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DISCLAIMER

This document {s intended to assist Regional and State personnel in
evaluating ground-water monitoring data from RCRA facilities. Conformance
with this guidance is expected to result in statistical methods and sampling
procedures that meet the regulatory standard of protecting human health and
the environment. However, EPA will not in all cases limit its approval of
statistical methods and sampling procedures to those that comport with the
guidance set forth herein. This guidance {is not a regulation (i.e., it does
not establish a standard of conduct which has the force of law) and should not
be used as such. Regional and State personnel should exercise their discre-
tion in using this guidance document as well as other relevant information in
choosing a statistical method and sampling procedure for evaluating ground-
water monitoring data from RCRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Envi-
ronmental Protection Agency, Washington, 0.C., and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does mention of

trade names, commercial products, or publications constitute endorsement or
recommendation for use.
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PREFACE

This guidance document has been developed primarily for
evaluating ground-water monitoring data at RCRA (Resource
Conservation and Recovery Act) facilities. The statistical
methodologies described in this document can be applied to both
hazardous (Subtitle C of RCRA), and municipal (Subtitle D of

RCRA) waste land disposal facilities.

The guidance has wider applications however, if one
examines the spatial relationships involved between the
monitoring wells and the potential contaminant source. Forv
example, Section 4 of the guidance describes background well
(upgradient) versus compliance well (downgradient) comparisons.
This scenario can be applied to other "non-RCRA" situations
involving the same spatial relationships and the same null
hypothesis. The explicit null hypothesis (Ho) for testing
contrasts between means, or where appropriate between medians,
is that the means between groups (here monitoring wells) are
equal (i.e., no release has been detected), or that the group
means are below a prescribed action level (e.g., the
ground-water protection standard). Statistical methods that can
be used to evaluate these conditions are described in Sections
4.2 (Analysis of Variance), 4.3 (Tolerance Intervals), and 4.4

(Prediction Intervals).
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When compliance wells (downgradient) are compared to a fixed
standard (e.g., the ground-water protection standard), Section 5
of the guidance should be consulted. The value to which the
compliance wells are compared can be any standard established by
a Reglonal Administrator, State or county health official, or

another approprjate official.

A note of caution applies to Section 5. The examples are
used to determine whether or not ground-water has been
contaminated as a result of a release from a facility. When the
upper confidence limit is exceeded, further action or assessment
may be warranted. If one wishes to determine whether or not a
Cleanup standard has been attained for a Superfund site or a
RCRA facility in corrective action, another EPA guidance
document entitled, "Statistical Methods for the Attainment of
Superfund Cleanup Standards - Draft," should be consulted. This
draft Superfund guidance is a multi-volume set that addresses
questions regarding the success of air, ground-water, and soil
remediation efforts. Information about the availability of this
draft guidance that is currently being developed can be obtained
by calling the RCRA/Superfund Hotline, telephone (800) 424-9346
or (202) 382-3000. 'Those interested in evaluating individual
wells or an intra-well comparison are referred to Section 6 of

the guidance which describes the use of Shewhart-CUSUM control

charts and trend analysis.
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Municipal water supply engineers for example, who wish to
monitor water quality parameters in supply wells may find this

section useful.

Other sections of the guidance have wide applications in
the field of applied statistics, regardless of the intended use
or purpose. Sections 3.2 and 3.3 provide information on
checking distributional assumptions and equality of variance,
while Sections 7.1 and 7.2 cover limit of detection problems and
outliers. Any experiment involving the use of statistics may

consult these sections for helpful advice and references.

Finally, it should be noted that this gquidance is not
intended to be the final chapter on the statistical analysis of
ground-water monitoring data, nor should it be used as such. 40
CFR Part 264 Subpart F offers an alternative (§264.97(h)(5) to
the methods suggested and described in this guidance document.
In fact, the guidance recommends a procedure (confidence
intervals) for comparing monitoring data to a fixed standard
that is not mentioned in the Subpart F regulations. This is
neither contradictory or inconsistent, but rather
epitomizes the complexities of the subject matter and
exemplifies the need for flexibility due to the site specific

monitoring requirements of the RCRA program.
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SECTION 1
INTRODUCTION

The U.S. Environmental Protection Agency (EPA) promulgated regulations
for detecting contamination of ground water at hazardous waste land disposal
facilities under the Resource Conservation and Recovery Act (RCRA) of 1976.
The statistical procedures specified for use to evaluate the presence of con-
tamination have been criticized and require improvement. Therefore, E£PA has
proposed to revise those statistical procedures in 40 CFR Part 264, "Statis-
tical Methods for Evaluating Ground-Water Monitoring Data from Hazardous Waste
Facilities.”

In 40 CFR Part 264, EPA has proposed statistical procedures that are
appropriate for evaluating ground-water monitoring data under a variety of
situations. The purpose of this document is to provide guidance in deter-
mining which situation applies and consequently which statistical procedure
may be used. In addition to providing guidance on selection of an appropriate
statistical procedure, this document provides instructions on carrying out the
procedure and interpreting the results.

The regulations provide three levels of monitoring for a reguiated
unit: detection monitoring; compliance monitoring; and corrective action.
The regulations define conditions for a regulated unit to be changed from one
level of monitoring to a more stringent level of monitoring (e.g., from detec-
tion monitoring to compiiance monitoring). These conditions are that there is
statistically significant evidence of contamination.

The regulations allow the benefit of the doubt to reside with the current
stage of monitoring. That is, a unit will remain in its current monitoring
stage unless there {is convincing evidence to change it. This means that a
unit will not be changed from detection monitoring to compliance meonitoring
(or from compliance monitoring to corrective action) unless there is statisti-
cally significant evidence of contamination (or contamination above the com-
pliance 1imit).

The main purpose of this document is to guide owners, operators, regional
administrators, and other interested parties in the selection, use, and inter-
pretation of appropriate statistical methods for monitoring the ground water
at each specific regulated unit. Topics to be covered include sampling
needed, sample sizes, selection of appropriate statistical design, matching
analysis of data to design, and interpretation of results. Specific recom-
mended methods are detailed and a general discussion of evaluation of
alternate methods is provided. Statistical concepts are discussed in an
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appendix. Raferences for suggested procedures are provided as well as
references to alternative procedures dnd general statistics texts. Situations
calling for external consultation are mentioned as well as sources for obtain-
ing expert assistance when needed.
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SECTION 2

REGULATORY OVERVIEW

EPA promulgated ground-water monitoring and response
standards for permitted facilities in 1982 (47 FR 32274, July 26,
1982), for detecting releases of hazardous wastes into ground
water from storage, treatment, and disposal units.

The Subpart F regulations required ground-water data to be
examined by statistical procedures to determine whether there was
a significant exceedance of background levels, or other allowable
levels, of specified chemical parameters and hazardous waste

constituents. One concern was that the procedure in the
regulations could result in a high rate of "false positives"
(Type I error), thus requiring an owner or operator

unnecessarily to advance into a more comprehensive and expensive
phase of monitoring. More importantly, another concern was that
the procedure could result in a high rate of "false negatives"
(Type 1II error), i.e., instances where actual contamination would
go undetected.

As a result of these concerns, EPA amended the procedure
with five different statistical methods that are more appropriate
for ground-water monitoring (53 FR 39720; October 11, 1988).
These amendments also outline sampling procedures and performance
standards that are designed to help minimize the event that a
statistical method will indicate contamination when it is not
present (Type I error), and fail to detect contamination when it
is present (Type II error).

2.1 BACKGROUND

Subtitle C of the Resource Conservation Recovery Act of 1976
(RCRA) creates a comprehensive program for the safe management of
hazardous waste. Section 3004 of RCRA requires owners and
operators of facilities that treat, store, or dispose of
hazardous waste to comply with standards established by EPA that
are "necessary to protect human health and the environment.®
Section 3005 provides for implementation of these standards under
permits issued to owners and operators by EPA or authorized
States. Section 3005 also provides that owners and operators of
existing facilities that apply for a permit and comply with
applicable notice requirements may operate until a permit
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determination is made. These facilities are commonly Kknown as
"interim status" facilities, owners and operators of interim
status facilities also must comply with standards set under
Section 3004.

EPA promulgated ground-water monitoring and response
standards for permitted facilities in 1982 (47 FR 32274, July 26,
1982), codified in 40 CFR Part 264, Subpart F. These standards
established programs for protecting ground water from releases of
hazardous wastes from treatment, storage, and disposal units.
Facility owners and operators were required to sample ground
water at specified intervals and to use a statistical procedure
to determine whether or not hazardous wastes or constituents from
the facility are contaminating ground water. As explained in
more detail below, the Subpart F regulations regarding
statistical methods used in evaluating ground-water monitoring
data that EPA promulgated in 1982 have generated criticism.

The former Part 264 regulations provided that the Cochran'’s
Approximation to the Behrens Fisher Student’s t-test (CABF) or an
alternate statistical procedure approved by EPA be used to
determine whether there is a statistically significant exceedance
of background levels, or other allowable levels, of specified
chemical parameters and hazardous waste constituents. Although
the . reqgulations have always provided latitude for the use of an
alternate statistical procedure, concerns were raised that the
CABF statistical procedure in the regqulations was not
appropriate. It was pointed out that: (1) the replicate
sampling method is not appropriate for the CABF procedure, (2)
the CABF procedure does not adequately consider the number of
comparisons that must be made, and (3) the CABF does not control

for seasonal variation. Specifically, the concerns were that
the CABF procedure could result in "false positives™ (Type I
error), thus requiring an owner or operator unnecessarily to

collect additional ground-water samples, to further characterize
ground-water quality, and to apply for a permit modification,
which is then subject to EPA review. In addition, there was
concern that CABF may result in "false negatives" (Type II
error), i.e., instances where actual contamination goes
undetected. This occurred because the background data, which is
often used as the basis of the statistical comparisons, was
highly variable due to temporal, spatial, analytical, and
sampling effects.

As a result of these concerns, EPA amended both the
statistical method and the sampling procedures of the
requlations, by requiring (if necessary) that owners or operators
nore accurately characterize the hydrogeoclogy and potential
contaminants at the facility, and by including in the regulations
performance standards that all the statistical methods and
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sampling procedures must meet (53 FR 39720; October 11, 1988).
Statistical methods and sampling procedures meeting these
performance standards would have a low probability of indicating
contamination when it is not present, and of failing to detect
contamination that actually 1is present. The facility owner or
operator would have to demonstrate that a procedure is
appropriate for the conditions at the facility and to ensure that
it meets the performance standards outlined below. This
demonstration holds for any of the four statistical methods and
sampling procedures outlined in this regulation as well as any
alternate methods or procedures proposed by facility owners and
operators.

EPA recognizes that the selection of appropriate monitoring
parameters 1is also an essential part of a reliable statistical

evaluation. The Agency addressed this issue in a previous
Federal Regjster notice (52 FR 25942, July 9. 1987).

2.2 OVERVIEW OF METHODOLOGY

EPA has elected to retain the idea of general performance
requirements that the regulated community must meet. This
approach allows for flexibility in designing statistical methods
and -sampling procedures to site-specific considerations.

EPA has tried to bring a measure of certainty to these methods ,
while accommodating the unique nature of many of the regulated
units in question. Consistent with this general strategy, the
Agency is establishing several options for the sampling
procedures and statistical methods to be used in detection
monitoring and, where appropriate, in compliance monitoring.

The owner or operator shall submit, for each of the chemical
parameters and hazardous constituents listed in the facility
permit one or more of the statistical methods and sampling
procedures described in today’s regulations. In deciding which
statistical test 1is appropriate, he or she will consider the
theoretical properties of the test, the data available, the site
hydrogeology, and the fate and transport characteristics of
potential contaminants at the facility. The Regional
Administrator will review, and if appropriate approve the
proposed statistical methods and sampling procedures when issuing
the facility permit.

The Agency recognizes that there may be situations where any
one statistical test may not be appropriate. This is true of new
facilities with 1little or no ground-water monitoring data. 1If
insufficient data prohibits the owner or operator from specifying
a statistical method of analysis, then contingency plans
containing several methods of data analysis and the conditions
under which the method can be used will be specified by the
Regional Administrator in the permit. In many cases, the
parametric ANOVA can be performed after six months of data has
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been collected. The owner or operator may propose modifying the
permit at a later date when more data is available and he wishes
to use a specific method of analysis.

2.2 GENERAL PERFORMANCE STANDARDS

EPA’s basic concern in establishing these performance
standards for statistical methods is to achieve a proper balance
between the risk that the procedures will falsely indicate that a
regulated unit is causing background values or concentration
limits to be exceeded (false positives), and the risk that the
procedures will fail to indicate that background values or
concentration 1limits are being exceeded (false negatives). EPA’s
approach is designed to address that concern directly. Thus, any
statistical method or sampling procedure, whether specified here
or as an alternative to those specified, should meet the
following performance standards:

1. The statistical test is to be conducted separately for each
hazardous constituent in each well. If the distribution of the
chemical parameters or constituents is shown by the owner or
operator to be inappropriate for a normal theory test, then the
data should be transformed or distribution-free theory test
should be used. If the distributions for the constituents
differ, more than one statistical method may be needed.

2. If an individual well comparison procedure is used to compare
an individual compliance well constituent concentration with
background constituent concentrations or a ground-water

protection standard, the test shall be done at a Type I error
level of no 1less than 0.01 for each testing period. 1If a
multiple comparisons procedure is used the Type I experimentwise
error rate shall be no less than 0.05 for each testing period,
however the Type I error of no less than 0.01 for individual well
comparisons must be maintained. This performance standard does
not apply to control charts, tolerance intervals, or prediction
intervals unless they are modeled after hypothesis testing
procedures that involve setting significance levels.

3. If a control chart approach is used to evaluate ground-water
monitoring data, the specific type of control chart and its
associated parameters shall be proposed by the owner or operator
and approved by the Regional Administrator if he or she finds it
to be protective of human health and the environment.

4. If a tolerance interval or a prediction interval is used to
evaluate ground-water monitoring data, the levels of confidence,
and for tolerance intervals the percentage of the population that
the interval must contain, shall be proposed by the owner or
operator and approved by the Regional Administrator if he or she
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finds these parameters to be protective of human health and the
environment. These parameters will be <determined after
considering the number of samples in the background data base,
the distribution of the data, and the range of the concentration
values for each constituent of concern.

5. The statistical method will include procedures for handling
data below the 1limit of detection with one or more procedures
that are protective of human health and the environment. Any
practical quantification 1limit (pgl) approved by the Regional
Administrator under section 264.97(h) that is used in the
statistical method shall be the lowest concentration level that
can be reliably achieved within specified limits of precision and
accuracy during routine laboratory operating conditions that are
available to the facility.

6. The statistical method will consider, and if necessary
control or correct for, seasonal and spatial variability and
temporal correlation in the data.

In referring to "statistical methods", EPA means to emphasize
that the concept of "statistical significance" must be reflected
in several aspects of the monitoring program. This involves not
only the choice of a level of significance, but also the choice
of a statistical test, the sampling requirements, the number of
samples, and the frequency of sampling. Since all of these
interact to determine the ability of the procedure to detect
contamination. The statistical methods, 1like a comprehensive
ground-water monitoring program, must be evaluated in their
entirety, not by individual components. Thus a systems approach
to ground-water monitoring is endorsed.

The second performance standard requires further
delineation. For individual well comparisons in which an
individual compliance well is compared to background, the Type I
error level shall be no less than 0.01 for each testing period.
In other words, the probability of the test resulting in a false
positive is no 1less than 1 in 100. EPA believes that this
significance 1level 1is sufficient in limiting the false positive
rate while at the same time controlling the false negative
(missed detection) rate.

Owners and operators of facilities that have an extensive
network of ground-water monitoring wells may find it more
practical to use a multiple well comparisons procedure. Multiple
comparisons procedures control the experimentwise error rate for
comparisons involving multiple upgradient and downgradient
wells. If this method is used, the Type I experimentwise error
rate for each constituent shall be no less than 0.05 for each
testing period.

In conducting a multiple well comparisons procedure, if the
owner or operator chooses to use a t-statistic rather than an
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rF-statistic, the individual well Type I error level must be
maintained at no less than 0.01l. This provision should be
considered if a facility owner or operator wishes to use a
procedure that distributes the risk of a false positive evenly
throughout all monitoring wells and monitoring parameters (egq.
Bonferroni t-test).

Setting these 1levels of significance at 0.01] and ©.05
respectively raises an important question 1in how the false
positive rate will be controlled at facilities with a large
number of ground-water monitoring wells and monitoring
constituents. The Agency set these levels of significance on the
basis of a single testing period, and not on the entire operating
life of the facility. Further, large facilities can reduce the
false positive rate by implementing a unit-specific monitoring
approach. Nonetheless it 1is evident that facilities with an
extensive number of ground-water monitoring wells and that are
monitoring for many constituents will still generate a large
number of comparisons during each testing period. At these
facilities, it may be difficult to keep the false positive error
rate at an acceptable level.

Such cases may require the Regional Administrator to use
discretion in deciding if a statistically significant result is
indicative, of an actual release from the facility, or if it is a
false positive. In making this decision, the Regiocnal
Administrator - may note the relative magnitude of the
concentration of the constituent(s). If the exceedance is based
on an observed compliance well value that has the same relative
magnitude as the pqgl (practical quantification limit), or the
background concentration level, then a false positive is more
likely to be observed, and further sampling and testing may be
appropriate. If however the background concentration level or an
action level is - exceeded by an order of magnitude, then the
exceedance 1is more likely to be indicative of a release from the
facility.

2.4 BASIC STATISTICAL METHODS AND SAMPLING PROCEDURES

The Final Rule specifies five types of statistical methods to
detect contamination in ground water. EPA believes that at least
one of these types of procedures will be appropriate for a wide
variety of situations. To address situations where these methods
may not be appropriate, EPA has included a provision for the
owner or operator to select an alternate method which is subject
to approval by the Regional Administrator.

1. A parametric analysis of variance (ANOVA) followed by
multiple comparison procedures to identify specific sources of

difference. The procedures will include estimation and testing
of the contrasts between the mean of each compliance well and the
background mean for each constituent.
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2. An analysis of variance (ANOVA) based on ranks followed by
multiple comparison procedures to identify specific sources of
difference. The procedure will include estimation and testing of
the contrasts between the median of each compliance well and the
median background levels for each constituent.

3. A procedure in which a tolerance interval or a prediction
interval for each constituent is established from the background
data, and the 1level of each constituent in each compliance well
is compared to its upper tolerance or prediction limit.

4. A control chart approach which will give control limits for
each constituent. If any compliance well has a value or a
sequence of values that lie outside the control limits for that
constituent, it may constitute statistically significant
evidence of contamination.

5. Another statistical method submitted by the owner or operator
and approved by the Regional Administrator.

A summary of these statistical methods and their
applicability is presented in Table 2-1. The table lists types
of comparisons and the recommended procedure and refers the
reader to the appropriate section where a discussion and example
can be found.

EPA is specifying multiple statistical methods and sampling
procedures and has allowed for alternatives because no one method
or procedure is appropriate for all circumstances. EPA believes
that the suggested methods and procedures are appropriate for the
site-specific design and analysis of data from ground-water
monitoring systems, and that they can account for more of the
site-specific factors than Cochran’s Approximation to the Behrens
Fisher Student’s t-test (CABF) and the accompanying sampling
procedures in the past regulations. The statistical methods
specified here address the multiple comparison problems and
provide for documenting and accounting for sources of natural
variation. EPA believes that the specified methods and



TABLE 2-1. SUMMARY

OF STATISTICAL METHOOS

SUMMARY OF STATISTICAL METHODS

SECTION OF
COMPOUND | TYPE OF COMPARISON | RECOMMENDED METHOD | GUIDANCE
DOCUMENT
ANOVA 4.2
ANY BACKGROUND VS
TOLERANCE LIMITS 4.3
COMPOUND | COMPLIANCE WELL | pReniCTION INTERVALS 4.4
BACKGROUND
INTRA-WELL CONTROL CHARTS 6
ACLMCL , CONFIDENCE INTERVALS 5.2.1
SPECIFIC FIXED STANDARD TOLERANCE LIMITS 5.2.2
SYNTHETIC | MANY NONDETECTS | SEE BELOW DETECTION .

IN DATA SET

LIMIT TABLE 7-1
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procedures consider and control for natural temporal and spatial variation.
The decision on the number of wells needed in a monitoring system will be made
on 2 site-specific basis by the Regional Administrator and will consider the
statistical method being used, the site hydrogeology, the fate and transport
characteristics of potential contaminants, and the sampling procedure. The
number of wells must be sufficient to ensure a high probability of detecting
contamination when it is present. To determine which sampling procedure
should be used, the awner or operator shall consider existing data and site
characteristics, including the possibility of trends and seasonality. These
sampling procedures are:

1. Obtain a seguence of at least four samples taken at an interval that
ensures, to the greatest extent technically feasible, that an inde-
pendent sample is obtained, by reference to the uppermost aquifer's
effective porosity, hydraulic conductivity, and hydraulic gradient,
and the fate and transport characteristics of potential contami-
nants. The sampling interval that is proposed must be approved by
the Regional Administrator.

2. An alternate sampling procedure proposed by the owner or operator
and approved by the Regional Administrator if he or she finds it to
be protective of human health and the environment.

EPA beljeves that the above sampliing procedures wiil allow the use of
statistical methods that will accurately detect contamination. These sampling
procedures may be used to replace the sampling method present in the former
Subpart F regulations. Rather than taking a single ground-water sample and
dividing it into four replicate sampies, a sequence of at least four samples
taken at fintervals far enough apart in time (daily, weekly, or monthly,
depending on rates of ground-water flow and contaminant fate and transport
characteristics) will help ensure the sampiing of a discrete portion (i.e., an
independent sample) of ground water. In hydrogeologic environments where the
ground-water velocity prohibits one from obtaining four independent samples on
a semiannual basis, the replicate sampling method described in the former
Subpart F regulations or an alternate sampling procedure that is approved by
the Regional Administrator may be utilized.

The Regional Administrator shall approve an appropriate sampling proce-
dure and interval submitted by the owner or operator after considering the
effective porosity, hydraulic conductivity, and hydraulic gradient in the
uppermost aquifer under the waste management area, and the fate and transport
characteristics of potential contaminants. Most of this information is
already required to be submitted in the facility's Part B permit application
under §270.14(c) and may be used by the owner or operator to make this deter-
mination. Further, the number and kinds of samples collected to establish
background concentration levels should be appropriate to the form of statisti-
cal test employed, following generally accepted statistical principles. For
example, the use of control charts presume a well defined background of at
least eight samples per well. By contrast, ANOVA alternatives might require
only four samples per well.
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It seems likely that most facilities will be sampling monthly over four
consecutive months, twice a year. [n order to maintain a complete annual
record of ground-water data, the facility owner or operator may find it
desirable to obtain a sample each month of the year. This will help identify
seasonal trends in the data and permit evaluation of the effects of auto-
correlation and seasonal variation if present in the samples.

The concentrations of a constituent determined in these samples are
intended to he used in one-point-in-time comparisons between background and
compliance wells. Some facility owners or operators may want to use the con-
centrations to establish a "moving average" in the background well data base
for comparison to the compliance well values at the frequency required in the
facility permit. Using several background values to establish a "moving aver-
age" is an acceptable method of analysis; however, the number of degrees of
freedom will be increased, making this method more sensitive to changes in
constituent concentrations. Further, this method does not account for sea-
sonal varfation as effectively as one-point-in-time comparison procedures.
Therefore, most owners and operators will find one-point-in-time comparisons
to be the preferred method of analysis. This approach will help reduce the
components of seasonal variation by providing for simultaneous comparisons
between background and compliance well information.

The different sampliing intervals were chosen to allow for the unique
nature of the hydrogeoclogic systems beneath hazardous waste sites. This sam-
pling scheme will give proper consideration to the temporal variation of and
autocorrelation among the ground-water constituents. The specified procedure
requires sampling data from background wells, at the compliance point, and
according to a specific test protocol. The owner or operator should use a
background value determined from data collected under this scenario if a test
approved by the Regional Administrator requires it or if a concentration limit
in compliance monitoring is to be based upon background data.

EPA recognizes that there may be situations where the owner or operator
can devise alternate statistical methods and sampling procedures that are more
appropriate to the facility and that will provide reliable results. There-
fore, today's regulations allow the Regional Administrator to approve such
procedures if he or she finds that the procedures balance the risk of false
positives and false negatives in a manner comparable to that provided by the
above specified tests and that they meet specified performance standards. In
examining the comparabflity of the procedure to provide a reasonable balance
between the risk of false positives and false negatives, the owner or operator
will specify in the alternate plan such things as the sampling frequency and
the sample size. _

The methods indicate that the procedure must provide reasonable confi-
dence that the migration of hazardous constituents from a regulated unit into
and through the aquifer will be detected. (The reference to hazardous con-
stituents does not mean that this option applies only to compliance monitor-
ing; the procedure also applies to monitoring parameters and constituents in
the detection monitoring program since they are surrogates indicating the
presence of hazardous constituents.) The protocols for the specific tests,
however, will be used as general benchmark to define "reasonable confidence"
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in the proposed procedure. If the owner or operator shows that his suggested
test is comparable in its results to one of the specified tests, then it is
likely to be acceptable under the "reasonable confidence" test. There may be
situations, however, where it will be difficult to directly compare the per-
formance of an alternate test to the protocols for the specified tests. In
such cases the alternate test will have to be evaluated on its own merits.

2.5 CHOOSING A SAMPLING INTERVAL

Section 264.97(g) of 40 CFR Part 264 Subpart F provides the owner or
operator of an RCRA facility with a flexible sampling schedule that will allow
him or her to choose a sampling procedure that will reflect site-specific con-
cerns. This section specifies that the owner or operator shall, on a semi-
annual basis, obtain a sequence of at least four samples from each well, based
on an interval that is determined after evaluating the uppermost aguifer's
effective porosity, hydraulic conductivity, and hydraulic gradient, and the
fate and transport characteristics of potential contaminants. The intent of
this provision {s to set a sampling frequency that allows sufficient time to
pass between sampling events to ensure, toc the greatest extent technically
feasible, that an independent ground-water sample is taken from each well.
For further information on ground-water sampling, refer to the EPA "Practical
Guide for Ground-Water Sampling," Carcelona et al., 1985.

The sampling frequency of the four semiannual sampling events required in
Part 264 Subpart F can be based on estimates using the average linear velocity
of ground water. Two forms of the Darcy equation stated below relate ground-
water velocity to effective porosity (Ne), hydraulic gradient (i), and hydrau-
1ic conductivity (K):

Vh=(Kh*{}/Ne and Vv=(Kv*{)/Ne

where Vh and Vv are the horizontal and vertical components of the average
linear velocity of ground water, respectively; Kh and Kv are the horizontal
and vertical components of hydraulic conductivity; 1 is the head gradient; and
Ne is the effective porosity. In applying these equations to ground-water
monitoring, the average linear horizontal velocity can be used to determine an
appropriate sampling interval. Usually, field investigations will yield bulk
values for hydraulic conductivity. In most cases, the bulk hydraulic conduc-
tivity determined by a pump test, tracer test, or a slug test will be suffi-
cient for these calculations. The vertical component of velocity (Vv),
however, should be considered in estimating flow velocities in areas with sig-
nificant components of vertical velocity such as recharge and discharge zones.

To apply the Darcy equation to ground-water monitoring, one needs to
determine the parameters K, i, and Ne. The hydraulic conductivity, K, is the
volume of water at the existing kinematic viscosity that will move in unit
time under a unit hydraulic gradient through a unit area measured at right
angles to the direction of flow. The reference to “existing kinematic vis-
cosity" relates to the fact that hydraulic conductivity is not only determined
by the media (aquifer), but also by fluid properties (ground water or poten-
tial contaminants). Thus, it is possible to have several hydraulic conduc-
tivity values for many different chemical substances that are present in the
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same aquifer. In either case it is advisable to use the greatest value for
velocity that is calculated using the Darcy equation to determine sampling
intervals. This will provide for the earliest detection of a leak from a
hazardous waste facility and expeditious remedial action procedures. A range
of hydraulic conductivities (the transmitted fluid is water) for various aqui-
fer materials is given in Figure 2-1. The top line has units m/d; the middle
line ft/d is commonly used. The bottom line has volume units per ft2 of area.

The hydraulic gradient, i, is the change in hydraulic head per unit of
distance in a given direction. [t can be determined by dividing the differ-
ence in head between two points on a potentiometric surface map by the ortho-
gonal distance between those two points (see example calculation). Water
level measurements are normally used to determine the natural hydraulic gradi-
ent at a facility. However, the effects of mounding in the event of a leak
from a waste disposal facility may produce a steeper local hydraulic gradient
in the vicinity of the monitoring well. These local changes in hydraulic
gradient should be accounted for in the velocity calculations.

The effective porosity, Ne, is the ratio, usually expressed as a per-
centage, of the total volume of voids available for fluid transmission to the
total volume of the porous medium dewatered. It can be estimated during a
pump test by dividing the volume of water removed from an aquifer by the total
volume of aquifer dewatered (see example calculation). Table 2-2 presents
approximate effective porosity values for a variety of aquifer materials. In
cases where the effective porosity is unknown, specific yield may be substi-
tuted into the equation. Specific yields of selected rock units are given in
Table 2-3. In the absence of measured values, drainable porosity is often
used to approximate effective porosity. Figure 2-2 illustrates representative
values of drainable porosity and total porosity as a function of aquifer
particle size.

Once the values for K, I, and Ne are determined, the average linear
ground-water velocity can be calculated. Using the Darcy equation, we can
determine the time required for ground water to pass through the complete
monitoring well diameter by dividing the monitoring well diameter by the aver-
age linear velocity of ground water. This value will represent the minimum
time interval required between sampling events that will yield an independent
ground-water sample. (Three-dimensional mixing of ground water in the vicin-
ity of the monitoring well will occur when the well is purged before sampling,
whic? is one reason why this method only provides an estimation of travel
time).

In determining these sampling intervals, one should note that many chemi-
cal compounds will not travel at the same velocity as ground water. Chemical
characteristics such as adsorptive potential, specific gravity, and molecular
size will influence the way chemicals travel in the subsurface. Large mole-
cules, for example, will tend to travel slower than the average linear veloc-
ity of ground water because of matrix interactions. Compounds that exhibit a
strong adsorptive potential will undergo a similar fate that will dramatically
change time of travel predictions using the Darcy equation. In same cases
chemical interaction with the matrix material will alter the matrix structure
and its associated hydraulic conductivity that may result in an increase in

contaminant mobility.
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Basic Ground-Water Hydrology.

Figure 2-1. Hydraulic conductivity of selected rocks.
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TABLE 2-2. DEFAULT VALUES FOR EFFECTIVE POROSITY FOR USE
IN TIME OF TRAVEL (TOT) ANALYSES

Effective porosity
Seil textural classes of saturation?

Unified soil classification system

GS, GP, GM, GC, SW, SP, SM, SC 0.20
(20%)

ML, MH 0.15
(15%)

CL, OL, CH, OH, PT 0.01b
(1%)

USDA soil textural classes

Clays, silty clays, sandy clays 0.0lb
(1%)

Silts, silt loams, silty clay loams 0.10
(10%)

A1l others 0.20
(20%)

Rock units (all)

Porous media (nonfractured rocks 0.15
such as sandstone and some carbonates) (15%)
Fractured rocks (most carbonates, 0.0001
shales, granites, etc.) (0.01%)

Source: Barari, A., and L. S. Hedges. 1985. Movement of Water
in Glacial Till. Proceedings of the 17th International Congress of the
International Associgtion of Hydrogeologists, pp. 129-134.

4 These values are estimates and there may be differences between
simjlar units. For example, recent studies indicate that
weathered and unweathered glacial t111 may have markedly dif-
ferent effective porosities (Barari and Kedges, 1985; Bradbury
et at., 1985).

b Assumes de minimus secondary porosity. [f fractures or soil

structure are present, effective poraosity should be 0.001

(0.1%).
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TABLE 2-3. SPECIFIC YIELD VALUES FOR
SELECTED ROCK UNITS

Rock type Specific yield (%)
Clay 2
Sand 22
Gravel 19
Limestone 18
Sandstone (semiconsolidated) 6
Granite 0.09
Basalt (young) 8

Source: Heath, R. C. 1983. Basic Ground-Water
Hydrology. U.S. Geological Survey, Water Supply
Paper 2220, 84 pp.
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This effect has been observed with certain organic solvents in clay units (see
Brown and Andersen, 1981). Contaminant fate and transport models may be use-
ful in determining the influence of these effects on movement in the sub-
surface. A variety of these models are available on the commercial market for
private use.

2.6 EXAMPLE CALCULATIONS

2.6.1 Examplie l: Determining the Effective Porosity (Ne)

The effective porosity, Ne, can be determined during a pump test using
the following method:

Ne = Volume of water removed/Volume of aquifer dewatered
Volume of water removed:

Pumping rate of pump: 50 gpm
Pumping duration: 30 min

50 gpm x 30 min = 1,500 gal
Volume of aquifer dewatered:
V= (1/3)arzh

where r is the radius of area affected by pumping and h is the drop in the
water level. If, for example, h = 3 ft and r = 18 ft, then:

V = (1/3)*3.14*182*3 = 1,018 ft3
Next,

(1,018 ft3)(7.48 gal/ft3) = 7,615 gal
from which:

Ne = 1,500 gal/7,615 gal = 19.7%
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2.6.2 Example 2: Determining the Hydraulic Gradient (i)

The hydraulic gradient can be determined from a potentiometric surface
map (Fiqure 2-3 below) using the following method.

Figure 2-3. Potentiometric surface map for computation
of hydraulic gradient.

1 = ah/1 = (29.2 ft - 29.1 ft)/100 ft = 0.001 ft/ft

Here, Ah is the difference in gradient measured at P,y and P,,, and 1 is the
distance between the two points.

2.6.3 Example 3: Determining the Average Linear Velocity of Ground Water

vh)

A land disposal facility has ground-water monitoring wells that are
screened in an unconfined silty sand aquifer. Slug tests, pump tests, and
tracer tests conducting during a hydrogeologic site investigation have
revealed that the aquifer has a hydraulic conductivity (Kh) of 15 ft/d and an
effective porosity (Ne) of 15%. Using a potentiometric map (as in example 2),
the regional hydraulic gradient has been determined to be 0.003 ft/ft.

What is the minimum time interval between sampling events that will allow
one to obtain an independent sample of ground water?

Calculate the average linear horizontal component of ground water (Vh):
Kh = 15 ft/d

Ne = 0.15
i = 0.003 ft/ft
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Vh = iKh/Ne

(0.003) (15)/(0.15) = 0.3 ft/d
(0.3 ft/d)(12 in/ft) = 3.6 in/d

Discussion: The average linear horizontal velocity of ground water has
been calculated and is equal to 3.6 in/d. Monitoring well diameters at this
particular facility are 4 in. We can determine the minimum time interval
between sampling events that will allow one to obtain an independent sample of
ground water by dividing the monitoring well diameter by the average linear
velocity.

(4 in)/(3.6 in/d) = 1.1 d
Based on the above calculations, the owner or operator could sample every
other day. However, because the velocity can vary with recharge rates sea-
sonally, a weekly sampling interval would be advised.

Suggested Sampling Interval

Date Obtain Sample No.
June 1 1
June 8 2
June 15 3
June 22 4

Table 2-4 gives some results for common situations.
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TABLE 2-4. DETERMINING A SAMPLING INTERVAL

DETERMINING A SAMPLING INTERUAL

UNIT Kh (ft/d) | Ne (%) Vh (in/mo) SAMPLING INTERVAL
GRAVEL EE4 19 S5EE4 DAILY
SAND EE 2 22 82EE2 DAILY
JILTY SAND EE1 14 13 EE2 WEEKLY
TILL EE -3 2 3.6 EE -2 MONTHLY *
'S (SEMICON) EEO 6 3.0EE1 WEEKLY
ABASALT EE -1 8 2.25 MONTHLY *

The average linear velocities assume 1=0.005.
* Use a Monthly sampling interval or an alternate sampling procedure
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SECTION 3
CHOOSING A STATISTICAL METHOD

This chapter discusses the choice of an appropriate statistical method.
Section 3.1 includes a flow chart to guide this selection. Section 3.2 con-
tains procedures to test the distributional assumptions of statistical methods
and Section 3.3 has procedures to test specifically for equality of variances.

The choice of an appropriate statistical test depends on the type of mon-
itoring and the nature of the data. The proportion of values in the data set
that are below detection is one important consideration. If most of the
values are below detection, a test of proportions is suggested.

One set of statistical procedures is suggested when the monitoring con-
sists of comparisons of water sample data from the background (hydraulically
upgradient) well with the sample data from compliance (hydraulically down-
gradient) wells. The recommended approach is analysis of variance. Also, for
a facility with limited amounts of data, it is advisable to initially use the
ANOVA method of data evaluation, and later, when sufficient amounts of data
are collected, to charge to a tolerance interval or a control chart approach
for each compliance well. However, alternative approaches are allowed. These
include adjustments for seasonality, use of tolerance intervals, and use of
prediction intervals. These methods are discussed in Chapter 4.

When the monitoring objective is to compare the concentration of a haz-
ardoys constituent to a fixed level such as a maximum concentration Timit
(MCL), a different type of approach is needed. This type of comparison com-
monly serves as a basis of compliance monitoring. Control charts may be used,
as may tolerance or confidence intervals. Methods for comparison with a fixed
level are presented in Chapter 5.

When a long history of data from each well is available, intra-well com-
parisons are appropriate. That {s, the data from a single well are compared
over time to detect shifts in concentration, or gradual trends in concentra-
tion that may indicate contamination. Methods for this situation are pre-
sented in Chapter 6.

3.1 FLOW CHARTS--OVERVIEW AND USE

The selection and use of a statistical procedure for ground-water moni-
toring is a detailed process. Because a singie flow chart would become too
complicated for easy use, a series of flow charts has been developed. These
flow charts are found at the beginning of each chapter and are intended to
gquide the user in the selection and use of procedures in that chapter. The
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more detailed flow charts can be thought of as attaching to the general flow
charts at the indicated points.

There are three general types of statistical procedures discussed. One
type of procedure is appropriate for comparisons among wells; that is, back-
ground well to compliance well data comparisons. The second type of procedure
is to compare compliance well data with a constant 1imit such as an alternate
concentration limit (ACL) or a maximum concentration 1imit (MCL)., The third
type of procedure is designed for intra-well comparisons. This method of
analysis may be used when sufficient data from an individual well exist and
the data allow for the identification of trends. A recommended control chart
procedure (Starks, 1988) suggests that a minimum background sample of eight
observations is needed. Thus an intra-well control chart approach could begin
after the first complete year of data collection.

The first question to be asked in determining the appropriate statistical
procedure is the type of monitoring program specified in facility permit. The
type of monitoring program may determine if the appropriate comparison fis
among wells, comparison of downgradient data to a constant, intra-well com-
parisons, or a special case.

[f the facility is in detection monitoring, the appropriate comparison is
between wells that are hydraulically upgradient from the facility and those
that are hydraulically downgradient. The statistical procedures for this type
of -monitoring are presented in Chapter 4. In detection monitoring, it fis
1ikely that many of the monitored constituents may result in few quantified
results (i.e., much of the data are below the 1imit of analytical detec-
tion). 1If this is the case, then the test of proportions (Section 7.1.3) may
be recommended. If the constituent occurs in measurable concentrations in
background, then analysis of variance (Section 4.2) {is recommended. This
method of analysis is preferred when the data lack sufficient quantity to
allow for the use of tolerance intervals or control charts.

If the facility is in compliance monitoring, the permit will specify the
type of compliance limit. If the compliance 1imit is determined from the
background, the statistical method is chosen from those that compare back-
ground well to compliance well data. Statistical methods for this case are
presented in Chapter 4. The preferred method is the appropriate analysis of
variance method in Section 4.2, or if sufficient data permit, tolerance inter-
vals or control charts. The flow chart in Chapter 4 aids in determining which
method is applicable.

If a facility in compliance monitoring has a constant maximum concentra-
tion 1imit (MCL) or alternate concentration 1limit (ACL) specified, then the
appropriate comparison is with a constant. Methods for comparison with MCLs
or ACLs are presented in Chapter 5, which contains a flow chart to aid in
determining which method to use.

Finally, when more than one year of data have been collected from each
well, the facility owner or operator may find it useful to perform intra-well
comparisons over time to supplement the other methods. This is not a regula-
tory requirement, but it could provide the facility owner or operator with
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information about the site hydrogeology. These methods are presented in
Chapter 6.

The user should refer to Figure 3-1 to determine the type of comparison
required. Initially this is either a comparison of background well to com-
pliance well data or a comparison of compliance well data with an MCL or
ACL. This leads the user to either Chapter 4 or 5. Eventually, there will be
sufficient data to add the intra-well comparison presented in Chapter 6.

3.2 CHECKING DISTRIBUTIONAL ASSUMPTIONS

The purpose of this section is to provide users with methods to check the
distributional assumptions of the statistical procedures recommended for
ground-water monitoring. It is emphasized that one need not do an extensive
study of the distribution of the data unless a nonparametric method of analy-
sis is used to evaluate the data. I[f the owner or operator wishes to trans-
form the data, it must first be shown that the untransformed data are inappro-
priate for a normal theory test. Similariy, if the owner or operator wishes
to use nonparametric methods, he or she must demonstrate that the data do
violate normality assumptions.

EPA has adoptad this approach because most of the statistical procedures
that meet the criteria set forth in the regulations are robust with respect to
departures from many of the distributional assumptions. That is, only extreme
violations of assumptions will result in an incorrect outcome of a statistical
test. Moreover, it is only in situations where it is unclear whether contami-
nation is present that departures from assumptions will alter the outcome of a
statistical test. EPA therefore beljeves that it is protective of the envi-
ronment to adopt the approach of not requiring testing of assumptions on a
wide scale.

It should be noted that the distributional assumptions for statistical
procedures apply to the errors of the observations. Application of the dis-
tributional tests to the observations themselves may lead to the conclusion
that the distribution does not fit the observations. In some cases this lack
of fit may be due to differences in means for the different wells or some
other cause. The tests for distributional assumptions are best applied to the
residuals from a statistical analysis. The residuals are the differences be-
tween the original observations and the values predicted by a model. For
example, in analysis of variance, the predicted values are the group means and
the residual is the difference between each observation and its group mean.

If the conclusion from testing the assumptions is that the assumptions
are not adequately met, then a transformation of the data may be used or a
nonparametric statistical procedure selected. Many types of concentration
data have been reported in the literature to be adequately described by a log-
normal distribution. That is, the natural logarithm of the original observa-
tions has been found to follow the normal distribution. Consequently, if the
distributional assumptions are found to be violated for the original data, a
transformation by taking the natural logarithm of each observation is sug-
gested. This assumes that the data are all positive. If the log transforma-
tion does not adequately normalize the data or stabilize the variance, one
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should use the nonparametric procedure or seek the consultation of a profes-
sional statistician to determine an appropriate statistical procedure.

The following sections present four selected approaches to check for
normality. The first option refers to literature citation, the other three
are statistical procedures. The choice is left to the user. The availability
of statistical software and the user's familiarity with it will be a factor in
the choice of a method. The coefficient of variation method, for example,
requires only the computation of the mean and standard deviation of the
data. Plotting on probability paper can be done by hand but becomes tedious
with many data sets. However, the commercial Statistical Analysis System
(SAS) software package provides a computerized version of a probability plot
in its PROC UNIVARIATE procedure. SYSTAT, a package for PCs also has a prob-
ability plot procedure. The chi-squared test is not readily available through
commercial software but can be programmed on a PC (for examplie in LOTUS 1-2-3)
or in any other (statistical) software language with which the user is
famiiiar. The amount of data available will also influence the choice. All
tests of distributional assumptions require a fairly large sample size to
detect moderate to small deviations from normality. The chi-squared test
requires a minimum of 20 samplies for a reasonable test.

Other statistical procedures are available for checking distributional
assumptions. The more advanced user is referred to the Kolmogorov-Smirnov
test (see, for exampie, Lindgren, 1976) which 1is used to test the hypothesis
that data come from a specific (that is, completely specified) distribution.
The normal distribution assumption can thus be tested for. A minimum sampie
size of 50 {s recommended for using this test.

A modification to the Kolmogorov-Smirnov test has been developed by
Lilliefors who uses the sample mean and standard deviation from the data as
the parameters of the distribution (Lilliefors, 1967). Again, a sample size
of at least 50 is recommended.

Another alternative to testing for normality is provided by the rather
involved Shapiro-Wilk's test. The interested user is referred to the relevant
article in Biometrika by Shapiro and Wilk (1965).

3.2.1 Literature Citation

PURPOSE

An owner or operator may wish to consult literature to determine what
type of distribution the ground-water monitoring data for a specific con-
stituent are likely to follow. This may avoid unnecessary computations and
make it easier to determine whether there is statistically significant evi-
dence of contamination.

PROCEDURE
One simple way to select a procedure based on a specific statistical dis-

tribution, is by citing a relevant published reference. The owner or operator
may find papers that discuss data resulting from sampling ground water and
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conclude that such data for a particular constituent follow a specified dis-
tribution. Citing such a reference may be sufficient justification for using
a method based on that distribution, provided that the data do not show evi-
dence that the assumptions are violated.

A literature citation should consider the distribution of data for the
specific compound being monitored. In addition, it should consider sites with
simitar hydrogeologic characteristics to™ the extent possible. However,
because many of the compounds may not be studied in the literature, extrapola-
tions to compounds with similar chemical characteristics and to sites with
similar hydrogeologic conditions are also acceptable. Basically, the owner or
operator needs to provide some reason or justification for choosing a par-
ticular distribution. '

3.2.2 (Loefficient of Variation

Many statistical procedures assume that the data are normally distrib-
uted. The concentration of a hazardous constituent in ground water is inher-
ently nonnegative, while the normal distribution allows for negative values.
Howaver, if the mean of the normal distribution is sufficfently above zero,
the distribution places very 1ittle probability on negative observations and
is sti11 a valid approximation.

Cne simple check that can rule out use of the normal distribution 1s to
calculate the coefficient of variation of the data. The use of this method
was required by the former Part 264 Subpart F regulations pursuant to Sec-
tion 264.97(h)(1). Because most owners and operators as well as regional
personnel are already familiar with this procedure, it will probably be used
frequently. The coefficient of variation, CV, is the standard deviation of
the observations, divided by their mean. If the normal distribution is to be
2 valid model, there should be very little probability of negative values.
The number of standard deviations by which the mean exceeds zero determines
the probability of negative values. For example, if the mean exceeds zero by
one standard deviation, the normal distribution will have less than 0.159
probability of a negative observation.

Consequently, one can calculate the standard deviation of the observa-
tions, calculate the mean, and form the ratio of the standard deviation di-
vided by the mean. [f this ratio exceeds 1.00, there is evidence that the
data are not normal and the normal distribution should not be used for those
data. (There are other possibilities for nonnormality, but this is a simple
check that can rule out obviously nonnormal data.)

PURPOSE

This test 1s a simple check for evidence of gross nonnormality in the
ground-water monitoring data.

PROCEDURE

To apply the coefficient of variation check for normality proceed as fol-
lows.

3-6



Step 1. Calculate the sample mean, X, of n observations Xg, i=1,
n.

n
X=(¢ X;)/n
i=1
Step 2. Calculate the sample standard deviation, S.
n - 172
S= |z (X, -X)2/(n - 1)
jal |

Step 3. Divide the sample standard deviation by the sample mean. This
ratio is the CV.

CV = S/X.

Step 4. Determine if the result of Step 3 exceeds 1.00. If so, this is
evidence that the normal distribution does not fit the data adequately.

EXAMPLE

Table 3-1 is an example data set of chlordane concentrations in 24 water
samples from a fictitious site. The data are presented in order from least to
greatest.

Applying the procedure steps to the data of Table 3-1, we have:
Step 1. X = 1.52

Step 2. S=1.56

Step 3. Cv =1.,56/1.52 = 1.03

Step 4. Because the result of Step 3 was 1.03, which exceeds 1.00, we
conclude that there is evidence that the data do not adequately follow the
normal distribution. As will be discussed in other sections one would then
either transform the data, use a nonparametric procedure, or seek professional
guidance.

NOTE. The owner or operator may choose to use parametric tests since
1.03 is so close to the limit but should use a transformation or a nonpara-
metric test if he or she believes that the parametric test results would be
incorrect due to the departure from normality.
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TABLE 3-1. EXAMPLE DATA FOR COEFFICIENT
OF VARIATION TEST

Chlordane concentration (ppm)
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3.2.3 Plotting on Probability Paper
PURPOSE

Probability paper is a visual aid and a diagnostic tool in determining
whether a set of data follows a normal distribution. Also, approximate esti-
mates of the mean and standard deviation of the distribution can be read from
the plot.

PROCEDURE

Let X be the variable; X,, XzseeesXys...,X, the set of n observations.
The values of X can be raw data, residuals, or transformed data.
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Step 1. Rearrange the observations in ascending order:
X(1), X{(2)y...,X(n}.

Step 2. Compute the cumulative frequency for each distinct value X(i)
as (#/(n+l)) x 100%. The divisor of (n+l) is a plotting convention to avoid
cumulative frequencies of 100% which would be at infinity on the probability
paper.

If a value of X occurs more than once, then the corresponding value of i
increases appropriately. For example, if X(2) = X(3), then the cumulative
frequency for X(1) is 100*1/(n+l), but the cumulative frequency for X(2) or
X(3) is 100*(1+2)/(n+l).

Step 3. Plot the distinct pairs [X(i), (i/n+l)) x 100] values on prob-
ability paper (this paper is commercially available) using an appropriate
scale for X on the horizontal axis. The vertical axis for the cumulative
frequencies is already scaled from 0.01 to 99.99X%.

If the points fall roughly on a straight line (the line can be drawn by
hand with a ruler), then one can conclude that the underiying distribution is
approximately normal. Alsc, an estimate of the mean and standard deviation
can be made from the plot. The horizontal 1ine drawn through 50% cuts the
plotted 1ine at the mean of the X values. The horizontal 1ine going through
84% cuts the line at a value corresponding to the mean plus one standard devi-
ation. By subtraction, one obtains the standard deviation.

REFERENCE

Dixon, W. J., and F. J. Massey, Jr. Introduction to Statistical Analysis.
McGraw-Hi11, Fourth Edition, 1983,

EXAMPLE

Table 3-2 1ists 22 distinct chiordane concentration values (X) along with
their frequencies. These are the same values as those listed in Table 3-1.
There is a total of n=24 observations.

Step 1. Sort the values of X in ascending order (column 1).

Step 2. Compute {100 x (i/25)], column 4, for each distinct value of X,
based on the values of i {(column 2).

Step 3. Plot the pairs [Xy, 100x(3/25)] on probability paper (Fig-
ure 3-2).

INTERPRETATICN

The points in Figure 3-2 do not fall on a straight line; therefore, the
hypothesis of an underlying normal distribution is rejected. However, the
shape of the curve indicates a lognormal distribution. This is checked in the
next step.
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TABLE 3-2. EXAMPLE DATA COMPUTATIONS FOR
PROBABILITY PLOTTING

Concentration Absolute

X frequency 1 100x(1/(n+1)) n(X)
0.04 1 1 4 -3.22
0.18 2 3 12 -1.71
0.25 1 4 16 -1.39
0.29 1 5 20 -1.24
0.38 1 5 24 -0.97
0.50 2 8 32 -0.69
0.60 1 9 36 -0.51
0.93 1 10 40 -0.07
0.97 1l 11 44 -0.03
1.10 1 12 43 0.10
1.16 1 13 52 0.15
1.29 1 14 56 0.25
1.37 1 15 60 0.31
1.38 1 16 64 0.32
1.45 1 17 68 0.37
1.46 1 18 72 0.38
2.58 1 19 76 0.95
2.69 1 20 80 0.99
2.80 1 21 84 1.03
3.33 1 22 88 1.20
4.50 1 23 92 1.50
6.60 1 24 96 1.89
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Figure 3-2. Probability plot of raw chlordane concentrations.
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Next, take the natural logarithm of the X-values (In(X)), column § in
Table 3-2). Repeat Step 3 above using the pairs [In(X), 100x(i/25)]. The re-
sulting plot is shown in Figure 3-3. The points fall approximately on a
straight line (hand-drawn) and the hypothesis of lognormality of X, i.e.,
In(X) is normally distributed, can be accepted. The mean can be estimated at
s1ightly below O and the standard deviation at about 1.2 on the laog scale.

3.2.4 The Chi-Squared Test

The chi-sguared test can be used to test whether a set of data fits a
specified distribution. Most introductory courses in statistics explain the
chi-squared test, and its familiarity among owners and operators as well as
regional personnel may make it a frequently used method of anmalysis. In this
application the assumed distribution is the normal distribution, but other
distributions could also be used. The test consists of defining cells or
ranges of values and determining the expected number of observations that
would fall in each cell according to the hypothesized distribution. The
actual number of data points in each cell is compared with that predicted by
the distribution to judge the adequacy of the fit.

PURPOSE

The chi-squared test is used to test the adequacy of the assumption of
normality of the data.

PROCEDURE

Step 1. Determine the appropriate number of cells, K. This number
usually ranges from 5 to 10. Divide the number of observations, N, by 4. Use
the largest whole number of this result, using 10 if the result exceeds 10.

Step 2. Standardize the data by subtracting the sample mean and divid-
ing by the sample standard deviation:

Z, = (X - X)/S

Step 3. Determine the number of observations that fall in each of the
cells defined according to Table 3-3. The expected number of observations for
each cell is N/K, where N is the total number of observations and K is the
number of cells. Let N; denote the observed number in cell 1 (for i taking
values from 1 to K) and let E; denote the expected number of observations in
cell i. Note that in this case the cells are chosen to make the E;'s equal.

Step 4. Calculate the chi-squared statistic by the formula below:
K (N, - E,)?
2 i i
X = x —-——Ii———:
i=]

Step 5. Compare the calculated result to the table of the chi-squared
distribution with K-3 degrees of freedom (Table 1, Appendix B). Reject the
hypothesis of normality if the calculated value exceeds the tabulated value.
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Figure 3-3. Probability plot of log-transformed chlordane concentrations.
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TABLE 3-3. CELL BOUNDARIES FOR THE CHI-SQUARED TEST

Number of cells (K)

5 5 7 8 9 10
Cell boundaries -0.84 0,97 -1.07 -1.15% -1.22 -1.28
for equal ex- -0.25% -0.43 -0.57 -0.67 -1.08 -0.84
pected cell 0.25 0.00 -0.18 -0.32 -0.43 -0.%2
sizes with the 0.84 0.43 0.18 0.00 -0.14 -0.25
normal distriae 0.97 0.57 0.32 0.14 0.00
bution 1.07 0.67 0.43 0.25
1.15 1.08 0.52
1.22 0.84
1.28

REFERENCE

Remington, R. D., and M. A. Schork. Statistics with Applications to the
Biological and Health Sciences. Prentice-Hall, 1970. 235-236.

EXAMPLE

The data in Table 3-4 are N = 2] residuals from an analysis of variance
on dioxin concentrations. The analysis of variance assumes that the errors
(estimated by the residuals) are normally distributed. The chi-squared test
is used to check this assumption.

Step 1. Divide the number of observations, 21, by 4 to get 5.25. Keep
only the integer part, 5, so the test will use K = § cells.

Step 2. The sample mean and standard deviation are calculated and found
to be: X = 0.00, S = 0.24. The data are standardized by subtracting the mean
(0 in this case) and dividing by S. The results are also shown in Table 3-4.

Step 3. Determine the number of (standardized) observations that fall
into the five cells determined from Table 3-3. These divisions are: (1) less
than or equal to -0.84, (2) greater than -0.84 and less than or equal to
-0.25, (3) greater than -0.25 and less than or equal to +0.25, (4) greater
than 0.25 and less than or equal to 0.84, and (5) greater than 0.84. We find
4 observations in cell 1, 6 in cell 2, 2 in cell 3, 4 in cell 4, and 5 in
cell 5.

Step 4. Calculate the chi-squared statistic. The expected number in
each cell is N/K or 21/5 = 4.2.

x2 = 15—5735213 e + 15_573;313 = 2.10
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TABLE 3-4. EXAMPLE DATA FOR CHI-SQUARED

TEST
Standardized
Observation Res{idual residual
1 -0.45 -1.90
2 -0.35 -1.48
3 -0.35 -1.48
4 -0.22 -0.93
5 -0.16 -0.67
6 -0.13 -0.55
7 <0.11 -3.46
8 -0.10 -0.42
9 -0.10 -0.42
10 -0.06 -0.25
11 -0.0% -0.21
12 0.04 0.17
13 - 0.11 0.47
14 0.13 0.55
15 0.16 0.68
16 0.17 0.72
17 0.20 0.85
18 0.21 0.89
19 0.30 1.27
20 0.34 1.44
21 0.41 1.73

3-15



Step 5. The critical value at the 5% lavel for a chi-squared test with
2 (K<3 = 5-3 = 2) degrees of freedom is 5.99 (Table 1, Appendix B). Because
the calculated value of 2.10 is less than 5.99 there is no evidence that these
data are not normal.

INTERPRETATION

The cell boundaries are determined from the normal distribution so that
equal numbers of observations should fall in each cell. If there are large
differences between the number of observations in each cell and that predicted
by the normal distribution, this is evidence that the data are not normal.
The chi-squared statistic is a nonnegative statistic that {ncreases as the
difference between the predicted and observed number of observations in each
cell increases.

[f the calculated value of the chi-squared statistic exceeds the tabu-
lated value, there is statistically significant evidence that the data do not
follow the normal distribution. In that case, one would need to do a trans-
formation, use a nonparametric procedure, or seek consultatfon before inter-
preting the results of the test of the ground-water data. [f the calculated
value of the chi-squared statistic does not exceed the tabulated critical
value, there is no significant lack of fit to the narmal distribution and one
can proceed assuming that the assumption of normality is adequately met.

Remark: The chi-squared statistic can be used to test whether the re-
siduals from an analysis of variance or other procedure are normal. In this
case the degrees of freedom are found by (number of cells minus one minus the
number of parameters that have been estimated). This may require more than
the suggested 10 cells. The chi-squared test does require a fairly large sam-
p1$1size in that there should be generally at least four observations per
cell.

3.3 CHECKING EQUALITY OF VARIANCE: BARTLETT'S TEST

The analysis of variance procedures presented in Chapter 4 are often more
sensitive to unequal variances than to moderate departures from normality.
The procedures described in this section allow for testing to determine
whether group variances are equal or differ significantly. Often in practice
unequal variances and nonnormality occur together. Sometimes a transformation
to stabilize or equalize the variances also produces a distribution that is
more nearly normal. This sometimes occurs if the initial distribution was
positively skewed with variance increasing with the number of observations.
Only Bartlett's test for checking equality, or homogeneity, of variances f{s
presented here. It encompasses checking equality of more than two variances
with unequal sample sizes. Other tests are available for special cases. The
F-tast is a special situation when there are only two groups to be compared.
The user is referred to classical textbooks for this test (e.g., Snedecor and
Cochran, 1980). In the case of equal sample sizes but more than two variances
to be compared, the user might want to use Hartley's or maximum F-ratio test
(see Nelson, 1987). This test provides a quick procadure to test for variance
homogeneity.
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PURPOSE

Bartlett's test is a test of homogeneity of variances. In other words,
it is a means of testing whether a number of population variances of normal
distributions are equal. This is an assumption made in analysis of variance
when comparing concentrations of constituents between background and compii-
ance wells, or among compliance wells. It should be noted that Bartlett's
test is sensitive to nonnormality in the data. With long-tailed distributions
the test too often rejects equality (homogeneity) of the variances.

PROCEDURE

Assume that data from k wells are available and that there are n; data
points for well i.

Step 1. Compute the k sample variances Sf,...,S;. Each variance has
associated with it f§£- ny-1 degpees of freedom. Take the natural logarithm

of each variance, In(S}),...,In(Sy).
Step 2. Compute the test statistic
k

X2 = £+In(S)) - I f,*In(S})
PP im

k k
where f = I f1 =| I ng) - k
i=] i=]l

thus f is the total sample size minus the number of wells (groups); and
2 1 k 2
S == ¢ f.,S,, the pooled variance across wells.

p f j=1 i1

Step 3. Using the chi-squared table (Table 1, Appendix B), find the
critical value for X2 with (k-1) degrees of freedom at a predetermined signif-
icance level, for example, 0.05.

INTERPRETATION

[f the calculated value X2 is larger than the tabulated value, then can-
clude that the variances are not equal at that significance level.

REFERENCE
Johnson N. L., and F. C. Leone. Statistics and Experimental Design in

Engineering and the Physical Sciences. Vol. I, John Wiley and Sons, New York,
1977.
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EXAMPLE

Manganese concentrations are given for k=6 wells in Table 3-5 below.

TABLE 3-5. EXAMPLE DATA FOR BARTLETT'S TEST

Sampling
date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

January 1 50 46 272 34 48 68
February 1 73 77 171 3,940 54 991
March 1 244 32 54
April 1 202 53

fy = ng-1= 3 1 3 1 1 2
5; = 95 22 112 2,762 3 537
5;2 = 9,076 481 12,454 7,628,418 8 288,349
fi*¥S42 = 27,229 481 37,362 7,628,418 8 576,698 -
1n(812) = 9 6 9 16 2 13
f1*1n(S12) = 27 6 28 16 2 25

Step 1. s Compute the six sample variances and take their natural
logarithm, 1n($}))y..., In(Sg), as 9, 6,..., 13, respectively.

6
Step 2. - Compute f1*1n(S:) = 105,
j=1

This is the sum of the last 1ine in Table 3-5.

6
. Compute f = fy= 3+1+...+42=1]1
1=l
. Compute S;
§? ..l 6 £+ = oL (27,209 +...+ 576,608) = ++ * 8,270,195 = 751,836
ch 151 1 1 -1-1- 9 e e ’ ‘1'1' [ ’ [}
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. Take the natural logarithm of s2:

2
p’ 1n(Sp) = 14

. Compute X2 = 11*14 - 105 = 44

Step 3. The critical X2 value with 6-1 = 5 degrees of freedom at the 5%
significance level is 1l.1 (Tab1e 1 in Apgend1x g) Since 44 is larger than
11.1, we conclude that the six variances $°,...,S°, are not homogeneous at the
5% significance level. ! 6

INTERPRETATION

The sample variances of the data from the six wells were compared by
means of Bartlett's test. The test was significant at the 5% level, suggest-
ing that the variances are significantly unequal (heterogeneous). A log-
transform of the data can be done and the same test performed on the trans-
formed data. Generally, if the data followed skewed distribution, this ap-
proach resolves the problem of unequal variances and the user can proceed with
an ANOVA for example.

On the other hand, unequal variances among well data could be a direct
indication of well contamination, since the individual data could come from
different distributions (i.e., different means and variances). Then the user
may wish to test which variance differs from which one. The reader is
referred here to the literature for a gap test of variance (Tukey, 1949;
David, 1956; or Nelson, 1987).

NOTE

. In the case of k=2 variances, the test of equality of variances is
the F-test (Snedecor and Cochran, 1980).

= Bartlett's test simplifies in the case of equal sample sizes, ny=n,
j=1,...,k. The test used then is Cochran's test. C(ochran's test focuses on
the largest variance and compares it to the sum of all the variances. Hartley
introduced a quick test of homogeneity of variances that uses the ratio of the
largest over the smallest variances. Technical aids for the procedures under

the assumption of equal sample sizes are given by L. S. Nelson in the Journal
of Quality Technology, Vol. 19, 1987, pp. 107 and 165.
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SECTION 4
BACKGROUND WELL/COMPLIANCE WELL COMPARISONS

There are many situations in ground-water monitoring that call for the
comparison of data from different wells. The assumption is that a set of
wells can be defined that are not contaminated. Generally these are back-
ground wells and have been sited to be hydraulically upgradient from the
regulated unit. A second set of wells are sited hydraulically downgradient
from the regulated unit and are otherwise known as compliance wells. The data
from these compliance wells are compared to the data from the background wells
to determine whether there is any evidence of contamination in the compliance
wells that would presumably result from a release from the regulated unit.

If the owner or operator of a hazardous waste facility does not have
reason to suspect that the test assumptions of equal variance or normality
will be violated, then he or she may simply choose the parametric analysis of
varjance as a default method of statistical amalysis. In the event that this
method indicates a statistically significant difference between the groups
being tested, then the test assumptions should be evaluated.

This situation, where the relevant comparison is between data from back-
ground wells and data from compliance wells, is the topic of this section.
Comparisons between background well data and compliance well data may be
called for in all phases of monitoring. This is the general case for detec-
tion monitoring. It 1s also the case for compliance monitoring {f the com-
pliance 1imits are determined by the background well constituent concentration
levels. It may also be the case in corrective action. Compounds that are
present in background wells (e.g., naturally occurring metals) are most appro-
priately evaluated using this comparison method.

The procedures described in this section are applicable whenever the
relevant comparison is between background well data and compliance well
data. Section 4.1 pravides a flow chart and overview for the selection of
methods for comparison of background well and compliance well data. Sec-
tion 4.2 contains analysis of variance methods. These provide methods for
directly comparing background well data to compiiance well data. Section 4.3
describes a tolerance interval approach, where the background well data are
used to define the tolerance limits for comparison with the compliance well
data. Section 4.4 contains an approach based on prediction intervals, again
using the background well data to determine the prediction interval for com-
parison with the compliance well data. Methods for comparing data to a fixed
compliance 1imit (an MCL or ACL) will be described in Section 5.

4.1



4.1 SUMMARY FLOW CHART FOR BACKGROUND WELL/COMPLIANCE WELL COMPARISONS

Figure 4-1 is a flow chart to aid in selecting the appropriate statisti-
cal procedure for background well to compliance well comparisons. The first
step is to determine whether most of the observations are quantified (that is,
above the detection limits) or not. Generally, if more than 50% of the obser-
vations are below the detection limit (as might be the case with detection or
compliance monitoring for volatile organics) then the appropriate comparison
is a test of proportions. The test of proportions compares the proportion of
detected values in the background wells to those in the compliance wells. See
Section 7.1 for a discussion of dealing with data below the detection limit.

If the proportion of detected values is 50% or more, then an analysis of
variance procedure is the first choice. Tolerance 1imits or prediction inter-
vals are acceptable alternative choices that the user may select. The analy-
sis of variance procedures give a more thorough picture of the situation at
the facility, however, the tolerance 1imit or prediction interval approach is
acceptable and requires less computation in many situations.

Figure 4-2 {is a flow chart to guide the user if a tolerance limits
approach is selected. The first step in using Figure 4-2 is to determine
whether the Facility is in detection monitoring. If so, much of the data may
be below the detection limit. See Section 7.1 for a discussion of this case,
which may call for consulting a statistician. If most of the data are quanti-
fied, then follow the flow chart to determine if normal tolerance 1imits can
be used. If the data are not normal (as determined by one of the procedures
in Section 3.2), then the logarithm transformation may be done and the trans-
formed data checked for normality. If the log data are normal, the lognormal
tolerance 1imit should be used. If neither the original data nor the log-
transformed data are normal, seek consultation with a professional
statistician.

_If a prediction interval is selected as the method of choice, see Sec-
tion 4.4 for guidance in performing the procedure.

If analysis of variance is to be used, then continue with Figure 4-1 to
select the specific method that is appropriate. A one-way analysis of vari-
ance is recommended. If the data show evidence of seasonality (observed, for
example, in a plot of the data over time), a trend analysis or perhaps a two-
way analysis of variance may be the appropriate choice. These instances may
require consultation with a professional statistician.

If the one-way analysis of variance is appropriate, the computations are
performed, then the residuals are checked to see if they meet the assumptions
of normality and equal variance. If so, the analysis concludes. If not, a
logarithm transformation may be tried and the residuals from the analysis of
variance on the log data are checked for assumptions. If these still do not
adequately satisfy the assumptions, then a one-way nonparametric analysis of
variance may be done, or professional consultation may be sought.
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4.2 ANALYSIS OF VARIANCE

If contamination of the ground water occurs from the waste disposal
facility and if the monitoring wells are hydraulically upgradient and
hydraulically downgradient from the site, then contamination is unlikely to
change the levels of a constituent in all wells by the same amount. Thus,
contamination from a disposal site can be seen as differences in average con-
centration among wells, and such differences can be detected by analysis of
variance.

Analysis of variance (ANOVA) is the name given to a wide variety of sta-
tistical procedures. All of these procedures compare the means of different
groups of observations to determine whether there are any significant differ-
ences amond the groups, and if so, contrast procedures may be used to
determine where the differences 1ie. Such procedures are also known in the
statistical 1iterature as general linear model procedures.

Because of its flexibility and power, analysis of variance is the pre-
ferred method of statistical analysis when the ground-water monitoring is
based on a comparison of background and compliance well data. Two types of
analysis of variance are presented: parametric and nonparametric one-way
analyses of variance. Both methods are appropriate when the only factor of
concern is the different monitoring wells at a given sampling period.

. The hypothesis tests with parametric analysis of variance usually assume
that the errors (residuals) are normally distributed with constant variance.
These assumptions can be checked by saving the residuals (the difference
between the observations and the values predicted by the analysis of variance
mode1) and using the tests of assumptions presented in Section 3. Since the
data will generally be concentrations and since concentration data are often
found to follow the lognormal distribution, the log transformation is sug-
gested if substantial violations of the assumptions are found in the analysis
of the original concentration data. If the residuals from the transformed
data do not meet the parametric ANOVA requirements, then nonparametric
approaches to analysis of variance are available using the ranks of the obser-
vations. A one-way analysis of variance using the ranks is presented.

When several sampling periods have been used and it is important to con-
sider the sampling periods as a second factor, then two-way analysis of vari-
ance, parametric or nonparametric, is appropriate. This would be one way to
test for and adjust the data for seasonality. Also, trend analysis (e.g.,
time series) may be used to identify seasonality in the data set. If neces-
sary, data that exhibit seasonal trends can be adjusted. Usually, however,
seasonal variation will affect all wells at a facility by nearly the same
amount, and in most circumstances, corrections will not be necessary. Fur-
ther, the effects of seasonality will be substantially reduced by simultane-
ously comparing aggregate compliance well data to background well data.
Situations that require an analysis procedure other than a one-way ANOVA
shouid be referred to a professional statistician.



4.2.1 One-Way Parametric Analysis of Variance

In the context of ground-water monitoring, two situations exist for which
a one-way analysis of variance is most applicable:

* Data for a water quality parameter are available from several wells
but for only one time period (e.g., monitoring has just begun).

* Data for a water quality parameter are available from several wells
for several time periods. However, the data do not exhibit sea-
sonality.

In order to apply a parametric one-way analysis of variance, a minimum
number of observations is needed to give meaningful results. At least p 2 2
groups are to be compared (i.e., two or more wells). [t is recommended that
each group (here, wells) have at least three ubservations and that the total
sampie size, N, be large enough so that N-p 2 5. A variety of combinations of
groups and number of observations in groups will fulfill this minimum. One
sampling interval with four independent samples per well and at least three
wells would fulfill the minimum sample size requirements. The wells should be
spaced so as to maximize the probability of intercepting a plume of contamina-

tion. The samples should be taken far enough apart in time to guard against
autocorrelation.

PURPQOSE

One-way analysis of variance is a statistical procedure to determine
whether differences in mean concentrations among wells, or groups of wells,
are statistically significant. For example, is there significant contamina-
tion of one or more compliance wells as compared to background wells?

PROCEDURE

Suppose the regulated unit has p wells and that n; data points (concen-
trations of a constituent) are available for the ith well. These data can be
from either a single sampling period or from more than one. In the latter
case, the user could check for seasonality before proceeding by plotting the
data over time. Usually the computation will be done on a computer using a
commercial program. However, the procedure is presented so that computations
can be done using a desk calculator, if necessary.

P
Step 1. Arrange the N = ny data points in a data table as follows:
i=l



Well Well

Observations Total Mean
Well No. 1 X{1eoaosanans X X X
> .11 ln1 1. 1.
3 .
p Xp‘l...t.t....Xpn xp. xp.
p
X.' YO'

Step 2. Compute well totals and well means as follows:

n
X, = z1 X:; ,» total of all n, observations at well i
i. j=1 ij i
71 = ;l X1 , average of all ny observations at well i
. 1 >
p ny
X = I r X » grand total of all n; observations
o qal gl 1] i

X = % X , grand mean of all observations

These totals and means are shown in the last two columns of the table above.

Step 3. Compute the sum of squares of differences between well means
and the grand mean:

g By, =X )t b L

SS =

(The formula on the far right is usually most convenient for calculation.)
This sum of squares has (p-1) degrees of freedom associated with it and is a
measure of the variability between wells.



Step 4. Compute the corrected total sum of squares

p — P ny
SS = L z (X -X )2 = g L xz - (xz /N)
Total = j=1 >e j=1  jul

(The formula on the far right is usually most convenient for calculation.)
This sum of squares has (N-1) degrees of freedom associated with it and is a
measure of the variability in the whole data set.

Step 5. Compute the sum of sguares of differences of observations
within wells from the well means. This is the sum of squares due to error and
is obtained by subtraction:

SS = SS - SS

Error Total Wells

[t has associated with it (N-p) degrees of freedom and is a measure of the
variability within wells.

Step 6. Set up the ANOVA table as shown below in Table 4-1. The sums
of squares and their degree of freedom were obtained from Steps 3 through 5.
The mean square quantities are simply obtained by dividing each sum of squares
by its corresponding degrees of freedom.

TABLE 4-1. ONE-WAY PARAMETRIC ANGVA TABLE

Source of Degrees of
Variation Sums of squares freedom Mean squares F
Mwe1
Between wells steﬂs p-l MS“E] 1s F = M-S_Ee—é
- rror
SSwells/(p-1)
Error (within SSError N-p MSgrror
wells '
) = SSError/(N-p)
Total SSTota] N-1

Step 7 To test the hypothesis of equal means for all p wells, compute
F =MS (tast column in Table 4-1). Compare this statistic to the
tabu1a¥eé E staE;s¥1c with (p-1) and (N-p) degrees of freedom (Table 2, Appen-
dix B) at the 5% significance level. If the calculated F value exceeds the
tabulated value, reject the hypothesis of equal well means. Otherwise, con-
clude that there is no significant difference between the concentrations at
the p wells and thus no evidence of well contamination.
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In the case of a significant F (calculated F greater than tabulated F in
Step 7), the user will conduct the next few steps to determine which compli-
ance well(s) is (are) contaminated. This will be done by comparing each com-
pliance well with the background well(s). Concentration differences between a
pair of background wells and compliance wells or between a compliance well and
a set of background wells are called contrasts in the ANOVA and multiple com-
parisons framework.

Step 8. Determine if the significant F is due to differences between
background and compliance wells (computation of Bonferroni t statistics)

Assume that of the p wells, u are background wells and m are compliance
wells (thus u + m = p). Then m differences--m compliance wells each compared
with the average of the background wells--need to be computed and tested for
statistical significance. If there are more than five downgradient wells, the
individual comparisons are done at the comparisonwise significance level of
1%, which may make the experimentwise significance level greater than 5%.

. Obtain the total sample size of all u background wells.

u

Np = 1£1n1

. Compute the average concentration from the u background wells.

X
1 i.

" c

1
X = e
up - Nyy

. Compute the m differences between the average concentrations from
each compliance well and the average background wells.

up . 1‘1,.-.,"‘

. Compute the standard error of each difference as

SEy = (Mg, (L/ny + 1/n)1%

i Error

where MSg. . . is determined from the ANQVA table (Table 4-1) and ny
is the numgér of observations at well 1.

. Obtain the t-statistic t = t(N-p).(l-c/m) from Bonferroni's t-table
(Table 3, Appendix B) with a = 0.05.
. Compute the m quantities D0y = SE, x t for each compliance well i.

If m > 5 use the entry for t(N—p) (1-0.01) - That is, use the entry
m= 5, ’ )
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INTERPRETATION

If the difference X; - X,

compliance well has significantly higher concentrations than the daverage back-
ground wells. Otherwise conclude that the well is not contaminated. This
exercise needs to be performed for each of the m compiiance wells individu-
ally. The test is designed so that the overall experimentwise error is 5% if
there are no more than five compliance wells.

exceeds the value 01, conclude that the ith

CAUTIONARY NOTE

Should the regulated unit consist of more than five compliance wells,
then the Bonferroni t-test should be modified by doing the individual compari-
sons at the 1% level so that the Part 264 Subpart F regulatory requirement
pursuant to §264.97(1)(z) will be met. Alternately, a different analysis of
contrasts, such as Scheffe's, may be used. The more advanced user is referred
to the second reference below for a discussion of multiple comparisons.

REFERENCES

Johnson, Norman L., and F. C. Leone. 1977.  Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. II, Second Edition,
John Wiley and Sons, New York.

MiTler, Ruppert G., Jr. 1981. Simultaneous Statistical Inference. Second
Edition, Springer-Verlag, New York.

EXAMPLE

Four lead concentration values at each of six wells are given in
Table 4-2 below. The wells consist of u=2 background and m=4 compliance
wells. (The values in Table 4-2 are actually the natural logarithms of the
original lead concentrations.)

Step 1. Arrange the 4 x 6 = 24 observations in a data table as follows:

TABLE 4-2. EXAMPLE DATA FOR ONE-WAY PARAMETRIC ANALYSIS OF VARIANCE

Log of Pb concentrations (pg/L)

Well Well

total mean Well
Ae11 No. Date: Jan 1 Feb 1l Mar 1 Aprl (X5.) (X4.) std. dev.
1 Background wells 4.06 3.99 3.40 3.83 15.28 3.82 0.295
2 3.83 4.34 3.47 4,22 15.86 3.96 0.398
3 Compliance wells 5.61 5.14 3.47 3.97 18.18 4.55 0.996 (max)
4 3.53 4.54 4.26 4.42 16.75 4.19 0.456
5 3.91 4,29 5.50 5.31 19.01 4,75 0.771
6 5.42 5.21 5.29 5.08 21.01 5.25 0.142 (min)

X.. = 106.08 X.. = 4.42
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Step 2. The calculations are shown on the right-hand side of the data
table above. Sample standard deviations have been computed also.

Step 3. Compute the between-well sum of squares.

1 1
SSWe]]s =3 (15.282 + .... + 21.012) - 33 * 106.082 = 5.76

with {6 (wells) - 1] = 5 degrees of freedom.
Step 4. Compute the corrected total sum of squares.

1
SSTotal = 4,062 + 3.992 + .... + 5,082 - 33 X 106.082 = 11.94

with [24 (observations) - 1] = 23 degrees of freedom.

Step 5. Obtain the within-well or error sum of squares by subtraction.

SS = 11,94 - 5.76 = 6.18

Error

with [24 (observations) - 6 (wells)] = 18 degrees of freedom.
Step 6. Set up the one-way ANOVA as in Table 4-3 below:

TABLE 4-3. EXAMPLE COMPUTATIONS IN ONE-WAY PARAMETRIC ANOVA TABLE

Source of Sums of Degrees of

variation squares freedom Mean squares F

Between wells 5.76 5 5.76/5 = 1.15 1.15/0.34 = 3.38
Error 6.18 18 6.18/18 = 0.34

(within wells)

Total 11.94 23

Step 7. The calculated F statistic is 3.38. The tabulated F value with
5 and 18 degrees of freedom at the a = 0.05 level is 2.77 (Table 2, Appen-
dix B). Since the calculated value exceeds the tabulated value, the hypothe-
sis of equal well means must be rejected, and post hoc comparisons are
necessary.
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Step 8. Computation of Bonferroni t statistics.

. Note that there are four compliance wells, so m = 4 comparisons will

be made
. Nyp = 8 total number of samples in background wells
. Yup = 3.89 average concentration of background wells

. Compute the differences between the four compliance wells and the
average of the two background wells:

X5 - iup = 4,55 - 3.89 = 0.66
X, - Xyp = 4.19 - 3.89 = 0.3

Xg - Xyp = 4.75 - 3.89 = 0.86
X¢ - Xyp = 5.25 - 3.89 = 1.36

. Compute the standard error of each difference. Since the number of
observations is the same for all compliance wells, the standard
errors for the four differences will be equal.

SE, = [0.34 (1/8 + 1/4)1% = 0.357

. From Table 3, Appendix B, obtain the critical t with (24 - 6) = 18
degrees of freedom, m = 4, and for o = 0.05. The approximate value
is 2.43 obtained by linear interpolation between 15 and 20 degrees
of freedom.

. Compute the quantities Dy. Again, due to equal sample sizes, they
will all be equal.

D1 = SE, xt = 0.357 x 2.43 = 0.868

INTERPRETATION

The F test was significant at the 5% level. The Bonferroni multiple
comparisons procedure was then used to determine for which wells there was
statistically significant evidence of contamination. Of the four differences

X5 - ’up- only i, - iup = .36 exceeds the critical value of 0.868. From

this it is concluded that there is significant evidence of contamination at
Well 6. Well 5 is right on the boundary of significance. It is 1ikely that
Well 6 has intercepted a plume of contamination with Well 5 being on the edge

of the plume.
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A11 the compliance well concentrations were somewhat above the mean con-
centration of the background levels. The well means should be used to indi-
cate the 1location of the plume. The findings should be reported to the
Regional Administrator.

4.2.2 One-Way Nonparametric Analysis of Variance

This procedure is appropriate for interwell comparisons when the data or
the residuals from a parametric ANOVA have been found to be significantly dif-
ferent from normal and when a log transformation fails to adequately normalize
the data. In one-way nonparametric ANOVA, the assumption under the null
hypothesis is that the data from each well come from the same continuous dis-
tribution and hence have the same median concentrations of a specific hazard-
ous constituent. The alternatives of interest are that the data from some
wells show increased levels of the hazardous constituent in question.

The procedure is called the Kruskal-Wallis test. For meaningful resuits,
there should be at least three groups with a minimum sample size of three in
each group. For large data sets use of a computer program is recommended. In
the case of large data sets a good approximation to the procedure is to re-
place each observation by its rank (its numerical place when the data are
ordered from least to greatest) and perform the (parametric) one-way analysis
of variance (Section 4.2.1) on the ranks. Such an approach can be done with
some commercial statistical packages such as SAS.

PURPOSE

The purpose of the procedure is to test the hypothesis that all wells (or
groups of wells) around regulated units have the same median concentration of
a hazardous constituent. If the wells are found to differ, post-hoc compari-
sons are again necessary to determine if contamination is present.

Note that the wells define the groups. A1l wells will have at Jeast four
observations. Denote the number of groups by K and the number of observations
in each group by nj, with n being the total number of all observations. Let
Xy denote the jth observation in the ith group, where j runs from 1 to the
nuaber of observations in the group, Nys and i runs from 1 to the number of
groups, K.

PROCEDURE

Step 1. Rank all observations from least to greatest. Let R;; denote
the rank of the jth observation in the ith group. As a convention, dehote the
background well(s) as group l.

Step 2. Add the ranks of the observations in each group. Call the sum
of the ranks for the ith group Ry. Also calculate the average rank for each

group, R1 = R1/n1.
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Step 3. Compute the Kruskal-Wallis statistic:

Hoa |52 | - 3(n+l)
n(mD) o

Step 4. Compare the calculated value H to the tabulated chi-squared
value with (K-1) degrees of freedom, where K is the number of groups (Table [,
Appendix B). Reject the null hypothesis if the computed value exceeds the
tabulated critical value.

Step 5. If the computed value exceeds the value from the chi-squared
table, compute the critical difference for well comparisons to the background,
assumed to be group 1l:

1/2
+1 1 1
Ct * Lax-1)) [ﬂ%—l] [n—l * a} :

for i taking values 2,..., K,
where Z(a/(K-l)) is the upper (a/(K-1)) percentile from the standard normal

distribution found in Table 4, Appendix B. Note: I[f there are more than five
compliance wells at the regulated unit (k > 6), use Z,,,, the upper one-
percentile from the standard normal distribution.

Step 6. Form the differences of the average ranks for each group to the
background and compare these with the critical values found in step § tQ de-
termine which wells give evidence of contamination. That is, compare R;-R, to
C; for i taking the values 2 through K. (Recall that group 1 ‘s the
background. )

While the above steps are the general procedure, some details need to be
specified further to handle special cases. First, it may happen that two or
more observations are numerically equal or tied. When this occurs, determine
the ranks that the tied observations would have received if they had been
slightly different from each other, but still in the same places with respect
to the rest of the observations. Add these ranks and divide by the number of
observations tied at that value to get an average rank. This average rank is
used for each of the tied observations. This same procedure is repeated for
any other groups of tied observations.

The effect of tied observations is to increase the value of the sta-
tistic, H. Unless there are many observations tied at the same value, the
effect of ties is negligible (in practice, the effect of ties can probably be
neglected unless some group contains 10 percent of the observations all tied,
which is most likely to occur for concentrations below detection limit). If
the statistic is significant without any correction for ties, it will also be
significant if corrected for ties.
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Second, if there are any values below detection, consider all values
below detection as tied at zero. (It is irrelevant what number is assigned to
nondetected values as long as all such values are assigned the same number,
and it is smaller than any detected or quantified value.)

ADJUSTMENT FOR TIES

If there are 50% or more observations that fell below the detection
1imit, then this method is inappropriate. The user' is referred to Section 7,
"Miscellaneous Topics." Otherwise, if there are tied values present in the
data, use the following correction for the H statistic

H

g
1- ( T Ti/(n3-n9
i=1

where g = the number of groups of distinct tied observations and T; = (tg-ti),
where t; is the number of observations in the tied group i. Note that unique
observations can be considered groups of size 1, with the corresponding T; =
(13-1) = 0.

HY =

REFERENCE

Hollander, Myles, and 0. A. Wolfe. 1973. Nonparametric Statistical
Methods. John Wiley and Sons, New York.

EXAMPLE

The data in Table 4-4 represent benzene concentrations in water samples
taken at one background and five compliance wells.

Step 1. The 20 observations have been ranked from least to greatest.
The 1imit of detection was 1.0 ppm. Note that two values in Well 4 were below
detection and were assigned value zero. These two are tied for the smallest
value and have consequently been assigned the average of the two ranks 1 and
2, or 1.5. The ranks of the observations are indicated in parentheses after
the observation in Table 4-4. Note that there are 3 observations tied at 1.3
that would have had ranks 4, 5, and 6 if they had been slightly different.
These three have been assigned the average rank of 5 resulting from averaging
4, 5, and 6. Other ties occurred at 1.5 (ranks 7 and 8) and 1.9 (ranks 1l and
12).

Step 2. The values of the sums of ranks and average ranks are indicated
at the bottom of Table 4-4.
Step 3. Compute the Kruskal-Wallis statistic

12 _
H= m (342/4 + ... + 35.52/3) - 3(20+1) 14.68
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TABLE 4-4,

EXAMPLE DATA FOR ONE-WAY NONPARAMETRIC ANOVA--BENZENE CONCENTRATIONS (in ppm)

Background Compliance wells

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

Jan 1 1.7 (10) 11.0 (20) 1.3 (5) 0 (1.5) 4.9 (17) 1.6 (9)

Feb 1 1.9 (11.5) 8.0 (18) 1.2 (3) 1.3 (5) 3.7 (16) 2.5 (15)

Mar 1 1.5 (7.5) 9.5 (19) 1.5 (7.5) 0 (1.5) 2.3 (14) 1.9 (11.5)

Apr 1 1.3 (5) 2.2 {13)

n, =4 n, =3 ny =3 n, = 4 ng = 3 ng = 3

Sum of ranks: R, = 34 R, = 57 Ry = 15.5 R, = 21 Ry = 47 Re = 35.5
Average rank: R, = 8.5 R, = 19 Ry = 5.17 R, = 5.25 R = 15.67 Re = 11.83

K = 6, the number of wells

6

n= Ln;= 20, the total number of observations.

i=1



ADJUSTMENT FOR TIES

There are four groups of ties in the data of Table 4-4:

T, = (23-2) = 6 for the 2 observations of 1,900.
T, = (23-2) = 6 for the 2 observations of 1,500.
Ty = (33-3) = 24 for the 3 observations of 1,300.
T, = (23-2) = 6 for the 2 observations of 0.
4
Thus L Ti = 6+6+24+6 = 42
i=1
and H' 14.68 14.68

= [-(42/(203-20)) " 0.995 - 14.76, a negligible change from 14.68.

Step 4. To test the null hypothesis of no contamination, obtain the
critical chi-squared value with (6-1) = 5 degrees of freedom at the 5% signif-
jcance level from Table 1, Appendix B. The value is 11.07. Compare the cal-
culated value, H', with the tabulated value. Since 14.76 is greater than
11.07, reject the hypothesis of no contamination at the 5% level. If the site
was in detection monitoring it should move into compliance monitoring. If the
site was in compliance monitoring it should move into corrective action. If
the site was in corrective action it should stay there.

In the case where the hydraulically upgradient wells serve as the back-
ground against which the compliance wells are to be compared, comparisons of
each compliance well with the background wells should be performed in addition
to the analysis of variance procedure. In this example, data from each of the
compliance wells would be compared with the background well data. This com-
parison is accomplished as follows. The average ranks for each group, Ry are
used to compute differences. If a group of compliance wells for a regulated
unit have larger concentrations than those found in the background wells, the
average rank for the compliance wells at that unit will be larger than the
average rank for the background wells.

Step 5. Calculate the critical values to compare each compliance well
to the background well.

In this example, K=6, so there are 5 comparisons of the compliance wells
with the background wells. Using an experimentwise significance level of a =
0.05, we find the upper 0.05/5 = 0.01 percentile of the standard normal
distribution to be 2.33 (Table 4, Appendix B). The total sample size, n, is
20. The approximate critical value, C,, is computed for compliance Well 2,
which has the largest average rank, as:

1/2 1/2
C,= 2.32 [Qg—ll} [% + %} = 10.5

The critical values for the other wells are: 10.5 for Wells 3, 5, and 6; and
9.8 for Well 4,
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Step 6. Compute the differences between the average rank of each com-
pliance well and the average rank of the background well:

Differences Critical values
D, = 19.0 - 8.5 = 10.5 C, = 10.5
Dy = 5.17 - 8.5 = -3.33 Cy; = 10.5
D, = 5.25 - 8.5 = -3.25 C, = 9.8
Dg = 15.67 -~ 8.5 = 7.17 Cs = 10.5
0¢ = 11.83 - 8.5 = 3.13 Ce = 10.5

Compare each difference with the corresponding critical difference. D, = 10.5
equals the critical value of C, = 10.5. We conclude that the concentration of
benzene averaged over compliance Well 2 is significantly greater than that at
the background well. None of the other compliance well concentration of
benzene is significantly higher than the average background value. Based upon
these results, only compliance Well 2 can be singled out as being
contaminated.

For data sets with more than 30 observations, the parametric analysis of
variance performed on the rank values is a good approximation to the Kruskal-
Wallis test (Quade, 1966). If the user has access to SAS, the PROC RANK pro-
cedure is used to obtain the ranks of the data. The analysis of variance pro-
cedure detailed in Section 4.2.1 is then performed on the ranks. Contrasts
are tested as in the parametric analysis of variance.

INTERPRETATION

The Kruskal-Wallis test statistic is compared to the tabulated critical
value from the chi-squared distribution. If the test statistic does not
exceed the tabulated value, there is no statistically significant evidence of
contamination and the analysis would stop and report this finding. If the
test statistic exceeds the tabulated value, there is significant evidence that
the hypothesis of no differences in compliance concentrations from the back-
ground level is not true. Consequently, if the test statistic exceeds the
critical value, one concludes that there is significant evidence of contami-
nation. One then proceeds to investigate where the differences lie, that is,
which wells are indicating contamination.

The multiple comparisons procedure described in steps 5 and 6 compares
each compliance well to the background well. This determines which compliance
wells show statistically significant evidence of contamination at an experi-
mentwise error rate of 5 percent.  In many cases, inspection of the mean or
median concentrations will be sufficient to indicate where the problem lies.

4.3 TOLERANCE INTERVALS BASED ON THE NORMAL DISTRIBUTION
An alternative approach to analysis of variance to determine whether

there is statistically significant evidence of contamination is to use toler-
ance intervals. A tolerance interval 1is constructed from the data on

4-18



(uncontaminated) background wells. The concentrations from compliance wells
are then compared with the tolerance interval. With the exception of pH, if
the compliance concentrations do not fall in the tolerance interval, this pro-
vides statistically significant evidence of contamination.

Tolerance intervals ame most appropriate for use at facilities that do
not exhibit high degrees of spatial variation between background wells and
compliance wells. Facilities that overlie extensive, homogeneous geolog¥c
deposits (for example, thick, homogeneous lacustrine clays) that do not natu-
rally display hydrogeochemical variations may be suitable for this statistical
method of analysis.

A tolerance interval establishes a concentration range that is con-
structed to contain a specified proportion of at least P% of the population
with a specified confidence coefficient, Y. The proportion of the population
included, P, is referred to as the coverage. The probability with which the
tolerance interval includes the proportion P% of the population is referred to
as the tolerance coefficient.

A coverage of 95% is recommended. If this is used, random observations
from the same distrfbution as the background well data would exceed the upper
tolerance 1imit less than 5% of the time. Similarly, a tolerance coefficient
of 95% is recommended. This means that one has a confidence level of 95% that
the upper 95% tolerance 1imit will contain at least 95% of the distribution of
observations from background well data.- These values were chosen to be con-
sistent with the performance standards described in Section 2. The use of
these values corresponds to the selection of & of 5% in the multiple well
testing situation.

The procedure can be applied with as few as three observations from the
background distribution. However, doing so would result in a large upper
tolerance limit. A sample size of eight or more results is an adequate toler-
ance interval. The minimum sampling schedule called for in the regulations
would result in at least four observations from each background well. Only if
a single background well is sampled at a single point in time is the sample
size so small as to make use of the procedure questionable.

Tolerance intervals can be constructed assuming that the data or the
transformed data are normal. Tolerance intervals can also be constructed
assuming other distributions. It is also possible to construct nonparametric
tolerance intervals using only the assumption that the data came from some
continuous popuiation. However, the nonparametric tolerance intervals require
such a large number of observations to provide a reasonable coverage and
tolerance coefficient that they are impractical in this application.

The range of the concentration data in the background well samples should
be considered in determining whether the tolerance intervai approach should be
used, and if so, what distribution is appropriate. The background well con-
centration data should be inspected for outliers and tests of normality
applied before selecting the tolerance interval approach. Tests of normality
were presented in Section 3.2. Note that in this case, the test of normality
would be applied to the background well data that are used to construct the
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tolerance interval. These data should all be from the same normal
distribution.

In this application, unless pH is being monitored, a one-sided tolerance
interval or an upper tolerance limit is desired, since contamination is indi-
cated by large concentrations of the.hazardous constituents monitored. Thus,
for concentrations, the appropriate tolerance interval is (0, TL), with the
comparison of importance being the larger limit, TL.

PURPOSE

The purpose of the tolerance interval approach is to define a concentra-
tion range from background well data, within which a large proportion of the
monitoring observations should fall with high probability. Once this is done,
data from compliance wells can be checked for evidence of contamination by
simply determining whether they fall in the tolerance interval. If they do
not, this is evidence of contamination.

In this case the data are assumed to be approximately normally distrib-
uted. Section 3.2 provided methods to check for normality. If the data are
not normal, take the natural logarithm of the data and see if the transformed
data are approximately normal. If so, this method can be used on the ioga-
rithms of the data. Otherwise, seek the assistance of a professional
statistician.

PROCEDURE

Step 1. Calculate the mean, i, and the standard deviation, S, from the
background well data.

Step 2. Construct the one-sided upper tolerance 1imit as
TL = X + K S,
where K is the one-sided normal tolerance factor found in Table 5, Appendix B.

Step 3. Compare each observation from compiiance wells to the tolerance
1imit found in Step 2. [f any observation exceeds the tolerance limit, that
is statistically significant evidence that the well {is contaminated. Note
that if the tolerance interval was constructed on the logarithms of the orig-
inal background observations, the logarithms of the compliance well observa-
tions should be compared to the tolerance Timit. Alternatively the tolerance
1imit may be transferred to the original data scale by taking the anti-
logarithm.

REFERENCE

Lieberman, Gerald J. 1958, "Tables for One-sided Statistical Tolerance
Limits." Industrial Quality Control. Vol. XIV, No. 10.
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EXAMPLE

) Table 4-5 contains example data that represent lead concentration levels
in parts per million in water samples at a hypothetical facility. The
background well data are in columns one and two, while the other four columns
represent compliance well data.

Step 1. The mean and standard deviation of the n = 8 observations have
been calculated for the background well. The mean is 51.4 and the standard
deviation is 16.3.

] Step 2. The tolerance factor for a one-sided normat*tolerance interval
is found from Table 5, Appendix B as 3.188. This is for 95% coverage with
probability 95% and for n = 8. The upper tolerance limit is then calculated
as 51.4 + (3.188)(16.3) = 103.4.

Step 3. The tolerance limit of 103.3 is compared with the compliance
well data. Any value that exceeds the tolerance limit indicates evidence of
contamination. Two observations from Well 1, two observations from Well 3,
and all four observations from Well 4 exceed the tolerance limit. Thus there
is evidence of contamination at Wells 1, 3, and 4.

INTERPRETATION

A tolerance limit with 95% coverage gives an upper bound below which 95%
of the observations of the distribution should fall. The tolerance coeffi-
cient used here is 95%, implying that at least 95% of the observations should
fall below the tolerance 1imit with probability 95%, if the compliance well
data come from the same distribution as the background data. In other words,
in this example, we are 95% certain that 95% of the background lead concentra-
tions are below 104 ppm. If observations exceed the tolerance limit, this is
evidence that the compliance well data are not from the sametdistribution, but
rather are from a distribution with higher concentrations. This is inter-
preted as evidence of contamination.

4.4 PREDICTION INTERVALS

A prediction interval is a statistical interval calculated to include one
or more future observations from the same population with a specified confi-
dence. In ground-water monitoring, a prediction interval approach may be used
to make comparisons between background and compliance well data. The concen-
trations of a hazardous constituent in the background wells are used to estab-
1ish an interval within which K future observations from the same population
are expected to 1ie with a specified confidence. Then each of K future obser-
vations of compliance well concentrations is compared to the prediction inter-
val. The interval is constructed to contain all of K future observations with
the stated confidence. [f any future observation exceeds the prediction
interval, this is statistically significant evidence of contamination. In
application, the number of future observations to be collected, K, must be
specified. Thus, the prediction interval is constructed for a specified time
period in the future. One year is suggested. The interval can be constructed
either to contain all K individual observations with a specified probability,
or to contain the K' means observed at the K' sampling periods.

4-21



TABLE 4-5. EXAMPLE DATA FOR NORMAL TOLERANCE INTERVAL

Lead concentrations (ppm)

Background well Compliance wells

Date A B Well 1 Well 2 Well 3 Well 4
Jan 1 58.0 46.1 273.1* 34.1 49.9 225.9%
Feb 1 54.1 76.7 170.7* 93.7 73.0 183.1*
Mar 1 30.0 32.1 32.1 70.8 244.7* 198.3*
Apr 1 46.1 68.0 53.0 83.1 202.4* 160.8*

n= 8 The upper 95% coverage tolerance limit
Mean = 51.4 with tolerance coefficient of 95% is

SO = 16.3 51.4 + (3.188)(16.3) = 103.4

* Indicates contamination
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The prediction interval presented here is constructed assuming that the
background data all follow the same normal distribution. If that is not the
case (See Section 3.2 for tests of normality), but a log transformation
results in data that are adequately normal on the log scale the interval may
still be used. In this case, use the data after transforming by taking the
logarithm. The future observations need to also be transformed by taking
logarithms before comparison to the interval. Alternatively, the end points
of the interval could be converted back to the original scale by taking their
anti-logarithms.)

PURPOSE

The prediction interval is constructed so that K future compliance well
observations can be tested by determining whether they lie in the interval or
not. [f not, evidence of contamination is found. Note that the number of
future observations, K, for which the interval is to be used, must be speci-
fied in advance. In practice, an owner or operator would need to construct
the prediction interval on a periodic (at least yearly) basis, using the most
recent background data. The interval is described using the 99% confidence
factor appropriate for individual well comparisons. It is recommended that a
one-sided prediction interval be constructed for the mean of the four observa-
tions from each compliance well at each sampling period.

PROCEDURE
Step 1. Caiculate the mean, Y, and the standard deviation, S, for the
background well data (used to form the prediction interval).

Step 2. Specify the number of future observations for a compliance well
to be included in the interval, K. Then the interval is given by

KeSfmelmn to ) x 0.95)

where it is assumed that the mean of the m observations taken at the K sam-
pling periods will be used. Here n is the number of observations in the back-
ground data, and t(n-l K, 0.95) js found from Table 3 in Appendix B. The

table is entered with K as the number of future observations, and degqrees of
freedom, v = n-1. If K > §, use the column for K = 5.

Step 3. Once the interval has been calculated, at each sampling period,
the mean of the m compliance well observations is obtained. This mean is com-
pared to see if it falls in the interval., I[f it does, this is reported and
monitoring continues. If a mean concentration at a sampling period does not
fall in the prediction interval, this is statistically significant evidence of
contamination. This is also reported and the appropriate action taken.
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REMARK

For a single future observation, t is given by the t-distribution found
in Table 6 of Appendix B. In general, the interval to contain K future means
of sample size m each is given by

£+SJ/1/m+ 1/n t(n-1, K, 0.95)

where t is as before from Table 3 of Appendix B and where m is the number of
observations in each mean. Note that for K single observations, m=l, while
for the mean of four samples from a compliance well, m=4,

Note, too, that the prediction intervals are one-sided, giving a value
that should not be exceeded by the future observations. The 5% experimentwise
significance level is used with the Bonferroni approach. However, Lo ensure
that the significance level for the individual comparisons does not go below
1%, a/K is restricted to be 1% or larger. If more than K comparisons are
used, the comparisonwise significance level of 1% is used, implying that the
comparisonwise level may exceed 5%.

EXAMPLE

Table 4-6 contains chlordane concentrations measured at a hypothetical
facility. Twenty-four background observations are available and are used to
develop the prediction interval. The prediction interval is applied to K=2
sampling periods with m=4 observations at a single compliance well each.

Step 1. Find the mean and standard deviation of the 24 background well
measurements. These are 101 and 11, respectively.

Step 2. There are K = 2 future observations of means of 4 observations
to be included in the prediction interval. Entering Table 3 of Appendix B at
K = 2 and 20 degrees of freedom (the nearest entry to the 23 degrees of
freedom), we find t(ZO, 2, 0.95) = 2.09. The interval is given by

101 + (11)2.09(1/4 + 1728)1/2 = (0, 113.4).

Step 3. The mean of each of the four compliance well observations at
sampling period one and two is found and compared with the interval found in
Step 2. The mean of the first sampling period is 122 and that for the second
sampling period is 113. Comparing the first of these to the prediction inter-
val for two means based on samples of size 4, we find that the mean exceeds
the upper limit of the prediction interval. This 1s statistically significant
evidence of contamination and should be reported to the Regional Administra-
tor. Since the second sampling period mean is within the prediction interval,
the Regional Administrator may allow the facility to remain in its current
stage of monitoring.
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TABLE 4-6. EXAMPLE DATA FOR PREDICTION INTERVAL--CHLORDANE LEVELS

Background well data--Well 1 Compliance well data--Well 2
Chlordane Chlordane
concentration concentration
Sampling date (ppb) Sampling date (ppb)
January 1, 1985 97 July 1, 1986 123
103 120
104 116
85 128
April 1, 1985 120 m = 4
105 Mean = 122
104 SD = 5
108
July 1, 1985 110 October 1, 1986 116
95 117
102 119
78 101
October 1, 1985 105 m= 4
94 Mean = 113
110 SO = 8
111
January 1, 1986 80
106
115
105
April 1, 1986 100
93
89
13
ns= 24
Mean = 101
SO = 11
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INTERPRETATION

A prediction interval is a statistical interval constructed from back-
ground sample data to contain a specified number of future observations from
the same distribution with specified probability. That is, the prediction
interval is constructed so as to have a 95% probability of containing the next
K sampling period means, provided that there is no contamination. If the
future observations are found to be in the prediction interval, this is evi-
dence that there has been no change at the facility and that no contamination
is occurring. If the future observation falls outside of the prediction
interval, this is statistical evidence that the new observation does not come
from the same distribution, that is, from the population of uncontaminated
water samples previously sampled. Consequently, if the observation is a con-
centration above the prediction interval's upper limit, it 1is evidence of
contamination.

The prediction interval could be constructed in several ways. It can be
developed for means of observations at each sampling period, or for each in-
dividual observation at each sampling period.

[t should also be noted that the estimate of the standard deviation, S,
that is used should be an unbiased estimator. The usual estimator, presented
above, assumes that there is only one source of variation. I[f there are other
sources of varfation, such as time effects, or spatial variation in the data
used for the background, these should be included in the estimate of the vari-
ability. This can be accomplished by use of an appropriate analysis of vari-
ance model to include the other factors affecting the variability. Determina-
tion of the components of variance in complicated models is beyond the scope
of this document and requires consultation with a professional statistician.

REFERENCE

Gibbons, Robert D. 1987. “Statistical Prediction Intervals for the
Evaluation of Ground-Water Quality." Ground Water. Vol. 25, pp. 455-465.
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SECTION 5
COMPARISONS WITH MCLs OR ACLs

This section includes statistical procedures appropriate when the moni-
toring aims at determining whether ground-water concentrations of hazardous
constituents are below or above fixed concentration limits. In this situation
the maximum concentration 1imit (MCL) or alternate concentration limit (ACL)
is a specified concentration 1imit rather than being determined by the back-
ground well concentrations. Thus the applicable statistical procedures are
those that compare the compliance well concentrations estimated from sampling
with the prespecified fixed limits. Methods for comparing compliiance well

goncentrztions to a (variable) background concentration were presented in
ection 4.

The methods applicable to the type of comparisons described in this sec-
tion include confidence intervals and tolerance intervals. A special section
deals with cases where the observations exhibit very small or no variability.

5.1 SUMMARY CHART FOR COMPARISON WITH MCLs OR ACLs

Figure 5-1 is a flow chart to aid the user in selecting and applying a
statistical method when the permit specifies an MCL or ACL.

As with each type of comparison, a determination is made first to see if
there is enough data for intra-well comparisons. If so, these should be done
in parallel with the other comparisons.

Here, whether the compliance 1imit is a maximum concentration 1imit (MCL)
or an alternate concentration limit (ACL), the recommended procedure to com-
pare the mean compliance well concentration against the compliance limit fis
the construction of a confidence interval. This approach is presented in
Section 5.2.1. Section 5.2.2 adds a special case of limited variance in the
data. If the permit requires that a compliance 1imit is not to be exceeded
more than a specified fraction of the time, then the construction of tolerance
1imits 1s the recommended procedure, discussed in Section 5.2.3.

5.2 STATISTICAL PROCEDURES

This section presents the statistical procedures appropriate for compari-
son of ground-water monitoring data to a constant compliance limit, a fixed
standard. The interpretation of the fixed compliance 1imit (MCL or ACL) is
that the mean concentration should not exceed this fixed 1imit. An alterna-
tive interpretation may be specified. The permit could specify a compliance
1imit as a concentration not to be exceeded by more than a small, specified
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proportion of the observations. A tolerance interval approach for such a
situation is also presented.

5.2.1 Confidence Intervals

When a reqgulated unit is in compliance monitoring with a fixed compliance
1imit (either an MCL or an ACL}, confidence intervals are the recommended pro-
cedure pursuant to §264.97(h)(5) in the Subpart F regulations. The unit will
remain in compiiance monitoring unless there is statistically significant evi-
dence that the mean concentration at one or more of the downgradient wells
exceeds the compliance limit. A confidence interval for the mean concentra-
tion is constructed from the sampie data for each compliance well individu-
ally. These confidence intervals are compared with the compliance iimit. If
the entire confidence interval exceeds the compliance limit, this is statisti-
cally significant evidence that the mean concentration exceeds the compliance
Timit.

Confidence intervals can generally be constructed for any specified dis-
tribution. General methods can be found in texts on statistical inference
some of which are referenced in Appendix C. A confidence 1imit based on the
normal distribution is presented first, followed by a modification for the
log-normal distribution. A nonparametric confidence interval 1is also
presented.

5.2.1.1 Confidence Interval Based on the Normal Distribution

PURPOSE

The confidence interval for the mean concentration is constructed from
the compliiance well data. Once the interval has been constructed, it can be
compared with the MCL or ACL by inspection to determine whether the mean con-
centration significantly exceeds the MCL or ACL.

PROCEDURE

Step 1. Caiculate the mean, X, and standard deviation, S, of the sample
concentration values. Do this separately for each compliance well.

Step 2. For each well calculate the confidence interval as

X*tggg, n1) /M

where t(o 99, n-1) is obtained from the t-table (Table 6, Appendix B).
hd ] .

Generally, there will be at least four observations at each sampliing period,

so t will usually have at least 3 degrees of freedom.

Step 3. (Compare the intervals calculated in Step 2 to the compliance
limit (the MCL or ACL, as appropriate). [f the compliance limit is contained
in the interval or is above the upper limit, the unit remains in compliance.
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If any well confidence interval's lower limit excegds phe compliance limit,
this is statistically significant evidence of contamination.

REMARK

The 99th percentile of the t-distribution is used in constructing the
confidence interval. This is consistent with an alpha (probability of Type I
error) of 0.0l1, since the decision on compliance is made by comparing the
Jower confidenca limit to the MCL or ACL. Although the interval as con-
structed with both upper and lower limits is a 98% confidence interval, the
use of it is one-sided, which 1{s consistent with the 1% alpha level of
individual well comparisons.

EXAMPLE

Table 5-1 1ists hypothetical concentrations of Aldicarb in three compli-
ance wells. For illustration purposes, the MCL for Aldicarb has been set at
7 ppb. There is no evidence of nonnormality, so the confidence interval based
on the normal distribution is used.

TABLE 5-1. EXAMPLE DATA FOR NORMAL CONFIDENCE INTERVAL--ALDICARB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

Sampling
date Well 1 Well 2 Well 3
Jan. 1 19.9 23.7 5.6
Feb. 1 29.6 21.9 3.3
Mar. 1 18.7 26.9 2.3
Apr. 1 24.2 26.1 6.9
X = 23.1 24.6 4.5
S = 4.9 2.3 2.1

MCL = 7 ppb

Step 1. Calculate the mean and standard deviation of the concentrations
for each compliance well. These statistics are shown in the table above.

Step 2. Obtain the 99th percentile of the t-distribution with (4-1) = 3
degrees of freedom from Table 6, Appendix B as 4.541. Then calculate the con-
fidence interval for each well's mean concentration.

Well 1: 23.1 + 4.541(4.9)//4 = (12.0, 34.2)
Well 2: 24.6 + 4.541(2.3)//4 = (19.4, 29.8)

4.541(2.1)//4 = (-0.3, 9.3)

-+

+

well 3: 4.5

H+
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wherg the usual convention of expressing the upper and lower limits of the
confidence interval in parentheses separated by a comma has been followed.

Step 3. Compare each confidence interval to the MCL of 7 ppb. When this
is done, the confidence interval for Well 1 lies entirely above the MCL of 7,
indicating that the mean concentration of Aldicarb in Well 1 significantly
exceeds the MCL. Similarly, the confidence interval for Well 2 lies entirely
above the MCL of 7. This is significant evidence that the mean concentration
in Well 2 exceeds the MCL. However, the confidence interval for Well 3 is
mostly below the MCL. Thus, there is no evidence that the mean concentration
in Well 3 exceeds the MCL.

INTERPRETATION

' The confidence interval is an interval constructed so that it should con-
tain the true or population mean with specified confidence (98% in this
case). If this interval does not contain the compliance limit, then the mean
concentration must differ from the compliance 1imit. If the lower end of the
interval is above the compiiance 1limit, then the mean concentration must be
significantly greater than the compliance 1imit, indicating noncompliance.

5.2.1.2 Confidence Interval for Log-Normal Data

PURPOSE

The purpose of a confidence interval for the mean concentration is to
determine whether there is statistically significant evidence that the mean
concentration exceeds a fixed compliance 1imit. The interval gives a range
that includes the true mean concentration with confidence 98%. The lower
1imit will be below the true mean with confidence 99%, corresponding to an
alpha of 1%.

PROCEDURE

This procedure is used to construct a confidence interval for the mean
concentration from the compliance well data when the data are log-normal (that
is, when the logarithms of the data are normal). Once the interval has been
constructed, it can be compared with the MCL or ACL by inspection to determine
whether the mean concentration significantly exceeds the MCL or ACL.

Step 1. Take the natural logarithm of each data point (concentration
measurement). Also, take the natural logarithm of the compliance limit.

Step 2. Calculate the sample mean and standard deviation of the data (on
the log scale) from each compliance well. (This is Step 1 of the previous
section, working now on the logarithms.)

Step 3. Form the confidence intervals for each compliance well as

X £ty g9, n1y 3/
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where t(O 99, n-1) is from the t-distribution in Table 6 of Appendix B. Here
. *
t will typically have 3 degrees of freedom.

Step 4. Compare the confidence intervals found in Step 3 to the
logarithm of the compliance limit found in Step 1. If any of the intervals
iies entirely above the logarithm of the compliance 1imit, there is evidence
that the unit is out of compliance. COtherwise, the unit is in compliance.

EXAMPLE

Table 5-2 contains E0B concentration data from three compliance wells at
a hypothetical site. The MCL is assumed to be 20 ppb. For demonstration pur-
poses, the daca are assumed not normal; a log-transformation normalized them

adequately. The lower part of the table contains the natural logarithms of
the concentrations.

Step 1. The logarithms of the data are used to calculate a confidence
interval. Take the natural log of the concentrations in the top part of
Table 5-2 to find the values given in the lower part of the table. For exam-
ple, In(24.2) = 3.19, . . ., 1n(25.3) = 3.23. Also, take the logarithm of the
MCL to find that 1n(20) = 2.99.

TABLE 5-2. EXAMPLE DATA FOR LOG-NORMAL CONFIDENCE INTERVAL--EDB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

Sampling

date Weli 1 Well 2 Well 3
Jan. 1 24.2 39.7 55.7
Apr. 1 10.2 75.7 17.0
Jul. 1 17.4 60.2 97.8
Oct. 1 39.7 10.9 25.3
X = 22.9 46.6 49.0

= 12.6 28.0 36.6

MCL = 20 ppb
Log concentrations

Jan. 1 3.19 3.68 4,02
Apr. 1 2.32 4.33 2.84
Jul. 1 2.85 4,10 4.58
Oct. 1 3.68 2.39 3.23
X = 3.01 3.62 3.67

S = 0.57 0.86 0.78

Log (MCL) = 2.99




Step 2. Calculate the mean and standard deviation of the jog concentra-
tions for each compliance well. These are shown in the table.

Step 3. Form the confidence intervals for each compliance well.

Well 1: 3.01

I+

4.541(0.57)//4 = (1.72, 4.30)
4.541(0.86)//8 = (1.67, 5.57)
4.541(0.78)//8 = (1.90, 5.44)

Well 2: 3.62

I+

Well 3: 3.67

i+

where 4.54]1 is the value obtained from the t-tabie (Table 6 in Appendix B) as
in the previous example.

Step 4. Compare the individual well confidence intervals with the MCL
(expressed on the log scale). The natural log of the MCL of 20 ppm is 2.99.
None of the individual well confidence intervals for the mean has a lower
1imit that exceeds this value, so none of the individual well mean concentra-
tions is significantly different from the MCL.

Note: The lower and upper 1imits of the confidence interval for each
well's mean concentration could be converted back to the original scale by

taking antilogs. For example, on the original scale, the confidence intervals
would be:

Well 1: (exp(1.72), exp(4.30)) or (5.58, 73.70)
Well 2: (exp(l.67), exp(5.51)) or (5.31, 262.43)
Well 3: (exp(l1.90), exp(5.44)) or (6.69, 230.44)

These 1imits could be compared directly with the MCL of 20 ppb. It is gen-
erally easier to take the logarithm of the MCL rather than the antilogarithm
of all of the intervals for comparison.

INTERPRETATION

If the original data are not normal, but the log-transformation ade-
quately normalizes the data, the confidence interval (on the log scale) is an
interval constructed so that the lower confidence 1imit should be less than
the true or population mean (on the log scale) with specified confidence (99%
in this case). If the lower limit exceeds the appropriate compliance limit,
then the mean concentration must exceed that compliance limit. If the lower
end of the interval is above the compliiance 1imit, the mean concentration must
be significantly greater (at the 1% level) than the compliance limit.
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5.2.1.3 Nonparametric Confidence Interval

If the data do not adequately follow the normal distribution even after
the logarithm transformation, a nonparametric confidence interval can be con-
structed. This interval is for the median concentration (which equals the
mean if the distribution is symmetric). It requires a minimum of seven (7)
observations in order to construct an interval with a two-sided confidence
coefficient of 98%, corresponding to a one-sided confidence coefficient of
99%. Consequently, it is applicable only for the pooled concentration of
compliance wells at a single point in time or for special sampling to produce
a minimum of seven observations at a single well during the sampling period.

PURPQSE

The nonparametric confidence interval is used when the data have been
found to violate the normality assumption, a log-transformation fails to
normalize the datda, and no other specific distribution is assumed. It pro-
duces a simple confidence interval that 1is designed to contain the true or
population median concentration with specified confidence. If this confidence
interval contains the compliance limit, it is concluded that the median con-
centration does not differ significantly from the compliance limit. If the
interval's lower 1imit exceeds the compliiance 1limit, this is statistically
significant evidence that the concentration exceeds the compliance limit and
the unit {is out of compliance.

PROCEDURE

Step 1. Within each compliance well, order the n data from least to
greatest, denoting the ordered data by X(1),. . ., X{n), where X(i) is the ith
value in the ordered data.

Step 2. Determine the critical values of the order statistics. If the
minimum seven observations is used, the critical values are 1 and 7. Other-
wise, find the smallest integer, M, such that the cumulative binomial distri-
bution with parameters n (the sample size) and p = 0.5 {s at least 0.99.
Table 5-3 gives the values of M and n+l-M together with the exact confidence
coefficient for sample sizes from 4 to ll. For larger samples, take as an
approximation the nearest integer value to

M=n/2+1+ 20.99 Jln71$

where ZO is the 99th percentile from the normal distribution (Table 4,
Appendix 139)9 and equals 2.33.

Step 3. Once M has been determined in Step 2, find n+l-M and take as the
confidence limits the order statistics, X(M) and X(n+1-M). (With the minimum
seven observations, use X(1) and X(7).)

Step 4. Compare the confidence 1imits found in Step 3 to the compliance
1imit. [f the lower limit, X(M) exceeds the compliance limit, there is evi-
dence of contamination. Otherwise, the unit remains in compiiance.
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TABLE 5-3. VALUES OF M AND n+1-M AND CONFIDENCE
COEFFICIENTS FOR SMALL SAMPLES

Two-sided
n M n+1-M confidence
4 4 1 87.5%
5 5 1 93.8%
6 6 1 96.9%
7 7 1 98.4%
8 8 1 99.2%
9 9 1 99.6%
10 9 2 97.9%
11 10 2 98.8%

REMARK

The nonparametric confidence interval procedure requires at least seven
observations in order to obtain a (cne-sided) significance level of 1% (confi-
dence af 99%). This means that data from two (or more) wells or sampling
periods would have to be pooled to achieve this level. If only the four
observations from one well taken at a single sampling period were used, the
one-sided significance level would be 6.25%. This would also be the false
alarm rate.

Ties do not affect the procedure. If there are ties, order the observa-
tions as before, including all of the tied values as separate observations.
That 1s, each of the observations with a common value is included in the
ordered list (e.g., 1, 2, 2, 2, 3, 4, etc.). The ordered statistics are found
by counting positions up from the bottom of the list as before. Multiple
values from separate observations are counted separately.

EXAMPLE

Table 5-4 contains concentrations of Silvex {n parts per miliion from two
hypothetical compliance wells. The data are assumed to consist of four sam-
ples taken each quarter for a year, so that sixteen observations are available
from each well. The data are neither normal nor log-normal, so that the non-
parametric confidence interval is used. The MCL is taken to be 25 ppm.

Step 1. Order the 16 measurements from least to greatest within each
well separately. The numbers in parentheses beside each concentration in
Table 5-4 are the ranks or order of the cobservation. For example, in Well 1,
the smallest observation is 2.32, which has rank 1. The second smallest is
3.17, which has rank 2, and so forth, with the largest observation of 21.36
having rank 16.



TABLE 5-4. EXAMPLE DATA FOR NONPARAMETRIC CONFIDENCE
INTERVAL--SILVEX CONCENTRATIONS (ppm)

Well 1 Well 2
Sampling Concentration Concentration
date (ppm) Rank (ppm) Rank
Jan. 1 3.17 (2) 3.52 (6)
2.32 (1) 12.32 (15)
7.37 (11) 2.28 (4)
4.44 (6) 5.30 (7)
Apr. 1 9.50 (13) 8.12 (11)
21.36 (16) 3.36 (5)
5.15 (7) 11.02 (14)
15.70 (15} 35.05 (16)
Jut. 1 5.58 (8) 2.20 (3)
3.39 (3) 0.00 (1.5)
8.44 (12) 9.30 (12)
10.25 (14) 10.30 (13)
Oct. 1 3.65 (4) 5.93 (8)
6.15 (9) 6.39 (9)
6.94 (10) 0.00 (1.5)
3.74 (5) 6.53 (19)

Step 2. The sample size is large enough so that the approximation is
used to find M.

M=16/2 + 1 + 2.33 /(16/4) = 13.7 = 14

Step 3. The approximate 95% confidence 1imits are given by the
16 + 1 - 14 = 3rd largest opservation and the 14th largest observation. For
Well 1 the 3rd observation is 3.39 and the 14th largest observation fis
10.25. Thus the confidence limits for Well 1 are (3.3%, 10.25). Similarly
for Well 2, the 3rd largest observation and the l4th largest observation are
found to give the confidence interval (2.20, 11.02). Note that for Well 2
there were two values below detection. These were assigned a value of zero
and received the two smallest ranks. Had there been three or more values
below the 1imit of detection, the lower limit of the confidence interval would
have been the 1limit of detection because these values would have been the
smallest values and so would have included the third order statistic.

5-10



Step 4. Neither of the two confidence intervals' lower 1imit exceeds the
MCL of 25. In fact, the upper 1imit is less than the MCL, implying that the
concentration in each well is significantly below the MCL.

INTERPRETATION

The order statistics used to form the confidence interval in the nonpara-
metric confidence interval procedure will contain the population median with
confidence coefficient of 98%. The population median equals the mean whenever
the distribution is symmetric. The nonparametric confidence interval is gen-
erally wider and requires more data than the corresponding normal distribution
interval, and so the normal or log-normal distribution interval should be used
whenever it is appropriate.

If the confidence interval contains the compliance 1limit (either MCL or
ACL), then it is reasonable to conclude that the median compliance well con-
centration does not differ significantly from the compliance 1imit. If the
lower end of the confidence interval exceeds the compliance 1imit, this is
statistically significant evidence at the 1X¥ level that the median compliance
well concentration exceeds the compliance 1imit and the unit 1is out of
compliance.

5.2.2 Tolerance Intervals for Compliance Limits

In some cases a permit may specify that a compliance 1imit (MCL or ACL)
is not to be exceeded more than a specified fraction of the time. Since lim-
ited data will be available from each monitoring well, these data can be used
to estimate a tolerance interval for concentrations from that well. If the
upper tolerance limit is less than the compliance limit, the data indicate
that the unit is in compliance. That is, concentrations should be less than
the compliance 1imit at least a specified fraction of the time. If the upper
tolerance 1imit of the interval exceeds the compliance 1imit, then the concen-
tration of the hazardous constituent could exceed the compliance 1imit more
than the specified proportion of the time.

This procedure compares an upper tolerance 1imit to the MCL or ACL. With
small sample sizes the upper tolerance limit can be fairly large, particularly
if large coverage with high confidence is desired. If the owner or operator
wishes to use a tolerance limit in this application, he/she should suggest
values for the parameters of the procedure subject to the approval of the
Regional Administrator. To exemplify the procedure a 95% coverage is used
with 95% confidence. This means that the upper tolerance limit is a value
which, with 95% confidence, will be exceeded less than 5% of the time.

PURPOSE

The purpose of the tolerance interval approach is to construct an inter-
val that should contain a specified fraction of the concentration measurements
from compliance wells with a specified degree of confidence. In this appli-
cation it is generally desired to have the tolerance interval contain 95% of
the measurements of concentration with confidence at least 95%.
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PROCEDURE

[t is assumed that the data used to construct the tolerance interval are
approximately normal. The data may consist of the concentration measurements
themselves if they are adequately normal (see Section 3.2 for tests of normal-
ity), or the data used may be the natural logarithms of the concentration
data. [t is important that the compliance limit (MCL or ACL) be expressed in
the same units (either concentrations or Jlogarithm of the concentrations) as
the observations. '

Step 1. Calculate the mean, X, and the standard deviation, S, of the
compliance well concentration data.

Step 2. Determine the factor, K, from Table 5, Appendix B, for the sam-
ple size, n, and form the one-sided tolerance interval

X + XS

Tgb]e 5, Appendix B contains the factors for a 95% coverage tolerance interval
with confidence factor 95%.

Step 3. Compare the upper 1imit of the tolerance interval computed in
Step 2 to the compliance limit. [f the upper limit of the tolerance interval
exceeds that limit, this is evidence of contamination.

EXAMPLE

Table 5-5 contains Aldicarb concentrations at a hypothetical facility in
compliance monitoring. The data are concentrations in parts per million (PPM)
and represent observations at three compliance wells. Assume than the permit
establishes an ACL of 50 PPM that is not to be exceeded more than 5% of the
time.

TABLE 5-5. EXAMPLE DATA FOR A TOLERANCE
INTERVAL COMPARED TO AN ACL

Sampling Aldicarb concentrations (ppm)
date Well 1 Well 2 Weil 3
Jan. 1 19.9 23.7 25.6
Feb. 1 29.6 21.9 23.3
Mar. 1 18.7 26.9 22.3
Apr. 1 24.2 26.1 26.9
Mean = 23.1 24.7 24.5
SO = 4.93 2.28 2.10

ACL = 50 ppm
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Step 1. Calculate the mean and standard deviation of the observations
from each well. These are given in the table.

Step 2. For n = 4, the factor, K, in Table 5, Appendix B, is found to
be 5.145. Form the upper tolerance interval limits as:

Well 1: 23.1 + 5.145(4.93) = 48.5
Well 2: 24.7 + 5.145(2.28) = 36.4
Well 3: 24.5 + 5.145(2.10) = 35.3

Step 3. Compare the tolerance 1imits with the ACL of 50 PPM. Since the
tolerance 1limits are below the ACL, there is no statistically significant
evidence of contamination at any well. The site remains 1in detection
monitoring.

INTERPRETATION

[t may be desirable in a permit to specify a compliance 1imit that is not
to be exceeded more than 5% of the time. A tolerance interval constructed
from the compliance well data provides an estimated interval that will contain
95% of the data with confidence 95%. If this interval is below the selected
compliance 1imit, concentrations measured at the compliiance wells should
exceed the compliance limit less than 5% of the time. If the upper limit of
the tolerance interval exceeds the compliance 1imit, then more than 5% of the
concentration measurements would be expected to exceed the compliance limit.

5.2.3 Special Cases with Limited Variance

Occasionally, all four concentrations from a compliance well at a par-
ticular sampling period could be identical. If this is the case, the formula
for estimating the standard deviation at that specific sampling period would
give zero, and the methods for calculating parametric confidence intervals
would give the same 1limits for the upper and lower ends of the intervals,
which is not appropriate.

In this case it is assumed that there is some variation in the data, but
that the concentrations were rounded and gave the same values after round-
ing. To account for the variability that was present before rounding, take
the least significant digit in the reported concentration as having resulted
from rounding., It is assumed that rounding results in a uniform error on the
interval centered at the reported value with the interval ranging up or down
one half unit from the reported value. This assumed rounding is used to
obtain a nonzero estimate of the variance for use in cases where all the mea-
sured concentrations were found to be identical.

PURPOSE

The purpose of this procedure is to obtain a nonzero estimate of the
variance when all observations from a well during a given sampling period gave
identical results. Once this modified variance is obtained, its square root
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js used in place of the usual sample standard deviation, §, to construct con-
fidence intervals or tolerance intervals.

PROCEDURE

Step 1. Determine the least significant value of any data point. That
is, determine whefher the data were reported to the nearest 10 ppm, nearest |
ppm, nearest 100 ppm, etc. Denote this wvalue by 2R.

Step 2. The data are assumed to have been rounded to the nearest 2R, so
each observation is actually the reported value #R. Assuming that the obser-
vations were identical because of rounding, the variance is estimated to be
R2/3, assuming the uniform distribution for the rounding error. This gives
the estimated standard deviation as

S' = RN3

Step 3. Take this estimated value from Step 2 and use it as the estimate
of the standard deviation in the appropriate parametric procedure. That fis,
replace S by S'.

EXAMPLE

In calculating a conf1dence'1nterval for a single compliance well, sup-
pose that four observations were taken during a sampling period and all
resulted in 590 ppm. There is no variance among the four values 590, 590,
590, and 590.

Step 1. Assume that each of the values 590 came from rounding the con-
centration to the nearest 10 ppm. That 1is, 590 could actually be anything
from 585.0 to 594.99, or any value between 585 and 595. Thus, 2R is 10 ppm,
so R is 5 ppm.

Step 2. The estimate of the standard deviation is
S' =5//3 =5/1.732 = 2.89 ppm

Step 3. Use S' = 2.89 and X = 590 to calculate the confidence interval
(see Section §.2.1) for the mean concentration from this well. This gives

590 + (4.541)(2.89//8) = (583.4, 596.6)

as the 98% confidence interval of the average concentration. Note that 4.541
is the 99th percentile from the t-distribution (Table 6, Appendix B) with 3
degrees of freedom since the sample size was 4.
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INTERPRETATION

When identical results are obtained from several different samples, the
interpretation is that the data are not reported to enough significant figures
to show the random differences. The data are regarded as having resulted from
rounding more precise results to the reported observations. The rounding is
assumed to result in variability that follows the uniform distribution on the
range tR, where 2R is the smallest unit of reporting. This assumption is used
to calculate a standard deviation for the observations that otherwise appear
to have no variability.

REMARK
Assuming that the data are reported correctly to the units indicated,
other distributions for the rounding variability could be assumed. The max-

imum standard deviation that could result from rounding when the observation
is R is the value R.
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SECTION 6
CONTROL CHARTS FOR INTRA-WELL COMPARISONS

The previous sections covered various situations where the compliance
well data were compared to the background data to detect possible contamina-
tion. This section discusses the case where the level of each constituent
within a2 single well is being monitored over time. In essence, the data for
each constituent in each well are plotted on a time scale and inspected for
obvious features such as trends or sudden changes in concentration levels.
The method suggested here is a combined Shewhart-CUSUM control chart for each
well and constituent.

The control chart method is recommended when data comprising at least
eight independent samples over a one-year period are available. This require-
ment is specified under current RCRA regulations and applies to each constit-
uent in each well.

As discussed in Section 2, a common sampling plan will obtain four inde-
pendent samples from each well on a semi-annual basis. With this plan a con-
trol chart can be implemented when one year's data are avajlable. As a result
of Monte Carlo simulations, Starks (1988) recommended at least four sampling
periods at a unit of eight or more wells, and at least eight sampling periods
at a unit with fewer than four wells.

The use of control charts can be an effective technique for monitoring
the levels of a constituent at a given well over time. It also provides a
visual means of detecting deviations from a "state of control." [t is clear
that plotting of the data is an important part of the analysis process. Plot-
ting is an easy task, although time-consuming if many data sets need to be
plotted. Advantage should be taken of graphics software, since plotting of
time series data will be an ongoing process. New data points will be added to
the already existing data base each time new data are available. The follow-
ing few sections will discuss, in general terms, the advantages of plotting
time series data; the corrective steps one could take to adjust when season-
ality in the data is present; and finally, the detailed procedure for con-
structing a Shewhart-CUSUM control chart, along with a demonstration of that
procedure, {s presented.

6.1 ADVANTAGES OF PLOTTING DATA

While analyzing the data by means of any of the appropriate statistical
procedures discussed in earlier sections {is recommended, it is also recom-
mended to plot the data. Each data point should be plotted against time using
a time scale (e.g., month, guarter). A plot should be generated for each
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constituent measured in each well. For visual comparison purposes, the scale
should be kept identical from well to well for a given constituent.

Another important application of the plotting procedure is for detecting
possible trends or drifts in the data from a given well. Furthermore, when
visually comparing the plots from several wells within a unit, possible con-
tamination of one rather than all downgradient wells could be detected which
would then warrant a closer look at that well, In general, graphs can provide
highly effective illustrations of the time series, allowing the analyst to
obtain a much greater feeling for the data. Seasonal fluctuations or sudden
changes, for example, may become quite evident, thereby supporting the analyst
in his/her decision of which statistical procedure to use. General upward or
downward trends, if present, can be detected and the analyst can follow-up
with a test for trend, such as the nonparametric Mann-Kendall test (Mann,
1945; Kendall, 1975). If, in addition, seasomality is suspected, the user can
perform the seasonal Kendall test for trend developed by Hirsch et al.
(1982). The reader is also referred to Chapters 16 and 17 of Gilbert's
“Statistical Methods for Environmental Pollution Monitoring," 1987. In any of
the above cases, the help of a professional statistician is recommended.

Another important use of data plots is that of identifying unusual data
points (e.g., outliers). These points should then be investigated for pos-
sible QC problems, data entry errors, or whether they are truly outliers.

Many software packages are available for computer graphics, developed for
mainframes, mini-, or microcomputers. For example, SAS features an easy-to-
use plotting procedure, PROC PLOT; where the hardware and software are avail-
able, a series of more sophisticated plotting routines can be accessed through
SAS GRAPH. On microcomputers, almost averybody has his or her favorite
graphics software that they use on a regular basis and no recommendation will
be made as to the most appropriate one. The plots shown in this document were
generated in LOTUS 1-2-3.

Once the data for each constituent and each well are plotted, the plots
should be examined for seasonality and a correction is recommended should
seasonality be present. A fairly simple-to-use procedure for deseasonalizing
data is presented in the following paragraphs.

6.2 CORRECTING FOR SEASONALITY

A necessary precaution before constructing a control chart is to take
into account seasonal variation of the data to minimize the chance of mistak-
ing seasonal effect for evidence of well contamination. If seasonality is
present, then deseasonalizing the data prior to using the combined Shewhart-
CUSUM control chart procedure is recommended.

Many approaches to deseasonalize data exist. If the seasonal pattern is
reqular, it may be modeled with a sine or cosine function. Moving averages
can be used, or differences (of order 12 for monthly data for example) can be
used. However, time series models may include rather complicated methods for
deseasonalizing the data. Another simpler method exists which should be ade-
quate for the situations described in this document. It has the advantage of
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being easy to understand and apply, and of providing natural estimates of the
monthly or quarterly effects via the monthly or quarterly means. The method
proposed here can be applied to any seasonal cycle--typically an annual cycle
for monthly or quarterly data.

NOTE

Corrections for seasonality should be used with great caution as they
represent extrapolation into the future. There should be a good scientific
explanation for the seasonality as well as good empirical evidence for the
seasonality before corrections are made. Larger than average rainfalls for
two or three Augusts in a row does not justify the belief that there will
never be a drought in August, and this idea extends directly to groundwater
quality. In addition, the quality (bias, robustness, and variance) of the
estimates of the proper corrections must be considered even in cases where
corrections are called for. I[f seasonality is suspected, the user might want
to seek the help of a professional statistician.

PURPOSE

When seasonality is known to exist in a time series of concentrations,
then the data should be deseasonalized prior to constructing control charts in
order to take into account seasonal variation rather than mistaking seasonal
effects for evidence of contamination.

PROCEDURE

The following instructions to adjust a time series for seasonality are
based on monthly data with a yearly cycle. The procedure can be easily modi-
fied to accommodate a yearly cycle of gquarterly data.

Assume that N years of monthly data are available. Let x1j denote the
unadjusted observation for the ith month during the jth year.

Step 1. Compute the average concentration for month i over the N-year
period:

i.‘ = (X11 + ... *+ X.‘N)/N

This is the average of all observations taken in different years but during
the same month. That is, calculate the mean concentrations in January, then
the mean for February, and so on for each of the 12 months.

Step 2. Calculate the grand mean, i, of all N*12 observations.

Step 3. Compute the adjusted concentrations,
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Computing Xy; - X; removes the average effect of month i from the monthly
data, and a&dﬁng X, the overall mean, places the adjusted z; values about the
same mean, X. It follows that the overall mean adjusted observation, Z,
equals the overall mean unadjusted value, X.

EXAMPLE
Columns 2 through 4 of Table 6-1 show monthly unadjusted concentrations
of a fictitious analyte over a 3-year period.

TABLE 6-1. EXAMPLE COMPUTATION FOR DESEASONALIZING DATA

Unadjusted Monthly adjusted

concentrations 3-Month concentrations
1983 1984 1985 average 1983 1982 1385
January 1.99 2.01 2.15 2.05 2.10 2.13 2.27
February 2.10 2.10 2.17 2.12 2.14 2.15 2.21
March 2.12 2.17 2.27 2.19 2.10 2.15 2.25
April 2.12 2.13 2.23 2.16 2.13 2.14 2.24
May 2.11 2.13 2.24 2.16 2.12 2.13 2.25
June 2.15 2.18 2.26 2.20 2.12 2.15 2.23
July 2.19 2.25 2.31 2.25 2.11 2.16 2.23
August 2.18 2.24 2.32 2.25 2.10 2.16 2.24
September 2.16 2.22 2.28 2.22 2.11 2.17 2.22
October 2.08 2.13 2.22 2.14 2.10 2.16 2.24
November 2.05 2.08 2.19 2.11 2.11 2.14 2.25
December 2.08 2.16 2.22 2.16 2.09 2.17 2.23

Overall 3-year average = 2.17

Step 1. Compute the monthly averages across the 3 years. These values
are shown in the fifth column of Table 6-1.

Step 2. The grand mean over the 3-year period is calculated to be 2.17.

Step 3. Within each month and year, subtract the average monthly
concentration for that month and add the grand mean. For example, for January
1983, the adjusted concentration becomes

1.99 - 2.05 + 2.17 = 2.11

The adjusted concentrations are shown in the last three columns of Table 6-1.
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The reader can check that the average of all 36 adjusted concentrations
equals 2.17, the average unadjusted concentration. Figure 6-1 shows the plot
of the unadjusted and adjusted data. The raw data clearly exhibit seasonality

as well as an upwards trend which is less evident by simply looking at the
data table.

INTERPRETATION

As can be seen in Figure 6-1, seasonal effects were present in the
data. After adjusting for monthly effects, the seasonality was removed as can
be seen in the adjusted data plotted in the same figure.

6.3 COMBINED SHEWHART-CUSUM CONTROL CHARTS FOR EACH WELL AND CONSTITUENT

Control charts are widely used as a statistical tool in industry as well
as research and development laboratories. The concept of control charts is
relatively simple, which makes them attractive to use. From the population
distribution of a given variable, such as concentrations of a given constit-
uent, repeated random samples are taken at intervals over time. Statistics,
for example the mean of replicate values at a point in time, are computed and
plotted together with upper and/or lower predetermined 1imits on a chart where
the x-axis represents time. If a result falls ocutside these boundaries, then
the process is declared to be "out of control"; otherwise, the process is
declared to be "in control." The widespread use of control charts is due to
their ease of construction and the fact that they can provide a quick visual
evaluation of a situation, and remedial action can be taken, if necessary.

In the context of ground water monitoring, control charts can be used to
monitor the inherent statistical variation of the data collected and to flag
anomalous results. Further investigation of data points lying outside the
established boundaries will be necessary before any direct action is taken.

A control chart that can be used on a real time basis must be constructed
from a data set large enough to characterize the behavior of a specific
well. It is recommended that data from a minimum of eight samples within a
year be collected for each constituent at each well to permit an evaluation of
the consistency of monitoring results with the current concept of the hydro-
geology of the site. Starks (1988) recommends a minimum of four sampling
periods at a unit with eight or more wells and a minimum of eight sampling
periods at a unit with less than four wells. Once the control chart for the
specific constituent at a given well {is acceptable, then subsequent data
points can be plotted on it to provide a quick evaluation as to whether the
process is in control.

The standard assumptions in the use of control charts are that the data
generated by the process, when {ft {s {n control, are independentiy and
normally distributed with a fixed mean u and constant variance o2?. The most
important assumption is that of independence; control charts are not robust
with respect to departure from independence (e.g., serial correlation). In
general, the sampling scheme will be such that the possibility of obtaining
serially correlated results is minimized, as noted in Section 2. The assump-
tion of normality is of somewhat less concern, but should be investigated
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before plotting the charts. A transformation (e.g., log-transform, square
root transform) can be applied to the raw data so as to obtain errors normally
distributed about the mean. An additional situation which may decrease the
effectiveness of control charts is seasonality in the data. The problem of
seasonality can be handled by removing the seasonality effect from the data,
provided that sufficient data to cover at least two seasons of the same type
are available (e.g., 2 years when monthly or quarterly seasonal effect). A
procedure to correct a time series for seasonality was shown above in
Section 6.2.

PURPOSE

Combined Shewhart-cumulative sum (CUSUM) control charts are constructed
for each constituent at each well to provide a visual tool of detecting both
trends and abrupt changes in concentration levels.

PROCEDURE

Assume that data from at least eight independent samples of monitoring
are available to provide reliable estimates of the mean, u, and standard
deviation, o, of the constituent's concentration levels in a given well.

Step 1. To construct a combined Shewhart-CUSUM chart, three parameters
need to be selected prior to plotting:

h - a decision internal value
k - a reference value
SCL - Shewhart control limit (denoted by U in Starks (1988))

The parameter k of the CUSUM scheme is directly obtained from the value,
D, of the displacement that should be quickly detected; k = 0/2. It is recom-
mended to select k = 1, which will allow a displacement of two standard devia-
tions to be detected quickly.

when k is selected to be 1, the parameter h is usually set at values of 4
or 5. The parameter h is the value against which the cumulative sum in the
CUSUM scheme will be compared. In the context of groundwater monitoring, a
value of h = 5 is recommended (Starks, 1988; Lucas, 1982).

The upper Shewhart 1imit is set at SCL = 4.5 in units of standard devia-
tion. This combination of k = 1, h = 5§, and SCL = 4.5 was found most appro-
priate for the application of combined Shewhart-CUSUM charts for groundwater
monitoring (Starks, 1988).

Step 2. Assume that at time period Ti' ny ¢concentration measurements
Xps =ees Xp4, are available. Compute their average Xj.

Step 3. Calculate the standardized mean

i = (Xg - w)/e
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where u and o are the mean and standard deviation obtained from prior monitor-
ing at the same well (at least four sampling periods in a year).

Step 4. Compute the guantity
Sy =max (0, Z; - k + Sy}

where max {A, B} is the maximum of A and B. At sampling period T,, S, = O.

Step 5. Plot the values of Sy versus Ti on a time chart for this com-
bined Shewhart-CUSUM scheme. Declare an "out-of-control" situation at sam-
pling period Ti if for the first time, S; 2 h or Z; 2 SCL. This will indicate
probable contamination at the well and further investigations will be
necessary.

REFERENCES

Lucas, J. M., 1982. "Combined Shewhart-CUSUM Quality Control Schemes." Jow~
nal of Quality Technology. Vol. 14, pp. 51-59.

Starks, T. H. 1988 (Draft). "Evaluation of Control Chart Methodologies for
RCRA Waste Sites."

Hockman, K. K., and J. M. Lucas. 1987. “Variability Reduction Through Sub-
vessel CUSUM Control." Journal of Quality Technology. Vol. 19, pp. 113-121.

EXAMPLE

The procedure is demonstrated on a set of carbon tetrachloride measure-
ments taken monthly at a compliance well over a l-year period. The monthly
means are presented in the second column of Table 6-2 below. Estimates of u
and o, the mean and standard deviation of carbon tetrachloride measurements at
that particular well were obtained from a preceding monitoring period at that
well; u = 5.5 uyg/L and o = 0.4 ug/L.

Step 1. The three parameters necessary to construct a combined
Shewhart-CUSUM chart were selected as h = 5; k = 1; SCL = 4.5 in units of
standard deviation.

Step 2. The monthly means are presented in Table 6-2.

Step 3. Standardize the mean observations within each sampling

period. These computations are shown in the third column of Table 6-2. For
example, Z, = (4,28 - 5,50)/0.4 = -3.05.
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TABLE 6-2. EXAMPLE DATA FOR COMBINED SHEWHART-CUSUM CHART--
CARBON TETRACHLORIDE CONCENTRATION (ug/L)

Sampling _

period Mean concentration, Standardized Xy, CUSUM,
Date T1 X1 Z1 21 - k Sf
Jan 6 1 4,28 -3.05 -4.05 0
Feb 3 2 5.21 -0.73 -1.73 0
Mar 3 3 4.77 -1.83 -2.83 0
Apr 7 4 4.71 -1.98 -2.98 0
May 5 5 6.16 1.65 0.65 0.65
Jun 2 6 5.84 0.85 -0.15 0.50
Jul 7 7 6.53 2.58 1.58 2.08b
Aug 4 8 7.38 4.702 3.70  5.78
Sep 1 9 6.43 2.32 1.32 7.10b
Oct 6 10 6.29 1.98 0.98 8.08b
Nov 3 11 6.21 1.78 0.77 8.85b
Dec 1 12 6.20 1.75 0.75 9.60

Parameters: Mean = 5.50; std = 0.4; k = 13 h = 55 SCL = 4.5.
@ Indicates "out-of-control" process via Shewhart control 1imit (SCL).

b cusum "out-of-control” signal.

Step 4. Compute the quantities S;, 1 =1, ..., 12. For example,

S, = max (0, -4.05 + 0} = 0O
S, = max {0, -1.73 +0} =0

Ss = max {0, 0.65 + Su} = max {0, 0.65 + 0} = 0.65
S¢ = max (0, -0.15 + 0.65} = max {0, 0.50} = 0.50
etc.

These quantities are shown in the last column of Table 6-2.

Step 5. Construct the control chart. The y-axis 1is in units of stan-
dard deviations. The x-axis represent time, or_the sampling periods. For
each sampling period, Ty, record the value of X, and S;. Draw horizontal
1ines at values h = 5 and SCL = 4.5. These twe 1ines represent the upper con-
trol 1imits for the CUSUM scheme and the Shewhart control 1imit, respec-
tively. The chart for this example data set is shown in Figure 6-2.
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The combined chart indicates possible contamination starting at sampling
period T4. Both the CUSUM scheme and the Shewhart control 1imit were exceeded
by Ss and Z,, respectively. Investigation of the situation should begin to
confirm contamination and action should be required to bring the variability
of the data back to its previous level.

INTERPRETATION

The combined Shewhart-CUSUM control scheme was applied to an example data
set of carbon tetrachloride measurements taken on a monthly basis at a well.
The statistic used in the construction of the chart was the mean measurement
per sampling period. (It should be noted that this method can be used on an
individual measurement as well.) Estimates of the mean and standard deviation
of the measurements were available from previous data collected at that well
over at least four sampling periods.

The parameters of the combined chart were selected to be k = 1 unit, the
reference value or allowable slack for the process; h = 5 units, the decision
interval for the CUSUM scheme; and SCL = 4.5 units, the upper Shewhart control
1imit. A1l parameters are in units of o, the standard deviation obtained from
the previous monitoring results. Various combinations of parameter values can
be selected. The particular values recommended here appear to be the best for
the initial use of the procedure from a review of the simulations and recom-
mendations in the references. A discussion on this subject is given by Lucas
(1982), Starks (1988), and Hockman and Lucas (1987). The choice of the param-
eters h and k of a CUSUM chart is based on the desired performance of the
chart. The criterion used to evaluate a control scheme is the average number
of samples or time periods before an out-of-control signal is obtained. This
criterion is denoted by ARL or average run length. The ARL should be large
when the mean concentration of a hazardous constituent is near its target
value and small when the mean has shifted too far from the target. Tables
have been developed by simulation methods to estimate ARLs for given combina-
tions of the parameters (Lucas, Starks, Hockman and Lucas). The user is
referred to these articles for further reading.

6.4 UPDATE OF A CONTROL CHART

The control chart is based on preselected performance parameters as well
as on estimates of u and o, the parameters of the distribution of the measure-
ments in question. As monitoring continues and the process is found to be in
control, these parameters need periodic updating so as to incorporate this new
information into the control charts. Starks (1988) has suggested that in
general, adjustments in sample means and standard deviations be made after
sampling periods 4, 8, 12, 20, and 32, following the initial monitoring period
recommended to be at least eight sampling periods. Also, the performance
parameters h, k, and SCL would need to be updated. The author suggests that
h=5, k=1, and SCL = 4.5 be kept at those values for the first 12 sampling
periods following the initial monitoring plan, and that k be reduced to 0.75
and SCL to 4.0 for all subsequent sampling periods. These values and sampling
period numbers are not mandatory. In the event of an out-of-control state or
a trend, the control chart should not be updated.
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6.5 NONDETECTS IN A CONTROL CHART

Regulations require that four independent water samples be taken at each
well at a given sampling period. [t is the mean of the four concentration
measurements of & particular constituent that is used in the construction of a
control chart. Now situations will arise when the concentration of a constit-
uent is below detection limit for one or more sampies. The following approach
is suggested for treating nondetects when plotting control charts.

[f only one of the four measurements is a nondetect, then replace it with
one half of the detection 1imit (MDL/2) or with one half of the practical
quantitation 1imit (PQL/2) and proceed as described in Section 6.3.

;f either two or three of the measurements are nondetects, use only the
quantitated values (two or one, respectively) for the control chart and pro-
ceed as discussed earlier in Section 6.3.

If all four measurements are nondetects, then use one half of the detec-
tion limit or practical quantitation limit as the value for the construction

of the control chart. This is an obvious situation of no contamination of the
well.

In the event that a control chart requires updating and a certain propor-
tion of the measurements is below detection 1imit, then adjust the mean and
standard deviation necessary for the control chart by using Cohen's method
described in Section 7.1.4. In that case, the proportion of nondetects
applies to the pool of data available at the time of the updating and would
include all nondetects up to that time, not just the four measurements taken
at the last sampling period.
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SECTION 7
MISCELLANEOUS TOPICS

This chapter contains a variety of special topics that are relatively
short and self contained. These topics include methods to deal with data
balow the Timit of detection and methods to check for, and deal with outliers
or extreme values in the data.

7.1 LIMIT OF DETECTION

In a chemical analysis some compounds may be below the detection 1imit
(OL) of the analytical procedure. These are generally reported as not
detected (rather than as zero or not present) and the appropriate limit of
detection is usually given. Data that include not detected results are a
special case referred to as censored data in the statistical literature. For
compounds not detected, the concentration of the compound 1is not known.
Rather it is known that the concentration of the compound is less ‘than the
detection limit.

There are a variety of ways to deal with data that include values below
detection. There is no general procedure that is applicabie in all cases.
However there are some general guidelines that usually prove adequate. If
these do not cover a specific situation, the user should consult a profes-
sional statistician for the most appropriate way to deal with the values below
detection.

A summary of suggested approaches to deal with data below the detection
1imit is presented as Table 7-1. The method suggested depends on the amount
of data below the detection limit. For small amounts of below detection
values, simply replacing a "ND" (not detected) report with a small number, say
the detection limit divided by two, and proceeding with the usual analysis is
satisfactory. For moderate amounts of below detection 1imit data, a more
detailed adjustment is appropriate, while for large amounts one may need to
only consider whether a compound was detected or not as the variable of
analysis.

The meaning of small, moderate, and large above is subject to judgment.
Table 7-1 contains some suggested values. It should be recognized that these
values are not hard and fast rules, but are based on judgment. If there is a
question about how to handle values below detection, consult a statistician.
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TABLE 7-1.

METHODS FOR BELOW DETECTION LIMIT VALUES

Percentage
of Nondetects
in the Data Base

Statistical
Analysis Method

Section of
Guidance Document

Less than 15% Replace NDs with Section 7.1.1
MDL/2 or PQL/2,
then proceed with
parametric procedures:
« ANOVA Section 4.2.1
» Tolerance Units Section 4.3
» Prediction Intervals Section 4.4
= Control Charts Section 6
Between 15 and 50% Use NDs as ties,
then proceed with _
Nonparametric ANOVA Section 4.2.2
or
use Cohen's adjustment, Section 7.1.3
then proceed with:
» Tolerance Limits Section 4.3
» Confidence Intervals Section 5.2.1
» Control Charts Section 6
More than 50% Test of Proportions Section 7.1.2
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[t should be noted that the nonparametric methods presented earlier auto-
matically deal with values below detection by regarding them as all tied at a
level below any guantitated results. The nonparametric methods may be used if
there is a moderate amount of data below detection. If the proportion of non-
quantified values in the data exceeds 25%, these methods should be used with
caution. They should probably not be used if less than half of the data con-
sists of quantified concentrations.

7.1.1 The DL/2 Method

The amount of data that are below detection plays an important role in
selecting the method to deal with the limit of detection problem. If a small
proportion of the observations are not detected, these may be replaced with a
small number, usually the method detection 1imit divided by 2 (MDL/2), and the
usual analysis performed. This is the recommended method for use with the
analysis of various procedure of Section 4.2.1. Seek professional help if in
doubt about dealing with values below detection limit. The results of the

analysis are generally not sensitive to the specific choice of the replacement
number.

As a guideliine, if 15% or fewer of the values are not detected, replace
them with the method detection 1imit divided by two and proceed with the
appropriate analysis using these modified values. Practical quantitation
Timits (PQL) for Appendix IX compounds were published by EPA in the Federal
Register (Vol 52, No 131, July 9, 1987, pp 25947-25952). These give practical
quantitation 1limits by compound and analytical method that may be used in
replacing a small amount of nondetected data with the quantitation 1imit
divided by 2. If approved by the Regional Administrator, site specific PQL's
may be used in this procedure. If more than 15% of the values are reported as
not detected, it is preferable to use a nonparametric method or a test of pro-
portions.

7.1.2. Test of Proportions

If more than 50% of the data are below detection but at least 10% of the
observations are quantified, a test of proportions may be used to compare the
background well data with the compliance well data. Clearly, if none of the
background well observations were above the detection limit, but all of the
compliance well observations were above the detection 1imit, one would suspect
contamination. In general the difference may not be as obvious. However, a
higher proportion of quantitated values in compliance wells could provide evi-
dence of contamination. The test of proportions is a method to determine
whether a difference in proportion of detected values in the background well
observations and compliance well observations provides statistically signifi-
cant evidence of contamination.

The test of proportions should be used when the proportion of quantified
values is small to moderate. If very few quantified values are found, a
method based on the Poisson distribution may be used as an alternative
approach. A method based on a tolerance limit for the number of detected
compounds and the maximum concentration found for any detected compound has
been proposed by Gibbons (1988). This alternative would be appropriate when
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the number of detected compounds is quite small relative to the number of
compounds analyzed for as might occur in detection monitoring.

PURPOSE

The test of proportions tests whether the proportion of compounds
detected in the compliance well data differs significantly from the proportion
of compounds detected in the background well data. [f there is a significant
difference, this is avidence of contamination.

PROCEDURE

The procedure uses the normal distribution approximation to the binomial
distribution. This assumes that the sample size is reasonably large. Gener-
ally, if the proportion of detected values is denoted by P, and the sample
size is n, then the normal approximation is adequate, provided that nP and
n(l-P) both are greater than or equal to 5.

Step 1. Determine X, the number of background well samples in which the
compound was detected. Let n be the total number of background well sampies
analyzed. Compute the proportion of detects:

-~

P. = x/n

u

Step 2. Determine Y, the number of compliance well samples in which the
compound was detected. Let M be the total number of compliance well sampies
analyzed. Compute the proportion of detects:

ﬁd = y/m
Step 3. Compute the standard error of the difference in proportions:
Sp = (L0xy)/(mm)IIL - (x+y)/(mm)1[1/n + 1/m]}}/2
and form the statistic:
Z= (P, - Pg)/Sp

Step 4. Compare the absolute value of Z to the 97.5th percentile from
the standard normal distribution, 1.96. [f the absolute value of Z exceeds
1.96, this provides statistically significant evidence at the 5% significance
level that the proportion of compliance well samples where the compound was
detected exceeds the proportion of background well samples where the compound
was detected. This would be interpreted as evidence of contamination. (The
two-sided test is used to provide information about differences in either
direction.)

EXAMPLE
Table 7-2 contains data on cadmium concentrations measured in background

well and compliance wells at a facility. In the table, "BOL" is used for
below detection limit.
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TABLE 7-2. EXAMPLE DATA FOR A TEST OF PROPORTIONS

Cadmium concentration (ug/L)
at background well
(24 samples)

Cadmium concentration (ug/L)
at compliance wells

(64 samples)

0.1 BOL
0.12 BOL
BOL* BOL
0.26 8oL
BOL

0.1

BOL

0.014

8DL

BOL

BOL

BOL

BOL

0.12

BOL

0.21

BOL

0.12

BOL

BOL

0.12
0.08
BOL
0.2
8OL
0.1
BOL
0.012
BOL
BOL
8OL
8OL
BOL
0.12
0.07
BOL
0.19
BOL
0.1
8OL
0.01
BOL
BOL

BOL
BDL
BOL
0.11
0.06
BOL
0.23
BOL
0.11
BOL
0.031
BOL
BOL
BOL
BOL
8OL
0.12
0.08
8OL
0.26
8oL
0.02
BDL

0.024
BDL
BOL
BOL
BOL
8OL
0.1
0.04
8DL
80L
0.1
BOL
0.01
80OL
BOL
BOL
BOL
BOL

*BDL means below detection limit.
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Step 1. Estimate the proportion above detection in the background
wells. As shown in Table 7-2, there were 24 samples from background wells
analyzed for cadmium, so n= 24, Of these, 16 were below detection and x = 8
were above detection, so Pu = 8/24 = (0.333.

Step 2. Estimate the proportion above detection in the compliance
wells., There were 64 samples from compliance wells analyzed for cadmium, with
gg/be1ow detection and 24 detected values. This gives m = 64, y = 24, so Py =

64 = 0.375.

Step 3. Calculate the standard error of the difference.
Sp = [[(8+24)/(24+64)][1-(8+24)/(24+64)](1/24 +1/64)}}/2 = 0.115

Step 4. Form the statistic Z and compare it to the normal
distribution.

_ 0.375 - 0.333
z B 0.37

which is less in absolute value than the value from the normal distribution,
1.96. Consequently, there is no significant evidence that the proportion of
samples with cadmium Jlevels above the detection 1limit differs in the
background well and compliance well samples.

INTERPRETATION

Since the proportion of water samples with detected amounts of cadmium in
the compliance wells was not significantly different from that in the
background wells, the data are interpreted to provide no evidence of contam-
ination. Had the proportion of samples with detectable levels of cadmium in
the compliance wells been significantly higher than that in the background
wells this would have been evidence of contamination. Had the proportion been
significantly higher in the background wells, additional study would have been
required. This could indicate that contamination was migrating from an off-
site source, or it could mean that the hydraulic gradient had been incorrectly
estimated or had changed and that contamination was occurring from the facil-
ity, but the ground-water flow was not in the direction originally estimated.
Mounding of contaminants in the ground water near the background wells could
also be a possible explanation of this observance.

7.1.3 Cohen's Method

If a confidence interval or a tolerance interval based upon the normal
distribution is being constructed, a technique presented by Cohen (1959)
specifies a method to adjust the sample mean and sample standard deviation to
account for data below the detection 1imit. The only requirements for the use
of this technique is that the data are normally distributed and that the
detection limit be always the same. This technique is demonstrated below.
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PURPOSE

Cohen's method provides estimates of the sample mean and standard devia-
tion when some observations are below detection. These estimates can then be
used to construct tolerance, confidence, or prediction intervals.

PROCEDURE

Let n be the total number of observations, m represent the number of Bata
points above the detection limit (DL), and X1 represent the value of the ith
constituent value above the detection limit.

Step 1. Compute the sample mean xq from the data above the detection
Timit as follows:

Step 2. Compute the sample variance Sé from the data above the detection

1imit as follows:

m _ m LI
o o OGO B2 - 5 GEX)
g m-1 m-1

Step 3. Compute the two parameters, h and T, as follows:

and

(X-DL)2

where n is the total number of observations (i.e., above and below the
detection 1imit), and where DL is equal to the detection limit.

These values are then used to determine the value of the parameter x from
Table 7 in Appendix B.

Step 4. Estimate the corrected sample mean, which accounts for the data
below detection 1imit, as follows:

X = id - x(id - OL)

Step 5. Estimate the corrected sample standard deviation, which accounts
for the data below detection limit, as follows:
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S = (S42+a (Xy - pLy %y /2

Syep 6. Use the modified values of X and S in the procedure for con-
struch;glf tolerance interval (Section 4.3) or a confidence interval (Sec-
tion 5.2.1).

REFERENCE

Cohen, A. C., Jr. 1959. "Simplified Estimators for the Normal Distribution
When Samples are Singly Censored or Truncated." Technometrics. 1:217-237.

EXAMPLE

Table 7-3 contains data on sulfate concentrations. Three observations of
Fhe 24 were below the detection 1limit of 1,450 mg/L and are denoted by
'< 1,450" in the table.

TABLE 7-3. EXAMPLE DATA FOR TESTING COHEN'S TEST

Sulfate concentration (mg/L)

1,850
1,760
<1,450
1,710
1,575
1,475
1,780
1,790
1,780

< 1,450
1,790
1.800

< 1,450
1,800
1,840
1,820
1,860
1,780
1,760
1,800
1,900
1,770
1,790
1,780

> DL = 1,450 mg/L

Note: A symbol “<" before a number indicates that the vaiue
is not detected. The number following is then the 1imit of

detection.
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Step 1. Calculate the mean from the m = 21 values above detection
X4 = 1,771.9
Step 2. Calculate the sample variance from the 21 quantified values
S3 = 8,593.69
Step 3. Determine
h = (24-21)/24 = 0.125
and
T = 8593.69/(1771.9-1450)2 = 0.083
Enter Table 7 of Appendix B at h = 0.125 and T = 0.083 to determine the
value of a. Since the table does not coptain these entries exactly, double

linear interpolation was used to estimate A = 0.14986.

REMARK

For the interested reader, the details of the double linear interpolation
are provided.

The values from Table 14 between which the user needs to interpolate are:

h=0.10 h = 0.15
I
0.05 0.11431 0.17935
0.10 0.11804 0.18479

There are 0.025 units between 0.0l and 0.125 on the h-scale. There are
0.05 units between 0.10 and 0.15. Therefore, the value of interest (0.125)
1ies (0.025/0.05 * 100) = 50% of the distance along the interval between 0.10
and 0.15. To linearly interpolate between the tabulated values on the h axis,
the range between the values must be calculated, the value that is 50% of the
distance along the range must be computed and then that value must be added to
the lower point on the tabulated values. The result is the interpolated
value. The interpolated points on the h-scale for the current example are:

0.17935 - 0.11431 = 0.06504 0.06504 * 0.50 = 0.03252
0.11431 + 0.03252 = 0.14683

0.18479 - 0.11804 = 0.06675 0.06675 * 0.50 = 0.033375
0.11804 + 0.033375 = 0.151415

On the r-axis there are 0.033 units between 0.05 and 0.083. There are
0.05 units between 0.05 and 0.10. The value of interest (0.083) 1lies
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(0.0330.05 * 100) = 66% of the distance along the interval between 0.05 and
0.10. The interpolated point on the r-axis is:

0.141415 - 0.14683 = 0.004585 0.004585 * 0.66 = 0.0030261
0.14683 + 0.0030261 = 0.14986

Thus, » = 0.14986.

Step 5. The corrected sample mean and standard deviation are then esti-
mated as follows:

X = 1,771.9 - 0.14986 (1,771.9 - 1,450) = 1,723.66
S = [8,593.69 + 0.14986(1,771.9 - 1,450)2]1/2 = 155.31

Step 6. These modified estimates of the mean, X = 1723.66, and of the
standard deviation, S = 155.31, would be used in the tolerance or confidence
interval procedure. For example, if the sulfate concentrations represent
background at a facility, the upper 95% tolerance limit becomes

1723.7 + (155.3)(2.309) = 2082.3 mg/L

Observations from compliiance wells in excess of 2,082 mg/L would give sta-
tistically significant evidence of contamination.

INTERPRETATION

Cohen's method provides maximum likelihood estimates of the mean and
variance of a censored normal distribution. That is, of observations that
follow a normal distribution except for those below a limit of detection,
which are reported as "not detected." The modified estimates reflect the fact
that the not detected observations are below the limit of detection, but not
necessarily zero. The large sample properties of the modified estimates allow
for them to be used with the normal theory procedures as a means of adjusting
for not detected values in the data. Use of Cohen's method in more compii-
cated calculations such as those required for analysis of variance procedures,
requires special consideration from a professional statistician.

7.2 QUTLIERS

A ground-water constituent concentration value that is much different
from most other values in a data set for the same ground-water constituent
concentration can be referred to as an "outlier." Possible reasons for
outliers can be:

. A catastrophic unnatural occurrence such as a spili;

. Inconsistent sampling or analytical chemistry methodology that may
result in laboratory contamination or other anomalies:

. Errors in the transcription of data values or decimal points; and
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. True but extreme ground-water constituent concentration measure-
ments.

There are several tests to determine if there is statistical evidence
that an observation is an outlier. The reference for the test presented here
is ASTM paper E178-75.

PURPOSE

The purpose of a test for outliers is to determine whether there is
statistical evidence that an observation that appears extreme does not fit the
distribution of the rest of the data. If a suspect observation is identified
as an outlier, then steps need to be taken to determine whether it is the
result of an error or a valid extreme observation.

PROCEDURE

Let the sample of observations of a hazardous constituent of ground water
be denoted by X,, ..., Xn. For specificity, assume that the data have been
ordered and that the largest observation, denoted by Xn, is suspected of being
an outlier. Generally, inspection of the data suggests values that do not
appear to belong to the data set. For example, if the largest observation is
an order of magnitude larger than the other observations, it would be suspect.

Step 1. Calculate the mean, X and the standard deviation, S, of the data
including all observations.

Step 2. Form the statistic
Ty = (Xp = X)/S

Note that T, is the difference between the largest observation and the sample
mean, divided by the sample standard deviation.

Step 3. Compare the statistic Tn to the critical value given the sample
size, n, in Table 8 in Appendix B. If the statistic exceeds the criticail
value from the table, this is evidence that the suspect observation, X,, is a
statistical outlier.

Step 4. If the value is identified as an outlier, one of the actions
outlined below should be taken. (The appropriate action depends on what can
be learned about the observation.) The records of the sampiing and analysis
of the sampie that led to it shoulid be investigated to determine whether the
outlier resulted from an error that can be identified.

. If an error (in transcription, dilution, analytical procedure, etc.)
can be identified and the correct value recovered, the observation should be

replaced by its corrected value and the appropriate statistical analysis done
with the corrected value.

. If it can be determined that the observation is in error, but the
correct value cannot be determined, then the observation should be deleted
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from the data set and the appropriate statistical analysis performed. The
fact that the observation was deleted and the reason for its deletion should
be reported when reporting the results of the statistical analysis.

. If no error in the value can be documented then it must be assumed
that the observation is a true but extreme value. In this case it must not be
altered. [t may be desirable to obtain another sample to confirm the observa-
tion. However, analysis and reporting should retain the observation and state
that no error was found in tracing the sample that led to the extreme observa-
tion. ‘

EXAMPLE
Table 7-4 contains 19 values of total organic carbon (TOC) that were
obtained from a monitoring well. Inspection shows one value which at 11,000
mg/L is nearly an order of magnitude larger than most of the other observa-
tions. It s a suspected outlier.
Step 1. Calculate the mean and standard deviation of the data.
X = 2300 and S = 2325.9

TABLE 7-4. EXAMPLE DATA FOR TESTING FOR AN OUTLLER

Total organic carbon (mg/L)

1,700
1,900
1,500
1,300
11,000
1,250
11000
1,300
1,200
1,450
1,000
1,300
1,000
2,200
4,900
3,700
1,600
2,500
1,900
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Step 2. C(Calculate the statistic T,,.
T,9 = (11000-2300)/2325.9 = 3.74

Step 3. Referring to Table 8 of Appendix B for the upper 5% significance
level, with n = 19, the critical value is 2.532. Since the value of the
statistic T = 3.74 is greater than 2.532, there is statistical evidence that
the largest observation is an outlier.

Step 4. In this case, tracking the data revealed that the unusual value
of 11,000 resulted from a keying error and that the correct value was 1,100.
This correction was then made in the data.

INTERPRETATION

An observation that is 4 or 5 times as large as the rest of the data is
generally viewed with suspicion. An observation that is an order of magnitude
different could arise by a common error of misplacing a decimal. The test for
an outiier provides a statistical basis for determining whether an observation
is statistically different from the rest of the data. If it is, then it is a
statistical outlier. However, a statistical outlier may not be dropped or
altered just because it has been identified as an outlier. The test provides
a formal identification of an observation as an outlier, but does not identify
the cause of the difference.

Whether or not a statistical test is done, any suspect data point should
be checked. An observation may be corrected or dropped only if it can be
determined that an error has occurred. If the error can be identified and
corrected (as in transcription or keying) the correction should be made and
the corrected values used. A value that is demonstrated to be incorrect may
be deleted from the data. However, if no specific error can be documented,
the observation must be retained in the data. Identification of an observa-
tion as an outlier but with no error documented could be used to suggest
resampling to confirm the value.
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GENERAL STATISTICAL CONSIDERATIONS

FALSE ALARMS OR TYPE I ERRORS

~ The statistical analysis of data from ground-water monitoring at RCRA
sites has as 1its goal the determination of whether the data provide evidence
of the presence of, or an increase in the level of, contamination. In the
case of detection monitoring, the goal of the statistical analysis is to
determine whether statistically significant evidence of contamination
exists. In the case of compliance monitoring, the goal is to determine
whether statistically significant evidence of concentration levels exceeding
compifance Timits exists. In monitoring sites in corrective action, the goal
is to determine whether levels of the hazardous constituents are still above
compliance limits or have been reduced to at or below the compliance limit.

These questions are addressed by the use of hypothesis tests. In the
case of detection monitoring, it is hypothesized that a site is not contami-
nated; that is, the hazardous constituents are not present in the ground
water. Samples of the ground water are taken and analyzed for the constitu-
ents in questfon. A hypothesis test is used to decide whether the data indi-
cate the presence of the hazardous constituent. The test consists of calcu-
lating one or more statistics from the data and comparing the calculated
results to some prespecified critical levels.

In performing a statistical test, there are four possible outcomes. Two
of the possible outcomes result in the correct decision: (a) the test may
correctly indicate that no contamination is present or (b) the test may cor-
rectly indicate the presence of contamination. The other two possibilities
are errors: (c) the test may indicate that contamination is present when in
fact it is not or (d) the test may fail to detect contamination when it is
present.

If the stated hypothesis is that no contamination is present (usually
called the null hypothesis) and the test indicates that contamination is
present when in fact it is not, this is called a Type I error. Statistical
hypothesis tests are generally set up to control the probability of Type [
error to be no more than a specified value, called the significance level, and
usually denoted by a. Thus in detection monitoring, the null hypothesis would
be that the level of each hazardous constituent is zero (or at least below
detection). The test would reject this hypothesis if some measure of concen-
tration were too large, indicating contamination. A Type 1 error would be a
false alarm or a triggering event that {is inappropriate.

In compliance monitoring, the null hypothesis is that the level of each
hazardous constituent is less than or equal to the appropriate compliance
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limit. For the purpose of setting up the statistical procedure, the simple
null hypothesis that the level is equal to the compliance limit would be
used. As in detection monitoring, the test would indicate contamination if
some measure of concentration is too large. A false alarm or Type I error
would occur if the statistical procedure indicated that levels exceed the
appropriate compliance limits when, in fact, .they do not. Such an error would
he a false alarm in that it would indicate falsely that compliance limits were
being exceeded.

PROBABILITY OF DETECTION AND TYPE II ERROR

The other type of error that can occur is called a Type [I error. [t
occurs if the test fails to detect contamination that is present. Thus a
Type II error is a missed detection. While the probability of a Type I error
can be specified, since it is the probability that the test will give a false
alarm, the probability of a Type Il error depends on several factors, includ-
ing the statistical test, the sample size, and the significance level or prob-
ability of Type I error. In addition, it depends on the degree of contamina-
tion present. In general, the probability of a Type Il error decreases as the
Tevel of contamination increases. Thus a test may be likely to miss low lev-
els of contamination, less likely to miss moderate contamination, and very
uniikely to miss high lavels of contamination.

One can discuss the probability of a Type Il error as the probability of
a8 missed detection, or one can discuss the complement (one minus the prob-
ability of Type 1l error) of this probability. The complement, or probability
of detection, is also called the power of the test. It depends on the magni-
tude of the contamination so that the power or probability of detecting con-
tamination increases with the degree of contamination.

If the probability of a Type I error is specified, then for'a given sta-
tistical test, the power depends on the sample size and the alternative of
interest. In order to specify a desired power or probability of detection,
one must specify the alternative that should be detected. Since generally the
power will increase as the alternative differs more and more from the null
hypothesis, one usually tries to specify the alternative that is closest to
the null hypothesis, yet enough different that it is important to detect.

In the detection monitoring situation, the null hypothesis is that the
concentration of the hazardous constituent is zero (or at least below detec-
tion). In this case the alternative of interest is that there is a concen-
tration of the hazardous constituent that is above the detection limit and is
large enough so that the monitoring procedure should detect it. Since it is a
very difficult problem to select a concentration of each hazardous constituent
that should be detectable with specified power, a more useful approach is to
determine the power of a test at several alternatives and decide whether the
procedure is acceptable on the basis of this power function rather than on the
power against a single alternative,

In order to increase the power, a larger sample must be taken. This
would mean sampling at more frequent intervals. There is a 1imit to how much
can be achieved, however. In cases with limited water flow, it may not be
possible to sample wells as frequently as desired. If samples close together
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in time prove to be correlated, this correlation reduces the information
available from the different samples. The additional cost of sampling and
analysis will also impose practical limitations on the sample size that can be
used.

Additional wells could also be used to increase the performance of the
test. The additional monitoring wells would primarily be helpful in ensuring
that a plume would not escape detection by missing the monitoring wells. How-
ever, in some situations the additional wells would contribute to a larger
sample size and so improve the power.

In compliance monitoring the emphasis is on determining whether addi-
tional contamination has occurred, raising the concentration above a compli-
ance limit. If the compliance 1imit is determined from the background well
levels, the null hypothesis is that the difference between the background and
compliance well concentrations is zero. The alternative of interest is that
the compliance well concentration exceeds the background concentration. This
situation is essentially the same for power considerations as that of the
detection monitoring situation.

If compliance monitoring is relative to a compliance 1limit (MCL or ACL),
specified as a constant, then the situation is different. Here the null hypo-
thesis is that the concentration is less than or equal to the compliance
1imit, with equality used to establish the test. The alternative is that the
concentration is above the compliance limit. In order to specify power, a
minimum amount above the compliance 1imit must be established and power speci-
fied for that alternative or the power function eva]uated for several possible
alternatives.

SAMPLE DESIGNS AND ASSUMPTIONS

As discussed in Section 2, the sample design to be empioyed at a regu-
Jated unit will primarily depend on the hydrogeologic evaluation of the
site. Wells should be sited to provide multiple background wells hydrauli-
cally upgradient from the regulated unit. The background wells allow for
determination of natural spatial variability in ground-water quaiity. They
also allow for estimation of background levels with greater precision than
would be possible from a single upgradient well. Compliance wealls should be
sited hydraulically downgradient to each regulated unit. The location and
spacing of the wells, as well as the depth of sampling, would be determined
from the hydrology to ensure that at least one of the wells should intercept a
plume of contamination of reasonable size.

Thus the assumed sample design is for a sample of wells to include a
number of background wells for the site, together with a number of compliance
wells for each regulated unit at the site. In the event that a site has only
a single regulated unit, there would be two groups of wells, background and
compliance. [f a site has multiple regulated units, there would be a set of
compliance wells for each regulated unit, allowing for detection monitoring or
compliance monitoring separately at each regulated unit.

Data from the analysis of the water at each well are initially assumed to
follow a normal distribution. This is likely to be the case for detection
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monitoring of analytes in that levels should be near Zzero and errors would
likely represent instrument or other sampling and analysis variability. I[f
contamination is present, then the distribution of the data may be skewed to
the right, giving a few very large values. The assumption of normality of
errors in the detection monitoring case is quite reasonable, with deviations
from normality likely indicating some degree of contamination. Tests of nor-
mality are recommended to ensure that the data are adequately represented by
the normal distribution.

In the compliance monitoring case, the data for each analyte will again
initially be assumed to follow the normal distribution. In this case, how-
ever, since there is a nonzero concentration of the analyte in the ground
water, normality is more of an issue. Tests of normality are recommended. I[f
evidence of nonnormality is found, the data should be transformed or a
distribution-free test be used to determine whether statistically significant
evidence of contamination exists.

The standard situation would result in multipie samples (taken at dif-
ferent times) of water from each well. The wells would form groups of back-
ground wells and compliance wells for each regulated unit. The statistical
procedures recommended wouid allow for testing each compliance well group
against the background group. Further, tests among the compliance wells
within a group are recommended to determine whether a single well might be
intercepting an isolated plume. The specific procedures discussed and recom-
merided in the following sections should cover the majority of cases. They
will not cover all of the possibilities. In the event that none of the proce-
dures described and illustrated appears to apply to a particular case at a
given regulated site, consultation with a statistician should be sought to
determine an appropriate statistical procedure.

The following approach is recommended. If a regulated unit is in detec-
tion monitoring, it will remain in detection monitoring until or unless there
is statistically significant evidence of contamination, in which case it would
be placed in compliance monitoring. Likewise, if a regulated unit is in com-
pliance monitoring, it will remain in compliance monitoring unless or until
there is statistically significant evidence of further contamination, in which
case it would move into corrective action.

In monitoring a requlated unit with mulitiple compliance wells, two types
of significance levels are considered. One is an experimentwise significance
level and the other is a comparisonwise significance level. When a procedure
such as analysis of variance is used that considers several compliance wells
simultaneously, the significance is an experimentwise significance. If
individual well comparisons are made, each of those comparisons is done at a
comparisonwise significance level.

The fact that many comparisons will be made at a regulated unit with
multiple compliance wells can make the probability that at least one of the
comparisons will be incorrectly significant too high. To control the false
positive rate, multiple comparisons procedures are allowed that control the
experimentwise significance level to be 5%. That is, the probability that one
or more of the comparisons will falsely indicate contamination is controlled

A-5



at 5%. However, to provide some assurance of adequate power to detect real
contamination, the comparisonwise significance 1level for comparing each
individual well to the background is required to be no less than l%.

Control of the experimentwise significance level via multiple comparisons
procedures is allowed for comparisons among several wells. However, use of an
experimentwise significance level for the comparisons among the different haz-
ardous constituents is not permitted. Each hazardous constituent to be moni-
tored for in the permit must be treated separately.
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GLOSSARY OF STATISTICAL TERMS

(underlined terms are explained subsequently)

Alpha (a)

Alpha-error

Alternative hypothesis

Arithmetic average

Confidence coefficient

Confidence 1interval

Cumulative distribution
function

Distribution-free

A greek letter used to denote the significance
level or probability of a Type [ error.

Sometimes used for Type I error.

An alternative hypothesis specifies that the
underlying distribution differs from the null
hypothesis. The alternative hypothesis usually
specifies the value of a parameter, for example
the mean concentration, that one is trying to
detect.

The arithmetic average of a set of observations
is their sum divided by the number of
observations.

The confidence coefficient of a confidence
interval for a parameter is the probab?iity that
the random interval constructed from the sample
data contains the true value of the parameter.
The confidence coefficient is related to the
significance level of an associated hypothesis
test by the fact that the significance level (in
percent) is one hundred minus the confidence
coefficient (in percent).

A confidence interval for a parameter is a
random interval constructed from sample data in
such a way that the probability that the -
interval will contain the true value of the
parameter is a specified value.

Distribution function.

This 1s sometimes used as a synonym for
nonparametric. A statistic is distribution-free
if its distribution does not depend upon which
specific distribution function (in a large
class) the observations follow.
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Distribution function

Experimentwise error rate

Hypothesis

Independence

Mean

Median

Multiple comparison
procedure

The distribution function for a random variable,
X, is a function that specifies the probability
that X is less than or equal to t, for all real
values of t.

This term refers to muitiple comparisons. I[f a
total of n decisions are made about comparisons
(for example of compliance wells to background
wells) and x of the decisions are wrong, then
the experimentwise error rate is x/n.

This is a formal statement about a parameter of
interest and the distribution of a statistic.
It is usually used as a null hypothesis or an
alternative hypothesis. For example, the null
hypothesis might specify that ground water had a
zero concentration of benzene and that analyti-
cal errors followed a normal distribution with
mean zero and standard deviation 1 ppm.

A set of events are independent if the
probability of the joint occurrence of any
subset of the events factors into the product of
the probabilities of the events. A set of
observations 1is independent if the joint
distribution function of the random errors
associated with the observations factors into
the product of the distribution functions.

Arithmetic average.

This is the middle value of a samplie when the
observations have been ordered from least to
greatest. If the number of observations is odd,
it is the middle observation. If the number of
observations is even, it is customary to take
the midpoint between the two middle observa-
tions. For a distribution, the median is a
value such that the probability is one-half that
an observation will fall above or below the
median.

This is a statistical procedure that makes a
large number of decisions or comparisons on one
set of data. For example, at a sampling period,
several compliance well concentrations may be
compared to the background well concentration.
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Nonparametric statistical
procedure

Normal population,
normality

Null hypothesis

One-sided test

One-sided tolerance 1imit

One-sided confidence 1limit

Order statistics

Qutlier

Parameter

Percentile

A nonparametric statistical procedure is a
statistical procedure that has desirable
properties that hold under mild assumptions
regarding the data. Typically the procedure is
valid for a large class of distributions rather
than for a specific distribution of the data
such as the normal.

The errors associated with the observations
follow the normal or Gaussian distribution
function.

A null hypothesis specifies the underlying
distribution of the data completely. Often the
null distribution specifies that there is no
difference between the mean concentration in
background well water samples and compliance
well water samples.

A one-sided test is appropriate if concentra-
tions higher than those specified by the null
hypothesis are of concern. A one-sided test
only rejects for differences that are large and
in a prespecified direction.

This 1s an upper 1imit on observations from a
specified distribution.

This 1is an upper 1imit on a parameter of a
distribution.

The sample values observed after they have been
arranged in increasing order.

An outlier is an observation that is found to
1ie an unusually long way from the rest of the
observations in a series of replicate
observations.

A parameter is an unknown constant associated
with a population. For example, the mean
concentration of a hazardous constituent in
ground water is a parameter of interest.

A percentile of a distribution is a value beiow

which & specified proportion or percent of the
observations from that distributfon will fall.
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Power

Significance level

Type [ error

Type Il error

The power of a test is the probability that the
test will reject under a specified alternative
hypothesis. This is one minus the probability
of a Type II error. The power is a measure of
the test's ability to detect a difference of
specified size from the null hypothesis.

Sometimes referred to as the alpha level, the
significance level of a test is the probability
of falsely rejecting a true null hypothesis.
The probability of a Type I error.

A Type [ error occurs when a true null
hypothesis is rejected erroneously. In the
monitoring context & Type I error occurs when a
test incorrectly indicates contamination or an
increase in contamination at a reguiated unit.

A Type II error occurs when one fails to reject
a null hypothesis that 1is false. In the
monitoring context, a Type Il error occurs when
monitoring fails to detect contamination or an
increase in a concentration of a hazardous
constituent.
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TABLE 1. PERCENTILES OF THE x2 DISTRIBUTION WITH
v DEGREES OF FREEDOM, x2.p

o X3 s

0.750 0.900 0.950 0.975 0.990 0.995 0999

A

1 1.323 2.706 3.841 5.024 6.635 7.879 10.83
2 21 4.6058 5.991 7.378 9.210 10.60 13.82
3 4.108 6.251 7.815 9.348 11.34 12.84 16.27
4 5.385 7.779 9.488 11.14 13.28 14.86 18.47
5 6.626 9.236 11.07 12.83 15.09 16.75 20.52
6 7.841 10.64 12.59 14.45 16.81 18.55 22.46
7 9.037 12.02 14.07 16.01 18.48 20.28 24.32
8 10.22 13.36 15.51 17.53 20.09 21.96 26.12
9 11.39 14.68 16.92 1902 21.67 23.59 27.88
10 1258 15.99 18.31 20.48 2321 25.19 29.59
11 13.70 17.28 19.68 21.92 24.72 26.76 31.26
12 14.85 18.55 21.03 23.34 26.22 28.30 32.91
13 15.98 19.81 22.36 24.74 27.69 29.82 34.53
14 1712 21.06 23.68 26.12 29.14 31.32 36.12
15 18.2% 2.31 25.00 27.49 30.58 32.80 37.70
16 1937 23.54 26.30 28.85 32.00 3427 39.28
17 2049 4.7 21.59 30.19 3341 sn 40.79
18 2160 25.99 28.87 31.53 34.81 37.16 42.31
19 2.72 27.20 30.14 32.85 36.19 38.58 43.82
20 2383 28.41 31.41 34.17 37.57 40.00 45.32
21 2493 29.62 32.67 35.48 38.93 41.40 46.80
2 2604 30.81 33.92 36.78 4029 42.80 4827
23 2114 32,01 38.17 38.08 41.64 44.18 49.73
2¢ 2824 33.20 36.42 39.36 42.98 45.56 51.18
25 29.34 34,38 37.65 40.65 44.3] 46.93 52.62
26 3043 15.56 38.89 41.92 45.64 48.29 54.05
27 31.53 36.74 40.11 43.19 46.96 49.64 §5.48
28 32.62 37.92 41.34 44.46 48.28 50.99 56.89
29 3371 39.09 42.56 45 49.59 52.34 58.30
30 34.80 40.26 43177 46.98 50.89 $3.67 59.70
40  45.62 51.80 55.76 59.34 63.69 66.77 73.40
50  56.33 63.17 67.50 71.42 76.15 79.49 86.66
60  66.98 74.40 79.08 83.30 88.38 91.95 99.61°
7  77.58 85.53 90.53 95.02 100.4 104.2 1123
80  88.13 96.58 101.9 106.6 1123 116.3 124.8
90  98.65 107.6 113.1 118.1 124.1 1283 1372

100 109.1 118.5 124.3 129.6 135.3 140.2 149.4

SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. I. Second Edition. John

Wiley and Sons, New York.
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TABLE 2.

vy AND v, DEGREES OF FREEDOM, Fy

95th PERCENTILES OF THE F-DISTRIBUTION WITH
1sV2,0-95

¥y ¢ I 2 3 4 1 [ 7 9 10 12 18 20 24 30 40 60 120 ®

1 161.4 199.5 2187 2246 2302 2340 2368 209 2405 2419 2419 24359 148.0 249.1 250.t 81.1 21522 2533 254
2 18.51 19.00 19.16 19.28 19.30 19.13 19.35 19.37 19.38 19.40 1941 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.1) 9.55 9.28 9.12 9.01 8.94 8.09 .35 8.51 3.79 8.74 3.70 8.66 3.64 0.62 8.39 8.57 8.55 8.3}
4 N 6.94 6.59 6.39 6.26 6.16 6.09 6,04 6.00 5.96 ER ] 5.86 5.80 %2l 5.78 .72 .69 3.66 5.63
] 6.61 5.7 s5.41 s.19 5.08 4.9% 4.08 4.82 4m 4.7 4.63 4.62 4.56 4.53 4.50 4.46 4.4) 4.40 4.36
6 5.99 S.i4 4.76 4.53 4.39 4.23 4.21 418 4.10 4.06 4.00 R R ) R 4 38l .n 374 .70 3.67
7 5.59 4.74 438 412 197 3.en . 3.7 J.68 3.64 .57 3.31 J.44 3.4 3.8 1.4 3.0 3.27 3.2)
] 5.2 4.46 4.07 kR ) 3.69 1.58 1.50 .44 3.9 3.8 3.28 3.2 PR 1] 3 3.00 .04 .01 9 .9}
9 . 4.26 3.6 3.6} .48 337 3.29 32 318 .14 307 .ol 2.94 2.90 2.36 bX 3] a7 .75 amn
10 4.96 4.10 L7t 148 .33 1.2 .14 .07 .02 in 2.9 .85 w2 2.74 270 1.66 .62 .58 2.54
i 4.34 l.9t 3.59 1.Jé 3.20 1.09 J.ot 193 2.90 285 .7 2.72 2.65 .61 .57 2.3) .49 .45 240
12 4.73 389 349 1.26 L 3.00 29N 289 2.80 2.78 26 262 2.54 .51 47 2.43 28 2.4 2.)0
13 4.67 18t 34 118 3.03 9 83 n mn 67 .60 53 .46 .42 2.3 1.34 2.30 .23 .2
14 4.60 .74 134 b RY] 2.96 .85 .76 270 268 2.60 133 46 2.)9 .38 E S} b5 ¢ L 2.18 213
s 4.54 .68 1L 1.06 2.90 279 27N 1.64 .59 254 248 240 3 29 1.23 2.20 2.16 2.11 .07
16 4.49 31.6) 3.24 J.01 283 2% .66 .59 .34 2.49 242 238 .28 224 .19 .18 211 .06 201
17 4.45 159 .20 2.96 8 270 2.61 .55 .49 2.43 38 2.3t 22) 219 215 10 2.06 .0t 1.96
18 4.41 3.58 316 .93 aamn 2.66 .58 .51 2.46 40 24 b &3 2.19 215 211 .06 .02 1.9 1.92
19 4.38 3.52 ERE .90 274 263 .54 2.48 242 2. 2.3t 2.2 2.16 1 207 203 1.99 §.93 1.38
20 4.38 3.49 110 n mn 2.60 PR ] .48 1) 238 wn pA] 208 2.04 1.9 1.93 1.90 1.34
2 431 347 107 234 268 18T 249 241 237 231 238 218 210 205 201 196 192 187 1%
2 430 344 205 222 266 235 146 240 236 130 223 215 207 20 1M 14 1s9 1M 1Ty
23 428 342 103 230 264 233 244 237 232 227 220 25y 208 201 1.9 L9 196 181 1.76
2 4236 340 01 2% 262 231 242 236 230 225 LIS LIt 200 138 1 1A i 17y Ty
2s 420 339 2199 276 260 249 240 234 238 224 216 209 201 1% 192 197 IR LT 1y
26 423 137 298 274 289 247 239 232 237 222 215 207 199 195 190 183 180 135 |49
27 421 315 296 273 287 246 237, 131 228 220 I3 206 197 193 LB 18¢ LT L1} ¢
28 420 334 295 271 286 245 236 229 224 119 212 204 196 191 1B 082 LIT LM g
29 4.18 3. 29 270 .58 243 2.38 .28 w2 18 210 10 1.94 1.90 (K ) 1.0 1.7 .7 1.64
30 4.17 .32 192 2.6 53 142 233 n 221 16 209 .0t 1.9 1.59 1.84 L 1.74 1.68 1.62
0 4.08 3.3 184 .61 245 234 2.2 218 212 108 1.00 1.9 1.84 1.7 1.74 1. f.64 1.38 1.51
0 400 315 276 233 237 228 217 110 204 199 192 184 175 170 168 199 L3} 147 )
120 391 307 268 245 229 217 209 202 1% 19 18] LIS 166 6l 138 150 14} 135 13
® 134 300 260 237 210 201 1.9 108 .83 178 167 187 151 14 1) 132 L2 1.00

NOTE: wv,: Degrees of freedom for numerator

vy: Degrees of freedom for denominator
SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. I. Second Edition. John

Wiley and Sons, New York.



TABLE 3. 95th PERCENTILES OF THE BONFERRON!
t-STATISTICS, t(v, o/m)

where v = degrees of freedom associated with the mean
squares error
m = number of comparisons
a = 0.05, the experimentwise error level

m 1 2 3 4 5
a/m 0.05 0.025 0.0167 0.0125 0.01

<

4 2.13 2.78 3.20 3.51 3.75
5 2.02 2.57 2.90 3.17 3.37
6 1.94 2.45 2.74 2.97 3.14
7 1.90 2,37 2.63 2.83 3.00
8 1.86 2.31 2.55 2.74 2.90
9 1.83 2.26 2.50 2.67 2.82
10 1.01 2.23 2.45 2.61 2.76
15 1.75 2.13 2.32 2.47 2.60
20 1.73 2.09 2.27 2.40 2.53
30 1.70 2.04 2.21 2.34 2.46
- 1.65 1.96 2.13 2.24 2.33

SOURCE: For a/m = 0.05, 0.025, and 0.01, the percentiles
were extracted from the t-table (Table 6, Appendix B) for
values of F=l-g of 0.95, 0.975, and 0.99, respectively.

For a/m = 0.05/3 and 0.05/4, the percentiles were
estimated using "A Nomograph of Student's t" by Nelson,
L. S. 1975. Journal of Quality Technology, Vol. 7,

pp. 200-201.
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TABLE 4. PERCENTILES OF THE STANDARD NORMAL DISTRIBUTION, Up

P 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0.50 0.0000  0.0025  0.0050  0.0075  0.000 00125 00150 0017S  0.0201 0.0226
0.51 0.0251 0.0276  0.0301  0.0326  0.0351  0.0376  0.040! 0.0426  0.0451 0.0476
0.52 0.0502  0.0527  0.0552  0.0577  0.0602  0.0627  0.0652  0.0677  0.0702 0.0728
0.53 0.0753  0.0778  0.0803  0.0828  0.0853 00878  0.0904 00929  0.0954 0.0979
0.54 0.1004  0.1030  0.1055 0.1080  0.1105 0.1130  0.1156  0.1181 0.1206 0.1231
0.55 0.1257  0.1282  0.1307  0.1332  0.1358  0.1383  0.1408  0.1434  0.1459 0.1484
0.56 0.1510  0.1535  0.1560 0.1586  0.1611  0.1637  0.1662  0.1687  0.1713 0.1738
0.57 0.1764  0.1789  0.18}5  0.1840  0.1866  0.189] 0.1917  0.1942  0.1968 0.1993
0.58 02019  0.2045  0.2070  0.2096  0.2121 02147 02173 02198  0.2224 0.2250
0.59 0.2275  0.2301 0.2327 0.2353 02378 02404  0.2430 02456  0.2482 0.2508
0.60 0.2533  0.2559  0.2585  0.2611  0.2637 02663 02689  0271S  0.2741 0.2767
0.61 02793  0.2819  0.2845  0.2871 02898 02924 02950 0.2976  0.3002 0.3029
0.62 0.3055  0.3081 0.3107 03134 03160 0318 03213 03239  0.3266 0.3292
0.63 03319 03345 03372 03398  0.3425  0.345) 03478  0.350S  0.3531 0.3558
0.64 0.3585  0.3611 0.3638  0.3665 03692 03719 03745 03772 0.3799 0.3826
0.65 0.3853  0.3880  0.3907 03934 03961 03989 04016 0.4043  0.4070 0.4097
0.66 04125 04152  0.4179 04207 04234  0.4261 04289 04316 04344 0.4372
0.67 0.4399  0.4427 04454 04482 04S10 04518 04565 04593  0.462! 0.4649
0.68 04677 04705 04733 04761  0.4789 04817 04845  0.4874  0.4902 0.4930
0.69 04959 04987 05015 05044 05072 05101 0.5129 05158  0.5i87 0.5215
0.70 0.5244  0.5273  0.5302  0.5330 0.5359 0.5388  0.5417  0.5446  0.5476 0.550S
0.71 0.5534  0.5563  0.5592  0.5622  0.5651 0.5681 0.5710  0.5740  0.576% 0.5799
0.72 0.5828  0.5858  0.5888 05918 05948 05978 0.6008  0.6038  0.6068 0.6098
0.73 0.6128  0.6158  0.6189  0.6219 06250 0.6280  0.6311 0.6341  0.6372 0.6403
0.74 0.6433  0.6464  0.6495  0.6526 0.6557 0.6588  0.6620  0.6651  0.6682 0.6713
NOTE:

For values of P below 0.5, obtain the value of U(l-P) from Table 4 and
change its sign. For example, Ug.q5 = -U(1_0.45) = -Ug. 55 = -0.1257.

(Continued)
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TABLE 4 (Continued)

0.000

0.00!

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0.75 0.6745  0.6776  0.6808  0.6840  0.6871  0.6903  0.6935  0.6967  0.6999 07031
0.76 07063 07095 07128  0.7160 07192  0.7225  0.7257 07290  0.7323 0.7356
0.77 0.7388 07421 07454  0.7488 07521  0.7554 07588  0.7621  0.765S 0.7688
0.78 07722 07756 07790  0.7824  0.7858  0.7892  0.7926  0.7961  0.7995 0.8030
0.79 0.8064  0.8099 08134  0.8169 0.8204 0.8239 0.8274 08310  0.8345 0.8381
0.80 0.8416  0.8452  0.8488  0.8524  0.8560 0.8596 0.8633  0.8669  0.8705 0.8742
0.81 0.8779 08816  0.8853  0.8890  0.8927  0.8965  0.9002  0.9040  0.9078 0.9116
0.82 09154 09192 09230  0.9269 09307 09346 09385  0.9424  0.9463 0.9502
0.83 09542 09581 09621 09661 09701  0.9741  0.9782  0.9822  0.9863 0.9904
0.84 09945 0998  1.0027  1.0069  1.0110  1.0152  1.0194  1.0237  1.0279 1.0322
0-85 1.0364  1.0407  1.0450  1.0494  1.0537  1.0581 10625  1.0669  1.0714 1.0758
0.86 1.0803  1.0848  1.0893  1.0939  1.0985  1.103l 11077 11123 1.1170 11217
0.87 11264 1.1311 11359 1.1407  1.1455  1.1S03 11552 1.1601 1.1650 1.1700
0.88 11750 1.i800 11850  1.1901  1.i952  1.2004  1.2055  1.2107  1.2160 1.2212
0.89 12265 12319 12372 12426  1.2481  1.2536  1.2591 12646  1.2702 1.2759
0.90 1.2816  1.2873  1.2930  1.2988  1.3047  1.3106 13165  1.322§  1.3285 1.3346
0.91 1.3408 13469 13532 1.3595  1.3658 13722 13787 1.3852  1.3917 1.3984
0.92 1.4051 14118 1.4187  1.4255  1.4325  1.4395  1.4466 14538  1.4611 1.4684
093  1.4758  1.4833  1.4909  1.4985  1.5063  1.5i4l 1.5220  1.5301  1.5382 1.5464
0.94 1.5548  1.5632  1.5T18  1.5805  1.5893  1.5982  1.60T2 16164  1.6258 1.6352
0.95 1.6449  1.6546  1.6646  1.6747  1.6849  1.6954  1.7060  1.7169  1.7279 1.7392
0.96 17507 17624  1.7744  1.7866  1.7991 18119  1.8250  1.8384  1.8522 1.8663
0.97 1.8808  1.8957 19110  1.9268  1.9431 19600 19774  1.9954  2.014l 2.0338
0.98 20537 20749  2.0969  2.1201  2.1444 21701 21973 . 2.2262  2.257I 2.2904
0.99 23263 23656  2.4089  2.4573 25121 25758  2.6521 27478  2.3782 3.0902
SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental

Design in Engineering and the Physical Sciences.

Wiley and Sons, New York.
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TABLE 5. TOLERANCE FACTORS (K) FOR ONE-SIDED NORMAL TOLERANCE
INTERVALS WITH PROBABILITY LEVEL (CONFIDENCE FACTOR)
Y = 0.95 AND COVERAGE P = 95%

n K i n | K
3, 7.655 e 75} 1.972
4! 5.145 i 100 | 1.924
51 4.202 0 125 ) 1.891
6 | 3.707 - 150 | 1.868
7 1 3.398 0 175 | 1.850
8 | 3.188 e 200 | 1.836
g 3.031 L 225 ) 1.824
10 | 2.911 ‘ 250 | 1.814
11, 2.815 V 275, 1.808
12 ) 2.736 i 300 | 1.799
13 1 2.6870 i 325 | 1.792
14 | 2.614 i 350 | 1.787
15 | 2.566 H 375 | 1.782
16 | 2.523 ' 400 | 1.7177
17 )  2.486 " 425 | 1.773
18 | 2.543 n 450 | 1.788.
18+ 2.423 i 475 | 1.768
207 2.396 H 500 | 1.763
217 2.371 i 525 | 1.760
22} 2.30 i 850 | 1.757
231 2.329 ' 575 | 1.754
24 | 2.309 b 600 | 1.752
25 1 2.292 ' 625 | 1.750
30 | 2.220 Ll 650 | 1.748
35 | 2.168 i 675 | 1.746
40 | 2.126 X 700 | 1.744
45 | 2.082 ' 725 | 1.742
80 1 2.065 0 750 | 1.740
" 775 | 1.739
" 800 | 1.737
' 825 | 0.736
" 850 | 1.734
N 875 | 1.733
‘o 900 ; 1.732
ok 925} 1.731
' 950 | 1.728
i 975 | 1.728
e 1000 | 1.727

SOURCE: (a) for sample sizes < 50: Lieberman, Gerald F. 1958. "Tables for
One-sided Statistical Tolerance Limits." Industrial Quality Control. Vol. XIV,

No. 10. (b) for sample sizes 2 50: K values were calculated from large
sampie approximation.
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78

1.000
816
788
741
7
718
11
706
703
700
o7
605
004
692
691

.690
.689
.688
688
687
636
686
685
685
684
684
884
883
683
683
681
679
677
874

TABLE 6. PERCENTILES OF STUDENT's t-DISTRIBUTION

328
289
2
F1h}
267
265
2
262
201
260
260
259
25
288
258
258
.257
257
257
257
257
258
258
258
258
258
258
258
258
256
255
254
254
253

- NMme N LBl N ) N M e
-t e I I

16
17
18
19
20
21
2
23
24
28
26
27
28
2
a0
40
80
20

-»

Cleveland,

1966.

Published by the Chemical Rubber Company.
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TABLE 7. VALUES OF THE PARAMETER i FOR COHEN'S ESTIMATES
ADJUSTING FOR NONDETECTED VALUES

.08 | .010100 .G20400 .030903 .04138) .083307 .06I6IT ,074943 .086488 17343 249308 [ ]
-08 | 010381 .021294 .032233 .043330 084670 .084188 .OTTIOP .089834 17938 .2 .08

18963 .26408 .13

-19910 .27e1¢ .28

.40 | [01378¢ (023738 .038866 .082173 063860 .07T9IIZ .083193 10733
.48 | 013038 .026243 .03963¢ .033183 .06603L .080843 .O0e9sh 10938

.30 | .0L3IT .036728 .040332 .084131 .068133 082301 .000487 11131
.38 | .013313 .327196 .041084 .033089 .0690306 .083708 .09679¢ .l1308
.60 | L0173 .0TT649 .04173T .035998 .070439 .083068 .0V48T .11480
-85 | L012938 .028087 .042381 .03647¢ .JT1338 .004364 .10143 .lLle88
.7 -014171 Q28313 .043030 .08TT36 .0T260S .087670 .1028% .11837

.73 | 014378 020937 .043042 .038888 .0TI843 .080917 .
.80 | .014579 0293130 .0¢4258 .039384 .0746355 .090133 .
A8 ! .0l4T73 0239723 .0ee048 .000153 .073642 .09L319 .10T1S .13338
<90 | .014967 .030107 .048438 .060923 .0TS608 .093477 .
+33 | .0L3134 .030483 .042000 .06LE76 .07TIe9 .0936L) .

1.00 | .013338 .030880 .008340 .0€I4L3 .0THATL .004T30 .111)6 .13T80

N 23 30 3 0 6 8 3 e s m e se|l
00 | 31862 408 .(PeL .3061 7006 4363 .sees l.ief 1.3 1.361 2170 3.383] .00
o8 | .39 4130 . 3068 s101 .T282 4540 ool 1.i68 1.388 1.5388 3.303  3.314 .08
(30 |133ee3  aa33  sise (6234 lre0 sTe3 L0718 LT Liees  1.z29 .des| .0
113 1134480 14330 .3396 (6381 T3  .5060 1.038 1304 L1.600 1.630 2.288 3.378| .1
.30 | .33388 .4423 3403 0483 7678 -H0L3 1.083 1.228 l.418 1.2 3.3 3.408 .30
.38 |.30083  .e310  .306 6680 .TEIS .10 1067 1.0 1.430 16T 2.308 3.438 .38
20 [ 38700 lese8 130 (6713 7937 9300 1.083 1.35T L.6T  1.433 3.339 3.eee| %
28 (37378 leeTe lsees  lem1l  (s0s0 %437 lloes 1314 L. LT 138 lam| 3
.40 | .38013 4788 .4T81 . 8179 <9 1.113 1.200 L.a0e 1.732 3.37¢ 3.530 o8
63 {38068 431 (Me0 .TaI .EES .700 1137 1308 .8 LTRL 2,300 3.%47| les
.30 |.39878  .es0e .67 .TIZ0 8400 .9826 1 el 1.3 1598 1770 .t 37| s
33 |l3wer0  loete  lsesL  IT223 (a7 [ses0 11188 11337 lims  L.Te8  3.ea3 3.s01) .
©60 {le0eaT 30¢s 8133 7330 8638 1.007 111ee 1381 1.31 1.s08 363 3.e30| .0
[68 [141008 I3le 6213 Talz aTas L0l Lz 1,386 LiSTT  llme 3.06 3leml [as
7o {61888 l31se 638l .7803 .3833 1.038 L.1s8 1.3800 1.3 il 3.307 3lems| .70
s ar 328 0387 7350 .303% 1.042 1207 1.9 1.008 1.8 .33 3.708| .73
30 |142613 13308 leeal 7676  s031 1.083 130 108 1l43¢ 1T 338 3.73| a0
.38 | .43122 3370 L8308 LTl 2137 1.004 1.2333 1.422 1.439 1.802 3.388 3.7%4 .88
58 |143633 13430 4886 7644 BN L.07¢ L3es 11430 .3 11508 2.388 3.7T9{ %8
8 |lwus lsee 7SS 8314 1088 1386 .. ilee8 Lisse 3.687 3ise3| ss

|1.00 | «as03 3848 0T3¢ .5008 .3e0¢ 1.098 1367 L.l 1.483 1.0 1.636 1.837| 1.00

For sll valuss 0 g v L, 3O =0,

SOURCE: Cohen, A. C., Jr. 1961. "Tables for Maximum Likelihood Estimates:
Singly Truncated and Singly Censored Samples.' Technometrics.
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TABLE 8. CRITICAL VALUES FOR T, (ONE-SIDED TEST) WHEN THE
STANDARD DEVIATION 13 CALCULATED FROM
THE SAME SAMPLE

Number of Uspwr 0.1% Uppwr 0.5% Upper 1% iJppar 2.3% Upper 1% Upper 10%
Omervations,  Sigmicancs Signilicance Significance Sigmicancs Signilicascs Signilicance
a Levat Levd Level Lavel Level Level
] 1.15% 1.15% 1138 1.135 1.153 1,148
4 1499 1.49% 1.492 1.481 1.463 1423
S 1.730 1.764 1.749 1718 L6712 1.602
6 2011 1.973 1.944 1887 1822 1.7
7 2.201 2.139 2.097 2.0% 1938 1.828
[ | pALiY 2.1 21 2126 2032 1.909
L} 2.492 2387 pA b3 ) 2.218 110 L
10 2606 2482 2410 2.290 2176 =036
il 1708 2564 1.485 2388 2234 2088
12 2791 636 550 2412 2288 b1
13 2367 L 167 .42 P53 1) 173
14 2933 2755 2659 2.%07 b2 1 ]| 22213
18 2997 2306 1705 2549 2409 2247
ié 3082 52 2137 Pl ] 2.44) poba4 ]
17 .10 p& ) bR ] .60 2478 2.309
11 3.149 22932 2321 2.651 2.504 2138
19 B XL 2.968 b3 L) 4681 2532 361
0 .20 3.001 1384 .79 .557 2188
o8 3.266 3.0 912 .1 2.580 2
2 3.300 1.060 293 2.7158 2.603 2429
b2 ] 3R o087 21%) 1.7 2624 PR
pL3 3 un 987 2.902 2644 1467
b ] 3389 3.138 3.009 282 .66 1486
2% 3418 PN 4 31029 2841 681 2.502
7 3.440 PR .00 pa L] 658 .51
b | 3464 319 3.068 1506 .74 2534
» K jaus 3.088 .99 70 259
) 1.307 124 3.103 2.908 2148 2.46)
n )58 3253 Jue 294 .19 L5T
n T 384 2 3.138 297 am 2991
3 3.5603 3286 J.1%0 2.952 . L7 2.603
] E 51 2 3.20! 3164 2.965 2.™ 2616
BH] 3499 3N 3178 197 281 638
» 1616 3% pAL 1] M b v3] 2639
7 3.6 134 1204 3.003 21318 2.650
n J. b 3% 1218 3.0 2346 2.661
3 3.660 3 123 J.02s 1857 2671
0 3.673 381 3.230 3.0)6 1066 2.682
41 3.687 3.39) 3.281 .04 un 2.692
42 3.700 1.404 1261 3.087 2127 1.700
43 3.2 J.418 un 3.067 1. 170
44 174 3.428 31382 1.07% .903 Lne
43 3.736 3438 3292 3.083 lyid 2717
446 3.347 3448 3Jo2 J.088 292 L7
47 3087 3.4388 330 3.103 290 pAZ 43
48 1768 Jasd 3e 3 2.990 2783
” . 3.7 L3474 3329 pRY. 948 )
30 170 3.48) 3 s 2.9% 1768
(Continued)
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TABLE 8 (Continued)

Numbarof  Upper 0.1% Lpper 0.3% Upper 1% Upper 2.5% Upper 5% Upper 10%
Otservations.  Sigmiicance Sigmiicance Sigmlicance Signi Sigmiicance Sigmlicaace
. Leve Lo Leve Level Level Level
Si 1298 349 348 J.136 2964 2178
$2 3.308 3.500 3353 3.14) pX 2] 218
33 181 3.507 1361 3.151 m 2790
M 1828 3sie 3J6s J.1s8 2986 1798
s 13N p X )13 1376 ).166 2.992 2304
3 1842 p% )} 38 kB yr 3.000 m
7 J1.851 3.5 3391 J.180 3.006 2813
s ).888 IS ).y 3188 300 2324
" 3.367 3853 3.408 3.19) 3.019 280
o0 1874 3.%0 kX 1] AL 3.025 un
(1} 3882 1560 a8 1208 3032 1342
62 Jaw 3.873 3438 et B 3037 283y
(1) 3.09¢ 15 1430 3.2 LY ) N4
[ 3.903 pE 7Y 3437 32N 1049 .
(1] 3910 315 Jaa2 320 3.085 2560
% 1?7 3.35% 1409 3238 J.061 287
o7 bR 23] ).603 .45 J241 1.066 un
[ 3930 3.610 1.460 3246 Jon 2.083
) 3.9% 1617 1466 1292 307 2.5u8
0 )82 1.6 14T 3.257 J.082 139}
bi} 3948 3.7 1.47% 3282 3087 i
n R K ) 3.61) 482 1267 3092 b
3 3.960 .638 1487 uan .09 2.908
" 1.96% J.0d) ) 3am 3.102 2912
73 3971 p Y bY ] p B+ 3.107 0
7e 3m 16484 1902 147 L o
ke 3.9%2 .43 1507 2n 37 wun
i § 3N 3.083 sm 3 3.13) bX } 1}
ks / 1992 3.660 )56 3300 3128 2935
N bR ] 3.67) 382t 3308 3.130 %0
3 4.002 3477 1528 1309 b %5 ) 1945
1 1007 1602 152 s 1l 2949
13 4012 3487 1534 313010 3.143 2983
7 3017 1.6 - )3 130 3.147 2957
83 402t PN 3] 1543 1 AL 2961
16 402 3.6 1547 13N ).188 3964
87 4.0t 104 ).551 3338 ). 160 297
¥ 4038 3% 1588 139 3.163 2973
1] 40 3m 1559 I3 1167 197
90 4043 1ne 1.563 3.347 3N 2981
91 +.049 .70 1.567 3J%0 AN 2.9i4
9 4.08) 3.7 1570 3.355 3 2.989
9 4087 1.7 1875 3,388 3182 2.993
N 4.000 3R 159 362 ).186 2.
95 4.004 3.1 1.582 3368 3.139 3.000
% 4.009 2730 3.536 130 3.9 3.003
(1) 4073 348 3589 wun 2196 J.006
L] 407 3 1) 3N 3.0 Jon
- 4.00) 3.1% ).397 JJ%0 1.204 o
100 054 3.754 3.6400 33 3.207 3017
(Continued)
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TABLE 8 (Continued)

Number vi Copw 0. 1% Upper 0.55 U pper 1% Uprer 2.8% Upper 3% Upper 10%
Qbasratiuvne. S Sigmbi Segmati ignificanne Sipmiicance Signviicance
[ Level Leve Levet Leve Leved Leves
{11 4088 3.8 ).60) I 3210 3021
102 4082 3.%0 3.007 1m0 3214 302
103 .09 3.7e8 1610 3.9} . 3027
104 4.0v8 300 pX 1 2] bR, o .20 Joxn
{1 4.102 p Rl e }.400 1.2 3003
100 4.10¢ PRyl j.e e L 3.0
w7 &8.10v 3m 1.63) J.408 120 Jow
its 4112 ¥ 362 2.408 3.2 3043
g 4118 I J.62¢ 3412 33 .04
1o 4118 m Je)2 Jals 1.8 3.089
1 410 3.7% JeMe Jaln 3242 Jos2
e 4128 r) J.e) 340 3.248 3038
n 412 3.1% ). PR3 3.248 3088
114 312 )™ J.0438 a7 3.281 081
18 4138 302 Yot? )% 3.254 J.004
[$13 41 3.908 Jeo%0 3433 3.287 1.0¢?
1" & 14 3.004 3.68) 3.4)3 3.9 jon
1 .14 3 J.6% Jan .62 3on
51} 4.140 3.814 1.8 )& 288 3078
130 4.1 3817 LY 3 p ¥ ) 3.267 3on
12 418 pRTL) 3488 Jaa? 1.2% 30814
132 4.15 pN 82 )7 Je0 3.3 3.8)
[ &1 302 LM 3443 276 105
124 FRTY] 347 3o 3488 n 108
138 4.104 3.1 307 .47 3.3 pY 7
128 4108 3.833 o bR ] 3.4 109
bd 41 ale J.e00 3462 3.0 3097
[} an 1.8 o8 3408 3.28¢ o
129 $.179 3.0 Leke Jae? 3.0 ne
1R 417 1343 J.o¥r }am0 2% 3.104
in 4.100 3.aas 3.90 34N 109 3107
R 4183 3.040 3. 1478 R, rio»
12 4188 1580 3.5 P 3.302 382
13 3.19% Jass 3.007 3420 3.204 Jne
W18 4.190 pEE ] 3. X2 3.20¢ 3.1ie
136 4.193 1888 3.0 s 3.30% e
it 4.19¢ bR 7] 3o 1427 BB 111 31
K1) 4.19% 3563 L 3.4 3.0 313
N 4.0 Y.30¢ 170 340 Ins b
14 4.203 KTy 2 1492 3. 3D
141 4.0 3869 3.7 1497 3320 RRRI]
142 4.207 um 17 kL) Jau i
143 4209 bR ¥ ] P Al 3. 3324 pRR
138 4212 K% 3.7 J.t 332 AR ]
144 4314 b ¥ b 372 3.80¢ 3.3 3
10 d.2i6 J)mi | Aol Jsor 33N I AT Mg
13 431 pRTE) o 100 )1 Jis
SOURCE: ASTM Designation E178-75, 1975. “Standard

Recommended Practice for Dealing With Outlying

Observations.”
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Statistical Software Packages:
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