

Trend Analysis of Ozone in EPA Region 1 Using 1983-1997 Ozone Data

October 1998

This document was prepared by:

David Conroy John Graham

Further inquiries may be directed to:

David Conroy United States Environmental Protection Agency Region 1, CAQ JFK Building One Congress Street Boston, MA 02203

Table of Contents[®]

I.	Introduction					
II.	Sources of Data	5				
III.	Discussion of Trends	6				

Appendices

~

A. Procedure for Calculating Maximum 8-hour Ozone Averages	8
B. Exceedance Day Trends in 8-hour Ozone	9
C. Comparison of the 8-hour and 1-hour Ozone Exceedance Day Trends	16
D. Regional Temperature and Exceedance Day Correlation	23
E. County Design Value Trends	30
F. Exceedance Day by Month	69
G. Exceedance Day by Day of the Week	76
H. Geographic Area Maps	83
I. Tabulated Exceedance Day Data by State	85

I. Introduction

In the past several decades, the public has shown concern about air quality, focusing on ground-level ozone or smog. Ozone results from the combination in the atmosphere of volatile organic compounds (VOCs) and nitrogen oxides (NOx). These primary pollutants have a variety of sources including automobiles and industrial plants. In a warm, sunny atmosphere, chemical reactions of these pollutants produce ozone.

Research has determined that inhalation of ozone causes harm to the human respiratory system. Four groups of people are particularly sensitive to ozone. These groups become sensitive to ozone when they are active outdoors because physical activity (such as jogging or outdoor work) causes people to breathe faster and more deeply. During activity, ozone penetrates deeper into the parts of the lungs that are more vulnerable to injury. Sensitive groups include: 1) Children, 2) Adults who are active outdoors, 3) People with respiratory diseases, such as asthma, and 4) People with unusual susceptibility to ozone.

Scientists have been studying the effects of ozone on human health for many years. So far, they have found that ozone can cause several types of short-term health effects in the lungs: 1) Ozone can irritate the respiratory system, 2) Ozone can reduce lung function, 3) Ozone can aggravate asthma, and 4) Ozone can inflame and temporarily damage the lining of the lung. Scientists suspect that ozone may have other effects on people's health. Ozone may aggravate chronic lung diseases, such as emphysema and bronchitis. Also, studies in animals suggest that ozone may reduce the immune system's ability to fight off bacterial respiratory infections.

In addition to the direct effects on human health, the environment at large suffers effects from poor air quality. Ozone interferes with a plant's ability to produce and store food. This can result in decreased crop yield and over the long term, may disrupt entire ecosystems. Vegetation may be more prone to disease, pests and other environmental stress when exposed to ozone. The dangers of poor air quality led to the passage of the Clean Air Act in 1970.

OCLC 1141742205 Held by EHA - no other holdings

Rec stat	n	Entered 20200224			Replaced 20200224						
Type a		ELvi	Κ	Srce	d	Audn	1	Ctrl	Lang eng		
BLvl m	Form		Conf 0		Biog		MRec	Ctry mau			
	Cont			GPub) f	LitF	0	indx 0			
Desc i		Ills	ab	Fest	0	DtSt	S	Dates 1998	,		
040	EHA	∖‡b	eng ‡e	rda ‡c	EHA				· · ·		
088	EPA	901-	R-98-00)6							
099	EPA	901-	R-98-00)6							
049	EHA	۹D آ									
100 1	Conroy, David, #e author.										
245 1 0	U Trend analysis of ozone in EPA Region 1 using 1983-1997 ozone data / ‡c prepared by David										
264 4	Con	roy, J		anam. United 6	Netes 1			Drotootion Are	new Design L to 1000		
204 1	Boston, MA: FD United States Environmental Protection Agency, Region I, FC 1998.										
336	oo leaves . +D color illustrations, color maps , +C 28 cm										
337	unmediated +b n +2 rdamedia										
338											
500	Cov	er title						,			
500	"Oc	tober	1998."								
650 0	0 Atmospheric ozone ±x Environmental aspects ±z New England										
700 1	Gra	ham	John. ‡	e autho	•			<u></u>	<u></u>		
	United States, +b Environmental Protection Agency, +b Region L +e issuing body										

Delete Holdings- Export- Label- Produce- Submit- Replace- Report Error- Update Holdings-C Validate-C

Workflow-In

Workflow-In Process In the 1970's the United States Environmental Protection Agency (US EPA) implemented a national ambient air quality standard (NAAQS) for ozone to help protect the environment and human health. Hourly averaged values of 0.125 parts per million (ppm) and above were considered exceedances of the standard. Regions experiencing more than one exceedance per year averaged over three years were determined to be in non-attainment. These non-attainment areas were classified as marginal, moderate, serious, severe or extreme depending on the extent of the air quality problem in 1990. Southern New England and coastal northern New England as of 1997 are non-attainment for ozone based on the one-hour standard.

In July of 1997, the EPA issued a new standard set at 0.08 ppm averaged over eight hours. To be in attainment for this more stringent standard, the 3-year average of the annual fourth highest daily maximum 8-hour ozone concentration must not exceed 0.08 ppm. The EPA will designate areas as non-attainment for this new standard based in 2000 based on the years 1997-1999. Areas in non-attainment of the one-hour standard will remain as such until they average 1 or fewer 1-hour exceedances over three years.

This document provides a summary of the ozone data in New England over the fifteen-year period 1983-1997. The number of ozone-monitoring sites operated in New England during this period ranged from 39 to 66 sites. Data available for the ozone season (until recently April 1 to October 31 in each New England state) for these years are used to determine exceedances of both the old and new National Ambient Air Quality Standards (NAAQS). The data used in this report were collected from eighty-eight distinct stations, though only eighteen operated throughout the entire period.

Trends in both one and eight hour average ozone are compared for Region 1 and each individual state. In general, air quality as measured by average ozone concentrations has improved from the 1980's to the 1990's. The trend in both the old and new standards shows decreasing ozone in the troposphere. In addition, temperature data from seven meteorological stations is analyzed and plotted along with 8-hour ozone averages for the regions surrounding each site. These plots provide evidence for the positive correlation between high temperature and high ozone. A final set of graphs displays 8-hour design value trends for counties throughout New England covering the years 1985-1997. A tabulated data summary is supplied at the end of the report.

II. Sources of Data

US EPA Region 1 includes the six New England states: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont. Ozone monitors exist in each state, though only eighteen have existed for the entire 1983-97 period. The year to year changes of monitor numbers and location may have some influence on the reported results. When results are given for an individual state, the values are based upon all operating monitors for each year within the state. For the purposes of temperature based analysis, seven geographical regions were chosen as follows:

- **Coastal Connecticut** (meteorological station: Bridgeport Sikorsky Memorial AP)
 - Data from Fairfield (excluding Danbury), New Haven and New London counties in Connecticut. Sites include Greenwich, Westport, Bridgeport, Stratford, New Haven, Madison and Groton.
- Interior Connecticut (meteorological station: Bradley International AP)

Data from Fairfield (Danbury only), Hartford, Litchfield, Middlesex, Tolland and Windham counties in Connecticut. Sites include Danbury, East Hartford, Middletown, Stafford and Torrington.

Interior/Coastal Maine (meteorological station: Portland International Jetport)

Data from Cumberland, Franklin, Hancock, Kennebec, Knox, Sagadahoc, Somerset, Waldo, Washington and York counties in Maine and Rockingham County in New Hampshire. Sites include MacFarland Hill, Gardiner, Port Clyde, Phippsburg, Cape Elizabeth, Kennebunkport, Hollis, Kittery, Rye and Portsmouth.

- Metropolitan Boston-Coastal NH (meteorological station: Logan International AP) Data from Essex (excluding Lawrence), Middlesex, Norfolk, and Suffolk counties in Massachusetts and Rockingham county in New Hampshire. Sites include Newburyport, Lynn, Chelsea, Sudbury, Waltham, Rye and Portsmouth.
- Western Massachusetts (meteorological station: Worcester Municipal AP) Data from Berkshire, Hampden, Hampshire and Worcester counties in Massachusetts. Sites include Adams, Amherst, Agawam, Chicopee, Ware and Worcester.
- Southern New Hampshire (meteorological station: Concord Municipal AP) Data from Belknap, Cheshire, Hillsborough, Merrimack, Strafford and Sullivan counties in New Hampshire and Essex (Lawrence only) county in Massachusetts. Sites include Claremont, Keene, Laconia, Concord, Manchester, Nashua, Rochester and Lawrence.
- **Rhode Island-SE Massachusetts** (meteorological station: Providence T F Green State AP) Data from Kent, Providence and Washington counties in Rhode Island and Barnstable, Bristol and Plymouth counties in Massachusetts. Sites include Alton Jones, Narragansett, Providence, Easton, Fairhaven, Scituate and Truro.

III. Discussion of Trends

From the 1985 to 1997, the three-year moving average of exceedance days in New England has dropped over 60%. The average number of exceedance days for the region was in the forties for the second half of the last decade and now hovers around thirty exceedances per year. Connecticut and Massachusetts dominate this trend while Vermont and New Hampshire have relatively little impact. It is rare for an 8-hour exceedance to occur in Maine, Vermont, New Hampshire or Rhode Island if no exceedance was observed in Massachusetts or Connecticut. Graphs of these trends are given in Appendix B.

In Appendix C, exceedance days of the old and new ozone standard are compared. The trends are well correlated, having an r-squared value greater than 0.88 for those areas having more than one exceedance day of each standard per year. As would be expected, the shapes of the curves are very similar. Roughly, Region 1 states exceed the 8-hour standard on fifteen to twenty more days than they exceed the 1-hour standard.

The graphs in Appendix D compare 8-hour exceedance days and number of days the air temperature was above 85 °F. Seven meteorological stations were used for temperature data. Ozone stations located near each of the seven sites were grouped together, making the assumption that the meteorological conditions were similar. In general, areas were represented as coastal or inland. Reasonable correlations exist between the two curves with increased numbers of exceedances corresponding to an increased number of days of high temperature. From the graphs, more recent years require higher temperatures for 8-hour exceedances to occur.

In Appendix E, the 8-hour design value for counties in New England with monitors operating since 1985/1986 are plotted. The design value for each site is calculated as the 3-year average of the annual fourth highest daily maximum 8-hour ozone concentration. For a county with multiple monitoring sites, the design value is the same as the highest design value of an individual site in the county. The general features of the graphs show a maximum design value for years including the high ozone season in 1988. In the 1990's, the trend in design values level off to values significantly below

those seen in the 1980's. Contoured maps clearly show improving air quality from 1983 to 1997. At the start of the period, Massachusetts, Connecticut, Rhode Island, coastal Maine and part of southern New Hampshire suffered from poor air quality, with coastal Connecticut having a design value above 125 ppb. By the middle of the period, the area covered by design values above 105 ppb was significantly reduced. Some regions in the most recent 3-year period have design values below 65 ppb and very few are above 105 ppb.

The next set of figures in Appendix F track exceedances in Region 1 and individual states therein by month and year. At the beginning of the period, exceedances could potentially occur in any month. During June, July and August, the likelihood of exceeding the standard was often better than fifty-fifty. In the nineties, the distribution of exceedances has changed. The months of April, September and October are much less likely to experience high levels of ozone. The frequency of exceedances in the central summer months has declined to roughly one day in three. It should be noted that the ozone season changed in 1997, no longer extending into October. This change is justified since the period of 1983-1997 had only five exceedances in the month of October, with the last one occurring in 1990.

Weekday is used to partition exceedances in the next set of graphs (Appendix G). In Region 1, no obvious trend is apparent. Each weekday has at least one year in which the most exceedances occurred on that weekday. Similar results were found for average and median ozone concentration. For thirteen of the fifteen years, the weekday with the most days over 85 °F at Bradley AP also had the most exceedances.

Appendix A

Procedure for calculating the 8-hour ozone standard

The following computations were performed on ozone data residing in the Aerometric Information Retrieval System to determine the maximum daily 8-hour ozone First, running 8-hour averages are computed from the hourly ozone average. concentration data for each hour of the year and the result is stored in the first, or start, hour of the 8-hour period. In the event that only 6 (or 7) hourly averages are available, the 8-hour average is computed using 6 (or 7) as the divisor. (Note: 8-hour periods with three or more missing hours will be counted as missing unless, after substituting one-half the minimum detectable limit for the missing hourly concentrations, the 8-hour average concentration is greater than the level of the standard). If fewer than 18 hours of valid ozone concentration measurements are available for the day, then the day is not counted as a valid day and the daily maximum 8-hour average is not determined. The computed 8-hour average ozone concentration is reported in parts per million (ppm) to three decimal places (the insignificant digits to the right of the third decimal place are truncated). By comparing the running 8-hour average ozone values over the course of a 24-hour period, a maximum is determined for each day.

Appendix B Exceedance Day Trends in 8-hour Ozone

Appendix D Regional Temperature and Exceedance Days

Appendix E County Design Value Trends

Appendix H Geographical Area Maps

Appendix I

Tabulated Exceedance Day Data by State

Tables 1-7. Each table includes data covering the fifteen-year period 1983-1997. The number of monitors in operation for each geographical area is shown as changing the number of monitors could influence the number of days where ozone exceeded the standard. Temperature data from seven meteorological sites are displayed. The temperature cut off was chosen such that a reasonable chance for an exceedance existed in the 1980's when the air temperature for that region was as listed in the table. Exceedance days are those where at least one site in the given geographical area exceeds the standard.

Table 1. Region 1

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	40	39	41	39	44	43	48	50	53	58	58	63	65	66	62
# of 1-hour exceedance days	65	43	30	17	30	38	14	15	25	9	17	12	13	5	13
# of 8-hour exceedance days	90	60	50	35	45	56	31	31	40	27	30	33	29	20	30
# of days with T>85 ®F	66	45	34	33	41	52	35	48	61	31	53	60	6 0	37	37
from 7 Region 1 sites															

Table 2. Connecticut

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	10	10	10	10	10	10	10	10	11	11	11	13	13	14	13
# of 1-hour exceedance days	61	37	22	11	27	34	13	13	24	8	15	9	13	4	13
# of 8-hour exceedance days	84	54	41	28	37	50	26	24	34	19	27	28	24	16	27
# of days with T> 85 ®F at Bridgeport	33	23	8	16	21	35	17	23	35	10	34	32	29	8	19
# of days with T> 85 ®F at Bradley AP	58	37	25	27	38	47	32	42	56	20	44	42	51	26	32

Table 3. Maine

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	6	6.	8	9	10	9	11	11	13	16	16	16	18	16	13
# of 1-hour exceedance days	10	12	6	2	5	19	4	5	7	2	4	1	4	0	3
# of 8-hour exceedance days	21	25	21	9	10	35	11	15	17	12	14	10	14	5	11
# of days with T>85 ®F	22	18	8	4	12	27	13	16	31	7	19	13	15	1	18
at Portland															

Table 4. Massachusetts

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	15	14	14	11	14	15	16	16	16	17	17	17	17	17	16
# of 1-hour exceedance days	38	21	14	8	9	30	8	6	9	4	9	6	8	2	4
# of 8-hour exceedance days	62	44	39	25	23	43	22	22	26	20	23	20	20	15	24
# of days with T> 85 ®F at Logan AP	52	34	17	21	16	37	19	28	42	15	32	44	40	15	27
# of days with T>85 ®F at Worcester AP	34	13	4	5	15	35	12	8	16	4	12	11	12	2	8

Table 5. New Hampshire

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	5	5	5	5	6	5	7	9	9	10	10	10	10	14	13
# of 1-hour exceedance days	4	2	2	3	4	13	2	2	4	0	3	1	3	0	1
# of 8-hour exceedance days	10	10	8	9	13	27	11	9	13	7	8	9	9	6	10
# of days with T> 85 ®F	47	20	25	15	27	38	23	34	38	20	36	34	44	22	30
at Concord															

Table 6. Rhode Island

															-
	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	2	2	2	2	2	2	2	2	2	2	2	3	3	3	4
# of 1-hour exceedance days	7	16	6	4	8	7	2	6	9	1	1	1	4	0	1
# of 8-hour exceedance days	24	28	16	12	18	19	9	13	20	5	7	8	11	4	11
# of days with T> 85 BF	50	15	15	14	27	34	24	22	47	15	35	22	36	16	25
at Providence															

Table 7. Vermont

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
# of monitors	2	2	2	2	2	2	2	2	2	2	2	4	4	2	3
# of 1-hour exceedance days	0	1	0	0	0	2	0	0	1	0	0	0	0	0	0
# of 8-hour exceedance days	4	4	6	1	3	14	2	5	10	6	4	2	3	3	2