cost cases

FIGURE 3.1-1 FLOW DIAGRAM FOR PROPOSED ABSORPTION VAPOR RECOVERY SYSTEM

B1, B2, and B3 address the cost of installing short runs of vapor collection piping from the ship-to-shore collector to dock mounted vapor absorbers. Pipe fittings, pressure alarms, and safety equipment are included in the cost. The three cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

Cost cases B4, B5, and B6 address the cost of installing 1000 ft runs of vapor collection piping from the ship-to-shore connector to centrally-located, shared vapor absorber units. Pipe fittings, pressure alarms, safety equipment and condensate drains are included in the cost. The three cost cases are sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

Module C: Lean Oil Absorber

The lean oil absorber is a valve tray tower fabricated out of carbon steel and equipped with a water seal below the bottom tray. The absorber control system regulates lean oil flow rates and tower pressure from inputs including effluent hydrocarbon concentrations, tower temperature profiles, and tower pressure. An automatic N_2 purge system is also associated with the absorber for purging the tower and vapor collection lines after each ship loading operation. Auxiliary piping for Module C includes a water purge line for the absorber water seal and a waste water drain for the water seal overflow. Cost cases C1, C2, and C3 address the cost for installing absorber towers and associated equipment sized to control loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

Module D: Lean Oil Piping

Module D consists of the piping, valves, and pump required to transfer lean oil from the refinery storage area to the absorber. Although the refrigeration system employed to chill the lean oil is positioned along this piping, it has been established as Module E. Cost cases D1, D2, and D3 address the cost for constructing long lengths of insulated piping required to transfer chilled lean oil from a central refrigeration unit to individual dock mounted absorbers. These three cost cases are sized to control ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively. Cost cases D4, D5, and D6 address the cost of lean oil piping from the refinery to a central absorber located adjacent to the central refrigeration unit. These three cost cases are sized to control ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

Module E: Refrigeration Unit

The refrigeration unit used to chill the lean oil to 40°F prior to contacting gasoline vapors in the absorber comprises Module E. Heat exchangers, refrigeration units, and a temperature recorder-controller system are included in the lean oil refrigeration unit. Cost cases El, E2, and E3 address the cost of refrigeration units sized to control ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively

Module F: Compressor-Eductor System

Module F contains the equipment used to motivate gasoline vapors collected onboard the ship through the vapor control equipment. An air eductor provides the motive force using compressed air from a dedicated system. The vacuum at the suction of the

eductor is approximately -40 inches of water. An air compressor, air cooler, and air supply lines are also included in Module F. The discharge pressure of the air compressor is 50 psia. Cost cases F1, F2, and F3 represent the construction cost for compressoreductor systems on dock-loaded absorbers with ship loading capacities of 12,500 bph, 25,000 bph, and 50,000 bph. Cost cases F4, F5, and F6 represent the construction costs for compressor-eductor systems on centrally-located common absorbers with ship loading capacities of 12,500 bph, 25,000 bph, and 50,000 bph. The air compressors for all of the cost cases are centrally located adjacent to the refrigeration system. However, Cost cases F1, F2, and F3 require long air supply lines and greater air compressor capacity to supply compressed air to the distant dock located eductors. Eductors in Cost cases F4, F5, and F6 are located adjacent to the compressor.

Module G. Rich Oil Piping

Module G consists of the piping, valves, and pumps used to transfer rich oil from the absorber to the refinery blending and storage area. Also included in the rich oil piping system is a system for injection of an anti-oxidant into the rich oil stream to inhibit any oxidation of the oil by absorbed air. The rich oil pumping rate is controlled by a level controller in the bottom of the absorption column. Cost cases G1, G2, and G3 estimate the cost of rich oil piping systems which return rich oil to the refinery from distant dock located absorbers sized for ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively. Cost cases G4, G5, and G6 estimate the cost of rich oil piping systems which return rich oil to the refinery from centrally located, shared absorbers of the same capacity.

Module H. Utilities

Module H consists of the utility connections required for the operation of the absorption system. These utilities include electricity and instrument air. Cost cases H1, H2, and H3 address the cost of utility systems sized to control ship loading rates of 12,500 bph, 25,000 bph, and 50,000 bph, respectively.

3.2 Cost Estimates

Table 3.2-1 presents the cost estimates generated by Ref-Chem Corporation for the installation of a completely operable absorption vapor recovery system in the Houston-Galveston area. These cost estimates are based on the absorption vapor recovery system design basis developed by Radian Corporation which was outlined in Section 3.1. In developing the cost estimates for each cost case, Ref-Chem Corporation considered four cost centers. These cost centers were:

- · Direct costs
- · Indirect costs
- Contingency allowances
- · Contractors' fee for overhead and profit

Direct costs include expenditures for labor, materials, equipment, and subcontractors used in constructing the various modules. Indirect costs include equipment rentals, consumable supplies, temporary facilities, support labor, and move in - move out. Contingency cost was added to the estimate to provide allowances for cost items not considered elsewhere.

A major cost item not included in the cost estimates is engineering and design. Consultation with several industrial

TABLE 3.2-1

CONSTRUCTION COST ESTIMATES FOR THE ABSORPTION

VAPOR RECOVERY SYSTEM COMPONENTS (1976)

	Item	· · · · · · · · · · · · · · · · · · ·		Cost \$
Module A:	Ship to Shore Connecti	Lon		
Case 1.	Rubber Hose	12,500	bph	19,000
Case 2.	Rubber Hose	25,000	bph	20,000
Case 3.	Rubber Hose	50,000	bph	21,000
Case 4.	Loading Arm	12,500	bph	68,000
Case 5.	Loading Arm	25,000	bph	77,000
Case 6.	Loading Arm	50,000	bph	84,000
Module B:	Vapor Collection Line			
Case 17	On the Dock Absorber	12,500	bph	8,000
Case 2.	On the Dock Absorber	25,000	bph	13,000
Case 3.	On the Dock Absorber	50,000	bph	24,000
Case 4.	Central Absorber	12,500	bph	85,000
Case 5.	Central Absorber	25,000	bph	158,000
Case 6.	Central Absorber	50,000	bph	245,000
Module C.	Lean Oil Absorber			
Case 1.	12,500 bph Capacity			48,000
Case 2.	25,000 bph Capacity			60,000
Case 3.	50,000 bph Capacity			66,000
Module D:	Lean Oil Piping			
Case 1.	On the Dock Absorber	12,500	bph	30,000
Case 2.	On the Dock Absorber	25,000	bph	44,000
Case 3.	On the Dock Absorber	50,000	bph	64,000
Case 4.	Central Absorber	13,500	bph	15,000
Case 5.	Central Absorber	25,000	bph	23,000
Case 6.	Central Absorber	50,000	bph	33,000

TABLE 3.2-1 (cont'd.) CONSTRUCTION COST ESTIMATES FOR THE ABSORPTION VAPOR RECOVERY SYSTEM COMPONENTS (1976)

	Item		Cost \$
Module E.	Refrigeration Unit		
Case 1.	12,500 bph Capacity		84,000
Case 2.	25,000 bph Capacity		165,000
Case 3.	50,000 bph Capacity		302,000
Madula E	Vacuum Assist Unit		
		12 500 5-5	02 000
	On the Dock Absorber	•	
	On the Dock Absorber	•	•
Case 3.		•	
	Central Absorber	12,500 bph	
Case 5.	Central Absorber	25,000 bph	101,000
Case 6.	Central Absorber	50,000 bph	140,000
Module G.	Rich Oil Return to Ref:	inerv	
	On the Dock Absorber	12,500 bph	30,000
	On the Dock Absorber	•	-
_	On the Dock Absorber	_	
	Central Absorber	1∠,500 bph	
_	Central Absorber	25,000 bph	-
	Central Absorber	50,000 bph	-
Module H.	Utilities		
Case 1.	12,500 bph System		18,000
Case 2.	25,000 bph System		24,000
Case 3.	50,000 bph System		29,000

sources indicate that engineering and design work on chemical processing facilities will characteristically cost approximately 10 percent of the construction costs.

3.3 Cost Analysis

The cost of candidate lean oil absorption vapor recovery system arrangements for construction in the Houston-Galveston area can be analyzed by compiling the appropriate cost estimates for absorption system modules presented in Section 3.2. Table 3.3-1 presents the construction costs for four candidate absorption systems. A comparison of the costs for System 1 and System II indicate that the cost of constructing individual absorbers on each dock is not appreciably higher than the cost of constructing central shared absorbers. The cost difference is approximately 5% of the total construction cost. Individual absorbers are considered much safer than common absorbers because they isolate one vessel from another.

Table 3.3-2 summarizes the cost differences between several absorption systems relative to system capacity. Comparison of Systems I, III, and IV indicate that the cost of absorption systems per unit capacity does not differ significantly between 12,500 bph capacity units and 50,000 bph capacity units. The economic impact of absorption systems is similar for both the smaller and the larger installations. The construction cost for the design basis absorption systems studied in the program total approximately \$400,000 per 10,000 bph vessel loading capacity.

The data presented in Tables 3.3-1 and 3.3-2 indicate that the cost of absorption units is approximately 50 percent of the cost of refrigeration units. However, the absorption unit design basis developed by Radian Corporation assumed that a large

TABLE 3.3-1 COMPARISON OF COSTS FOR ABSORPTION VAPOR RECOVERY SYSTEMS

System I: Two individual dock located absorbers with a capacity of 25,000 bph each and a central refrigeration and vacuum system with a capacity of 25,000 bph. Automatic loading arms.

Item	Unit Cost	No.	Cost
A-5	77,000	2	154,000
B-2	13,000	2	26,000
C-2	60,000	2	120,000
D-2	44,000	2	88,000
E-2	165,000	1	165,000
F-2	129,000	2	258,000
G-2	43,000	2	86,000
H-2	24,000	1	24,000
		TOTAL LESS ENGINEERING	921,000
		GRAND TOTAL	\$1,013,000

System II Central absorber and refrigeration system each with a capacity of 25,000 bph.

<u>Item</u>	Unit Cost	No.	Cost
A-5	77,000	2	154,000
B-5	158,000	2	316,000
C-2	60,000	1	60,000
D-5	23,000	1	23,000
E-2	165,000	1	165,000

TABLE 3.3-1 COMPARISON OF COSTS FOR ABSORPTION VAPOR RECOVERY SYSTEMS (cont'd.)

F-5	101,000	1	101,000
G-5	27,000	1	27,000
H-2	24,000	1	24,000
		TOTAL LESS ENGINEERING	\$870,000
	(GRAND TOTAL	\$957,000

System III: Four individual dock located absorbers with a capacity of 25,000 bph each and a central refrigeration and vacuum system with a capacity of 50,000 bph.

Item	Unit <u>Cost</u>	No.	Cost
A-5	77,000	4	308,000
B-2	13,000	4	52,000
C-2	60,000	4	240,000
D-2	44,000	4	176,000
E-6	302,000	1	302,000
F-2	129,000	4	516,000
G-2	43,000	4	172,000
H-3	29,000	1	29,000
		TOTAL LESS ENGINEERING	\$1,795,000
		GRAND TOTAL	\$1,975,000

TABLE 3.3-1 COMPARISON OF COSTS FOR ABSORPTION VAPOR RECOVERY SYSTEMS (cont'd.)

System IV: One 12,500 bph absorber located on the dock with a centrally located 12,500 bph refrigeration and vacuum system.

Item	Unit Cost	No.	Cost
A-4	68,000	1	68,000
B-1	8,000	1	8,000
C-1	48,000	1	48,000
D-1	30,000	1	30,000
E-1	84,000	1	84,000
F-1	92,000	1	92,000
G-1	30,000	1	30,000
H-1	18,000	1	18,000
		TOTAL LESS ENGINEERING	\$378,000
		GRAND TOTAL	\$416,000

TABLE 3.3-2
SUMMARY OF EXAMPLE ABSORPTION VAPOR RECOVERY SYSTEM COSTS

System	Cost (\$)	Capacity (bph)	Relative Cost \$/10,000 bbl
System I	1,013,000	25,000	405,000
System II	957,000	25,000	383,000
System III	1,975,000	50,000	395,000
System IV	416,000	12,500	333,000

lean oil supply source was available within the refinery. The lean oil rate required by the design basis absorption system is 125 gpm per 10,000 bph loading rate. A loading operation which involves loading two tankers at a combined loading rate of 50,000 bph will require a lean oil flow rate of 600 gpm. The logistics of deferring such a major portion of a refinery's lean oil production to the absorption system is a significant operation change and is likely to be considered impractical. Without system modifications, the design basis absorption system is primarily applicable to small marine operations at large refineries where the lean oil demand of the absorption system is small relative to the refinery lean oil production rate.

A system modification which would make larger absorption systems compatible with refinery operations is the addition of lean oil storage capacity dedicated for use in the vapor recovery system. This lean oil storage capacity can be filled and emptied at the refinery convenience with minimal disruption of normal operations. Storage capacity costs are approximately \$0.15 per gallon. A 100,000 bbl storage tank installed with associated equipment will cost approximately \$600,000. The cost of lean oil storage capacity will very likely place the cost of lean oil absorption systems in the same range as the cost for refrigeration systems: approximately \$800,000 per 10,000 bph of marine loading capacity.

BIBLIOGRAPHY

- 1. American Petroleum Institute, <u>Basic Petroleum Data</u>

 <u>Book, Petroleum Industry Statistics</u>, Washington, D.C.,
 Oct. 1975.
- 2. Amoco File, EPA Region. VI, Air and Hazardous Materials
 Division, Air Programs Branch, Technical Support Section,
 Dallas, Texas, 1976.
- 3. Amoco Correspondence, L V. Durland, Refinery Manager, Amoco Oil Company, Texas City, Texas, June 15, 1976.
- 4. Amoco Correspondence, J. G. Huddle, Coordinator, Air and Water Conservation, Amoco Oil Company, Chicago, Illinois, July 9, 1976.
- 5. <u>Arco File</u>, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 6. Arco Correspondence, H. J. Grimes, Manager, Environmental Engineering, Atlantic Richfield Company, Harvey, Illinois. J. ne. 21, 1976.
- Botros, M., Private Communication, Marine Terminal Operations Survey, Air Pollution Control District, County of Los Angeles, Feb. 1976.
- 8. <u>British Petroleum Correspondence</u>, Gordon Wanless, British Petroleum Company, New York City, New York, July, 1976.

BIBLIOGRAPHY (Continued)

- 9. Bryan, R.J., et al., Air Quality Analysis of the Unloading of Alaskan Crude Oil of California Ports, Final Report EPA Contract No. 68-02-1405, Task 10. Santa Monica, CA, Pacific Environmental Services, Inc., Nov. 1976.
- 10. Charter File, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 11. <u>Crown Correspondence</u>, W. L. Warnement, Manager Environmental Engineering, Crown Central Petroleum Co., Houston, Texas, July 28, 1976.
- 12. Edwards Engineering Correspondence, Ray Edwards, President, Edwards Engineering Corp., Pompton Plains, New Jersey, 1976.
- 13. Environmental Protection Agency, <u>Compilation of Air</u>

 <u>Pollutant Emission Factors</u>, 2nd ed. with supplements,

 AP-42, Research Triangle Park, N.C., 1973.
- 14. Exxon File, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 15. Exxon Correspondence, L. O. Fuller, Supervisor of Environmental Engineering, Exxon Company, Baytown, Texas, June 14, 1976
- 16. "Federal Energy Administration Hands Off N. Tier Supply Problem", Oil Gas J. 1976 (Aug. 9), 36.

BIBLIOGRAPHY (Continued)

- 17. Hart, Lawrence, Private Communication, County of Santa Barbara, Health Care Services, Air Pollution Control District, Aug. 1976.
- 18. Kilgren, K., A Program for the Measurement of Hydrocarbon Emissions During Tanker Loading of Crude Oil in Ventura County, Chevron Research Company, California, April 15, 1976.
- 19. <u>Marathon Correspondence</u>, L. M. Echelberger, Environmental Coordinator, Marathon Oil Company, Texas City, Texas, April 22, 1976.
- 20. <u>Marathon File</u>, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 21. <u>Monsanto File</u>, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 22. Rauge, Jim, Private Communication, Ventura County APCD, July 1976.
- 23. <u>Shell Correspondence</u>, R. V. Mattern, Superintendent, Environmental Conservation, Shell Oil Company, Deer Park, Texas, May 18, 1976.
- 24. <u>Shell File</u>, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976

BIBLIOGRAPHY (Continued)

- 25. <u>Texas City Refining Correspondence</u>, P. D. Parks, Environmental Coordinator, Texas City Refining Co., Texas City, Texas, 1976.
- 26. <u>Texas city Refining File</u>, EPA Region VI, Air and Hazardous Materials Division, Air Programs Branch, Technical Support Section, Dallas, Texas, 1976.
- 27. "Two Oil Lines from West Seen Needed", Oil Gas J. 1976 (Aug. 16), 58.
- 28. <u>Union Oil Correspondence</u>, R. Y. Salisbury, Senior Environmental Engineer, Union Oil Company, Los-Angeles, California, July 8, 1976.
- 29. U. S. Bureau of Mines, Div. of Fuels Data, <u>Crude</u>

 <u>Petroleum</u>, <u>Petroleum Products</u>, <u>and Natural Gas Liquids</u>

 <u>1974</u>, final summary, Washington, D.C., April 1976.
- 30. Wilson, Howard M., "Beefed-up Tanker Fleets Readied for N. Slope Oil", Oil Gas J. 1976 (June 14), 23.

/P	TECHNICAL REPORT DATA Mease read instructions on the reverse before	comnicting:
1 REPORT NO	2	13 RECIPIENT'S ACCESSIONINO
EPA-450/3-76-038b		
4 TITLE AND SUBTITLE		S REPORT DATE
Volume II		November 1976
Appendices - Background Info	rmation on Hydrocarbon	6 PERFORMING ORGANIZATION CODE
Emissions from Marine Termin	nal Operations	
7 AUTHOR(S)		8 PERFORMING ORGANIZATION REPORT NO
C. E. Burklin, J. D. Colley	and M. L. Owen	
•		
9 PERFORMING ORGANIZATION NAME A	NO ADDRESS	10 PROGRAM ELEMENT NO
Radian Corporation		68-02-1319, Task 56
8500 Shoal Creek Boulevard		11 CONTRACT/GRANT NO
P. O. Box 9948		
Austin, Texas 78766		
12. SPONSORING AGENCY NAME AND ADD	DRESS	13. TYPE OF REPORT AND PERIOD COVERED
U. S. Environmental Protecti	lon Agency	Final Report
Research Triangle Park,	•	14. SPONSORING AGENCY CODE
North Carolina 27711		
16 CUPPLEMENTARY NOTES		

16. ABSTRACT

This report presents results of a study to develop background information necessary for the accurate assessment of hydrocarbon emissions from ship and barge loading and unloading of gasoline and crude oil. The report assesses marine terminal facilities, marine terminal operations, cruise history and product movement statistics, hydrocarbon emission rates and characteristics, control technology state of the art, safety considerations of marine terminal control technology and economics of controlling marine terminal emissions. The report also includes the results of a detailed cost analysis for a refrigeration and an absorption marine terminal vapor recovery system. Data gathering activities focused on the Houston-Galveston area; however, information was also assembled on hydrocarbon emissions from marıne terminal operatıons in the pr tropolitan Los Angeles area generated by handling of gasoline and crude oils, including Alaskan north slope crude.

17. KEY WORDS AND DOCUMENT ANALYSIS			
1	DESCRIPTORS	b IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group
	ipment s inals	Air Pollution Control Mobile Sources Hydrocarbon Emission Control Organic Vapors	
13 DISTRIBUTION	STATEMENT	19 SECURITY CLASS (This Report) Unclassified	2º NO OF PAGES
Unlimited		20 SECURITY CLASS (This page) Unclassified	22 PRICE

INSTRUCTIONS

1. REPORT NUMBER

Insert the EPA report number as it appears on the cover of the publication.

2. LEAVE BLANK

3. RECIPIENTS ACCESSION NUMBER

Reserved for use by each report recipient

4. TITLE AND SUBTITLE

Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific title.

5. REPORT DATE

Each report shall carry a date indicating at least month and year Indicate the basis on which it was selected (e.g., date of issue, date of approval, date of preparation, etc.)

6. PERFORMING ORGANIZATION CODE

Leave blank

7 AUTHOR(S)

Give name(s) in conventional order (John R Doe, J Robert Doe, etc.) List author's affiliation if it differs from the performing organization.

8. PERFORMING ORGANIZATION REPORT NUMBER

Insert if performing organization wishes to assign this number

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Give name, street, city, state, and ZIP code List no more than two levels of an organizational hirearchy

10. PROGRAM ELEMENT NUMBER

Use the program element number under which the report was prepared Subordinate numbers may be included in parentheses.

11. CONTRACT/GRANT NUMBER

Insert contract or grant number under which report was prepared

12. SPONSORING AGENCY NAME AND ADDRESS

include ZIP code

13. TYPE OF REPORT AND PERIOD COVERED

Indicate interim final, etc., and if applicable, dates covered.

14. SPONSORING AGENCY CODE

Leave blank.

15. SUPPLEMENTARY NOTES

Enter information not included elsewhere but useful, such as Prepared in cooperation with, Translation of, Presented at conference of, To be published in, Supersedes, Supplements, etc

16. ABSTRACT

Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it here.

17. KEY WORDS AND DOCUMENT ANALYSIS

(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for cataloging

(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc Use open-ended terms written in descriptor form for those subjects for which no descriptor exists

(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List Since the majority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow the primary posting(s)

18. DISTRIBUTION STATEMENT

Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to the public, with address and price

19 & 20. SECURITY CLASSIFICATION

DO NOT submit classified reports to the National Technical Information service

21. NUMBER OF PAGES

Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any

22. PRICE

Insert the price set by the National Technical Information Service or the Government Printing Office, if known