FUEL ECONOMY MEASUREMENT
 CARBON BALANCE METHOD

Richard Lawrence
October 1981

1. Introduction

This paper gives the equations for determining fuel economy by the carbon balance method for gasoline, diesel fuel, alcohols and blends of the above. Derivations of the fuel economy equation constants and several sample calculations are given. Fuel economy calculation using compresses natural gas and method for stoichiometric A / F determinations are included in Appendix 2.

Comparisons of carbon balance, and volumetric fuel economy measurement were made in an earlier study. ${ }^{1 /}$
2. Summary

The carbon balance equation for determining fuel economy is:

$$
\text { F.E. }=\frac{x}{y \mathrm{HC}+0.420 \mathrm{CO}+0.273 \mathrm{CO}_{2}+\mathrm{zTP}}
$$

Where $\mathrm{HC}, \mathrm{CO}, \mathrm{CO}_{2}$, and TP are in grams per mile and x and y are given in the following table for some typical fuels. A more complete table, including A / F, is given in Appendix 1.

Indolene	2421	.865
Diesel \#2	2778	.865
Methanol (MOH)	1124	.375
Ethanol (ETOH).	1557	.521
90% IND/10\% ETOH	2335	.829

TP is the particulate emission level in grams carton per mile. It is neglible for computing fuel economy for gasoline fueled vehicles. For light duty diesel vehicles it is of the same order of magnitude as the $H C$ contribution (which is very small). In this paper 2 is assumed to be 0.85 however available data ranges from . 75 to .95. Note that the "official" fuel economy equation in the Federal Register does not include particulate emissions.
3. Discussion

Fuel economy by the carbon balance method is accurate when used under conditions where certain assumptions are valid. These assumptions are:

1/ Evaporative and Exhaust Emissions of Two Automobiles Fueled With

Volatility adjusted Gasohol, David Lawrence, D. Niemczak, EPA-AA-TEB-81-12

1-All carbon in the exhaust comes from carbon in the fuel. Corrections for carbon in the exhaust from sources other than the fuel are made (such as background air corrections).

2 - The HC composition of the exhaust is the same as that of the fuel.

3 - Emissions of $\mathrm{HC}, \mathrm{CO}, \mathrm{CO}_{2}$ and total particulate ($\left.g / \mathrm{mi}\right)$ are measured accurately. This includes proper accounting for interferences such as water vapor.

4 - The vehicle exhaust system does not have any leaks.

5 - The weight fraction carbon (WFc) and specific gravity (SG) are known. Ideally, they should be accurately determined for each batch of gasoline or diesel fuel.

6 - For vehicles with particulate traps or trap oxidizers the carbon trapped and emissions during purge are properly accounted for. The first four assumptions are valid for gasoline and diesel fueled vehicles tested in accordence with FR 40 CFR 86. The W_{c} and $S G$ must be accurately determined. This is not difficult for pure fuels, such as the alcohols.

For gasoline and diesel fuels the $S G$ is easily determined from the API gravity. 2/ SG for the alcohols is available from various handbooks.
${ }^{W}{ }_{c}$ is not easily determined for gasoline and diesel fuels and can vary by several percent from batch to batch. For fuel economy comparisons between a base gasoline or diesel fuel and a blend of same alcohol with that base fuel the effect of the uncertainty of WF of the base fuel cancels. Thus, fuel economy comparisons for fuel blends can be done accurately using the carbon balance method. and However, batch to batch fuel economy comparisons of a single fuel type (egg. Indolent $H O$) can induce an error on the order of up to 2% if the $W F{ }_{c}$ and $S G$ are assumed rather than measured. Such a situation exists under current fuel economy regulations (40 CFR part 600) where an assumed value of 2421 grams carbon per gallon of gasoline and 2778 grams carbon per gallon of diesel fuel are used.

Particulate emissions from diesel fueled vehicles are not included in the "official" EPA equation given in 40 CFR 600. However, at the current particulate standard of $0.6 \mathrm{~g} / \mathrm{mi}$. the impact of excluding particulate emissions will cause overstatement of fuel economy, especially for higher fuel economy vehicles. For example, assuming that a diesel fueled vehicle particulate consisting of 85% carbon the impact of excluding the particulate emission will be to overstate fuel economy by:
$T P=0.6 \mathrm{~g} / \mathrm{mi}$
$\mathrm{TP}=0.2 \mathrm{~g} / \mathrm{mi}$

0.07 MPG	0.02 MPG	$(20 \mathrm{MPG}$ vehicle)
0.44 MPG	0.14 MPG	$(50 \mathrm{MPG}$ vehicle)
1.80 MPG	0.61 MPG	$(100 \mathrm{MPG}$ vehicle)

For vehicles with other particulate emission rates the impact of excluding these emissions from the carbon balance equation will change proportionately.
4. Calculations

Carbon balance fuel economy is given by:

```
F.E. = grams carbon/ggal fuel = MPG
    grams carbon in exhaust / mile
```

2/ $\mathrm{SG}=\frac{141.5}{}$
$131.5+\operatorname{deg} A P I$
A. The numerator " N " of equation 2 is determined.by:

```
N = Grams carbon/gal fuel
```

$N=3785 \times S G \times{ }^{W}{ }_{c}$
Where: $\quad 3785=$ density of water (grams per gallon)
SG = Specific gravity of fuel $\left(g_{c} / g_{w}\right)$
$W F_{c}=$ weight fraction of carbon in the fuel $=\mathrm{MW}_{c} / \mathrm{MW}_{f}$
$\mathrm{MW}_{c}=$ molecular weight of carbon per fuel molecule
$\mathrm{MW}_{\mathrm{f}}=$ molecular weight of fuel.

Example 1: pure ethanol: C2H60

$$
\begin{aligned}
& S G=.789 \\
& M W_{c}=2 \times 12.011=24.022 \\
& M W_{f}=2 \times 12.011+6 \times 1.008+16.0=46.070 \\
& W F_{c}=24.02 / 46.07=.5214 \\
& N=3785 \times .789 \times .5214 \\
& \mathrm{~N}=1557 \text { grams carbon/gal fuel }
\end{aligned}
$$

Example 2: Gasoline: $\mathrm{CH}_{1.86 \text { (typical value) }}$
Note that the gasoline is reduced to the C_{1} value to simplify calculations.

$$
\begin{aligned}
\mathrm{SG} & =.740 \\
\mathrm{MW}_{\mathrm{c}} & =1 \times 12.01=12.011 \\
\mathrm{MW}_{f} & =1 \times 12.011+1.86 \times 1.008=13.88 \\
\mathrm{WF}_{\mathrm{c}} & =12.011 / 13.886=.865
\end{aligned}
$$

```
N = 3785 x . 740 x . 865
    N = 242l grams carbon/gal fuel
```

Example 3: Diesel Fuel: $\mathrm{CH}_{1.86 \text { (Typical value) }}$

$$
\begin{aligned}
\mathrm{SG} & =0.8475 \\
M W_{\mathrm{C}} & =1 \times 12.011=12.011 \\
\mathrm{MW}_{\mathrm{f}} & =1 \times 12.011+1.86 \times 1.008=13.886 \\
\mathrm{MF}_{\mathrm{C}} & =12.011 / 13.886=.865
\end{aligned}
$$

$$
N=3785 \times 0.8485 \times 0.865
$$

$$
N=2778 \text { grams carbon/gal fuel }
$$

Example 4: a mixture of 10% ethanol and 90% gasoline:
Calculate components individually and then weight by volume fraction.
$N=.1 \times 1557+.9 \times 2421$
$\mathrm{N}=2334$ grams carbon/gal fuel
Where: $\quad 1557=g_{c} / \mathrm{gal}$ ETOH

$$
2421=g_{c} / g a 1 \text { Gasoline }
$$

B. The Denominator " D " of equation 2 is determined by:

$$
\begin{aligned}
\mathrm{D}= & \mathrm{WF} \mathrm{c} \times \mathrm{HC} \mathrm{~g} / \mathrm{mi}+.429 \times \mathrm{CO} \mathrm{~g} / \mathrm{mi}+.273 \times \mathrm{CO}_{2} \mathrm{~g} / \mathrm{mi} \\
& +0.85 \times \mathrm{TP} / \mathrm{mi}
\end{aligned}
$$

$\mathrm{HC}, \mathrm{CO}, \mathrm{CO}_{2} \mathrm{~g} / \mathrm{mi}$ are obtained from the emissions test.

TP is obtained from the emission test for diesel pueled vehicles and is assumed equal to zero for other vehicles with low particulate emission rates.
0.429 is the weight fraction of carbon in CO:

$$
\mathrm{MW}_{c} / \mathrm{MW}_{\mathrm{CO}}=12.011 /(12.011+16.0)=0.429
$$

0.273 is the weight fraction of carbon in CO_{2} :

$$
\mathrm{MW}_{\mathrm{c}} / \mathrm{MW}_{\mathrm{CO}_{2}}=12.011 /(12.011+2 \times 16.0)
$$

The weight fraction carbon of diesel particulate is assumed to be 0.85

WF for single component fuels is determined as in the calculations for the numerator.

For fuel blends:

$$
W F_{c}=\frac{\left(V F_{i}-W F_{i} S G_{i}\right)}{\left(V F_{i} S G_{i}\right)}
$$

Example 5 a mixture of 10% ethanol and 90% gasoline:

$$
\begin{aligned}
& W_{c}=\frac{.1 \times .5214 \times .789+.9 \times .865 \times .739}{.1 \times .789+.9 \times .739}=\frac{.6164}{.7440} \\
& W_{c}=.829 \text { grams carbon/gram fuel }
\end{aligned}
$$

$D=.829 \mathrm{HC}+.429 \mathrm{CO}+.273 \mathrm{CO}_{2}$
C. Carbon balance equation:

Combining above information (from ex 4 and 5) for a mixture of 10% ethanol and 00% gasoline in eq 1 gives:
$\mathrm{FE}, \mathrm{MPG}=\frac{2334 \quad g_{\mathrm{c}} \frac{\text { igal fuel }}{\left(.829 \mathrm{HC}+.429 \mathrm{CO}+.273 \mathrm{CO}_{2}\right) \mathrm{g}_{\mathrm{c}} / \mathrm{mile}}}{(.20}$

The carkon balance equation for one batch of "Anafuel" is shown to demonstrate the method for combining three fuel components (Appendix, Table 2).

Fue] Properties - Alcolinls, Gasoline, Diesel Fuels

]/ $]$ gal $=3785 \mathrm{cc} ; 1 \mathrm{cc}=1 \mathrm{~g}$ water at $4^{\circ} \mathrm{C}$.

2/ 40 CFR 600 uses 2421 gc/gal Indolene.

TABIE 2

Fuel Properties - "Anafuel"

Fuel	FORMULA	MW_{c}	SG	$\begin{array}{r} \mathrm{g} / \mathrm{GA} \\ 85 \times \mathrm{S} \end{array}$	WF_{c}	$g_{c} /$	
Indolene	$\mathrm{CH}_{1.86}$	13.89	. 740	2801	. 865	2421	[F.R
Gasoline							
Portion of							
Analuel	$\mathrm{CH}_{1.71}$	13.73	. 769621	2913	. 8748	2548	
MOH	$\mathrm{CH}_{4} \mathrm{O}$	32.04	. 792	2998	. 3749	1124	
B 011	$\mathrm{C}_{4} \mathrm{H}_{10} 0^{\mathrm{O}}$	74.12	. 810	3066	. 6482	1987	
Anafuel 7/81					. 81941	2393	
9.8\% MOH							
2.7\% BOH							
87.5\% Gasolene							
F.E., MPG $=\frac{2393 \mathrm{gc} / \mathrm{gal}}{\left[.819 \mathrm{HC}+.429 \mathrm{COF} .273 \mathrm{CO}_{2}\right] \mathrm{g}_{\mathrm{c}}}$							
1/ $1 \mathrm{gal}=3785 \mathrm{cc}$; $1 \mathrm{cc}=1 \mathrm{~g}$ water							
2/ Calculated							
$4 / \begin{array}{r}\text { (Vf) } \\ \text { (.875 }\end{array}$	(Wf) (
	$875 \times .7$	+ (.09	$\mathrm{x} .3749$	$.792)$.6482 x	10)	328
	(.875 x . 7696)	$\begin{aligned} & 7696) \\ & (S G) \end{aligned}$	$(.098 \mathrm{x}$	$\text { 2) }+$	10)	2	729

I. Method for Calculation of Fuel Economy of Compressed Natural Gas (CNG)
A. An accurate analysis of the fuel giving mole fraction data is require Below is given a typical CNG analysis.

Gas Analysis in Mole \%

$\mathrm{Nitrogen}^{\left(\mathrm{N}_{2}\right)}$	4.24	Higher Heating Value $=976 \cdot \mathrm{BTU} / \mathrm{SCF}$
CO_{2}	1.23	
He	.12	
CH_{4}	90.52	Specific Gravity $=.607$
$\mathrm{C}_{2} \mathrm{H}_{6}$	3.22	
$\mathrm{C}_{3} \mathrm{H}_{8}$.45	
$1-\mathrm{C}_{4} \mathrm{H}_{10}$.06	
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$.07	
$\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}$.02	
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$.02	
$\mathrm{C}_{6} \mathrm{H}_{14}$.02	
$\mathrm{C}_{7} \mathrm{H}_{16}$.01	
$\mathrm{C}_{8} \mathrm{H}_{18}$.01	
$\mathrm{C}_{9} \mathrm{H}_{20}$.00	
$\mathrm{C}_{10} \mathrm{H}_{22}$.00	
$\mathrm{C}_{11} \mathrm{H}_{24}$.00	
$\mathrm{C}_{12} \mathrm{H}_{26}$.00	
$\mathrm{C}_{13} \mathrm{H}_{28}$.00	
$\mathrm{C}_{14} \mathrm{H}_{30}$.00	
H_{2}		

B. Calculation of Carbon and Hydrogen Weight Fractions.

1. The weight of Carbon per constituent is:
\# of carbon Atoms x (the weight of a carbon Atom $=12.01115$) x mole fractior
The sum of the carbon weight fractions will be the carbon weight fractior for the fuel.
2. The molecular weight of the fuel is found by:
(Molecular weight of constituent) x (Mole fraction)
The sum of the weight fractions will be molecular weight for the fuel.
3. The weight of the hydrogen per constituent is:
(\# of Hydrogen Atoms) x (the weight of a Hydrogen Atom $=1.008$) x (H : mole fraction)

The sum of the hydrogen weight fractions will be the hydrogen weight fraction of the fuel.
4. Because the CO_{2} in the fuel will simply pass through the engine (assumed the carbon fraction of the fuel not counting the CO_{2} in also needed.

A sample calculation is given below:

Component	Mole Fraction	Molecular Weight of Constituent	Weight Carbon	Weight Hydrogen	Molecular Weight
N_{2}	0.0450	28.0134	0	0	1.26060
CO_{2}	0.0043	44.00995	0.05165	0	0.18924
He	0.0012	4.0026	0	0	0.00480
$\mathrm{CH}_{4} 90$	0.9076	16.0430	10.90132	3.65933	14.56065
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.0362	30.0700	0.86961	0.21893	1.08854
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.0039	44.0972	0.14053	0.03145	0.17198
$\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}$	0.0005	58.1243	0.02402	0.00504	0.02906
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	0.0006	58.1243	0.02883	0.00605	0.03487
i-C5 H_{12}	0.0002	72.1513	0.01201	0.00242	0.01443
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$	0.0001	72.1513	0.00601	0.00121	0.00722
$\mathrm{C}_{6} \mathrm{H}_{14}$	0.0002	86.1784	0.01441	0.00282	0.01724
$\mathrm{C}_{7} \mathrm{H}_{16}$	0.0001	100.2055	0.00841	0.00161	0.01002
$\mathrm{C}_{8} \mathrm{H}_{18}$	0.0001	114.2327	0.00961	$\underline{0.00181}$	0.01142
TOTALS	1.0000		12.06641	3.93068	17.40007

Carbon weight fraction $=\frac{\text { weight Carbon }}{\text { for fuel }}=\frac{12.06641}{17.40007}=.693$
Carbon weight fraction for $=\underline{\text { weight Carbon }- \text { weight } \mathrm{CO}_{2}}=\underline{12.06641-0516 \text { : }}$.691
fuel not counting CO_{2} molecular weight of fuel 17.40007
Hydrogen weight of fraction $=\frac{\text { weight of Hydrogen }}{\text { of fuel }} \begin{aligned} & \text { molecular weight of fuel }\end{aligned}=\frac{3.93068}{17.40007}=.226$
C. Carbon Balance Method of Fuel Economy Calculation for CNG.

1. The weight fraction of carbon in CO is:
$\frac{12.01115}{12.01115+15.9994}=.429$
2. The weight fraction of carbon in CO_{2} is:
$\frac{12.01115}{12.01115+2(15.9904)}=.273$
3. The weight fraction of $H C$ in the vehicle exhaust is assumed to be equal t that in the fuel not counting CO_{2}.

The gram/mile of carbon in the exhaust is then:
$.429(\mathrm{CO})+.273\left(\mathrm{CO}_{2}\right) \stackrel{\text { (weight fraction of carbon not) }}{+}\left(\begin{array}{l}\left.\text { counting } \mathrm{CO}_{2} \text { in the fuel }\right)\end{array}(\mathrm{HC})\right.$
Where $\mathrm{CO}, \mathrm{CO}_{2}$, and HC are in grams/mile from the exhaust analysis.
4. The density of the fuel is calculated as follows:
$=\frac{\text { Pressure } \times \text { Mass Air }}{R \times T}$ (S.G.)
Where $R=$ Universal Gas Constant $=1545.33 \mathrm{ft}-1 \mathrm{bf} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{R}$
$T=$ Temperature in ${ }^{\circ} R$
S.G. $=$ Specific gravity compared to air given in the fuel analysis.
example $=A t$ atmospheric pressure, $60^{\circ} \mathrm{F}$ the

(1545.33 ft-1bf/ $\left.1 \mathrm{bm}-{ }^{\circ} \mathrm{R}\right)\left(520^{\circ} \mathrm{R}\right)$
$=\left(34.77 \mathrm{gms} / \mathrm{ft}^{3}\right)(\mathrm{S} . \mathrm{G}$.
for the analysis given previously S.G. = . 607

$$
\text { example }=\left(34.77 \mathrm{gms} / \mathrm{ft}^{3}\right)(.607)=21.11 \mathrm{gms} / \mathrm{ft}^{3}=2111 \mathrm{gms} / 100 \mathrm{SCF}
$$

5. Fuel Economy Calculations

The fuel economy calculations are found by
(Gms/100 SCF)(Carbon weight fraction for the fuel) $=$ miles/100 SCF
$.429(\mathrm{CO})+.273\left(\mathrm{CO}_{2}\right)+$ (Carbon weight fraction for) (HC)
(the fuel not counting CO_{2})
example: for the analysis given above and $H C=1.0 \mathrm{gms} / \mathrm{mile}, C O=7.0 \mathrm{gms} / \mathrm{m}$:
$\mathrm{CO}_{2}=400 \mathrm{gms} / \mathrm{mile}, \quad=21.11 \mathrm{gms} / \mathrm{Ft}^{3}=2111 \mathrm{gms} / 100 \mathrm{SCF}$
$\frac{(2111 \mathrm{gms} / 100 \mathrm{SCF})(.693)}{(.429)(7.0)+(.273)(400)+(.691)(1.0)}=12.96 \mathrm{miles} / 100 \mathrm{SCF}$
6. Equivalent gasoline MPG Calculations

Using the higher heating value from the CN4 Analysis for 100SCF the lor heating value must be calculated.

This is because we will need to compare the lower heating values of CNG a Gasoline. The lower heating value is calculated as follows:

Grams of Hydrogen/100 $S C F=$ (grams of fuel/100SCF)(Weight fraction Hydrogen)

The $\mathrm{H}_{2} \mathrm{O}$ produced per 100 SCF

$$
=\left(\text { Grams of Hydrogen/100 SCF) } \frac{[(2)(1.00797)+15.9094)]}{(2)(1.00797)}\right.
$$

The heating value of $\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{F}$ is:
$\frac{(\mathrm{H} 20 \mathrm{produced} / 100 \mathrm{SCF})}{453.592 \mathrm{gms} / 1 \mathrm{bm}} \times 1059.9 \mathrm{BTU} / \mathrm{Ibm}$
Where $1059.9 \mathrm{BTU} / \mathrm{l} \mathrm{bm}$ is the energy required to change l lbm of $\mathrm{H}_{2} \mathrm{O}$ fro liquid to steam.

The lower heating value $=$ the higher heating value - the heating value 0 $\mathrm{H}_{2} \mathrm{O}$

Ex. using the same set of example data
Grams of $\mathrm{H}_{2} / 100 \mathrm{SCF}=(2111 \mathrm{gm} / 100 \mathrm{SCF})(.226)=477.1 \mathrm{gms} \mathrm{H}_{2} / 10$ SCF
$\mathrm{H}_{2} \mathrm{O}$ produced $/ 100 \mathrm{SCF}=477.1 \frac{[(2)(1.00797)+15.0994)]}{(2)(1.00797)}=4263.58 \mathrm{gms} \mathrm{H}_{2} \mathrm{O} / 10$
The heating value of the $\mathrm{H}_{2} \mathrm{O}$ is:
$4263.58 \mathrm{gms} \mathrm{H} 20 / 100 \mathrm{SCF} \times 1059.9 \mathrm{ETU} / \mathrm{Ibm}=0962.6 \mathrm{BTU} / 100 \mathrm{SCF}$
$453.592 \mathrm{gms} / 1 \mathrm{bm}$
The lower heating value $=97600-9962.6=87637.4 \mathrm{BTU} / 100 \mathrm{SCF}$
The number of SCF of CNG to have an equivelent BTU content of one gallon is given by
$\frac{\text { Lower heating value } 1 \text { gallon of gasoline }(100)}{\text { Lower heating value of } 100 \text { SCF of CNG }}=\frac{\text { No. of SCF }}{\text { Gallon of Gasoline }}$
The mile per gallon gasoline equivelent is given by
$\frac{\text { miles }}{100 \text { SCF }} \times \frac{\text { No. of SCF }}{\text { Gallon of Gasoline }} \times \frac{1}{100}=$ MPG gasoline equivelent.
ex. Using same example with ETU/gallon of gasoline $=118,000 \mathrm{BTU} / \mathrm{gal}$.
$\frac{\text { No. of SCF }}{\text { Gallon of Gasoline }}=\frac{118,000}{87637.4} \times 100=134.65 \mathrm{SCF} / \mathrm{gallon}$.
MPG gasoline equivelent $=12.96 \frac{\text { miles }}{100 \mathrm{SCF}} \times \frac{134.65}{100} \mathrm{SCF} / \mathrm{Gallon}=17.45 \mathrm{MPG}$ equi
II. Calculation of Air/Fuel Ratio at Stochiometric A / R.

1. For any hydrocarbon fuel $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{z}$
2. The Equation is:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{2}+(\mathrm{x}+\mathrm{y} / 4-\mathrm{z} / 2) \mathrm{O}_{2}+79 / 21(\mathrm{x}+\mathrm{y} / 4-\mathrm{z} / 2) \mathrm{N}_{2} \\
& x \mathrm{CO}_{2}+\mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O}+79 / 21(\mathrm{x}+\mathrm{y} / 4-\mathrm{z} / 2) \mathrm{N}_{2} \\
& A / F_{\text {STOICH }}=\frac{(x+y / 4-z / 2)(32)+79 / 21(x+y / 4-z / 2) x(28)}{12.011(x)+1.008(y)+16.0(z)} \\
& A / F_{S T O I C H}=\frac{137.333\left(x+y / 4-z / z^{-}\right)^{2}}{12.011(x)+1.008(y)+16.0(z)}
\end{aligned}
$$

