AIR POLLUTION CONTROL IN PHILADELPHIA, PENNSYLVANIA AN EVALUATION REPORT WITH RECOMMENDATIONS FOR PROGRAM IMPROVEMENTS

U. S. ENVIRONMENTAL PROTECTION AGENCY Air Pollution Control Office

IN THE
CITY OF PHILADELPHIA

An Evaluation Report With Recommendations for Program Improvements

Project Supervisor
Stephen R. Wassersug
\section*{Staff Participants and Specialists}
Jáy Avner (Administration \& Data Handiing)
J. Michael Joyce (Engineering \& Enforcement)
Neil Berg (Technical Services)
William Polglase (Engineering)

ENVIRONMENTAL PROTECTION AGENCY
Air Pollution Control Office
Division of Applied Technology
February 1971

Hr. Kenneth Johnson
Regional Aix Pollution Control Director
National Air follution Control Administration
Public Health Service
U.S. Department Health, Education and Welfare 26 Feceral Flaza (Foley Square)
New York, N.Y. 10007

Dear Mr. Johnson:
In accordane with discussion in our meeting at the Regional Uffice in New York City on January 15 and as Ffarat in Ls. Charles D. Yaffe's letter of lest June, i) shouici ithe io formally acguest tenhmiral assustante in the form of an on-site reviev of the hilarelphia air manarement procram, as an additional aic in the cefinition of the project undertakincs thich will lead to development of a maintenance level procram to be consiciered for appropriate Federal funding.

The recent conference in which Mr. Bdvard F. Tilson and I participated was very useful and constructive. I am happy to know that funding under the present aix pollution improvenent project grant will continue curine the period when the Hhiladelphia air manacement program, with the consultation and advice of you and your staff, will be further defined. We are most appreciative of this type of assistance.

Incidentally, my fiscal officer informs me that, since the initiation of the first Federal ait pollution improvenent grant to the thilacelphta program several years ago, there has never been a Federal fiscal aucit of this

$$
\begin{aligned}
& \text {-Mr. Kenneth Johnson: } \\
& \text { - } 2 .:
\end{aligned}
$$

program．It was our understanding that this would be requested and，from the management standpoint，this＇ would certainly be useful．．I thought it niche be appropriate to bring this up again at this time．

Thank you for your continuing consultation，advice， and Financial support．

Sincerely yours，

$$
\begin{aligned}
& \text { Norman } \mathrm{N} \text {, ingreher, } \mathrm{HE} \text {. }
\end{aligned}
$$

```
ルニ゙ざと
cc：tiro．Goodwin t
```

LIST OF TABLES iii
LIST OF EIGURES iiii
SECTION 1
Introduction 1
2 Sumary 2
3 Sumary of Recommendations 4
4 Air Pollution Problems 4
5 Legal '16
5.1 Legal Authority 16
5.2 Legal Operations 18
6 Organization. 24
6.1 Prior Study by USPHS 24
6.2 Present Organization 24
6.3 AMS as a semmaterematinution. 20
7 Budget. 30
8 Manpower 34
8.1 Staffing Requirements 34
8.2 Job Descriptions 38
8.3 Salaries 40
8.4 Training 42
8.5 External Constraints 44°
Communications 46
10 Program Planning and Evaluation. 48
11 Land Use Planning. 50
12 Public Information. 51
13 Engineering 54
13.1 Emission Inventory 54
13.2 Permit Approval. 55
13.3 Industrial Improvement. 57
14 Enforcement 58
14.1 Compliance and Surveillance. 58
14.2 Enforcement Section. 60
PAGE
15 Technical Services 61
15.1 Air Monitoring 61
15.2 Jaboratory 63
15.3 Source:Testing 64
16 Meteorologs 67
17 Data Handling. 69
17.1 Computer Capabilities 69
17.2 Data Utilization 70
Appendix A - Proposed Location of Station's in Expanded Air Monitoring Network
Appendix B - APCO Guidelines for Numbers and Types of AirMonitoring Stations
Appendix C - Calculation Parameters for APCO Manpower Pro-jections
Appendix D - AMS Present Organization of Functions andPersonnel

Appendix F - Staff Salaries in Air Pollution Control Agencies
Appendix G - Salaries: An Examination of Salary Levels forRecent Graduates

LIST OF TABLES
TABLE NUBBER PAGE
4.1
4.1 EmLSSLONS BY SOURCE CLASSJFTCATJON. 15
5.1 COURT CASES $1968+1969$ 21
7.1 puIladelphia financial resune 31
7.2 PERCENTAGE OF TOTAL PROGRAM BUDGETRELATING TO ELEHENTS IN. THE ADC ACTIVITY.32
7.3 ESTMAATED COST OE RECOMMENDATIONS 33
8.1 PRESEITT AND PROJECTEDMANPONER NEEDS (AMS - PROJECTED)35
8.2 PROJECTED MANPONER NEEDS (APCO - PROJECTED) 36
8.3 FISCAL YEAR 1970 MANPONER SURVEY SHEET. 37
8.4 SALARY COMPARISON 41
15.1 ORDER OF PUBLICATION: CRITERIA DOCUMENTS 65
LIST OF FIGURES
FIGURE NUTBER
6.1 CITY OF PHILADELPHIA - AMS ORGANIZATIONAL CHART. 26.

1. introduction

On February 3, 1970, Dr. Norman R. Ingrahm, City of Philadelphia Health Commissioner. in a letter to Mr. Kenneth Johnson, Air Pollution Control Office (formerly NAPCA), Region II Director, requested an objective evaluation of Philadelphia's resources, laws, and all program activities for air pollution control. This report has been prepared in response to that request. Jhis study Is also timely since Air Management Services within the Department of Public Health, plans to submit an application to:APCO for maintenance program support for FY 72 as authorized by the Clean Air Act as amended. With these factors in mind, this report is designed to determine program weaknesses and to focus on those program areas in need of strengthening and developing in order to qualify for maintenance support. It must be understood that recommendations contained in this report are presented as a means of reaching that goal. Certainly there are alternate methods that can be used to reach program goals and, in all probability, a few important problem areas were not detected or discussed. There is no intent to stifle program initiative and imagination in such decisions.

At the present time, several important program elements are being implemented and are only discussed briefly in this report.

There arc many satisfactory, in fact excellent, program elements that are not discussed within the report. The fact they are not discussed is by desion since the important objective of the report is to assist in the implementation of a comprehensive effective air poilution control program designed to protect the health and welfare of the citizens of the Philadelphia area.

Air Management Services (hereafter referred to as AMS) must operate withjn a city government structure that imposes many constraints on a program and makes it more difficult for the agency to achieve its goals. While these factors have been discussed in this report, APCO realizes the difficulties of altering long-standing systems. It is important, however, that these problems and their effect on AMS be discussed and understood.

The Commonwealth of Pennsylvania, according to prescribed law, has certified AMS as the exclusive agency in Philadelphia. This certification gives AMS complete responsibility for control of all air pollution originating within the City. This sole responsibility makes it all the more important for AMS to have an effective program as it is logically the body that can provide cleaner air for the City of Philadelphic.

The Commonwealth of Pennsylvania also has an active air pollution control agency. This agency is responsible for control activities in the remaining metropolitan area of Pennsylvania.

The material for this report was obtained from information provided to APCO: in conjunction with the grants program, the regional office in New York City, and information gathered by a team of APCO investigators during, a visit to Philadelphia, April 26-30, 1970. APCO is indeed grateful for the cooperation extconded by the Air Nanagement Services, the Health Departmert, and the Philadelphia Planning Comission during the fact-finding effort and for the review provided by the New York Regional Office.

2. SUMMARY

In the past few years, virtually every metropolitan center in the east coast of the United States has reached a critical point. They are faced with massive demands for power and new materials on the one hand and rapid deterioration of the urban environment on the other.

The City of Philadelphia offers a prime example of this paradox. Industrial and population figures have increased, and corresponding power needs and citizen demands for new materials have soared.

To combat this growing air menace, the City Council in October of 1969 adopted a new Air Management Code. This document provides the Air Management Services with very strong enforcement powers and penalties. If progress toward comprehensive program development and, more important, the improvement of air quality is to be accomplished, it remains for AMS to assume the kind of aggressive effort required for enforcement of the Air Management Code on a scheduled system of priorities. These priorities should in turn reflect long range air quality objectives.

This report has been prepared to guide AMS in developing an effective organization geared to meet the challenge. The Federal Clean Air Act of 1967 , an amended, is quite explicit in placing the primary responsibility for air pollution sontiol at the State and lōal levels. In Lilis regard, cine stace of Pennsylvania and the Philadelphia program must develop definitive agreements on responsibilities and authority; thus insuring complimentary rather than duplicative programs, and further defining areas of responsibility.

It is hoped AMS will consider the points and recommendations of this report and take immediate corrective action.

The program will be able to operate more effectively if: (1) legal. administrative procedures are improved upon; (2) better internal and external communications are developed; (3) personnel conditions are improved; (4) specific plans and procedures for abatement and prevention are developed in line with the development of a comprehensive program, to effectively control all sources of air pollution; (5) a comprehensive information activity is developed; (6) AMS begins detailed planning for information systems to process, store, and utilize all types of data.

To attempt to meet all objectives and carry out all recommendations at one time is not sound for program balance or comprehensive program development. Therefore, recommendations should be implemented in terms of priority based on existing limited resources and desire by the agency to attain Federal maintenance levels of support, implying an effective program. By no means are the recommendations as stated the only solution for corrective action of a problem. There may be many solutions to the problem. In the short time for the on-site review, it could not be expected that all the agency's problems would be uncovered,
although, it is felt that major program deficiencies were revealed. Further, interpretation and definition of a problem by the APCO reviewers may not in all cases be complete. This study does not intend to lay blame on any individuals or organizations but encourages as its objective that all program entities in the city work together for the comnon goal of controlling air pollution in Philadelphia.

* were revealed. Further, Co reviewers may not in all y blame on any individuals all program entities in Hling air pollution in
minendations presented herein can be classified into the (1) legal, (2) organization, (3) manpower,) progran planning and evaluation, (6) land use planning, , (8) engineering, (9) enforcement, (10) technical ,logy, and (12) data handling.
mns relative to legal:

ENDATION 1. Amend Section 3-103 (5) to increase m fines to $\$ 1,000$, at least for the first offense.

ENDATION 2. Reconstitute the Air Pullution Control so that it is an objective and impartial representative of tire community. Board Representatives having substantial ial interests tend to disregard public interest and welfare.

ENDATION 3. Modify Item (2) of Section 3-302 by ng "to establish areas where objectives are applicable" t air quality goals fnr the ontire city will be uniformiy cial. Reasonable time schedules for achieving the uniform ives should be set in those parts of the city rather than ng less strict objectives at the sacrifice to air quality. ition, such objectives must be consistent with the ions of the Implementation Plan for the Philadelphia AQCR.

ENDATION 4. Express emission limitations in this regu... in terms of pounds/hour or pounds/million Btu of heat inIn addition, modify or replace the emission standard for ting equipment, subsection (2), by a standard that varies with size of the installation.

MMENDATION 5. Express the limitations on emission of ur dioxide in Section IA (2), Non-Commercial Fuel, in terms ounds/hour or pounds/million Btu of heat input. The comments with reference to Regulation II, Section V, also apply here.

MMENDATION _6_. Specify standard test methods for testing incinerator designs for compliance with the regulation.

MMENDTION . 7. Develop regulations for control of ocarbons, carbon monoxide, and odors. Federal criteria ments for hydrocarbons and carbon monoxide are currently lable, and should be utilized in developing regulations.

RECOMANDATION _8-_. Work with the State to develop plans for the State to control emissions from sources outside of Philadelphia that contribute to air pollution within the City.

RECOMMENDATION 9... Obtain adizional legat support. The agency needs an experienced attorney who is familiar with air pollution problems. In addition, a close working relationship with the Counseling Division should be developed.

RECOMMENDATION 10_. Use the enforcement method through seeking conviction and fines in Municipal Court only for minor and infrequent violations. This is because the procedure makes no provision for long-term compliance with regulations or abatement of air pollution.

Specific recommendations relative to organization:

RECOMAENDATION 11. Allow the Assistant Commissioner more time to work with organizations outside AMS, both inside and outside Giiy government. To accompiisin inis, chree aiternarives are proposed.

1. Establish and fill the position of Deputy Assistant Comnissioner; he should be responsive to the needs of AMS and chosen by the Assistant Commissioner.
2. Delegate most responsibilities to the Division Director and choose someone to act in the capacity of Assistant Comnissioner when he is out of the-office.

3. Hire a chief administrative assistant to coordinate all staff functions as well as line functions and problems.
However, at all times there should be sufficient access to the Assistant Commissioner by the Division Directors to express grievances.

RECOMMENDATION 12. Update the Engineering Division's functional description to include functional categories, staffing, goals, objectives, and time schedules to meet progran objectives.

Specific recommendations relative to manpower:

RECOMENDATION 13_. Make a major emort to fill existing vacancies before planning and implewenting further program activities.

RECOMENDATION 14. Create the category of Air Pollution Control Engineer. Persons having this classification would deal specifically with air pollution, and would advance according to - their proficiency in that field.

RECOREENDATION 15. Require that chemists be knowledgeable primarily in air pollution aspects.

RECOMENDATION 16. Utilize Chemist III and IV positions. Such positions, based on degree and experience, would help adjust chemists' salaries more in line with those of other agency personnel.

RECOMENDATION 17. Create a second step within each of the technician positions. This will provide incentive and a corresponding pay increase for more qualified persons. In addition, the position of lab helper should be eliminated and such duties assumen in reemitians.

RECOMENDATION A8. Establish the position of Applied Scientist. This could serve as a "catch-all" type of position and enable the agency to obtain needed specialized scientific and technical talent without having applicants wait for new positions to be created.

RECOMMENDATION I9. Create an Air Pollution Control Public Information Specialist classification. This is discussed in more detail in the Public Information Section of this report. This position would enable the agency to reject public information applicants who did not have the necessary background in air pollution control.

RECOMMENDATION 20.. Increase salaries for professional personnel and have studies made to eliminate problems of the limited pay step increase and the pay differential of professionals and non-professionals.

RECOMMENDATION 21 . Adopt a formal training program in AMS for orientation of new employees, training professional employees, and training non-professional technical employees by disignating someone as training officer with responsibility for the criteria analysis of training needs. (NOTE: This is one area where an AMS task force would be extremely beneficial in studying the problems and coning up with recomendations based on program needs.)

RECOMMNDATION 22. Review the 2-year training commitment to reduce its severely restrictive influence for training personnel in the dynamic air pollution control field.

RECOMENDATJON 23 . Develop better woricing relations and communications with the Health Department's persomel office and Central Personnel.

RECOMENDATION _24. Hire a personnel clerk to prepare and follow up the necessary paperwork for creating job descriptions and hiring people. This clerk should be able to relieve existing AMS administrative staff of the burden of such work.

Specific recommendations relative to communications:

KECOMMENDATION 25_ Develop and implement a uniform reporting system.

RECOMMENDATION 26. Hold frequent and regular staff meetings within AMS.

RECOMNENDSTON 27 . Work out a set of guidelines with the State defining responsibilities in these areas. Tinis is necessary to aviod duplication of effort.

Spécific recoinmendations relative to program planning and evaluation:

RECOMMENDATION 28. Develop formal procedures for quantifying problems, examining alternatives, identifying resources, setting priorities, and evaluation effectiveness.

RECOMMENDATION 29. Assign a trained and competent person the responsibility of implementing the appropriate concepts of PPBS. This, by necessity, includes proper attention to planning long and short-term activities.

z

Spécific recommendations relative to land-use planning:

RECOMNENDATION 30_ Develop environmental criteria for air pollution as measures for providing effective land-use planning and thereby prevent or minimize air pollution and its effects. All responsibilities delegated to the APC Board should be carried out.

RECOMMENDATION . 3 . Develop formal procedures for cooperation between AMS and the Plaming Commission as a first step in introducing environmental criteria into land-use planning. AMS should have routine advisory powers and responsibilities on a sign-off basis in the work of the Planning Cominssion involving potential air pollution.

Specific recommendations relative to public information:

RECOMENDATION 32_. Clarify control over the public information specialist position. Ideally, the position should be permanently assigned to the Health Department and placed under the Assistant Conmissioner. However, if City poljey makes this impossible, a written agreement should be developed between AMS and the City Representative's office. The agreement should state the position's responsibilities, term of assignment (recommended indefinite), duties, and obligations.

RECOMMENDATTON . 33 . Develop a comprehensive public information program. It is essential that the goals, objectives, strategies, and procedures be planned before the program actually gets underway.

RECOMMENDATION 34 . Make the Assistant Commissioner for AMS more visible to the public and allow him to take a larger role in influencing community opinion through the public information program. Creating and filling the position of Deputy Assistant Commissioner discussed in the Administration Section of this report should give the Assistant Commissioner more time to devote to sucin activities.

RECOMMENDATION 35 . Have the public information specialist receive extensive air pollution training. This should include knowledge of local, State, and Federal regulations; air quality criteria; and the state of the art in technology.

RECOMENDATION 36 . Locate and utilize personnel and materials outside AMS that can aid in developing a public information program. A large amount of such help could be provided by APCO and the State of Pennsylvania.

RECOMMENDATION 37: . Involve the public information specialist in the formulation of AMS policy. This will enable him to be knowledgeable in his dealings with the public. Also, it will lead to consideration of public opinion in developing policy.

RECOMMENDATION $38:$ Develop lines of communications and programs between AMS and iocal universities and between the public information specialist and voluntary agencies. The need for a technical editor for reports and public information should be considered.

Specific recommendations relative to engineering:

RECOMMENDATION 39 . Develop specific procedures to follow up questionnaires and data requests not returned to the agency. This would include persoial contact, plant surveys, and stack testing.

RECOMENDATON 40. Develop formalized and effective lines of conmunication that allow for input from the other city agencies regarding the nature of data requested and methods of data utilization.

RECOMMENATION 41. Reassess data needs and develop datagathering forms that will request all needed information regardless of whether there is existing control equipment or not.

RECOMSNDATION -42. Develop a data storage and retrieval system that will properly assist the staff in emission inventory analysis and reporting. This information system should be coordinated with other AMS systems as discussed in the Data Handling Section of this report.

RECOMENDATION 43. Familarize the entire staff in the operation and use of the filing system, in order to increase the general availability of this information.

RECOMMENDATION 44 . Develop systems and procedures to keep emission figures constantly up to date. This is discussed further in the Enforcement Section of this report.

REGOMENDATION 45. Develop and publish a permit manual that stipulates the type and amount of information requireu and processing procedures employed.

RECOMNENDATION 46. Standardize the evaluation procedure for reviewing plans.

RECOMENDATION 47 . Increase the number of qualified personnel. available for plan review.

RECOMMENDATION 48 . Require that all engineers in the Division gain experience in evaluating plans and specifications. The reviewing engineer, in conjunction with enforcement, should conduct final inspection and make recommendations for approval or denfal.

RECOMMENDATION 49. Develop a specific schedule based on an appropiate priority system for the submittal or improvement plans that will include all the major sources in the City on a staged basis.

Specific recommendations relative to enforcement:

RECOMENDATION 50.. Require that inspectors receive periodic training in reading visible emissions on at least an annual basis.

RECOMERDATION 51. Acquire a communications system for the exclusive use of the AMS.

RECOMMENDATION 52. Purchase additional appropriate simple pollutant-detection equipment for all inspectors to use routinely.

RECOMENDATION 53. Make arrangements for inspectors to receive and investigate complaints expediently beyond the normal working day.

RECOMENDATION 54. Assign specific objectives and priorities for the control of particular pollutants. Having chosen the desired pollutant levels, the agency's enforcement procedures should be structured accordingly. The AMS should, therefore; develop a formal enforcement plan to achjeve the levels; through a systematic and scheduled control effort.

RECOMENDATION 55. Develop a manual for the administration of the Licensing system. (See Appendix E).

RECOMRENDATION 56. Make emission estimates part of plan review and licensing of existing equipment. This will serve as a means to constantly update the emission inventory.

RECOMMENDATION 57.. Develop administrative procedures for implementing air pollution warning, alert, and emergency procedures. All persons affected by these plans should be notified in advance of their responsibilities in emergency situations.

Specific recommendations relative to technical services:

RECOMMENDATION 58 . To coordinate efforts, develop program goals, and improve communications, set up scheduled staff meetings on a reasonable frequency to include heads of the Laboratory and other divisions and the Assistant Commissioner for AMS. Refer to Section on Communication.

RECOMMENDATTON _ 59. Recruit and assign additional manpower to program functions as shown in the Technical Services portion of Table 8-2. This table is a summary of estimated future manpower needs for the agency.

RECOMLNDATION 60. Increase the number of intermittent sampling stations consisting of high-volumes and 24 -hour gas bubblers to more closely correspond with APCO's. guidelines in accordance with data needs.

RECOMENDATION 61 . Limit the telemetered continuous monitoring network to the ten stations for which money has already been committed. The proposed additional six stations should not be considered or added at this time.

RECOMNENDATION :62. Re-design station locations to take into account population and emission patterns. Statistical techniques should be used to locate the stations.

RECOMMENDATION 63 . Perform additional analyses on some highvolume filters. The more common ones are benzene solubles or combustible carbon content, nitrates, chlorides, polynuclear aeromatic hydrocarbons (carcinogens), and metals.

RECOMMENDATION 64 . Write formal laboratory procedures so that any competent chemist could duplicate the analysis. These procedures should reflect the latest work by APCO in the development of standardized laboratory procedures.

RECOMMENDATION 65 . Recruit a chemist with experience or provide training in the use of a gas chromatography to make use of the existing laboratory equipment.

RECOMMENDATION 66 . Implement sampling and analysis procedures to obtain background data on pollutants for which criteria documents are forthcoming. Table 5.1 provides a listing of these pol-. lutants.

RECOMMENDATION 67. Establish source-testing teams whose prime responsibility is to support information and enforcement needs.

RECOMMENDATION 68. Initiate a program of scheduled source tests by industrial categories on a priority basis.

RECOMMENDATION 69. Develop written standard procedures for conducting source tests.

RECOMMEIDATION 70_. Purchase enough source-testing equipment to allow duplicate samples to be obtained without intermittent cleaning of equipinent.

RECOMMENDATION 7I_. Give consideration to reorganizing the placement of this function and assigning source testing to the Engineering rather than the Laboratory Division.

Specific recommendations relative to meteorology:

RECOMENDATION 72. Investigate and evaluate the need versus the cost for metcorological data as required by the Air Quality Display Model and hold data collection to a minimum.

RECOMMENDATION 73 . Bring a full-time meteorologist and one or two techmicians on board to implement the metcorological aspect:s of the AMS.

RECOMENDATION 74. Make some provisions for the Meteorology Section to give meteorological advice on weekends or at night during periods of high pollution potential.

RECOMMENDATION 75. Start the modeling portion of the meteorology program slowly and develop expertise in proven methodologies before attempting more sophisticated, costly, and unproven methods of air quality modeling.

Specific recononendations relative to data handling:
necommadation Fi. Begin detailed planning for information systems to process, store, and utilize all types of data immediately.

RECOMMENDATION 77 . Assign one person within AMS with the responsibility for.planning, coordinating, developing, and implementing all AMS information systems. This should be his only job, and other staff members should be assigned to him as necessary.

RECOMMENDATION 78. Double the core memory capacity of the computer. The additional core capacity is necessary to simultaneously accommodate the two data systems. Magnetic-type-handling capability should be added to the computer system.

RECOMMENDATION 79. Contract with IBM or another competent computer programming firm to reprogram the computer's operating system so it can simultaneously accept real-time data from both the hospital and the air-monitoring systems. This could be accomplished through the Health Department. Better computer access as indicated should be a major effort of ANS in improving its. data-handling system.

RECOMMENDATION 80 . Review air quality data needs carefully with the goal of justifying storage of historical daily averages only.

RECOMENDATION 81. Kecp historical air quality data in machinereadable form on either disc or magnetic tape. Historical data should not be stored on cards. The amount of data involved would make cards cumbersome, prone to loss or damage, and space consuming.

RECOMENDATION 82. Begin detailed planning for the dataanalysis programs at once. In plaming the data-analysis programs and reports, careful study should be made to determine the needs of data analysis. Often these will differ from what users say they: would like. Only a minimum amount of data should be printed.

RECOMSEDDATION 83. Begin work on writing the specifications and actual programs for data analysis. The Water Department has an IBM 1130 Computer that uses the same programming language as the 1800 . This computer can be used to test programs until the -1800 is ready to begin processing air pollution data.

RECOMENDATION 84. Add a computer programmer to the AMS staff. During initial development of the air quality system, he can be assigned to writing some of the data-retrieval and dataanalysis programs. This will leave existing staff with more time to plan and coordinate the entire project. Later he would devote much of his.the to writing programs for special data-analysis studios. Anoilabixity vi data fun sucin siudies was one of the reasons for development of this system in the first place:

RECOMENDATION 85. Begin planning now for development of information systems for emission inventory and permit and license data.: This is necessary to facilitate storage and use of the data when it starts to be received in the near future.

RECOMENDATION _86. Design a storage and retrieval system for emission inventory data so that a complete emission inventory for the City can be calculated and periodically updated.

RECOMMENDATION 87. Develop a filing system to coordinate data from:

1. Complaints
2. Emission inventory
3. Enforcement actions
4. Permits and license

4. AIr pollutjon promlems

Air pollution in the City of Philadelphia is a result of heavy concentrations of people and industry within the city. About two million people live in an area of 127. square miles. The density of automobiles is correspondingly high.:

About 4,600 manufacturing establishnents, over: 300 of them with more than 100. cmployees, are located in Philadelphia. This is about 25 percent of the number of manufacturing plants in the entire State of Pemnsylvania. A large portion of this manufacturing is heavy industry.

Sampling data reveal pollutant levels to be quite high. The annual mean levels for suspended particulates and sulfur dioxide during 1969 were 118 micrograms per cubic meter ($\mathrm{u} / \mathrm{m}^{3}$) and 0.07 parts per million (ppm) respectively.

A detailed emission inventory is currently underway and is discussed clsewhere in this report. Present data are based on a rapid survey emission inventory performed in 1969 for the Philadelphia Air Quality Control Region Consultation Report. Another enission inventory, also primarily a rapid survey, vas compiled by the City of Philadelphia in 1966. These results are summarized in Table 4-1.

Sulfur dioxide emiscions amount to about 375 , non tons per year. philadelphia Electric Company's pover plants contribute about $1 / 3$ of this amount. Fuel combustion from stationary sources and process emissions is the source of most of the: rest.

About 70,000 to 80,000 tons of particulates is emitted annually. Most of the total comes from industrial processes and stationary sources. An estimated 10 percent of the particulates (20 percent in the 1966 City study) comes from Philadelphia Electric Company's power plants.

Carbon monoxide is the pollutant emitted in the largest quantity, some 800,000 to 900,000 tons per year. About $2 / 3$ comes from motor vehicles. Much of the remainder is from industrial processes, primarily refineries and chemical plants.

Enissions of nitrogen oxides and organics (hydrocarbons) have also been estimated. About 100,000 tons per year of nitrogen oxides is emitted, $1 / 3$ from motor vehicles and $1 / 3$ fron power plants. Of the estimated 200,000 tons per year of organics, about $2 / 3$ is emitted from motor vehicles and the rest from the refineries and chemical plants.

Odors are also a singificant problen. The refineries, chemical plants, and rendering plants are the major contributors.

Pollutant	$\begin{gathered} \text { Total } \\ \text { Tons/Yea= } \\ \hline \end{gathered}$	Fuel Combustion Stationary Sources.	$\begin{gathered} \text { Power } \\ \text { Plants, } \% \end{gathered}$	Process Losses, \%	Naste Disposal. $\%$	Móoile Sources, \%
Sulfur dioxide ${ }^{\text {a }}$	375,000	28	33	33	-	5
Particulates ${ }^{\text {a }}$	80,000	30	11	44	4	10
Carbon Monoxide ${ }^{\text {a }}$	830,000	2	-	33	1.	64
Nitrogen oxides ${ }^{\text {b }}$	110,000	30	30	11	1	27
Organics ${ }^{\text {b }}$	200,000	3	-	26	6	64

a - Consultation Report
b - 1966 Philadelphia Emission Inventory

5. LEGAL

5.1 Legal Authority

Philadelphia's Air Management Code, adopted on October 20, 1969, is a modern up-to-date ordinance. It contains very strong enforcement powers and penaltics. The section on legislative findings is well written and contains strong language in policy regarding non-degradation of air quality. The definitions of air pollution nuisance and the restrictions on open burning are also good. .

Section 3-103 Item (5) specifies penalities for violation of the Code or Regulations. The maximum fine is $\$ 300$. The state has recently amended its law to increase the maximum finc to $\$ 1,000$.

RECOMENDATION 1 . Amend Section 3-103 (5) to increase maximum fines to $\$ 1,000$, at least for the first offense.

Section 3-301. Item (22) requires that the Health Commissioner, or his designee, shall administratively hear appeals to orders of the Department. This meeting should serve as an office conference or review. In practice, this means that the Assistant Commissioner for AMS hears and decides on appeais trom orders issued by his organization rith his approval. The recipient of the order does have an ultimate appeal to the License and Inspection Review Board, which is independent from Air Management Services.

While such a perfunctory review procedure is not the best arrangement and can lead to unnecessary delays; it has some advantages. The administrative hearing is useful because it operates similar to a show-cause hearing. The recipient of the order is required to divulge his case and evidence at the hearing. Having access to such information should assist AMS in prosecuting its own case before the License and Inspection Review Board.

Section 3-302 of the Code defines the powers and duties of the Air Pollution Control Board. While many of these duties are advisory in nature, the Board does have considerable power in promulgating regulations both to control emissions and adopt air quality standards. In practice, the Board has been asked to approve regulations after thes have been drafted rather than to actually write the regulations. It is conceivable, however, that the Board could delay or not approve regulations it did not find acceptable.

The composition of the Air Pollution Control board is spelled out in Section 3-902 of the City Charter. The Board consists of seven members, four of whom must be representatives of specified industries. Because of its power in adopting regulations, it is inappropriate that a majority of the Board be comprised of industry representatives.

RECOMENDATION 2 . Reconstitute the Air Pollution Control Board so that it is an objective and impartial representative of the entive commuity. Board Representatives having substantial
financial interests tend to disregard public interest and welfare.

Item (2) of Section 3-302 of the Code deals with the adoption of air quality objectives. The paragraph allows different air quality levels in different parts of the city.

> RECOMENDATION 3. Modify Item (2) of Section $3-302$ by deleting "to establish areas where objectives are applicable" so that air quality goals for the entire city will be uniformly beneficial. Reasonable time schedules for achieving the uniform objectives should be set in those parts of the city rather than allowing less strict objectives at the sacrifice to air quality. In addition, such objectives must be consistent with the provisions of the Implementation Plan for the Philadelphia AQCR.

Under provisions of Section 3-304 concerning inspections, AMS may allow a private agency or industry to make its own inspections and determine its own compliance. AMS retains the right to make its own inspections. This provision can be useful, but care must be taken to insure that it is properly administered.

Regulations I, II, and Til deaing witn Generai. Frovisiuns, Fāeicalateo, and Sulfur Oxides became effective on April 29, 1970. A regulation governing incinerators also exists. These regulations are adequate to control the pollutants they concern.

Regulation II, Section V, governs emission of particulates from fuelburning equipment. The limitations are expressed in terms of pounds of particulate per thousand pounds of stack gas. This approach is indirect and can contribute to confusion in its application.

RECOMENDATION 4 Express emission limitations in this regulation in terms of pounds/hour or pounds/million Bti of heat input.: In addition, modify or replace the emission standard for existing equipment, subsection (2), by a standard that varies with the size of the installation.

Regulation III. limits sulfur oxide emissions. The sulfur levels ultimately allowed in fuels are the same as those allowed by New Jersey. Philadelphia's time schedule for implementing these. limitations is behind that of New Jersey.

RECOMMENDATON 5.- EXpress the limitations on emission of sulfur dioxide in Section IA (2), Non-Commercial Fuel, in terms of pounds/hour or pounds/million Btu of heat input. The comments made with reference to Regulation II, Section V, also apply here.

The incinerator regulation is good. It includes design standards as well as:mission limitations. Testing procedures, however, have not been standardized.

RECOMENDATION 6... Specify standard test methods for testing new incinerator designs for compliance with the regulation.

Maincenance support requires that the agency have legal authority to control emissions within its jurisdiction. This means all pollutants as well as all sources. As mentioned in the discussion of Philadelphia!s air pollution problems elsewhere in this report, hydrocarbon, carbon monoxide, and odor emissions are significant.

RECOMENDATION 7 . Develop regulations for control of hydrocarbons, carbon monoxide, and odors. Federal criteria documents for hydrocarbons and carbon monoxide are currently available, and should be utilized in developing regulations.

CFR 56.31 (2) (1) for maintenance requires that sources contributing to air pollution within a jurisdiction be controlled even though they are located outside that: juricdintinn but in the same state. In this case, such sources, if any exist, must be adequately controlled by the State of Pennsylvania before finiadeipiia can receive maintenance support.

RECOMENDATION 8_. Work with the State to develop plans for the State to control emjssions from sources outside of philadelphia that contribute to air pollution within the City.

5.2 Legal Operations

Air Management Services and the Health Department have no legal staff. The Law Department supplies necessary legal services to all other agencies of City government. AMS works with the Counseling and Enforcement Divisions of the Legal Department. The Counseling Division provides general legal advice to the Enforcment Division, which prosecutes all air pollution violators.

Enforcement activities involving legal prosecution is one of the key areas in carrying out AMS' program to obtain compliance with emission regulations. To date, however, the agency has had inadequate legal service.

RECOMMENDATION 9:. Obtain additional legal support. The agency needs an experienced attorney who is faniliar with air pollution problems. In addition, a close working relationship with the Counseling Division should be developed.

This experience can best be gained by having the individual work within the program for a while. In addition to preparing and prosecuting cases, this attorney should work with AMS staff to teach them proper procedures to testify in court and maintain records.

There are two ways this recommendation could be achieved:

1. AMS could hire a lawyer as member of its own staff.
2. The Law Department could assign an attorney exclusively to AMS.

The second alternative, having the Law Department assign an attorney to AMS, seems preferable for several reasons. There is a City policy prohibiting operating programs from having their own attorneys. While a similar policy for Fublic Information Personnel was waived for air pollution (Section 12 of this report on Public Information), such an achievement would be difficult to repeat and could cause resentment within other areas of the City government. Secondly, the Law Department would probably be more agreeable to having one of their attorneys assigned to AMS. Also, this alternative would not tend to isolate the attornes from his professional. group.

The Counseling Division of the Legal Department is responsible for providing general legal assistance with contrarts, procedures, regutations, and ather matters. This does not include aid in preparing legislation, however.

AMS has received only a limited amount of help from the Counseling Division, largely because the Division is understaffed. One man has been assigned to the entire Health Department, and he is only able to spend 1 to 2 hours per week on air pollution control activities. Because of his workload, he is unable to work actively with AMS during the development of legaj documents. He sometimes reviews them after the fact, which is far less effective.

AMS should have far more help from the Counseling Division in developing enforcement procedures, writing contracts, extending regulations, and so forth. The Counseling Division may need to expand its staff in order to provide such help. This would also be helpful in providing backup support because, at present, there is only one person within the Division who is at all knowledgeable about air pollution. AMS should also work to brief the staff of the Counseling Division on the health and technical aspects of air pollution control. One man should be assigned full time from AMS to work with the Counseling and Enforcement Divisions of the Law Department.

The Counseling Division is presently very concerned about the need to develop expert testimony on the health effects of air pollution control. They feel it is necessary to base cases on danger to health in order to establish precedents for prosecution of future ceses. While this approach may be useful, it differs from the traditional ax pollution enforcement patterns and may tend to slow down or limit the prosecution of violators.

The Enforcement Division of the Legal Department is responsible for prosecuting all violations of air pollution regulations. In the past, few cases were prosecuted. Table 5-1 summarizes cases actually prosecuted during 1968
and 1969. The number of prosecutions was small (222 in 1963 and only 104 in 1969), and more than one-third were either dismissed or fined court costs only. Cases that were prosecutcd were handled poorly. This was most noticeable in the case against George Sall Metals Co. This seems to have been largely the result of prosecution personnel changes and inexperience in air pollution control.

There appears to be a serious problem of cooperation between AMS and the Enforcement Division. The AMS staff says that the Enforcement Division is reluctant to prosecute, and that the legal staff is not eagerly pushing cases, is unfamiliar with air pollution control, and is generally.less skilled than legal counsel representing the defendents. They also say that the Enforcement. Division complains about the lack of good medical testimony and wants to base all cases on the health hazard. issuc. AMS should work with the Counceling Division to move away from. proving probable health hazards as a primary requirement for prosecution. Other lines of evidence, based on proving violation of the regulation, merely by showing emission of pollutants, should be developed. Health danage is difficult to prove and should be used only as supporting proof. The APCO Air Quality criteria should be used to help establish proof of health damage.

The point of view expressed by the Law Department is somewhat different. A now Deputy City Solicitor has recently been appointed, and he seems sympathetic. twisd AHS' problems. The Enforcenent Division says it is villing and wats to prosccute all air pollution cases, whether or not they jomolve health hazards. but that AMS is not sonding the cases do be prosecuted. One attorney, a haletime employee, is currently assigned exclusively to air pollution control. The Division says it will hire as much staff as is necessary to prosecute all air pollution cases..

This report does not attempt to reconcile these two points of view. It appears that a communication problem exists, and it is important that it be worked out. AriS should come to an understanding with the Law Department and develop operating procedures for prosecution of cases. An aggressive enforcement effort should be launched. All available legal assistance in the city, including the District Attorney's office, should be utilized, and a formal plan of cooperation should be developed.

As discussed above, one of AMS' problens is the City Attorney's lack of knowledge about air pollution control. APCO has issued criteria documents for various pollutants and other literature that would provide information to help solve this problem.

AMS should be sure City Attorneys concerned with air pollution have APCO: critcria documents and other publications and are aware of the information contained in them. The attorneys should be kept up to date as new documents are issued. This should be one of the responsibilities of an AMS man assigned to Liaison with the Legal Department.

The Code provides three methods of enforcement:

1. Convictions resulting in fines of up to $\$ 300$ can be sought in Municipal Court.
2. Administrative abatement orders can be issued.
3. Injunctions can be sought in courts of equity.

Table 5-i
COURT CASES 1968 AND 1969.

Disposition	Year	$\begin{aligned} & \text { 1st } \\ & \text { qtr } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { ger. } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{rd} \\ & \text { qtr. } \end{aligned}$	$\begin{aligned} & 4 \text { th } \\ & \text { gtr. } \end{aligned}$	Total
Costs only	1968	12	6	5	24	47
	1969	0	0	0	0	0
\$ $10+\operatorname{costs}$	1968	0	0	0	0	0
	1969	0	0	0	4	4
\$ $25+$ costs	1968	13	27	15	21	76
	1969	0	0	1	6	7
\$ $50+$ costs	1968	13	7	28	12	60
	1969	0	0	15	2	17
\$ $75+$ costs	1968	0	0	0	0	0
	1969	0	0	0	1	1
$\$ 100+\operatorname{cost}$	1968	0	1	18	6	25
	1200	0	0	0	11	11
\$ $300+$ costs	1968	0	0	0	0	0
	1969	0	0	0	II	11
Discharged	1968	0	0	0	0	0
	1969	0	0	10	9	19
No service	1968	0	2	8	1	11
	1969	0	0	4	1	5
Withdrawn	1968	3	0	0	0	3
	1969	0	0	1	1	2
Total	1968	41	43	74	64	222
	1969	0	0	31	73	104

Prosecution in Municipal Court and the seeking of injunctions require the services of the City Law Department. The administrative order procedure does not; it was created specifically so the Law Department would not be needed.

Occasional or minor violators can be prosecuted in Municipal Court. A complaint, based on a violation observed by an inspector, is signed by the Director of the Compliance and Enforcement Division, approved by the Assistant Commissioner for Air Managenent Services, and sent to the Law Department for prosecution.

The judicial system in Philadelphia has not been provided with sufficient information regarding air pollution control. As a result, prosecution has not been too successful. In the past, small fines were levied if convictions were obtained at all. Recently, however, this situation has improved, and some significant fines have been levied.

RECOMENDATION 10. Use the enforcement method through seeking conviction and fines in Municipal Court only for minor and infrequent violations. This is because the procedure makes no provision for long-term compliance with regulations or abatement of air pollution.

Administracive abatement orders are a second method of enforcement. AMS favors this approach because the legal Department does not become involved. The procedure is somewhat cumbersone, however.. The order is prepared by the Director of the Division of Compliance and Enforcement, with approval of the Assistant Coumissioner for Air Management Services, and the Health Commissioner is notified. A schedule for compliance with regulations is spelled out in the order. As discussed in the review of the Code, the recipient can request an administrative hearing for review of the order.

If the order or the compliance schedule is disregarded, steps may be taken to revoke the offender's license for operating the polluting equipment. The Director of the Division of Compliance ánd Enforcement notifies the Assistant Comissioner of the non-compliance. The Assistant Conmissioner in turn can recommend to the Department of Licenses and Inspections that the license be revoked.

Any license revocation may be appealed to the Board of License and Inspection Review. This is an independent agency specified by the City Charter. The existence of this independent board to ultimately hear appeals from air pollution abatement orders removes some of the previously mentioned objectives to having the Assistant Comissioner first hear those appeals to his own orders.

As specified in the Charter, the Board of License and Inspection Review is composed of between three and six members. The Board hears appeals to all types of license problems, not merely those for air pollution. As a result, the

Board has no particular expertise in air pollution control. Creation of a separate Air Pollution review board would be desirable, hut would require anending the City Charter. This would be ditficuit ai best. While the present procedure for appealing air pollution abatement orders has some disadvantages, it appears to be satisfactory.

These enforcement procedures have been worked out by AMS. However, they are still in draft form and are; at present, untried.

If the Abatement Order procedure discussed above fails to achieve compliance, another enforcement tool is available. This is to seek an injurtion in Comnon Pleas Court. This is undertaken by the Lav Department upon the request of the Assistant Conmissioner with the approval of the Health Conmissjoner. Injunctions should be sought imnediately against the major polluters instead of trying to achieve compliance first with administrative abatement orders. A court order carries greater respect than an administrative order. Furthermore, if compliance is not achieved, the administrative order procedure leads, after much delay, to the seeking of a couri order anyway.

A final point to be considered in discussing legal operations is State certification. Pennsylvania State law grants exclusive jurisdiction to a local air pollution control.agency only if that agency has been certified by the state. lack of cettification means that the lucal agency am the State would both have concurrent jurisdiction over sources within the local jurisdiction. Such an arrangement can only lead to confusion. The Philadelphia agency has recently been certified by the State.

- While the State has granted AMS exclusive jurisdiction in the City of Philadelphia, this relationship is complicated by Federal legislation. The Clean Air Act of 1.967 defines the Air Quality Control Kegion Concept and makes the states ultimately responsible for air pollution control within Regions. The State is required to prepare an Implementation Plan defining the means to be used to actually control air pollution. This plan may call for the local agency to contribute significantly to the control effort, but the State is ultimately held responsible for the results.

The City of Philadelphia is, of course, a part of the Philadelphia AQCR. The State law that grants control respoosibility to AMS by means of certification is inconsistent with the Clean Air Act. Because of this overlapping authority, the State and AMS must have effective commuications and a good working relationship. During this study, it appeared that neither agency relied to any great: deal on assistance from the other or had information on what the other program was doing in Philadelphia. The Communcation Section of this report recomends nore effective communications between the two agencies.

6. ORGANTZACTOR

6.1 Prior Study by United States Public Health Service (USPHS)

In July, 1967, a study was made by James Williams of the USPHS entitled: "philadeJphia Air Resource Management Program Suggested Organization." It is appropriate to discuss that study at this time because many of the existing program characteristics and the present organizational structure of AMS vere. recommended by Williams.

Not all of Williams' recommendations have been carried out. Hovever, a discnssion of those earlier recommendations can provide a benchmark from which to begin the present study of the organization of AMS program. It is possibje to. review the progress made in the past 3 years and recommend further improvements in line with the purpose of this report discussed in the introductory section.

It was recommended that the basic organization consist of a director and chree divisions. The program director was to become an Assistant Conmissioner with abjlity to influence City decision-making bodies. Further support to the organization would be provided by a staff type group. Task forces were to be created and assigned to study and reslove internal problems. The organizational. re-alignment has been carried out, but the task force concept has not.

The 1967 report indicated that budget, fiscai, and other administrative services centralized within the Health Department should be responsive to air resource program goals and needs. The present. study has found that this is not always the case.

The program suggested by Williams was goal-oriented and management-directed. At that time, the City of Philadelphia was instituting a Planing, Programming, and Budgeting System. The PPB System was to provide the principal management tool needed. However, to use the tool, management skills had to be developed in the organization. Neither the system nor the skills have been developed by AMS.

Further utilization of educational institutions for research, training, contracts, and special projects was recommended. The Air Pollution Control Board was to be directed toward policy matters to ensure (a) establishment of air quality goals, (b) emmeiation of those goals, (c) program implementation, and (d) provision of clear understanding and smooth implementation, Continual examination to provide new initiative and action to reach program objectives was also a recommended function.

6.2 Present Organization

In 1968, AMS was reconstituted as a separate organization, one of three services within the Department of Public Health. AMS consists of three divisions and a staff support group, and is headed by an Assjstant Comnissioner. Additional. support for AMS is provided by the Office of Administration and Commnity lloalth Services within the Health Department, the Jaw bepartment, and the City Represc:tative's office.

It was evident that the Comissioner of Health strongly supports AMS. However, there is concern that the Assistant Commssioner for AS does not have sufficient departmental responsibility and ability to influence City decisionmaking bodies. Such power was recomended in the 1967 ThS report. The Health Comissioner wants to delegate more responsibility to Alds, and appears to be working. in that direction.

The Assistant Commissioner for AMS has a huge job. In addition to working with City decision-making bodies as discussed above, he is responsible for numerous other functions, both inside and outside of AMS. Elsewhere in the report it is recomended that he take a more active role in the public information program.: Obviously, all of this is too much for one man.

RECOMMENDATION 11. Allow the Assistant Commissioner more time to work with organizations outside AMS, both inside and outsice City government. To accomplish this, three alternatives are proposed.

1. Establish and fill the position of Deputy Assistant Commissioner; he should be responsive to the needs of AMS and chosen by the Assistant Commissioner.
2. Delegate most responsibjilities to the Division Director and choose sumgise to ant in the rapacity of Assistant Commissioner when he is out of the office.
3. Hire a chicf administrative assistant to coordinate all staff functions as well as line functions and problems. However, at all times there should be sufficient access to the Assistant Commissioner by the Division Directors to express grievances.

The Assistant Comissioner's Staff support group includes specialized technical and administrative people whose specific responsibilities cover broad areas. These include administration, project management, plaming, information manssenent, training, and public information. The specific functions and the persomel assigned to each for the staff support group and the three divisions of AMS are listed in detail in Appendix D.

The three operating divisions are Engineering, Compliance and Enforcement, and Laboratory. The Engineering Division is composed of two sections accoreing to the approved AMS organization chart, Figure 6-1. The Division actually operates on the basis of three sections. This discrepancy is unsatisfactory for purposes of program plannjing and division of functional area of responsibility. The three sections are Emission Inventory, Permit Approval, and Industrial Improvement. The first two are combined on the organization chart. The furetional descriptions for the Division were out lined in a 1969 report. A similar description for the Compliance and Enforcement Division was written in 1970 and contained considerably more detail.

Figure 6-1
ORGANIZATIOMAS CHART
FOR CTTY OR PHTLADETPMEA DEPAPTMENT OF PUBLIC HEALTH ALR MANAGEMENT SERVICES

Figure 6-1. Diganizational chan for city of Philadelphia, Deparlment ol Public Health, Air Managenent Services.

Recomendarton 12 . Update the Engineering Division's functional description to jnclude functional categories, staffing, goals, objectives, and tine schedules to meet program objectives.

The Compliance and Enforcement Division j.s composed of two sections: (I) Compliance and Surveillance and (2) Enforcement. She Compliance and Surveillance Section, which supervises AMS' staff of inspectors, has divided the city into three districts for field work purposes. The rest of the Health Department uses a ten-district basis. As a result, AMS has staff located in only three of the llealth Department district offices.

The Laboratory Division has two sections: Analysis and Field Operations. There was no program plan information available from the Division with defined arcas of responsibility for each section. This is a very unsatisfactory situation. It has been recommended elsewhere in this report (see Technical Services) that consideration be given to transferring the Laboratory Division's stack-testing function to the Engineering Division.

The Office of Administration of the Health Department provides fiscal, personnel, and analytical program support to AMS. In the fiscal area, the Office of Administration audits, manages accounts, and administers the budget. It appeared that Administration exerts too much control over budget affairs as they affect program activities.

In the personnel area, the Office of Administration serves as a link between AMS and Central Personnel. There have often been extensive delays in receiving job descriptions, creating job classifications, and hiring people. This is particularly true in non-professional areas. The Office of Administration has been, at times, almost a line function over AMS setting its staffing priorities rather than acting as a staff support group, which would.help push through paperwork necessary for AMS to hire the people it wants. However, Central Personnel has also been responsible for many of the delays in processing AMS' personnel actions. These and other personnel problems are discussed in more detail in the Manpower Section of this report.

The Office of Administration is also responsible for maintenance, duplicating, and petty cash. These services have been generally unsatisfactory. AMS has experienced serious delays having lights replaced, windows fixed, cleaning, and other maintenance services. Delays of several days in duplication of documents are common. As there is no petty cash fund, even small items must be ordered chrough formal purchasing channels.

Environmental Health Services also provides some support to AMS. However, the relationship is unclear. The organization chart dated 12/31/68 (see Figure 6-1) reveals a solid line direct relationship between AMS and EHS. An earlier chart dated $9 / 6 / 67$ showed a dotted line indirect relationship. The district healch offices, three of which are used by AMS Compliance and Enforcement field staff, are Ells facilities. With the exception of using office space in EHS facilities and doing some radiological analysis and high-volume semples, ifS seems to have little contact with EnS. This relationship should be clarified.

6.3 AMS As A Separate Department

It has been suggested that $A M S$ would be more effective in its efforts to control air pollution if it was reorganized as a separate Department of the City government. In discussing this question with various people, both advantages and disadvantages of such a change were mentioned. Any decision would require a comprehensive evaluation of cost and benefit factors, available resources, and the public and private impact of the move. Such an evaluation is beyond the scope of this study and, without it, the only reasonable approach is to merely list the advantages and disadvantages of the change:

ADVANTAGES

1. There is considerable prestige in being a separate department and being able to negotiate at department level.
2. Air pollution control would be the sole activity of the new department. It would not have to compete for priority with other programs within the Health Department.
3. As Commissioner of Air Pollution Control, the head of AMS would have full responsibility for all control activities.
4. Air pollution can be treated as a legal and an engineering problem and not be clouded by "health hazard" connotation.
5. Air Pollution Control could exert more control over personnel and fiscal functions.
6. Positions can be upgraded as necessary to give better salaries and promotion potential. This would facilitate the acquisition of special disciplines used in air pollution control programs.
7. The air pollution control program would have increased visibility to the public and could be more responsive to public opinion.
8. Many air pollution control activities are not common to other healthrelated activities. Examples include review of engineering plans, monitoring of contaminants, source testing, inspection of technical processes, and code enforcement by injunction or other legal means. A separate department would allow AMS to set up its own programs and methodologies for its activities.
9. Air Pollution Control Agencies must be more enforcement-oriented than Health Departments are by basic policy and philosophy.

DISADVANTAGES

1. The smaller department or organization would have less influence and receive less administrative support from the city bureaucracy.
2. Results are frequently achieved within a City structure through a system of trade offers. A new department would have no stock af such goodwill with which to bargain.
3. : Overhead operations in functional areas of personnel specialists and fiscal. officers can be overly burdensome to a small organization.
4. . There is an element of safety in budget support as part of a larger Department or organization available to AMS through the Health Department.
5. : The actual process of revising the City Charter and creating the new agency could be quite time-consuming and may delay or disrupt abatement of air pollution for sometime.

Another trend in organizing pollution control efforts is emerging around the county. This is a creation of combined envirommental control egencies with responsibility for air, water, and land conservation. Such a possibility for Philadelphia was not evaluated by this study for the same reasons that no recommendation was made about creating a separate air pollution control eepartment.

7. BUDGET

Since 1965, the City of Philadelphia has received grant support for its air pollution control program. The agency is now completing its second:3-year improvement project. A summary of AS grant support is shown in Table 7-1:. In. 6 years; the total project annal budget (Federal + non-Federal. funds) has grovn from $\$ 142,000$ to almost $\$ 1 \mathrm{million}$. These figures do not include funds that are not eligible for Federal matching. These "Program Exclusive of Project" funds add another. $\$ 240,000$ to the agency's budget during the present fiscal year:

Table 7-2 shows a breakdown of the budget by functional activity. The allocation shows heavy emphasis on engineering and enforcement. Engineering utilizes 43 percent of the budget. . This percentage is high because air monitoring, laboratory, and technical services have been included in this category. Enforcement consumes 38 percent of the budget while only 19 percent is devoted to administration.

Future staffing and calculated budget needs were projected for AMS. This estimate is djscussed in the Manpower Section of this report. It was estimated that a total of 125.5 people are needed by FY 1974. Table $8-2$ projects the progressive buildup of the staff and the allocation of manpower to various program functions.

Tine effects of this size staff on the agency's budget are estimated in Table 7-3. The total required budget for FY 1974 would be about $\$ 1.5$ million. AMS' present budget (project grant for FY 71 plus program exclusive of project funds) is about $\$ 1.25$ million. This is about what the projection forecasts will be required by FY 1972: A budget expansion of about 20 percent will be required by FY 1974 to reach the required manpower and activity levels projected by APCO.

Table 7-1.
PhILADELPHIA FINANCIAL RESUNE:
FEDERAL GRANT RKOJECT FUNDS

Date	Type	Non-Federa	Federa1	Total	Remarks
1/1/65-12/31/56	Imp. ${ }^{\text {a }}$	47,540	95,079	142,619	Expenced
1/1/66-12/31/67	Imp. a	62,654	125,307	187,961	Expended
1/1/67-6/30/68	Imp. ${ }^{\text {a }}$	121,567	243,334	365,001	Expended
7/1/68-6/30/70	Imp. ${ }^{\text {b }}$	164,5.78	392,115	556,733	Expended
7/1/69-6/30/70	Imp. ${ }^{\text {b }}$	298,572	597,143	895,715	Budgeted
7/1/70-6/30/71	Imp. ${ }^{\text {b }}$	332,988	655,975	998,963	Buafgeted

c - 42-month Improvement Grant 6/1/66-6/30/68.
b - 36-month Improvement Grant 7/1/68-6/30/71.

Table 7-2.
PERCENLAGE OF TOTAL PROGRAM bubget relating to eloments
IN THE AIR POLLUTION CORTROL ACTIVITY

Air pollution activities	$\begin{aligned} & \text { Fiscal year } \\ & 1970 \quad 1971 \\ & \hline \end{aligned}$
L. General enforcement	xxxx mixx
1. Complaint processing	22
2. Snspection	2018
3. Prosecution	$5 \quad 5$
4. Stack sampling	1.5
5. Clerical	43
6. Administration	63
7. Other	
	3836
II. General engineering and analysis	xxxx \quad xxix
1. Plan review	3
2. Permits	22
3. Source survey or registration	42
4. Emission inventory	$4 \quad 3$
5. Code preparation	2 ${ }^{2}$
6. Public technical assistance	- . -
7. Planning	1.
8. Air monitoring	$10 \quad 10$
9. Laboratory	109
10. Data processing	49
11. Meteorology	3
12. Administration	2
13. Clerical	1
14. Other	
	$43 \quad 46$
III. General administration	xxxx xxxx
1. Management and planning	86
2. Local assistance	- -
3. Public information	$3 \quad 3$
4. Accounting	
5. Clerical	4
6. Training	2
7. Legal	1.2
8. Other	19
	1918
Total	100\% 100\%

-33-
Table 7-3.
MATED COST OF RECOMMENDATIONS
CITY OF PHILADELPHIA

8. MANPONER

Manpower is the most important resource of any organization. While AMS has experienced considerable growth in the past 2 years, additional manover is still required to enable the agency to do its job effectively. This section of the report discusses the following facets of MS' manpower problems:

1. Staffing requirements
2. Job descriptions
3. Salaries
4. 'Training
5. External constraints

8.1 Staffing Requirements

Table 8-1 shows the present number of positions on the AMS staff and their distribution by function. Table 8-3 shows a further breakdown of the functions performed by each staff member during fiscal year 1970. The figures in Table 8-1 reflect a fairly well-balanced control effort. Of a total of 54 people, 32 peicent are involved in management operations, 28 percent in enforcement, 17 percent in
 percentages reflect good manpower distribution, the agency has an unusually high vacancy rate, about 33 percent.

> RECOMMNATION $\frac{13}{}$. Make a major effort to fill existing vacancies before plaming and implementing futher program activities.

AMS has projected its future manpower needs as shown in columns 2 and 3 of Table 8-1. A total staff of 117 is forecast by 1972. APCO has also developed a projection of manpower needs for the agency which is shown in Table 8-2. The discrepancies in present manpower levels between the two tables were due to differences in charts received from AMS. APCO's projection is based on population, number of manufacturing establishments, land area, and industrial capital expenditures. The calculations are shown in Appendix C. APCO's figures indicate a need for a staff of 124.5 by 1974 . The two figures are in close agreement on the agency's ultimate cotal persomel needs. There is, however, some disagreement in the allocation of personel to source testing, permit plan review, public relations, and legal preparation.

The AMS allocates one man each to the stack sampling and permit operations. This allocation is not sufficient. Rather, 2.5 man-years should be the minimm assigned to stack sampling, while efficient operation of the permit system would require about 12 men .

The mis predicts a decline in activity in the area of both public information and legal preparation. These operations will becone increasingly important in the future and thus NMS should be geared up to meet this responsibility.
rable 8-1

present and protected manponer neens CJTY OF PMMADELPBA
 preparid by mas

	Fiscal Year		
	1970	1971	1972
Management Operations			
Policy, publications, strategy, recruitment, etc.	4	5	7
Staff Training	0	0	1
Administrative \& Clerical	13	19	24
Subtotal Management	17	24	32
Enforcement Operations			
Scheduled Inspections fuel and refuse Scheduled Inspections -	1	1	5
industiry	f	10	12
Complaints and Field Patrol Source Identification and Registration	7	8	8
Subtotal Enforcement	15	19	25
Engineering Operations			
Permit System	1	1	,
Source Testing	$\frac{1}{2}$	1	1
Emission Estimates	1. $\frac{1}{2}$	2	2
Engineering Reports, New			
Regulations .	7	12	18
Subtotal Engineering	9	16	22
Technical Operations			
Air Quality Monitoring ${ }^{\text {* }}$	3	5	
Special studies	1	3	6
Data Processing	1	3	5
Instrument Calibration	5	9	12
Lab. Operations	2	5	8
- Subtotal Techinical	12	25	38
Total Manpower	54	84	117

Table 8-2
Projeched mantoner needs CITY OF PHTLADEJPMI - AS PREPARED BY DCAD, . APCO

	1969 a	1970	1971	1972	1973	1974
Man-years/100,000 Population	4.2	4.3	4.9	5.5	6.0	6.3
Management Operations						
Policy, P/R, Strategy, Recruitmen	4.0	6.0	8.0	9.0	10.0	11.9
Staff Training	0	1.0	3.0	5.0	6.0	6.5
Administrative, Clerical	17.0	15.0	18.0	20.0	22.0	22.0
Subtotal Managementa	21.0	22.0	29.0	34.0	38.0	40.4
Enforcement Operations						
Scheduled Inspections - fuel and refuse	2.0	2.0	3.0	3.0	4.0	4.0
Scheduled Inspections - industry	7.0	8.0	9.0	9.0	9.0	9.0
Complaint and Field Patrol	21.0	21.0	21.0	21.0	21.4	21.4
Snure Tdentificetion and Registration	$\frac{3.0}{33.0}$	$\frac{2.0}{33.0}$	$\frac{1.0}{34.0}$	O 0	$\frac{0}{34.4}$	$\underline{0}$
- Subtotal Enforcement ${ }^{\text {a }}$	33.0	33.0	$\frac{1.0}{34.0}$	34.0	34.4	$\overline{34.4}$
Engineering Operations						
Permit System	2.0	3.0	5.0	7.0	10.0	3.1 .8
Source Testing	0.5	1.0	1.0	2.0	2.0	2.5
Emission Estimates	1.5	2.0	2.0	2.7	2.7	2.7
Reports, New Regulations		6.0	5.0	3.3	3.3	3.3
Subtotal Engineering	12.0		13.0	15.0	18.0	20.3
hnical Operations						
Air Quality Monitoring	5.0	5.0	6:0	7.0	8.0	9.0
Special. Studies	1.0	2.0	2.0	3.0	3.3	3.3.
Data Processing	2.0	2.0	3.0	4.0	4.9	4.9
Instrument Calibration	5.0	6.1	6.1	6.1	6.1	8.0
Laboratory Operations	2.0	3.0	4.0	5.0	5.2	5.2
Subtotal Technical	15.0	$\overline{18.1}$	21.1	$\underline{25.1}$	27.5	30.4
Total Manpower, Philadelphia	81.0	85.1	91.1	107.1	117.9	125.5

a - Budgeted (there are presently 27 vacancies).

	\qquad	00000000					```Tabl: 8-3 Fiscal Year 1970 Mmpower Ëurvey Shect (Total should equal 100% of time and effort in each function)```															
									$\begin{gathered} \stackrel{2}{5} \\ \stackrel{5}{5} \\ \stackrel{y}{4} \\ \stackrel{5}{6} \end{gathered}$							$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					$\begin{gathered} \text { E. } \\ \dot{5} \\ E \\ E \\ \text { E. } \\ 4 \end{gathered}$	-
$\frac{\text { STAFF }}{1 \text { Ssst. Health }}$ Commissioner	100						90				10											
IAministrative Asst.	100	\times					40				10		30								20	
1 AdministraEive Intern	100	x					80				20											
$\begin{aligned} & \text { Information } \\ & \text { Officer II } \\ & \hline \end{aligned}$	100	\times							10		10						80					
I Draftsman	100	x	x																			
2 PublicHealth Eng. II	100	x					10				50		10		20.					10		
1 PubicHealth Eng. I	100	\times																		00		
I APC Eng.	120	x					40				30		10					20				
$\begin{aligned} & \text { I Public- } \\ & \text { Health Eng.III } \end{aligned}$	100							70											30			
1 PHS I	100		x					80										20				
4 AOC Insp. Supvr.	100		x				70		15		15											
17 APC Insp.	100		\times				8		46			46										
1 APC Eng.	75						70						5	0	5							10
1 chem. II	50			x																		100
2 Chem. I	501			x																		1001
4 Cram. Tech.	25		x																			1001
4 Inse. Tech.	100		\times					,														100
1 APC Eng.	100						70		5			5	5					10	5			
2 2ES III	100	x	2						50			30	20									
$\underline{1}$ EEE IT	100	d	d									70								30		
OPEE	100	2	d						751					10	15							

One final area that needs clarification is that of instrument calibration. The unusually high number in that category reflects the manover necded to service the ten-station telemetery nework in addition to those required for routine calibration of lab and technical equipment.

- In addition to these general personnel recommendations, several specific staffing recommendations have been made in discussions of various functional activities throughout this report. These reconmendations are sumarized below:

1. Allow the Assistant Comissioner more time to work with organizations outside AMS by one of the methods listed in the Organizational Section of this report.
2. Have a full-time attorney assigned from the Law Department to AMS.
3. Assign one man the responsibility of working with the legal staff in briefing lawyers, preparing cases, etc.
4. Hire an assistant or clerk for personnel matters to relieve the administrative assistant and thus allow him more time for program planning.
5. Hire a chemist with experience in the use of the gas chromatograph.
6. Hire a fuli-time meteorolngist.
7. Assign one or two technicians to serve and maintain the automatic sampling network.
8. Assign one person full-time to be in charge of data processing and information systems and provide him with support in routine data handling (key punch, etc.).
9. Secure full-time services of one man to serve as a training officer.

8.2 Job Description

AMS is limited in its choice of personnel to those positions for which a job description and classification have been approved.by the Philadelphia Civil Service Commission. Should specialized personnel be necessary, AMS must go through the lengthy process of drafting, submitting, negotiating, and obtaining approval for the proposed position. This process can take as long as eight months, and qualified people often find other jobs in the meantime. The Philadelphia Civil Service Commission is reluctant to create new classifications or allow flexibility in using existing ones.

Job classifications are difficult since a precise description of the duties for a hypothetical and probably unobtainable person is required. This is particularly true for engineers where it is extremely dificult to satisfy procedural requirements for any except a qualified enviromental engineer. Such a person is neither available or entirely suitable for AMs' needs.

Engineering personnel are currently classified as Public Health Engineers. This designation enables the agency to draw from a wide spectrum of engineering disciplines including chemical, mechanical, civil, sanitary, and electrical engineering. While this arrangenent enables the agency to attract qualified personnel, it may tend to be a disadvantage to these people when they seek advancement. Despite the fact that they deal exclusively with problems of air pollution, examinations for advancement between grades require a knowledge of all facets of environmental engineering.

RECOMMENDATION 14 . Create the category of Air Pollution Control Engineer. Persons having this classification would deal specifically with air pollution, and would advance according to their proficiency in that field.

Engineering position levels are assigned as follows:

```
Apprentice = Engineer I
Journeyman = Engineer II
Deputy Division Director = Engineer III
Division Director = Engineer IV
```

This system of evaluating jobs rather than people limits promotion potential. Since there are a limited number of jobs at the III and IV level, a person could be blocked at the top step of a II level even though he was qualified for a III or a IV. The only way to achieve a higher classification is to fill a position at that level.

A similar situation is present in the series of chemist positions. Applicants for Chemist I and II positions are required to have extensive knowledge of fields not related to air pollution.

RECOMMENDATION 15. Require that chemists be knowledgeable primarily in air pollution aspects.

AMS currently uses only Chemist I and II positions. Both the qualifications and salaries for these positiuns are low.

RECOMMENDATION 16 . Utilize Chemist III and IV positions. Such positions, based on degree and experience, would help adjust chemists! salaries more in line with those of other agency personnel.

For less professional activities, the agency makes use of both an Instrument:tation Technjcian and a Chemical Technician. The Civil Service Systom severely limits career opportunities in these positions. They provide for only one step, and a techncian reaches his maximum salary after 4 years. This situation can stifle initiative, incentive, and lead to rapid turnover.

RECOMMENDACION - 17 . Create a second step vithin each or the technician positions. This will provide incentive and a corresponding pay increase for more qualified persons. In addition, the position of lab helper should be eiminated and such duties assumed by technicians.

Several other classifications would be helpful to AMS.

RECOMMPDATION 18. Establish the position of Applied Scientist. This could serve as a "catch-all" type of position and enable the agency to obtain needed specialized scientific and technical talent without having applicants wait for new positions to be created.

RECOMPNDATYON 19. Create an Air Pollution Control Public Information Specialist classification. This is discussed in more detail. in the Public Information Section of this report. This position would enable the agency to reject public information applicants who did not have the necessary background in air pollution control.

Availability of applicants does not seem to be a problem. Substantial numbers of applications are temg wecened for nositions with saiary ieveis appropriate to the background or the appicants. Requirements for non-degree personnel are being met more easily than those for people with degrees, however. In the past, through advertising and at conventions AMS has attracted applicants, but external contraints have reduced their ability to hire the people. Certainly, the 33 percent vacancy rate bears this out. The average vacancy period for an engineer in AMS is 6 to 8 months.

Recruiting has been done by both AMS and the Administration Office in the Health Department. Since AMS has no restraints on recruiting, it may be beneficial for a man to be assigned from the AMS staff group to handle and coordinate recruiting efforts.

8.3 Salaries

The rigidity and limitations of government salary schedules frequently present difficulties in the recruitment and retention of qualified air pollution control agency staff. This is further complicated by the fact that govermment salarjes have not risen as fast as those of private industry. Table $8-4$ gives a comparison between existing salary schedules of similar job functions for governent. in Philadelphia, the Federal goverment, privace industry, and medians for other local and state air pollution control agencies. Supporting information is found in Appendices F and G for 1966 and 1967 personnel salaries. However, professional salaries since that time have risen 30 percent, or an average of 10 percent per year and are reflected in Table $8-4$. Federal salaties reflect actual raise incrowe since 1966.

TabLe $0-4$ SALARX OOREARLSLA

Philadelphis Civil Services
Eay Ranges Applicadie to Alz Management Services

SLE	GRADES	SALARX RANGE				Eederai Rating		Induscrlal Rating		气 SEnes Agencies (MPdisn)
							SALARX		SALIRY	
ministrative Assistant	I	8,815	9,159	9,50i	9,843	GRADES	RANGE	GRADES	RANCE	
	IT.	20,883	11,320	11,756	:12,189	9-12.	$\begin{aligned} & 9,881- \\ & 18,449 \end{aligned}$			
	III	13,275	13,818	14,361	44,906					
Iministracive Intern		-	-	9,205	9,535					
astnesting Alce	I	6,618	6,853	7,087	7,320	5-7	$\begin{gathered} 6,548- \\ 10,528 \end{gathered}$			
	II	7,385	7,654	7,923	8,190					
ir Rollevion Control										
Engineers		-	16,604	17,257	17,931					
Ublic Health Engineer	I	-	- ${ }^{-}$	9,798	10,152	9-13	$\begin{gathered} 9,881- \\ 2 i, 79 i \end{gathered}$			
	II	- 10,883	11,320	11,756	12,189				10,000	!
	III	13,275	13,818	14,361	14,906			I-VII.	27,000	16,000
	IV	15,942	16,604	17,267	17,391					
newist	I	- .	8,396	8,699	9,011					
	II	9,088	9,443	9,798	10,152	9-12	$\begin{array}{r} 9,881- \\ 18,449 \end{array}$	I-VI.	9,500-	
	III	9;713	10,095	10,477	10,963				20,000	22,108
Chenical Techaicen		7,621	7,899	8,178	8,459	7	8,089-			
Air Pollution Control						.	10,528 $=1$			
Inspector		9,088	9,443	9,798	10,152					
Inspector Supervisor		10,883	11,320	11,756	12,180					

A summary of table 8.4 reveals:

1. Top salaries for most positions are considerably less than salaries in other govermmental agencies and industry.
2. Salary ranges are limited to only four steps that can be attained in 4 years. With so few steps in a category, salary ranges are extremely limited.
3. Salary ranges are attained by reviewing comparable agencies and situations, and using the middle pay scale. It is regrettable that
Philadelphia is not in a position to compete for the best personnel available. Further, when this scale was established, salaries may have been attractive at those starting levels. In fact they still are according to Table 8-4. Philadelphia's raises over the past few years have been based on a cormon numerical value for all positions, not on a percentage increase. The results have created attractive salaries for new, unskilled employees, nonprofessionals and professionals. The beginning salaries for clerks is $\$ 5,325$, while a Clerk IV can receive $\$ 9,257$. A stenographer begjns at $\$ 5,694$, while and engineer starts at only $\$ 4,100$ more. A Chemist III can earn only $\$ 10,863$, only $\$ 1,600$ more than the upper range of a clerk IV. This differential will continue to remain the same with numerical raises, although the percentage difference will continue to djminish. Turnover will be low for non-professional and increase in key program areas.
4. Regardess of training and experience that any one individual has, he must begin at the first pay step of that grade. This seriously hampers the recruitment of trained and qualified persomel.
5. Job descriptions are often set for "avenues of least pay." Critical positions are frequently open to unqualified individuals as position descriptions often omit degree or license requirements. Little regard is given to professional requirements. Formerly, the chemist position did not require a degree. In many cases, particularly in this essential APC field and in the AMS program, experienced and qualified people are needed. Restrictions in hiring the most qualified can only injure the program. Descriptions for positions should be based on the agency's needs and on program objectives.

RECOMAENDATION 20. Increase salaries for professional personnel and have studies made to eliminate problems of the limited pay step increase and the pay differential of professionals and nonprofessionals.

8.4 Manpower Training

Training within the AMS has been a particularly unique problem. The program does not have a training officer, nor does it have a training program established for new personnel. in the air pollution control field. Only one Ars staff member
has attended a APCO training course given outside Philadelphia in the past year. At present, training is limited to in-house activities such as having the person vork with several program components. Often this training program is interrupted by other program priorities needs as a crisis develops. For new professional persomel, training requitements should range from 3 to 10 weeks during the firse 2 years of employment, depending upon an individual's background in college or technical school, and his assigned role in the program.

Training requirements for middle-level technical personne1 (2 to 5 years in air pollution control) should range from 3 to 10 man-days per year of cmployment. Smoke readers especially should recefve scheduled refresher courses in plume evaluation on at least an annual basis.

Upper-level techmical personnel vorking in the field over 6 years should receive at least one week per year of formal training to maintain competence.

Management, administrative, and supervisory personel should receive from 3 to 10 man-days per year in areas of management, supervision, program planning, and specialized technical areas.

AMS has no career development programs using rotational assignment:s and formal training to advance personnel through the existing system of career ladders to positions of increased responsibility.

Training has received.a rather low priority in agency planning. Training needs have not bem teremmes, atomel traing program has not been plamed, nor do individuals receive sufiicient orientation in aid as well ás air pollution control. Agency resources available for training are minimal, although a library is located at headquarters for staff use. The public information program should develop visual aides, training materials, and programmed instructions as needed. Assistance in these areas as well as in technical areas is available from State and Federal officials.

One external AMS element severely handicapping the program's potential in training is the following condition contained in an Administrative Board Ruling.

```
Instructions for Filling out a Request for
    Philadelphia Personnel Manual
        Education/Training Leave
        (Form 73-S-122, Rev. 8/68)
```

If the cost to the City for tuition, salary, travel and other related expenses will be $\$ 250.00$ or more, the arrangement on the reverse side of the Request for Education/Training Leave must be executed by the employee. An employee requesting City aid of $\$ 250.00$ or more must agree to remain in City employ for at least two (2) years following the termination of the training leave.

This condition undaubedly limits the number of employees requesting training because of the obligation required by the City. Some employees have refused to sign the condition for training, thereby causing their elimination from highly desirable program training. The condition is uncessarily severe for short-term training. A l-week course outside the city would undoubtedly exceed the $\$ 250.00$.

> RECOMENDATION - 21 . Adopt a formal training program in AMS for orientation of new employees, training professional employees, and training non-professional technical employees by disignating someone as training officer with responsibility for the criteria analysis of training needs. (NoTs: This is one area where an AMS task force would be extremely beneficial in studying the problems and coming up with recomendations based on program needs.)

RECOMAENDACTON 22. Review the 2 -year training commitment to reduce its severely restrictive influence for training personnel. in the dynamic air pollution control field.

8.5 External Constraints

Many AMS manpower problems are at least partly a fault of factors external to the agency, as aiready discussed. The fhiladelphia civil service system is the worst of these problems. The cyetem is, in general, uncesponsive to new functions such as air pollution control. The delays and inflexibility in creating job descriptions, the low salary levels, and the lack of advancement potential inherent in the system have been discussed in the appropriate sections of this report.

Central Personnel has tried to prescribe the type of manpower needed by AMS without receiving input from AMS. A recent example of this was a report indicating that engineers were not needed within certain segments of AMS. This type of program problem should be discussed with AMS and resolved by that agency.

The study tean's review indicated that most engineering personnel are almost exclusively involved in engineering functions. Supervisory engineers, as well as those engineers assigned to the Staff of the Assistant Conmissioner, are involved in program planning. In such areas as data processing, fewer engineer types would be warranted, but the agency has been unable to fill these positions with qualified personnel who are not engineers. The whole problem is a result of insufficient staff and using existing personnel in understaffed areas. This particular personnel report seems to indicate a lack of understanding of the Ars program on the part of Central Personnel.

Personnel administration is one of the functions handled centrally by the Health Department for all agencies within the Department, including AMS. This function includes processing the paperwork to create job classifications, developing position descriptions, obtaining positions, actually hiring people, and dealing in general with Central Personnel. Because of MS' great need for new staff and new job descriptions, it is inportant that AMS administrative staff
cooperate closely with the Health Department's personnel office. Some lack of communication and understanding between the two was evident during this study.

RECOMENDATION 23. Develop better working relations and communications withte Health Department's persomel office and Central Personne1.

RECOMPNDATION 24. Hire a personnel clerk to prepare and follow up the necessary paperwork for creating job descriptions and hiring people. This clerk should be able to relieve existing AMS administrative staff of the burden of such work.

Residency rules create an additional difficulty in hiring people. Policy requires that all city employees live within the city.

-46-
 9. Commoications

Communication appears to be a problem at several levels. Difficulties exist within the AMS organization, between AMS and other city government agencies, and between AMS and the State of Pennslvania.

Within AMS, both vertical and lateral communication seems to be a problem. Communication between the Assistant Commissioner and his staff anci both the Compliance and Enforcement and the Engineering Division was generally fair. Contact with the Laboratory Division, however, was extremely poor. Although an important part of the total air pollution control effort, the laboratory seems aloof from the rest of AMS. Reporting between the three divisions and the Assistant Commissioner is not uniform or adequate. The staff seems to lack knowledge about program goals and direction; therefore, they do not relate their. activities to the goals and objectives of AMS. Although some program plaming has been done, it has not been effectively carried out. This is at least partly because of poor communication.

RECOMENDATION 25. Develop and implement a uniform reporting system.

Lateral commmication between the divisions also were not good. This probiem was not as evident between sections within the same division, however. Staff meetings for exchange of information have been too infrequent.

RECOMMENDATION 26 . Hold frequent and regular staff.meetings
with AMS.

Proper communication in a large organization cannot be left to chance. Formal information systems are important to ensure that necessary information is available to the proper persons when needed. The details of such systems are discussed in the Information Handing Section of this report.

Communication between AMS and other City government agencies was also strained. This is particularly true of the Office of Administration within the liealth Department. This office provides AMS with such vital services as personnel, financial management, and budgeting. Lack of good communication has decreased the amount and quality of such services AMs receives, and has handicapped AMS in getting its own job done. AMS should work to establish better communications and relations with the Health Department's Office of Administration.

An active enforcement policy requires close cooperation and communication between AMS and the Legal. Department. This relationship is discussed in more detail in the Legal Section of this report. However, commonication between the two departments needs to be improved. Communication to the general public has also been ineffective. This situation is discussed in more detail in this report's Public Information Section.
-47-
Communication between AMS and the State of Pennsylvania is limited. To date, it has mainly involved joint studies such as the emission inventory. The State provides lictle input to MS progran planming. The State could provide useful assistance to Ars in areas such as trajning, inspection of exhaust control devices, legislative assistance at the State level, specialized laboratory and engineering support, and planning and implementation of control efforts throughout the Plíladelphia Air Quality Control Region.

> RECOMMENDATON 27. Work out a set of guidelines with the
> State defining responsibilities in these areas. This is
> necessary to avoid duplication of effort.

This problem cannot be solved by AMS alone, but requires a spirit of cooperation byiboth agencies.

10. PROGRAM RIANNING AND EVALUATION

The City of Philadelphia, through the City Planning Commission, has developed a Plaming-Programing-Budgeting System (FPBS). The primary purpose of this system is to obtain the greatest possible effectiveness from the available resources while also providing a means of program evaluation. This program calls for identifying activities and problems, identifying capital and operating expenditures, analyzing problems, setting long- and short-term objectives, and developing a comprehensive progran plan along with alternate methods of operation. At present, AMS"becomes involved only to the extent of plamning the capital budget for municipal jncinerators.

AMS does not operate under a PPB System and has not developed an integrated comprehensive package of objectives, plans, programs, bidgets, pexformance actions, evaluation reviews, and modifications. The agency also has not worked out alternatives to reach program objectives or drawn up a list of program priorities. Even the new Code, which is an implicit statement of goals and objectives, was developed by a consultant with relatively little input from AMS. AMS only recently, and after a formal request from APCO through the grants program, developed a clear statement of program goals and objectives.

RECOMENDATION 28. Develop formal procedures for quantifying probloma, examining aternarives, identifying resources, setting priorities, and evaluation effectiveness.

Lack of staff has generally prevented AMS from coing formal planning. The planning and evaluation that does take place is done at the division operating level, but is not uniform or coordinated.

RECOMMENDATION 29. Assign a trained and competent person the responsibility of implementing the appropriate concepts of PPBS. This, by necessity, includes proper attention to planning longand short-term activities.

Operating memorandum No. 3 describes the only method currently utilized by AMS to measure progress. The goals stated are: (1) reduction and abatement of air pollution and (2) control of nuisances and air pollution hazards. The first goal is measured in "tons of pollution abated," as determined from the Philadelphia emission inventory. The goal for FY' 70 is 10 percent abatement of air: pollution. There are several reasons why this is a poor evaluation tool to measure program effectiveness:

1. The 10 percent is a blanket figure applied to all pollutants. It does not reflect the relative threat of various pollutants present in the air, the severity of localized pollution problems, the specific sources, or the availability of togulations and techology to control various sources. A more neaningful approach would be to set difforent goals for each pollutant in terms of air quality requirements. Elimination or reduction of certain
localized problems should also be specific goals with long- and short-term objectives.
2. All abatement actions are reported regardjess of plant shutdows or eljmination of sources through urban reneval. This measures a decrease in pollution as a result of external factors rather than program effectiveness. Other changes in source emission brought about by plant expansions, plant relocations, or process changes can produce situations wherein Alis takes credit for results not due its actions.
3. There is no indication that new sources are computed and added to the inventory to show pollution increases.
4. Using sampling data to indicate pollution decreases is inappropriate because results may be affected by variations in weather, sampling and analytical procedures, cyclic source operations, etc.
5. Effectiveness on a month-to-month basis cannot be fairly evaluated. One plant controlled may bias results in any one month.
6. The 10 percent reduction goal does not assist AMS in determining what program elements are ineffective, and in what areas additional resources are needed.

AMS' recent workable program discussed long-range planning and a 10-year air management plan using somettang jike Frogram Evaluailuin and Revicr: Technique (PERT) or Critical Path programing techniques. However, personnel shortages have prevented this. development. A man responsible for plaming, as recommended, should devote part of his time to long-range planning activities.

Section 3-302 of the Air Management Code gives the Air PolJution Control Board power to set ambient air quality objectives. The Board may promulgate regulations that, among other things, restrict uses of land and establish zoning.

The City Plaming Comissioner is responsible for subdivision control. zoning, capital improvement budgeting, and urban renewal. In some of these areas, the Planing Commission and the Air Pollution Control Board have overlapping responsibilities. However, neither body has introduced any environmental criteria into its planning activities.

RECOMENDATION 30 . Develop environmental criteria for air pollution as measures for providing effective land-use planning and thereby prevent or minimize air pollution and its effects. All. responsibilities delegated to the APC Board should be carried out.

It was quite apparent that little or no coordination exists between AMS and the Plamning Comission, even though both agencies have some similar responsibilities.

> RECOMENDATION 31 Develop formal procedures for cooperation between AMS and the planning Commission as a first step in introducing environmental criteria into land-use planning. AMS should have routine advisory powers and responsibilities on a sign-off basis in the work of the Planning Comission involving potential air pollution.

Planning for the vacant land still left in Philadelphia is an important preventive measure. All such vacant land has the potential of supporting an air pollution source. Preventing such sources is a much easier way of limiting air. pollution than controlling them after they are built.

The Air Pollution Control Board has other significant responsibilities that have been neglected. Long-rarice plaming for air pollution control must anticipate social and technological changes as well as the future grovth potential of Philadelphia and its regional influences. This includes studies of energy utilization, transportation, waste products, and other materials that substantially affect the air in Philadelphia. These factors should also be taken into account in the development of air quality objectives.

A brief review of the overall regional planning concept revealed that there Is no air pollution component on the Delaware Regional Valley Planning Commission. In light of the air quality control region concept, it may be highly desirable for air pollution control agencies to be represented on this Comission.

12. PUBLIC INAORMATION.

The goal of the public information program should be to provide a basis for dialogue between AMS and the broadest possible spectrum of the public. Functions of the program should include a transmission of facts, definition of issues, and dejincation of actions that AMS will take. Public involvement in key issues such as legislation, regulations, progran budgets, and variance hearings is essential. Only a well-informed public will make such involvement beneficial to Mrs.

The existing public information program includes:

1. A daily air pollution index.
2. Bi-monthly publications of progress.
3. Meetings with local groups.
4. Public hearings on regulations.

The existing public information program in Philadelphia can be evaluated by determining the attitude of the general public. Recent public outcries concerning air pollution control in the city indicate that there is a lack of information available to the public. Review of the AMS program verifies that the public information program has not been a dynamic, effective part of program operacions. Fapers have been issued and talks have been given by AMS staff, but this was not truly a public information program designed to effectively inform the public.

The existence of an effective public information program is a necessary part of a comprehensive program operation that qualifies for maintenance support. Over a year ago, Air Management Services issued Operating Memorandum No. 1, which includea the development of a public information program. However, a City policy has required that all public information staff work within the City Representative's office. This arrangement did not satisfy the needs of the AMS program, and, finally in April, 1970, an agreement was assigned to the Health Commissioner for Air Management purposes.

While this agreement has given AMS the needed public information specialist to develop a public information program, it has also caused some confusion. It is not clear whether the public information specialist is only on temporary assignment from the City Represtntative's office or whether the position is permanent within the Health Department. If the public information specialist has only been temporarily assigned to AMS, he could well becone confused by orders from both AMS and the City Representative's office, and divided loyalties could result.
responsibilities, term of assigment (recommended indefinite), duties, and obligations.

At the present time, a formal public education program does not exist. Activities are being undertaken in piece-meal random fashion.

> RECOMENDATION S33. Develop a comprehensive public information program. It is essential that the goals, objectives, strategies, and procedures be planned before the program actually gets underway.
> RECOMENDATION 34 . Make the Assistant Comissioner for AMs more visible to the public and allow him to take a larger role in influencing conmumity opinion through the public information program. Creating and filling the position of Deputy Assistant Commissioner discussed in the Administration Section of this report should give the Assistant Commissioner more time to devote to such activities.

In order for AMS' public information program to be successful, the public information specialist must be knowledgeable in both air pollution control and public relations. While titles are generally not important to positions, in this case it would be helpful to create a special titie so personel without appropriate training in air pollution could be excluded. The title of "Air Pollution Public Information Specialist" should be created for the person employed to do public information work for AMS. This will enable the agency to exclude persons who do not have suitable backgrounds in air pollution control.

The individual presently occupying the public information specialist position has need for general training in the field of air pollution control.

RECOMENDATION 35. Have the public information specialist receive extensive air pollution training. This should inçlude knowledge of local, State, and Federal regulations; air quality criteria; and the state of the art in technology.

RECOMMENDATION 36. Locate and utilize personnel and materials outside AMS that can aid in developing a public information program. A large amount of such help. could be provided by APCO and the State of Pennsylvania.

The public information specialist should be continually aware of AMS policy on all major matters and able to communicate directly with key citizens as well as the mass public.

RECOMBNDATIOR 37 , Involve the public information specialist in the formulation of AMS policy. This will enable him to be knowledgeable in his dealings with the public. Also, it will lead to consideration of public opinion in developing poljey.

The need for a technical editor will continue to grow as the demands for public hearings and implementation plans increase. Commoty participation by the public information specialist is needed now in philadelphia just to maintain liaison with the many public organizations oxpressing interest in the aix pollution problem. Many of the people could provide valuable advice to the program on a volumtary basis if there was an adequate mechanism, such as an advisory council, established for their participation. There is obviously a great number of non-technical people also who would be willing to contribute time and talent to assist AMS: Hovever, to maintain the interest of such volunteers and to assure them that thejr efforts are needed and appreciated, direct their efforts and ensure that their comments are considered by the policy makers within the progran. Such programs are thus needed to ensure that information flows from the public to the program policy makers as well as from the agency to the public.

RECOMMENDATION 38. . Develop lines of communications and programs between AMS and local universities and between the public infor-. mation specialist and voluntary agencies. The need for a fechnical editor for reports and public infomation should be considered.

At present, only 80 percent of the public information specialist's time is spent on this program. Since this is a relatively new program area, and a weak one, it may be advisable to assign an additional full-time person.

The public information program should further be responsible for organizing technical training programs for AMS. Programs to be considered should be for the AldS persomel, legislators, judicial people, boiler operators, and so forth. This will require the information specialist to become aware of training and educational needs throughout Philadelphia by coordination of AMS personnel and researching public opinion. Programs of this nature would assist in furthering the goals and objectives of.AMS.

The first step toward any air pollution control effort must be to identify the air pollution problems that exist, determine the causes and effects, assess the amount of emissions, investigate means of control, and evaluate control efforts. This is fundamentally the mission of the engineering segnent of the program.

The engineering operation is established as a division-level activity as are enforcement and laboratory services. Jhe Engineering Division operates autonomously as described in the portion of this report dealing vith organization. It is organized jnto three sections: emission inventory, permit approval, and industrial improvement. Each of the sections is discussed separately with specific reconmendations addressed to each.

13.1 Emission Inventory

The emission inventory is a basic air pollution control activity. In conjunction with air quality data, it indicates the degree of emission control needed to achieve air quality goals and helps to establish the priority schedule for abatement action. It should, therefore, be a thoroughly plamed, routine, systematic activity.

The first attempt to establish a reasonable estimate of pollutant emissions in Philadelphia was undertaken in 1958. Subsequent inventories were made diring the years 1965 through 1969 by the National Air Pollution Control Administration, the Regional Conference of Elected Officials, and the City of Philadelphia. Basically, five pollutant parameters were considered: oxides of sulfur, oxjdes of nitrogen, organics, carbon monoxide, and particulates. The information required to calculate the emissions was obtained by the following methods: personal contact and surveys, published data, special census data, and questionnaires mailed to industrial and commercial locations in the City.

The latest inventory of industrial emissions is presently being conducted by the City of Philadelphia in conjunction with the State of Pennsylvaria. This project is in the preliminary stages, with only the mailing phase completed. In order that the operation be as informative and credible as possible, the agency should develop and formalize procedures for follow-up, including plant surveys and stack tests, while also creating a system to constantly update emission estimates.

RECOMAENDATION 39. Develop specific procedures to follow up questionnaires and data requests not returned to the agency. This would include personal contact, plant surveys, and stack testing.

RECOMENDATION 40. Develop formalized and effective lines of commaication that allow for input from the other city agencies regarding the nature of data requested and methods of data utilization.

One of the uses of the emission inventory data will be in models to develop control. strategies. This is required as a part of the Nir Quality Control Region implementation plan. The prosent emission inventory forms will not supply all the necessary information. Specific problems are:

1. The basic forms (process, boiler, and incinerator) do not request any indication of associated control equipment.
2. Process, boiler, and incinerator information forms do not include a request for stack information. This stack information is listed on the collector and emission forms, but this form would probably not be completed unless there is control equipment.
3. An estimate wi. 11 have to be made by the agency regarding emission from basic equipment. This information could be specifically requested.

RECOMMENDATION 41. Reassess data needs and develop datagathering forms that will request all needed information regardless of whether there is existing control equipment or not.

Data from an emission inventory should be available for use on a convenient basis. Presently, all emission data are handled manually. The filing system is cumbersome, and updating procedures have not been formalized.

RECOMTNDATION 42. Develop a data storage and retrieval system that will properly assist the staff in emission inventory analysis and reporting. This information system should be coordinated with other AMS systems as discussed in the Data Handling Section of this report.

RECOMENDATION 43 . Familarize the entire staff in the operation and use of the filing system, in order to increase the general availability of this information.

RECOMPNDATION 44 . Develop systems and procedures to keep emission figures constantly up to date. This is discussed further in the Enforcement Section of this report.

13.2 Permit Approval

A permit system provides a key mechanism for managing the control operation because the agency must approve construction and operation of new or modified sources of pollution. In this manner, the agency may prevent potential pollution sources or require more stringent controls before a plant is built rather than face the more difficult and expensive task of trying to control a source after it is operating.

The Air Managenent Code specifjes that "no person shall build, erect, instali. alter, or replace any article, machine, equipment dexice," which may be a somec of air pollution, "until an air management permit has been obtained for such installation or construction."

AMS requires a potential pojfurer to have both a permit to construct new equipment and a license to operate an existing source. The approval of construction permits is an established activity, but the agency has only recently begun to issue operating licenses, Boch permites and licenses are administered by the Compliance and Enforcement Division.

As part of the permit review procedure, the Engineering Division is called upon by Compliance and Inforcement to review and approve the technical details of plans submitted with the application. If Engineering decides the proposed controls are adequate, the permits will be approved. If not, the application will be returned with recommendations for improvement.

RECOMENDATION 45. Develop and publish a permit manual that stipulates the type and amount of information required and processing procedures employed.

RECOMMENDATION 4.6. Standardize the evaluation procedure for rcviewing plans.

Engineering's role in the process of granting operating licenses is much less formal. The Division relies upon field inspections by enforcement personnei to inform it about any new installations or alternations. Building permits are another source of such information. Compliance and Enforcenent may call. upon Engineering when necessary to review any such chances, recommerded jmprovements, and help decide whether or not to grant an operating license. . Tith the recent implementation of the licensing system, the work loadin this area will undoubtedy increase

RECOMENDATION 47. Increase the number of qualified personnel available for plan review.

In addition to serving as a valid concrol activity, the review of various operations increases the knowledge and expertise of the reviewing, engineer.

RECOMENDATION 48. Require that all engineers in the Division gain experience in evaluating plans and specifications. The reviewing engineer, in conjunction with enforcement, should conduct final inspection and make recommendations for approval or denjal.

13.3 Industrial Improvement

The compliance procedures that are developed and implemented by the division are most instrumental in determining the effectivencss of the agency in handing pollution violations. To accomplish this end, the agency has established the Improvement Program Section. Their task is essentially to conduct engineering surveys of industrial operations, define the nature and extent of all air polIution emission, and specify the degrec of improvenent required to meet acceptable standards. Compliance schedules with target dates for the accomplishment of the needed improvements are then developed with the offenders.

To date, surveys of 15 major polluters in the city have been completed. Acceptable compliance programs have been obtained from 4 . The Code establishes timetables and procedures to be followed for the submittal and formalization of improvement programs.

RECOMENDATION . 49. Develop a specific schedule based on an appropriate priority system for the submittal of improvement plans that will include all the major sources in the City on a staged basis.

This section of the Encineering Division is aiso reononcihle for puaparation of special technical studies. These studies are undertaken as necessary. One example is development of control procedures for asbestos in both the construction and demolition of buildings.

14. ENTORCEMETE

The fundamental goal of any air pollution control agency is the abatement of air pollution. Although the entire agency is involved in this activity, AMS has given prime responsibility to the Compliance and Enforcenent Division. The Division is composed of the Compliance and Surveillance Section and the Enforcement Section. Each section is discussed separately in this report and specific recommendations are addressed to each.

14.1 Compliance and Surveillance Section

For field enforcement purposes, the division has sectioned the City along previously established heal.th department boundaries. Each inspector is responsible for his designated area. These inspectors initially spend 3 days at a Rutgers University-sponsored course to learn the basic elements of smoke reading and the Ringelmann concept. There has been no provision for periodic training or recertification of these inspectors. Such recertification would not only keep the inspector informed of the latest concepts and practices, but also would help him maintain expert qualifications in instances of legal action.

RECOMENDATION 50. Require that inspectors receive periodic training in reading visible emissions on at least an annual basis.

Each inspector has at his disposal an automobile with a two-way radio. Communications are handled through the City dispatcher. This system has proved inoperable. The City dispatcher handles all city agencjes with the exception of the police and fire departments. The system of referring complajnts, sometimes of a technical nature, from the main AMS office to the field inspector through the dispatcher is cumbersome and inefficient.

RECOMMENDATION 51. Acquire a communications system for the exclusive use of the AMS.

Air pollution detective and enforcement aids such as cameras, binoculars, and hydrocarbon detection devices are not readily available to each inspector. The agency has only four polaroid camers for inspection use.

RECORENDATAON 52. Purchase additional appropriate simple pollutant-detection equipacnt for all inspectors to use routincly.

All complaints are received at the main AMS office. Questions are answered directly or, if of a more technical nature, refered to a qualified member of the staff. All complaints are recorded inmediately. (Filing aspects are treated in the Data Handling Section of this report). This system, except for the communcation difficulty mentioned above, appears to operate well. In addition, there is some provision for off-hours complaint-handling and enforcement, but this operation does not seem to be formalized.

RECOMARNDATION 53. Make arrangements for inspectors to receive and investigate complaints expediently beyond the normal working day.

14.2 Enforcement Section

Violations recorded in the field are processed by the Enforcement Scetion. Three enforcement actions can result: Municipal Court, Order to Comply, and Injunction Action. These procedures are discussed in the Legal Section of this report.

Inasmuch as the initial step in the enforcement procedure is that of the insenertar, reports of violations should be as extensive as possible. In this regard, cooperation between the engjeering and enforcement divisions should be maintained. A stack-testing team should be available upon request to provide necessary information on source emissions. Also, logging procedures should be streamlined to allow for quick periodic evaluation of the violator's status.

In 1969, 844 violations were cited, and 11,895 investigations made. It has been the agency's goal to eliminate 10 percent of the total pollutant load per year. This goal seems unrealistic. Rather the enforcement process should work on a scheduled source-by-source priority system.

RECOMENDATION 54 . Assign specific objectives and priorities for the control of particular pollutants. Having chosen the desired pollutant levels, the agency's enforcenent procedures should be structured accordingly. The AMS should, therefore, develop a formal enforcement plan to achieve the levels, through a systematic and scheduled control effort.

A major new enforcement tool being developed by the agency is the system of licensing. This operation calls for the annual review of each operating source, and a subsequent renewal or refusal of the license based on the review. In order that this activity be most effective, good operating procedures should be developed.

RECOMANDATION 55. Develop a manual for the administration of the licensing system. (See Appendix E).

RECOHENDTTON, 56. Hake emissjon estimates part of plan review and licensing of existing equipment. This will serve as a means to constantly update the emission inventory.

The agency has indtiated a program ajned at control of "smokers" on Philadelphia highways. This activity is carried on by the police department. As yet, procedures for follow-up and penalities have not been formalized, and actual abatement has been minimal. In order that this effort be effective, follow up procedures should be developed for the police to ensure compliance. In addition, the city is now studying the possibility of equipping all city-omed vehicles with air pollution control devices. This too, should be pursued and actively encouraged by the AMS.

AFS presently has no provisions for dealing with air pollution emergencies. As discussed in the Legal Section of this report, Regulation V, specifying the requirements of air pollution emergency plans, has been drafted. However, no administrative procedures for implementing this regulation have been developed.

RECOMENDATION 57. Develop administrative procedures for implamenting air pollution warning, alert, and emergency procecures. All persons affected by these plans should ho motified in advance
of their responsibilities in emergency situations.

15. TECHNTCAL SERVICES

The technical services area of the AMS program is, on paper, a part of the Laboratory Division. The functions included are air quality monitoring, laboratory operations, source testing, and instrment calibration.
*ABCO uses a slightly different breakdown of the program elements included in technical services. These are air monitoring, special studies, data processing, instrument calibration and maintenance, and laboratory operations. Source testing is classified as a part of engineering operations. This breakdown is used in the projections shown in the Manpower Section of this report.

The Laboratory Division is physically located approximately 10 miles from the central office. The remote location is partly responsible for a breakdown in commanications between the laboratory and the central office.

> RECOMENDATION 58 . To coordinate efforts, develop program goals, and improve communications, set up scheduled staff meetings on a reasonable frequency to include heads of the Laboratory and other divisions and the Assistant Commissioner for AMS. Refer to Section on Communication.

The physical building is 7888 square feet and includes an instrument shop, Chemical laboratory, air montoring roon, and engineering shop. This facijity provides services for the Environmental Health Division of Community Health Services.

It has been difficult to obtain an estimate of manpower involved in technical services area due to conflicting information received fron various sections of the agency and the fact that non-air pollution work is being done by laboratory personnel. Depending on who is contacted, the number of people in the Laboratory Division varies from 12 to 21 , with no breakdown into the previously mentioned functional elements. In any event, the APCO manpower model has shown a need for 30.4 man-years in the technical services area. This model is discussed in more detail in the Manpower Section of this report.

RECOMENDATION 59. Recruit and assign additional manpower to progran functions as shown in the Technical Services portion of Table 8-2. This table is a sumary of estimated future manpower needs for the agency.

15.1 Air Monitoring

The existing air monitoring in Philadelphia is primarily of a static nature, i.e., samples yeild long-term integrated averages giving primarily anmal information. This static network is comprised of 4^{\prime} stations with dustfall buckets and lead candles. These stations are located to provide uniform geographic coverage of the area.

This is supplemented by an internediate station network consisting of either three or four high-volune samplers, depending on whose description of technical services one reads.

There is also a continuous station network of fout stations with continuous samplers for monitoring total oxidant, sulfur dioxide, carbon monoxide, total. hydrocarbons, nitrogen dioxide, and nitrogen oxide. WS also used three, five, or six paper tape samplers, depending again on the source of information.

AMS is proposing no addition to its static or intermediate monitoring networks. However, extensive changes have been planned for the continuous network. Data from the existing four stations will be telemetered to a central processor. This addition of six more continuous stations, also with telemetering, has been approved. The proposed expanded air monitoring network is discussed in more detail in Appendix A.

APCO has developed guidelines for determining the number of various types of stations required as a function of the size of the metropolitan area. The guidelines are included in Appendix B. They recomend that for every continuous station there should be three to five intermittent stations, and for each intermittent station, one to one and a half static stations.

AMS is already comnitted to a network of ten continuous stations, which, according to the guidelines, is high for an area of Philadelphia's size. Hovever, with this nunher alroady fiyed, the zirmmitoring netwok shuilu also have 30 intermittent and 45 static stations to be well balanced.

RECOMENDATTON 60 . Increase the number of intermittent sampling stations consisting of high-volume samplers and 24 -hour gas bubblers to more closely correspond with APCO's. guidelines in accordance with data needs.

Without these additional intermittent stations, AMS will be trying to go directly from an essentially static to a fully automated monitoring network. Lack of a well-developed intermediate network is not the most orderly and logical way to develop an air monitoring network.

RECOMENDATION _61. Limit the telemetered continuous monitoring network to the ten stations for which money has already been committed. The proposed additional six stations should not be considered or added at this time.

The selection of station sites is not easy to describe in a general way. Station locations would be more meaningful if chosen on the basis of past air quality data, isopleth maps from diffusion models, emission sensity, population density, and geographic and meteorological parameters.

Uniformly placed stations are not necessarjly the best way to achicve the most meaningful results. Statistical techniques are availabice that take physical factors into account but still place stations randomly in order to achieve statistically reliable results.

RECOXENDKTON 62 . Re-desfen station locations to cake hum account population and emission patterns. Statistical techniques should be used to locate tho stationo.

15.2 Laboratory

Under the present system, high-volume samplers are collected from thee or four stations 7 days a week and analyzed in the laboratory. The analyses performed are atomic absorption for total weight; trace metals including copper, nickel, manganese, lead, and iron; and sulfate. Sjnce the Air Management Laboratory also provides services for the Environmental Fealch Mjvision of Commonity Health Services, one-half of the high-volume filters are used to make radiological measurements.

This use of one-half of every filter seems to be more than enough to provide information on a background type of contaminant and could be reduced to one-half filter per station once or twice per week. That would leave some portion of the high-volume samplex available for futher air pollution related analysis.

RECOMENDATION 63. Perform additional analyses on some highvolume filters. The more common ones are benzene solubles or combustible carbon conteria, zitantes, ohlorides, polynuclear aecmatic hydrocarbons (carcimogens), and metalis.

A network of 44 dustfall buckets is analyzed each month. In one written report it states there are two analyses performed on the dustfall samples: total weight and the weight percent of free carbon in the sample. In discussing this with the laboratory personnel, it was indicated that four analyses were being done: dissolved solids, total solids, free carbon, and sulfate.

Analysis of gaseous air pollutants is minimal with only measurements of sulfation by the lead candle technique and the gaseous monitoring of the four continuous stations being done. No manual gas sampling with the NASN bubbler or sequential sampler is being done. It was recomended earlier in the Air Monitoring Section that such sampling be initiated.

We are unable at this time to make comment as to the technical suitability of the chemical analysis procedures currently being used by the laboratory. A request was made for these procedures at the time of the on-site evaluation and several times since then by phone. The fact that they have not been forthoming can only mean that standard procedures for laboratory analyses are non-existent or are so disorganized that they have not been able to be submitted to us as yet.

RECOMMENDATSON 64: Write formal laboratory procedures so that any competent chemist could duplicate the analysis. These procedures should reflect the latest work by APCO fin the devilopment of standardized laboratory procedures.

Other laboratory analyses consist of sulfur in fuel analysis and, in conjunction with the Environmental Healeh Services Operations, radiological measurements of air, water, and milk samples, analysis of urine for aminolevulinic acid as being directly related to the lead exposure of the individual, lead in paint samples and pollen slides.

The laboratory appears to have adequate facilities for most air pollution analyses including atomic absorption, infrared, visible, and ultraviolet spectrophotometry and gas chromatography. The gas chromatograph is not being used currently since no one in the laboratory is an experienced operator.

RECOMAEIDATION 65. Recruit a chemist with experience or provide training in the use of a gas chromatography to make use of the existing laboratory equipment.

RECOMMNDATION "66. Implement sampling and analysis procedures to obtain background data on pollutants for which criteria documents are forthcoming. Table 15.1 provides a listing of these pollutants.

15.3 Source Testing

!uritton information indicates that there are five engineers assigned to stacktesting activities. However, interviews with laboratory personei incicaitu ilat only one man is assigned primarily to stack testing and no team bas been designated. Staff must be borrowed from Engineering and Enforcement to run stack tests. No source tests have been run recently due to lack of personnel assigned to this activity.

RECOMENDATION 67. Establish source-testing teams whose prime responsibility is to support information and enforcement needs.

RECOMENDATION 68. Initiate a program of scheduled source tests by industrial categories on a priority basis.

RECOMENDATION 69. Develop written standard procedures for conducting source tests.

RECOMANDATION 70. Purchase enough source-testing equipment to allow duplicate samples to be obtained without intermittent cleaning of equipment.

Although source testing is usually a part of the engineering activities of an air pollution control program, AMS has assigned it to the Laboratory Division. Source tests are, however, generally requested by the Engineering and Enforcement Divisions, as the information obtained is most useful and necessary in this activity.

```
Tentative Order of Publication of Air Quality Criteria Documents
```

YEAR*1969$* 1970$19711972
19731974

POLLUTRANTS
Particulate matter and sulfur oxides
Carbon monoxide, hydrocarbons, and photochemical oxidants

Fluorides, lead, nitrogen oxides, and polynuclear organics

Asbestos, beryllium, chlorine gas, hydrogen cloride, and odors (including toxicologic and corrosion aspects of hydrogen sulfide)

Arsenic, cadmium, copper, manganese, nickel, vanadium and zinc

Rarinm, hornn, chromium, mareury, scicnitum
Pesticides and radioactive substances

```
* Documents are available
```

* Documents are available
**Schedule is firm

```
**Schedule is firm
```

-66-
RECOMMENATION 71. Give consideration to reorganizing the placement of this function and assigning source testing to the Engineering rather than the Laboratory Jivision.

16. MEPEOROLOGY

AMS is begiming to develop a meteorological component for the program. Although metcorologjcal activity is currently limited to part-time consulting (1 day per week), plans are underway to create a full-time metcorologist position and begin real-time modeling of the atmosphere.

Plans call for the meteorological parameters of wind speed, wind direction, and temperature to be measured in the six new remote telemetered air monitoring stations. Such equipment would be added to the four existing stations, and data from all ten stations would be telemetered every 5 minutes to a real time computer. Also, a teletype would be rented for the reception of air pollution forecasts from ESSA.

The data would be used for several purposes: application of APCO's Air Quality Display Model - AQDM, trace back analyses for source location, investigations into simplified modeling procedures, and better determination of diffusion parameters within the City of Philadelphia.

It is difficult to evaluate these generalized program goals in the aboence of specifics. However, APCO meteorologists have offered some comments. One temperature measurement teiemetered should be adequate for the stated purpose. Temperature data is necessary only for the calculation of effective stack height; and this value is not overly sensitive to small variations in temperature. whe U.S. Weather Bureau Station could be used for this purpose. One V. S. City has found that the expenses for tabulating (no analysis) meteorological data from 8 stations telemetered at 10 -minute intervals total $\$ 50,000$. Philadelphia plans presently to telemeter at least twice this amount of data. This would mean some 800 plus pieces of meteorological data alone would be transmitted daily to the computer from each site.

RECOMENDATION 72. Investigate and evaluate the need versus the cost for meteorological data as required by the Air Quality Display Model and hold data collection to a minimun.

The recommendation for a full-time meteorologist is appropriate. However, to enable the meteorologist to spend most of his time on forcasting and the analysis of meteorological data: he should be supplemented by one or two technicians to help handle the massive amounts of data that will be generated.

RECOMMENATION 73. Bring a full-time meteorologist and one or two technicians on board to implement the meteorological aspects of the AMS.

RECOMENDATION 74 . Make some provisions for the Meteorology Section to give meteorological advice on weekends or at night during periods of high pollution potential.

All projected use for meteorological data involve modeling. The area, however, is guite complex and the problem should be approached carefully. The AOBA is time-consming and expensive to mun, and should be used judiciously with respect to the nomber of meteorological conditions and control strategies that might be evaluated. The AQDM is not particularly amenable to trace back analysis as it is source oriented rather than receptor oriented. Neither the omployment of "simplified modeling procedures" or "better determination of diffusion parameters within the city" has been defined. The latter may prove to be quite expensive if the diffusion parameters musi be more exact than those resulling from previous APCO, MOAA and university studies.

RECOMENDATION . 75 . Start the modeling portion of the meteorology program slowly and develop expertise in proven methadologies before attemping more sophisticated, costly, and unproven methods of air quality modeling.

17. DA'PA HANDLXNG

Air Management Services presently has only limited data-handling activity. Air sampling data is recorded manally in notebooks at the laboratory. Brief monthly sumnary reports are propared manually. Because the data are not in machinereadable form, they are not frequently utilized for further analysis. Complaints are processed manually and filed by source. As the work on the enjssion inventory and license and permit systems are just beginning, no information syster presently exist to handle this data.

AMS needs formalized information systems. The TBM 1800 computer can be most effectively used to process the large volumes of data collected by the air monitoring network. However, manual systems may prove effecient in satisfying most other AMS information needs.

RECOMENDATION 76 . Begin detailed planning for information systems to process, store, and utilize all types of data immediately.

RECOMENDATION 77. Assign one person within AMS with the responsibility for planning, coordinating, developing, and implementing all AMS information systems. This should be his only joh, and other staff members shonld he assigned to him as nerescary.

17.1 Computer Capabilities

An IBM 1800 Computer owned by the City Finance Department is available and will be used as a part of the new air monitoring network. However, there are several potential problems with this machine.

1. The computer must be shared with the Philadelphia General Hospital. It is physically located at the hospital and AMS has no remote access.
2. The system can only read data entered on cards or discs. It has no magnetic tape data-storage capability.
3. The computer at present has only 16,000 bits of core memory.
4. Both the hospital and the air monitoring systems operate in real time with data being received and stored continuously. As presently programmed, however, the computer cannot handle the two real-time systems simultaneously.

The following are recomnendations for modifying the computer to make it more responsive to AMS's needs:

RECOMENDATION 78. Double the core memory capacity of the computer. The additional core capacity is necessary to simultaneously accomodate the two data systems. Magnetic-type-handling capability should be added to the computer system.

RECOMENDATION 79. Contract with IBM or another competent computer programing firm to teprogram the computer's operating system so it can simultaneously accept real-time data from both the hospital and the air-monitoring systems. This could be accomplished through the Health Department. Better computer access as indicated should be a major effort of AMS in improving its data-handling system.

The computer system lacks a method for cheap storage of large volunes of data in machine readable form. Nagnetic tape is the easiest way to achieve this capability. In order to have the system changed to accommodate tape, AMS will have to work with the City Finance Department which ows the computer. Contact. with the Finance Department should be made and work begun on this request and its justification as soon as possible. This will ensure that the computer is ready when the monitoring stations are installed.

Computer access is not very good at present. The computer is presently run as a ciosed shop. Thar is, programs are ieft by the users, accumblated and run in batches by the computer operating staff, and returned to the users. A good deal of AMS staff time could be wasted in takjing programs to the hospital and waiting for them to be run or returning later to pick. them up. Even minor errors will keep a program from running, and considerable time can be wasted while these errors are corrected and the process is repeated. There are several possible ways of jmproving computer access:

1. Acquire some type of a remote input device such as a teletype or a remote card-reader printer. Details about suitable equipment and its cost can be obtained from IBM or other hardware suppliers.
2. Establish a carrier service between AMS offices and the computer. AMS professional personnel should not waste time carrying programs back and forth to the computer.
3. Establish good relations with the computer personnel. They may be able to make minor corrections, re-run or expedite programs, and do other small. favors that will reduce time lost by AMS staff.

17.2 Data Utilization

Air Management Services presently collects very few data and has no systems to make use of it. This situation will change drastically when the telometered air sampling, network, emission inventory, and permit and license data all begin to come in the near future.

The most pressing need is to begin work on a system to utilize the telemetered air quality data. The network will telemeter air sampling data every minute to a central computer. Present plans call for the computer to receive these data, calculate hourly averages, check for alert criteria, and store the hourly averages on a disc pack. This procedure will completely fill the available space on the disc pack in about 40 days. Every 30 days the accumulated data would be punched on cards for long-tern storage and purged from the disc.

RECOMENATTMN _ 80 .. Review air quality data needs carefully with the goal of justifying storage of historical daily averages only.

Present plans to store hourly averages resulted from requests from two sources:

1. The APCO SAROAD system.
2. The State of Pemsylvania Division of Air Pollution Control. Data to be sent to APCO for the SAROAD system could be punched out on cards and mailed at short intervals. The Stare's data needs should be evaluated in. detail. It is likely that hourly averages were requested because it was mentioned that such data would be available. Fvery effort should he marn to get the State to agree that daily averages will be sufficient.

RECOMENDATION 81 . Keep historical air quality data in machinereadable form on either disc or magnetic tape. Historical data should not be stored on cards. The amount of data involved would make cards cumbersome, prone to loss or damage, and space consuming.

Some modification to the hardware system will be necessary to implement this recommendation:

1. Disc - If disc is chosen for data storage, a second disc drive unit must be added to the one already existing on the system. A disc data storage pack mounted on the first crive unit would contain the programs and the work area to accumulate totals and do all necessary analysis. Disc packs containing only data would be mounted on the second drive unit. As many disc packs as necessary can be used to store the total volume of data. The cost of a second disc drive is about $\$ 8,000$.
2. Tape - The least expensive way to store large amounts of data is on magnetic tape. The necessary hardware can be added to the existing system for about $\$ 30,000$.

The exact cost and technical changes required for either of these approaches will depend on the exact configuration of the existing computer. An IMM representative should be consulted to obtain the necessary details and help decide which approach would be more economical.

Implementation of this recomendation is particularly important if it appears, aftex careful study, that it will be necessary to store hourly averages. The mass of data required would make card storage unvorkable.

Although some thinking bas been done about data collection and storage, no detailed work has yet been done on any of the programming that will be necessary to retrieve or analyze the air sampling data.

RECOMMENDATION S 82 . Begin detailed planning for the dataanalysis program at once. In planning the data-analysis programs and reports, careful study should be made to determine the needs of data analysis. Often these will differ from what users say they would like. Only a minimum amount of data should be printed.

RECOMAENDATION : 83. Begin work on writing the specifications and actual programs for data analysis. The Nater Department has an IBM 1130 Computer that uses the same programming language as the 1800 . This computer can be used to test programs until the 1800 is ready to begin processing air pollution data.

RECOMMENDATON 84 . Add a computer programmer to the AMS staff. During initial development of the air quality system, he can be assigned to writing some of the data-retrieval and dataanalysis programs. This will leave existing staff with more time to plan and coordinate the entire project. Later he would devote much of his time to writing programs for special data-analysis studies. Availability of data for such studies was one of the reasons for development of this system in the first place.

Very little work has been done on information systems for data other than air quality. Each division has been free to develop whatever systems it feels necessary. Some thought has been given to making these systems compatible so they can be incorporated into a total information system in the future. However, no planning or development has been documented.

RECOMMENDATION 85. Begin planning now for development of information systems for emission inventory and permit and license data. This is necessary to facilitate storage and use of the data when it starts to be received in the near future.

The maintenance grant application requires the agency to show actual reduction in missions achieved cach year. To satisfy this requirement, it will be necessary to armually calculate a complete emission inventory.
-73-
RECOMTNDATION 86 . Design a storage and retrieval system for emission jnventory data so that a complete emission inventory for the City can be calculated and periodically updated.

The system for handing complaint data is efficient. Copies of all complaints and the resulting action are filed by source. Monthly reports breaking down the nature of the complaints are their resolution are produced from this data.

RECOMMENDATION 87 Develop a filing system to coordinate data from:

1. Complaints
2. Emission inventory
3. Enforcement actions
4. Permits and license

This will make most effective use of all data collected by the agency. Planning for emission inventory and permit and license information systems recommended above should be directed toward this goal.

APPENDIX A

Proposed Expanded Aerometric honitoring Network

The attached map illustrates the existing and proposed locations of the Air Vonagement Services Expanded Acrometric Monitoring Network. Existing Contimuous Air Monitoring Stations are represented as triangles and lettered A BCD, ropresenting the CAPP Station, Air Nanagement Services Laboratory, Temple University, and Hobile Lab, respectively.

Circle conficurations represent planned Continuous hir Honitoring Stations and are numbered 1 through 22 , with the exception of one location numbered "D" representing a scherniod transfer location for the fohile Tah.

Stations 1 throufh 6 represent the initial six locations to be installed in accordance with the dity porimeter configu. ration already decided unon.

Stations 7 through 10 were selected as the remaining four fostoresirable locations for installation in fiscai 1970. Finallys socations 11 and 12 are show to complete the continum ous samplets netwhk.
urayteqias ond he map represent 14 static sampling locationstry setpat qust and sulfate index measurements only. These metshremotrifuilly be made at each location throuchout the entrestamping ate frort, thus at 30 stations.

Expansion Schedule Continuous fir Monitoring Locations City of Phitadelphia
A. CAFP Station - 20th.\& Race
B. Air Management Services Lab - Castor \& Lyconing

Existing
C. Temple University - Broad \& Allegheny
D. Nobile Lab- loth \& Pattison --. future location Food Distribution Center, Delaware \& Snyder

1. Delaware Ave. © Spring Garden St. - City incinerator
2. Roosevelt Park - opposite Naval Base
3. Goorge Wolf School - Elst \& Bruncwick

Fiscal 1969 4. Add B. Anderson School - 60 th \& Cobbs Creek Pky.
5. Vicinity 54 th \& City Line
6. Germantown Ave. \& Gravers Lane (Pastorius Park)

Fiscal 1970
\% 'roosevelt Blvd. - near Pennypack Circle (Baptist Home)
8. Richmond \& Allegheny
9. Vicinity Robin Hood Dell - Stramberry llansion .. 33 rad \& Cumberland
10. Vicinity Wissahickon \& Walnut Lane

Fiscal 1973. 11. Solis-Cohen School - Bustleton \& Tyson: 12. Bartram Park - near 56th \& Eastwick

In order to get an indication of the requirements in terms of station numbers for a State, Regional, or Municipal Network, we propose the following scheme which is based on the experience of NAPCA and would satisfy the objectives for an average urban area:

Urban Category	Population (1000's)	Number Type I	Stations Type IIT
A	25-50	1	-
B	50-100	$2-4$	-
C	100-500	5-10	1
D	500-1000	11-17	I-3
E	1000-2000	18-25	3-5
F	2000-3000	26-30	4-6
	Urban areas larger than 3 million would necessarily have speciai guicieines		

At the present state-of-the-art there are several common samplers available for use in establishing one or more of the stations listed above. How to establish a good mixture of the various types of samplers is again based sonewhat on experience and the area being monjored.

Table I: gives a break-out by urban category and station type. This would apply to an average urban area.

TABLE I

Urban	TYPE I				TYPE ITY
		Gas Bubbler	Continuous. SO_{2} (or other)	Short Term Tape Sampler	Continuous Monitors
Category	$\mathrm{Hi}-\mathrm{Vol}$		(or other)	Sampler:	Monitors

A	1	1	0	0	0
B	3	2	1	1	0
C	8	4	1	1	0
D	.15	8	3	3	1
E	22	12	5	5	3
F	28	16	5	4	4

Type I - Stations which measure area-wide pollutants such as particulates and SO_{2}. Sample collectors for this type station would include such equipment as Hi-Vol samplers, gas bubbler, a continuous pollutant monitor (e.g., SO_{2}) and a short term continuous particulate monitor (e.g., short term paper sampler).

Type II - These stations would measure specific secondary pollutants that might be a major pollutant for a given area (e.g. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~F}, \mathrm{HCl}, \mathrm{Cl}, \mathrm{H}, \mathrm{metals}$, etc.) Sampling equipment for these pollutants would be selected for the specific problem and could be an instrument depending on the state-of-the-art.

Iype III - These stations would measure primary "automotive pollutants" such as $C 0, \mathrm{NO}_{\mathrm{x}}$, Hydrocarbons, etc. This sampling equipment would probibly consist of continuous monitoring type of equipmont.

ATATGURLIMY SURVEILLANCE:Z

INTRODUCTION.

A Recessary poxtioncofcthe Implementation Plan is to deatongand:establishsa monitoring progammin order to detemineramientaaisiquality within the region. Overm alblair ofcemissionsinastneliziasactual air quality measurements. Thtsioutjine isiconcerned with the design and operation of anamisfquatitymonitoming network winch is necessary to denonstrate that amberentair quality is progressing toward comfoxming tomorccomtiniing to meet ambient air quality stmmaris:s. In somerof cthe Air Quality Control Regions a variety of monitoring nor sampling networks of varying degneeseof sophistication have been in existence for a number ofoyears: devideespsuch assdustfall buckets and sulfation candles, to systems composed of:continuous air monitoring stations with alatabëng:continually telemetered to a central receiving point.... Simizarly, the degree of coverage has varied from:networksshaving a few stations, if any, to well designed multiple-station networks.

Asia result of the :requirements of the clean Air Aet as amended and the subsequent regional control of pollution, it will be necessary to rethink and modify as needed the
established objectives, as well as monitoring networks design. With the increasing availability and use of reliable diffusion models, the objectives of aix guality monitoring metworks, theix design ano operation can and must be altered to be responsive to this new approach and meet the demands placea upon us by the clean fir Act as amended. The availability of new and improved instruments, methodology, and data handjing procedures now permits a more accurate. definition of anzient aix guality than ever before. The following are guidelines with raspect to the objectives of monitoring, the design of monitoring networks, types of instruments, sampling frequency and data handijng procecures. While these guidelines are currently ained at monitoring for So, and total suspended particulates, the same principles and practices apply to the detemmination of ambient air quality for other pollutants.

-OBJECTIVES OF MONIZORING

An aix monitoring network for an Air Quality control Region nust be designed and operated so that it is responsive to the following 4 objectives:

Objective 1. The network must be capable of measuring and documenting the reaion's oroaress toward meeting the adovted ambient air ouality stendards.

It is necessary that the existing air quality within an entire kegion be known and that it can be compared to the adopted air quality standards. Because of the size of the regions and the extreme geographical variability of air pollution levels, it is not economi-
cally Eeasible to design a sufficiently large network to adequately characterize regiomal air quality levels. The practical approach is to provide a limited network supplemented by diffusion modeling for extrapolating the data so that it is possible to estimate or predict existing concentrations of a pollutant throughout a region. If the netwonkis properly designed and operated, this information will permit year-to-year comparisons on trencis and in addition provide feedback on adequacy of adopted control strategy. It is important to be able to depict the changes in air guality as a result of changes in emissions from different source types:

Qbjective 2. To artermine the anbient air quality in nonurben areas of the rection.

Most, tif not all, rim Quality control Regions contain -areas that are not yet developed and where the pollution is minimal. It is an objective of the monitoring program that the air quality in these areas also be known. The measurement of air quality in nonurban areas which typically are in the periphery can provide information on the extent to which sources outside the region affect its air quality. In other words, this gives us information as to ambient air quality upwind as vell as downind from an urban area.

Objective 3. To improve the reliability of diffusjon models. As demonstrated in the preparation of implementation plans as well as the monitoring objectives, diffusion
modeling can be a very important tool in the proper management of regional air resources. Kodeling can when properly supported, adequately characterize eristing overall regional air quality - More important perhaps is the use of modeling in predicting future levels of pollutants on both short-term and long-term bases, whether it be in industrial locations, residential areas, Center City, or nonurban aseas. The increased dependence upon modeling requires continuing availabiliicy of ambient ain quality data for validation - purposes.

Objective 4. To provide air quality data during air pollution episodes.

It is necessary toprovide ain quality data rapidy Guring air pollution episodes. The primary requirement is that the data be available as rapidly as possible to permit taking action under the plan. If the episode plan involves forecasting, concurrent meteorological data will also be needed. The U. S. Weather Bureau (ESSr) can assist with necessary data for the description of local meteorology.

CRIMERIA FOR LOCATING NONJTORING STATIONS

The placement or location of sampling stations within this dimited network must be such that ensuing data can be gainfully employed to meet the four objectives of monitoring. With this in mind, the following criteria are recommended.

Criteria l. Nonitoring stations must be pollution oriented. It is most important that areas most heavily polluted be identified and monitored. It is in these areas that progress toward meeting ambient ain quality standards is most cxitical..
criteria 2. Nonitoring stations must be population oriented. A portion of the network must be located according to the population distribution. This is particularly important during times of air pollution alerts and épisodes. Such data' is also Erequently of administrative use in demonstrating concern for the velfare or emotional well-being of the population.

Criteria 3. Samblina stutioms nust be located to provide area-wide revresentation of ambient air guality.

Data must be representative of the entire Air Quality Control Region. Area-wide data is needed for validation.
of the model as well as to show conformity to the ambient air quality standards. This includes both developed and undeveloped areas within the region. In the nonurban areas increased consideration should -.be given to those areas where future land development is anticipated.

Critcria 4. Monitoring stations must be source catecory and/or source oriented.

Whe primary purpose of these stations is to provide feedbach relative to the effectiveness of the adopted control strategies. For example, a control regulation limiting the emisstons from donestic use of heavy fucls
would require that stations be located where the resulting change best can be appraised.

The air quality monitoring network should then be composed of stations reflecting one or more of the above criteria. It should contain stations that axe sjtuated primaxily to monitor the highest levels in the region, to measure population exposure, to measure the pollution generated by specific classes of sources and to record the nonurban levels of pollution, Also, in oxder to allow comparjsons of present and gast air quality data and to vermit inter-regional comparisons, "center city" station should he loceted adjacent to the iTASM station. In many cases a given station location will be capable in meeting inore than one of the listed criteria, i.e. a station located in a densely populated area besides measuxing population exposure will also monicor the effectiveness of controls on emissions from domestic space heating if such is part of the overall control strategy.

GUIDELINES FOR DISTRIBUTIOL OE KONITORING STATIONS

In most Air Quality Control Regions jt will.take from 15 to 25 stations to furnish an adequate amount of air quality data. In unusual circumstances additional stations may be needed to fulfill the above criteria. Based upon our experiencesin the past, we recommend the following guidelines for the distribution of air quality stations within the region

1. Heavily polluted or "dirty" areas - in most cases 3 to 5 stations wijl suffice
2. Nomurban stations - 2 to 4, depending upon the sjze of the hinterlands
3. Population oriented stations -. 3 to 7
4. Source oriented stations -- 3 to 5
5. Comparison oriented (Center City) stations - 1
6. Remaining, or other necessary stations should be placed where concentration gradient or gradation L's greatest as predicted by the diffusion model.

The development of network designs should be based on all available air quality and emissions information. Most notably this will include: (I) past air quality data (2) ieopleth maps from diffusion models (3) emission density maps (4) population distribution maps (5) jand development maps and (6) topographical and meteorological information.
montitoring nelw

The specifics of monitoring networks are briefly outlined. in the next 6 sections. A very important part of network design is the selection of averaging times, sampling frequencies, specific samplex location, as well as data handing.

1. Nueraging Times

The types of samples, whether continuous or intermittent, depend upon the primary use of the data. To show compliance with, or progress toward meeting the standards, the sampling equipment must be capable of producing data consistent with the averaging times specified by the • ambient aix quality standards. For measuring the exposure of population, as well as for energency episodes, continuous monitoring or data of relatively short
averaging times are tequired. In contrast fox. instance sampling at the nonurban stations can be of a much longer duration.

More specifically, for particulate matter, the basic sampling period is 24 hours, whereas for SO_{2}, it can range from continuous instruments up to 24 -hour integrated samples. Similarly, ambient standards for particulate matter will be in terms of 24-hour values (averages and maximums); the ambient standards for SO_{2} may be specified in terms of from 5 -minute values to yearly averages.
2. Sensors and Methods

The preferred methods of sampling and analysis axe those most comonly in use and for which a large body of data is available (see Criteria Documents). When standard methods become available in the near future, they should be used. The recommended sampling method for suspended particulates is the H i-vol sampler which collects total suspended particulates on an $8^{\prime \prime} \times 10^{\prime \prime}$ glass fiber filter at the sampling rate of 50 to 55 cfm . For sulfus dioxide, the NAPCA modification of the west-Gaeke method, the flame photometric metiod, and the gas chromatographic method are all adequate, because they are relatively specific and have been shown to be comparable for. continuous monitoring. For 24-hour integrated samplers the modified nest-Gaeke procedure is preferred.

3. Sampline Frecruency

Twenty-four hour integrated samples should be collected at a frequency of at least twice weckly in order to be
able to adequately predict the maximum concentrations. Days of the weck should be randomiy selected -so that: over a period of one year each day would be equally represented.

4. Sampley locations

In the selection of sampling sites consideration should be given to source locations in the immediate vicinity. and other parameters that may unduly influence the results. Sampling instruments or ports should be located from 20' to 20' above the street and at'least 10^{\prime} away from the nearest structure. This will result in more accurate measurements by eliminating vaxious interferences.

5. Regional distribution uf types of samolers

To meet the pxevious listed monitoring objectives,
the following guidelines for sampler locations are recomnended:
a. In the heavily polluted spots, a Hi-vol samplex, \cdots continuous SO_{2} instrument, and an AISI sampler should be located. (he hISI data is useful in ajr pollution episode situations)
b. Nonurban stations should contain as a minimum a Hi-Vol sampler. In many cases, where it is anticipated that land use will change or it is recognized that a problem of SO_{2} may exist, 24-hour bubbiexs shonka be utilized.
c. Inasmuch as possible the population oriented stations should contain a fi-vol and a sampler capable of provjding short-term averages for SO $_{2}$. In populated areas adjacent to major industrial zones, a continuous SO_{2} sampler and an AISI tape sampler may be needed.
a. For source category oriented stations a Hi-Vol and mboler is usmally sufficient. Where individual Darge zouxces prenominate, a contimous SO_{2} monitor may be mecessary.
e. The comparison orientea, ox center City, station should contain as a minimim a Hi-Vol and a gas bubbler. f. For other stations, j.e. those to show gradation, a. Hi-Nol and mabblex is mswally aciequate.

G. Other typers of monitoring

In adation to the stationary monitoring sites, itt frequently may be feasible to operate mobile monitorIng stations. Mobile stations with continuous instrum ments can he used guite ardantageously to map undan zancos oves a sibi-i-ime period. We also envision that fir the future large fix Qualify control Regions may
 recommending this type of monitoring, we certainly want
 useful.
mata processing and presentarmon
\$ most important part of the entire monitoring effort is the validation, handling, and analysis of data. It is extremely important that all data be analyzed and be made availutile quictily and in a standardized format. This means that values are to be expressed in uniform units (metric system) and in useful and systematic averaging periods.

To this end, NAPCA has developed an aerometric data storage ana matrieval systom (SAROBD). This system can casily be
instituted and modified to fit the partioular regionatreeds. In adaition, for the regions that already have thein om data systems, it is relatively simple to convert their format into the SARORD format for entrance into the National nexometric Data Bank.

The data system and presentation should be flexible and xesponsjve to meet a number of needs ranging frorn evaluation of data with respect to the standards to providing inputs for diffusion modeling. The system should be capable of producing data in terms of 5-minute, 15 -minute, 2 -hour, 8 -hour, PA-hour, monthly, and yearly averages. In addition, the ability to estract the maximum concentration and develop geonetric means for each of these averaging times should be incluaed. The systim shound aisu indicate the availability of valid data.
2. WmTORN DESTC日
a. Desinjtion of a station

In order to detemine:how well a network serves the objectives as:ontinhad, it is necessary to define a pollutantw sampling:station in torms of the criteria standaras;poliutamtsmeasured and types of collectors used.
(1) The firsteriteria of a station is that it produce:adequatessmples so that data can be analyzedra.
(2) Si The:secondacriteria for a station is that it samplemajor poltutants for which standards are available orefocuse in producins witten standards. Werhaverdividedothese into three types and are definchas folloums:

 problemsexistith. Sample collectors: for this type station=wouldizncilace such eguipaent as Mi-vol. sampleis,sgas bubbzer, a continuous pollutant monitor (e.g. SO_{2}) and a short term continuous particulate monitors (e.g.eshoit: texm tape sampler).

Type II - These stations would measure specific secondaryopollatants that mjght be a major pollutant for:a given arearie.g. H2S, $\mathrm{F}^{-}, \mathrm{HCl}, \mathrm{Cl}$, metals, etc.). Sampling equipment for these pollutants would be selected for the specific problea and could be any instrumentidepencling on the state-of-the-art.

TyEcruT: mhese stations would hoasure primary. "avtomotire poplutants" such as co, no x, Hycrocasbons, etc. .ihis sampling ocujpmen: vould probobly consist
of continuous monitoring type of equipment.
b. Sige of notwork

The number of stations recuired and the selection of the site is not an easy plan to descxibe in a genexal way, The plaming would have to take into consideration many criteria such as, 1.) the population of the area, 2.) the emission sources, and 3.) the meteorological parameters and terrain, etc.

In oxder to get a figure for what would be required in terms of seation numbers for a state, Regional, or Kunicipal Newwork, we propose the following scheme which is based on the experience of NAPCA and would satisfy the objectives for an average urban area (See rigure 1).

c. Type of Network

At the prosent state-of-the-ast thexe are several common samplexs avajlable for use in cstablishing one or more of the stations listed above: How to ectablish a good mixture of the vaxious types of samplores is again based somowhat on expericnec and the arca besiog monitorod.

Table I gives a break-out by urban category and station type. This would apply to an average urban area,

Urban Category	TYPE I				TYPE III
	Hi-vol	Gas Bubbler	Continuous SO_{2}. (or other)	Short term tape Sampler	Continuous Monjitors
A	1	1	0	0	0
B	3	2	1	1	0
c	8	4	1	1	0
D	15	8	3	3	1
E	22	12	5	5	3
F	28	16	5	5	4

d. Frequency of Sampling

Sampling frequency will depend on the particular objective and applies only to the intermittent stations.
(1) To measure air quality, it is necessary to obtain a sufficient number of samples over a representative number of periods in order to draw valid statistical conclusions. A minimum number would be 103 samples per year with the same number of named days sampled per year. Increasing the frequency by the same rule would obtain a better statistical mean. (2) To measure air quality for standards comparison would require a greater frequency of measurements and should be confined to selected small areas, (people oriented). (3) To measure air quality for abatement action could require daily measurements at or around selected sources. This would be based on the judgment and experjence of the air pollution agencies.

a. If"a networte is to produce valid samples, it requizes good equipment, maintenance, and frequent station:inspection. This is partioularly true for Harge-newors (gentex than 5 station).... Econondcally a central maintenance:shop with appopriate instrument spaceseand:spare partsushould be a paytuofranyularge air. poftution agency:. Tnstruments require:frequent:-calibration for air flow and freguent inspection for any problems; leaks; etc. that might invalidate the. sample. Itris:frequently fupossible: co duplicate:a particular: sample: therefore:gopdaperfoming equipment"is inecessary. personnel opexating:the intexnittentwamplers must-have enough Examing to now when equipmentis not functioning iproperly.

 instriments; speciajijotrained operatorsmust be avail-: ablelataleastsa partrofcevery day. .Ifinothing aclsés. a visit should be made daily to check on the overall performance: of each :̈ndividual inserumenta\%.Frequent: calibration and zeio chedes must be made: And most important is the type of maintenance service each $:$
instrument gets. Persomel servicing these instruments must be electronically oisicnted and should preferably have some fnowledge of chemistry, since quite a few of thépollutants being measured today olependaon chemical reactors. If they do not have training in chemistry, itjisinecessery that they unciorstand the chomistry: physics and engjnoering principles involved in each measuring instrument.
c. persomnel operating a network should include sevoral different entities and qualifications as follows:
(1) retwork Supervisor - University trained
in a scientific profession. Should have experience in the Nir pollution fieja and be able to supervise and train persomnel.
(2) Entermiticent field opexators - Shouldbe High School traincd with on-the-job training in instrument opexation and maintenance. Hust be able to operate independently and in cooporation with urban community dwellers.
(3) Continuous station operators - Should have Universicy training in a scientific field and with some background in chemistry. He should be job Erained in instrwent operation mion would inciuue changing indiviaud componants within a partioular inctrument and in the calibration of same.
(4) Sexvjce persomel for continuous monitoring equipment - They should be University trained in elecironics on be graduates of accredited electronic trade schools. They should have thorough on-the. job trajning in maintenance and trouble-shooting of all instruments and equipment used in the network.
(5) Service pexsonnel, Intermittont operating equipment - Should have some shop expexience, particularly in elcctrical and machine tools. Minimum Migh School trained and on-the-job training in servicing vaxious network equipment.
(6) Support personnel - Hould include shipping, receivjng, supply and administrative clerks. prefer. ably Ifigh school trained.
4. minnosarosy surrong
a. Roguirenonts. nccomplishing the ojective of Jowering the pollutant load on the whan aix mass must be donc through vasious abatenent procedures. The gathering of facts to suport these procociures has to come from some type of analytical supoort. Thus, a laboratory must be a part of any sample soflecting netwosk to provide the physical and chemjcal data for docunentation of the various pollutant concentrations. Although the sophistication of this type of support may vary in different recions of the country, there must be provided the basis equipment and supplies to complete the premise for the reason for the sampling retwork.

For networks with less then at stationt, hite jabonetory may consist of some work space, a semi-micisoblance, a small spectrophotomeder and necessany chomicais and hardware for wei chemical raicroanalysis. fith provision for a special instrument for a migue pollutant source, if necessary. Large prograns within Sitates should have their onn central laboratory for making large numbers of routine determinations possible. This reduces the cost per determination to a considerable degree by making it feasible to opesate automated ajstems. nlso the central facility should have some capability for doing limited research on applice and localized problems. Some specialized instrumentation should be provided when justificd on the basis of the ciegree of the severity of the entity being measured, its effect on the population and how prevalent the problem might becomo over the State or Recion. Since laboratorices are support groups, they should be a staff function.
b. persomel staffing. Gall labonatoraes may be oneman operations. If so, then a university framed pesson, preferably in chomistxy, should be that one person. Yarge laboratory facilitios should be supervised by a university graduate in chemistry, preferably with. Graduate training. He should be experienced not only in wet chenical techniques, but have extensive knowledge and expexience in instrumentation. A aegree demist would be wecommended for cach 10 technicjans doing routine work:

APPENDIX C

BASIC FUNC'IONAL DESCRIPTIONS AND DEFINITIONS FOR MANPONER ESTMATES

1. Basic Definitions

For any specific air quality region a-mumber of possibilities exist relative to functional activities performed and combinations of state find local agencies existing or planned.

In addition, the region may be inter-state, compounding the variety of state and local combinations. As a feneral rule, primary estimates of manpower are made by considering one local agency for each intra-state portion of an AQC Region: Appropriate distribution between state and local agencies is made as a supplement to that estimate. The estimating procedure (Model III) considers a comprehensive control program defined to include the following functions:
A. Management Services
.B. Techaical Services
C. Enforcement:Services
D. Engineering Services.

2. Management Services

. A. Policy, public relations, inter-governvental relations, and development of control strategies and plans: These-functions include the variety of special activities required of an agency director and his immediate staff in order to conduct a meaningful and dynamic control program. As an agency increases in size, specialists, such as system analysts, public relations experts, and technical writers, are required. 1 For small agencies the work is considered a part of the work of major supervisors.
B. Administrative and olerical support: This function includes budgeting, record keeping, filing, typing, and related owrk, as nomally requixed to operate an agency. All clericl staff of the agencyare included in this category for case of tebulation.
C. Legal counsel: In smaller agencies, this function is handled by lawyers not directly included on the agency payroll, although portions of the counsels's salary may be carried on budget statements. In larger agencies, full-time counsels may be assigned to, or employed by, the agency. The man-year commitment is so small, however, that man-year estinates are not made in the model.
D. Staff training and evelopment: This function includes the Rctivities of training officers and supervisors in providing on-the-job or fonal group traininge Time required for this functinn incroases with high rates of personnel turnover, cumbersome administrative practices, improper job-entry requirements, and other similar factors. Civil service rules and regulations can create unnecessary training problems andor limit the methods used to provide proper training.

3. Technical Services

A. Laboratory operations: This function includes all laboratory support activities necessary to the conduct of source sampling, ambient air monitoring, and special studies. In most larger agencies, it is a part of direct operations. In some smaller agencies, the function is conducted by a central laboratory in the local health department or by a state agency.
B. Operation of monitoring network: This function relates to the $!$ routine servicing and operation of air sampling and metcorological instruments deployed in the field for continuous surveillance of air
quality and diffusjon characteristics. The data generated is used as input to diffusion models forprediction of future air quality and the development of control regulations; to detemine the effectiveness of agency operation in reducing and/or preventing air pollution; to forecast episode conditions; and for public information and education purposes.
C. Data processing: This function includes data reduction, processing, and statistical treatment for air sampling, meteorology, permit processing, emission calculations, and developnent of inspection schedules. If automatic data processing equipment is used, the necessary manpower will generally be concentrated in one organizational unit. Far estimating purposes, it is considered to be part of technical services.
D. Special studies: This function includes a variety of special studies conducted for purposes of locating sampling stations, determining contribution of specific sources to ambient air pollution levels, and determining need for new regulations. As such, it is an ongoing activity of an agency, the extent of which is determined by administrative decision and general capabilities of the technical services staff.
E. Instrument calibration and maintenance: This function Includes those duties that require specialized education, training, or skills to ensure the proper operation of sampling, analytical, and metcorological instruments operated by the agency.
4. Enforcement Services
A. Scheduled inspections for permit renewal: This function relates to the activities required of an air pollution inspector to determinc whether all sources of pollution, operating under a permit are in
.compliance with the terms of that permit. . The function includes travel. time, inspection, and report preparation. For this function, an ammal "inspetion is considered aprogram standard. Tuspectors responsible for specific sectors as well as specialized industrial inspectors would be assigned to this function.
B. Complaint handing and field patrol: This function includes the operation of a contimous field patrol to enforce regulations on open burning, visible emissions, odors, etc. Patrol cars and radio communication is assumed; the patrol officers are assumed to be available for immediate response to complaints.
C. Enforcement of episode prevention procedures: During periods Non aix pailutiva episudes are vecurring or may occur, all agency per4 sonnel would be called upon to activate and enforce any procedures that have been established for dealing with such situations. Engineering personnei would concentrate on reducing industrial emissions; field sampling personnel would increase their data-gathering operations; and patrol officers and inspectors would be in the field to insure that emission reduction preocedures were being followed. Thus, essentially all normal activities are intensified or prempted by the emergency. Man-years for this function are not considered in the model.

5. Engincering Services:

A. Source identification and registration: The purpose of this function is to record poltution-produceing operations. A variety of mechanisms and degrees of coverage are practiced at present. These fall into three categozies: (1) Registration of combustion equipment, often by an agency such as a building deparement, and general inventory of industrial establishments with air pollution potential: (2) formal registration of sources with the air pollution control agency, with or without information relative to pollutant emission rates; and (3) primary registration by a permit system, with follow-up by inspectors and patrol officers as part of theix routine duties. The last approach is used in the model. For new agencies supplemental man-power should be assigned this function for a period:of $2-3$ years.
B. Calculation of emission estimates: This function relates to the work done in estimating emission rates from various sources and source categories to provide information on compliance with agencies rules and regulations, program effectiveness, potential future problems within an agency's area of jurisaiccion, location of sampling stations, and need for new regulations. It is an engineering job requiring an initially high expenditure of manpower. For new equipment, the job is associated with the permit system. Estimates provided by the model are related to an on-going activity; they should be increased for the initial years of a new agency.
C. Permit System: This function covers all the work involved in reviewing plans for potential new sources of air pollution; estimating Cnissions by calculations; consultation with builder, owner and/or other interested parties to effect changes, where necessary; making inspections . to insure that what is done conforms to the plans; and appearing before
hearing hoards to substantiate findings, It is assuned that permits are issued to prevent poljution in a comprehensive manner; and that the system includes an authority to construct and a permit to operate.
D. Development of control regulations, preparation of technical reports on control and review of industrial control plan for episodes: Assignments in these areas are generally project-oriented or considered part-time responsibilities of the engineering staff.
E. Source Testing: This function relates to the determination of point source compliance with the agencies rules and regulations as well as confirmation of calculation of emission estimates.
6. Manpover Estimates:

Nan years for each function are estimated by multiplying predictor and manpower factors for each function, as indicated below.

1. Operation of Monitoring Network.
2. Schedule Inspection-fuel use

Original input required (see separate sheet)
3. Schedule Inspection-industry
4. Complaints and field patrol
5. Permit system'
6. Policy, P/R Strategies, etc.

MY $1,2,3,4,5$
0.22
7. Staff training

MY $1,2,3,4,5$
0.12
8. Special field studies

MY 1, 2, 3,4,5
0.06
9. Emission estimates

MY 1, 2, 3,4,5
0.05
10. Eng. Repts; Tech. Aspects of new legislation, etc.

MX 1, 2, 3, 4,5
0.06
11. Admin. and clerical support

MY $1,2,3,4,5$.
See separate sheet . $\$$
MY $1,2,3,4,5$
0.09
12. Data processing

UY 1,
0.10
13.. Source Testing

MY 2,3,5
0.35
14. Lab. operations

MY $1,8,13$
15. Instr. calibration and maintenance

MY 1,8
0.25

1. Operation of Monitoring Network.
A. If monitoring network is known (actual or estimated) then estimate man-years directly.
B. If monitoring network is not known, but proposed number of stations is available the following factors can be applied.
(1) 0.5 MY per CAMP station.
(2) 0.1 MY per manual sensor in operation, neglecting static devices (dustfall, Pb candles, etc.).
C. For unknown situations use:

$$
\left(\frac{\text { Arca }}{1,003}\right)^{1 / 3} \frac{\text { (Number of manufacturing establishments) }}{1,000} \times 0.8
$$

2. Schedules Inspections - Fuel use.
A. Basic predictor is number of bojlers (residual oil and coal fired) and incinerators (known or estimated). If this is known, then Man-Years $=$ $0.5 \times \frac{\text { Number of boilers and incinerators }}{1,000}$
3. Scheduled Inspections - Industry.
A. Obtain total number manufacturing establsihments from 1963 Census of Manufactures or other reference:
(1) Manpower Factor $=2.0 \mathrm{MY} / 1,000$ establishments.
B. If number of boilers cannot be estimated for 2 , above, then use:
$\mathrm{MF}=2.8 \mathrm{MY} / 1,000$ establishments
for total My to inspect boilers, refuse, and industry.
C. All of above assume annual inspection; modify as needed for other schedula.
4. Complaint handing and Ficld Patrol.

The predictor used Hodel IIT is Total population. Staff size is increased for areas requiring extensive speace henting:
(1) Less than 3,000 degree days - use 0.3 MY/ 100,009 population.
(2) From 3091 to 4991 degree days - use $0.7 \mathrm{NY} / 100,000$
(3) Over 5,000 degree days - use 1.0 MY/ 300,000 population.
5. Permit System
A. Predictor chosen relates to "Capital expenditures for new plants", 1963 Census of Manuracturers.
B. Estimated Man-Years provides sufficient manpower to maintain an intensive system for variety of regulations and comprehensive pollution prevention.,
C. For agencies in growth, a time schedule is needed foe acquisition of staff.
D. Manpower factor $=9.7 \mathrm{MY} / \leqslant 100,003,000$

Capital Exp.

G thiru 10

A. Functions in this group are considered discretionary; that is Agency Director can increase or decrease effort based on his preference and/or judgement.
B. Manpower factors represent general allocations.
C. The predictor is the sum of the man-years for functions 1 thru 5 . This is basically the same as assuming some percent of total agency man-years.
11. Administration and Clerical Support.
A. The predictor is sum of man-ycars in functions 1 thru 5. The estimated man-years include portions of supervisors time.
B. For agenctes dojng the bulk of their own budgeting, bookeeping, and other administrative chores, use man-power factor of 0.59 m $/ \mathrm{my}$.
C. For agencies that receive administrative support from other segments of azparent organization use man-power factor of $0.4 \mathrm{MY} / \mathrm{MY}$.

INPUT CHARACTERIS'CJCS USED FOR THE CETY OF PHILADELPHIA

1. Population -
2. Area -
3. Manufacturing establishments -
4. Capital Expenditures -

2,040,000 (1960 data)
127 sq. miles
4,618
$\$ 1.22 \times 100,000,000$
PREDICTORS AND MANPONER FACTORS

APPENDTX D
 - ADMTNTSERATIVE STAFF SUPYORI

```
- Acministrative
Functions - procurement, personnel matters, reporting, contracting, annual
budgeting.
Personniel - 5.0
Mroject Management
Functions - new projects, scheduling, other projects, surveillance.
Personne1 - 4.0
Plamming - Short Range and Long Range
Functions - goal accomplishment, ongoing surveillance, establishing long
range goals 5-8 yrs., cost-effectiveness studies, priority setting, budget
preparation, evaluation.
Personne1 - J.0
Information Managomont
Functions - management informetion, data management (automation and manage-
ment), form development.
Personne1 - 1.0
Training Function
Functions - continuing training programs, long range personal development.
Personnel - 0
Public Information
Functions - identify public needs, reporting program progress,
    position papers development, press conferences, public participation,
    disseminating information.
Personnel -. 8
Air Quality Personnel - Technical Developments
Functions - study of new developments and agency requirements,
    surveillance of technical progress, program review.
Personnel - . 5
```

Other Support Elements - added from time to time as the need develops.

ENGINEERING DIVISTON

```
Inducerial Improvement Program
Functions - a. plant improvement progress
    b. sending survey teams
    c. identify each indjvidual source
    d. potential contribution to pollution load
    e. actual contribution
    f. recommendations for reduction
    g. developing compliance plans
Personnel - 3.0
Permit Approval
Functions - a, review ali pians
    b. recommend.issuance of installation permit to Liscences
    and Inspection
    c. keep abreast of new control methods, and recommend
                                    *
    to appropriate sources
Persomne1 - 1.0
Emission Inventory
Functions - a. identify and catalogue all air pollution sources
Rersonne1 - 1.5
```

Functions - a. inspection of all assigned emission somees
b. 24-hour surveillance of city and investigate all variations.
c. answering and investigating all complaints
d. checking for compliance ${ }^{\text {with }}$ installation permits
e. monitoring of all improvement programs
f. inspections for annual liscensing
g. response to emergency and disaster situations
h. 20,000 pieces of equipment will be inspected on an annual basis
i. within two years certification of 40,000 pieces of equipment is expected

Personne1 - 1 PHE III, 1 PHE II, 3 APC inspection supervisors, 18 APC inspectors (23 budgeted for), 2 clerk typist 1,1 clerk steno I.

Enforcement Section

Functions - investigating and preparing all violations requiring:
office conferences
municipal court action
orders
liscense and revocation
sealing of equipment
injunctive action
Development and direction of specific projects to implement new
programs for incineration upgrading of 1000 incinerators sulfur
In fuel requirements.
Personnel - 1 PHE III, 1 Enforcement Specialist, 1 lawyer (consultant),

Analysis Section

```
Function - a. : takang samples
    b. laboratory tests
    c. telemetry responsibilities
    d. provide sampling data
    e. provide reports
    f. operation of all monitoring stations
Persomne1 - 2.0
Field Operations Section
```

Function - provide source sampling teams, conduct source samples
Persomnel - 1.0

APPERDLX E

ADMINISTKATION OF A PEMMTT-SYSTEM

$B y=:$
Rotert G.Iunchers
Erïa E.Lemke:
Julien A.Verssens:

Papers:68:-12:

Presented at: the:
Airi-Pollutior Control- Association
61sit: Annual Meetanc:
St゙o Paul Hilton Hotel; St:Panl; Minnesota

ADMINISTRATION OF A PERMIT SYSTEM

By
Robert G. Lunche
Eric E. Lemke
Julien A.Verssen

Abstract

In June 1947, the California Legislature enacted into law a bill which authorized counties experiencing air pollution to activate air pollution control districts. The law provided a district with the privilege aud necessary powers for administering a two-step permit system requiring first, an authorization to construct prior to installation and secondly, a permit for operation. By October 1947, the Los Angeles County Air Pollution Control District was activated and rules and procedures were adoded to ensure a satisfactory operation of its air pollution control program. These rules established: Eypes of equipment for which permits are required; standards for granting applications; prohioitions for emissions, equipment and fuels; and procedures for appealing District decisions or petitioning for variances before the Hearing Board.

Administration of the permit system is in the hands of professionally trained engineers. They are responsible for evaluating applications for permits, making calculations necessary for determining probability of equipment compliance with air pollution laws, and making the decisions on the approval or denial of permits. Consistency of treatment for all applicants is sought and has resulted in standardized application forms, permit information forms, instruction forms and processing techniques. Rather tham require a separate application and permit for each individual equipment item, a concept or "permit units" is employed which involves grouping equipment items operating as a functional unit into one application and one permit.

Administration of a permit system has been beneficial to Los Angeles County. The permit system has proved to be one of the most effective tools in reducing air pollution from stationary pollution sources. It not only prevents operation of equipment which emit air contaminants in excess of that allowed by law, but prevents the installation or construction of such equipment. This latter facet also conserves money for the applicant because he does not have to make expenditures for equipment until a fair certainty exists that a permit to operate can be obtained. Thus, the applicant is able to make needed changes on a drawing rather than more expensive changes to the physical plant. Dependence on unreliable voluntary cooperation is replaced by a more certain system which places the same requirements on all applicants.

ADMINISTRATION OF A PERMIT SYSTEM ${ }^{\text {a }}$)

By

R.G.Lunche ${ }^{\text {b }}$, E.E.Lemke ${ }^{\text {c }}$, J.A.Verssen ${ }^{\text {d }}$)

INTRODUCTION

Following the initial appearances of photochemical smog in Los Angeles during World War II and its subsequent increase in severity, an aroused public demanded abatement action. The response was a bill drafted by the County Counsel of Los Angeles and submitted to the California Legislature. Desdite strong upposition by certain segments of industry, the bill was enacted into law in June 1947. The purpose of the bill was to enable any California county suffering from air pollution to establish an air pollution control district with the responsibility for cleaning the air in that county. The first California air pollution control district was activated by and for Los Angeles County in October 1947.

[^0]
State Law

An important feature of the new State Law was the provision for administering a permit system. This provision allows a district to require permits prior to building, altering, replacing, selling, renting, or using, with some exceptions, of all contaminant emitting equipment. The State Law also delegated to a district the right to:

1) require plans to show that the building will be done, and approved equipment will be used, so as'to eliminate or reduce contaminant emissions;
2) require the furnishing of such information, analyses, plans or specifications as will disclose the nature, extent, quantity or degree of contaminants discharged;
3) suspend permits where requested information is not furnished;
4) request the revocation of permits by the Hearing Board;
5) require fees for the issuance of permits; and
6) enact rules and perform acts needed to reduce air pollution and properly administer the district and the permit system.

To facilitate a district in putting a permit system on a firm, enforceable basis, the State Law declared
it a misdemeanor to fail to furnish requested information for a permit, to submit a false statement in connection with a permit, to build or operate without first obtaining a permit, to build or operate with a suspended or revoked permit, or to build or operate contrary to the provisions of a permit.

District Rules

The Los Angeles County Air Pollution Control District opted for a permit system as one of the cornerstones of its air pollution control program.• Rules and procedures appropriate to that option, and in harmony with the State Law, were adopted by the District and have produced a permit system that is workable and effective in reducing air pollution. These rules and procedures have been modified over the years as found necessary through working experience.

Presently, these rules prescribe that an Authority to Construct be obtained prior to construction, alteration or replacement of any equipment capable of emitting or controlling air contaminants. Also a Permit to Operate must be obtained prior to operation or use on a full-time or permanent basis of any equipment capable of emitting or controlling air contaminants. The procedure employed with a Permit to Operate allows the equipment to ve placed in operation for "debugging" and demonstration purposes before the decision to grant or deny the Permit to Operate
is made. Once granted, an Authority to Construct or Permit to Operate is not transferable from one location to another, from one person to another, or to other equipment.

Not all equipment emitting air contaminants falls within the purview of the permit system. Another rule describes equipment exempted from the permit system by the State Law, notably vehicles, or exempted by the District because the nature or amount of pollution from such equipment does not justify its inclusion under the permit system. However, this equipment must be operated in compliance with emission standards.

To facilitate the aim of consistent treatment, applicants for Authorities to Construct and Permits to Operate must file applications with the necessary information as prescribed by the District. Since plans to construct or operate may be changed or discarded, Authorities to Construct expire after 2 years and applications are canceled. In the case of an application for a Permit to Operate existing equipment, as occurs during change of ownership, the application is canceled after 2 years. The applicant may reapply for the Authority to Construct or Permit to Operate when plans to proceed are revived. In certain installations, sampling and testing of the effluent must be conducted. One of the adopted rules requires that sampling and testing facilities be provided and maintained as specified in the Authority to Construct or Permit to Operate. When equipment is not shown to be
capable of complying with the State Law or District Rules, or when the equipment has not been constructed in accordance with the approved Authority to Construct, the standards for granting applications require that the applications be denied. Instead of denying an application, the District may specify conditions with an Authority to Construct or with a Permit to Operate which will bring the equipment into compliance with air pollution laws. These conditions may be revised upon reapplication and demonstration of complying operation under the revised conditions. When an Authority to Construct or Permit to Operate has been denied, a new application for the same equipment cannot be filed until the reasons given for denial have been comected. Failure to supply requastad information can be used as a basis for denial action.

A series of rules, known as "prohibitions", provide emission or performance standards, specify equipment or fuels for various operations and prohibit certain operations. Included are (1) rules limiting and defining permissible darkness and opacity for a visible emission plume, (2) rules limiting discharge of particiulates, dusts and fumes, sulfur compounds, combustion contaminants and organic material from solvent usage, (3) rules specifying acceptable controls for petroleum products, storage tanks, oil-effluent water separators, gasoline loading into tañk trucks, tank cars and service station tanks, and rendering cookers, (4) rules specifying sulfur contents of fuels, degree of unsaturation
of motor gasoline and photochemical reactivity status of organic solvents, and (5) rules prohibiting public nuisances, open fires and single chamber incinerators.

PERMIT SYSTEM

Operation of the permit system has contributed significantly to the effectiveness of the District's air pollution control program and the advancement of the "state of the art" of the control of dusts, fumes, smoke, gases and other air contaminants from stationary sources. Before the permit system could make this contribution, however, the framework of State laws and District rules had to be implemented by various administrative policies and procedures. These policies and procedures ranged from interpretations of the laws and:instructions for their application, to mechanics of work flow; forms to be used, methods of processing permit applications, wording of permits and equipment to be included on:one permit. The need for consistency and uniformity of treatment for all applicants has always been recognized but actual achievement of this goal did not come overnight. Reinstatement of the fee system in 1957 focused attention particularly on the practice of issuing permits and separating equipment into individual permit applications. Thus was born the "permit unit" concept, which was reviewed for legality by the County Counsel's office and accepted by industry because it brought consistency to the issuance of
permits for similar equipment at different locations. Underlying the acceptance of the permit unit concept by the industrial community is the fact that they know that each applicant must submit the same data and information, follow the same procedures, use the same forms and comply with the same rules and ordinance.

Permit Unit Concept
The basic principle for establishing the boundaries of a permit unit is to include in a permit unit all equipment items which operate together as a functional unit. Amplification of this principle for various situations has been made in a brochure entitied "Administration of the fexmii System". This brochure also outlines procedures to be followed in making applications, gives examples of various equipment groupings which comprise permit units, includes an index for equating different equipment groupings to the given examples, and includes instructions and instruction forms for frequently encountered permit units.

In Los $/$ ngeles County, "basic" emitting equipment and the "air pollution control" equipment are considered separate permit units under the permit system. Thus, there is no necessity to reprocess the basic equipment each time the control equipment is altered or modified.

Air Pollution Control Equipment

Air pollution control equipment is grouped in permit units by the same principle applied to basic equipment. For example, emissions from a gray iron cupola are passed in series through an afterburner to burn combustibles, a spray chamber to cool the hot gases, and a cloth filter to remove the aerosol emissions. There is no need to issue separate permits for the afterburner, the spray chamber, and the cloth filter when all these units must be operated in unison to control the cupola. Therefore, one permit unit includes the collection and exhaust. system as well as the afterburner, water cooler and baghouse.

Independent Equipment

The basis for forming a permit unit of one equipment item is the ability of that equipment item to constitute a separate emission source or to operate independently from other equipment within a plant. Examples of independent equipment which can be separate permit units are boilers, metal melting furnaces, galvanizing kettles, cookers, and paint spray booths.

Series Equipment

Real problems of maintaining consistency arise with
processes employing a complex of equipment, operated in unison, between the point of feed to the process and the final storage. One need only examine the following typical flow
sheet of a rendering plant to visualize the various groupings of permits which would be possible and the problems which would be encountered.

RENDERINC

Remaining consistent from one company to the next is paramount in importance and examples used in the brochure help in reaching that objective. The fundamental principle which applies in the above case is to group such equipment so as to encompass all the equipment employed from the point of initial charging or feed to the point or points where the
meterial proceeas to a separate process or storage (i.e., classifying to storage, cooking to grinding, etc.).

Obviously, an alternative of issuing one permit per.
company could have been adopted, that is, a "door-to-door" permit. This, however, would introduce the possibility that considerable numbers of complying equipment in a plant could be denied just because other equipment in the plant were in violation of air pollution laws. It's also equally obvious that two companies would receive different treatment in the event that one employed three process lines while the other employed but one or two. Therefore, the permit unit concept for operating groupings is that of a "common denominator". Parallel Equipment

Normally, business enterprises add more productive equipment as demand for their product grows. Therefore, whether a company installs several furnaces or spray booths, etc., immediately upon entering business or adds additional units year-by-year, such "parallel" equipment is treated as separate permit units.

Storage Equipment

Grouping storage equipment into permit units is perhaps the most intricate permit unit concept, but, in general, storage equipment is grouped with the source of material it stores. Liquid storage is a major exception where each storage tank is considered a separate permit unit. There are
other exceptions which, although not as significant, are laid down in detail in the brochure on "Administration of the Permit System".

Permit Unit Examples
The various principles used in the grouping of equipment into permit units have been adapted to approximately 50 groupings of the type of equipment more frequently encountered and of more significant air pollution potential. These examples illustrating the permit unit concept indicate the number of permit units involved, the general equipment included, and the basis for fee assessments.

Specialized Instruction Furims
The type of information required by the engineers to properly evaluate the air pollution potential or air pollution control potential of equipment is detailed in specialized instruction forms which are given to every firm or person who must obtain permits. The District has prepared these specialized instruction forms to apprise permit applicants as to the type of information that will be demanded of them or any other applicant applying for similar equipment. These instruction forms cover various categories of equipment and each form is detailed as to the information which must be submitted concerning process description, operating schedules, fuels and burners used, and flow diagrams. Each form also describes how equipment catalogs may be substituted for
drawings. Copies of application forms and several instruction forms are attached as examples of the types of information required.

Mechanics of Work FIow

A Permit Application Receiving Unit has been especially established to assist persons required to submit permit applications and receives all incoming plans, drawings, etc. Here, applications are screened to determine if they are acceptable, or if they are possibly exempt under our exemption rule. Also, assistance is given to potential applicants in preparing their application forms, describing permit unit boundaries and even in providing permit fee estimates.

Now, with the advent of the electronic data processing system, the data presented with each application must be organized into a standardized pattern. The information on the application form is entered into the EDP system routinely so that many different factors may later be retrieved, such as: air contaminant measurements, costs to the community, costs to various industries, types of remedial equipment employed, and all the combinations of this information which will serve as tools to provide intelligent direction of the future air pollution control effort.

Each application is assigned a number chronologically upon receipt. This number is entered on a $3^{\prime \prime} \times 5^{\prime \prime}$ card with the applicant's name, address, permit unit (equipment) description, processing status, processing engineer, dates, etc

These $3^{\prime \prime} \times 5^{\prime \prime}$ cards are filed alphabetically by company name and can be used for quick answers to simple inquiries about the application or its status. Complete information, of course, is contained within each application due to the policy of thorough documentation.

Personnel Requirements and Duties

The preceding policies are indeed important for administering a permit system that is effective for reducing air pollution but capable, dedicated personnel are equally important. The District has found it essential to employ professionally trained, graduate chemical and mechanical engineers who can apply the rules and procedures along with good engineering principles. Thus; since each application for an Authority to Construct and Permit to Operate is reviewed by an engineer, there can be confidence in the evaluation as to whether the equipment involved will or does comply with all applicable air pollution laws.

The evaluation is accomplished by a review of all the plans and specifications for the equipment, and the process chemistry, process flow and operation details. The engineer calculates or estimates the types and quantities of contaminants generated, emitted and collected by control devices. The contaminant collection system is checked to insure that it is designed and sizea properly to collect and transfer the contaminants to a control device. A calculation of
the control device efficiency also is a part of the evaluation. Physical inspection of equipment operation and sampling and analysis of emissions play an important part in the engineer's evaluation.

Based upon his evaluation, an engineer will recommend either approval or denial of the Authority to Construct or Permit to Operate. If the engineer's recommendation passes review of his supervisor without changes, the applicant receives either the Permit to Operate or a letter of denial. In most cases the letter of denial is given after a conference with the applicant, at which the District's action is discussed and explained.

To expedite the processing of applications for Authorities to Construct and Permits to Operate, the Engineering Division has seven application processing units (each specializing in a different variety of equipment), two source testing units, and engineering projects unit, and an application receiving unit for assisting applicants in the filing of applications. Los Angeles County, of course, has a large industrial base so the number of technical persons required to staff the program is necessarily larger than would be the case in smaller communities. Counterparts to our organization in smaller industrial base communities could certainly be scaled down and consolidated to meet the needs of their problem. Consistency in processing applications for specific equipment is maintained by the specialization of the processing units. Exchanges of personnel between processing units widens consistency in pro--14-
cessing applications for all equipment. Each unit consists of a senior engineer, intermediate engineer and 4 to 6 air pollution engineers so that the exchange of 1 or 2 men at a time is not harmful. The exchange program also creates a ready reserve of flexible, versatile engineers for each unit.

ADVANTAGES OF PERMIT SYSTEM

The permit system as administered under the rules of the Los Angeles County Air Pollution Control District is an example of preventive control of air pollution. As such it has a number of important advantages not only to the citizens of Los Angeles County but also to industry as well.

If the individual proposes to conduct activities likely to create air pollution, he must first obtain a permit, which is granted only after it is established that all required safeguards are present. After a permit is issued, it remains in effect only as long as its conditions are observed.

Advantages to Citizens
The citizens of Los Angeles County benefit because a permit to operate is issued only when the emissions from the equipment involved have been controlled.to the standards established by law. Further, an Authority to Construct must be obtained prior to construction, alteration, or replacement of any equipment capable of emitting or controlling air contami-
nants. This safeguard prevents the installation of equipment which will not comply with air pollution laws and avoids the need for long, drawn-out legal procedures to bring existing, violating equipment into compliance.

The permit system enables the District to fulfill its obligations on the basis of information received from processing applications, to inventory the amount of pollution in the air, the sources of air pollution, the reduction that various programs have achieved, and the effect that new programs will have.

The permit system, coupled with a fee system, quite properly, shifts a portion of the cost of the air pollution control program onto the operators of the equipment emitting the air contaminants, rather than making the general county taxpayer bear the entire burden.

Advantages to Industry

Requiring approval by the Air Pollution Control District prior to construction has saved many companies the expense of installing and subsequently replacing inadequate control equipment. The District engineers are experts in the field of air pollution and their experience has qualified them to recognize errors or deficiencies in the design of control equipment. By requiring a pre-construction application for a permit, our engineers can make recommendations which enable the applicant to complete needed changes in the planning and blue-print stages rather than to make higher-priced physical changes at a later
date. District experience has shown that poorly designed or improperly operated air pollution control equipment not only does not achieve the degree of control required, but, may actually increase air pollution problems. The permit system has proved to be the most effective means to avoid such costly mistakes.

Operating under the permit system, industry has complete freedom of choice in the selection of basic equipment. The selection of control equipment, however, is limited to such equipment as has a reasonable chance of successfully eliminating, or reducing to acceptable levels, the air contaminants it is intended to control.

Some critics of the permit syotem claim that it stifles initiative and the development of new processes. Nothing is further from the truth. In staying at least one pace ahead of the problem, the permit system of the District has produced a great many air pollution control "firsts" ${ }^{(1)}$ during the past twenty years. Far from discouraging inventiveness, the records show that necessity to meet the standards guaranteed by the permit system has fostered ingenuity within fundamentally sound engineering principles.

There is a more recent and highly important use of the permit system and its concept of consistent permit unit boundaries. The confirmation of equipment cost through which the industrial community seeks to gain the tax credit or tax relief provided by federal and state legislation for air pollution
control installations can be achieved rapidly through the permit records.

The engineer's evaluations and recommendations are made solely upon the engineering merits of an installation. As such they are not involved with any equities, or advantages, or disadvantages to the residents of the District resulting from requiring compliance or resulting from granting a variance. The State law and the District's rules, however, provide the applicant an opportunity to appeal the District's denial or conditional approval of an authority to construct, permit to operate or permit to sell or rent. A Hearing Board, completely separate from the District, composed of two lawyers and one engineer is provided whose function is to hear evidence from both the petitioner and the District. After considering the evidence and the equities, the Hearing Board renders its decision. It grants some variances to operate in violation of District rules for limited periods of time. This is only done when the petitioner proves to the Hearing Board's satisfaction that he is making diligent efforts to bring the operation into compliance with all District rules. No variance can be granted to continue a nuisance.

Emission Surveys

As mentioned earlier, the permit system provides a ready inventory source of equipment and air contaminants. The latest inventory of all types of air contaminants from stationary sources in Los Angeles County shows that we are preventing 5,560 tons
per day of air contaminants from entering the atmosphere. This means we have achieved control of slightly over 78 per cent of all emissions from stationary sources by use of. the permit system. See Table I. By comparison, the control of moving sources in Los Angeles County, without a permit system, prevents only 1,680 tons per day of air contaminants from entering the atmosphere. Thus, the program for the control of moving sources achieves less than 12 per cent control of all emissions from such moving sources.

TABLE I.
INVENTORY OF AIR CONTAMINANTS FROM STATIONARY SOURCES UNDER THE PERMIT SYSTEM IN LOS ANGELES COUNTY, JANUARY 1968
$\left.\begin{array}{lccccc}\hline & \begin{array}{c}\text { TOTAL } \\ \text { POTENTIAL }\end{array} & \begin{array}{c}\text { CURRENTLY } \\ \text { BEING } \\ \text { EMITTED }\end{array} & \begin{array}{c}\text { PREVENTED } \\ \text { BY } \\ \text { BONTROLS }\end{array} & \begin{array}{c}\text { PER CENT } \\ \text { CNNROL } \\ \text { ACHIEVED }\end{array} & \begin{array}{c}\text { MAJOR REMAINING } \\ \text { STATIONARY } \\ \text { SOURCES }\end{array} \\ \text { ONTAMINANT } & \text { TONS/DAY } & \text { TONS/DAY } & \text { TONS/DAY }\end{array}\right]$

Through the administration of the permit system in Los Angeles County, control measures have been applied to such diverse sources and operations as coffee roasters, petroleum ređüneries, rock crushers, and hot asphalt plants. From the smelting of metals to the painting of manufactured goods, all stationary industrial operations have been brought within the scope of the permit system of the air pollution control program.

The following statistics, illustrating the considerable experience of the District with the administration of a permit system, lend weight to the conclusion that a permit system is workable, feasible and effective in reducing air pollution. The total number of permits issued by the Air Pollution Controi District of Los Angeles County since February 1, 1948 is $103,724 \%$. This includes permits issued for new equipment, altered equipment, change of location, and transfer of ownership. The number of permits issued for new basic equipment units now amounts to $71,229 \%$, and these basic equipment units are valued at $\$ 1,157,261,300 \%$. The number of permits issued for new control equipment units now amounts to $14,794 \%$ and these control equipment units are valued at $\$ 141,964,900 \%$. During this same period of time 5,815\% permits were denied to both basic and control equipment units.

The following features of the administration of the permit system in Los Angeles County are worthy of emphasis:

[^1]1. The permit system prevents the installation, alteration, replacement, or operation of equipment which may emit air contaminants in excess of that allowed by law or of equipment, which may not eliminate, reduce or control the issuance of air contaminants to the standards prescribed by law. The permit system accomplishes this by the application of engineering science and does not involve policeman, prosecutors, or courts.
2. The permit system incorporates a list of equipment which is exempt from making application for permit. Experience has shown this equipment to contribute little to air pollution.
3. The permit system, with its pre-construction review of applications by expert air pollution engineers, saves the applicant money by preventing the installation of equipment which cannot be operated if it does not comply with air pollution control laws.
4. The permit system, by means of the Hearing Board, provides an inexpensive legal procedure for appeals and for requests for variances.
5. The permit system, with its provision for fees, shifts some of the burden of an air pollution control district onto those directly responsible for creating the air pollution.
6. The permit system has not stopped the expansion of industry in Los Angeles County.
7. The administration of the permit system for the past twenty years has provided the technical know-how to control most air pollution emissions. In fact, much of the hardware required to control air contaminants can now be bought ready-made off the shelf.

In conclusion, with the permit system, dependence on voluntary efforts by air polluters to reduce their pollution is eliminated. A voluntary control effort is rarely satisfac-, tory in terms of control effectiveness or time required to achieve control. In fact, it has been said that man has only approximately 30 years to establish whether he can remain on this planet or not and voluntary efforts are not likely to meet thattschedule.

Experience has shown that public statements by management proclaiming their policy of controlling pollution from their plants and complying with local air pollution laws are not always put into practice by lower echelons of the company. These lower echelons are concerned with showing a good profit and loss record and are willing to sacrifice or postpone air
pollution control expenditures for that purpose. More than once these lower echelons have made attempts to disguise the facts about an air pollution problem because of the money situation. Recently, plant personnel, less pure than the advertised product of their large corporation, were found stuffing rags into a condenser to pass a permit inspection. If this can happen at a corporation which maintains its own permanent air pollution staff and actively participates in the Air Pollution Control Association, even at this meeting, the need for a thorough review as provided by a permit system becomes evident.
(1) Lunche, R.G., Lemke, E.E., Weimer, R.L., Verssen, J.A., "Air Pollution Engineering in Los Angeles County", LdsirAngeles County Air Pollution Control District, July 1966.

STAFF SALARUES

in air pollution control agencies

Irin Gartner
Research Associate, Center for Air Environment Studies, The Pennsylvania State University

Based on the author's nationwide survey of salarics in midt-1nai from 118 state and local APC agencies with 1008 positions, this mas. comparatively analyzes the results with pertinent orrupations is major national salary survers by the Jurran of Jabor Statatios National Srime Fomudation, the National Surely of l'ufesina: Enginers, and Colloge Pharemonh Comal. This bastine compore tive investigation indicates agemey salaries are signifiramely ha. than pay ferels of the compertition in today's haion matare. Then conditions are compornded by the disadrantage of companativet small organizational size with consergent limitations on intivas:
 dations for jol)s ungu: to fovernume, and other mathem\%. coping with the poor competitive situation (for recruiting, remin... and motivating manpener) atre presented.

Govemment maks hird in the following distribution o non-arricultural payrolls:

Mnnufacturias	30.1
Whotesale :ud retai! trade	20.8
Government	17.0
Serrie and miscrllatous	1.7
'Irmenporation and public utilitics	0.5
Contract enstruction	5.1
dimure, insurance, and real estate	4.9
Мıйй	0.3
Tolal	100.0

The ever-increasine significate of gevernmental smbers. ment, and more particulaty state and lowal :nvernach employment, is strikingly documented by the Li. S. Burs:n of Consus data on public employeces and payrolls fiom 1910 in $1966 .{ }^{2}$
At the time of this natiniwide study, there were apmonimately 3000 federal, state, and local air pollution contmi agency filled positions, appoximately two-thind of whits were at the state, rexional, and lucal levels. "Rewimal" is intermittently refered to in the context of the Air Quab:y Act of now. At the time of the writher of this pane the federal level was enared in the batter of the budge hement the executive aud lerostative hamehes with the powinity of a 4 to 0 billinn tullar cut in the Presidents wernested Firai 1903 budget, most of the eut to be taken reiontedy frem asencies not involved with the Vicmam War. The immernare iuture could be puite mele:ar as to the quantiy of aldiationes positions to be filled, because of the major famenial impart ois federal grants-in-aid on state and local axirurise as weli :s regional cliorts called for in the 1003 Air Unathy Act: , wir impact covers all levels of govermam from isweral in lemai. At the carlient powibility, howewer, it is realistit to expert ter :
 talent: private industrial emposers as well as ievery
 throughout the comery. A curory lonk at the Nationai
 tions for the fecieral asency's Diret Opmations for hama ya 1909 provides some idea of the guality devired (as rehectui in the GS levels) and some oi the geantity to be recruited at ise carliest possibility, projortioniaticly ior the iollowing activities ${ }^{2}$:

Research		161
Control Tcelholory	77	
Criteria and Standirds	84	
Mbatement and Control		220
Motor Vehicle Control		17
Training	$\frac{41}{439}$	
Total		

Seventy of the above positions called for GS-14 and 13

Tablal. Average Salaries: Nationwide Stuoy of State and Local Air Pollution Control Agencies, Mid-Year 1957

Occupstional Group	Number of Employees	Mean	Median	$\frac{\text { Miso }}{\text { Isi Quartile }}$	Rance 3rd Quartite
1. Chemionl fnemeers	73	\$11.35]	\$10.45]	\& 8.6 .6	
2. Micelhament Enemeers	24	11.794	11.25s	9.950	13.222 $33.23 i$
3. Sammay Loznews	20 130	12.300	12.60	19.503	13.23:
4. Ahaceinneous Engmeers	130	11.8.43	11.90	10.65 6.625	9. 8.3
6. Instroment Technicians	83	${ }_{21} 9.523$	8.532	\$,903	8.50
7. Altacoulobists	6	11.570	11.901	3.809	11.509
8. Chemusts	94	9,761	9.408	7.590	21.412
90. Simitations	80	11.161	9.000	${ }_{8,193}^{60,0}$	22.335

 key positions in the foderal Covernmentare as iollows (excentirclectes are GS-16, 17, and 18):

	Prescnt	Auhbrized (and still expecied) Increase, July I, 1963)*
GS-14	\$15,8+1-20,503	\$16,910-22,031
CS. 15	18,401-23,921	10, $\mathrm{i} 50-25,711$

Local, State, and Regional Confrol Agencies Salaries in Comparison with the Competition

Are air pollution contiol awnes satarics realistic in today's comperitive laber market? Let tis take a look at the results of the nationwide study of state, local, and regional agrucies. The compantive analyes are based on broad occupatiomal groups in the control agencies. This method insures promised confondiality of specific ageney and indiridual cmploye data. When the fied has prown to adermate statistical size and the poxition daswifuation phams andior organizational division of work have adraned in derelomment, it may be pasible sul appropriate to we the key or benchana job incthothaney in future salary studias.
One humited and cighteon lucal and state air pollution control :stheies with loiss bulsered positions provided compitible resones. to questionatires matiod to all listed in the 190 D Dircetory of Goternmental dir Pollation Control Agcucics, " but others diecovered in an exploratory survey of state and local heathagencies concerning their intare/current phans relative to air pollution control. In aldition, reierese was made to Natiomal Center data on the status ei stato and local control anences presented in ineation brive the
 tion of the Committe on Public Works' in Aprit and May 1967.

She suphly of talent might readily meet the deniand of unfilled positions in this comparatively smalif feld if it existed in a vacuum; ralistically, the mationai cmphoyment distribution and demands (outhined earlier) must be taken into account. Our expauding conony, growing govermmenial activitics (civilian and military), and resuting "full cmpioy-ment- (eronomists. interpretation of uncmployment under four (per cent)) - mationally results in a hiphly competitive situation. Perhaps the most competitive of all is the engincering profession. Xumerically it is the bremestamg state anc local control atincirs. The 247 cusineers in the anthor's. study repreemts abmet 50% of the 190 statistieal univere. Tables i and $1 f$ almost speak for themelves. Central tendeney data for chemical, sanitary, mechanical, and misecellanccus engitires in state atad local control ancureies are less than the median satary figures provided by the stociety of Proiessional Luminers recmbly relaced nationwide survers con-
 behind the mational market figures by $\$ 000$ to $\$ 5000$ per yar; when consern to purcentanes the dinerentials are ceen more strikito Comtrol arency engincer's salaries aiso han (nlthou;h die difiemential is mot so great) when compared with city, state, and fedrad yovernment central tendenes data from

Following the eameres, the next harest state nud local
 true not miny for the wricers stucly int: matumation terna; of total existing positions. The 235 ingecters in Cinble tope

[^2]By Specialization: -

Chemical Encincers
Sanitary Encinecrs
Mechanicat Enfineers
Miscellancous Engincers

By employer:

Consulting Firms
Indusiry
Public Utilitics
Educational Institutions
15.460

14,510

Non:Profit Rescarch
Federal Government
City/Counly Governenent
Stato Government
14.510
10.600
14. 140
13.600
12.950
12.200

By Degrec:

Doctor's (Ph.D.)
Master's
All Society Members Reporling
19.310
15.230

14,310

Source: The National Socicty of Professional Engineers, survey conducted in 1557 and released March 2503.
sent approximately 50% of the universe. Comparatue analyses oi the salary data ior air pollution control inepectars are dificult. This is true ior other occupational yroups whith are míque to foremment, i.e., have no emmparable comater-
 samitamens, in poilution control i abie $i ;$ as weit a.s $\vdots=$ spectors. Further comments concerning salaries ior job: unique to govermment, are set forth following the terien of salary data for other ocrupations.

Chemists were the third laracst occuational proup in this sturly, apmoximately 60% of the state and bocal contal agency statistical unverse in this occuration group. The comparison of the eentral tendency salary data with such diato from much more extensive survess by the United Stais Jurean of Labor Etatisties and the National Scienee Fomatations indicates that air pollution control chemists have muth in the way of opportunities for higher salarics outside oi goversment. (Tables III, IV, and V.)

Next in quatitative simifienace in this staly was the instrument technicians eroup in "able l. Contimaine to ne de broad occupational comparative appome it is pumbine wat some idea of the lathor market competition by reiemins w the
 ranging irom the lowest the he highet of their barions datencation Jescis (Gable III). This comparison places the air pollution control inetrument icchacitus appoximathia
 of the federal govemment salary manes :ronar up 1 . GS-9, potentially appoaminge comparainlity in :ranah :1, i

 State Viniversity.'

linn in its last himmial nationwide surver in 1906 (sec Table b)
 :urrer is now in the data collection process in cooperation with sarions mational proiessimal socielies.

Similar commentary applies to the salaries of the cight fiologists in the state and local air pollution control study,

 was su inalequate rexumse from phesicive, dectronice deta

 ment-atministrative aromp based on nimeten resomients in cither the director or depmis direcon pmitiox, i.e., manher one or number two pention in chare on their reperecive conIrol :gencios. Such limited dat:a predude farther comanent.

Salaries in the Labor Market for Inexperienced College Graduales-10-Be

With control inevey alevoloment blosmminer with the lona,
 related problem of inaderuate suphly versus demand for erperienced persomel in a relatively now fied, at least relastively new for the majority of air pollution control agenciss tisrough-

There lif. Averape Salaries for Selected Occupations in Pivate Industry. United States except Alaska and Hawaii. June l9äand Percent Incsease in ilean Salaries since February - Marcn isc̈

Occupation and Class	Number of Employees	Annual Salaries				Percent increase in mean Salaries
		Mean	Median	Middle Range		
				First Quartile	Third Quartile	
Chemisis !	2.697	\$ 7.550	\$ 7.4 CB	\$ 6.980	\$ 8,2:0	6.8
Chemisis II	3.623	8,432	8.400	7.783	+ 9.0008	7.6
Chemis:s $11{ }^{\text {. }}$	6.519	9.719	9.500	8.503	10.392	6.7
Chemists IV	9.617	12.044	11.823	10.650	13.33.3	5.2
Chemists Y	7.831	14.205	14,350	12.900	15.755	4.3
Cucuisis $\because \because \because$	4.18	15.58	in, jat	i4.350	17:3n	--5
Cincanisıs 7il Chemis!s VIll	2.737 475	- 24.676	13, J	21,050	27.49	5.9
Enzineers	10.587	8,353	8,400	7,920	8.855	8.0
Engineers 11	28.273	$\therefore 9.078$	9.000	8.496	9.5:0	6.9
Enzinters III	77.570	10.330	10.224	9,528	11,0:0	5.6
Ergineers iv	105.705	12.424	12.300	11.160	13.500	5.4
Ensineers V	65.835	14.523	19.333	12.924	. 15.800	5.3
Encineers VI	35,674	16.604	16.603	14.743	- 18.420	4.9
Engineers VII	11.930	19.332	19,234	17.292	21,012	3.5
Engineers Vill	2.955	22.235	21,503	19,632	24,334	2.8
Freginorring Technicians !	. 5.625	5.365	5.400	4.728	5.915	5.2
Enginecrin ${ }^{\text {S }}$ Technictans 11	15.188	6.305	6,252	5,724	6.763	5.1
Enjoincering Technicians 111	25.375	7.235	7.153	6,583	7.812	3.6
Enzinearing Techulcoans iv	23.272	8.318	8.256	7.655	8.850	5.2
Enzuresing Jechnicions V	14.927	9.341	9.216	8.592	9.560	2.5

ce: June $10 ; 7$ National Survev of Prolessionsl, Aoministrative, Technisal and Clerical Pay, U. S. Department of Labor, Eureau of Labor Statistics lin 1535 . pubrished January 1908.

Toble IV. Selected Comporisons of Averaze Annual Industrial Salarics, June 1557, with Federal Salary Rates under the General Scneawie

Occupation and Class	Average annual salaries in private industry	Salary rates for Federal Employees under the General Schedute										
		Grade					Perannumi rates and steps					
			1	2	3	4	5	6	7	8	9	10
Enaincering technicians I	\$5.366	GS3	\$4.865				55.052	\$ 5.211	\$5.300	55.509	55.65	55.37
Chimimis	7.550 7.583 8.83	GS5	5.565	5.751	5,931	6.123	6.309	6.495	. 6.681	6.857	T,033.	7.23
Enfinecting technician V	8,383 9.341	GS5	8.054	8.323	8,592	8.861	9.130	9.399	9.663	9.937	10.205	10.575
Chenisis vil	20.110	GSI4	15.841	16.359	16,831	17.425	17.953	18,481	19.009	13.537	20.035	20.93
Chimecrs vil	23.332 24.670	GSi4	18.404	19.017	19.630	20.243	20.855	21,469	22.082	22.695	23.333	-23.921
Eranoers vil	22.255	Gsis	18.404	19.017	19.650	20,243	20.853	21,409	22.082	22.65	23.303	

[^3]

 tewn with comprativet limitol growh and promatimal

 when comparal with this matim-wide air poblution control valary stury. A yomer man who is a candidate ior a bachelors deare in chemacal rusimering has been ofiered on the avera.0
 first guartik in our natimurite study oi state and local air
 25% of the on-thejob ciemieal curinects salaties reported. When coapared with the $\$ 00,450$ modian ligure of air pilhfion control chemien engineers, the compritive disadiantage is exen mose strikins - the yourg imesperiened aradating
 approximateig stoun less tham the tep salary in the lower 50% of the air poilution control chemicai cusineers salarics reported. When iurther compurad with the young inesperienced camaidate for a master's dewe in chemical carinereng being nifered an averase of sho,sie pur yar, it in quite esident
 competitive wiha a firs quartide ni ssigio and a merlian of
 ter's derrox canditates; in other words, sofo oi all repmeted air pollution conmol chemima cusinerging sabries at he state and
 mater's derwe camialates.
 degred in chemistry arraged ssitu ine yoar as rompared with

 degress in chemistry have recent oürers averawing $\$ 10,320$ per year as compard with the median of sizios alnost $\$ 1000$ abore the highest salary anmens 5650 and ciose to sicoo below the top samay oi 5 5\%, i.e., the thict quartie.

Since the chucational reguirements ior the berinning smitarian difier considerably throughout the country, but in many instances recguire a bachelon's dearee not eestricted to any particular discipline, it seems conservatively appropriate to compare the averaze salary recentiy being ofiered to bathelor's degree candidites in the humanitics and social seiences (the lowest paying of the marious ciucational feldis reporteci). Thes youag graduates have recently been ofiered an average of $\$ 730$ S per year as compared to a median oi $\$ 7000$, and a mean of \$73ia atad a tiard guartile of SSOSü reported oy smitarians in state and iocal air poliation control assignames. In other words the inexperienced dereree candidates are beinn oficed bs iaduter: (a) higher starting shlaries than ower 50% of the wothint sanitamans sataries reported. (b) approximately
 gurwed, and (c) apmemimately the same salary as the nuer-

 recruiting and retention of rollowe graduates, one further comparison oi the averate onfers to master's derirce candidates in business adnainistration; indinstrial manazenient, or commerce is petibeet ia beht of the need for acministrative tabent throu;hent the comaty. For those rembith, the master's

 comparable occupational group in tho nir poliution control

 of statistiah wom in lighe of he wery limited sample.

Occupations Unique to Government

 tarians ate nempational gremus which hate in romata the problem of beins unigue in the puistic servire, i.e., with no
 Such necupatimas have hern a low-time problem ion anernmental s:lary setting. Much of the consern mitas to the prevalent method for (and partiontaly the ferishation ma;icmentation oi) settins satarics for ail jobs in soremmeat. The preiered metherthlugy has been and contimes ta be tic the of prevailing commanity rate survess. This apporath is wed illustated by the ('nited States Burem oi Lathor statistie,' National Surrey of Administratice, Techniral, ant Clerist Pey reierred to throughout this artierc; in this instame, the icmerai povermanats "conmmity" is the mation of compranaranate industrial empleyers.
This mationwice communiy of eompertion is a reativic one ior state and incal levels of govermment compang far sarare manower resoures whin cannot be reatiiy rembite in the jumediate "commanity" oi the ereion, state, or lowalty. Pher

 data ion key or hembanars johs.

 of months (many times extendiatr to gears) "afice the bat"

 ations in exceutise budgetary regursti, revicumg thes ey the legislative body with the purse string power under comarain; pressulue of all other monetary demands at budget sctin; time (anmually in some jurisdictions; biannuaiiy in others).

Table V. Median Annual Salaries of Full. Time Employed Civilian Scientists, for Selected fields and Hizhest Cegree, isjo

Three Seiccled Scientific and Tecnnical fields and tienest Deseces	Number of Scientists	Nesion foricial of 311 Ennatozers
All Fielos	242,763	S12.cis
Chenristry	65.917	17.CO
Ph.0.		3:.cis
Professional Medical		25.53
Master's		11.60
Biachrior's		10.63
Less lhmin Buchetor's		10.sia)
Me:lenoulour	6,283	[1, 1.71
Pli.O.		11, 6 N
Prolessional hicdical		12, 5100
Master's . Dachelor's.		11.60
- Less lhan Bachelor's		jocic
Biolozical Scrences	29.633	12.60
fra.o.		12.9
Prolocsional hedical		11.95
lisomers		¢ $\because(:)$
Uuchasior's lessthan bucheiors		S.i:3

The ahone complications are further involued for thence particular orcupations which have no comuterpart in private industry:- This hats resulted in a long standine prartiee of some public juristietions more or iess "lookins in the mirror," i.c., surverines salaries of simitar necupations in other novernmental juriodietions. In example wolld be the survering of sanitarians pay rates in other poblie healh asencies. It has been wesred that this methat has "the cepalty hazardous posibic cfieets of wher a stahonate or an whwarmated escalat tion of rates ior all resultine irom the actions of a fer."! In respoze to the regucst to "find a better way," the late Lonis Kroeger and his associates applied their rich and waried backgromads to produce a mport requested by iellow proiessionais with tec foilhwing pertinem contiotions and recommendations considired worthy of extensive quotation here:

Hefind that to an extent the problem is ereated berequirements of law that areacies simond pay: the prevailing rate,
 (nose gob permatar to malie service.

Ife recommend that diese laws be amemded to require onty that prevaling pay practices be "taken into account" in eetimg pubio salarics.

He find that pat of the dibicuity in inserpretine and wing any stary dat: whith maty be g:thered i- that in rommon practice the data are now gahered atimu all cmployes, regarders oi lemerh of ecrvice or other consinemations.

II' recomment diat salary data ise gathered only for the hirias rate, sture this is the simple point at which salaries are a meats of comperims in the joh mathet.

Il'e fir. 1 that some of the pooblem is ratued by the witespreat u-e of five-step pay plans, appiynh the stane salary jicteaenss to pusitions of all kinds withult segard to inhecent adificenres in llucir nature.
li'e recommichel serious consideration of a concept first adopited in Marimorl. Cemmectiont, whirh secegnizes tnore efiectively the diftering natures of poritions is: providing vatying inetements of salary inmena at varying times; nant minin provites separacety ior treament of armal growth on the joh, senionity and exteptional service.

IVe fal what peent pratiees make no dietinction in treatment beiwen thatimatistative and aidmantrative positions, althomblare are coniderable diberences in the com-

Ifre reromencn! iwo complesely ditietent methods, as beEwort the nom-atministative and the :wnmistative, for determinimit the salaries of el:toses pecuiar to the priblic ervire.

For the nom-atministrative clanes, iee rrommend that
 to infomatiom abom himan rates fire all of the ocempations
 ble trainin: and interows mipiti be athacted. linis e:m

 the guernisystem.

For shmibintrative dinwer, we recommeml lhat, as a group, ther lee eet in fair relation to ail other jubes and thac thea,

R:mbler: w: the last recomanombatim :hane It is comitemberl that sabary

 indivelual menotiatioms. It is monde posible that phatio
 exerpt for ertain entrace level pexitioms such as those wheh are filled by colloge kraduates wiblamt experimese.

The only ohter reveration conecons the ovente resteftive recommendation ion selting salaries ior amminstrative chases on the one basis of fair intemal relationships. Ald to this the - comter wishlom of compariar private industrial frevailane sadarics for administative prsitions. "The afommentimed anmual Burean of Jabor Statistics mationwide sturly hats proviled the factual bases for applyine the so-called "comparability primeipic" - another term for the prevaliay commus. nity ratespolicy; resultanes abary aljustment recommendations have produced increasingiy more atmaction pay levels, both at the entrance hime mates as well is thoughout the rate ranfos. The iederal novermment still has a lour way to an to catch u; with-its competiton at the cxecutive levels but ceatainly the noted pröresis could mot have been so realized without the aid of the "comparability principhe."

The key distinction to heep in mind is comparability with private industrial rates oi pay; when such compamabilty cannot be established, comparability with other govermantal jurisdicion rates can result in an unrabletic ii not vicio:s circle. The reenmentations above are thercione worthe of positive support, with the additional recommentation that there be flewible hiring mates and related admatments atal:o-

 proven most hedpul to mijor sovernmental mplogers, includines the federal level.

Findings and Observations

The following lriefly summarizes the statistical and rehated contents picsented abore:

1. Air pollution control ayency employecs constitute a miniscule part of the total private as weil as zovermental en-. ployment market in the Linited sitates.
2. Goverment emploment as a whole, and particutaty the state and local level., has beca prowing rapidy during the past 20 yants, and is now apmarhing a ratio ai one out of every five not-agricuitural employed.
3. Within the govermmental haber matet, state amblocal air pollution control anencies are abo prowing but upisaily are disadrantaned by reason of mall size of nomazation and comparative potential for empiloye arow in and weo. nition.
4. With the four to six billion cut in ichleral fums', immerkate future develoment oi phans muder the Air Quabty der oi 1007 may be serionsly hambiapinel by lati of imats ior necded prromacl in controd agencies at the iederal, state, and local levels.
5. Comprasms of contral tomenty 1067 salary data fur state and local air pellation control andere cmpluyres with BIS, NSF, and NSPL survers matiate state and heal sabitics below the competition in the tainer matrict.

 very disoouraking picture for state and lueal emmon arancy
 compoinded by due aforementioned disatsantages of limited organizational size.

 limited only fo comparisons of other envermmental atharios．
What ean be done about the bleak conmabative salary
 on clably competitive levels hy moms sumanazed in item 7 nbose：Hencerer，the answer is not so simple whol the facts
 call！：sud a；emeics are small shhdivisions of heable depart－ ments with many manower shortare surialtics bintore cotab－ lished subdivisins：rompetiot for the buizetary dullars．In turn，the healh department as a whole watally must compete with other departments for neried shares of the cutime juris－ distiomal hudert．Jhis pieture is partially modifed by car－ marked ioderal atamt－in－aid porisions．Satary adjustmons are lypially late if not hast on the axemba of budedary dect－ sion－mahins．meanng that the remaining funds from anti－ cipnted revenues．el ol．，may be inaderuate to meet all needed inerease in salaries aiond with increased numbers of positions． What hapiens？The salary survess presented ahove indieate some ctmulative revalts．

What dec has beon hapmoning relative to surh result：？ Public service cmployese have bern joining mions，have begun collective harabines and（helow the iederal level）have begun stribines in incrone ine numhers in recent years．The

 Salarics for the oraname can be expected to become ancreat－ ingly comperitive．with bencticial sive cillects to some of the

How ean air prollution control asencies expect to interest （initially recrua）herded talents and then mantain the interest on a carcer haris，in hisht oi the limitations outhed above？ Cim a mational＂treavery＂ni bitormation on tatimed and cx－ perieneorl mampower be establi－hel，mathained，and utilized？ Can such takent beronae mart of an intergovemmental eareer syston to conc with hish prionity control neccis and at the same lime provide for the growth and recomition ofiered emplovers in latrer oramizations？Cam intergovernmental molility be iceiered be interavernmental retirment systems or altermative glans wibh the same rïect of not penaizing the experienced publer servant for moving into new job riatlenese？
 liducd comparabie to those iomad in such holdine corpomions as Standard of Jorex？When will Coneres pase ucoriod，
 Aet sponsored for seme yeats by Siontor Mathie，and the Inlegaremmental Manpower ice formulated under the Sembraip ri L ．S．Civil icrrice Commision Chairm：n John Mary？

 thol inthiatre．

The amhen＇s salatre shuly of state and local air prollution
 coordination with si．．\because orleral 190π basclime study in which there wan very litabe duntication oi data．The sitation calis

 mot mere manders cmplayed and paid in ferectament，in－
 along：the lates presented in ：umother paper on the leveis of

 power struchur，wews media，and related＂mationer＂varia－ bles．
 derinim－making in pollution cometol is called ior at the rariest
 altornatives in proxam，butere，and implomentation ria mapower，ermpment，incilises，amd incontive sletoms for pellaters in spered up control at the stmeres of prilation．The 300̂̃．Air Quatity let sets the stafe ion creative ioderaliom． i．e．，spelling out the rolss of federal and state levels，with mather tight timetables for states to entabiath rexional stan－ dards and implement them．Beld，direct actions may woll allucate our citizens money（taxes coliscted）and radicilly increased supplemental iunds irom fanes ior violations on dae basis of rewhtis achieved，i．e．，not primarily on the basis of repeated extonsions of budert and stant＂pitches，＂but wem reduction of follution at the snutes，with nbrions entise rumers for combol asencies and pobluters．Seate，hisuly pail professimats are not ueved to monare pobtaion at ibe source：；socarled paraproiessionals and subproiesiomats refuiring comparatively limiod rducation，trainar．sa：d fonmeind expentitures，can help fill the manmwer fap，reduce poverty ：s wril as polimion through the stratery gi cross－ commiment involvias the aleraction of wo（or more）pro－ grams with difierenthat mutually helpini goals．

 the Xational Center for Air l＇ullation Comerol，Eisills；llish， Grant No．Al＇uouvz．

References

1．U．S．Bursan of Jabor Statisties，＂Enuborment nud Firn－ ings for Siates and Areas lej：n－GG，＂Bulletin No．13iô－i， p．XVI，Vashington，1）．C．（ISīi）．
2．U．S．Beneau of the Census，＂Chart Book on Goverimental
 Washingion，J）．C．（19（ia）．
3．Dational Cunter jor fir Pollution Control，L．S．i．ll．S
 （19cis）．

 1）．C．（196行）．

 1）．（：（1！（1：）

11．Nぃ，

 （19い1）．
12．Hil．．3－1．

Gng ualiey to promote "Mcricamizntion" of foreign-owned companics opcrating; within its borders has won a signal success with the sale by General Electric of 10 sic of its Mexican subsidiary to Mexican mationals. Gencral Electric de Mexico, the country's bintgest mamufacturer of electrical prodyels, had been one of the major Wexican firms still wholly owned by a forcign parent. Last ycar it carned $\$ 2.7$ million on sales of $\$ 40$ million. GE:'s yiclding to foremment surges. tions to Mexicanize, after prolenged talls, may put increased pressure on other harge wholly uwned subsidiaries of foreiga companies, such as General Motors and Ford, to do likewise.

GE's stock oflerina, restricted to Mexican mationals and foreigners who are permanent residents, was an initial success. The $4+6,000$ shares sold to ilexican investors at the equivalent of $\$ 5.50$ a share were oversubscribed and guickly rase in price on the Mexioo City stock exchange.

The Mexicanization of Mexican industry is a complex issuc of interwoven lavs, official decrecs, and unofficial arm twisting. Major sectors of the economs, among them the petrolcum industry, the moduction of basie petrochemicals and most fertilizers, electric power, and railroads are rum solely
 general, though, Mexicanization is not a maller of mationalization but rather of participation of private Mexican investors ia partuership with foregen capital.
Even where there is no legal requirement for Mexicanization, government policy encourages it. And government officials can apiply many subthe pressures to bring it about. Fimms that Mexicanize may: for example, find themeclees less hindered by official red tape. Tax concessions, import licenses, and tarifl protection all may be casicr to obtain.

The alexiean amiliates of several U.S. chemical compamies have been Mexicanized for many yeurs. Celanese has long owned less tham half of ils two large Alexican enterpises. Du Pont has a wholly owned subsidiary that makes explovives, paints, and africulmal chemicals, hat mast of its expansion somth of the berder in the past 10 yrams has been thomgh four point ventures in which its jutcrest is $\mathbf{4 0 \%}$ or less. Union Canhide Mexicana, in which the U.S. promits :tabe
 sublic in 1960. Neventiatess, many arte Mexican podaces. of chamicais sontinue to bic wholly owned ams of heir U.S. parents.

Graduates' salary climb continues apace

	Number of of	5961-68	Aversie offers	
Bachelor's-degree candidatos				
Chemical eneineeting	3228	\$ 290	\$ 733	69
Chemistry	493	729	689	$6: 4$
Master's-degree candidates				
Chemical encinecring	613	919	858	809
Chemistry	90	864	814	260
Doctoral-degree candidates				
Chemical engineering	461	1247	1175	1102
Chemistry	588	1180	1118	3063

Source: College Placement Council

RECRUITING:

Salaries Up, Offers Down

V iewed as not quite cnough by the 1968 graduate, far too much by his less recently graduated coworker, competitive by his cmployer, and likely to drop drastically to an Amy private's pay of $\$ 102.30$ by his local draft boards action-starting calaries for this year's graduates continued the familiar upward patern. lat fewer ollers were matie and saiarips were י!) met

That's the starting salary picture that emerges from the Coliege Phacement Council's salary survey of the college rectuitarg scason just completed. The Bethlehem, Pa., council calls this an crratic recrutiting year. In January, for example, the number of offers to technical students was down 20% from last year. By March this loss had been recouped and a slieht increase took place. But activity then leveled ofit to a year-end total that was 1.4% below last Junc's.

Overall, the volume of offers dropped 2 ric at the bacholor's degree level from last year. Even more serious was the decline in olfers. to advanced degree graduates. The number of olfers this year to those graduating with mastri's dextees dropped 15.9 ? white offers to those with ductoral degrees fell 12.4 in.
Λ major factor hehind the deetine in olfers, the Cild study mints out, is redued antivity hy die acmpace industry. Remopsace meriverod a domp of 23.7% this yem ower last dephite the fact that it mate now ohere (bitia) dhan any ofter cimpheres armp ia the stady. which is bescia on minmation on make parduates at 12: unisersities and culleges form coast to const. The elacmicals, douss, and allied products
group was third with 3526 oficrs, behind clectronics and instruments with 4350.

The chemicals-durgs group, zowever, offered the top average startias salary of $\$ 707$ per montin to bachechers degrce graduates. dmong ali types oi employer, the bachelor-level.chice:e:i engineers and chemists fared ratier well when compared with grac:u:s in other areas. The chemical cerineers topped the CPC salary lis for the third ctrainht vene with a wergen
 June. Bachelor-level chemists coeneri ofiers of starting salarics tina wert ies than those made to ensiacers, ent high amone the sciences with areas offers of $\$ 7.29$ per month, an incease of 5.8% over last year. This constatis with an increase of 7% for tae proct!ing year. A similar dro; oeciatre: in the dollar average of oficers to tectumat students; it rose 6.5 ¢\% this yar, em. pared with a 7.3% gain in the previous scason.

GRANTS:

H.R. 875 a Key First Siep

The funds authorized in 11.1 k . Sas for institutional grants are a dimp in a bucket compared to the neets di min. leges and amiversities, Dr. H:aray llroaks told Rep. Emition D.athats Subcommittec on Scicnce, linead! and Devehpment. Honecers lie antimed, the proposals in the hall are wh impontant first stop di.1 viantil lie taken if the pocesin! linmemen pu:tJems of the schasi in setime con. lime and scichtife aceruch an bis soived.

Dr. Mrooks, dean of chmaceme at
 Academy of Scionces connamtios on

ThRyIfic SALARIES for B.S. graduates. See text (below) for explanation.
years. For the class of 1972-1973, we prognosticate a startiag salary for master's degree chemical engineers of $\$ 1,1$ so/mo., and for Ph.D. Ch.E.'s of $\$ 1,000 / \mathrm{mo}$. (orer $\$ 19.000 / \mathrm{yr}$).
As we sait at the start of this article, maybe we alf cuatht to ro back to college and start over.
rhe bar srapins on this page may bring us back to a equac of atuality. These are startine salaries for 1968 cirmical on-inerinz is.S degree yratanes, bruten down by the intustry se;ments that thes entered, cumgarch what the data for last year. Each bar represents the widste $.0 \%$ range of offers. The line throurh each bar is the wesage salary olier, calculated on the entire
range of offers (not merely the midde 50% shown).
In 1063, average ofiers for the fields shown ranged from $\$ \pi 55 / \mathrm{mo}$. (research and consulting orsamizations) to $\$ 80.4 / \mathrm{mo}$. (petroleum); this is a spread of alinost $\$ 50 / \mathrm{mo}$.

Last jear, the range was smaller, $\uparrow 708 /$ mo. (metals) to $\$ 7.43 / \mathrm{mo}$. (petrolcum).

If you rend the articic, "Llow Do You Stand in Your
 bumbic, you may recall that the technitite is aneal on published starting salaries. Sow you have some new numbers to piug into author Olden's formulas. Wo wish you good luck.

Moran R. Ingrahan, 3. D. Comansioner
Philadelphia Department of Public Health Rom 540, Municipal Services Building Philadelphia, Pennsylvania 19107

Dear Dr. Ingrahagat

As a result of the comments you made on the draft copy of the report evaluation for the philadelphia program, we have revised the report to reflect many of your recommendations. however, based upon the review of the observation team that was ant to your agency, and circumstances at that time, other lasues and recommendations remain in tact. We realize that your program has already made 3 significant achievements since the $A P O D$ conducted that review. We welcome chis progress and realize that your program is headed in the proper direction to faplemeat some of the other recomuadations that were made.

Although this report says "Draft Copy" on the cover, xe whit serve as the final report that will be issued from this office. He look forward to continuing our work with your agency. For any assistance or resources that are needed by the program or further clarification of this report, please do not hesitate to contact me. We. recommend that this report; serve as a document to be used by your agency and as a guide for future program improvements.

Sincerely yours,

ORIGINAL SIGNED BY

S. R. Wassersug
Stephen R. Vessersug Regional Air Pollution Control Director

Enclosure: As stated
cc: Ur. Edward P. Wilson
Asst. Health Comaissioner

[^0]: a) Presented at the 61st Annual Meeting of the Air Pollution Control Association, St. Paul, Minnesota, June 1968.
 b) Director of Engineering, Los Angeles County APCD.
 c) Principal Engineer, Los Angeles County APCD.
 d) Air Pollution Engineer, Los Angeles County APCD.

[^1]: * Through February 29, 1968.

[^2]: - Pont AbCA Conf. Niato: Increases havo been mado on jil) 1, inex.

[^3]:

