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disclosed. Furthermore, the Scout 2008 software and documentation are supplied “as-
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% NDs
ACL
A-D, AD
AM
ANOVA
AOC

B*

BC

BCA

BD

BDL
BTV
BW
CERCLA

CL
CLT
CMLE
COPC
Ccv
D-D
DA

DL
DL/2 (1)

DL/2 Estimates

DQO

DS
EA
EDF

EM

EPA

EPC

FP-ROS (Land)

Acronyms and Abbreviations

Percentage of Non-detect observations
alternative concentration limit

Anderson-Darling test
arithmetic mean
Analysis of Variance

area(s) of concern
Between groups matrix

Box-Cox-type transformation

bias-corrected accelerated bootstrap method
break down point

below detection limit

background threshold value

Black and White (for printing)

Comprehensive Environmental Response, Compensation, and
Liability Act

compliance limit, confidence limits, control limits
central limit theorem

Cohen’s maximum likelihood estimate
contaminant(s) of potential concern

Coefficient of Variation, cross validation
distance-distance

discriminant analysis

detection limit

UCL based upon DL/2 method using Student’s t-distribution
cutoff value

estimates based upon data set with non-detects replaced by half
of the respective detection limits

data quality objective

discriminant scores

exposure area

empirical distribution function

expectation maximization

Environmental Protection Agency

exposure point concentration

UCL based upon fully parametric ROS method using Land’s H-
statistic
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Gamma ROS (Approx.)
Gamma ROS (BCA)

GOF, G.O.F.
H-UCL
HBK

HUBER
ID

IQR
K

KG

KM (%)

KM (Chebyshev)
KM (b)
KM (2)

K-M, KM

K-S, KS

LMS

LN

Log-ROS Estimates

LPS
MAD

Maximum
MC

MCD
MCL

MD
Mean
Median
Minimum
MLE
MLE (t)

UCL based upon Gamma ROS method using the bias-corrected
accelerated bootstrap method

UCL based upon Gamma ROS method using the gamma
approximate-UCL method

goodness-of-fit
UCL based upon Land’s H-statistic

Hawkins Bradu Kaas
Huber estimation method
identification code

interquartile range
Next K, Other K, Future K

Kettenring Gnanadesikan

UCL based upon Kaplan-Meier estimates using the percentile
bootstrap method

UCL based upon Kaplan-Meier estimates using the Chebyshev
inequality

UCL based upon Kaplan-Meier estimates using the Student’s t-
distribution cutoff value

UCL based upon Kaplan-Meier estimates using standard normal
distribution cutoff value

Kaplan-Meier
Kolmogorov-Smirnov
least median squares

lognormal distribution

estimates based upon data set with extrapolated non-detect
values obtained using robust ROS method

least percentile squares

Median Absolute Deviation
Maximum value

minimization criterion

minimum covariance determinant
maximum concentration limit
Mahalanobis distance

classical average value

Median value

Minimum value

maximum likelihood estimate

UCL based upon maximum likelihood estimates using Student’s
t-distribution cutoff value



MLE (Tiku)

Multi Q-Q
MVT
MVUE
ND

NERL
NumNDs
NumObs
OKG

OLS

ORD

PCA
PCs

PCS
PLs
PRG
PROP
Q-Q
RBC

RCRA
ROS

RU

S

SD, Sd, sd
SLs

SSL

S-W, SW
TLs

UCL

UCL9S5, 95% UCL
UPL

UPL95, 95% UPL
USEPA

UTL

Variance

W*

UCL based upon maximum likelihood estimates using the

Tiku’s method

multiple quantile-quantile plot
multivariate trimming

minimum variance unbiased estimate
non-detect or non-detects

National Exposure Research Laboratory
Number of Non-detects

Number of Observations

Orthogonalized Kettenring Gnanadesikan
ordinary least squares

Office of Research and Development

principal component analysis
principal components
principal component scores
prediction limits

preliminary remediation goals
proposed estimation method

quantile-quantile

risk-based cleanup
Resource Conservation and Recovery Act

regression on order statistics

remediation unit
substantial difference

standard deviation
simultaneous limits
soil screening levels
Shapiro-Wilk
tolerance limits

upper confidence limit
95% upper confidence limit

upper prediction limit

95% upper prediction limit

United States Environmental Protection Agency

upper tolerance limit
classical variance

Within groups matrix



WiB matrix
WMW
WRS

WSR
Wsum
Wsum?2

viil

Inverse of W* cross-product B* matrix
Wilcoxon-Mann-Whitney

Wilcoxon Rank Sum

Wilcoxon Signed Rank

Sum of weights

Sum of squared weights
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Chapter 10
Muitivariate EDA

The Multivariate Exploratory Data Analysis (EDA) module of Scout performs principal
component analysis (PCA) and discriminant analysis (DA). The data should have a minimum of
two variables. In order to perform a DA, a group variable (column) should be included in the
data set. The values (alphanumeric) of the group variable represent the various group categories.

10.1 Principal Component Analysis

Principal component analysis is one of the well recognized data dimension reduction techniques.
While the first few high variance principal components (PCs) represent most of the systematic
variation in the data, the last few low variance PCs provide useful information about the random
variation that might be present in the experimental results. Graphical displays of the first few
PCs are routinely used as unsupervised pattern recognition and classification techniques. The
normal probability Q-Q plots and scatter plots of the PCs are also used for the detection of
multivariate outliers.

Since the MLE of the dispersion matrix and the correlation matrix get distorted by outliers, the
classical PCs (obtained using the covariance or correlation matrix) also get distorted by outliers.
The robust PCs give more precise estimates of the systematic and random variation in the data by
assigning reduced weights to the outlying observations.

Let p= (pl,pz,..., pp) represent the matrix of eigen vectors corresponding to the eigen values

(A1, X2, ..., Ap) of the sample dispersion (correlation) matrix (classical or robust). The eigen
vector, py, corresponds to the largest eigen value, A,,..., and the eigen vector, p,, corresponds to
the smallest eigen value, X,. The equation, y = px, represents the p principal components, with

= p' x representing the i" principal component.
Y= p, Y g p P p

Q-Q plots of the principal components are sometimes used to reveal suspect observations and
also to provide checks on the normality assumption. Scatter plots of the first few high-variance
PCs reveal outliers which may inappropriately inflate the variances and covariances. Plots of the
last few low-variance PCs typically identify observations that violate the correlation structure
imposed by the main stream of the data, but that are not necessarily outlying with respect to any
of the individual variables.

Scout can compute the PCs for both the classical dispersion (correlation) matrix and the robust
dispersion (correlation) matrix. The iterative or robust procedures available in Scout are: the

sequential classical, PROP, Huber, MVT, and MCD procedures.

Few rules have been incorporated into Scout for the ease of graphing in the Multivariate EDA
module.
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A rule, called the proportion rule, exists where only the scores and loadings
corresponding to the proportion of eigen values greater than 0.0001 will be plotted.

If any of the final matrix used to compute the eigen values and the loadings are singular,
then the graphing is based on the proportions rule.

If the any of the eigen values of the final matrix is less than 10°%° or greater than 10"
then those loadings and the scores based on those eigen values will not be plotted.

If the classical initial matrix used for generating the scores in any of the robust method is
singular, then a message will be displayed and further calculations will be stopped.

If the standard deviation of any of the scores is less than 107 or greater 107, then
contours will not be plotted on their respective scatter plots.

If the coefficient variation of any of the scores is less than 107 or greater 107, then
contours will not be plotted on their respective scatter plots.

If the absolute value of the correlation between the two variables used in scatter plots is
greater than 0.99, then the contours will not be plotted.

If the absolute difference between the standard deviations of the two variables used in the
scatter plot is less than 10, then contours will not be plotted.

10.1.1 Classical Principal Component Analysis

Click on Multivariate EDA P PCA & Classical.

|

Fule Edt Configure Data Graphs Stats!GOF Qutlers/Estimates Regression MHB@IE[B@EJ GeoStats Programs Wmndow Help
Nawgatlon Panel I 0 1 2 3 | B Ol ahsdel | 8
- i »
IName ] Count Knock Spak At ! Dlscnmlnar?t Analysis ([‘)A) I R:abust »
1 P 1 Al fdd 1373 139 i R97I I

2.
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The “Select Variables™ screen (Section 3.4) will appear.

o Click on the “Options” button for the options window.



o

—Matrix Ta Use

" Covariance

" Corelation

ptions,

r—Print to Cutput

& No Scores

—Scores Storage
¢ No Storage

{~ Same Worksheet

" New Worksheet

" Print Scores 0K

Cancel

4

o Specify the storage of principal component scores. No scores will be
stored when “No Storage” is selected. Scores will be stored in the
data worksheet starting from the first available empty column when
the “Same Worksheet” is selected. Scores will be stored in a new
worksheet if the “New Worksheet” is selected. The default is “No
Storage.”

o Specify the printing of scores in the output in the “Print to Output”
option. The default is “No Scores.”

o Specify the “Matrix To Use” to compute the principal components.

The default is “Correlation.”

o Click “OK” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

EH Classital €, Graphics; Options;

r~Select Graphics

¥ Sciee Plot

¥ Hom Plat

¥ Load Matnx Plat

¥ PCA Scatter Plot

¥ Q-Q of PCAs

Tile for Scree Plot

Scree Plot of Eigen Values
Title for Horn Plot

Hoin Plot of Classical PCs

Title for Load Maliix Flot

Load Matnix Plot - Classical

Title for Scatter Plot.

Scatter Plot of Classical PCs

Title for Q-Q Piot

Q-G Plot of Classical PC Scores

Select Contour for XY Scatter Plot

" No Contour

" Indvidual [MD]
 Simultaneous [MD Max]
% Indwvidual/Simultansous

MDs Distrbution
|‘(7 Beta " Chisquare

Cutoff for Contowr Lines
Critical Alpha

I 005
0K J Cancel I

Z
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o

The “Scree Plot” provides a scree plot of the eigen values.

The “Horn Plot” provides a comparison of the computed eigen values
to the multi-normal generated eigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for the distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK” to continue or “Cancel” to cancel the graphics options.

Click on “OK?” to continue or “Cancel” to cancel the PCA computations.

Output example: The data set “BUSHFIRE.xIs” was used for the classical PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The classical correlation matrix was obtained from this covariance matrix and the
principal components (eigen values) and the principal component loadings (a matrix of eigen
vectors) were obtained from the correlation matrix.

454



Output for the Classical Principal Component Analysis.

Data Set used: Bushfire.

Principal ComponenléAnalysis u.sing the Clz;ssicd Melhlod

Date/Time of Computation

1/29/2008 10:40:15 AM

User Selected Options

FromFile {D:\Narain\Scout_For_Windows\ScoutSourceAWorkD atinE xcel\BushFire
Full Precision |OFF
Display Scores Option |Do not Display PC Scores in Output

PC Scores Storage

Do Not Store Scores to Worksheet

Matiix Used to Compute PCs

Correlation

Graphics

Scree Plot Selected

Scree Plot Title

Scree Plot of Eigen Values

Graphics |Hom Plot Selected
Horn Plot Title  |Horn Plot of Classical PCs
Graphics |Load Matrix Plot Selected
Load Matiix Plot Title |Load Matrix Plat - Classical

Graphics

XY Scatter Plot Selected

XY Scatter Plat Title

Scatter Plot of Classical PCs

Contour

No Contour Lines will be Displayed

Graphics

Scores Plot Selected

Scares Plot Title

Q-Q Plot of Classical PC Scores

Summary Statistics

Number of Observations

Number of Selected Vanables

Mean

Casel Case 2 Case 3

Case 4 Case 5

103.6 1291 2886 2279 2866
Standard Deviation
Casel Case 2 Case 3 Case 4 Caseh
2015 35 1772 64.06 5217
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Output for the Classical Principal Component Analysis (continued).

—— e e

Determnant]1 195E+12 T T‘_i T
Log of Deteiminart| 27 81 - 4“~—4L——-i—
Eigenvalues of Classical Covariance S Matie o -—_J[ D
Eval T Eval2 | Eval3 T Evald | Evd5 Y o A
TieA | 4818 |34 | 0B |%am | [ T | T T T Am
SumolEBenvaIuesl 39862 B - o
Classical Comrelation R Malrix 0T - ‘—
Case1  [Case2 |Case3  Cased  'Case5 -1
Case 1 1 1 D80z | 058 0435 043 I A
Case 2 0802 i 955 0528 | 0516 __—‘t"*“—‘"—‘
Case3 | 0585 | 0525 1 0974 0876 |~ T
Cased | 0435 0528 0974 | 1 03m | ] -
Case5 | 049 G518 0976 0933 1
Delermrnanth 8489E-6
Eigenvalues of Classical Correlation R Makrix - -
Evall Evd2 | Evd3 | Evald | Evals
55301E4 | 00155 | 0213 0979 3792
Sum of Eigenvalues, 5 T

Summary T able {Eigenvalues)

Eigen Value Difference [Proportion | Cumulative
PC1 3792 2813 0.758 75.84
PC2 0.979 0.766 0196 95.42
PC3 0213 0.198 00426 99.68
PC4 0.0155 0.0149 | 00031 99.99
PC5 |5.5901E4 | N/A 1.1180E-4 | 100

PC Loadings (EigenVectors)
PC1 PC2 PC3 PC4 PCS
Case1 -0.383 0.595 0.663 -0.226 0.00614
Case 2 -0.383 0.591 -0.692 0.159 -0.0165
Case 3 049 0.267 -0.227 -0.798 -0.0115
Case 4 0.484 0.33 0.119 0.383 -0704
Case5 0.482 0.34 00927 0.373 0.7

Note: [f the proportion of a principal component is less than 0 01, then that principal component will not be used
in the graphing of the load matrix plot, scatter plot of the scores and the Q-Q plots of the scores
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Output for the Classical Principal Component Analysis (continued).

& Scout 2008 - [PC_Scores]

o File Edt Configure Data Graphs Stats/GOF Outliers/Estimates Regression Multivariste EDA GeoStz

Navigation Panel I

D:\Narain\Scout_Fo...
PCA_Out.ost
PCA_Scree.gst
PCA_Horn.gst
PCA_Load gst
PCA_Scatter.gst
PCA_ScoresQQ.gst
PCA_Out_a.ost
PCA_Scree_a.gst
PCA_Hormn_a.gst
PCA_Load_a.gst
PCA_Scatter_a.gst
PCA ScoresQQ a....

PC_Scores

Name I

W W N DO s W N -

0 1 YT T
PCS1 | PCS2 | PCS.3 | PCS_4  PCSS
J775351005694259650 1163934961 3589668299 3115253982
13676875374 7682516768 5085220704 72837506731827782045
17358248901191585794 1788445233 1645343206 7902834014
371877350039446431 201866896205 7156062681 3610648320
3667370154 1030809727 25754736101 310566971 3001243610
19186308521350210849 3977055038 3573009521 1353302576
1286201157 2802007026 3877255474 33635975383157652000
3764973363 3531926836 2342813507 3038594 706 3717383701
7074536333 1034940558 35542546747 3501 372485 2651541661
7291709281 21473922561 567105977 70009365153625773225
1310418376 3020343705 1262500154 1514756675 2362914550
31573477331094188872 3593713170 3071389950 3486421597
3028761554 29855053247040317070 3910984267 1302177315
3851954396 1022183602 1397934551 2756756764 3862712282

5

Note: The scores storage in the “New Worksheet” option was chosen in the “Classical PC Options” window. This
resulted in a new worksheet named PC_Scores being generated and the principal component scores being stored in
that worksheet. Those scores are available to the user for further computations. The score storage option of PCA

remains the same for all of the other PCA procedures incorporated in the principal component module of Scout.

Output for the Classical Principal Component Analysis.

: Eigen Values

400

360

340

30

»
B

&

&

~ Scree Plot of Eigen Values

3
Principal Component Number
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Output for the Classical Principal Component Analysis (continued).
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Output for the Classical Principal Component Analysis (continued).

Observations outside of the simultaneous ellipse (tolerance ellipsoid) are considered to be anomalous. Observations
between the individual (prediction ellipsoid — inner ellipse) and the simultaneous (tolerance ellipsoid — outer ellipse)
ellipses may also represent outliers.
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Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.2 Iterative and Robust Principal Component Analysis

1. Click on Multivariate EDA B> PCA B> RobustP> Sequential Classical, Huber, MVT
or PROP.
&% Scout 4.0 < [D out:_Fo di outSource\WorkDa o \BRA
1_:51. Fle Edt Configure Data Graphs Stats/GOF OutlersfEstimates Regression AR GeoStats  Programs Window Help
Navigation Panel I 0 1 2 3 Cassicdl a1 _ g
Name I _EP_UEI__, P ”) = Discniminant Analysis (DA) bl rcal :
D \Naraim\Scout_Fo L 1I__,_9“,, 101 196 ~283}_____“*ﬁ__ | Huber —
2 LA LI DL L L S T TR ™ }
3 3 03] 107 202 Fu | M
a 4 94l X TR | 1 A : R
2. The “Select Variables” screen (Section 3.4) will appear.

o Click on the “Options” button for the options window.

pused BROP)PE Optons

—Matrix ToUse ———— 1 Select Initial Estimates ——— —Select Number of lterations —
. i 10
Covariance C Classical l
& Corelation ' [Max = 50]

- " Sequential Classical
— Cutoff for Outliers

Critical Alpha

OKG (Maronna Zamar ) 0.05

" KG (Not Orthegonalized)

—Print to Qutput ——— " Robust (Median, MAD)
* NoScores

O]

" Prirt Scores

—Influence Function Alpha

—Scores Storage " MCD Influence Furction
@ NoStorage a0s
" Same Worksheet —MDs Distiibution ———————— Alpha
@ Beta " Chisguare
" New Worksheet aK l Cancel |

.

o Specify the storage of principal component scores. No scores will be
stored when “No Storage” is selected. Scores will be stored in the
data worksheet starting from the first available empty column when
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the “Same Worksheet” is selected. Scores will be stored in a new
worksheet if the “New Worksheet” is selected. The default is “No
Storage.”

o Specify the printing of scores in the output in the “Print to Output”
option. The default is “No Scores.”

o Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation.”

o Specify the initial estimates. The default is “OKG (Maronna
Zamar).”

o Specify the distribution for MDs. The default is “Beta.”

o Specify the number of iterations. The default is “10.”

o Specify the cutoff for the outliers and the influence function alpha (or
trim percentage for MVT). The defaults are “0.05” and “0.05 (0.1 for
MVT).”

o Click “OK?” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

—Select Graphics ~Select Contour for XY Scatter Plot
™ Scree Plot ¢ No Contour
€ Individual [MD]
e o
[ Hom Plot Simultaneous {MD Max]

% Indwidual/Simultaneous

—MDs Distnbution

r
Load Matnx Plot (% Beta  Chisquare

Title for Scatter Plot: r Cutoff for Contour/Elipsoids
Scatter Plot of Sequential Classical PCs Critical Alpha

I 005
OK ] Cancell

[V PCA Scatter Plat

™ Q-Qof PCs

A
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O

The “Scree Plot” provides a scree plot of the eigen values.

The “Horn Plot” provides a comparison of the computed eigen values
to the multi-normal generated cigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for the distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Click on “OK” to continue or “Cancel” to cancel the robust PCA computations.

10.1.2.1 Sequential Classical PCA

Output example: The data set “BUSHFIRE.xIs” was used for the sequential classical PCA. It
has 38 observations and five groups. The initial estimate of scale matrix was the classical
covariance matrix. The outliers were found iteratively and the observations were given weights
accordingly. The weighted covariance matrix was calculated. The correlation matrix was
obtained from this weighted covariance matrix and the principal components (eigen values) and
the principal component loadings (a matrix of eigen vectors) were obtained from the correlation

matrix.
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Output for the Iterative Sequential Classical Principal Component Analysis.

Data Set used: Bushfire.

i . Rabust Principal Components Analysis using the Classical | terative Method

" Date/Tme of Computation

1/29/2008 11 3312 AM

User Selected Options

From File

D.\Naram\Scouw_For_Windows\ScoutS ourceSworkD atinE xcel\BushFire

Full Precision

OFF

Display Scores Option

Do not Display PC Scores in Output

PC Scores Storage

Do Not Store Scores to Worksheet

Matix Used to Compute PCs

Conelation

Crbical Alpha ta Determme Outhers

005

Initial Estimates

Robust OKG (Maronna Zamar) Maties

Number of ltetations

10

Graphics

XY Scatter Plot Selected

XY Scatter Plot Tile

Scalter Plot of Sequential Classical PCs

Contour

Contour Elipses drawn at Indwidual Beta MD(0 05) and at Max MD(0 05)

Summary Statistics [
T Number of Clbsewahons; 38 e !
Number of Selected Vanzbles}5
Mean
Case 1 Case2 | Case3 | Cased | Case5 | T T
1036 1281 26888 2279 2866
Standard Deviation T T T I
Case 1 Case 2 Case 3 Case 4 Case 5
2015 k5] 1772 6406 217 | ] 7T )
Classical Covariance S Matmt
Case 1 Case 2 Case 3 Case 4 Case 5
406 1 565 4 -2091 6387 51586
5654 | 125 -3258 1184 9425 7| o T T -
-2091 -3258 31405 11060 3021
6387 1184 11050 4103 3340
5156 | -9425 | 9021 3340 2122 T _
Determnant|1 195E+12
Log of Determmant| 27 81
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Output for the Sequential Classical Principal Component Analysis (continued).

Initial Robust OKG (MaronnaZamar) Covariance S Matnx

Case 1 Case 2 Case 3 Case 4 Caseb
427 6526 1014 4456 177.4
652.6 1826 3306 8027 5b8b.5
1014 3306 20837 3458 3208
344.6 8027 3455 1597 857.6
177.4 585.5 3206 857.6 735.7

Determinant|6.282E +14

Log of Determinant|  34.07

jenvalues of Initial Robust 0KG [MaronnaZamar] Covariance S Ma

Casel Case 2 Case 3 Case d Caseb

104.6 177.6 954 1581 22405

Initial Correlation B Matm

Casel Case 2 Case 3 Case 4 Case b

1 0.739 0.342 0417 0.316
0.733 1 0.533 0.47 0.505
0.342 0539 1 0.602 0.823
0.417 0.47 0.602 1 0.791

0.316 0.505 0.823 0.791 1

Determinant]  0.0332

EigenValues of Correlation R Matrie

Case 1 Case 2 Case 3 Case 4 Caseb

01 0.216 0.425 1012 3236

FinalMeanVector

Case 1 Case 2 Case 3 Case 4 Caseb

107.5 141.9 2217 201 4 265.3

Final Covaniance S Matix

Casel Case 2 Case 3 Cased Caseb

337.8 3151 -961 -140.2 -115.4

3151 5108 713.4 4109 346

-961 7134 16189 4712 3922

-140.2 4109 4712 1529 1271

-115.4 346 3922 1271 1060

Determinant| 2.038E+10
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Output for the Sequential Classical Principal Component Analysis (continued).

Final Correlation R Matrix
Case 1 Case 2 Case 3 Case 4 Case b
1 0.759 -0.411 -0.195 0193
0.753 1 0248 0485 047
-0.411 0.248 1 0.947 0.947
-0195 0465 0947 1 0998
-0.193 0.47 0.947 0.998 1
Determinant| 4.5043E-6
Eigenvalues for Final Correlation R M atx
Casel Case 2 Case 3 Case 4 Case 5
000153 | 00156 0.0334 1.779 317
Summary T able [Eigen ¥alues)
Eigen Value Difference |Proportion |Cumulative
PC1 317 1.391 0.634 63.4
PC2 1.779 1.746 0.356 98.99
PC3 0.0334 0.0178 | 0.00668 99.66
PC4 0.0156 0.014 0.00311 9997
PC5 0.00153 | N/ 30684E-4 | 100
Load M atrix (Eigen ¥ectors)
PCt PC2 PC3 PC4 PC5
Casel 0.1 0.732 0141 0653 | 0069
Case 2 0265 0.658 -0.0606 -0.698 00786
Case 3 0.54 -0.175 -0.816 0 -0.00554
Case 4 056 |-7.677E-4 04 0.253 0.68
Caseb 0.56 0.00216 0.388 00983 | -0.725
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Output for the Sequential Classical Principal Component Analysis (continued).

Scatter Plot of Sequential Classical PCs

43

44

24

04

PC2

08

48
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Observations outside the tolerance ellipse are considered to be anomalous. Observations between the prediction and
the tolerance ellipses are observations with reduced (but > 0) weights. Those observations may represent potential
outliers needing further investigation.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
components scores and selected variables, and Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.2 Huber PCA

Output example: The data set “BUSHFIRE.xIs” was used for the Huber PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the Huber influence function and the
observations were given weights accordingly. The weighted covariance matrix was calculated.
The correlation matrix was obtained from this weighted covariance matrix and the principal
components (eigen values) and the principal component loadings (a matrix of eigen vectors)
were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the Huber Influence Function.
Data Set used: Bushfire.

iz ~"Rabust Principal Components Analysis using the Huber Influence Function
"7 Date/Tme of Computabon 172872008 11 18 BAM T T T
User Selected Oplions i
- Fiom File ' D \Naram\Scoul_For_wndows\ScoulSource\wWorkD atnE xceRBushFre T
Full Precsion |OFF T - o T
Display Scores Option Do not Display PC Scores in Qutput
- PC Scoies Storage  |Do Not Store Scores to Worksheet T T/ T
Matnx Used to Compute PCs | Correlation -
Distrbutional Squared MDs ' Beta Distibution o - T -
Influence Function Aipha ;ous o o oo T o
Irutiad E stimates |Robust OKG (Maronna Zamar) Matnx
D Number of lterahions |1IJ - _7 - - T
Graphies l)(Y Scatter Plot Selected o ] o
XY Scatter Plot Tale iScatlex Plot of Huber PCs
T Contour Contour Elipses diawn at Indwidual Beta MD(005) and at Max MD{005)
Summary Sltatistics o |_ - T
Number of Clbsewallons;38 *T' ] . o 1l~—f i L N o
Number of Selected Valiables,S J )
—_— VR W L o ——— - ——
—— T [ S
Mean
Casel | Case2 | Case3 | Cased | Caseb T - N
036 [ 187 886 | 279 | %S i B T T T T
StandardDeviabon B BA Bt
Case 1 Case 2 Case 3 Case 4 Case 5 o - I A I
2015 5 1772 8406 | 5217 | 7 ‘_i"”*
- S T O B
Classical Covariance S Matmt !
Casel | Case2 i Case 3 ! Cased | Case5 - %—
4061 554 2031 | 6387 | 5156 - R I
565 4 1225 | 3238 11184 9425 I -
2081 | 3%8 (34 1180 | 902 T I I s e
587 | il (TiEd 413 [ 30 | 1
5156 | 9425 | @21 | 140 | 2732 | ’*T‘__
- Delermmant!1 195E+12 - —— F —
Logof Determinand| 2781 | T - .
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Initial Robust OKG (MaronnaZamar] Covariance S M abix

Case 1l Case 2 Case 3 Case 4 Caseb
427 6526 1014 3446 177 4
652.6 1826 3306 8027 5855
1014 3308 20637 3455 3205
34456 802.7 3455 1697 857.6
177.4 5855 3208 8576 7387

Determinant|6.282E+14
Log of Determinant|  34.07

penvalues of Initial Robust OKG (M aronnaZamar) Covariance S Ma
Casel Case 2 Case 3 Case d Caseb
104.6 177.6 954 1581 22405

Initial Correlation R Matmx
Casel Case 2 Case 3 Case 4 Caseb

1 0.733 0342 0.417 0316
0.739 1 0539 0.47 0.505
0.342 0539 1 0.602 0823
0417 0.47 0.602 1 0791

0.316 0.505 0.823 0.791 1
Determinant;  0.0332

EigenValues of Correlation B M atix
Case Case 2 Case 3 Case 4 Caseb
01m 0.216 0.425 1.012 3236

FinalMeanVYector
Casel Case 2 Case 3 Case 4 Case 5
103.8 129.8 2941 2301 2885

Final Covariance 5 Matrix

Case 1 Case 2 Case 3 Case 4 Case 5
4179 5751 -2274 7045 -569.9
575.1 1232 -3704 -1365 -1092
-2274 -3704 30006 10416 8473
-704.5 -1365 10416 3808 3089
-569.9 -1092 8473 3089 2509
Determinant| 7.753E+11
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Final Correlation B Matrix

Casel Case 2 Case 3 Case 4 Case b
1 0802 | 0642 -0.558 0557 ]
0.802 1 -0.603 063 0621
0642 0609 1 0.974 0.977
-0558 063 0.974 1 0.993 ]
0557 0621 0.977 0939 1 7

Determinant|5.2523E

-6

Eigenvalues for Final Correlation R M atx

Case 1 Case 2 Case 3 Case 4 Case b
6.0815E-4 00127 0215 0.3 3.972
Summary T able [Eigen Values)
Eigen Value Difference [Proportion |Cumulative
PC1 3972 3173 0794 79.45
PC2 08 0.585 016 95.44
PC3 0215 0.202 0043 9973
PC4 00127 0.012 0.00253{ 93893
PC5 |6.0815E-4 | N/A 1.2163E-4 | 100 N
Load Matiix (Eigen Vectors]
PC1 pC2 PC3 PC4 PC5
Case 1 -0.391 0615 0643 -0.234 0 00221
Case 2 -0 404 0.552 -0.705 0185 | -0.012
Case 3 048 0.28 -0263 -0.788 -0.026
Case 4 0476 0.342 oM 0.397 -0.697
Case 5 0.476 0.35 0.0842 0.362 0.716
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Scatter Plot of Huber PCs

33

239

09

PC2

041

-24

Observations outside of the simultaneous tolerance ellipse are considered to be anomalous. Observations between
the individual prediction ellipsoid and the simultaneous tolerance ellipsoid received reduced weights (< 1) and may
also represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain the different load matrix plots, scatter plots
of components scores and the variables and the O-Q plots of the component scores, as explained in Chapter 2.

10.1.2.3 Multivariate Trimming PCA

Output example: The data set “BUSHFIRE.xIs” was used for the MVT PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the trimming percentage and a critical alpha
and the observations were given weights accordingly. The weighted covariance matrix was
calculated. The correlation matrix was obtained from this weighted covariance matrix and the
principal components (eigen values) and the principal component loadings (a matrix of eigen
vectors) were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the MVT Method.

Data Set used: Bushfire.

Date/Time of CBrﬁputallon

_Robust Piincipal Components Analysis using the MVT Method

1/23/2008 11 54 03 AM -

User Selected Options

From Fie

D \WNatan\Scout_For_Wmndows\ScoutSource\WorkD atinE xce\BushFrre

Full Precasion

OFF

Display Scores Option

Do not Display PC Scotes in Output

PC Scores Storage

Do Not Store Scores to Worksheet

Matrx Used to Compute PCs

Correlation

Tnmming Percentage

0%

Cutical Alpha

to Determine Outhers

005 [planned to be used for verfication of timming non-outhers

Irabial Estmates  {Robust OKG (Maronna Zamar] Matnx
Number of lterations |10 T T T
Graphics [XY Scatter Plot Selected o - -
XY Scatter Plot Tile |Scatler Piot of MYT PCs i T
Contouwr |Contour Elipses drawn at Indwvidual Beta MD(0 05) and at Max MD(0 05) —_—.
Summary Statistics N T T —v:L T
Number of Observations, 33 N 0 T' R | T
Number of Selected Vanables(5 I
4 I I
Mean i
Case 1 Case2 [ Cased | Cased | Caseb ‘ !
1038 1291 2885 2273 2866 | 1 “T I : T
|
Standard Deviation :
Case 1 Case 2 Case 3 Case 4 Case5 A __4;, T
2015 35 1772 64 06 5217 Jl }
[
Classical Covariance S Matix ‘
Case 1 Case 2 Case 3 Case 4 Case5 |
4061 565 4 -2091 6387 5156
5654 | 1225 -3258 -1184 @25 | R
-2081 3258 [31405 | 11060 9021 1 T T
6387 | 1184 | 11080 4103 3340 T
5156 9425 | 9021 3340 27122
Deteiminant| 1 185E+12 '
Log of Determinant| 27 81 :
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Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Initial Robust OKG (MaronnaZamar) Covariance 5 M ahmx

Case 1 Case 2 Case 3 Case 4 Case5
427 652.6 1014 3446 177.4
6526 1826 3306 802.7 585.5
1014 3306 20637 3455 3206
3446 8027 3455 1597 857.6
177.4 585.5 3206 8576 73B.7

Determinant|6.282E+14

Log of Determinant|  34.07

penvalues of Initial Robust 0KG {MaronnaZamar] Covariance S Ma

Case 1 Case 2 Case 3 Case 4 Caseb

104.6 177.6 954 1581 22405

Initial Correlation B Matmx

Case 1 Case 2 Case 3 Case 4 Caseb

1 0.739 0.342 0.417 0.316
0739 1 0.539 047 0.505
0342 0.533 1 0602 0.823
0.417 0.47 0.602 1 0.791

0316 0.505 0.823 0.791 1

Determmnant|  0.0332

EigenValues of Correlation R Matrix

Case 1 Case 2 Case 3 Case 4 Case b

0111 0.216 0.425 1.012 3.236

FinalMeanVector

Case 1 Case 2 Case3 Case 4 Caseh

104.4 131.6 3103 236.3 2937

Final Covariance S Matric
Case 1 Case 2 Case 3 Case 4 Case b
4319 587.1 -2523 -789.4 -639.8
587.1 1245 -4266 -1582 1272
-2523 -4266 27995 9621 7800 a

-789.4 -1582 9621 3478 2810

-633.8 1272 7800 2810 2272

Determinant| 2.729E+11
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Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Final Correlation B Matrix
Case 1 Case 2 Case 3 Case 4 Case b N
1 0801 -0.726 -0.644 -0.646
0301 1 -0.722 -0.76 -0.756
-0.726 -0.722 1 0.975 0978 -
-0.644 -0.76 - 0975 1 0.939
-0.646 -0756 0.978 0,993 1
Determinant| 2.2922E -6
Eigenvalues for Final Correlation B M atr
Case 1 Case 2 Case 3 Case 4 Case b
6.1666E-4 | 0.0074 0212 0.563 4218
Summary T able (EigenValues)
Eigen Value Difference |Proportion |Cumulative
Pt1 4218 3655 0.844 84.36
PC2 0.563 0.351 0113 95.61
PC3 0212 0.204 0.0423 99.84
PC4 0.0074 0.00673 | 0.00148 99.99
PC5 |B.16BBE-4 | N/A 1.2333E-4 | 100
Load Matrix (Eigen¥ectors)
PC1 PC2 PC3 PC4 PC5
Casel -04 0.678 0.567 -0244 -0.0152
Case 2 -0.426 0.456 075 0.221 00075
Case 3 047 0273 -0328 -0.769 -0 0822
Case 4 0468 0.358 0.0782 0451 -0.665
Caseb 0.468 0 361 0.0531 0312 0.742
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Output for the Principal Component Analysis Based Upon the MVT Methods (continued).

Scatter Plot of MVT PCs

27

07

-23

Observations outside of the simultaneous ellipse are considered to be outlying. Observations between the individual
and the simultaneous ellipses receiving reduced weights may also be considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
components scores and selected variables, and the O-Q plots of the component scores, as explained in Chapter 2.

10.1.2.4 PROP PCA

Output example: The data set “BUSHFIRE.xIs” was used for the PROP PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the PROP influence function and the
observations were given weights accordingly. The weighted covariance matrix was calculated.
The correlation matrix was obtained from this weighted covariance matrix and the principal
components (eigen values) and the principal component loadings (a matrix of eigen vectors)
were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the PROP Influence Function.

Data Set used: Bushfire.

" Date/Time of Computation

R s ke S

1/29/2008121242PM

Robust Principal Components Analysis using the PROP Influence Function

User Selected Options

From File

D SNaram\Scoul_For_windows\ScoutSource\WorkD atinE xcel\BushF ire

Full Precisin

OFF

Display Scores Dption

Do not Display PC Scores in Output

PC Scores Storage

Do Not Store Scores to Worksheet

Matrx Used to Compute PCs

Correlation

Distnbutional Squared MD s

Bela Distnbution

" “Influence Funchon Alpha

005

Inhal Estimales

Robust OKG (Maranna Zamat) Matix

Number of lterations

10 T

Graphics XY Scalter Plot Selected
- %¢Scaller Plot TWe |Scater Pltof PROPPCs T T
Contowr | Contour Ellipses drawn at Individual Beta MD(0 05) and at Max MD{0 05) o
T Summary Statistics - 1 -7 -7
Number of Ubservalnonsjlﬁ “f 7
" "Number of Selected Vanab!esJ 5 T N h -
| - .
Mean - B l
Case 1 Case 2 Case 3 Case 4 Case 5 .
1036 1291 2886 2279 2866 T
Standard Deviaton _1
Case 1 Case 2 Cese 3 Case 4 Case5 o
2015 35 1772 6406 5217 - ot
_ R S "
Classical Covariance S Matmt
Case 1 Case 2 Case 3 Case 4 Case 5 l
4061 565 4 -2091 6387 5156 ’
565 4 1225 -3258 1184 9425
-2081 -3258 31405 11060 3021 - h
£38.7 1184 11060 4103 3340 )
5156 9425 9021 3340 2122 -
Determinant|1 195E+12 r 7
T Log of Determinant| 27 81
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Initial Robust OKG (MaronnaZamar) Covariance S M abie

Case 1 Case 2 Case 3 Case 4 Case5
427 652.6 1014 3446 177.4
B52 6 1826 3306 802.7 585.5
1014 3306 20637 3455 3206
3446 802.7 3455 1597 8576
177.4 585.5 3206 857.6 735.7

Determinant|6.282E+14
Log of Determinant|  34.07

genvalues of Initial Robust 0KG (MaronnaZamar) Covariance S Ma
Case 1 Case 2 Case 3 Case 4 Case 5
104.6 177.6 954 1681 22405

Initial Correlation B M atmx
Case 1 Case 2 Case 3 Case 4 Caseb

1 0.739 0.342 0.417 0.316
0.739 1 0.539 0.47 0505
0.342 0539 1 0.602 0.823
0417 0.47 0.602 1 0731

0.316 0.505 0.823 0.791 1
Determinant;  0.0332

EigenValues of Correlation R Matrix
Case 1 Case 2 Case 3 Case 4 Case 5§
0111 0216 0.425 1.012 3236

FinalMean¥ector
Case 1 Case 2 Case 3 Case 4 Caseb
104.6 146.1 275.2 2177 279.2

Final Covariance 5 Matrix
Case 1 Case 2 Case 3 Case 4 Caseb

260.4 2136 -1443 -326.5 -264.7

2136 187.5 -956.1 -195.2 -163.6

-1443 -956.1 8688 2136 1695
-326.5 1852 | 2136 563 4392
-264.7 -163.6 | 1635 4392 345.4

Determinant| 33022620
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Final Comrelation R Matuix

Case Case 2 Case 3 Case 4 Case 5

1 093 -0 929 -0822 -0.851

0.931 1 -0.749 -0.601 -0.643
-0923 -0.749 1 0.956 0.979
-0.822 -0.601 0.966 1 0336
-0.851 -0.643 0979 0.9%6 1

Determinant| 3.7184E-7
Eigenvalues for Final Correlation R Matme
Case Case 2 Case 3 Case 4 Case b
0.00156 | 0.00427 0.0221 0.571 4.4Mm
Summary T able (EigenValues)
Eigen Value Difference |Proportion |Cumulative

PC1 4.4 3.823 088 8801

PC2 0.571 0.549 0114 93.44

PC3 0.0221 00179 000443 9338

PC4 0.00427 | 0.00271 8.5466E-4 9397

PC5 000156 | N/A 31278E-4 | 100

LoadMatiix (EigenVectors)
PC1 PC2 PC3 PC4 PCh

Case 1 -0.46 0.33 0.54 -0.531 -0.326
Case 2 -0 395 0732 -0 493 0197 0.16
Case 3 0472 01589 -0505 -0 564 -0.423
Case 4 0443 0.439 0 354 0523 -0.455
Case 5 0457 0.37 029 -0.296 0.694
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Scatter Plot of PROP PCs
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Observations outside of the simultaneous (tolerance) ellipsoid are considered to be outliers. Observations (if any)
between the individual (prediction ellipsoid) and the simultaneous (tolerance) ellipses received reduced (< 1)
weights and may represent potential intermediate outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
principal components scores and selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.2.5 Minimum Covariance Determinant PCA

)2 Click on Multivariate EDA » PCA » Robust » MCD.

‘—Ii-' Scout 4.0 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatinExce \BRADU |
o) Fle Edt Configure Data Graphs Stats/GOF Outliers/Estimates Regression [ W GeoStats Programs Window Help

Navigation Panel I 0 1 2 3| ¥ Classical | a q
e [ " Cowt |y | w1 | o | Discriminant Anaysis (DA) » Sequential Classical
OVammseon | L | 1 & i wme o ot .
2 2 101 95 205 289 s
3] 3 103 107 202 ) PROP
2 The “Select Variables™ screen (Section 3.4) will appear.
478



o Click on the “Options” button for the options window.

~Matnk ToUse —— —Scores Storage
" Covariance {* No Starage
' Conelation " Same Worksheet

-
—Print to Cutput New Worksheet

* No Scores

" Print Scores oK Cancel

4

o Specify storage of the principal component scores. The default is “No
Storage.”

o Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation.”

o Click “OK” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

B8 Robust MCD/BE Graphics,Options,

—Select Graphics —Select Contour for XY Scatter Plot =

™ Scree Plot " No Contowr
" Individual {MD]
€ Smultaneous [MD Max]

T~ Horn Plot
% Indvidual/Simultaneous

r— MDs Distrbution

[ Load Matnx Plot ® Bela (" Chisquate

Title for Scatter Plot —Cutoff far Contour/E lipsoids
™ PCAScatterPlot | Scalter Plot of MCD PCs Crivcal Alpha
] 005

™ Q-QofPCs

OK | Cancel !

4
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o The “Scree Plot” provides a scree plot of the eigen values.

o The “Horn Plot” provides a comparison of computed eigen values to
the multi-normal generated eigen values.

o The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

o The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha™ value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

o The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

o Click on “OK?” to continue or “Cancel” to cancel the graphics options.

o Click on “OK?” to continue or “Cancel” to cancel the robust PCA computations.

Output example: The data set “BUSHFIRE.xIs” was used for the MCD PCA. It has 38
observations and five groups. The MCD estimate of scale was calculated. The correlation
matrix was obtained from this MCD covariance matrix and the principal components (eigen
values) and the principal component loadings (a matrix of eigen vectors) were obtained from the
correlation matrix.
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Output for the MCD Principal Component Analysis.
Data Set used: Bushfire.

" Date/Time of Computation

Principal Components Analysis using the MCD Method

1/29/2008 12 13:48 PM

User Selected Options

From File

D ANarain\Scout_For_Windows\ScoutS ource\WorkD atInE xcel\BushFire

Full Precision

GFF

Display Scores Option

Do not Display PC Scares in Qutput

PC Scores Storage

Do Not Store Scores to Worksheet

Matix Used to Compute PCs

Correlation

Graphics

XY Scatter Plot Selected

XY Scatter Plot Title

Scatter Plot of MCD PCs

Contour

Contour Ellpses drawn at Individual Beta MD(0 05) and at Max MD(0 05)

Summary Statistics

Number of Dbservations

Number of Selected Vanables

(&)}

Mean

Case 1 Case 2 Case3

Case 4 Case b

1036 1291 2886 2279 2866
Standard Deviation
Case 1 Case 2 Case 3 Case 4 Case 5
2015 35 177 2 64 06 5217

Covariance 5 Matiix

Case 1 Case 2 Case3

Case 4 Caseb

406.1 565.4 -2091 -638.7 5156
565 4 1225 -3258 -1184 9425
-2091 -3258 31405 11060 3021
6387 -1184 11060 4103 3340
5156 -9425 9021 3340 2722
Determinant{1.195E+12
Log of Determinant|  27.81
MCD Mean
Case Case 2 Case 3 Case 4 Case 5
1055 1469 274 4 2175 279
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Output for the MCD Principal Component Analysis (continued).

MCD Covariance S Matrix
Case 1 Case 2 Case 3 Case 4 Case b
2879 2228 -1408 -36.7 -258.4
2228 1966 -936 -191.2 1616
-1408 -936 8314 2043 1623
-316.7 191.2 2043 538.1 420.3
-258.4 -161.6 1623 420.3 KiH
Determinant| 75211116
Log of Determnant|  18.14
MCD Correlation R Matrix
Case 1 Case 2 Case 3 Case 4 Caseb
1 0936 -0.91 -0.805 -0837
0.936 1 0732 -0.588 -0.634
-0.91 -0.732 1 0 966 0.978
-0.805 -0.588 0.966 1 0.996
-0.837 -0.634 0.979 0.996 1
Determinant|8.9759E-7
Eigenvalues for MCD Correlation B M atre
Evall Eval 2 Eval 3 Eval 4 Eval5
000217 | 000735 00214 0.602 4367
Summary T able (EigenValues)
Eigen Value Difference |Proportion [Cumulative
PC1 4367 3.766 0.873 87.35
PC2 0.602 058 012 9338
PC3 00214 0.0141 oop428 | 9941
PC4 000735| 0.00518| 000147 9996
PCS 0.00217 | N/A 4.3397E-4 | 100
PC Load Matsix (Eigen Vectors)
PC1 PC2 PC3 PC4 PC5
Case 1 -0.458 0.351 0.482 0.65 011
Case 2 -0.395 0723 -0.47 -0.305 -0.089
Case 3 0.472 0176 -0567 0.628 0176
Case 4 0.443 0.436 0.37 0293 0618
Case5 0.458 0.365 0298 00339 | -0.753
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Output for the MCD Principal Component Analysis (continued).

Scatter Plot of MCD PCs

18

08

02

42

52

£2

72

PC1

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any)
between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.3 Kaplan-Meier Principal Component Analysis

Principal component analysis of data with non-detects can be conducted in Scout. The Kaplan-
Meier estimates of the covariance matrix and the correlation matrix is used for this analysis.

= Click on Multivariate EDA » PCA P With NDs.

£8 Scout 2008 - [D:\Narain\WorkDatInExce \FULLIRIS-nds]
gl File Edit Configure Data Graphs Stats/GOF Outliers/Estimates QA/QC Regression BUNGCGETNI M GeoStats Programs Window Help

Navigation Panel | 0 1 2 o L NohDs _»
Natfe ] count | splength spwidh | ptlength | pla DECTIminart Analysis (08) '
15 LB , nlatinid s onem -
D:\NaramiWorkDatl. | 1 | ~ A b e 1 ! ! !
- The “Select Variables” screen (Section 3.4) will appear.

e Click on the “Options” button for the options window.
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[+]

O

B Kaplan, Meier PC Options.

rMatix ToUse
" Covariance (KM}
& Corelation (KM)

i~ Prnt to Output
& NoScores

€ Print Scores

r—Scores Storage
& No Storage

" Same Worksheet

" New Worksheet

r-Compute Scores Using

@ Detection Lmit (No Change)
€ Noimal ROS Estimates

" Gamma ROS Estimates

(" Lognormal ROS Estmates

(" One Half (1/2) Detection Limtt

 Zeio

OK l Cancel

v

Specify storage of the principal component scores. The default is “No

Storage.”

Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation (KM).”

Specify the estimates of the data to compute scores. Default is
“Detection Limit.”

Click “OK?” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

rSelect Graphics

¥ Scree Plot

¥ Hom Plat

¥ Q-QofPCs

| ¥ Load Mati Plot

[V PCA Scatter Piot

\ @ C_lassicalll?(; on:Kaplam Meier Cov/Corr. Matrix Graghics Options

(KM Estimates) ~ Select Contour far XY Scatter Piot 7
Tile for Scree Plot. € No Contow
lSc:ee Plot of Classical PCs Using Kaplan " Indwidual [MD]
Tale for Homn Plot * Simultaneous {MD Max]

IHan Plot of Classical PCs Using Kaplan M
Title for Load Matr Plot

€ Indvidual/Simultaneous

Title for Scatter Plot

|Load Matre Plot - Classical PCs Using Kap!

Tile for Q-Q Plet

'Scaller Plot of Classtcal PCs Using Kaplan

~Cutoff for Contour/Elipsoids
Cutcal Alpha

I 005

[Q-Q Pot of Classical PC Scores Using Kap

o The “Scree Plot” provides a scree plot of the eigen values.



o

o Click on

The “Horn Plot” provides a comparison of computed eigen values to
the multi-normal generated eigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha” value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK?” to continue or “Cancel” to cancel the graphics options.

“OK” to continue or “Cancel” to cancel the KM PCA computations.
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Output example: The data set “Fulllris.xls” was used for the KM PCA.

Principal Components Analysis using the Classical Method

Date/Time of Computation |1

0/30/2008 7 43.49 AM

User Selected Options

From File {D.\Narain\WerkD atinE xcel\FULLIRIS-nds

Full Precision  {OFF

Display Scores Option  [De net Display PC Scores n Dutput

PC Scores Storage  |Do Not Store Scores to Worksheet

Matrix Used to Compute PCs  [Corelation

Graphics |Load Matnx Plot Selected

Load Matrix Plot Title  {Load Matix Plot - Classical PCs Using Kaplan Mezer Estimates

Graphics  {XY Scatter Plot Selected

XY Scatter Plot Ttle [Scatter Plot of Classical PCs Usmg Kaplan Meier Estmates

NonDetect Values Displayed As  |Detection Limit (No Change to Onginal Data)

Contour  |Contour Elipses drawn at Individual Beta MD(0 05) and at Max MD(0 05)

Summary Statistics

Number of Observations| 150

Number of Selected Variables|4

KM Mean
splength | sp-width | ptlength | ptwidth
5845 3037 3754 1175
KM Variance
“splength | sp-width | ptlength | ptwadth | - — -

0675 0199 3117 0604

KM Standard Deviation |

splength | spwidth | ptlength | ptwidth - = -
0822 0 446 1.765 0777

KM Covariance S Matrix

486

splength | sp-width | ptlength | pt-width

0675 | 00763 1245 0522

-0 0763 0198 0428 0152

1245 0428 3117 1288

0522 0152 1288 0604
Determnant]  0.00327




Output for the KM Principal Component Analysis (continued).

Eigenvalues of Classical Covalia.nce S Matmx
Eval1 Eval 2 Eval 3 Eval 4
4.23 0244 0.0803 0.0395
Sum of Eigenvalues|  4.594
Classical Correlation R Matrie
splength  |sp-width | ptlength  |{pt-width
sprlength 1 -0 208 0853 0818
spwidth | 0208 1 0543 | 043
pt-length 0353 -0.543 1 03939
pt-width 0.318 -0.438 0.939 1
Determinant] 0013
Log of Determinant|  -4.345
Eigenvalues of Classical Comnrelation R Matmx
Eval1 Eval2 Eval 3 Eval 4
2987 0.83 0.147 0.0355
Sum of Eigenvalues; 4
Summary T able [Eigenvalues)
Eigen Value Difference |Proportion |Cumulative
PC1 2.987 2.158 0.747 74 68
PC2 0.83 0.683 0.207 95 43
PC3 0.147 0112 0.0368 9911
PC4 0.0355 N/A 0.00888 | 100
PC Loadings (EigenVectors)
PC1 PC2 PC3 PC4
sp-length 0.509 0433 -0.681 -0.301
sp-width 0331 0894 0237 0.189
pt-length 0571 00187 0078 0817
pt-width 0.552 0.118 0683 -0.455
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Output for the KM Principal Component Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any)
between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix

plots, scatter plots of the components scores and the selected variables, and the Q-Q plots of the
- component scores. as explained in Chapter 2.
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10.2 Discriminant Analysis (DA)

Discriminant and classification analyses are multivariate techniques concerned with separating
distinct groups of observations (Johnson and Wichern, 2002) and with allocating new
observations (classification analysis) to previously defined groups (populations). The separation
procedure is rather exploratory. In practice, the investigator has some knowledge about the
nature and the number of groups. The study might be about k known groups (e.g., parts of a
polluted site, type of species, geographic regions of a country). Some of those groups may be
similar in nature and can be merged together.

The objective here is to establish g < k significantly different groups. Let s = min (g-1, p).
Then, s linear (Fisher) discriminant functions (also known as classification rules) can be
computed for those g multivariate p-dimensional groups. Those functions (rules) are then used
in all of the subsequent classifications.

Classification procedures are less exploratory. Discriminant functions (rules) obtained in the
separation procedures are used to assign current and new observations into previously defined
groups. The correct classification of the current observations with known group membership is
the basis for the validity of discriminant functions. Scout outputs the classification, the
misclassification matrices (confusion matrix), and the apparent error rates. The apparent error
rate is the percent of misclassified observations. This number tends to be biased because the data
being classified are the same data used to calculate the classification rules. The validity of the
discriminant rules can be judged by performing cross validation. Several cross validation rules,
including bootstrap cross validation methods, have been incorporated into Scout.

Outliers can distort the discriminant functions and the corresponding scores significantly. This
can result in several misclassifications. Scout incorporates the robust procedures to minimize the
distortion of various estimates and classification rules.

Three commonly used discriminant analysis methods are available in Scout. For Fisher
Discriminant Analysis (FDA), one can also plot the scatter plots of discriminant scores.
Moreover, simultaneous (tolerance) and individual (prediction) ellipsoids can be drawn on the
scatter plots of the discriminant scores. The methods included in Scout are briefly described as
follows. The details of the robustified methods (especially based upon the PROP influence
function) can be found in Singh and Nocerino (1995).

o Fisher Discriminant Analysis

Assignxotom,i=1,2,..., g, if:
Dy =% =min[) [, -F V=12,
1=l =1

and the Fisher discriminant score, y,, is given by

y, =1x i=1,2,...,s

!
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where /, are called the scaled (normalized) eigen vectors and are obtained from the

. | pt . .
eigen vectors of the W~ B matrix and are given by

S —
eS

-
pooled e:

o Linear Discriminant Analysis

Assignxotom,i=1,2, ..., g, if:

d, (%)= ma)‘{d; (xo)ad;(xo):---’d;, (xo)]

where the linear discriminant scores, d, (x), are given by
d(x)= g x == J+ np,

wherei=1,2,..., g.

o Quadratic Discriminant Analysis
Assignxgtom,i=1,2,..., g if:

dg (xy) = max[df (x,),d5 (x,),.-d2 (%,)]

where the linear discriminant scores, d.*(x), are given by

d?(x)=—1In[Z |- L[(x— 1, )E (x~ p)]+n p,

wherei=1,2,..., g

As mentioned before, cross validation can be used to verify the validity and effectiveness of
discriminant or classification rules. Various cross validation techniques have been provided in
Scout. The user can select any of those techniques and compare their performances.

o Leave One Out (LOO) cross validation, where the classification rules are obtained
using (n — 1) observations (training data or set) and testing is done on the
classification test data with the left out observation. This is the most commonly used
cross validation method employed in statistical software. Details can be found in
Lachenbruch and Mickey (1968).
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o Split cross validation, where the data is split to form two sets: the training set and test
set. The training set is used to compute the classification rules, and the test set is used
to validate those rules.

o  M-Fold cross validation, where the data is divided into M equal (roughly) subsets.
For each of the M subsets, combined data for the (M — 1) subsets are used as the
training set and the remaining subset is used as the test set. This process is repeated
M times for each of the M subsets.

o Simple Bootstrap
o Standard Bootstrap
o Bias Adjusted Bootstrap

The details of the bootstrap methods can be found in the referenced provided with the Scout
software package.

Note: The training sets and the test sets used in the various cross validation methods are obtained randomly This
random selection of the training sets (e g . in robust methods) may result in some singular matrices needed to obtain
the discriminant rules Scout provides appropriate error or warning messages whenever such a condition occurs
Many times, in practice, matrices used to derive discrimmant functions (e.g.. in robust methods) become singular.
This is especially true when not enough observations are available in each of the groups. When this happens, Scout
gives an error message and further computations are stopped.

Scout also provides an option to classify new observations or unknown observations into existing

groups. There are certain logistical rules that need to be followed when using the classification
of unknown or new observations.

o The first three letters of the group name of the new or unknown observations should
be “UNK” or “unk” only.

o The set of unknown or new observations should be the last subset of observations in a
data set. Otherwise an error message is obtained.

There are a few rules in the DA module of Scout which will not allow the contours to be plotted
on the scatter plots. These rules are:

o Ifthe standard deviation of any of the scores is less than 107 or greater 10*, then
contours will not be plotted on their respective scatter plots.

o [fthe coefficient variation of any of the scores is less than 107 or greater 10", then
contours will not be plotted on their respective scatter plots.

o Ifthe absolute value of the correlation between the two variables used in scatter plots is
greater than 0.99, then the contours will not be plotted.
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o [fthe absolute difference between the standard deviations of the two variables used in the
scatter plot is less than 107°, then contours will not be plotted.

10.2.1 Fisher Discriminant Analysis
10.2.1.1 Classical Fisher DA

. Click on Multivariate EDA B> Discriminant Analysis (DA) B Fisher DA B Classical.

Fos_Windows\ScoutSource\WarkDat InExcelMSHALL]

utc |
EE' Fle Edt Configure Data Graphs Stats/GOF Outliers/Estmates Regression MultivariateED;'A GeoStats Programs Window Help

0 1 2 3 | _PcA 0 S O Sy O )
| SiteiD | SampleD| SLRatio | Tmo |t CONS IR A = |

Nawgation Panel I

Name
fomm v Linea DA »(  Huber 13
D \Narain\Scout_Fo .. LI ,_1,_ :____A_;‘ _,,l‘t_ 1 19.5?b,*_| Quadratic DA »|  PROP i
I | S O e e Mo I
-~ 4! 1 2 2 1 1N AR 1774 12 4R

2. A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

—Cross Yaldation

I~ Leave One Out {LOO)

™ Spit

™ MFold

I~ Simple/Naive Bootstrap by Data Set
™ Simple/Naive Bootstrap by Group
™ Standard Bootstrap by Data Set

[~ Standard Boatstrap by Group

[T Bias Adjusted Bootstrap by Data Set

I Bias Adjusted Bootstrap by Group

— Prnt to Dutput

¢ NoScores " Punt Scores
0K Cancel ]

Y

o  Specify the preferred “Cross Validation” methods and their respective
parameters.

o  Specify the “Print to Output.” The default is “No Scores.”
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o

(o]

]

o  Click “OK?” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of
the check boxes.

E® optionsDiseriminantGraphies;

~ Select Graphics Scatter Plat Title

¥ Scatter Plot I Scatter Plot of Discriminant Scores
¥ Sciee Plot Scree Plot Title:
] Scree Plot of Eigen Yalues for Fisher DA
—Cutoff for Graphics ————  —Plot Contour
" No Contour

Ciitical Alpha 005

% Individual [dOcut]

r~MDs Distribution for Graphics " Simultaneous [d2max]

% Beta " Chi " Simultaneous/Individual
0K l Cancel ‘

#“

o The “Scree Plot” provides a scree plot of the eigen values.

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also the selected variables. The user has the option
of drawing contours on the scatter plot to identify any outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha” value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

o Click on “OK" to continue or “Cancel” to cancel the graphics options.
Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. Scores will be stored in the data worksheet starting from the
first available empty column when the “Same Worksheet” is selected. Scores

will be stored in a new worksheet if the “New Worksheet” is selected. The
default is “No Storage.”

Click on “OK?” to continue or “Cancel” to cancel the DA computations.
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Output example: The data set “TBEETLES.xIs” was used for the classical Fisher DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for
each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.

Output for the Classical Fisher Discriminant Analysis.
Data Set: Beetles (2 variables 3 groups).
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* " User Sefected Options

Classical l-:ishel Linee‘u Discrimin‘anlhndysi;

1171872008 10:2223 &AM

From File

D.\Marain\Scout_For_Windows\ScoutSource\WorkDatinExce\BEETLES

Full Precision

OFF

Storage Options
“G-roup'lsr—o'bgbﬁl_tés:

_tantsulflﬁibns ’

TEqual Priors Assumed
~ "Graphics Options |

No Discriminant Scores will be stored to Worksheet

Both Scree Plot and Scatter Plols are Selected

Contour Elipses drawn using Individual MD(0 05)

Alpha for Graphics
Distrbution of MDs

005 T o

Beta Distnbution used in Graphics

- TolalNumber of Observations[74~ — |

Number of Selected Variables’ 2

1 2 3
i 1] 22 . i B )
) ‘MeanVector for Group i
_ﬂ_-1”|—x27“" N N |

1462 | 141

Covariance S Matrix for Grou p_r

x1-1 x2-1
" T3Te6 | 099 e I o
-D 969 0.79 o B
" MeanVectorforGroup2 T T T
w2 [ w22 | T ] o )

1246 1423

Covariance S Matrix for Group 2

a2 w2 T ,
2137 | 0327
0327 | 17213 I T 1° o




Output for the Classical Fisher Discriminant Analysis (continued).

HeanVector for Group 3

R R
I R
R S

— T
1348 |

- ___I_

A oz'“i

S ]

S

|
A
|

3665 |

7X) -l - >l<—__ T [ I
LT i ' o
D‘Sﬁi’] T T o
I A S R S
GrandMeanVectorforData
I I B
1288 | f |
| | I
" Pooled Covariance Matmx i
L R R R
-0.56 ]_”._Hi ! ) | N
1014 T i,,~ T Mﬁ"r R
SN D RN A R
Between Gloups Malnx B
":{2“_““4"}~ - o T

I
! ]

O A I U A S S
e B N
“Within Gmups Matrie W
B " R !’ I T
1835 3973 l
39 73 ! 7201 ! ’ |
|
o W_WlnvelseBlHalnx MIB]- S _l,- o S
W e T I T
B I A N | o )
~_-3U41 l 3.576 » S l
e | I I
" UnorderedEigenvalues of Wi
"*v‘h“r Eva2 ;| | T -
T 4293 [ 2994 ‘ R l R
l |
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Output for the Classical Fisher Discriminant Analysis (continued).

496

| 1 _ 1. 1
Associated M atrix of Eigen ¥ectors of WB

Normalized Eigen Vectors for Ordered EigenVales

Evall Eval 2 '
700287 | 00235 . i e
-0.973 [ 0.982 - S
Ordered EigenValues of WiB B - ==
T l dz’ _
4293 | 2.994 T —

|

Nommalized EigenVector 1
Eval Eval2 I T
00234 | -0.963
T Normalized EigenV_gt_:fa 2 T
Evall Eval2 - -
00243 | 1017 | ] I
ClassificationSummay | | T
Predicted Membershp | T
Actual 1 2 - T
1 20 1 - T
T2 31 0
3 0 22
"HCorect | 20 3 T2 -
Prop Corect 95 24% 100% 100% | -
Total Observations; 74
Correctly Classified] 73 N
Incorrectly Classified| 1 T o
Misclassification Summary
Obs No. Actual | Predicted
17 1 2 Tl ]
ApparenfEno: Rate] 00135




Output for the Classical Fisher Discriminant Analysis (continued).

Cross VYalidation Results

Leave One Dut (LOD)Cross Validation Results

LOO Classification Summary

Predicted Membership
Actual 1 2
1 17 4
2 7 23 1
3 0 a 22
# Correct 17 23 22
Prop Eorrecti 80.95% 74.19% 100%

Total Observations| 74
Comectly Classified| 62

Incorrectly Classified| 12

LOO Misclassification Summary
Obs No. Actual | Predicted
4 1 2
6
10
17
A
32
39
40
1
44
47
51

—_ = =] ] =] = =] =] o RN

N R MNP RN NP N N A )

LOO Ernor Rate 0162

Split (50/50] Cross Validation Results
ErrorRate for Training Set: 0.0245
EnorRatefor TestSet: 0.0878
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Output for the Classical Fisher Discriminant Analysis (continued).

3FoldCrossVYalidation Results

Average ErrorRate: 0.2158

Simple/Naive Bootstrap {for whole dataset) Cross Validation Results

Average Error R ate from B ootstrap: 000408

Simple/Naive Bootstrap (Groupwise) Cross ¥V alidation Results

Average Error Bate from Bootstrap: 0.0447

Standard Bootstrap [for whole dataset) Cross Validaton Results

Error Rate from Bootstrap Training Set 0.0436

Error R ate from Bootstrap Test Set: 00536

Standard Bootstrap [(Groupwise] Cross Validation Results

‘Error Rate from Bootstrap Training Set 0.0377

Esror Rate from Bootstrap Test Set: 00570

Bias Adjusted Bootstrap (for whole dataset]) Cross Yalidation Results

Average Correct Training Set 701700

Average incorrect Training Set 3.8300

Average Correct Test Set: 635100

Average Inconrect Test Set: 104900

Error Bate Bias: -0.0900

Bias Adjusted Error Rate: 0.1035

Bias Adjusted Bootstrap {Groupwise) Cross ¥V alidation Resukts

Aversage Correct Training Set 70.8000

Average Inconect Training Set 3. 2000

Average Correct Test Set: 620600

Average Incorrect Test Set: 11.9400

EmorRateBias: -0.1181

Bias Adjusted Error Bate: 0.1316
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Output for the Classical Fisher Discriminant Analysis (continued).

The color-coded big “+” represents the mean of the respective group, as shown in the above figure. Observations
outside of the simultaneous (Tolerance) ellipse (if specified by the user) of a group category (e.g., #2) are considered
to be anomalous for that particular group.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scaiter plots of discriminant
scores and selected variables, as explained in Chapter 2.
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10.2.1.2 Huber Fisher DA

l. Click on Multivariate EDA B> Discriminant Analysis (DA) B> Fisher DA B> Huber.

@_ c_oul_' 4.0 - [_g;-\ua \Scog{t_*jgn _W,indi'rws\Scnut_S_’gurce\WorkDalIhExcel\E.l.'JIlIlIRI_S-]j_ [

AT A AN L LR AL A A AR TR A AL AL AR R

‘l_i‘..;lx File Edt Configure Data Graphs StatsiGOF Outlers/Estmates Regression “Multivariate EDA o Programs ‘Window Help

Navigation Panel l G 1T ] 2 3 PCA . *) [ 7 | a1 q
Narma | count splength | sp-wdih | ptlength Discriminant Analysis (DA) »|  Fisher DA [§  Classical |
R T 57 35 T3 02 i trearoa | RS —
D WNaraim\Scout_Fo. . L o Iy I _,u_,l-,, . . ——| QuadraticDA »| PROP —
Y i3 3 % GF] | e— W
1l 17 T2 ) 1 A S i -
2. A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

@Qp__tiqns_, F,is:_he_r. Huber. Biscriminant Analysis

Select Irtial Estimates ——————  ~Number of Iterations Influence Function Alpha ——
€ Classical l'_“w— T
" Sequential Classical
(Mex =50] Range [00-10)

€ Robust (Median, MAD)

& OKG (Maronna Zamar ) —Cross Validaton
™ LeaveOne Out (LDO)
" KG (Not Orthogonafized)
T~ Spit
€ MCD
™ MFod
MDs Distnbution —————————
I~ Simple/Narve Bootstrap by Data Set
@ Beta  Chisquare
[~ Sumple/Nawve Bootstrap by Group
Print to Quiput I™ Standerd Bootstrap by Data Set
¢ NoScores
™ Standard Bootstrap by Group
 Pint Scores
I~ Buas Adusted Boolstiap by Data Set
oK c [~ Bios Adusted Boolstiap by Gioup

o  Specify the options to calculate the robust estimates of location and scatter
(scale).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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OptionsDiscriminantGraphics

—Select Graphics

Scatter Pict Title.
¥ Scatter Plot | Scatter Plot of Disciminant Scores
¥ Scree Plot Scree Plot Title.
l Scree Plot of Eigen Values for Fisher DA
—Cutoff for Graphics ——————— [~ Plot Cantour

~
Criical Alpha 0.05 No Contour

@ Individual [d0cut]

r~MDs Distrbution for Graphics " Simultaneous [dZmax]

@ Beta € Chi  Simultaneous/Individual

0K | Cancel

4

o  The “Scree Plot” provides a scree plot of the eigen values.

o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. Scores will be stored in the data worksheet starting from the
first available empty column when the “Same Worksheet” is selected. The
scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK” to continue or “Cancel” to cancel the Huber Fisher DA
computations.

Output example: The data set “IRIS.xlIs” was used for the Huber Fisher DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the Huber Fisher Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

""" Robust Fisher Linear Discriminant Analysis using Huber Inflzence Function
User Selected DDtIOF'iSW:-k___”_— ooy e me e
* Date/Time of Computation |1/18/20087105442AM — ~ — T T T T T
) " FromFle |D:\Naran\Scout_For_Windows\ScoutSource\workD alinE xceNFULLIRIS
T " " FullFrecision |OFF T o T T
 Influence Function Alpha [0.05 o T T o
T Squared MDs |Beta Distibuton B
T " lniial Estimates |Robust Median Vector and OKG (MaronnaZamar) Matase o
7 "Number of lterations {10 T T o
7 Storage Options |No Discrminant Scores will be stored to Worksheet T
T Groapﬁgﬁabllities.- Equal Prios Assumed T T T 0T T
o Graphics Options | Both Scree Plot and Scatter Plots are Selected | ST o
T T T Contour Options Contourﬁlﬁases drawn using Individual MD(0 05) snd Max MD(0.05)
" Alphafor Graphics |005 T ST T
7 "Distubution of MDs~ |Beta Distrbution used in Graphics T
Total Number of Observations{ 150 T 1 N
" Number 6fSelected";"ariables'4 o o o I
" Number of Data Rows per Group o h T
DR |“2 3 A Y | I R
5 | 50 | 50 |
‘_Mean‘b‘ecloﬂolﬁroup1 : Ty
sprle~th-1 | spwidth-1 | ptle~th-1 | pt-width-1 '
5.006 3428 1.462 0.246
o " Covariance$ Matrix for Group 1 T A
“sple™thl [ spwidtha | ptle™th-l [ ptwidhl | | | I
0124 | 00%%2 | oo0le4 | omo3 | | B o
00332 | 014 | 00117 | 00093 | I I R N
00164 | 00177 | 00302 | 000607 B
00103 | 0003 | 000607 | ooni | | | 7 o o I
BRFxt T T T 0 )
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Output for the Huber Fisher Discriminant Analysis (continued).

Final Robust MeanVYector for Group 1 l
sple~th ["sb-w.dtm |_p"t-E~th-1 | ptwndth1 | I _ o
T 5008 | 3431 | 1463 | 0245 | P
T FinalHobustCovarianceSMalrixforﬁloup1 i -i— o
sple™th | spwidth-1 | ptle™th1 | ptwidth | T J‘"“‘ )
0123 00965 | 00i62 | 0.0108 |
00965 | 0137 | 00115 | 0.00983 I
00162 | 00115 | 00263 | 000885 | i‘“ i
Tﬁﬁﬁ“‘ﬁﬁﬁs‘s@iﬁ'ﬁﬁsﬁ' Tooios | : 71 ij_"
e , R R
MeanV¥Yector for Group 2 !
sprle~th-2 ! sp-width-2 1 ptle~th-2 | ptwidth-2 | T o
W:'“'ﬁ?_l_Iz’s‘ 3. | T
Covariance S MatnixforGrowp2 |
sple™th2 | sp-width-2 | ptle~th-2 | pt-width-2 R
0266 ' 00852 0183 | 00558 - T
00852 ["0.0985 00e7 | ooaizy o T T
0183 | 00827 0221 00731 |
0.0558 1 00412 | DO731 | D03A ,
] | __
Final Robust Mean¥ectorfor Group 2
sple”th-2 | sp-width-2 | ptle~th-2 | ptawidth-2 P |
5.936 2773 4.261 1.3%6
- - I
Final Robust Covariance S Matrix for Group 2 i
sp-le™th-2 spjvidth-Z El-l‘e”lh-2 pt-width-2 B i_‘—‘ .
0266 0 0864 0.181 0.0554
T 0D0Se4 | 00369 | 00834 | 00421 B h
o8t 0.0834 0218 | 0.0727 T “, a
00554 | 0.0421 00727 | 00391 “i"“ o
T Mean Yector for Group 3 Ji‘ a M! T
sp-le"lh-3|s_p'-width-3i ptle~th3 | ptwidth-3 " "'i B
6588 | 2974 | 5ER2 206 |\ T
S | I
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Output for the Huber Fisher Discriminant Analysis (continued).

504

Covariance S Matiix for Group 3

I
spie™th-3 | "s.i-'w'iat'h‘-é'ﬁt-ﬁia””pti&vicM3 N
0404 | 00938 | 0303 | 0049 I
00938 | 0104 | 00714 | 0.0476 | N
0303 | 00714 | 0305 | 0.0488 I
00491 _“d.ﬁﬁé'j 00488 | 0.0754 | L I -
Final Robust MeanVector for Group 3 T
sple™th-3 | sp-width-3 | ptle™th-3 | ptwidth-3 o [ -
6.578 2.973 5542 2025
Final Robust Covaniance S Matrix for Group 3
sple~th-3 | sp-width-3 | ptle~th-3 | ptwidth-3 N o B
0.389 0.0918 0287 | 00469 |
T 00918 | 00997 | 00716 | 0.0491 I
0287 | 00716 | 0287 | 0.046 1
0.0469 | 00491 | 0046 0.0759
Robust Grand Mean Vector for Data I
“splength | sp-width | ptlength | ptwidth
5.843 3.057 3758 1199
RobustPooled Covariance Matmt B
splength | spwidth | ptlength | ptwidth o
0% 00315 | 0162 | 0.0378 I
00915 | 07111 | 00557 | 00338 -
0.162 00557 | 0178 0047 ) —
00378 | 00338 | o0o#17 | aosi9 | | T
Between Gioups Matrix B I
“sp-length sp-width | ptlength | ptwidth
T 6168 | 4379 | 182 | w04 | | o
879 | 1126 | 5689 -22.84 T
162 | 5689 | 4305 | 1843 B
7004 | 2284 | 1843 7956 B -




Output for the Huber Fisher Discriminant Analysis (continued).

Within Groups Matrot W
“splength | spwidth | ptlength | ptwidh | | |
3755 | 1324 23.'379"'1 Te488 [ T
1324 1607 3047 4.834
2339 8047 | 2579 | 6023 | B
T 5468 | 4884 | 6023 | 6.059 R
WinverseB M;llmiﬁl—_—___— T
sp-lengtfr spwidth | ptlength pl-widfﬁ T |
TZ912 | 104 | 7755 | 3315 | o |
6.357 2497 | 715 7.252 |
8312 | 307 | 229 | 949 _‘i
1103 -3.666 231 1253 |
o Unordered Eiﬁ#alues of W l___.__ T
T Evall Eval2 | Eval3 | Evald l
3411 029 |-4.08E15 !-304E-16 |
) ‘E‘s?c?ﬁammﬁ}ﬁéétdmml_‘ S
" Evall Eval2 Eval3 | Evald
0188 | 00058 0624 | 0479 | T B
0418 0599 [ 0445 | -0.136
0542 | -0.243 0476 | 019
T 05 | 0763 043 0.844
‘OrderedEigenVYalues of Wik
dl d2 '
3311 | 029 -

Nomalized EigenVectors for Ordered Eigénvig

I

Normalized Eigéﬁ ector1

" Evall Eval 2 Eval 3 Evald | i i
3147 €931 | S051 1173
Normalized EigenVector2
Eval1 Eval 2 Eval3 | Evald
-0.0762 8148 | 3312 | 1038 - h
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Output for the Huber Fisher Discriminant Analysis (continued).

506

Classification Summary

Predicted Membership
Actual 1 2 3
1 50 0 1]
2 48 2
3 1 43
# Conect 50 43 49
Prop Conecti 100% 96% 98%

Total Observations

150

Carrectly Classified

147

Incorrectly Classified

Misclassification Summany

Obs No. Actual | Predicted
71 2 3
84 2 3
134 3 2

Apparent Error Rate

0.02

CrossValidation Results

Leave One Out(LOO)Cross Validation Resuks

L0OO0 Classification Summary

Predicted Membership
Actual 1 2 3
1 50 0 0
2 48 2
3 1 49
# Correct 50 48 49
Prop Conectl 100% 96% 98%

Total Observations{ 150

Correctly Classified| 147

Incorrectly Classified 3




Output for the Huber Fisher Discriminant Analysis (continued).

LOO Misclassification Summary

Obs No. Actual | Predicted
71 2 3
84 2 3
134 3 2

LOO Error Rate

0.02

Split [50/50) Cross Validation R esuks

Error Rate for Tramning Set: 0.0093

ErrorRate for TestSet: 0.0107

Bias Adjusted Bootstrap (for whole dataset] Cross Y alidation Results

Validation Failed becuase of not enough Mon-Outliers in Growyp 1 mes.

Average Cornect Training Set 147 5556

Average Incorrect Training Set 2.4444

Average Correct TestSet: 147.1111

Average Incorrect Test Set: 28889

Error Rate Bias: -0.0030

Bias Adjusted Error Rate: 0.0230
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Output for the Huber Fisher Discriminant Analysis (continued).

On a scatter plot of discriminant scores, it is desirable to use only one ellipsoid (e.g., prediction ellipsoid) for each
group. That will reduce the clutter on a graph.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of discriminant
scores and selected variables, as explained in Chapter 2.
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10.2.1.3 PROP Fisher DA

l. Click on Multivariate EDA P> Discriminant Analysis (DA) B> Fisher DA B> PROP.

Nawgatnon Panel I 0 2 3 4 L_J__7____l___n_J__q
Dlscnmlnant Analysis (DA) » Classical | F—
Name I ~ StelD | SampleD| SL Ratio Time n - ’ b [
D:Warain\3cout :Fo L i ! 2 1| ll 1059 Qmaadrr tcDA 1334
: ; =Fo... ;. : N A - [ S uadratic —
2 l 1| 1 lt 1132‘ ) s am— o 41 3.26
~ | Ty EET R 7 Rl N iR Tie7alT TTiAAR . %o‘q

2. A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

5 options Fisher, PROP-Discriminant Analysi

[~ Select Irvhal Estmates
" Classical

€ Sequential Classical

€ Robust (Median, MAD)
& OKG [Maronna Zamar |

€ KG {Not Orthogonahzed)

i~ Cross Vahdation

~ Number of lterations

I

[Max = 50]

~Influence Function Alpha ——
005

l Range [00-110]

[T Leave One Out (LOO)

I

rs
C MCD o
I~ MFold
~MDs Distnbution
I~ Swmple/Maive Boctstrap by Data Set
& Bela " Chisquare
™ Smmple/Nawve Boctstrap by Gioup
Pt to Output I~ Standad Beotstrap by Data Set
% No Scwres
I Standad Bootstrap by Group
" PuntScores
™ Bias Adusted Boatstrap by Data Set
oK Cancel ™ Bias Adusted Bootstiap by Gioup
o  Specify the options to calculate the robust estimates of location and scatter

o]

(scale).

Specify the “Print to Output.” The default is “No Scores.”

Specify the preferred cross validation methods and their respective

parameters.

Click “OK” to continue or “Cancel” to cancel the options.

o Click on the “Graphies” button for the graphics options window and check all of
the preferred check boxes.
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(]

o

—Select Graphics

¥ Scatter Plot

¥V Scree Plot

— Cutoff for Graphics

Cntical Alpha 0.05

—MDs Distnbution for Graphics

¥ Beta " Chi

Scatter Plat Title:

I Scatter Plot of Discriminant Scotes

Scree Plot Title:

| Scree Plot of Eigen Values for Fisher DA

—Plot Contour
¢ No Contour

& Individual [dOcut}
" Simultaneous [d2max]

" Simultaneous/Individual

]

4

o The “Scree Plot” provides a scree plot of the eigen values.

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK?” to continue or “Cancel” to cancel the graphics options.

Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.

The default is “No Storage.”

Click on “OK?” to continue or “Cancel” to cancel the computations.

Output example: The data set “IRIS.xIs” was used for the PROP Fisher DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the PROP influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the PROP Fisher Discriminant Analysis.
Data Set: Iris (4 variables 3 groups).

o : Robust Fisher Linear Discriminant Analysis using PROP Influence Functon
" User Selected Options |~ T o T
Date/Time of Computation |1/18/2003 11 53:51 &M
T T FromFile ERNEIEH\Scoul_For_Wmd&&\é—c'omlcé\WOIkﬁél_lrT!E‘xc‘eT'\:IEULLIhTé_-“ -

Full Frecision |OFF T
" Influence Function Alpha {005
T Squared MDs |Beta Distnbution T i—_‘ﬂ" T T T
Initial Estmates | Robust Median Vector and OKG (MaronnaZamar] Matix

Mumber of Iterations |10

Storage DplToF No Disciminant Scares will be stored to Worksheet

Group Probabilities  |Equal Priors Assumed

Graphics Options | Bath Scree Plot and Scatter Plots are Selected
Contour Options ‘Contour Eflipses drawn using Individual MD(0 05) snd Max MD(0 05)

Alpha far Graphics [0 05
Distribution of MDs | Beta Distnbution used in Graphics

Total Number of Observations{ 150 i —|_ T -

T "Number of Selected Vanables! 4 |

e s i S S

Number of D ata Rows pet Group |

1 2 | 3(‘ "I__"‘__“ | [ N N
50 | 50 500 i

| SRR ISR D R

MeanVector forGroup 1
“sple™th-1 | spwidth-1 ’ ptle™th-1 | pt-width-1
5006 | 3428 | 1482 0.246

Covariance S Matrix for Group 1

“sple™th1 T spwidih1 | ptle™th1 | ptunih] |
0124 0.0992 | 00164 00103

0.0992 0.144 | 0.0117 00093
0.0164 00117 | 00302 0.00607
00103 | Eﬂb@*['ﬁhﬁl? Soont

1QR Fixl

!
]
|

]

|

Ml'

|

i

|

|

(Complete results are not shown.)
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Output for the PROP Fisher Discriminant Analysis (continued).

512

Associated Matrix of Eigen Vectors of WB

0811 | -0.682

s
1

l

Evall | Eval 2 Eval3 | Evald | ‘!‘_‘ -
Ui | 0026 | 083 | -@2”i “ T
0477 0607 | 0172 | 0454 | )
0511 | 0237 | 0178 | 0475 [ - II T
0% | 0.758 1 '

Ordered EigenValues of WibB

T d?

39.09 0.288

Normalized Eigen Yectors for Drdered Eigen V alues

i

Normalized Eigen¥Yector 1

Eval1 Eval2 | Eval3 | Evald
3305 | 9675 | 1037 | 1411 - -
Nommalized EigenVector 2 B
Eval1 Eval 2 Eval 3 Eval 4 i
-0283 8.358 -3.266 10.45
Classification Summary
Predicted Membership
Actual 1 2
1 50 0
2 43 1
3 1 43
# Correct 50 43 48
Piop CorrectI 100% 8% | 9% o

Total Observations| 150

Correctly Classified! 148

Incorrectly Classified 2

Misclassification Summary

Obs Mo Actual | Predicted”
84 2 3
134 3 2
Appatent Enor Rate| 00133 |




Output for the PROP Fisher Discriminant Analysis (continued).

CrossVYalidation Results

Leave OneDut (LOO)CrossVYalidation Results
LOO Classification Summary
Predicted Membership
Actual 1 2 3
1 50 0 1]
2 0 48 2
3 1 43
# Correct 50 43 49
|IProp Correct: 100% 96% 98%
Total Observations|150
Correctly Classified| 147
Incomrectly Classified| 3
LOO Misclassification Summary
Obs No. Actual | Predicted
71 2 3
84 2 3
134 3 2
LOO Emor Rate]  0.02

Bias Adjusted Bootstrap {for whole dataset]) Cross Validation Resudts

Validation F ailed becuase of not enough Non-Outliers in Groupp 1 times.

Average Correct Training Set 146.6667

Average Incorrect Training Set 3.3333

Average Correct Test Set: 1395556

Average Incormrect Test Set: 10.4444

Ermor Rate Bias: -0.0474

Bias Adjusted Error Hate: 0.06507
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Output for the PROP Fisher Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.1.4 MVT Fisher DA

I.  Click on Multivariate EDA B> Discriminant Analysis (DA) B Fisher DA > MVT.

B Scout 4.0 [D:Warain\Scout,_For, Windows)ScoutSoirc WorkDatInExcel\Book HEMORHILIA]

QQ File Edt Configure Data Graphs Stats/GOF OutliersfEstimates Regression IVIuih’variate-f_ibﬂ GeoStats Programs Window Help

Navigation Panel I 0 1 2 3 | PcA . Yl 1721 s | 9 -
Name ] GipName Group [ Alo'g I“|"l;| ] fdl.?uglu _ Discriminant Analysis (DA) » Fisher D& | Classical
22 |NanCarmers 1 rU 150—7]— Ellrwh 3 | | Linear DA H  Huber |
D \Warain\Scout_Fo . ool 7T il BT 506 [ - v -  QuadraticDA | PROP =
D Warain\Scout_Fo 23 alners o Hles meS L e M\"T _
24 |NonCarmers 1 01%h 01 52T I - | - -
2. A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

& Optiong; ﬁishen MVT: Discriminant: Analysis

Select Intial Estinates ———————  —Number of lterations Curolf for Outkers Select Tamming
Percentzoe
€ Classcal I s .
€ Sequential Classical
e [Max = 50} Catical Alpha Range (0-035)
€ Robust (Median, MAD)
* 0OKG [Maronna Zamai ) [~Cross Vabdation
[~ Leave One Ouwt (LOO)
€ KG {Not Dithogenafized)
™ Spit
 MCD
I~ MFold
T~ Sunple/Narve Bocistrap by Data Set
I~ Sunpla/Nave Boolstrap by Group
Prmi to Output —— I™ Standard Bootstrap by Data Set
% NoScores
T~ Standad Bootstiap by Group
€ Pint Scores
I Bias Adusted Booistiap by Data Set
oK l Concel I ™ Bias Aduisted Boctstrap by Group
A

o  Specify the options to calculate the robust estimates of location and scatter
(scale or dispersion).

o  Specify the “Print to Qutput.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK?” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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EB @ptionshiscriminantGraphics,

[ Setect Graphics ———————— Scatter Plot Title

{¥ Scatter Plot ’ Scatter Plat of Discniminant Scores

Scree Plot Title:
I Scree Plot of Eigen Values for Fisher DA

¥ Scres Plot

—Cutoff for Graphics ————  —Plot Contour

~
Critical Alpha 005 No Contour

& Individual [dOcut]

—MDs Distribution for Graphics " Simultaneous [d2max}

& Beta C Chi € Simultaneous/Indwvidual
0K | Cancel

o The “Scree Plot” provides a scree plot of the eigen values.

4

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK?” to continue or “Cancel” to cancel the graphics options.

o Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “Salmon.xIs” was used for the MVT Fisher DA. It has 102
variables in two groups. The initial estimates of location and scale for each group were the
median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The W™'B matrix used for computing the classification rules was singular and the calculations
were stopped.
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Output for the MVT Fisher Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

" "Date/Time of Computation

1171872008 2 01- 45 PM

ﬁohust Fis;hel Lineal bAisc:liminar,ﬂAnalysis dsing MVT Helhod

From File |D \Narain\Scout_For_Windows\ScoutSource\WorkD atlnE xcef\B ook \SALMON. xls
- FulPrecision [OFF - : . s
10%

Trmming Percentage

Initial Estimates

"|Robust Median Vector éhti—tlf[é»m_‘afonna:fafnéf].ﬂ_atﬁx

Number of Iterations

“Starage Options

10

[No Discriminant Scores will be stored to Worksheet

Group Probabilities

Equ

al Priors Assumed

Graphics Options

Both Scree Plot and Scatter Piots are Selected

Contour Options

Contour Elipses drawn using Individual MD(0 05)

Alpha for Grapﬁc_s

005

Distribution of MDs

Beta Distnbution used in Graphics

Total Number of Observations

100

"7 Mumber of Selected Yanables

2

e i s el R

Number of DataRows per Group

alaskan t canadian

50 l 50

MeanVector for Group alaskan

Fresh™skan Main“skan]

9838 4297

Covariance S M atrix for Group alaskan

Fresh™skan|Marin~skan

260.6 -188.1

1881 | 1399

~ FinalRobustMeanVector for Group alaskan

Fresh"skan‘i Marin™~skan
T 9842 *| 498 |

(Complete results are not shown.)
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Output for the MVT Fisher Discriminant Analysis (continued).
Final Robust Mean¥ector for Group canadian |
Fresh~dian Ma?ﬁ”dian| '

1381 366.4

Final Robust Covariance S Matiix for Group canadian

Fresh~dian| Marin~dian T o
300.3 2247

2247 | 6107

Robust Grand Mean Vector for Data
Freshwater; Marine
1179 [ 3987

Robust Pooled Covariance Matix

FreshwWaterj Marine
2418 | 0425 |
0.425 9465

Between Groups Matrix B

Freshwater] Marine
35403 -56624
-56624 90567

Within Groups Matrm W
Freshwater] Marine
21281 3738
3738 | 83292 T
W Inverse B Matrix (WiB) N B
Freshwater] Marne
16656 | -2663 e T
T 0681 | 1089

Failedin calculatin—g_E_igen Values - WiB produce Singular Condlion

Note. When a matrix obtained during the calculations of discriminant scores is singular, an appropriate message is
displayed and the computations are stopped
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10.2.2 Linear Discriminant Analysis
10.2.2.1 _Classical Linear DA

l. Click on Multivariate EDA B> Discriminant Analysis (DA) B> Linear DA P>
Classical.

B8 Scout 4.0,- [D: Wacai n\Scout for_Windows)ScoutSou rceAWorkDat InExce \BEETLES]|
oY Fle Edt Configwe Data Graphs Stats/GOF Outlers/Estmates Regression JURUNABC¥MN GeoStats Frograms Window Help

Navigation Panel | 0 1] 2 3 PCA g 7—\l 8 9
Name ] Group %1 I x2 her A Classical
B 1 T mear A — lassica
D \Narain\Scout_Fo L .1 . lSEI_ - 1:5 . l - | Quadratic DA »|  Huber l_—
2 Woom . =7 mo |_
3 1 144| 14} l i | MVT
2. A “Select Variables” scrcen (Section 3.5) appears.

o Click on the “Options” button for the options window.

—Cross Validation

™ Leave One Out (LOD)

[~ Split

T~ MFold

I~ Simple/Maive Bootstiap by Data Set
I~ Simple/Nawve Bootstrap by Group
[~ Standard Bootstrap by Data Set

™ Standard Bootstiap by Group

[” Bias Adusted Bootstrap by Data Set

I~ Bias Adusted Bootstrap by Group

~Pont to Cutput
* No Scores C Pont Scores

0K } Cancel ‘

iz

o  Specify the preferred cross validation methods and their respective
parameters.

o  Specify the “Print to QOutput.” The default is “No Scores.”
o  Click “OK?” to continue or “Cancel” to cancel the options.

o Click on the “Graphies” button for the graphics options window and check all of
the preferred check boxes.
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(]

o

— Select Graphics

¥ Scatter Plot

—Cutoff for Graphics

Critical Alpha 0.05

—MDs Distribution for Graphics

(¥ Beta  Chi

Scatter Plot Title:

] Sqaller qut of Discrminant Scores

rPlol Contour
" No Contour

@ Individual [d0cut]
" Simultaneous [d2max]

¢ Simultaneous/Individual

]

Vi

o The “Secatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on the number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from “Select Group
Priors Column.” The default is “Equal” priors.

Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.

The default is “No Storage.”

Click on “OK?” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “BEETLES.xIs” was used for the classical linear DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for
each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.
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Output for the Classical Linear Diseriminant Analysis.
Data Set: Beetles (2 variables 3 groups).

" “Classical Linear Discriminant An aysis

7 User Sefected Options - o i )
T T Date/Tme of Computation [1/718/2008 26958 P Tt T T T
- T T FomFile [i\_N-aralT\S*cbuf:Fbl_Wﬁaowggcbal—éo—UIEE\WOII:DaﬁnExcelﬁT—LES
T T FdiPressen [OFF T 7T - o T
~ " Starage Options |No Disciminant Scores wil be stored to Worksheet
Group Probabilities  |Equal Pnors vall be used T
— "7 Graphics Options {Scatter Plots slected T T T
77T Tontour Options | Contour Ellpses drawn using Indimdual MD{0 05] T
TTTTTTTTTT TAphaforGraphics (008 T
o Distiibution of MD's | Beta Distibution L)s_é'dﬂln-tiﬁﬁas oo T
"7 T otal Number of Dbservalion@l?tl R __T I ‘A R Y
Number of Selected Vanables|2 i |
l
" "Number ofDalalRows per Group —! -
T 21 30 ~l-_~ T 7 ] I
AL o
} I I O D R A
MeanVector for Group 1 |
B I T Y R ' i o
1462 141
Covariance S Matrix for Group 1 I ) -
%1-1 %2-1 T 1 ~"‘_ﬁ_"l“—_"—_—__ T o
3166 -0969 l
0969 079
- T 777 " MeanVectorforGroup2 l. ) T I o
%1-2 %2-2 N l I R B B B
1246 14.29
e L S S
Covarnance S Matrix for Group 2
Tw2 w2 B -
2137 | 0327 T I T Ty T T
0327 | 1213 B

(Complete results are not shown.)
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Output for the Classical Linear Discriminant Analysis (continued).

tiassiﬁcalilon Summal;;
Predicted Membership
M Actual |1 ) 2 T
- 20 1
I R -
3 1] 0
“H#Comect | 200 | 31
Prop D:mectL 95.24% 100% 100%

Total Observations| 74
" TConectly Classfied| 73

Incortectly Classified) 1

Misclassification Summany
I ObsNo. 1 Actual | Predicted |

1?|1 2

Appa@rﬂ—firior—ﬁglg -

A,

Linear Discriminant Function Constants and Coefficients

1
Constant -620.8
I 6.778
x2 17.64




Output for the Classical Linear Discriminant Analysis (continued).

Cro‘ssVaIidalitlm Results .

Leave One Out{LO0)CrossValidation Results

LOO Classification Summary

Predicted Membership
Actual 1 2
1 20 1
2 K]l
3 0 22
# Correct 20 A 22
Piop Conec:ti 95 24% 100% 100%
Total Observations} 74 '
Correctly Classified| 73 1
Incorrectly Classified| 1 '

LOO Misclassification Summany

Obs No.

Actual

Predicted

17

7

2

LOQ Error Rate

00135

Split {50/50] Cross Validation Results

Error Rate for Training Set: 0.0051

ErrorRate for TestSet: 0.0078

3Fold Cross ¥Yalidation Results

AverageErrorRate: 0.0139

Simple/N aive Bootstrap [for whole dataset) Cross Validabon Resukts

Average Error Rate from Bootstrap: 0.0099

Simple/Naive Bootstrap [Groupwise) Cross Yalidation Results

Average Error Rate from Bootstrap: 0.0107
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Output for the Classical Linear Discriminant Analysis (continued).

Standard Bootstrap (for whole dataset) Cross Yalidation Resu/ts

Error Rate from Bootstrap Training Set 0.0119

Error Rate from Bootstrap Test Set: 0.0051

Standard Bootstrap (Groupwise) Cross Validation Results

Error Rate from Bootstrap Training Set: 0.0103

Error Bate from Bootstrap Test Set: 0.0059

Bias Adjusted Bootstrap (for whole dataset] Cross Validation Results

Average Conrect Training Set 733300

Average Incorrect Training Set 0.6700

Average Conrect TestSet: 73.1100

Average Inconrect Test Set: 0.8800

ErrorRate Bias: -0.0030

Bias Adjusted Error Rate: 0.0165

Bias Adjusted Bootstrap [(Groupwise) Cross Validation Results

Average Correct Training Set 73.2600

Average Incorrect Training Set 0.7400

Average Correct Test Set: 73.0800

Average Incorrect Test Set: 0.9200

Error Rate Bias: -0.0024

BiasAdjusted Error Rate: 0.0159
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QOutput for the Classical Linear Discriminant Analysis (continued).

~ Scatter Plot of Discriminant Scores

750

664
T 564 B ... Predction
o
o | ] Tolerance

464

364

348 448 548 648 730
Ds2
W @243

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.2 Huber Linear DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA » Huber.

L™ Scout 4.0 - [D:\NarainiScout_For_Windows\ScoutSource\WorkDatInExce SFULLIRIS. x1s]
oS File Edit Configure Data Graphs Stats/GOF Outliers/Estimates Regression BUMAE 200 GeoStats Programs ‘Window Help

Navigation Panel I 0 1 4 3 PCA > 7 a g
REr I R nlength | spwidth | ptiength Discriminant Analysis (DA) » ishev » | L
D\NaremBeoul F O s 14 02 : Classical
“Narain\Scout_Fo... I : : : 7 adratic DA » | G
2 i 43 3 14 02 i [
3 1 47 32 13 02 |t
3. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.
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an; Huber Discriminant Analysis,

~Select Indial Estmates
€ Classical

" Sequential Classicat

€ Robust (Medan, MAD)
@ OKG (Maronna Zamar )

¢ KG (Not Othogonakized)
 MCD

r~Cioss Vabkdation
™ Leave One Out (LOO)

—MDs Distribution

% Beta (" Chisquare

r~Pint to Output
& NoScores

¢ Punt Scores

oK Cancel

r~ Number of lterations

o

{Max = 50]

Influence Function Alpha —)
I 005

Range {00-10]

I~ Spit

™ MFod

[T Smple/Nave Bootstrap by Data Set
™ Smple/Narve Bootstrap by Gioup
™ Standard Bootstrap by Data Set

I Standard Bootstrap by Group

I Bias Adusted Bootstiap by Data Set

T Bias Adusted Bootstrap by Group

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective

parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.



BB @ gitionsDiscriminantGraphics,

[~ Select Braphics ——" Scatter Plot Title:
V¥ Scatter Plot I Scatter Plot of Discnimmant Scares
¥ Scree Plot Scree Plot Title

| Scree Plat of Eigen Values for Fisher DA

r—Cutoff for Graphics ————— 1~ Plot Contour

(o
Critical Alpha 005 Na Contaur

= Individual [dOcut)

—MDs Distribution for Graphics € Simultaneous {d2max]

' Beta € Chi " Simultaneous/Individual

0K | Cancel

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

4

o Click on “OK?” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

o Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK” to continue or “Cancel” to cance! the DA computations.

Output example: The data set “IRIS.xlIs” was used for the Huber linear DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using thosc weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the Huber Linear Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

User Selected Options

Linear Discriminant Analysis with Huber

Date/Time of Computation

1171872008 2:35:20 PM

From File

Full Precision

Influence Function Alpha

OFF
005

Squared MDs

Beta Distnbution

D:\Narain\Scout_For_Windaws\S coutS ource\WorkDatinE xceNFULLIRIS

Initial E stimates

Robust Median Vector and OKG [Malonna-ZamalfHEtriH

Number

of lterations

10

Storage ETptions

No Discriminant Scores will be stored ta Worksheet

Group Probabilites:

Equal Priors will be used

Graphics Options

Scatter Plots selected

Contour Options

Contour Ellipses drawn using Individual MD(0 05)

Alphaor Graphics

005

Distribution of MDs

Beta Distnbution used in Graphics

Total Number of Observations! 150
Number of Selected Variables, 4

|
| 1
|
|

i !

Number of D ata Rows per Group

0.011 l

1 2 3 I
50 50 50 |
|
MeanVector for Group 1
sple~th-1 sp-mdth-‘l_;;t-le”th-‘l pt-wadth-1
5006 3428 1.462 0.246 i
Covariance 5 Matrix for Group 1 i
sple™th-1 | sp-width-1 | ptie~th-1 | pt-width-1 ‘
0.124 0.0992 00164 0.0103
00992 | 0144 | 00i77 | 0.0053
0.0164 o017 00302 | 0 UDBU?J )
0.0103 | 00093 000807

5 |
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Output for the Huber Linear Discriminant Analysis (continued).

|
ClassificationSummay | ] o
Predicted Membership R -
TAcal |1 ]2 J"'*ﬁ T l o
1 50 0 | 0
T2 7 T |4 2 B
3 0 T R )
#Comect | GO - R A T: R N I R
Prop Correct  100% 9% | 98% - T
Total Observations| 150 o )
N Corectly Classified} 147 I N
Incarrectly Classified| 3 o
~ MisclassificationSummay | 1
ObsNo. | Actual | Predicted I . o
71 2 3 N
e | 2 ot
134 3 2 T T o
T " AppatentEnorRate] 002 | | 7
e I S |
Linear Discriminant Function Constants and Coefficients
[ T - H- T R R
Constant 8915 | 784 | 1068
© " splength | 2315 157 | 128¢ | | o
sp-width 2592 7246717 316
pt-length -16.28 6078 | 1392
pt-width -1974 5686 | 206
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Output for the Huber Linear Discriminant Analysis (continued).

Cross Validation Results

Leave One Out (LOO)Cross Validation Resuls

LOO Classification Summary

Predicted Membership
Actual 1 2
1 50 0
2 0 43
3 0 1 49
# Conrect 50 48 43
Prop Correcti 100% 96% 98%

Total Observations|150

Correctly Classified| 147

Incorrectly Classified| 3

LOO Misclassification Summary

Obs No. Actual | Predicted
71 2 3
84 2 3
134 3 2

LOO Emor Rate| 0.02

3Fold Cioss Validation Results

Average Error Rate: 0.2667

Biag Adjusted Bootstrap (for whole dataset] Cross Validation Results

Validation Failed becuase of not enough Non-Outliers in Grouyp 9 times.

Average Correct Training Set 147 2857

Average Incorrect Training Set 27143

Average Carrect TestSet: 146.8132

Average Incorrect Test Set: 31868

EqorRate Bias: -0.0032

Bias Adjusted Erros Rate: 0.0232
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Output for the Huber Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores

1758

1664

1564

1464

1364

DS1

L] Tolerance

42 142 242 342 42 542 642 742 842 842 1042 1142 1242 1342 1442 1542

Ds2

W ®2A3

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.3

PROP Linear DA

2 Click on Multivariate EDA P Discriminant Analysis (DA) P Linear DA » PROP.

(™ Scout 4.0 - [D:\Narain\Scout_For_Windows\ScoutSourcetWorkDatIinExce RMASHALL . xIs]

oyl File Edit Configure Data Graphs Stats{GOF Outliers/Estimates Regression BUBIEHE 1=t 8 GeoStats Programs Window Help

Navigation Panel ] 1 2 3 PCA >} cJES G R g9
o - I Sarpie 1D SL Ao | Trme Discriminant Analysis (DA) » Hshr & 7 ey
T 2 1 10 Y sl

D:\NaraimScout_Fo... 1 ‘ 1 5 5 ] 11'32 | QuadraticDA | Huber

2 : re— [ rrOP |
3 1 1 2 3 1 1045 1374 128 | ‘

. i | 1 ) A 1 Q49 a imnza g pr—

- A “Select Variables” screen (Section 3.5) appears.
e Click on the “Options” button for the options window.
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E® Options; Linear, PROP Discriminant Analysis

i—Select Intiaf Estimates
" Classical

" Sequenbal Classical

 Robust (Median, MAD)
(% OKG (Maronna Zamar )

(" KG (Not Orthogonabzed)
€ MCD

—MDs Distnbution

* Beta " Chisquare

~Number of [terations

o

[Max = 50]

Influence Function Alpha ——

I 005

Range [00-10]

r— Cross Validation
[~ Leave One Out (LDO)

™ Spit
™ MFold
[ Smple/Nawe Bootstrap by Data Set

™ SimpleMave Boatstrap by Group

[~ Prnt to Output ™ Standaid Bootstrap by Data Set
¢ NoScores
™ Standaid Bootstrap by Group
(" Punt Scares
I~ Bias Adusted Bootstrap by Data Set
0k I Cancel I ™ Bias Adusted Bootstiap by Group

4

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective

parameters.

o  Click “OK?” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

 Select Graphics

V¥ Scatter Plot

¥ Scree Plot

— Cutoff for Graphics

Cutical Alpha 0.05

—MDs Distibution for Graphics

 Beta " Chi

Scatter Plot Title

| Scatter Plot of Disciminart Scores

Sciee Plot Title

l Scree Plot of Eigen Values for Fisher DA

—Plot Contour
€ No Contour

" Indvidual [d0cut]
 Simultaneous [d2max]

{~ Simultaneous/Indwidual

0K I Cancel




o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK?” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

o Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK" to continue or “Cancel” to cancel the DA computations.

Output example: The data set “ASHALL7grp.xls” was used for the PROP linear DA. It has
214 observations and six variables in seven groups. The initial estimates of location and scale
for each group were the median vector and the scale matrix obtained from the OKG method.
The outliers were found using the PROP influence function and the observations were given
weights accordingly. The weighted mean vector and the weighted covariance matrix were
calculated. The classification rules were obtained using those weighted estimates. The output
shows that six observations were misclassified. The cross validation results suggest the same.
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Output for the PROP Linear Discriminant Analysis.
Data Set: Ashall (6 variables 7 groups).

534

" User Selected Oplions |

! Linear Disé:liminanlA.nalysis with| PROP

Date/Time of Computation

1/18/2008 3.07.47 PM

From File | D \Naram\Scout_For_windows\ScoutSource\WorkDatinE xcel\ASHALL 7qip

Full Precision |

OFF

Influence Function Alpha

0.05

Squared MDs

Beta Distnbution

Inttial E stimates

Robust Median Vector and OKG [Maronna-Zamar) Matinx

Number of Tterations

10

Storage Options

No Disciminant Scores will be stored to Worksheet

Equal Priors will be used

Graphics Options

Scatter Plots selected

Contour Options

Contour Ellpses drawn using Individual MD(0 05)

Alpha for Graphics

0.05

Distributien of MDs

Beta Distrbution used in Gaﬁﬁics

Tctal Number of Observations

214

Number of Selecled Vanables

6

MNumber of D ata Rows per Group

i 2 3 ] 5 3

T5i 35 37 FH | A 20 13 - -

T MeanVectorforGroup1 T T
Cal Na1 K Ci 504 ALK

T 1002 1681 1722 23/ | 3485 | 0568

Covariance S MatrixforGroup 1

Cal Nel | K1 | CH SG4-1 ALK
7589 | 5274 | 54 11.83 1304 033
5274 8.301 , 8475 | 1442 | 1028 | -0.309 | o
541 8475 | 8575 | 1397 7047 | 0306
183 1242 | 1397 296 2127 0555
T304 | 1028 1047 2127 26.83 0586
033 0303 | 0306 | 0555 0586 00394 .

(Complete results are not shown.)



Output for the PROP Linear Discriminant Analysis (continued).

I 1 1
Classification Summary

Predicted Membership “l— I
Tacal |1 ) 3 & |5 6 7 T
i 51 0 0 0 0 " N
2 0 32 0 0 3 0 0 o
3 i 0 37 0 B 0 T
T4 0 0 | D 33 | 0 0 0
5 0 0 0 23 TR B
3 0 0 ) o0 | 18 2
7 |0 0 0 0 1 12
t Correct 51 32 | 37 3% | 23 18 | 12
PropCorect  100% | 91.43% 100% 100% | 100% | 90% 92.31%
Total Observations 214 B !
T TConectly Classified| 208 i
Incorrectly Classified 6 - T
" Misclassification Summary - t-
" Obs No Actual | Predicted - B L:— T
42 2 5
43 2 5 -
44 2 5
54 6 7
155 5 | 7
180 | 7 6 B T i
Apparent Enor Rate|  0.028
Linear Dizcriminant Function Constants and Coefficients -
1 2 3 4 5 6 7
Constant 3852 1814 | 2701 179 | 137 1349 155.8
Ca | 0455 1697 1708 2.892 046 2198 | 35%
Na 17252 4025 5277 0.42 0.413 0573 0238
K 2089 194 2423 | 1569 5038 1306 1507
Cl 201 5.015 4273 | 4729 | 3067 | 4518 | 4019
504 1039 5206 | 7994 | 3469 4722 1626 2135
ALK | 1004 1274 | 1411 | 8793 | 1005 | 910 9284 |

535



Output for the PROP Linear Discriminant Analysis (continued).

CrossValidation Results

Split[50/50) Cross Validation Results

Error Rate for Training Set: 0.0827

EnorRate for TestSet: 0.0523

H5FoldCross Yalidation Results

Average Error R ate: 0.0476

Standard Bootstrap (for whole dataset) for whole dataset

Error Rate from Bootstrap Training Set 0.0234

Ermror Rate from Bootstrap TestSet: 0.0154

Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results

Average Correct Training S et 209.6000

Average Incomrect Training Set 44000

Average Comrect Test Set: 207.8000

Averageincorrect Test Set: 6. 2000

Error Rate Bias: -0.0084

Bias Adjusted Error R ate: 0.0364
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Output for the PROP Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores

569

Cl

21

81

-39

W1 @243 a@s—s |7

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.4 MVT Linear DA
1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA » MVT.

uﬂ Scout 4,0 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExce\Book\HEMOPHILIA. x1s]

oyl File Edit Configure Data Graphs Stats/GOF Outliers(Estimates Regression BuBGGEe-Rasl8| GeoStats Programs Window Help
Navigation Panel | 0 S BREa 3| PCA [ LT 8 9
| | [ gl | o Fisher DA L | I
Name | Effffr"_amfmg Growp | (4ctiina PR .
D:\Narain\Scout_Fo.., | 1 MonCarets Y A QuadkaicDA b|  Huber
2 NonCarriers 1 01698 -0.1585 w—— PROP
3 NorCariers 1 03463 01879 MVT
IMcaPaasies 1 A nAna Annea _
2, A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.
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_Op_lions,llinear. MVT Discriminant: ﬁnnl_);sis

Select [ntial E stmates —MNumber of lterations Culoff for Outfiers gelecl Timmng ————————
erc
© Classcal [ [ o®s [ 0
" Sequental Classical
* Max = 50] Cstcal Alpha Range [0-0 %)
 Robust (Medan, MAD)
@ OKG {Marorna Zamsi | [ Cross Vaidaton ]
™ Leave One Out (LOO)
" KG (Nol Orthogonalized)
I Spit
 MCD
™ MFfod
I~ Sumple/MNarve Bootstrap by Data Set
T Sinple/Narve Bootstap by Group
Punt to Output I Standaid Bootsirap by Data Set
 NoScores
I™ Standard Bootstrap by Group
" Pmit Scoies
™ Bias Adpusted Bootstrap by Data Set
oK I Cancel I ™ Bias Adpssted Bootstrap by Group
Y

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

o Click on the “Graphies” button for the graphics options window and check all of
the preferred check boxes.

—Select Graphics

Scatter Plat Titler
¥V Scatter Plot I Scatter Plot of Disciminant Scores
# Scree Plat Scree Plot Title:
l Scree Plot of Eigen Values for Fisher DA
— Cutoff for Graphcs ———————  —Plot Contour
.
CiticalAlpha | 005 No Contour
% Individual [d0cut]
—MDs Distibubon for Graphics € Simultaneous [d2max]
* Beta C Chi ¢ Simultaneous/Individual

0K | Cancel
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o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

o Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “Salmon.xlIs” was used for the MVT linear DA. It has one 102
variables in two groups. The initial estimates of location and scale for each group were the
median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that 13
observations were misclassified.
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Output for the MVT Linear Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

Linear DiscriminantAnalysis UsingMVT Method

User Selected Options

Date/Time of Camputation

T 77 FiomFie

|1/18/20083T635PM i

1D Waran\Scout_For_Windows\ScoutSource\WorkDallrExcelBook\ HEMORHILIA

" Full Precsion

OFF

" Tumming Percentage

oz

Inibal Estmates

" Number of Tterations 10~ -

Robust Median Vector and OKG {Maronna-Zamat] Matnx -

Storage Options
Group Probabitties

No Discrimnant Scores wil be stored to Worksheet

'"Equal Priors will be used

Graphics Options

Scatter Plots selected

Contour Options

‘[Cortow Elipses drawn using Individual MD(0 05)

Alpha for Graphics

Distnbution of MDs

'U 05
:Beta Distiibution used in Graphics

Total Number of Observations

|75

Number of Selected Variables

2

“"Number of Data

‘Rows per Group

cariers | nonca™iers I

r P

46 29

MeanVector for Group carriers

log10™*tets | log10~iers

0303 | 000708

"Covariance S Matx

ix for Group carriers

log10~iers | log10~iers

00243 | 00148

00148 | 00236 |

Final Robust MeanVector for Group carriers

log10~iers | log10™iers

03 -0 00157
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Output for the MVT Linear Discriminant Analysis (continued).

Classification S"u‘mmaly
- ‘Piedicted Membership | I o
Actual cafiers | noncarters! TV
Ccames |37 ] 8 | T Ty T T T T
noncarfiers § | B N
# Carrect T2 T T I L I T T
fProp Conect  8043% | 8621% | T T
Total Observations| 75 Ml T
Correctly Classified] 62
Incorrectly Classified| 13 S
Misclassification Summay |
ObsMo. | Actual [ Predicted | N o -
3 noncamers| camers | ’
5  |noncamers| camers | I T
7 noncamers| carers | i
© 7 7 [noncamers| camers | o - B
30 cariers | nancamers ] -
T 735 | camers |noncamers| I - T
58 camers | noncarners -
T B0 | camers |noncamersj I e
62 camers | noncamers| 7
B3 | camers |noncamersi | | | [_7 o
b4 carers | hancarriers
" 67 | camers |noncamers B I I
69 cariers | noncarmers ) o
T 77 77 BppaentEnorRate] 0173 | S
4
ir Discriminant Function Constants and [:uelﬁI o
""""" T E}lﬁag_;ﬁgn_ééiﬁer{ ) T
Constant 5435 -1.285
loglOfactwty) | 3172 | 9478 | | ) T
log10fentigen) | 1868 | 1402
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Output for the MVT Linear Discriminant Analysis (continued).

542

Cross Validation Results

Simple/MNaive Bootstrap {for whole dataset) Cross Validation Results

Average Error R ate from Bootstrap: 0.0760

Standard Bootstrap (for whole dataset) for who'e dataset

ErnrorR ate from Bootstrap Training Set 0.0730

Error Rate from Bootstrap Test Set: 0.0330

Bias Adjusted Bootstrap [for whole dataset) Cross Yalidation Results

Average Correct Training Set 929000

Average Incorniect Training Set 71000

Average Comrect Test Set: 92.9000

Average Incorrect Test Set: 7.1000

ErrorRate Bias: 0.0000

Bias Adjusted Error R ate: 0.0700




Output for the MVT Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.3 Quadratic Discriminant Analysis
10.2.3.1 Classical Quadratic DA

1. Click on Multivariate EDA P Discriminant Analysis (DA) » Quadratic DA »
Classical.

E:i] Scout 4.0 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatinExce \BEETLES . xls]
ugl File Edt Configure Data Graphs StatsGOF Outliers/Estimates Regression BUBWECEERIWM GeoStats Programs Window Help
Navigation Panel I 0 1 2 3 PCA | i g

= ] T 2 NEE G ORI Fisher DA > l
ame _ i
- ' ' . Linear DA B 1
D:\NarairAScout_Fo... ; 153 :2 Classica
) B i) 0| Huber
3 144 14 PROP
4 144 16 MyT
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A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

B® options; Quadratic Classical Discriminant Analysis,

—Cross Valdation
™ Leave One Out(LOO)

[ Spht

™ MFold

[~ Simple/Nave Boctstrap by Data Set
™ Smple/Nave Bootstrap by Group
[~ Standard Bootstrap by Data Set

I~ Standard Bootstrap by Gioup

[~ Bias Adusted Bootstrap by Data Set

[~ Bias Adwusted Bootstiap by Group

—Print to Output
(¢ NoScores " Prnt Scores

oK I Cancel l

A

o  Specify the preferred cross validation methods and their respective
parameters.

o  Specify the “Print to Qutput.” The default is “No Scores.”
o  Click “OK?” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

~ Select Graphics

Scatter Plot Title

¥ Scatter Plot ] Scatter Plot of Discriminant Scores
—Cutoff for Graphics ————————  =Plot Contour
- .
Critcal Alpha 0.05 No Contour

& [ndvdual [d0cut]

—MDs Distribution for Graphics ¢ Simultaneous [d2max]

¢ Bela C Ch ' Simultanecus/Individual

0K ' Cancel

#



o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

.o Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on the number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal’ priors.

o Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK?” to continue or “Cancel” to cancel the DA computations.
Output example: The data set “BEETLES.xls” was used for the quadratic linear DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for

each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.
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Output for the Classical Quadratic Discriminant Analysis.

Data Set: Beetles (2 variables 3 group

UserS el'é;:té;:i D.phons

s).

i Classical Quadratic Discriminant Anafysis

Date/Time of Computation

1/18/2008 3:23 37 PM

FromFile

D.\Naraim\Scout_For_Windows\ScoutSource\WorkDatinExce\BEETLES

Full Preciston

10FF

Storage Options |ﬁo Discriminant Scores will be stored to Workshest

Group Probabilties.

|Equal Priors will be used

G_rgphics Options

IScatter Plots selected

Contow Options

Contour Eltpses drawn using Individual MD(0 05)

Alpha for Graphics

005

Distnbution of MDs

ereta Distribution used in Graphics

Total Number of Dbservahonsi 74

Number of Selected Vana”bE{ 2

[

Number of Data Rows per Group

A 2] 3 T
21 il 22
- . : {
MeanVector forGroup 1 j
®1 %21 o ) -
1462 141

Covariance S Mlallix forGroup1

x1-1 %21 I
3166 | 0969 |
-0 969 079
MeanVector for Group 2
x1-2 ®2-2 I
1246 14.29 ]

| |

Covariance S Matrix for Group 2

-2 02 I [
T 37 0327 i
0327 1213 |
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(Complete results are not shown.)




Output for the Classical Quadratic Discriminant Analysis (continued).

Classification Summary |

Predicted Membership I
Actual 1 2
1 20 1
© 2 0 K|
3 0 0 22
# Correct 20 3 22
IProp Conecti 95 24% 100% 100%

Total Observations| 74
3

-~

Conrectly Classified

—_

Incorrectly Classified

Misclassification Summasy
Obs No. Actual Predicted
17 1 2

Apparent Error Rate| 0.0135

Cross¥alidation Results

Leave One Out (LOO) Cross Validation Results

LOO Classification Summary

Predicted Membership
Actual 1 2
1 20 1
2 0 3
3 1] 0 22
# Correct 20 AN 22
{Piop C-:mect1 95.24% 100% 100%

Total Observations| 74

Correctly Classified| 73

Incorrectly Classified| 1
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Output for the Classical Quadratic Discriminant Analysis (continued).

LO0 Misclassification Summany

Obs No. Actual | Predicted

17 1 2

LOO Eror Rate] 0.0135

Split (50/50) Cross Validation Results

Error Rate for Training Set: 0.0000

ErnorRate for TestSet: 0.0081

3Fold CrossYalidation Results

Average Error Rate: 0.0267

Simple/Naive Bootstrap [for whole dataset) Cross Vahdation Resukts

Average Error R ate from Bootstrap: 0.0068

Standard Bootstrap (for whole dataset) Cross Validation Results

Error Rate from Bootstrap Training Set: 0.0041

Error Rate from Bootstrap Test Set: 0.0081

Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results

Average Comrect Training Set 73.8000

Average Incorrect Training Set 0.2000

Average Correct TestSet: 727000

Averagelncormrect Test Set: 1.3000

ErrorRate Bias: -0.0149

Bias Adjusted Error Rate: 0.0284
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Output for the Classical Quadratic Discriminant Analysis (continued).

: % ~ Scatter Plot of Discriminant Scores
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.3.2 Huber Quadratic DA

. Click on Multivariate EDA » Discriminant Analysis (DA) » Quadratic DA »
Huber.

| Scout 4.0 - [D:WNarainiScout_For_Windows\ScoutSource\WorkDatInExce \FULLIRIS]
o] File Edit Configure Data Graphs Stats/GOF Outliers/Estimates Regression NUBAUUEAdan W GeoStats Programs Window Help

Navigation Panel I Ve S R 2 3 | PCA 4 7 8 9

Naroa 1 f aaleh I splength | sp-width | ptlength Discriminant Analysis (DA) > =g » [ ]

= S
- S : ~ LinearDA  »

D:\Narain\Scout_Fo... ‘2 & i'; 3‘2 :': g; Quadratic DA v [
- g . e T

3 47 32 33 n2 PROP

4 45 31 15 02 Mt

2. A “Select Variables™ screen (Section 3.5) appears.
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o Click on the “Options” button for the options window.

rSelect Intiad Estmates —————  ~Number of lterations Influence Function Alpha ——
" Classical '__10— ,_'0'0—5——

" Sequertial Classical
[Max = 50] Range (00-1.0)

™ Robust {(Medan, MAD]

% OKG [Maronna Zamar ) [~ Cross Vebdation
™ Leave One Out (LOO)

" KG (Not Orthogonalized)

™ Spit
 MCD

I MFod
MDs Distrbution
I~ Smple/Naive Bootstrap by Data Set
* Beta ¢ Chsguae
I~ Sinple/Narve Boolstrap by Group

™ Pt to Output I™ Standard Boolstiap by Data Set
& Mo Scues
I~ Standard Boolstrap by Group
" Punt Scores
[ Bias Adusted Bootstrap by Data Set
oK | Cancel | I~ Bias Adjusted Bootstrap by Group

A

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK?” to continuc or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

scriminantGraphies;

TSelecl Graphics ——————] Scatter Plot Title:
IV Scatter Plot | Scatter Plot of Discrminant Scores
¥ Scree Plot Scree Plot Title,
| Sciee Plot of Eigen Yalues for Fisher DA
— Cutaff far Grapbugs ———————1 —Plot Contour
C
Cutical Alpha 005 No Contour

& Indwidual [d0cut]

—MDs Distibution for Graphics ¢ Simultaneous [d2max)

& Beta ¢ Ch ¢ Simultaneous/Individual

oK CanceI_J

550



o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

o Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e Click on “OK?” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “IRIS.xIs” was used for the Huber quadratic DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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" User Selected Options

Output for the Huber Quadratic Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

; Quadratic Discriminant Analpsis with Hubar

Date/Time of Computation

171872008 32055 PM

From File

DN alain\Scoul_Fdr:\—lﬁﬁciows\S coutSource\warkDatinE xeel\FULLIRIS

Full Precision

" Influence Funchon Alpha

OFF
005

Squared MDs

7 Inibal Estimates

Beta Distribution

Robust Median Vector and OKG (Maronna-Zamar) Matrix

Number of Iterations

10

Storage Options

No Discriminant Scores will be stored to Worksheet

Group Probabilites

E qual Priors will be used

Graphﬁ:s Options

Scatter Plots selected

Contour Options

Contour Ellipses drawn using Indwiduat MD{0 05} snd Max MD(0.05)

Tﬂlpha for Graphics

0.05

Distnbution of MDs

Beta Distnbution used in Graphics

T otal Number of Observations; 150 L
Number of Selected Vanables{d | |~ { T 7|7 T
Number of Data Rows per Group
R T3 T o o
50 L 50 50
MeanVector forGroup 1 T ‘A—I T T
sple™th1 | spwidth-1 | ptle™th-1 | ptwidth-1| T T -
5006 3428 1462 0246
I
Covanance S Matrix for Group 1
sple~th | spwidthd | ptle™thd | ptwidth | T T T T T
0.124 00932 0.0164 00103
T 00992 | 0144 001377 ©0093 |~ ] T Ty T T o
00164 00117 0.0302 0.00607
T 00103 | 00093 | 000607 | 0.0111 I N
1QA Finl i T -

(Complete results are not shown.)




QOutput for the Huber Quadratic Discriminant Analysis (continued).

Classification Summary

Predicted Membership
Actual 1 2 3
1 50 0 T
2 0 43 2 o
3 a 1 49
# Correct 50 48 43
Prop Conectl- 100% 96% 98%

Total Observations| 150
Correctly Classified| 147

Incorrectly Classified| 3

Misclassification Summarny

Obs No. Actual | Predicted
71 2 3
84 2 3
134 3 2

Apparent Error Ratef  0.02

Cross Validation Results

Split (50/50] Cross Yalidation Results
Error Rate for Training Set: 0.0063
Error Rate for TestSet: 0.0493

3FoldCross Validation Results

Average Error Rate: 0.2667

Bias Adjusted Bootstrap [for whole dataset) Cross Validation Results
Average Correct Training Set 133.6000
Average Incorrect Training Set 1.4000
Average Correct Test Set: 137.6000
Average Incomnrect Test Set: 124000
Error Rate Bias: -0.0733
Bias Adjusted Error Rate: 0.0933
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Output for the Huber Quadratic Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores
218 i
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.3.3 PROP Quadratic DA
I Click on Multivariate EDA P Discriminant Analysis (DA) » Quadratic DA »

PROP.
™ Scout 4.0 - [D:Narain\Scout_For_Windows\ScoutSource\WorkDatInExce MASHALL . xls]
oy File Edit Configure Data Graphs Stats/GOF Outliers/Estimates Regression BUNISEd-et=5-8 GeoStats Programs Window Help
Navigation Panel | 0 (R pE A PCA [ P R
Wi | SielD | SamplelD| SLRatio | Time | o ARG 504
: r 1 2 1 TR Bl LA RN sy
D:\Narain\Scaut_Fo... i : i Quadratic D4 » EEKGEEEE
1 2 2 1 1.3 L —— [ ?25
1 2 3 1 1045 1374 1245 . 89
1 2 4 1 8.49 861 1074 MYT 43
2, A “Select Variables” screen (Section 3.5) appears.

o Click on the “Options” button for the options window.
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E% ptiens Quadratic PROP Discriminant Analysis,

FSelecl Initial Estimates ————1  ~Number of lterabans —Influence Function Alpha —
€ Classical [—_1—0—— 005
' Sequential Classical
{Max = 50) Range [00-10)

€ Robust (Median, MAD) L

& OKG [Maonna Zamar ) [~ Cross Valdation
I~ Leave One Out (LOD)

" KG (Not Orthogonalized)

™ Spit
C MCD

™ MFold

~MDs Distribution
[~ Simple/Narve Bootstiap by Data Set
@ Beta C Chiquare
™ Simple/Nave Bootstrap by Group

—Prnt to Qutput

% NoScores

[T Standaid Bootstrap by Data Set

I~ Standard Bootstrap by Gioup
C Pint Scaves

I~ BuasAdjusted Bootstrap by Data Set

™ Bias Adwsted Bootstrap by Group

ok | Carcel |

A

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

o Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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]

o

B8 optionsDiscriminantGraphics;

—Select Graphics Scatter Plot Title:
¥ Scatter Plot l Scatter Plot of Discriminant Scores
¥ Sciee Plot Scree Plot Title,
) { Scree Plot of Eigen Values for Fisher DA
—Cutoff for Graphics ————————  ~Plot Contour

P
Cutical Alpha 005 No Contour

@ Individual [d0cut]

~MDs Distribution for Graphics " Simultaneous [d2max]

& Beta " Chi " Simultaneous/Individual

0K | Cancel

o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

V;

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

Click on “OK?” to continue or “Cancel” to cancel the DA computations.



Output example: The data set “ASHALL7grp.xls” was used for the PROP quadratic DA. [t

has 214 observations and six variables in seven groups. The initial estimates of location and
scale for each group were the median vector and the scale matrix obtained from the OKG

method. The outliers were found using the PROP influence function and the observations were
given weights accordingly. The weighted mean vector and the weighted covariance matrix were
calculated. The classification rules were obtained using those weighted estimates. The output
shows that seven observations were misclassified. The cross validation results suggest the same.

Output for the PROP Quadratic Discriminant Analysis.
Data Set: Ashall (6 variables 7 groups).

" User Selected Options |

. Quadiatic Discriminant Analysiz with PROP

" "Date/Time of Computation

From File

1/18/2008 3.39 25 PM
D.\Naran\Scout_For_Windows\ScoutSource\wWorkD atinE xceMNASHALL 7gip

Full Precision
Influence Function Alpha

OFF T
0os

Squared MDs
Initial Estimates

Beta Distrbution

Robust Median Vector and OKG (MaronnaZamar) Matix

Number of lterations

10 -

- Storage Oplions

No Disciminant Scores will be stored to Worksheet

Group Probabilities

—“Graphlcs Upllon'sb

Equal Priors will be used

Scatter Plots selected

T Conteur Options
" 7 Alphafor Graphics

Distibution of MDs

Contour Ellpses drawn using Individual MD(0 05]
o5 0 T/ =
Beta Distribution h&;ﬁﬁraphics o

Total Number of Observations! 214 ~|

“"Number of Selected Vanablesi'S' -

" "Number of Data Bows per Group

i 2 3 & [ 5 6 7
| I | F7 BB ‘2‘0"*—13_j T
T """ "MeanVectorforGroup 1 o | Ty T T T
CCaf ] WNatT | RS ] CA | 5041 | ALK ”"] T T
1002 | 1881 | 172 | RB | M 0509 -

Covariance S Matrix for Group 1

T Cal

Nal | Ki cH 504-1:" ALK | ] -
7593 | 5274 541 1763 1304 033 i
5274 8.901 8475 14 42 028 0309 | T
541 8475 8575 | 13%7 | 047 | D306 |
78 1442 1397 296 2727 | 0555 } T T
1304 | 1028 047 | 2127 26.83 0586
T033 7| 039 | 0306 | 055 T 088 | oo | [

(Complete output is not shown.)
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Output for the PROP Quadratic Discriminant Analysis (continued).

Classification Summary

Pledlc?ed—M?mbership

" Actual 1 2 | 3 4 5 |6 | 7
T Bl o o | o 0 B

2 | o k] 4 0 D 0
R A 0 0 0
T4 0 0| 1 34 0 N
- T A R N+ R N Y R R R A R A N

6 0 | o 1 0o | 19 | 0
T o ] T 0 - 0 0|3
# Conrect 51 31 37 34 22 1/ 13
Prop conec_t.L“i’cl‘tT%;'“ T8857% 100% | 97.14% | 9585% | 95% | 100% |

Total Observations} 214
o Correctly Classified! 207
Incormectly Classified| 7

Misclassification Summary
Obs No Actual | Predicted
—

43
—
67
T3
195

o

3

wi W W wl w w

U')-b-U'II\JI\J!I\JI\J

|
|

Apparent Enor Rate] 00327
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Output for the PROP Quadratic Discriminant Analysis (continued).

Cross Validation Results
leave Dne Dut (Lumcms;ﬂiﬂaﬁr}ﬁ&dll N e o
[
e el b :
T * LOO Classification Summary “ T —**h
Predicted Membership ‘1
~ Actual 1 2 ""? ] 1_ 5 | '_5: ":“ B g
1 51 o 0 0 0 0 0 ‘
T2 D I/ 5 |0 0 0 TR ”
3 0 N ) 0 0 R R R R
4 0 g | 0 35 0 0 0
5 0 o 1 0 22 ~LT“"—[T' T
6 0 0 | 3 0 0 R T2 I R
T 7 0 o"i 3 | D T s T .
#Corect |51 SR 7or o0 B __1
Prop Correct; 100% AP ! 100% 100% 95 65% 85% 7692% |
Total Observations{ 214 J‘
Cotrectly Classified! 202 1 ‘
Incorrectly Classified; 12 - ‘
' - 9
LOO Misclassification Summary | “
" ObsNo. | Aclal | Predicted | N
42 ] 3 ’ :
T8 2 3T o q
66 2 37 a !
57 7 I T — ,
63 2 3 1
43 5 3T ]
T4 3 I*‘a T o T T i
B a
B I B I
163 3 ;
184 7 3 ] o R *
T 7 3 | B - I
LOO Enor Rate] 00561 N j‘
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Output for the PROP Quadratic Discriminant Analysis (continued).

Split [(50/50) Cross Validation Results
Validation Failed Not Enough Non-Outliers 9 tmes.
Error Rate for Training Set: 0.0561
Error Rate for Test Set: 0.0327

Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results
Average Correct Training Set 177.7000
Average Incormrect Training Set 36.3000
Average Cormrect Test Set: 184.3000
Average Incomrect Test Set: 29.7000
Error Rate Bias: 0.0308
Bias Adjusted Error Rate: 0.0636

Scatter Plot of Discriminant Scores

3 T e
»/.’
.
S )
a %
a = < . B ___ Toerance
&5
;
‘!
185 {
i
’
-5
“2808 -1608 608 194 1064

W1®243 0 4@5—6 |7

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.3.4 MVT Quadratic DA

1. Click on Multivariate EDA B> Discriminant Analysis (DA) B> Quadratic DA B>
MVT.

@Swul 4.0,-[D:! ,aram\Scoutn For, Wmdmvs\ScoutSource\WorkDallnExcel\BookWEMGPHIINA‘xlgl _
DD Fle Edit Cnnﬂgure Data Gfaph, Stats/GOF  Outhers/Estmates Regression BUMOEIE A% R GeoStats  Programs Wlndow Help

Navigation Panel I 0 1 2 3 l PCA LG W N N Y 3
B6gIU BogIu” 4
Name | GrpName | Group [Ac?ghnm]____l'dnﬁnpn! = N
DNaramiScout_Fo . ||_ 1 Nentames 1) 000, 01657 o Classicd }
’ 2 {NonCariers} 11 01698 01585 ‘
I e b4 T Huber o
3 NmEamersi 11 034690 0 TBTSJ ; | ! PROP
§ |NooCamerst ) Cooess] Tosd | ]
2. A “Select Variables™ screen (Section 3.5) appears.

o Click on the “Options” button for the options window.

B8 options, Quadratic MV Discriminant Analysis; .,

[~ Select Inbal Estmates —————  —Number of lterations 1~ Cutoff for Outhers Select Trmmng
-~ . Percentage
Classical I 10 ' 005 I_JT
N .
Sequential Classical Max =50] Crttcad Alpha Range [0-0%5)
€ Robust (Median, MAD]
& OKG (Maronna Zamar ) r—Cross Vabdation
™ Leave One Out (LDO)
" KG (Not Orthogonalized)
[~ spit
" MCD
™ MFold
™ Sinple/Nawve Bootstrap by Data Set
I™ Simple/Narve Bootstap by Group
Pt to Output ™ Standard Bootstrap by Data Set
. (¢ NoScores
[~ Standard Bootstrap by Gioup
€ Puint Scores
[™ Bias Adjusted Bootstrap by Data Set
aK l Cancel l ™ Bias Adjusted Bootstiap by Group

A

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.
o Click on the “Graphics” button for the graphics options window and check all of

the preferred check boxes.
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siminantGraphics

—Select Graphics ———————— Scalter Plot Tile:
¥ Scatter Plot | Scatter Plot of Discriminant Scores
¥ Scres Plot Scree Plot Title
I Scree Plot of Eigen Values for Fisher DA
~Cutoff for Graphies ——————— 1 Plat Contour
" No Contour

Critical Alpha 0.05

@ |ndividual [d0cut]

¢ Simultaneous [d2max]

 Beta C Chi € Simultaneous/Individual

;‘MD s Distnbution for Graphics

0K Cancel

y

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

o Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group, or
“User Supplied,” where a column of priors can be obtained from the “Select .
Group Priors Column.” The default is “Equal” priors.

o Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

o Click on “OK?” to continue or “Cancel” to cancel the DA computations.
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Output example: The data set “Salmon.xIs” was used for the MVT quadratic DA. It has one
102 variables in two groups. The initial estimates of location and scale for each group were the

median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.

The classification rules were obtained using those weighted estimates. The output shows that six

observations were misclassified. The cross validation results suggest the same.

Output for the MVT Quadratic Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

' Quadratic Discriminant Analysis Using MYT Method

" User Selected Eiptlbn's' l o
Date/Time of Computation |1/18/2008 3 48 10 PM

From Fie ‘D:\Nzaln\S cout_For_Windows\ScoutS ource\WorkD alinE xcel\Book \SALMON

Full Precision iDFF

Tumming Percentage | 10%

Initial E stimates | Robust Median Vectar and OKG [Maronna-Zamat) Matrix

Number of lterations |10

Storage Options ' No Discriminant Scores will be stored to Worksheet

Group Probabilities: |Equal Priors will be used

Graphics Options | Scatter Plots selected

" Contour Options !Eo?tour Elipses drawn using Tndividual MD(0 05) snd Max MD[U.US]
Alpha for Graphics {005

“Distiibution of MDs | Beta Distibution used in ( Graphlcsb -

Total Number orETbservatlonsi 100
0 ' m— -
Number of Selected Vauables’ 2 l_ o

Number of D ata Rows per Gioup

alaskan [ canadian !
|

50 B0 |

t

| |

MeanVector for Group alaskan

|
!
|
!
— I R R Il
1
|
I

Fi resh"’skan: Matin™skan! l

|
!
!
T 9838 | 4297 l !
|
|
|
|

Covariance 5 Matrix for Group alaskan

Fresh™skan' Mann™skan; l -
2606 1887 | |
1881 | 1399 ) |

|

Final Robust MeanVector for Group alaskan
Fresh™skan{Marin~skan| ]
98.42 4298

(Complete output is not shown.)
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Output for the MVT Quadratic Discriminant Analysis (continued).

Classification Summary

Predicted Membership
Actual alaskan canadian
alaskan 47 3
canadian 3 47
# Conect a7 47
Prop Correcti 94% 94%

Total Observations{100

Correctly Classified| 94

Incorrectly Classified| 6

Misclassification Summary

Bbs Na Actual Predicted
2 alaskan canadian
12 alaskan canadian
13 alaskan canadian
51 canadian alaskan
68 canadian alaskan
71 canadian alaskan

Apparent Error Rate|  0.06

Cross Yalidation Results

Leave One Dut(LOO) CrossYalidation Resuks

LOO Classification Summary

Predicted Membership
Actual alaskan canadian
alaskan 46 4
canadian 3 47
# Correct 46 a7
|Prop Conectlv 92% 94%

Total Observations|{ 100

Conrectly Classified{ 93

Incomectly Classified| 7
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Output for the MVT Quadratic Discriminant Analysis (continued).

LOO Misclassification Summary

Obs No.
2
12
13
30
51
=]
N

Actual
alaskan
alaskan
alaskan
alaskan

canadian
canadian

canadian

Predicted
canadian
canadian
canadian
canadian
alaskan
alaskan
alaskan
LOO Emor Rate  0.07

Bias Adjusted Bootstrap [for whole dataset) Cross Validation Results
Average Comnrect Training Set 90.9000
Average Incormect Training Set 9.1000
Average Correct Test Set: 926000
Average Inconrect Test Set: 7.4000

Emor Rate Bias: 0.0170

Bias Adjusted Error Rate: 0.0770

21

-38
48
58

63

Ds1
Y e, %

88
98 Fepne=s

-108

128

48
807 507

[ aiaskan @ canadien

Scatter Plot of Discriminant Scores

78 S »
Z

407

W ___Toerace

Ds2

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.4 Classification of Unknown Observations

Unknown or new observations can be classified into existing groups. There are certain rules that
need to be followed when using the unknown or new observations.

o The first three letters of the group name of the new or unknown observations should
be “UNK” or “unk” only.

o The set of unknown or new observations should be the last set of observations in a
data set; otherwise, an error message is obtained.

e Unknown or new observations will not be used in the cross validation.
o Unknown or new observations will not be used in the graphs.

o The results of the classification of the unknown observations are printed at the end of
the output sheet.

Last set of observations.
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Unknown observations in-between data.

Error Message.
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Results of the Classification of Unknown Observations.
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7 D 0 0 0 0 0 13 !
#Comect | 81 | 3 | 37 34 2 BRE] 3 ] T
Prop Conecl' 100% 88.57% 100% 97 14% 95.65% 95% 100% l
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Incorrectly Classified, 7 | ;
Misclassification Summary !
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) Cross Validation Results
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Average Correct Training Set 1865000

Average Incorrect T raining Set 27.5000

Average Conrect Test Set: 176.3000

Average Incomrect Test Set: 37.7000

EworRate Bias: -0.0477

Bias Adjusted Error Rate: 0.0804
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Chapter 11
Programs

Access to two additional standalone statistical packages is provided through Scout. Those
additional packages are ProUCL 4.00.04 and ParallAX.

11.1 ProUCL

ProUCL 4.00.04 is a statistical software package developed to address environmental
applications.

More information on ProUCL 4.00.04 and the ProUCL Technical and the User Guide can be
downloaded from the following web site: http://www.epa.gov/esd/tsc/software.htm.

\ - . !
B Scout 2008: - [D:Warain\Sco ut_For_Windows\ScoutSource\WorkDatInExce \FULLIRIS]; .
g,ﬂ File Edt Configuwe Data Graphs Stats/GOF Outhers/Estmates Regression Multivariate EDA  GeoStats BEGelcl Window Help

Nawvigation Panel I d] 0 1 2 3 4 5 3

count | splength | sp-wndth | ptlength | ptwadth Parallax

[ Name

Clicking on the “ProUCL” option in the “Programs” drop-down menu will bring up a prompt.

\?) Clicking OK will start a ProUCL as a seperate Program

| OK | Cancel |

When the “OK” button is clicked on, ProUCL 4.00.04 is opened in a new window.
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11.2 ParallAX

ParallAX software offers graphical tools to analyze multivariate data using a parallel coordinates
system. This is a standalone program developed in 1997 by MDG Corporation, Israel.

ParallAX is started in Scout by default whenever the user starts the Scout program. A message
in green text appears in the log panel with the successful starting of ParallAX. The screen of the
ParallAX (see below) will be running in the background. The user can access ParallAX by
minimizing Scout. If Scout failed to start ParallAX, then a message in red text appears in the log
panel stating the unsuccessful starting of ParallAX. The user can then start ParallAX by either
restarting Scout or by going to the directory where the file, “Scout.exe,” is installed on the
computer and then by clicking on the “ParallAX.exe” file twice.

% Scout 2008 - [D:WNarain\Scout_For_Windows\ScoutSource\WorkDatInExce NBODY FAT. xls]
m File Edit Configure Data Graphs Stats/GOF Outliers/Estimates Regression Multivariate EDA GeoStats [afes gitll Window Help

Navigation Panel] 0 1 e 4 B ProlCL  EEiEeE
Cout  Skinfxl) | Thights2) Bodyrat

[Nams | T
) i | 1i 1QFR a1 11Q

Clicking on the “ParallAX” option in the “Programs” drop-down menu will bring up a prompt.

ParallaX

Scout 2008 attempted to start ParallAX as separate program. The first entry in the log panel indicates if Scout 2008 was successfully in opening

ParallaX. If ParallaX is not still running the user can restart ParallaX by either double clicking ParallaX.exe in the Scout directory or restarting Scout
2008,

oK | Cancel l

When the “OK” button is clicked on, ParallAX is opened in a new window.

= ParallAX
e Anows Quey VYas Iypes view Scales Window allsheis Classfiers <Elup  Help

S



Note to the User

When the user wants to work with the software, ParallAX, an Excel file named “ParallAX-
Fix.xls,” provided along with the Scout package, should be opened first. Then, the ParallAX
software can be opened using the drop-down menu. This happens because the standalone
program ParallAX looks for its initializing files in the folder from which the data file (* xls or
* dat) was last accessed.

If the ParallAX software is opened immediately after opening the Scout program, then the
process explained above does not need to be done.

The ParallAX User’s Manual along with classification examples are provided in the appendices
that follow.
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Chapter 12

Windows
& 0.-[D:\Nara 0 0 d orkD
o] Fla Edt Confiqre Data Graphs Sats/GOF OutlersfEstrmates Regresson Mulivanste EDA GeoStats Programs O Help
Nawgation Panel | 0 [ 3 | 4 | s 6 Cascade
Name Count ¥ ] x1 2 | W I The Henzookely
[ 37 101 ECEE] Tie Verticaly
D WNarain\Scout_Fo 1 i oo I N .
PCA MCD osi 2 Zl 101 9§, 205 289 v 1D \ _For_Windows\ScoutSource! \Wor FDat InE xcs\BR ADU
PCA_Load gst 3 3 w3 w07 a? n T 1| 2PcamMDex
: & ss 8 a5 @7 [ o[ _3PcAtoxdet

Click on the Window menu to reveal the drop-down options as shown above.
The following Window drop-down menu options are available:

o Cascade option: arranges windows in a cascade format. This is similar to a typical
Windows program option.

o Tile option: resizes each window vertically or horizontally and then displays all of the
open windows. This is similar to a typical Windows program option.

The drop-down options list also includes a list of all of the open windows with a check mark in
front of the active window. Click on any of the windows listed to make that window active.
This is especially useful if you have more than 20 windows open, as the navigation panel only
holds the first 20 windows.
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1.0 introduction

ParallAX is a novel, some say revolutionary, tool for effectively analyzing multivariate data
sets, i.e., software, discovering patterns, properties, and relations. There are two main parts for
the ParallAX: the Visual Analysis portion (for doing what sometimes is called Visual Data
Mining or Exploratory Data Analysis), and the Automatic Classifiers that find rules to
distinguish elements from a given category or set of categories. The software is based on the
Parallel Coordinates (abbreviated ||-coords) methodology, which transforms the search for
relations in a data set to a pattern recognition problem. Intuitive interactive commands enable
the user to work with data sets having many (i.e., hundreds or more) variables that are displayed
without the loss of information. Of course, to really understand and appreciate this statement,
one needs familiarity with the ||-coords methodology. However, such familiarity is not necessary
in order to become an expert user of ParallAX and have lots of fun in the process. Everything
needed is described below using as an example a real data set.

The main window of ParallAX, shown in Figure [, has the familiar structure of GUI’s in

popular Windows applications. Starting from the top, it is composed of the: Operational, Graph,

Queries and Summary areas.
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Figure 1. The ParallAX main window or Graph area.

o The “Operational’” area consists of a main menu with the related pull-down menus, and a
toolbar including the most frequently used operations for one touch access. The toolbar is

self-explanatory and the names of the buttons are displayed when the mouse icon is pointed at

them.

e The data set input is a table; the precise format is given below, where each column consists of
values of a single variable. In ||-coords each variable has its own vertical axis. Typically, the
scale ranges from the minimum to the maximum value occurring in the data set for that
variable (see, for example, the 2" axis labeled “Time” in Figure 1). A data record is ona
single row of the table with the values for each variable separated by a blank. It is represented
in [|-coords by a polygonal line whose vertices are at the position on each axis corresponding
to its value for that variable. For example, the data item (3, -2, 0, 1.5, -4) is represented by the
polygonal line having a vertex at a value of 3 on the first axis, a value of -2 on the second

axis, 0 on the 3", 1.5 on the 4™ and —4 on the 5" (last) axis. The “Graph” area of the



ParallAX’s main window includes the axes, with their minima and maxima, the variable’s
label button on each axis, and the polygonal lines representing the data. The user may choose,
using the sEt-up pull-down menu (second from the right), either a white or a black (which is
the default) background for this arca. A particular axis may be selected by pressing its button.
A large number of variables may generate a very dense display. In such a case, the user may
choose either to see the entire graph or to scroll through enlarged portions of the graph (these
options are found using the sEf-up menu). Note: Very important - in the last line of the sEt-
up menu make sure that the “sort points at graph loading” on the last option is chosen. This
is especially important for improving the performance with large data sets. In real data sets
some of the variable values may be missing. In ParallAX, a point below the actual minimum
value on the variable’s axis indicates missing values for some data items. In the example data
set shown in Figure 1, the variable, “FileTable,” has several missing values, which are

displayed by the lowest point on the third from the left axis.

Below the Graph is the “Query” area and contains a rectangular button for each query. The
button’s color is the same as the color of the polygonal lines selected by the query (see Figure
4 for an example). The rectangle contains the query label (“q” and the number in the sequence
of invoked queries), size, and percent (% of the total data set captured by the query). As the
analysis progresses many query boxes may accumulate. They may be moved with the
horizontal slider under the query rectangles. Clicking on the small “Edit” button, in the query
rectangle, produces a list of other color choices.

In the “Summary” area, in the bottom right, general information is displayed. It includes the
total number of polygonal lines currently appearing, the level of isolation (how many queries
have been sequentially isolated to produce this state), the active query type, and the active

query logical (Boolean operator) combination. These terms are defined below.

Scatter plot windows (see Figure 2 for example) are opened by selecting a pair of axes
buttons (they do not have to be adjacent) and then clicking on the iconized button fourth from
the right. The representative points of the polygonal lines selected in the main window are
also highlighted by the same color. Several scatter plot windows may be opened

simultaneously.
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Figure 2. ParallAX scatter plot of the “Computer” number
versus the “SwapSpace” variable of the example data set.

2.0 Visual Data Exploration
2.1 Getting Started

This is a good time to install ParallAX with all four of its directories: Bmp, Dat, Ini and
ParallAX, into a separate directory. It may be helpful to prepare a data set for practice as we go
through the paces. Call your data set any name you like and use the extension .dat, e.g.,
testdata.dat. The data set format is:

i Comment — Write something about the data set to help your recall later on
nvars = # Here write the number of variables
ids = # Here write the labels (as short as possible) for the variables separated by blanks

undefined data = M # You can define any symbol here and use it consistently below
data =

Data table is placed here. Each data item is in a row with blank (not tab) separated values.
Missing data values are marked with M (or any other symbol to the right of the relation,
“undefined data =")

For example,

#  This is a small data set with 5 variables, 2 data items, and 1 missing value marked by M
nvars = 5

ids=ABCDE

undefined data=M

data =



1 44 M 17.5 .333
331 9 911 82
Input the data set into the “Dar” directory of ParallAX. From there double-click on the ParallAX
icon and the Main Window should appear on the screen. Click “open” in the “File” menu and the
list of the data sets in the Dat directory appears. Select a data set and press OK; a bunch of
polygonal lines appear. Do not let the picture intimidate. Very soon you’ll learn to discover
quite a bit from it. This is done by means of queries which are commands selecting subsets of
the data set. The simplest queries are defined by two arrowheads which may be placed anywhere
in the main window (on the axes or between axes, depending on the query type). The colored
polygonal lines lying between the arrows are those included in the query. From the sEt-up menu,
the background may be changed to white (black is default), and the distance between the axes
may also be changed. The default is “Viewing the whole graph.” 1f there are many variables, the
distance between the axes may be increased and then the graph may be “scrolled” using the
slider under the axes labels. The permutation of the axes may be changed using the “Permutation
Editor,” whose button is iconized by a Rubik’s Cube discussed later.

A query may be combined with other queries using set (Boolean) operators (union, intersection,
and complement). Many complex queries can be constructed and displayed, either one at a time
using the single “?” button (default) or @/l at a time with the “?7?” button on the lower left
corner. From the Query menu above the button iconized by a stethoscope some or all of the
queries may be deleted. To concentrate on the selected query, isolate it using the upper-half of
the fourth button from the left. The previous state can be recovered with the lower-half button.
Besides the queries, there are other features in addition to the Automatic Classification

Algorithms.

2.2  Queries

2.2.1 The Basics
ParallAX’s three basic queries are:

o The Interval denoted by I — defines an interval range on a specific variable axis. The end-
points are selected delimiting the variable’s values within the interval, and, in turn, the

polygonal lines (data items) having these values.



o The Angle denoted by A — defines an angle range between two variable axes, and, in turn,
selects the polygonal lines having segments within this angle range.

o The Pinch denoted by P — selects a subset of the polygonal lines between a pair of axes.

2.2.1.1 Interval Query

The Interval is the most frequently used query. It is activated by selecting its icon, /, on the
tool bar and also selecting the desired variable axis. Placing the cursor on the axis and clicking
the left mouse button causes down and up pointing arrowheads to appear. Each arrowhead is
then dragged in the desired directions to specify the upper and lower end-points of the required
interval. The polygonal lines, which are positioned within the specified interval, are selected. On
each arrowhead the variable’s value at that position is displayed next to it. This feature may be
switched off using the sEf-up button (Hide Interval Limits). An example is shown on the second
axis in Figure 3. To move a particular arrowhead, it is first selected by pointing at it with the
cursor and pressing the left mouse button. When one arrowhead is selected, it is enlarged and the
other becomes deselected. On occasion, it is useful to select both arrowheads. Pointing at the
deselected arrowhead and pressing the right mouse button selects it. Once both arrowheads are
selected, dragging on any of the arrowheads moves the whole interval while preserving its
length. When a specific value is wanted for an interval end-point, the particular arrowhead is
pointed at and the left mouse button is double-clicked. A dialogue box appears and the desired
value is entered.

Within the query rectangle appear the query number (q#), and the percentage (% of the total)
of the selected polygonal lines. The color of the query rectangle is the same as that appearing on
the selected polygonal lines.

The “Query” pull-down menu (third position from the left) offers choices for query deletion
and new query creation. New queries may also be added with the button iconized by a .
stethoscope. Having generated one or more queries, one may want to delete some of them.
Clicking on the “New query” produces a new current query and an associated differently colored
query rectangle. All the subsequent query commands will act on this and not on the previous

queries.

A-12



File Arrows (Query VYars Tupes wlew Scales Uindow aNalysis sEt-up  Help I
121 ] ] al\—
4 50 7

23116 1 38

3

Figure 3. The Interval query applied on the second (Time) axis. Note the arrowheads with
the indicated variable values. Here, the bottom arrow (enlarged) is selected.

2.2.1.2 _Angle Query

One of the most valuable relations (correlations) among an adjacent pair of variables occurs

when the corresponding portion (between the adjacent axes) of the polygonal lines are parallel
(or almost parallel) segments; or those lines intersect (if at all) outside the pair of adjacent

parallel axes. This, of course, is something that the user learns to “extrapolate” with practice.
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Figure 4. The Angle query shown between the third and fourth axes. Note the selected

polygonal lines (colored yellow) whose segments between those axes have the specified
angle range.

From a basic result of the parallel coordinates methodology, it is known that this pattern
corresponds to a positive correlation between the two variables. Among other reasons, the Angle
query is provided in order to search for such parallel or nearly parallel lines. To activate it, the
icon A4 is selected on the toolbar. Place the cursor on the centerline of the right axis, say Xj, and
click the left mouse button. Two arrowheads connected to the centerline of the left axis, X;.;,
appear and an example is shown between the third and the fourth axes in Figure 4. The selected
arrowhead is moved to the desired angle. The same can be done, after selecting it, with the
second arrowhead. This results in the coloring (i.e., selecting) of the polygonal lines whose

segments between these two axes are within the specified angle range.



2.2.1.3 Pinch Query
The Pinch query is complementary to the Angle type, in the sense that it looks for the

intersection points between a pair of adjacent axes. Reasoning geometrically, this pattern

corresponds to negative correlation between the adjacent variables.
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Figure 5. The Pinch query shown here between the third and the fourth axes.

As with the other queries, the Pinch is defined by two arrowheads that can, in principle, be
located anywhere on the graph. Typically, the arrowheads are located between the adjacent axes,
X; and X.;. All of the polygonal lines whose segments between those axes (or the extension of
the segments outside of those axes) that pass between the arrowheads will be included in the
query, as in the example shown in Figure 5.

Although those queries may be activated (started) from the main window, they also appear on
the corresponding scatter plots and may be manipulated from there by dragging a red square in
the scatter plot. The arrowheads are represented in the scatter plots by lines (there is a basic

point-to-line duality, or correspondence, between orthogonal and parallel coordinates). It is



instructive to view those queries also in the scatter plot window. As an example, in Figures 6, 7,
and 8, the scatter plot counterparts of the query types shown in the relative Figures 3, 4, and 5,
are displayed (for different axes). Note that the axes labels have a button from which a different

axis may be selected, thus changing the scatter plot.
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Figure 6. The Interval query on the scatter plot of FileTable vs. Time.
Compare with Figure 3.
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Figure 7. The Angle query on the scatter plot of InodeTable vs. FileTable.
Compare with Figure 4.
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Figure 8. The Pinch query on the scatter plot of InodeTable vs. FileTable. Compare with
Figure 5.

2.2.2 More Queries
2.2.2.1 Polvgon

Another very useful query is the Polygon that is activated and operated only on a scatter plot.
The polygon is specified by sequentially marking (clicking) with the cursor the vertices in the
scatter plot (there are no restrictions and the polygon may have as many vertices as needed and
may be convex or not). The construction of the polygon commences after the “Create Polygon”
button is selected. All the points inside the polygon are included in the query, and the polygon
may be moved after its creation, either all of it or a particular vertex (chosen by the user), by
selecting and dragging any of the vertices. This query is especially useful when there are points
which cannot be picked conveniently by means of the other query types (see the example in
Figure 9). The polygon may be deselected with the lower button and deleted with the “Delete

Query” option of the Query menu.

2.2.2.2 Complex Queries

A single query defines a subset of the data elements. A complex query is the result of
combining a set of queries by means of the set (Boolean) operations: union (U), intersection (M),

and complement. The corresponding operator buttons, appropriately iconized, (as digital



electronic Boolean operators), appear in the second position from the left on the toolbar. The
complement (or negation) is relative to the data elements displayed when the query atom is

defined; i.e., if the set of data elements included in the original query is denoted by 4, and the
25116
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Figure 9. The Polygon query.

set of displayed data elements is denoted by P, then the complemented query, A, will be defined
as:

A=P\A ={a;| ae P,a;jeg A} (11)
To define a complex query, the desired set operation must first be selected (the and, N, operation
is the default). To construct the complement of a query, the negation operation is selected before
the query is constructed. For the next query, ParallAX will apply the existing combination of the
selected buttons (union, union + negation, intersection, or intersection + negation). So be careful
with this; it requires care. A very useful option is the construction of multidimensional intervals
or a “multidimensional box.” Select the appropriate axes buttons and also the interval, 7, button.
Place the cursor at any of the selected axes and click the left mouse button; pairs of arrowheads
will appear on all of the selected axes. Dragging any one of the arrowheads causes all of the

arrowheads pointing in the same direction to move simultaneously.



2.3 Supplementary Operations
ParallAX has additional operations to help the exploratory data and analysis which act on the

axes, the display, or portions of the Graph.

2.3.1 Inverting Axes

This operation is complementary to the Angle query that searches for groups of polygonal lines
that (nearly) intersect ouiside a pair of axes (i.e., clusters having a positive correlation for a
particular pair of variables). The intersections may be quite distant and difficult to spot. By
contrast intersections in between a pair of axes are much easier to notice. Inverting one of the
adjacent axes (i.e., interchanging the minimum and maximum of the variable) reverses the
situation, that is, the distant intersections now appear as intersections between the axes and vice
versa. Such clusters of polygonal lines can now by picked with the Pinch operation. To carry
out this operation, the axis to be inverted is selected and the “Flip axes” button (iconized third
from the right) is clicked and has its minimum and maximum values marked in red (see Figure

10).
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Figure 10. The ||-coords graph with one inverted axis (SwapSpace).

2.3.2  Permutations

Even though mathematical relations have clear patterns (see Bibliography) which are easily
recognized by their regularity (see any elementary paper on ||-coords), the graph of most data sets
do not look terribly “regular.” However, patterns between adjacent axes are the easiest to
discover. In order to discover all possible pair-wise patterns, it is not enough to look at the ||-
coords graph in the form that it first appeared. Rather all of the possible adjacencies need to be
inspected. It is possible to change the order of variables in a very efficient way. ParallAX

allows the user to chose about N/2 (actually [N / 27 ), where N is the number of variables,

cleverly constructed permutations which contain all possible adjacencies, and these are
automatically provided. Click the Rubik’s cube button, the fourth from the left icon, and those
permutations are listed on the upper right window. It is a good idea to view the data with each

one listed, and then construct, by means of the permutations editor there, a customized
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permutation containing the axes adjacencies of choice. Of course, a particular axis can be
included more than once and in any position. If it is desired to view as adjacent a particular pair
of variables, then enter that pair in the lower left editor window and a permutation is displayed

where the required adjacency appears and the remaining variables are randomly ordered.

2.3.3 Isolate/Previous/Scale

After defining a query (or a set of queries), the user may wish to concentrate on the selected
data items (i.e., polygonal lines). As already mentioned, in order to do that, clicking the top half
of the fourth button from the left may isolate the current query. This yields a new graph
containing only the data selected by the previous query. The graph is displayed with the values
of the minima and maxima of the variables in the previous graph (before isolation). In order to
update the minima and maxima of the new graph, which enlarges the space used by the graph,
the user may choose Scales from the menu. Clicking on the button below Isolate returns to the

Previous state.

2.3.4 Relative Complement

A query defines a subset of the data elements. When two or more queries have been defined,
two or more subsets of elements have been specified. The user may wish to use set operations,
such as the union (U), intersection (M), or relative complement (\), to operate on the queries
(sets). The use of the union and intersection operations has already been described (see
“Complex Queries”). The “Relative Complement,” iconized by \, is a specialized and advanced

query. When choosing this function, ParallAX displays the list of all of the possible
n
combinations (2(2) possible combinations). The user chooses one of them, and a new query is

defined which is the set difference of the 2 queries chosen; i.e., if the first query is denoted by O,

and the second query is denoted by g, the resulting query, denoted by QOp, is:
Or=04\0Os={a,| a,€ Qu,a ¢ QOp} (12)

The new query is not directly composed of basic queries or polygons and it depends on the two

other queries.
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2.3.5 Zooming
When we want to view a portion of the graph in greater detail, a rectangular portion of the graph
can be isolated and enlarged by means of the “Zoom™ button, iconized by a magnifying glass.

An example is shown in Figure 11.
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Figure 11. The Zoom function.

236 More Supplementary Operations

e Save as (from the “File” menu). It is possible to save, in the Dat directory, a subset of the data
set by a separate name. This can be done by isolating the data set and using the “Save as™
option from the File button. A dialogue box appears. Enter a file name with the .dat extension
and the file is saved.

o Select off screen arrows (from the “Arrows™ menu). Pointing at it and clicking the left mouse
button selects an arrowhead. At times, arrowheads get off the screen. In order to delete them,

they need to be selected first by means of this function.
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o Delete selected arrows (from the “Arrows” menu). One may select, or delete, as many
arrowheads as desired. If both of the arrows of a query are deleted, then the whole query is
deleted. If only one arrow is deleted, then the query remains unbounded on that side, and all
of the data elements found lower or higher than the remaining arrow are included in the query.
This is a good way to delete a query, when many queries are operating on the data, without

destroying other queries that may be present.

o New query (from “Query” menu) - A new query rectangle is added and becomes the current

query.

o Clear current query (from “Query” menu) - All of the displayed queries are cleared: all
arrowheads are deleted and the polygonal lines receive their original color. So, make sure that

this is what you want before using.

o Delete variable (from the “Vars” menu) - If the user presses some variable(s) button(s), and
then chooses this function, the selected variable(s) are deleted from the display. This is
equivalent to choosing the current permutation without the chosen variables. This can be very

useful when there are many variables.

o Find variable (from the “Vars” menu) - In a data set with a large number of variables, it is
hard to find variables by their names. ParallAX comes to the rescue. Choose this from the
“Vars” menu and a list of variables in alphabetical order appears. Choose the desired variable,

and on the Graph the corresponding axis button is shown selected (i.e., depressed).

o Show one query | Show many queries - The user may choose to see a single query or many
queries simultaneously by selecting “?” or “?7?” respectively in the lower left hand corner.
When “?” is selected, and there are several queries, the active query is chosen by selecting the
appropriate query rectangle. Viewing many queries in large data sets still may cause some

problems with the query colers; hopefully it will be fixed soon, so some care should be

exercised.

The Vars menu contains a number of useful functions.
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1. When there are a large number of variables, it is tedious searching for individual
variables. Clicking on “Find Variable” produces the list of variables alphabetically.
Selecting the desired variable in the list selects the axes button of this variable. By the
way, this renders that variable axis ready to operate on with the Interval Query.

2. "Attimes it is useful to know the order in which the data appears in the data table.
Clicking on the “Add Index Variable” produces a dialog box where the name of the new
variable can be specified. The variable then appears at the right end of the graph and has
as the value of each data item its position (rank) on the data table at input.

3. On occasion the user wants to designate a subset of the data set into a separate category.

In such a case, the “Add Categorical Variable” 3™

entry on the menu is invoked and
given whatever name is desired. The new variable then appears on the right hand end of
the graph with the designated subset assigned the category value | while it’s complement
takes the value 0. Further subdivisions of the data set can be assigned other category
values using the “Set Category” option on the menu.

4. One or more variables can be omitted from the graph by selecting the variable buttons

and then invoking the “Delete variable(s)” options.

2.4 Preprocessing

Some operations may be used for preprocessing to provide the user with insights on the
structure of a data set easily and early in the analysis process. Then, the data items or variables
that seem superfluous, and whose presence may obscure the information, can be eliminated. In

fact, such elimination plays an important part in focusing on the desired information.

2.4.1 Zebra

Zebra (banding) is a multidimensional contouring operation. It is designed to portray easily
variations in /! of the variables due to variations in one variable. To operate this function, select
the axis of the desired variable and the “Zebra” button iconized in the last (most right) position
of the toolbar. In the dialogue box that appears, enter the number of intervals. The selected axis
is then divided into equal length intervals. It is a good idea to start with 2, view the resuit and
then increase the number. The polygonal lines ranging in each interval are colored by a different
color. The result of this operation is a contoured view of the data, highlighting different aspects,

especially dependencies, intersection points, data clusters and extreme points and others. It can
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also point out areas with high density and reveal periodic events. An example of Zebra results is

shown in Figure 12.
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Figure 12. An Example of the “Zebra” function applied with 7 subdivisions on the
Computer Axis (1" from the left).

2.4.2 Outliers

This is an automated algorithm suited to large data sets having a number of outliers. In
general, application of this algorithm is recommended only for expert users (which, of course,
you will soon be). It is a good idea to study the outliers of a data set and try to determine the
reason that they are outliers. On the other hand, outliers determine the display scale and
removing them enlarges the scale for the remaining data. This allows for the observation of
patterns that may be hidden by the high density of data. It is really best to manually remove the
outliers after examining each one of them. A convenient place to start eliminating data is close to
the limits of the axes. Points near the limits and far from the large mass of data are good

candidates for elimination.
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The Outliers function starts an iterative algorithm that performs this task. The user may

supply some parameters to the algorithm, or leave their default values. The parameters are:

e The maximum (relative) number of outliers (the default is 5%). If the algorithm reaches this
value, it will stop searching fore more outliers.

o A factor, whose default value is 6, which influences the distances between elements on an
axis; considered by the algorithm as a starting point for the outliers search.

e A divider (whose default value is 10) indicating the length of a segment on the axis. If we
denote the divider by d and the axis length by /, the algorithm will ignore outliers whose

distance to the closest element (non-outlier) is less than // d.
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Figure 13. The result of the Outliers operation (before user approval).

The algorithm starts looking for outliers from the leftmost variable in the displayed permutation
to the right. After finding all of the outliers on an axis, it passes to next axis, until the last one in
the permutation is reached. Then, it starts again from the first axis, and so on. The algorithm
stops when the maximum relative number of outliers is reached, or, if that does not happen,

when it does not find any more outliers after passing on all of the variables in the permutation.
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After that, it displays all of the outliers found highlighted (colored in green) and waits for the
user to approve this. The user may not approve of the choice, retaining the current graph.
Otherwise, the algorithm issues an Isolate operation and displays the graph without the outliers.
Even in this stage, there is a possibility to return to the previous graph, by performing the
previous operation. The example shown in Figure 13 is the result of the Outliers function applied
to the demo data set, with the default parameters, before the actual removal of the outliers (i.e.,

before the user approved it).

3.0 Automated Classification

Even though the Visual Exploration is fun and effective, it requires time and skill. Hence, the
most frequent and insistent requests have been for automation of at least some of the discovery
process. Some of the functions we have already presented have, of course, elements of
automation. It was recently discovered that it is possible to do autematic classification (patent
pending) effectively based on ||- coords. Given a data set, P, and a subset, §, a rule is sought that
distinguishes elements of § from the others. Obviously, we would like this to be as accurate and
efficient as possible. This is the basic classification problem and it can be directly generalized to
the case where there are a number of subsets (also called categories) that need to be
distinguished from each other. There are important trade-offs between the rule’s complexity and
precision. In our case, we are able to state the rule precisely (unlike the “learning” of “black
boxes™) as well as visually. This as we will see, turns out to be very helpful. In addition, our
algorithms find the minimal subset of the variables needed to state the rule and order these
variables according to their information content. The basic idea of our algorithms is geometrical
and it entails the construction of a (hyper) surface that contains as many of the points of § and as
few of the points of P-§ (the complement of §). This brings up the important matter of
measuring the precision of the rules obtained by our classifiers. We discuss this later on. There

are three classifiers and they are found by clicking the “Classifier” menu’s first line.

3.1 Wrapping

The simplest approach to geometrical classification is to wrap, in some efficient way, the points
of § and then state, in as simple a way as possible the rule (which is actually the description of

the wrap — an approximation of a convex surface). The algorithm, even at the expense of some
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precision, further simplifies the description of the wrap. The rule is stated in terms of conditions
on the variables needed to fully state the rule. Also these variables are optimally ordered (in
terms of their information content). To apply this and any of the other classifier algorithms, the
subset S needs to be specified and used as the input. In many data sets, there are one or more
variables that specify various categories or classes. In that case, using the interval query isolates
a specific category. Otherwise S is defined by means of the queries. When this is done, choose
“Wrapping” from the Classifiers menu. The “Select axes” dialog box appears and provides an
important choice; namely, to choose the variables in terms of which we would like to have the
rule stated (think of the many applications where this is essential). We can “Select all” with the
button and then skip the ones we want to skip. If the subset S is specified in terms of interval
queries only, be sure to deselect those variables at this stage or the rule is likely to be a trivial
restatement of the defining conditions. Click the OK button and the “Classifier summary”
appears with the expression with the approximate conditions for the rule as well as the
percentages of the misclassification for the “Training phase” (see below). That is, “False
positives” refer to those data items in P-S§ that were misclassified as belonging to S, while “False
negatives” are data items in .S that were misclassified as belonging to S. If those errors are small,
then this rule may suffice. Still, look in the Graph where the last query displayed contains all of
the elements of § and the “False positives.” The variables needed to state the rule are displayed
first with arrowheads in the suggested order of their importance. It is possible to save the rule
and to apply it to another data set. To do so, select the “Save classifier” option and give the rule a
name in the dialog box that appears; click OK and the rule is saved in the Data directory. To
apply it again on another set of data §”, which is already displayed in the graph, select the
category variable on which the rule is to be applied and also select the “Apply classifier” to chose
the rule from the list. The result has the format already described.

As an example, we can see in Figure 14 an Interval query on the axis [NodeTable. After
performing the wrapping algorithm on all of the axes except for the INodeTable, the resulting

query and permutation are shown in Figure 15 and the difference in Figure 16.
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File Arrous

Figure 14. An Interval query defining the input set in the Wrapping operation.
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Figure 15. The result of the Wrapping operation.
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relative complement, “1”).

3.2  The Classification Process

ParallAX includes two very advanced classifiers: the “Nested Cavities” NC and “Enclosed
Cavities” EC. Compared with 23 other well-accepted classifiers, as applied to some benchmark
data sets, in all cases, they were the most accurate. Also, they are computationally very efficient.
The classifiers exploit the inherent property of this tool, visualization, as well as the
computational advantages of the [|-coords methodology. The classification results are displayed
graphically on the screen giving the analyst the ability to understand the results. The ability to

visualize the rules is lacking in many other classifiers.

The classification problem arises in a variety of fields and can be divided into two phases. In
the training phase, the classifier “/learns™ to discriminate between classes using a data set called
the training data, consisting of solved cases having samples associated with correct classification.

The output of the classifier in our case is a rule, which is based on the solved cases. Then, there
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is the testing phase, where the rule is applied to a new data set and the results it provides are

compared to the known correct cases. Figure 17 illustrates the classification process in general.

Solved ] Learning
cases J " Rule
a) The training phase.
New ] Comparisons
cases J > Rule
b) The testing phase.

Figure 17. The classification process.

3.2.1 Analyzing the Errors

For the classes designated as “positive” and “negative,” the error committed when predicting

a positive sample as negative is called a “false negative” and the error committed when a

negative sample is predicted positive is called a “false positive.” The error rate of these two types

of misclassification is calculated based on the following equations:

False positive error rate =

False negative error rate

number misclassified positive cases

number of negative cases

number misclassified negative cases

number of positive cases

Keep these formulae in mind when examining the error rates given by the classifier.
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3.3 Nested Cavities Classifier — NC

This new classifier is based on an iterative top-down process of creating a (hyper)surface
containing as many points of the designated subset, S, and as few points of its complement, P-S.
The algorithm involves creating an exterior wrap, then constructing and removing a wrap
containing all thec unwanted points (and some of the wanted oncs), then returning a smaller wrap
with the wanted points (and some of the unwanted ones) creating a fine nesting of cavities which
provide an increasingly more precise approximation for the desired subset, S. If this process
converges, and it does NOT always converge, then the result (i.e., the approximate description of
the (hyper) surface) is the rule, which can be quite complex. Again it is stated as conditions on
the variables needed for the classification. The queries that add points have an even number
while those that remove points have an odd number (except for the first one which contains the
class elements). To apply the VC, select the class on which the rule is to be defined, choose
“Nested Cavities” from the Classifiers menu, select the variables as for Wrapping, limit the
number of iterations allowed (100 is default) and then press OK. In the beginning, especially for
large sets, it is worth picking a smaller number of iterations, and if convergence looks likely,
then remove the iteration restriction. A great deal can be learned from studying the classification
rule. Notice the leading list of variables occurring in the successive iterations. Those who tend to
occur consistently or most frequently are the most important and there are other clues that come
with experience. An example of the spectacular results that may be obtained is shown in Figures
18 and 19. The classifier was applied to a data set with 32 variables and 2 classes shown in
Figure 18. It is sought to find a rule to distinguish elements of class 1 from its complement class
2 whose elements are colored black. Notice how interwoven the two classes are as shown in the
scatter plot of the first 2 variables shown in Figure 18. The result is displayed in Figure 19. The

NC is the one used most frequently, as it tends to be more successful.

3.4 Enclosed Cavities Classifier - EC

On occasion, when the NC does not give satisfactory results, it is worth applying the next
classifier EC. Basically, classification using the EC is based on obtaining an exterior wrap of the
wanted data points. Then, removing the unwanted points with cavities that do not contain any of
the wanted points. The result is something akin to “Swiss cheese.” The operation is the same as

for NC with the EC tending to be slower especially for large data sets. It is advised to use the
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default settings of the 2™ dialog box until enough experience has been obtained to make

judicious choices.

3.5 Error Analysis
Once a rule is obtained, it is possible and desirable to assess its precision. Two ways are

provided and they are accessed from the “Check Classifier” option of the Classifier menu.

3.5.1 Train-and-Test

This is the most frequently used method. The data is randomly split in two. The usual

- proportions are either 2/3 or 1/2 for training, i.e., deriving the rule, and applying the rule (i.e.,
testing) on the remainder. The actual portion chosen for training is prescribed in the dialog box.
Then the classifier used is chosen (Note: Extended Cavities and Wrapping with Cavities are
synonyms for NC and EC respectively). Make sure to use the same list of variables and iterations

as used in the derivation of the rule.

3.56.2  Cross Validation
Here all of the data set is partitioned in a number of subsets and split randomly for training and

testing. This gives a better error estimate than Train-and-test but also takes much longer.
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PamliAx - D /Program Files/DevSiudio/MyProjects /paraliax/dat/MONKE'Y 1 DAT
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R v e T e e o e S - s
Scalter plot of x1 vs_ x2
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Delete selected polygon|

q2 Prent: 50%

Figure 18. A real data set with 32 variables and 2 classes (categories) — the rule is sought
for class 1 shown in color. The complement class 2 is shown in black. In the insert is the
scatter plot of the first 2 variables in the permutation on input. An effective classification
should lead to a physical separation of the 2 classes.
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Figure 19. Above are seen some of the results obtained by the NC classifier. It turns out
that only 9 of the variables are needed to specify the rule. They are placed up front sorted
according to their information content. In the insert is the scatter plot of the first two
variables showing a remarkable separation. Viewing the remaining scatter plots of the
variables shown in the list provides a “road map” to actually seeing the RULE as
represented by a 9-dimensional hypersurface embedded in the 32-dimensional space of the
original data set.
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The reader is requested to send any questions or comments to

A. Inselberg aiisreal@math.tau.ac.il

or mail to:

MDG Ltd

36A Yehuda Halevy Street
Raanana 43556, ISRAEL
Tel/FAX: 972 -9-771-9726

Thank you for using ParallAX!
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Classification Examples

The following is an example using the data set, Allsites.dat.

" ParallAX - C:/Documents and Settings/USER/Mesktop/l/parallax/parallax/parallaxreg/dat/ALLSITES.DAT
File Amows Quey Vars Types view _§cales_l Window aNalysis Classifiers sEtup Help

(Total size: 175

_:q' |~! o DisplayOne TypeiNane

Above is the full data set; there are eight sites considered as the “classes™ for classification.
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The “Classifiers” button is selected by the cursor and then the “Nested Cavities” is chosen,
which is the most powerful algorithm (there are 3).

rallAX - C./Mocuments and SeltingsAISERMeskiapdl /paraliaxiparallax/parallaxies/datALLSCES.OAT
Fle Amews Quey VYes Iypes view Scales Windew alabsis Cossifers sftup  Hep

SLRATIO

This window appears. Click on “Select All” and deselect “Sites,” which is the class variable.
Then click OK.

[ ParallaX - € focumenis SERfiesktopd fparallacparalisx/pataliaxsegldat/ALLSUES.OAT

Fle  Anows G Var Ies view ECMVHMW aNaysis  Classhiers sEtup  Heb

+ L ParsAt- CifD, W Nested cavitie.,, | G Alstesvaport... | i elstesdata ..
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The next box appears; click OK (accept the default).

at) ‘1.'.,' AISERMDesktop/}
view Scalas indew

a2
K:10.74-24.45 and
S04:243-827

Number of erors:

False positives: 0.00%
False negatives: 0.00%
Total eror rate: 0.00%

= B Size:dl

ql Prent: 23%

M Classifer sum.. T} Abstes-report.... @ alstes-data, ...

The classification result is in the above window.
The rule distinguishing Site 1 from the rest is:

K:10.74 - 24.45 and SO4: 24.3 - 42.71.
Those are the ranges for K and SO4. Note that the axes order is changed, with K being first (K is
the best single predictor), SO4 being second and Site (the class variable) being last. Next, the

rule’s precision is tested.

From the boxes on the bottom left, select the BLUE (leftmost) box.
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|27 ParallAX - C:Documents and Settings/USERMDesktop/l/parallaxiparallax/parallaxreg/dat /ALLSITES. DAT
Fle Awws Quey Vas Tes vew Scales Windw ablass (Classfiers sElup Hebp

& allstes-data. 06 Pant

ParallAX - C:/Documents and Settings/USERMeskivp/l/parallax/parallax/parallaxreg/dat/ALLSITES.DAT
Ei» Anows Query Vars Types view Scales Window  aflalysis | Chassifies sEtup Heb

Find classifier »

Display classfier expression

Save classifier

Apply classifier

W dsesdta PG -Part BN - m= R wdot @ BT
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[ ParalBX - C:/Docummnts 4ud Settings/LISERDeskiap/l/parallax/parallax parallast sp/dai
Ede Amows Quey Vas Twpes vew Scales \Window aNalysis Classfies sEtup Help

Sample-id SLRATIO

c]Size Al Ex|SheiAl || EAefSizerdl

ol Front 230 w2 Proni: 230 | g3 Promi: 234

2 DkenetEx.. » | ParalAX-C:jDr. W Tran-andtest

Click on “Classifiers,” then (at the bottom) “Check Classifier” and then choose “Train-and-
flest

In the box which appears next, input 67 (chooses at random 67% of the data) and pick “Nested
Cavities™ (for the classification algorithm). A rule is then constructed based on 67% of the data,
which is then tested on the remaining 33% of the data; click OK.
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el s LUocure nd Settings/USLR/M2skiop/L /paraliax/paraliaxipasalia
Fle Arows Query Yers Types view Scales Windiw allabsis  Coassifiers sElup

Sample il | SLRATIO
| Size: AL R

— 2 W2 Pront: 23%%

Again, “Select All” and deselect “Site,” which is now at the end of the list; click OK.
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e Atws Quey

ys TIypes  view Scdes y_/ aNalysis  Classifiers  sElup  Help

\i) Number of enrors:

~ False posiives: 222%
False negatives 0.00%
Total error rate: 1.72% [

Sampde §d SLRATIO

Bic]Sizer 41| Bk i Size: 41 |"M~

1 ;41 s
al Fant:2i% g2 mm;:“.l w7 Pront: 234

) Alsttes-report.. i# alstes-data.JP...

In the above window is the answer in percent of false positives, false negatives and the
(weighted) average error. A high false negatives indicates that the sample is too small for a
reliable rule.

Click OK and then click on the second GREEN box at the bottom left. Then click the scatter

plot button on top to obtain the K vs. SO4 plot and visually see the result of the classification.
Data from Site | is colored GREEN and is separated from the rest of the data.
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[ paralix - Document

* parallazreg/dat/ALLSITES !"
bl JAUALL Sl
Els  Anows Query Vars Tupes view Scales
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A
A
M Scatter plot of K vs. S04

-
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Go to the Query button on top and “Delete all queries™; the following display is next.
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ocuments and Settings/USER/MDeskiop/l fparallax/parallax/parallagrepg/dat/ALLSITES.DAT
Ele Avows Quey Yas Iypes view Scales Windew aNalpsis Classifiers sElup  Help
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Repeat the classification for any other site. Here, Site 4 is chosen (the last axis).



= 2 InternstEx., =~ 7 ParallAx - C:JC.

The above window is obtained.

W Scattan piot of ...

Y allsites-report. .,

W alskes-detadp,.,
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Windew  sMalysiz  Classifiers

q2:
Na:478-935 and
Ca:1663-27.11 and
S04:672-153

B Nuriber of errors:

False positives: 0.00%
False negalives: 0.00%
Total error sate: 0.00%

stup  Help

@ Allsites-taport. ..

The rule distinguishing Site 4 from the others is:

Na: 4.78 - 9.35 and Ca: 16.63 - 27.11 and SO4: 6.72 - 15.3.

The error is 0% and the plot of the first two variables is in the next window.



laxreg/dal
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Appendix C

Benford's Law

(Available in pdf version only)
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Glossary

Anderson-Darling (AD) test: The Anderson-Darling test assesses whether known data come from a
specified distribution.

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur during
sampling design, the sampling process, or laboratory analysis).

Biweight: An influence function based on Tukey’s or LA X/Kafadar’s methods.

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of
accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any
statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small
data sets or where sample distributions are non-normal.

Break Down point: This point represents that fraction of observations which can be altered (e.g., can be
made very large) arbitrarily without affecting (influencing, distorting, changing drastically) the values of
the estimates.

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean p
and variance o°, the sampling distribution of the mean approaches a normal distribution with a mean (1)
and a variance o*/N as N, the sample size, increases.

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to
the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. Also
known as the relative standard deviation (RSD).

Confidence Coefficient: The confidence coefficient (a number in the closed interval [0, 1]) associated
with a confidence interval for a population parameter is the probability that the random interval
constructed from a random sample (data set) contains the true value of the parameter. The confidence
coefficient is related to the significance level of an associated hypothesis test by the equality: level of
significance = 1 — confidence coefficient.

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random
interval within which the unknown population parameter, such as the mean, or a future observation, x0,
falls.

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95%
upper confidence limit (UCL) is given by the upper bound of the associated confidence interval.

Correlation: A measure of linear association between two ordered lists.

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit
(UCL) of the population mean represents the confidence coefficient associated with the UCL.

Critical Alpha: The cutoff level for finding outliers.

Cross validation: The method of checking if the classification of observations in discriminant analysis
are valid or not.

,
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Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO process
that clarify study technical and quality objectives, define the appropriate type of data, and specify
tolerable levels of potential decision errors that will be used as the basis for establishing the quality and
quantity of data needed to support decisions.

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not
contain a specific analyte from samples that contain low concentrations of the analyte. The lowest
concentration or amount of the target analyte that can be determined to be different from zero by a single
measurement at a stated level of probability. Detection limits are analyte- and matrix-specific and may be
laboratory-dependent.

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative
probability distribution function that concentrates probability 1/n at each of the 7 numbers in a sample.

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate)
the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of
the unknown population mean.

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f.
or p.d.f.). EM is typically used to compute maximum likelihood estimates given incomplete samples.

Exposure Point Concentration (EPC): The contaminant concentration within an exposure unit to which

the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure
assessment.

Extreme Values: The minimum and the maximum values.

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set
wholly or partly derived from a model of the data.

Graphics Alpha: The alpha values used for identifying outliers on the graphs. This is usually same as
critical alpha.

Gray Region: A range of values of the population parameter of interest (such as mean contaminant
concentration) within which the consequences of making a decision error are relatively minor. The gray
region is bounded on one side by the action level. The width of the gray region is denoted by the Greek
letter delta in this guidance.

H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution.

H-UCL: UCL based on Land’s H-Statistic.

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or
rejected by examining the data set collected for this purpose. There are two hypotheses: a null
hypothesis, (Hp), representing a testable presumption (often set up to be rejected based upon the sampled
data), and an alternative hypothesis (H,), representing the logical opposite of the null hypothesis.

Individual MD(a): The «100% critical value from the distribution of the distances (also called dOcut).

Individual Contour/Ellipsoid: Contour at Individual MD(a). Also called a prediction ellipsoid.



Influence Function Alpha: The values used for minimizing in Huber and PROP methods.

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a
parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to
the usual estimate base d on N observations, N estimates each based on N-1 observations.
Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a sample comes
from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical
distribution function (EDF).

Kurtosis: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Level of Significance: The error probability (also known as false positive error rate) tolerated of falsely
rejecting the null hypothesis and accepting the alternative hypothesis.

Leverage Distances: The distances (robust or classical Mahalanobis) obtained using the independent
variables in regression.

Leverage Outliers: The outliers among the independent variables in regression.
Lilliefors test: A test of normality for large data sets when the mean and variance are unknown.
M-Estimation: The process of obtaining an M-estimators.

M-Estimators: A class of statistics which are obtained as the solution to the problem of minimizing
certain functions of the data.

Max MD: Largest Mahalanobis distance obtained from the dataset.

Max MD(a): The a100% critical value of the test statistic (also called d2max).

Maximum Likelihood Estimates (MLE): Maximum likelihood estimation (MLE) is a popular statistical
method used to make inferences about parameters of the underlying probability distribution of a given

data set.

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a
measure of central tendency.

Median: The middle value for an ordered set of n values. Represented by the central value when n is odd
or by the average of the two most central values when n is even. The median is the 50th percentile.

Minimization Criterion: The criterion used in minimizing the residuals of regression.

Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest
difference in means that the statistical test can resolve. The MDD depends on sample-to-sample
variability, the number of samples, and the power of the statistical test.

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or

MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the
parameters. [f an estimator is unbiased, then its mean squared error is equal to its variance.
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Non-detect (ND): Censored data values.

Nonparametric: A term describing statistical methods that do not assume a particular population
probability distribution, and are therefore valid for data from any population with any probability
distribution, which can remain unknown.

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature.
This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the
population mean. For example, for normally distributed data sets, the UCL of the population mean based
upon Student’s t distribution is optimum.

Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that are
not representative of the population from which they were drawn. The presence of outliers distorts most
statistics if used in any calculations.

p-value: In statistical hypothesis testing, the p-value of an observed value fypsened Of SOMe random
variable 7 uscd as a test statistic is the probability that, given that the null hypothesis is true, T will
assume a value as or more unfavorable to the null hypothesis as the observed value fpscrveq.

Parameter: A parameter is an unknown constant associated with a population.
Parametric: A term describing statistical methods that assume a normal distribution.
PC Loadings: A matrix of eigen vectors for the covariance or correlation matrix.

Population: The total collection of N objects, media, or people to be studied and from which a sample is
to be drawn. The totality of items or units under consideration.

Prediction Interval: The interval (based upon historical data, or a background well) within which a
newly and independently obtained (often labeled as a future observation) site observation (from a
compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient).

Probability of Type 2 Error (=B): The probability, referred to as § (beta), that the null hypothesis will
not be rejected when in fact it is false (false negative).

Probability of Type I Error = Level of Significance (= a): The probability, referred to as a (alpha) that
the null hypothesis will be rejected when in fact it is true (false positive).

p" Percentile: The specific value, X, of a distribution that partitions a data set of measurements in such a
way that the p percent (a number between 0 and 100) of the measurements fall at or below this value, and
(100-p) percent of the measurements exceed this value, X,.)

p"™ Quantile: The specific value of a distribution that divides the set of measurements in such a way that
the proportion, p, of the measurements falls below (or are equal to) this value, and the proportion (1-p) of
the measurements exceed this value.

Quality Assurance: An integrated system of management activities involving planning, implementation,
assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type
and quality needed and expected by the client.



Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary
QA, QC, and other technical activities that must be implemented to ensure that the results of the work
performed will satisfy the stated performance criteria.

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the
highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to
plot the percentiles of the distribution.

Range: The numerical difference between the minimum and maximum of a set of values.

Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics
for the uncensored observations and then to fill in values extrapolated from the straight line for the
observations below the detection limit.

Resampling: The repeated process of obtaining representative samples and/or measurements of a
population of interest.

Reliable UCL: This is similar to a stable UCL.
Regression Outliers: The outliers in the dependent variable of regression.

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good
performance (that is not unduly affected by outliers) for a wide variety of data distributions.

Sample: A sample here represents a random sample (data set) obtained from the population of interest
(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative
sample of the population under study. The sample is used to draw inferences about the population
parameter(s).

Shapiro-Wilk (SW) test: In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample
X, ..., X, came from a normally distributed population.

Simultaneous Contour/Ellipsoid: Contour at Max MD(a). Also called a tolerance ellipsoid.

Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead
concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The
higher is the standard deviation, the higher is the skewness.

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits,
which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g.,
contaminant concentration) that can occur in practice. Also, a stable UCL provides the specified (at least
approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to
the population mean.

Standard Deviation (sd): A measure of variation (or spread) from an average value of the sample data
values.

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard
error in relation to the size of the estimate, the less reliable the estimate. Standard errors are needed to
construct confidence intervals for the parameters of interests such as the population mean and population
percentiles.



Trimming percentage: The percentage value used for trimming outliers in MVT method.

Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on
the mean. For example, a 95 percent one-sided TL for 95 percent coverage represents the value below
which 95 percent of the population values are expected to fall with 95 percent confidence. In other
words, a 95% UTL with coverage coefficient 95% represents a 95% upper confidence limit for the 95"
percentile. '

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable,
unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It
represents an impractically large value that cannot be achieved in practice. For example, the use of
Land’s H statistic often results in impractically large inflated UCL value. Some other UCLs, such as the
bootstrap t UCL and Hall’s UCL, can be inflated by outliers resulting in an impractically large and
unstable value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or
inflated UCLs.

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter
of interest such as the population mean.

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently
obtained observation (or an independent future observation).

Upper Tolerance Limit (UTL): The upper boundary of a tolerance interval.

Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with
the preset cut-off value. This method is sensitive to the number of outliers, but not to their actual values.
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About the CD

The CD accompanying the hard copy of this report, “Scout 2008 Version 1.0 User Guide,”
contains the following contents:

[~]

Scout 2008 Version 1.00.01 statistical software.

J.M. Nocerino (editor), A. Singh, R. Maichle, N. Armbya, and A.K. Singh, “Scout 2008
Version 1.0 User Guide.” U.S. Environmental Protection Agency, February 2009.
(Microsoft Word format and pdf)

A. Singh and A K. Singh; J.M. Nocerino (editor), “ProUCL Version 4.00.04 Technical
Guide.” U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/041
(NTIS PB2007-107919), February 2009. (Microsoft Word format and pdf)

A. Singh, R. Maichle, A K. Singh, and S.E. Lee; J.M. Nocerino (editor), “ProUCL
Version 4.00.04 User Guide.” U.S. Environmental Protection Agency, Washington, DC,
EPA/600/R-07/038 (NTIS PB2007-107918), February 2009. (Microsoft Word format and

pdf)

“Robust Procedures for the Identification of Multiple Outliers,” A. Singh and J.M.

Nocerino. A chapter in Chemometrics in Environmental Chemistry, ). Einay, ed., a
volume (2.G, Volume 2, Part G) in The Handbook of Environmental Chemisiry, O.
Hutzinger, ed. (Heidelberg, Springer-Verlag), 1995, pp. 229-277. (pdf format)

A. Singh; J.M. Nocerino (editor), “On the Computation of a 95% Upper Confidence

Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection
Limit Observations,” EPA/600/R-06/022, March 2006. (Microsoft Word and pdf)
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