

Scout 2008 Version 1.0 User Guide Part IV

RESEARCH AND DEVELOPMENT

EJBD ARCHIVE EPA 600-R-08-038 US EPA Headquarters and Chemical Libraries EPA West Bldg Room 3340 Mailcode 3404T 1301 Constitution Ave NW Washington DC 20004 202-566-0556

EPA/600/R-08/038 February 2009 www epa gov

Scout 2008 Version 1.0 User Guide

(Second Edition, December 2008)

John Nocerino

U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Environmental Sciences Division Technology Support Center Characterization and Monitoring Branch 944 E. Harmon Ave. Las Vegas, NV 89119

> Anita Singh, Ph.D.¹ Robert Maichle¹ Narain Armbya¹ Ashok K. Singh, Ph.D.²

¹Lockheed Martin Environmental Services 1050 E. Flamingo Road, Suite N240 Las Vegas, NV 89119

²Department of Hotel Management University of Nevada, Las Vegas Las Vegas, NV 89154

Repository Material Permanent Collection

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names and commercial products does not constitute endorsement or recommendation for use.

U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460

Notice

The United States Environmental Protection Agency (EPA) through its Office of Research and Development (ORD) funded and managed the research described here. It has been peer reviewed by the EPA and approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation by the EPA for use.

The Scout 2008 software was developed by Lockheed-Martin under a contract with the USEPA. Use of any portion of Scout 2008 that does not comply with the Scout 2008 User Guide is not recommended.

Scout 2008 contains embedded licensed software. Any modification of the Scout 2008 source code may violate the embedded licensed software agreements and is expressly forbidden.

The Scout 2008 software provided by the USEPA was scanned with McAfee VirusScan and is certified free of viruses.

With respect to the Scout 2008 distributed software and documentation, neither the USEPA, nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed. Furthermore, the Scout 2008 software and documentation are supplied "asis" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Acronyms and Abbreviations

% NDs	Percentage of Non-detect observations
ACL	alternative concentration limit
A-D, AD	Anderson-Darling test
AM	arithmetic mean
ANOVA	Analysis of Variance
AOC	area(s) of concern
B*	Between groups matrix
BC	Box-Cox-type transformation
BCA	bias-corrected accelerated bootstrap method
BD	break down point
BDL	below detection limit
BTV	background threshold value
BW	Black and White (for printing)
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CL	compliance limit, confidence limits, control limits
CLT	central limit theorem
CMLE	Cohen's maximum likelihood estimate
COPC	contaminant(s) of potential concern
CV	Coefficient of Variation, cross validation
D-D	distance-distance
DA	discriminant analysis
DL	detection limit
DL/2 (t)	UCL based upon DL/2 method using Student's t-distribution cutoff value
DL/2 Estimates	estimates based upon data set with non-detects replaced by half of the respective detection limits
DQO	data quality objective
DS	discriminant scores
EA	exposure area
EDF	empirical distribution function
EM	expectation maximization
EPA	Environmental Protection Agency
EPC	exposure point concentration
FP-ROS (Land)	UCL based upon fully parametric ROS method using Land's H-statistic

Gamma ROS (Approx.)	UCL based upon Gamma ROS method using the bias-corrected accelerated bootstrap method
Gamma ROS (BCA)	UCL based upon Gamma ROS method using the gamma approximate-UCL method
GOF, G.O.F.	goodness-of-fit
H-UCL	UCL based upon Land's H-statistic
НВК	Hawkins Bradu Kaas
HUBER	Huber estimation method
ID	identification code
IQR	interquartile range
K	Next K, Other K, Future K
KG	Kettenring Gnanadesikan
KM (%)	UCL based upon Kaplan-Meier estimates using the percentile bootstrap method
KM (Chebyshev)	UCL based upon Kaplan-Meier estimates using the Chebyshev inequality
KM (t)	UCL based upon Kaplan-Meier estimates using the Student's t- distribution cutoff value
KM (z)	UCL based upon Kaplan-Meier estimates using standard normal distribution cutoff value
К-М, КМ	Kaplan-Meier
K-S, KS	Kolmogorov-Smirnov
LMS	least median squares
LN	lognormal distribution
Log-ROS Estimates	estimates based upon data set with extrapolated non-detect values obtained using robust ROS method
LPS	least percentile squares
MAD	
	Median Absolute Deviation
Maximum	Maximum value
MC	minimization criterion
MCD	minimum covariance determinant
MCL	maximum concentration limit
MD	Mahalanobis distance
Mean	classical average value
Median	Median value
Minimum	Minimum value
MLE	maximum likelihood estimate
MLE (t)	UCL based upon maximum likelihood estimates using Student's t-distribution cutoff value

MLE (Tiku)	UCL based upon maximum likelihood estimates using the Tiku's method
Multi Q-Q	multiple quantile-quantile plot
MVT	multivariate trimming
MVUE	minimum variance unbiased estimate
ND	non-detect or non-detects
NERL	National Exposure Research Laboratory
NumNDs	Number of Non-detects
NumObs	Number of Observations
OKG	Orthogonalized Kettenring Gnanadesikan
OLS	ordinary least squares
ORD	Office of Research and Development
PCA	principal component analysis
PCs	principal components
PCS	principal component scores
PLs	prediction limits
PRG	preliminary remediation goals
PROP	proposed estimation method
Q-Q	quantile-quantile
RBC	risk-based cleanup
RCRA	Resource Conservation and Recovery Act
ROS	regression on order statistics
RU	remediation unit
S	substantial difference
SD, Sd, sd	standard deviation
SLs	simultaneous limits
SSL	soil screening levels
S-W, SW	Shapiro-Wilk
TLs	tolerance limits
UCL	upper confidence limit
UCL95, 95% UCL UPL	95% upper confidence limit
	upper prediction limit
UPL95, 95% UPL	95% upper prediction limit
USEPA	United States Environmental Protection Agency
UTL	upper tolerance limit
Variance	classical variance
W*	Within groups matrix

,

WiB matrix	Inverse of W* cross-product B* matrix
WMW	Wilcoxon-Mann-Whitney
WRS	Wilcoxon Rank Sum
WSR	Wilcoxon Signed Rank
Wsum	Sum of weights
Wsum2	Sum of squared weights

.

Table of Contents

	breviations	
Table of Contents		ix
Chapter 10		
Multivariate EDA		451
10.1 Principa	al Component Analysis	
	sical Principal Component Analysis	
	tive and Robust Principal Component Analysis	
10.1.2.1	Sequential Classical PCA	
10.1.2.2	Huber PCA	
10.1.2.3	Multivariate Trimming PCA	
10.1.2.4	PROP PCA	
10.1.2.5	Minimum Covariance Determinant PCA	
10.1.3 Kapl	an-Meier Principal Component Analysis	
	inant Analysis (DA)	
	er Discriminant Analysis	
10.2.1.1	Classical Fisher DA	
10.2.1.2	Huber Fisher DA	
10.2.1.3	PROP Fisher DA	
10.2.1.4	MVT Fisher DA	
10.2.2 Linea	ar Discriminant Analysis	
10.2.2.1	Classical Linear DA	
10.2.2.2	Huber Linear DA	
10.2.2.3	PROP Linear DA	
10.2.2.4	MVT Linear DA	
10.2.3 Quad	dratic Discriminant Analysis	
10.2.3.1	Classical Quadratic DA	
10.2.3.2	Huber Quadratic DA	
10.2.3.3	PROP Quadratic DA	
10.2.3.4	MVT Quadratic DA	
10.2.4 Clas.	sification of Unknown Observations	
References	· · · ·	569
Chapter 11		571
Programs		
11 1 ProLICI		571
Chapter 12		575
Windows		575
Appendix A, Paral	IIAX User's Manual	A-1
Appendix B, Class	sification Examples	B-1

Appendix C, Benford's Law	C-1
Bibliography	D-1
Glossary	E-1
About the CD	F-1

Chapter 10 Multivariate EDA

The Multivariate Exploratory Data Analysis (EDA) module of Scout performs principal component analysis (PCA) and discriminant analysis (DA). The data should have a minimum of two variables. In order to perform a DA, a group variable (column) should be included in the data set. The values (alphanumeric) of the group variable represent the various group categories.

10.1 Principal Component Analysis

Principal component analysis is one of the well recognized data dimension reduction techniques. While the first few high variance principal components (PCs) represent most of the systematic variation in the data, the last few low variance PCs provide useful information about the random variation that might be present in the experimental results. Graphical displays of the first few PCs are routinely used as unsupervised pattern recognition and classification techniques. The normal probability Q-Q plots and scatter plots of the PCs are also used for the detection of multivariate outliers.

Since the MLE of the dispersion matrix and the correlation matrix get distorted by outliers, the classical PCs (obtained using the covariance or correlation matrix) also get distorted by outliers. The robust PCs give more precise estimates of the systematic and random variation in the data by assigning reduced weights to the outlying observations.

Let $p = (p_1, p_2, ..., p_p)$ represent the matrix of eigen vectors corresponding to the eigen values $(\lambda_1, \lambda_2, ..., \lambda_p)$ of the sample dispersion (correlation) matrix (classical or robust). The eigen vector, p_1 , corresponds to the largest eigen value, $\lambda_1, ...,$ and the eigen vector, p_p , corresponds to the smallest eigen value, λ_p . The equation, y = px, represents the p principal components, with $y_1 = p'_1 x$ representing the ith principal component.

Q-Q plots of the principal components are sometimes used to reveal suspect observations and also to provide checks on the normality assumption. Scatter plots of the first few high-variance PCs reveal outliers which may inappropriately inflate the variances and covariances. Plots of the last few low-variance PCs typically identify observations that violate the correlation structure imposed by the main stream of the data, but that are not necessarily outlying with respect to any of the individual variables.

Scout can compute the PCs for both the classical dispersion (correlation) matrix and the robust dispersion (correlation) matrix. The iterative or robust procedures available in Scout are: the sequential classical, PROP, Huber, MVT, and MCD procedures.

Few rules have been incorporated into Scout for the ease of graphing in the Multivariate EDA module.

- A rule, called the proportion rule, exists where only the scores and loadings corresponding to the proportion of eigen values greater than 0.0001 will be plotted.
- If any of the final matrix used to compute the eigen values and the loadings are singular, then the graphing is based on the proportions rule.
- If the any of the eigen values of the final matrix is less than 10^{-20} or greater than 10^{+20} then those loadings and the scores based on those eigen values will not be plotted.
- If the classical initial matrix used for generating the scores in any of the robust method is singular, then a message will be displayed and further calculations will be stopped.
- If the standard deviation of any of the scores is less than 10^{-7} or greater 10^{+7} , then contours will not be plotted on their respective scatter plots.
- If the coefficient variation of any of the scores is less than 10^{-7} or greater 10^{+7} , then contours will not be plotted on their respective scatter plots.
- If the absolute value of the correlation between the two variables used in scatter plots is greater than 0.99, then the contours will not be plotted.
- If the absolute difference between the standard deviations of the two variables used in the scatter plot is less than 10^{-20} , then contours will not be plotted.

10.1.1 Classical Principal Component Analysis

1. Click on Multivariate EDA ▷ PCA ▷ Classical.

B Scoul 4.0 - [DeWareInScoul_For_Windows/ScoulSource/WorkDallnBreelWarens/ENGINE/4]									
['한글', File Edit Configure Data Graph:	Stats/GOF	Outliers/Es	stimates	Regression	MilitatioEDA	GeoStats	Programs	Window H	Help
Navigation Panel	0	1	2	3	PCA_		D Class		8
Name	Count	Knock	Spark	Air	Discriminant Ar	nalysis (DA)	Robu	ist 🕨	
	1	84 4	13	3 13	91 311	6971	· · · · · · · · · · · · · · · · · · ·	1	

2. The "Select Variables" screen (Section 3.4) will appear.

• Click on the "**Options**" button for the options window.

E Classical PC Options	X
Matrix To Use	Scores Storage
Covariance	No Storage
 Correlation 	← Same Worksheet
Print to Output	C New Worksheet
No Scores	,
C Print Scores	OK Cancel

- Specify the storage of principal component scores. No scores will be stored when "No Storage" is selected. Scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. Scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Specify the printing of scores in the output in the "**Print to Output**" option. The default is "**No Scores**."
- Specify the "Matrix To Use" to compute the principal components. The default is "Correlation."
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

Classical PC Graphi	es; Options;	
Select Graphics		
Scree Plot	Title for Scree Plot	C No Contour
	Scree Plot of Eigen Values	C Individual (MD)
	Title for Horn Plot	Simultaneous [MD Max]
🗭 Hom Plot	Horn Plot of Classical PCs	 Individual/Simultaneous
	Title for Load Matrix Flot	MD's Distribution
🔽 Load Matrix Plot	Load Matrix Plot - Classical	Beta Chisquare
	Title for Scatter Plot.	Cutoff for Contour Lines
PCA Scatter Plot	Scatter Plot of Classical PCs	Critical Alpha
_	Title for Q-Q Plot	0 05
✓ Q-Q of PCAs	Q-Q Plot of Classical PC Scores	
		OK Cancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Horn Plot" provides a comparison of the computed eigen values to the multi-normal generated eigen values.
- The "Load Matrix Plot" provides the scatter plot of the columns of the load matrix.
- The "PCA Scatter Plot" provides the scatter plot of the principal components scores and also the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for the distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- The "Q-Q Plot of PCA" provides the Q-Q plots of the component scores.
- o Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Click on "OK" to continue or "Cancel" to cancel the PCA computations.

Output example: The data set "**BUSHFIRE.xls**" was used for the classical PCA. It has 38 observations and five groups. The initial estimate of scale matrix was the classical covariance matrix. The classical correlation matrix was obtained from this covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

Output for the Classical Principal Component Analysis. Data Set used: Bushfire.

20.15

35

177 2

64.06

52.17

ı			Principal C	omponents	Analysis u	sing the Cla	assical Met	nod	
Dat	e/Time of Co	mputation	1/29/2008 10:40:15 AM						
	User Selecte	ed Options							
		From File	e D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\Bus						
	Ful	Precision	OFF				- H.C		
	Display Sco	res Option	Do not Displ	lay PC Score	s in Output				
	PC Score	es Storage	Do Not Store	e Scores to V	Vorksheet	~ ~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·	····· =•·····	
Matrix	Used to Cor	mpute PCs	Correlation						
		Graphics	Scree Plot S	elected					
	Scre	e Plot Title	Scree Plot o	f Eigen Value	es				
		Graphics	Horn Plot Se	elected					
	Hori	n Plot Title	Horn Plot of	Classical PC	s				
		Graphics	Load Matrix	Plot Selecter	3				
	Load Matri	x Plot Title	Load Matrix Plot - Classical						
		Graphics	XY Scatter Plot Selected						
	XY Scatte	er Plot Title	Scatter Plot of Classical PCs						
		Contour	No Contour Lines will be Displayed						
		Graphics	Scores Plot Selected						
	Score	s Plot Title	Q-Q Plot of Classical PC Scores						
			J		····				
	Summary	Statistics					1	1	
····	Number of (Observations	38					-	
Num	ber of Select	ed Vanables	5				1	1	
				L				1	
		Me	ean		<u>'</u>		<u>†</u>	1	
Case 1	Case 2	Case 3	Case 4 Case 5						
103.6	129.1	288.6	227.9 286 6						
· · · · · · · · · · · · · · · · · · ·	1,_,,,,,	I	ł <u></u>	<u> </u>				1	
	<u></u>	Standard	Deviation		<u></u>		1	+	
Case 1	Case 2	Case 3	Case 4	Case 5			1	1	

•

Output for the Classical Principal Component Analysis (continued).

	·	Determinant	1 195E+12		+
	Logio	Determinant	27 81		
	Eigenvalu	es of Classi	cal Covaria	ince S Matr	ĸ
Eval 1	Eval 2	Eval 3	Eval 4	Eval 5	
1 825	4818	341.6	1035	38435	
	Surnol	Eigenvalues	39862		
	Ck	assical Corr	elation R M	atrix	
	Case 1	Case 2	Case 3	Case 4	Case 5
Case 1	1	0 802	-0 585	-0 495	-0 49
Case 2	0 802	1	-0 525	0 528	-0 516
Case 3	-0 585	-0 525	1	0 974	0.976
Case 4	-0 495	•0 528	0 974	1	0 999
Case 5	-0 49	0 516	0 976	0 999	1
		Determinant	6 8489E 6		1
	Eigenvalu	es of Classi	cal Correlat	ion R Matri	ĸ
Eval 1	Eval 2	Eval 3	Eval 4	Eval 5	
6 5901E-4	0 0155	0 213	0 979	3 792	1
	Sum of	Eigenvalues	5		1

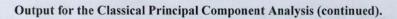
	Sur	nmary Tabl	e (Eigenval	lues)		
	Eigen Value	Difference	Proportion	Cumulative		
PC1	3.792	2.813	0.758	75.84		
PC2	0.979	0.766	0 196	95.42		
PC3	0.213	0.198	0 0426	99.68		
PC4	0.0155	0.0149	0 0031	99.99		
PC5	5.5901E-4	N/A	1.1180E-4	100		
			•	· · · · · · · · · · · · · · · · · · ·	ł	
	PC	: Loadings (Eigen Vect	ors)		
	PC1	PC2	PC3	PC4	PC5	
Case 1	-0.383	0.596	0.669	-0.226	0.00614	
Case 2	-0.383	0.591	-0.692	0.159	-0.0165	
Case 3	0 49	0.267	-0.227	-0.798	-0.0115	
Case 4	0.484	0.33	0.119	0.383	-0 704	
Case 5	0.482	0.34	0 0927	0.373	0.71	
						·

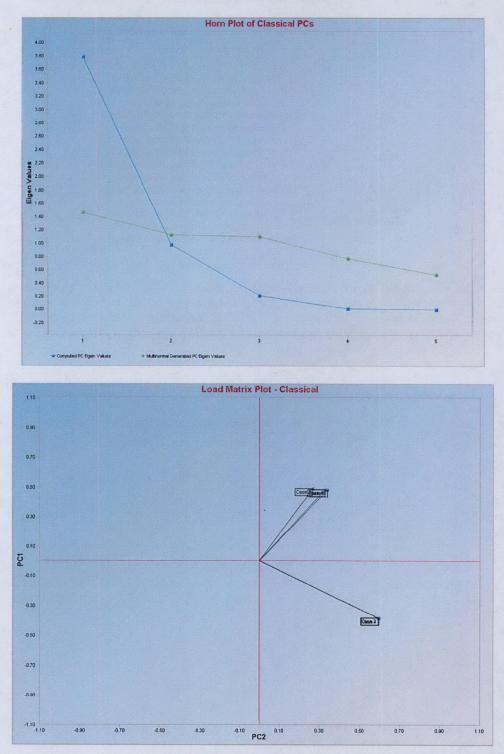
Note: If the proportion of a principal component is less than 0.01, then that principal component will not be used in the graphing of the load matrix plot, scatter plot of the scores and the Q-Q plots of the scores

.

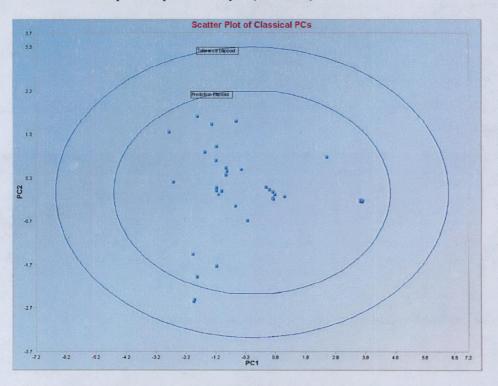
.

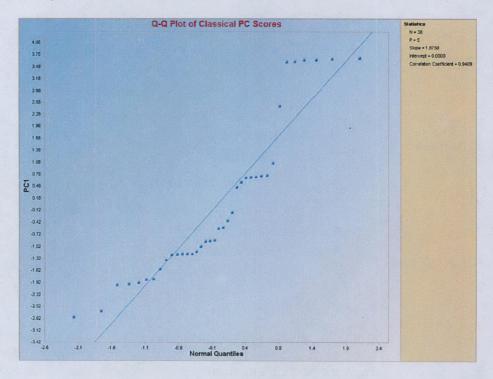

,


Output for the Classical Principal Component Analysis (continued).


File Edit Configure Dat	a Graph	-	Outliers/E		-	Multivariate EDA	GeoSt
Navigation Panel		0	1	2	3	4	5
Name		PCS_1	PCS_2	PCS_3	PCS_4	PCS_5	
D:\Narain\Scout Fo	1	1977539100	5694259850)189934961	558986829	93115253982	
PCA_Out.ost	2	1367875374	7682516768	5085220704	728375067	91827782046	
PCA_Scree.gst	3	1735824890	1191585794	1788445233	164534920	67902894014	
PCA_Horn.gst	4	3718773500	5944643120	3866896205	715886268	1 361 0648320	
PCA_Load.gst	5	3667370154	1030809727	2575479610	131056697	1 3001249610	
PCA_Scatter.gst PCA_ScoresQQ.gst	6	1918630852	1350210849	3977055038	357900952	1 1359302676	
PCA_Out a.ost	7)286201157	2802007026	3877255474	396359759	83157652000	
PCA_Scree_a.gst	8	5764973363	5531928836	2342813507	303859470	63717383701	
PCA_Horn_a.gst	9	7074596333	1034940558	3542546747	550137248	52651541661	
PCA_Load_a.gst	10	7291709281	2147392256	1567105977	700093651	53825773225	
PCA_Scatter_a.gst	11	1310418376	3020343705	1262500154	151475867	52362914650	
PCA_ScoresQQ_a PC_Scores	12	3157347793	1094188872	3593713170	307138995	03486421597	
I O_OCUIES	13	3028761554	2985505324	7040317070	391098426	7)902177815	
	14	5851954396	1022183602)997934551	275675876	43862712282	

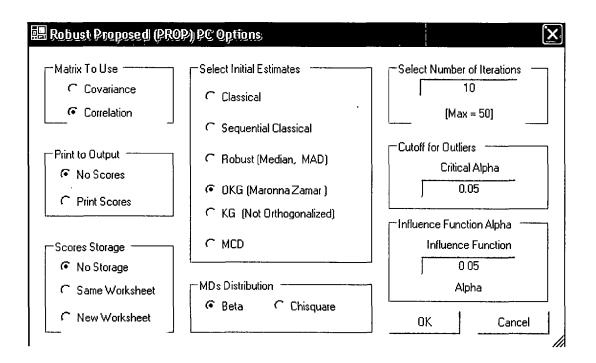
Note: The scores storage in the "New Worksheet" option was chosen in the "Classical PC Options" window. This resulted in a new worksheet named PC_Scores being generated and the principal component scores being stored in that worksheet. Those scores are available to the user for further computations. The score storage option of PCA remains the same for all of the other PCA procedures incorporated in the principal component module of Scout.


Output for the Classical Principal Component Analysis.



Output for the Classical Principal Component Analysis (continued).

Observations outside of the simultaneous ellipse (tolerance ellipsoid) are considered to be anomalous. Observations between the individual (prediction ellipsoid – inner ellipse) and the simultaneous (tolerance ellipsoid – outer ellipse) ellipses may also represent outliers.


Note The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2 Iterative and Robust Principal Component Analysis

1. Click on Multivariate EDA ▷ PCA ▷ Robust ▷ Sequential Classical, Huber, MVT or PROP.

🖪 Scout 4.0) = [D: Warain)	Scou <u>t</u> Fo	or_Windov	vs\ScoutSi	ğurce/W	or,kDatInf	xcel\BRADU]	· · ·			
미금 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Es	tmates I	Regression	Multivariate ED/	GeoStats P	rograms Window	Help	
Navigation Panel		0	1	2	3	PCA		Classical	L8	9
Name		Count	y	×1	×2	Discriminant	Analysis (DA) 🕨	Robust 🕨	Classical	
D \Narain\Scout Fo	1		97	10	1 19	6 28 3		1	PROP Huber	
	2	2	101	9	5 20	5 28 9			MVT	
	3	3	103	10	7 20	2 31			MCD	
	A	4	9.5	9.	9 21.	5 31.7		L	+	J

- 2. The "Select Variables" screen (Section 3.4) will appear.
 - Click on the "Options" button for the options window.

• Specify the storage of principal component scores. No scores will be stored when "**No Storage**" is selected. Scores will be stored in the data worksheet starting from the first available empty column when

the "Same Worksheet" is selected. Scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."

- Specify the printing of scores in the output in the "**Print to Output**" option. The default is "**No Scores**."
- Specify the "Matrix To Use" to compute the principal components. The default is "Correlation."
- Specify the initial estimates. The default is "OKG (Maronna Zamar)."
- Specify the distribution for MDs. The default is "Beta."
- Specify the number of iterations. The default is "10."
- Specify the cutoff for the outliers and the influence function alpha (or trim percentage for MVT). The defaults are "0.05" and "0.05 (0.1 for MVT)."
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

Robust Classical PC Graphics Options	
Select Graphics	Select Contour for XY Scatter Plot
☐ Scree Plot	C No Contour
FT Hom Plot	 Individual [MD] Simultaneous [MD Max] Individual/Simultaneous
Load Matrix Plot	MDs Distribution Beta C Chisquare
Title for Scatter Plot: PCA Scatter Plot Scatter Plot of Sequential Classical PCs	Cutoff for Contour/Ellipsoids Critical Alpha 0 05
☐ Q-Q of PCs	OKCancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Horn Plot" provides a comparison of the computed eigen values to the multi-normal generated eigen values.
- The "Load Matrix Plot" provides the scatter plot of the columns of the load matrix.
- The "PCA Scatter Plot" provides the scatter plot of the principal components scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for the distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- The "Q-Q Plot of PCA" provides the Q-Q plots of the component scores.
- o Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Click on "OK" to continue or "Cancel" to cancel the robust PCA computations.

10.1.2.1 Sequential Classical PCA

Output example: The data set "**BUSHFIRE.xls**" was used for the sequential classical PCA. It has 38 observations and five groups. The initial estimate of scale matrix was the classical covariance matrix. The outliers were found iteratively and the observations were given weights accordingly. The weighted covariance matrix was calculated. The correlation matrix was obtained from this weighted covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

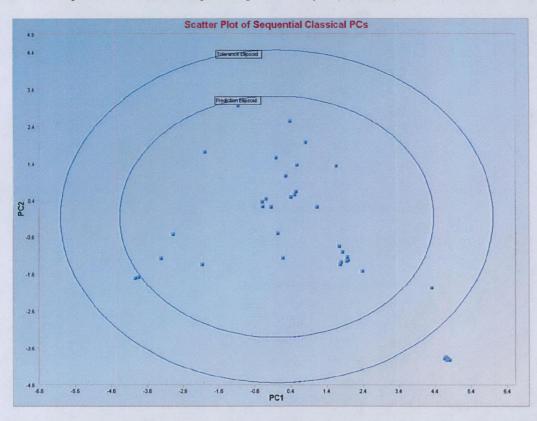
Output for the Iterative Sequential Classical Principal Component Analysis. Data Set used: Bushfire.

			Robust Pri			analysis us	ing ine Lia	2210911699		
	e/Time of C	-	1/29/2008 1	1 39 12 AM						
	User Select									
		From File	D.\Naram\Scout_For_Windows\ScoutSource\WorkDatInExcel\BushFire							
	Fu	Precision	OFF							
	Display Sco	ores Option	Do not Disp	ay PC Score	s in Outpu	ŧ				
	PC Scor	es Storage	Do Not Stor	e Scores to	Worksheet					
Matrix	Used to Co	mpute PCs	Correlation							
Critical Alpha	a to Determ	ne Outliers	0 05			·				
	Initia	l Estimates	Robust OKC	i (Maronna i	Zamar) Ma	linx				
	Number o	of Iterations	10							
		Graphics	XY Scatter F	Plot Selected	1					
	XY Scatt	er Plot Title	Scatter Plot	of Sequenti	al Classica	PCs				
		Contour	Contour Ellip	ses drawn	at Individu	al Beta MD(0.05) and at	Max MD(0	05)	
-	Summary	Statistics			[-	
		Observations								
Num	ber of Selec	ted Variables	5							
		Me	an		<u></u>		-			
Case 1	Case 2	Case 3	Case 4	Case 5	F					
1036	129 1	288 6	227 9	286 6						
			· · · · · · ·							
		Standard	Deviation		*					
Case 1	Case 2	Case 3	Case 4	Case 5	[-			
20 15	35	177 2	64 06	52 17						
		·····	· <u>-</u>				-			
					<u> </u>		- †			
	Cla	ssical Cova	riance S M	atix	·					
Case 1	Case 2	Case 3	Case 4	Case 5	1		1			
406 1	565 4	-2091	-638 7	-515 6		+				
565 4	1225	-3258	-1184	-942 5	1					
·2091	-3258	31405	11060	9021		<u> </u>	- †			
·6387	·1184	11060	4103	3340		1	1			
-5156	-942 5	9021	3340	2722	1					
	L	Determinant	1 195E+12		t					
		Determinant	27 81		+					

.

.

Initia	Robust OK	G (Maronn	aZamar)Co	yariance	5 Matrix	1	-
Case 1	Case 2	Case 3	Case 4	Case 5		<u> </u>	+
427	652.6	1014	344.6	177.4			
652.6	1826	3306	802 7	585.5			+
1014	3306	20637	3455	3206			•
344.6	802.7	3455	1597	857.6			-
177.4	585.5	3206	857.6	735.7			
	I	Determinant	6.282E+14				
	Log of	Determinant	34.07			 	
				,,		· · ·	
jenvalues	of Initial Ro	bust OKG (MaronnaZ	amar) Cova	ariance S Ma	 B	
Case 1	Case 2	Case 3	Case 4	Case 5			+
104.6	177.6	954	1581	22405	-		+
	· ·	i	L,,	L		<u> </u>	+
	Ir	nitial Correla	ation R Mat	ńx.			
Case 1	Case 2	Case 3	Case 4	Case 5			
1	0.739	0.342	0.417	0.316			1
0.739	1	0.539	0.47	0.505		•••••	+
0.342	0 539	1	0.602	0.823		-	+
0.417	0.47	0.602	1	0.791	<u> </u>		+
0.316	0.505	0.823	0.791	1			+
		Determinant	0.0332	·······			+
				,,,,,,,,,,.			+
	Eigen	Values of C	orrelation F	Matrix			
Case 1	Case 2	Case 3	Case 4	Case 5			
0.111	0.216	0.425	1 012	3 236			
			an Vector				
Case 1	Case 2	Case 3	Case 4	Case 5			
107.5	141.9	221.7	201 4	265.3			
		inal Covaria					
Case 1	Case 2	Case 3	Case 4	Case 5			
337.8	315.1	-961	-140.2	-115.4			
315.1	510.8	713.4	410.9	346			
-961	713.4	16189	4712	3922			
-140.2	410.9	4712	1529	1271			
-115.4	346	3922	1271	1060			
		Determinant	2.038E+10				


Output for the Sequential Classical Principal Component Analysis (continued).

2 Case 59 -0.41 02 48 1 65 09 7 0.9 Determinities 0 1 0.2 56 0.03 Summary T /alue Differen 7 1.3	1 -0. 48 0 47 1 47 0 nant 4.504 Final Corr 3 23 Ca 334 1 able (Eig nce Propo).998 43E-6 rrelatio ase 4 .779 jen Val	Case 5 3.17			
0 2 48 1 65 0 9 7 0.9 Determi 2 Case 56 0.03 Summary T /alue Differer	48 0 47 1 47 1 47 0 nant 4.504 53 Ca 334 1 able (Eignate 1) 465).947).998 43E-6 relation ase 4 1.779 ren Val ortion	0 47 0.947 0 998 1 on R Matrix Case 5 3.17			
48 1 65 09 7 0.9 Determi • 2 Case 56 0.03 Summary T /alue Differen	0 47 1 47 0 nant 4.504 Final Corr 3 23 Ca 334 1 able (Eig) 1).947).998 43E-6 rrelation ase 4 1.779 jen Val ortion	0.947 0 998 1 on R Matrix Case 5 3.17			
65 09 7 0.9 Determi 2 Case 56 0.03 Summary T /alue Differer	47 1 47 0 inant 4.504 Final Com 3 33 Ca 334 1 able (Eignate 1).998 43E-6 rrelatio ase 4 .779 jen Val ortion	0 998 1 on R Matrix Case 5 3.17 ues)			
7 0.9 Determi 2 Case 56 0.03 Summary T Value Differen	47 0 nant 4.504 Final Corr 33 Ca 334 1 able (Eig nce Prope).998 43E-6 relation ise 4 .779 jen Val	1 Case 5 3.17			
Determine 2 Case 56 0.03 Summary T Value Different	nant 4.504 Final Com 33 Ca 334 1 able (Eig nce Prope	43E-6 relation ase 4 .779 en Val	on R Matrix Case 5 3.17 Jues)			
nvalues for 2 Case 56 0.03 Summary T /alue Differer	Final Corr 3 Ca 334 1 able (Eig	relation ase 4 .779 Jen Val	Case 5 3.17 Iues)			
2 Case 56 0.03 Summary T /alue Differen	a 3 Ca 334 1 able (Eig nce Prope	ase 4 .779 j en Val ortion	Case 5 3.17 Iues)			
56 0.03 Summary T /alue Differer	able (Eig	.779 J en Val ortion	3.17 lues)			
Summary T /alue Differer	able (Eig	j en Val ortion	lues)			
- alue Differer	nce Prope	ortion	-			
- alue Differer	nce Prope	ortion	-			
			Cumulative			
7 1.3	91 0	1004				
		1.034	63.4			
79 1.7	46 0).356	98.99			
334 0.01	78 0.0	00668	99.66			
56 0.01	4 0.0	00311	99 97			
153 N/A	3 068	84E-4	100			
LoadMat	rix (Finen	Vech				
PC2	IPC3		IPC4	PC5		
			-0.698	0 0786		
				1		
	1		0.0989	-0.725		
	PC2 1 0.7 65 0.6 4 -0.17 66 -7.6778	PC2 PC3 1 0.732 -0. 165 0.658 -0.1 14 -0.175 -0. 166 -7.677E-4 0	PC2 PC3 1 0.732 -0.141 65 0.658 -0.0606 4 -0.175 -0.816 66 -7.677E-4 0.4	1 0.732 -0.141 0.653 65 0.658 -0.0606 -0.698 64 -0.175 -0.816 0.11 66 -7.677E-4 0.4 0.253	PC2 PC3 PC4 PC5 1 0.732 -0.141 0.653 -0.0691 165 0.658 -0.0606 -0.698 0.0786 14 -0.175 -0.816 0.11 -0.00554 166 -7.677E-4 0.4 0.253 0.68	PC2 PC3 PC4 PC5 1 0.732 -0.141 0.653 -0.0691 i65 0.658 -0.0606 -0.698 0.0786 i4 -0.175 -0.816 0.11 -0.00554 i6 -7.677E-4 0.4 0.253 0.68

Output for the Sequential Classical Principal Component Analysis (continued).

,

•

Output for the Sequential Classical Principal Component Analysis (continued).

Observations outside the tolerance ellipse are considered to be anomalous. Observations between the prediction and the tolerance ellipses are observations with reduced (but > 0) weights. Those observations may represent potential outliers needing further investigation.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of components scores and selected variables, and Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.2 Huber PCA

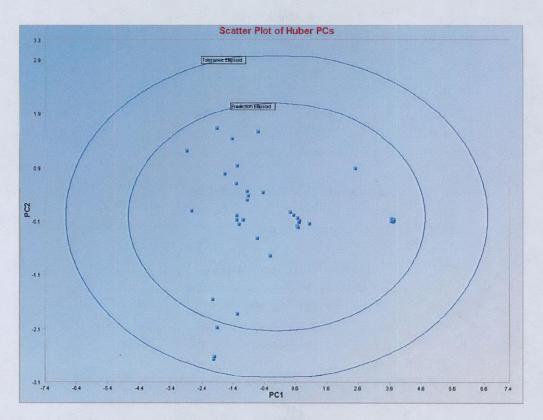
Output example: The data set "**BUSHFIRE.xls**" was used for the Huber PCA. It has 38 observations and five groups. The initial estimate of scale matrix was the classical covariance matrix. The outliers were found iteratively using the Huber influence function and the observations were given weights accordingly. The weighted covariance matrix was calculated. The correlation matrix was obtained from this weighted covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

Output for the Principal Component Analysis Based Upon the Huber Influence Function. Data Set used: Bushfire.

Da	te/Time of C	omputation	1/29/2008	11 48 33 AM			· · · · · ·			
	User Select	ed Options	<u> </u>							
		From File	D Waram\S	Scout_For_Win	dows\Scou	tSource\\	VorkDatInE>	cel\BushFire		
	Fu	I Precision	OFF							•••• · ·
	Display Sco	ores Option	Do not Disp	lay PC Scores	n Output					
	PC Scor	es Storage	Do Not Stor	e Scores to Wo	aksheet					
Matru	x Used to Co	mpute PCs	Correlation							
Dist	inbutional Sq	uared MDs	Beta Distrib	ution						
Ir	fuence Fun	ction Alpha	0 05							
	Insta	Estimates	Robust OK	G (Maronna Za	mar) Matrix	••• ••				
	Number o	of Iterations	10							
		Graphics	XY Scatter	Plot Selected						
	XY Scatt	er Plot T dle	Scatter Plot	of Huber PCs						
		Contour	Contour Elli	pses drawn at	Individual E	Beta MD(0	05) and at	Max MD(00	5)	
	Summary	Statistics		[1	T	
	Number of	Observations	38	<u> </u>						····
Num	iber of Selec	ted Variables	5	†					+	
			*	• ••••						- ;— 1
		M	ean							-†
Case 1	Case 2	Case 3	Case 4	Case 5			<u>+</u>		1	- <u>;</u>
1036	1291	288 6	227 9	286 6				1		
		Standard	Deviation							-;
Case 1	Case 2	Case 3	Case 4	Case 5			Ţ			
20 15	35	177 2	64 06	52 17						1
									T	- +
			ariance S M							
Case 1	Case 2	Case 3	Case 4	Case 5						
406 1	565 4	-2091	-638 7	5156						· (· · ·
565 4	1225	·3258	-1184	·942 5						
-2091	-3258	31405	11060	9021						1
-638 7	-1184	11060	4103	3340						
5156	-942 5	9021	3340	2722					1	
		Determinant	1 195E+12							
		Determinant	27 81	ri-						<u> </u>

.

Case 1	Case 2	G (Maronna)	Case 4	Case 5	r
427	652 6	1014	344 6	177 4	
552.6	1826	3306	802.7	585 5	
014	3306	20637	3455	3206	
344.6	802.7	3455	1597	857.6	
177.4	585 5	3206	857.6	735.7	
		Determinant			
	Log of	Determinant	34.07		
nvalues	of Initial Ro	obust OKG (MaronnaZ	amar) Cova	riance S Ma
Case 1	Case 2	Case 3	Case 4	Case 5	
04.6	177.6	954	1581	22405	
	J			<u>_</u>	
	li .	nitial Correla	ation R Mat	İrk	
Case 1	Case 2	Case 3	Case 4	Case 5	
1	0.739	0.342	0.417	0 316	
0.739	1	0.539	0.47	0.505	
0.342	0.539	1	0.602	0.823	
0.417	0.47	0.602	1	0.791	
0.316	0.505	0.823	0.791	1	
	L	Determinant	0.0332		
				I	
	Eigen	Values of Co	orrelation F	Matrix	
Case 1	Case 2	Case 3	Case 4	Case 5	
0.111	0.216	0.425	1.012	3 236	
		FinalMea	anVector		
Case 1	Case 2	Case 3	Case 4	Case 5	
03.8	129.8	294.1	2301	288.5	
	1				
	F	inal Covaria	ance S Mat	rik (
Case 1	Case 2	Case 3	Case 4	Case 5	· · · · · · · · · · · · · · · · · · ·
417.9	575.1	-2274	-704.5	-569.9	
575.1	1232	-2274	-1365	-1092	
2274	-3704	30006	10416	8473	
-704.5	-1365	10416	3808	3089	
-569.9	-1092	8473	3089	2509	


Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

.

Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

		Case 5	Case 4	Case 3	Case 2	Case 1
· · · · ····		-0.557	-0.558	0.642	0.802	1
		-0.621	-0.63	-0.609	1	0.802
		0.977	0.03	1	-0 609	-0.642
-		0.999	1	0.974	-0.63	-0.558
	-	1	0 999	0.977	0 621	-0 557
			5.2523E-6	Determinant		
			al Correlatio			
		Case 5	Case 4	Case 3	Case 2	Case 1
		3.972	0.8	0 215	0 0127	6.0815E-4
		ues)	e (Eigen Val	mary Table	Sum	
1	<u> </u>	Cumulative	Proportion	Difference	Eigen Value	
-		79.45	0 794	3.173	3.972	PC1
		95.44	0.16	0.585	0.8	PC2
		99 73	0 043	0.202	0 215	PC3
			0.00000	0.012	0 0127	PC4
		99.99	0.00253	0.012		
		99.99 100	0.00253 1.2163E-4	N/A	6.0815E-4	PC5
					6.0815E-4	PC5
		100		N/A		PC5
	PC5	100 prs)	1.2163E-4	N/A		PC5
	PC5 0 00221	100 prs)	1.2163E-4 Eigen Vecto	N/A ad Matrix (E	Lo	PC5 Case 1
		100 Drs) PC4	1.2163E-4 E igen Vecto PC3	N/A ad Matrix (E PC2	Lo PC1	
	0 00221	100 prs) PC4 -0.234	1.2163E-4 Eigen Vecto PC3 0 643	N/A ad Matrix (E PC2 0 615	Lo PC1 -0.391	Case 1
	0 00221 -0.012	100 prs) PC4 -0.234 0.185	1.2163E-4 Eigen Vecto PC3 0 643 -0.705	N/A ad Matrix (E PC2 0 615 0.552	Lo PC1 -0.391 -0 404	Case 1 Case 2

Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Observations outside of the simultaneous tolerance ellipse are considered to be anomalous. Observations between the individual prediction ellipsoid and the simultaneous tolerance ellipsoid received reduced weights (< 1) and may also represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain the different load matrix plots, scatter plots of components scores and the variables and the Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.3 Multivariate Trimming PCA

Output example: The data set "**BUSHFIRE.xls**" was used for the MVT PCA. It has 38 observations and five groups. The initial estimate of scale matrix was the classical covariance matrix. The outliers were found iteratively using the trimming percentage and a critical alpha and the observations were given weights accordingly. The weighted covariance matrix was calculated. The correlation matrix was obtained from this weighted covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

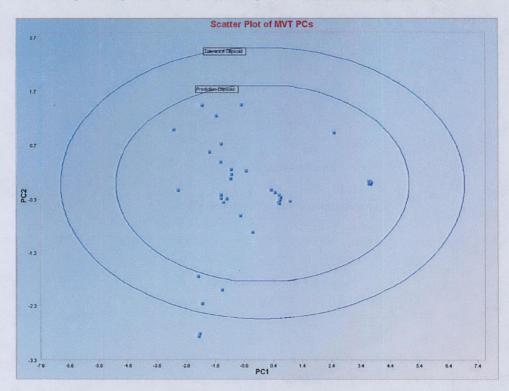
Output for the Principal Component Analysis Based Upon the MVT Method. Data Set used: Bushfire.

Da	te/Time of Ci	omputation 1	1/29/2008 1	1 54 09 AM						
	User Select	-	··							
		From File	D \Narain\S	cout_For_W	indows\Sco	utSource\	WorkDatIn	xcel\BushFi	10	
	Fu		OFF							
	Display Sco	ores Option	Do not Displ	ay PC Score	s in Output					
			Do Not Store Scores to Worksheet							
Matri	x Used to Co	mpute PCs	Correlation							
	Trimming F	ercentage	10%							
Critical Alph	a to Determi	ne Outliers	0 05 (planne	ed to be use	d for ventic	ation of trir	nming non-	outhers		
	Initia	Estimates	Robust OKG (Maronna Zamar) Matrix							
	Number o	of Iterations	10							
		Graphics	XY Scatter F	Plot Selected						
	XY Scatt	er Plot Title	Scatter Plot	of MVT PCs						
		Contour	Contour Ellip	oses drawn	at Individual	Bela MD(0.05) and a	t Max MD(0	05)	
				*		• •				
	Summary	Statistics				T				
	Number of	Observations	38						 	
Nun	ber of Selec	ted Variables	5			1				
			· · · · ·							
		Me	an							
Case 1	Case 2	Case 3	Case 4	Case 5			1		_	
103.6	1291	288 6	227.9	286 6						
		Standard								
Case 1	Case 2	Case 3	Case 4	Case 5		1				
20 15	35	177 2	64 06	52 17						
						ļ				
						ļ				
		ssical Cova								
Case 1	Case 2	Case 3	Case 4	Case 5		1				
406 1	565 4	-2091	-638 7	-5156	<u> </u>	Ļ				
565 4	1225	-3258	-1184	942 5	<u> </u>	1				
-2091	-3258	31405	11060	9021						
	-1184	11060	4103	3340		_			+	
-638 7	·942 5	9021	3340	2722						
-5387	-342.5	Determinant				+				

Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Initia	Robust OF	KG (Maronn	aZamar)Co	ovariance S	6 Matrix	
Case 1	Case 2	Case 3	Case 4	Case 5	T	
427	652.6	1014	344.6	177.4		·
652 6	1826	3306	802.7	585.5		
1014	3306	20637	3455	3206		
344.6	802 7	3455	1597	857.6		
177.4	585.5	3206	857.6	735.7		
	I	Determinant	6.282E+14			
	Log of	Determinant	34.07			
			I			

genvalues of Initial Robust OKG (Maronna Zamar) Covariance S Ma


envalues	of Initial Ho	bust UKG (MaronnaZ	amarjCova	ariance 5 M	a	
Case 1	Case 2	Case 3	Case 4	Case 5	1		
104.6	177.6	954	1581	22405	1	-	
	li	nitial Correl	ation R Mal	nix			
Case 1	Case 2	Case 3	Case 4	Case 5	1		
1	0.739	0.342	0.417	0.316	1		
0.739	1	0.539	0 47	0.505	+		
0.342	0.539	1	0 602	0.823	<u> </u>		
0.417	0.47	0.602	1	0.791			
0.316	0.505	0.823	0.791	1			
	J	Determinant	0.0332		<u>+</u>		
				1	1		
	Eigen	Values of C	orrelation F	R Matrix			
Case 1	Case 2	Case 3	Case 4	Case 5			
0.111	0.216	0.425	1.012	3.236			
			an Vector				
Case 1	Case 2	Case 3	Case 4	Case 5			
104.4	131.6	310.3	236.3	293.7			
		·			<u> </u>		
	F	inal Covari	ance S Mat	rix .			
Case 1	Case 2	Case 3	Case 4	Case 5		1	
431.9	587.1	-2523	-789.4	-639.8			
587.1	1245	-4266	-1582	-1272	1		
-2523	-4266	27995	9621	7800	1	1	
-789.4	-1582	9621	3479	2810	1		
-639.8	-1272	7800	2810	2272	1		

Determinant 2.729E+11

	F	inal Correla	tion R Matr	ix		
Case 1	Case 2	Case 3	Case 4	Case 5		
1	0 801	-0.726	-0.644	-0.646		
0 801	1	-0.722	-0.76	-0.756		
-0.726	-0.722	1	0.975	0 978		
-0.644	-0.76 ·	0 975	1	0.999		
-0.646	-0 756	0.978	0.999	1		
	J	Determinant	2.2922E-6			
	Eigenval	ues for Fina	d Correlatio	n R Matrix		
Case 1	Case 2	Case 3	Case 4	Case 5		
6.1666E-4	0.0074	0 212	0.563	4 218		
	<u></u>	J	t		L	
	Sun	nmary Table	e (Eigen Val	ues)		
	Eigen Value	Difference	Proportion	Cumulative		
PC1	4.218	3 655	0.844	84.36		
PC2	0.563	0.351	0.113	95.61		
PC3	0 212	0.204	0.0423	99.84		
PC4	0.0074	0.00679	0.00148	99.99		
PC5	6.1666E-4	N/A	1.2333E-4	100		
	I.	ad Matrix (I	FigenVect			
	IPC1	PC2	PC3	PC4	PC5	
	+	0.678	0.567	-0 244	-0.0152	
Case 1	-0.4	0.010		1	1	l
Case 1 Case 2	-0.4	0.456	-0 75	0.221	0 0075	
			-0 75 -0 328	0.221 -0.769	0 0075 -0 0822	
Case 2	-0.426	0.456				

Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Output for the Principal Component Analysis Based Upon the MVT Methods (continued).

Observations outside of the simultaneous ellipse are considered to be outlying. Observations between the individual and the simultaneous ellipses receiving reduced weights may also be considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of components scores and selected variables, and the Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.4 PROP PCA

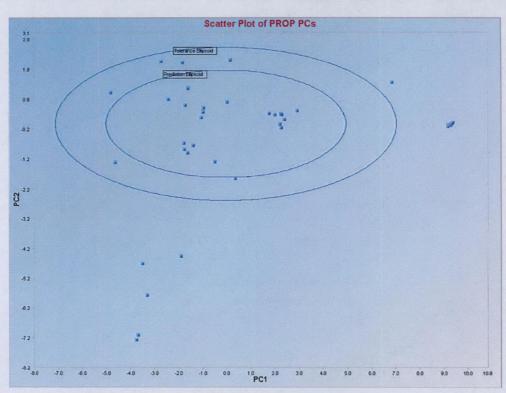
Output example: The data set "**BUSHFIRE.xls**" was used for the PROP PCA. It has 38 observations and five groups. The initial estimate of scale matrix was the classical covariance matrix. The outliers were found iteratively using the PROP influence function and the observations were given weights accordingly. The weighted covariance matrix was calculated. The correlation matrix was obtained from this weighted covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

Output for the Principal Component Analysis Based Upon the PROP Influence Function. Data Set used: Bushfire.

		Robust Pri				ing the Pr				
Date/Time of Computation		1/29/2008 1	2 12 42 PM							
	User Select	· ·								
From File			D \Nara:n\Scout_For_Windows\ScoutSource\WorkDatInExcel\BushFire							
		Il Precision	OFF							·- ·
	Display Sco		Do not Displ	-	-	- -				
		es Storage	Do Not Store Scores to Worksheet							
Matrix Used to Compute PCs			Correlation							
Distributional Squared MDs		Beta Distribu	ation							
Influence Function Alpha		ction Alpha	0 05							
Initial Estimates		Robust OKC	i (Maronna Z	'amar) Mat	nx					
Number of Iterations		f Iterations	10							
Graphics		Graphics	XY Scatter F	Not Selected						
XY Scatter Plot Title			Scatter Plot of PROP PCs							
Contour			Contour Ellipses drawn at Individual Beta MD(0.05) and at Max MD(0.05)							
	· · ·									
	Summary	Statistics				T				
	Number of	Observations	38							
Num	ber of Select	ed Variables	5					• •		
			المورد مراسر وا							
		Me	an		<u> </u>		-+			
Case 1	Case 2	Case 3	Case 4	Case 5		+				
103.6	1291	288 6	227 9	286.6				• +		
	I	!				+				
		Standard	Deviation							
Case 1	Case 2	Case 3	Case 4	Case 5					··· [·· .	
2015	35	177 2	64 06	52 17						
	.L	l	L					- +		
						-+		· ·		
	Cla	ssical Cova	riance S M	atix	L	+				•••••
Case 1	Case 2	Case 3	Case 4	Case 5	·			+		
406 1	565.4	-2091	-638 7	-515 6		+	-			
565 4	1225	-3258	1184	942 5	<u> </u>		·			
-2091	-3258	31405	11060	9021	 	+				·
-638.7	-1184	11060	4103	3340		-+		- +		
-15.111 /	-942 5	9021	3340	2722						
		1 3021	0,000	L	1	1	1	- i	1	1
-538.7	342 3	Determinant	1 1956+12						·	

.

.


Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Case 1	Case 2	Case 3	Case 4	Case 5	
127	652.6	1014	344 6	177.4	
652.6	1826	3306	802.7	585.5	· · · · · · · · · · · · · · · · · · ·
014	3306	20637	3455	3206	
344.6	802.7	3455	1597	857.6	
77.4	585.5	3206	857.6	735.7	
	I	Determinant	6.282E+14		
	Log ol	Determinant	34.07		
				L	
nvalues	of Initial Re	obust OKG (1	MaronnaZ	amar)Cova	riance S Ma
Case 1	Case 2	Case 3	Case 4	Case 5	
04.6	177.6	954	1581	22405	
	L	<u> </u>		I	
	I	nitial Correla	ation R Mat	ńx	
Case 1	Case 2	Case 3	Case 4	Case 5	
1	0.739	0.342	0.417	0.316	
0.739	1	0.539	0.47	0 505	
0.342	0.539	1	0.602	0.823	
0.417	0.47	0.602	1	0 791	
0.316	0.505	0.823	0.791	1	
	1	Determinant	0.0332		
					-
•	Eigen	Values of Co	orrelation F	Matrix	L
Case 1	Case 2	Case 3	Case 4	Case 5	
0111	0 216	0.425	1.012	3.236	
•	l	LI			
		Final Mea	an Vector		
Case 1	Case 2	Case 3	Case 4	Case 5	
04.6	146.1	275.2	217.7	279.2	
· <u>····</u> ·····	I	<u>i. </u>		L	
	F	inal Covaria	ince S Mat	rix.	I
Case 1	Case 2	Case 3	Case 4	Case 5	
280.4	213.6	-1449	-326.5	-264.7	
213.6	187.5	-956.1	-195.2	-163.6	
1449	-956.1	8688	2136	1695	
-326.5	-195.2	2136	563	439 2	
	1	1	•	345.4	

.

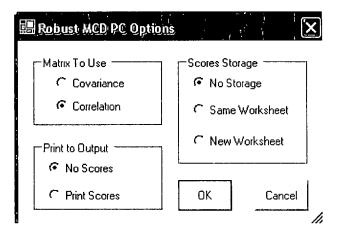
Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

	F	inal Correla	tion R Matr	ix		
Case 1	Case 2	Case 3	Case 4	Case 5		
1	0 931	-0 929	-0 822	-0.851		
0.931	1	-0.749	-0.601	-0.643		
-0 929	-0.749	1	0.966	0.979		
-0.822	-0.601	0.966	1	0 996		
0.851	-0.643	0 979	0.996	1		
	I,	Determinant	3.7184E-7			
	-	ues for Fina				
Case 1	Case 2	Case 3	Case 4	Case 5		
0.00156	0.00427	0.0221	0.571	4.401		
		nmary Table		-		
	Eigen Value	Difference	Proportion	Cumulative		
PC1	4.401	3.829	0.88	88.01		
PC2	0.571	0.549	0.114	99.44		
PC3	0.0221	0 0179	0 00443	99 88		
PC4	0.00427	0.00271	8.5466E-4	99.97		
PC5	0 00156	N/A	3 1278E-4	100		
	· <u> </u>					
		ad Matrix (I				
	PC1	PC2	IPC3	PC4	PC5	
		1.02		1	4	
Case 1	-0.46	0.33	0.54	-0.531	-0.326	
Case 1 Case 2		0.33	0.54 -0 493	-0.531 0.197	-0.326 0.16	
	-0.46	0.33	l	1		
Case 2	·0.46 ·0 395	0.33	-0 493	0.197	0.16	

Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Observations outside of the simultaneous (tolerance) ellipsoid are considered to be outliers. Observations (if any) between the individual (prediction ellipsoid) and the simultaneous (tolerance) ellipses received reduced (< 1) weights and may represent potential intermediate outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of principal components scores and selected variables, and the Q-Q plots of the component scores, as explained in Chapter 2.


10.1.2.5 Minimum Covariance Determinant PCA

🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	imates Re	egression	Multivariate EDA	GeoStats	Progr	ams Window	/ Help	
Navigation Panel		0	1	2	3	PCA		•	Classical	8	9
Name		Count	у	×1	×2	Discriminant Analysis (DA)		•	Robust 🕨	Sequential Classical	
D:\Narain\Scout Fo	1	1	9.7	10.1	19.6	28.3				Huber	
D. Waran Docoal	2	2	10.1	9.5	20.5	5 28.9				MVT	No.
	3	3	10.3	10.7	20.2	2 31				PROP	
			05	00	71 0	217					-

1. Click on Multivariate EDA ▶ PCA ▶ Robust ▶ MCD.

2. The "Select Variables" screen (Section 3.4) will appear.

• Click on the "**Options**" button for the options window.

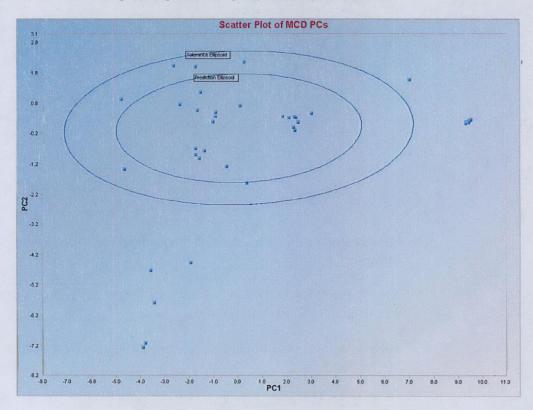
- Specify storage of the principal component scores. The default is "No Storage."
- Specify the "Matrix To Use" to compute the principal components. The default is "Correlation."
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

🔜 Robust MCD PC Graphics Options,	
Select Graphics	Select Contour for XY Scatter Plot
☐ Scree Plot	← No Contour
f Hom Plot	 Individual (MD) Simultaneous (MD Max) Individual/Simultaneous
「 Load Matrix Plot	MDs Distribution Beta C Chisquare
Title for Scatter Plot PCA Scatter Plot Scatter Plot of MCD PCs	Cutoff for Contour/Ellipsoids
☐ Q-Q of PCs	OKCancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Horn Plot" provides a comparison of computed eigen values to the multi-normal generated eigen values.
- The "Load Matrix Plot" provides the scatter plot of the columns of the load matrix.
- The "PCA Scatter Plot" provides the scatter plot of the principal components scores and also the selected variables. The user has the option of drawing contours on the scatter plot to identify outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- The "Q-Q Plot of PCA" provides the Q-Q plots of the component scores.
- o Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Click on "OK" to continue or "Cancel" to cancel the robust PCA computations.

Output example: The data set "**BUSHFIRE.xls**" was used for the MCD PCA. It has 38 observations and five groups. The MCD estimate of scale was calculated. The correlation matrix was obtained from this MCD covariance matrix and the principal components (eigen values) and the principal component loadings (a matrix of eigen vectors) were obtained from the correlation matrix.

Output for the MCD Principal Component Analysis. Data Set used: Bushfire.


			Principal C		~11alys15	using tite i		~			
Da	te/Time of C		1/29/2008 1	2 19:48 PM							
	User Select										
		From File	D.\Narain\S	cout_For_Wi	ndows\Sc	outSource\	WorkDatInE	xcel\BushFire			
			OFF								
	Display Sco		Do not Displ								
	PC Scor	es Storage	Do Not Store	Do Not Store Scores to Worksheet							
Matu	x Used to Co	mpute PCs	Correlation								
			XY Scatter F								
	XY Scatt		Scatter Plot of MCD PCs								
		Contour	Contour Ellip	Contour Ellipses drawn at Individual Beta MD(0.05) and at Max MD(0.05)							
	Gummari	Statistics									
	-	Observations	39						_		
Nuw		ted Variables				+	_				
			J		·		· • • • •				
· · ·····		Me	an								
Case 1	Case 2	Case 3	Case 4	Case 5		+					
103.6	129 1	288 6	227 9	286 6		+					
		1				++			<u> </u>		
		Standard	Deviation								
Case 1	Case 2	Case 3	Case 4	Case 5							
20.15	35	177 2	64 06	52 17							
		Covariand	ce S Matrix								
Case 1	Case 2	Case 3	Case 4	Case 5							
406.1	565.4	-2091	-638.7	-515 6							
565 4	1225	-3258	-1184	-942 5							
-2091	-3258	31405	11060	9021							
6387	-1184	11060	4103	3340		-	-				
-515.6	·942 5	9021	3340	2722		+					
	-J	Determinant	1.195E+12								
	Log o	Determinant	27.81								
	····- <u>-</u>		Mean								
Case 1	Case 2	Case 3	Case 4	Case 5							
105 5	146 9	274 4	2175	279			1	}			

	h	ICD Covari	ance S Mal	rix		
Case 1	Case 2	Case 3	Case 4	Case 5		
287 9	222.8	-1408	-316.7	-258.4		
222.8	196 6	-936	-191.2	-161.6		+
1408	-936	8314	2043	1623		
-316.7	-191.2	2043	538.1	420.3		1
-258.4	-161.6	1623	420.3	331		
	1	Determinant	75211116			
	Log of	Determinant	18.14			
	k	ICD Corrol-	ation R Mat			
C 1					r	ļ
Case 1	Case 2	Case 3	Case 4	Case 5		ļ
1	0 936	-0.91	-0.805	-0 837		
0.936	1	-0 732	-0.588	-0.634		
-0.91	-0.732	1	0 966	0.979		
-0.805	-0.588	0.966	1	0.996		
-0.837	-0.634	0.979	0.996	1		
		Determinant	8.9759E-7			
	Eigenval	ues for MCI	D Correlatio	on R Matrix		
Eval 1	Eval 2	Eval 3	Eval 4	Eval 5		
0.00217	0.00735	0.0214	0.602	4.367		
	Sun	mary Table	e (Eigen Va	lues)		
	Eigen Value	-	Proportion	Cumulative		
PC1	4.367	3.766	0.873	87.35		
PC2	0.602	0 58	0.12	99 38		+
PC3	0 0214	0.0141	0 00428	99.81		<u> </u>
PC4	0.00735	0.00518	0.00147	99 96		
PC5	0.00217	N/A	4.3397E-4	100		}
	L	I,	l	L,		
			(Eigen Vec	•		
	PC1	PC2	PC3	PC4	PC5	
Case 1	-0.458	0.351	0.482	0.65	0.111	
Case 2	-0.395	0 723	·0.47	-0.305	-0.089	<u> </u>
Case 3	0.472	0.176	-0 567	0.628	0.176	
Case 4	0.449	0.436	0.37	-0 299	0.618	
Case 5	0.458	0.365	0 298	0.0339	-0.753	1

•

Output for the MCD Principal Component Analysis (continued).

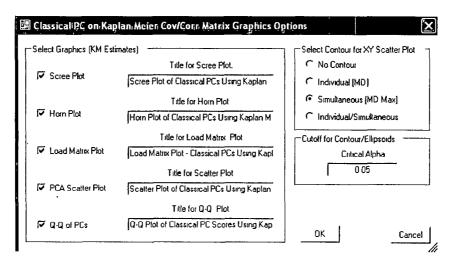
Output for the MCD Principal Component Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any) between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in Chapter 2.

10.1.3 Kaplan-Meier Principal Component Analysis

Principal component analysis of data with non-detects can be conducted in Scout. The Kaplan-Meier estimates of the covariance matrix and the correlation matrix is used for this analysis.


1. Click on Multivariate EDA ▶ PCA ▶ With NDs.

📲 File Edit Configure Da	ita Graphs	Stats/GOF	Outliers/Es	stimates Q	A/QC Regr	ession	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel	- Filler	0	1	2	3	4	PCA		No M	IDs 🕨	
Name		count	sp-length	sp-width	pt-length	pt-wie	Discriminant An		and the second second	NDs	th
D:\Narain\WorkDatl	1	1	5.1	3.5	1.4		0.2 1	1	ienam 1		1

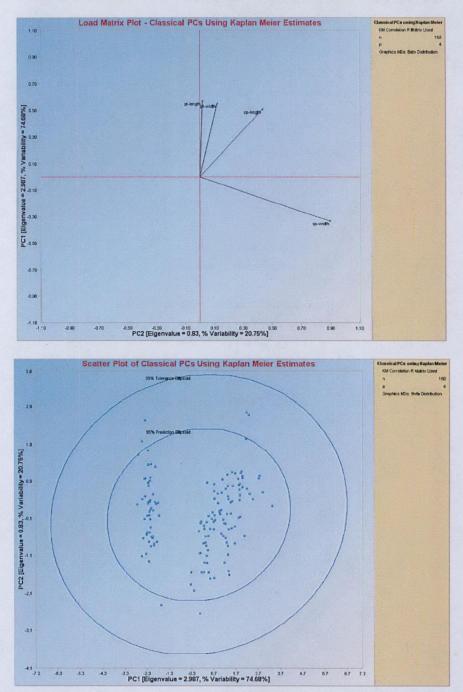
- 2. The "Select Variables" screen (Section 3.4) will appear.
 - Click on the "Options" button for the options window.

📰 Kaplan, Meier, PC Opt	ions. 🗙
Matrix To Use	Compute Scores Using Compute Scores Using Detection Limit (No Change)
Correlation (KM)	C Normal ROS Estimates
Print to Output No Scores	🗘 Gamma ROS Estimates
C Print Scores	← Lognormal ROS Estimates
Scores Storage	C One Half (1/2) Detection Limit
No Storage	C Zeio
C Same Worksheet	1 1
C New Worksheet	OK Cancel

- Specify storage of the principal component scores. The default is "No Storage."
- Specify the "Matrix To Use" to compute the principal components. The default is "Correlation (KM)."
- Specify the estimates of the data to compute scores. Default is "Detection Limit."
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

• The "Scree Plot" provides a scree plot of the eigen values.

- The "Horn Plot" provides a comparison of computed eigen values to the multi-normal generated eigen values.
- The "Load Matrix Plot" provides the scatter plot of the columns of the load matrix.
- The "PCA Scatter Plot" provides the scatter plot of the principal components scores and also the selected variables. The user has the option of drawing contours on the scatter plot to identify outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- The "Q-Q Plot of PCA" provides the Q-Q plots of the component scores.
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Click on "OK" to continue or "Cancel" to cancel the KM PCA computations.


•

			1	Component		s using the	Classical	lethod			
Da	te/Time of C	omputation	10/30/200	3743.49 AM							
	User Select	ed Options	-								
		From File		√orkDatInE:	cel\FULLI	RIS-nds					·
		Ill Precision	OFF								
	Display Sco		Do not Disp	lay PC Score	es in Outpu	t					
		es Storage	Do Not Sto	e Scores to	Worksheet						
Matri	x Used to Co	mpute PCs	Correlation					·····			
		Graphics	1	Load Matrix Plot Selected							
	Load Matr	ix Plot Title	Load Matux Plot - Classical PCs Using Kaplan Meier Estimates								
-		Graphics	XY Scatter	XY Scatter Plot Selected							
		er Plot Title	Scatter Plo	of Classica	PCs Usin	g Kaplan M	eier Estimate	es			-
Non-Dete	ect Values Di	splayed As	Detection L	Petection Limit (No Change to Original Data)							
		Contour	Contour Elli	iontour Ellipses drawn at Individual Beta MD(0.05) and at Max MD(0.05)							
										· · · · · · · · · · · · · · · · · · ·	
		Statistics									T
		Observations	1								
Num	ber of Select	ted Variables	4								
						_					
		KM	Mean	· · · · · · · · · · · · · · · · · · ·							1
sp-length	sp-width	pt-length	pt-width								
5 845	3 037	3 754	1 175								
						-				_	· ·
		KMVa	aiance								1
sp-length	sp-width	pt-length	pt-width		Γ		\top				1
0 675	0 199	3 117	0 604								
		KM Standa	rd Deviatio	ז ו							
sp-length	sp-width	pt-length	pt-width						-	· · · · · · · · · · · · · · · · · · ·	
0 822	0 446	1.765	0 777								
		KM Covaria		x							
sp-length	sp-width	pt-length	pt-width								
0 675	-0 0763	1 245	0 522						1		
0 0763	0 199	-0 428	-0 152								
1 245	-0 428	3 117	1 288								
0 522	-0 152	1 288	0 604								
		Determinant	0.00327		<u> </u>	+					1

Output example: The data set "FullIris.xls" was used for the KM PCA.

	Eigenvalu	es of Classi	cal Covaria	nce S Matrix						
Eval 1	Eval 2	Eval 3	Eval 4							
4.23	0 244	0.0803	0.0395		·····					
	Sum of	Eigenvalues	4.594							
			·····							
		ssical Corr								
	sp-length	sp-width	pt-length	pt-width						
sp-length	1	-0 208	0 858	0 818						
sp-width	-0 208	1	-0.543	-0.438						
pt-length	0 858	-0.543	1	0 939						
pt-width	pt-width 0.818 -0.438			1	····-					
		Determinant	0 013							
	Log of	-4.345								
			I							
Eigenvalues of Classical Correlation R Matrix										
Eval 1	Eval1 Eval2 Eval3		Eval 4							
2.987 0.83 0.14			0.0355							
· · ·	Su	nmary Tabl	e (Eigenval	ues)						
	Eigen Value	Difference	Proportion	Cumulative						
PC1	2.987	2.158	0.747	74 68						
PC2	0.83	0.683	0.207	95 43						
PC3	0.147	0.112	0.0368	99.11						
PC4	0.0355	N/A	0.00888	100						
	±	1	1	I						
	PC	: Loadings (Eigen Vect	ors)	L					
	PC1	PC2	PC3	PC4						
sp-length	0.509	0.433	0.681	-0.301						
sp-width	-0 331	0 894	0 237	0.189						
pt-length	0 571	0 0187	0 078	0.817						
pt-width	0.552	0.118	0 689	-0.455						
		<u> </u>	+	· · · · · · · · · · · · · · · · · · ·	<u> </u>					

Output for the KM Principal Component Analysis (continued).

Output for the KM Principal Component Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any) between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in Chapter 2.

10.2 Discriminant Analysis (DA)

Discriminant and classification analyses are multivariate techniques concerned with separating distinct groups of observations (Johnson and Wichern, 2002) and with allocating new observations (classification analysis) to previously defined groups (populations). The separation procedure is rather exploratory. In practice, the investigator has some knowledge about the nature and the number of groups. The study might be about \mathbf{k} known groups (e.g., parts of a polluted site, type of species, geographic regions of a country). Some of those groups may be similar in nature and can be merged together.

The objective here is to establish $g \le k$ significantly different groups. Let $s = \min(g-1, p)$. Then, s linear (Fisher) discriminant functions (also known as classification rules) can be computed for those g multivariate p-dimensional groups. Those functions (rules) are then used in all of the subsequent classifications.

Classification procedures are less exploratory. Discriminant functions (rules) obtained in the separation procedures are used to assign current and new observations into previously defined groups. The correct classification of the current observations with known group membership is the basis for the validity of discriminant functions. Scout outputs the classification, the misclassification matrices (confusion matrix), and the apparent error rates. The apparent error rate is the percent of misclassified observations. This number tends to be biased because the data being classified are the same data used to calculate the classification rules. The validity of the discriminant rules can be judged by performing cross validation. Several cross validation rules, including bootstrap cross validation methods, have been incorporated into Scout.

Outliers can distort the discriminant functions and the corresponding scores significantly. This can result in several misclassifications. Scout incorporates the robust procedures to minimize the distortion of various estimates and classification rules.

Three commonly used discriminant analysis methods are available in Scout. For Fisher Discriminant Analysis (FDA), one can also plot the scatter plots of discriminant scores. Moreover, simultaneous (tolerance) and individual (prediction) ellipsoids can be drawn on the scatter plots of the discriminant scores. The methods included in Scout are briefly described as follows. The details of the robustified methods (especially based upon the PROP influence function) can be found in Singh and Nocerino (1995).

• Fisher Discriminant Analysis

Assign x_0 to π_1 , i = 1, 2, ..., g, if:

$$\sum_{i=1}^{n} [l'_{i}(x_{0} - \overline{x}_{h}^{*})^{2} = \min[\sum_{i=1}^{n} [l'_{i}(x_{0} - \overline{x}_{1}^{*})^{2}]; i = 1, 2, ..., g$$

and the Fisher discriminant score, y_i , is given by

$$y_i = l'_i x$$
 $i = 1, 2, ..., s$

where l_i are called the scaled (normalized) eigen vectors and are obtained from the eigen vectors of the $W^{*-1}\hat{B}^*$ matrix and are given by

$$l_i = \frac{e_i}{\sqrt{e_i' S_{pooled}^* e_i}}$$

• Linear Discriminant Analysis

Assign x_0 to π_1 , i = 1, 2, ..., g, if:

$$d_{k}^{*}(x_{0}) = \max \left\{ d_{1}^{*}(x_{0}), d_{2}^{*}(x_{0}), \dots, d_{g}^{*}(x_{0}) \right\}$$

where the linear discriminant scores, $d_{\iota}^{*}(x)$, are given by

$$d_{i}^{*}(x) = \mu_{i}' \Sigma^{-1} x - \frac{1}{2} \left[\mu_{i}' \Sigma^{-1} \mu_{i} \right] + \ln p_{i}$$

where i = 1, 2, ..., g.

• Quadratic Discriminant Analysis

Assign x_0 to π_i , i = 1, 2, ..., g, if:

$$d_{k}^{Q}(x_{0}) = \max[d_{1}^{Q}(x_{0}), d_{2}^{Q}(x_{0}), ..., d_{u}^{Q}(x_{0})]$$

where the linear discriminant scores, $d_1^*(x)$, are given by

$$d_{i}^{Q}(x) = -\frac{1}{2} \ln |\Sigma_{i}| - \frac{1}{2} [(x - \mu_{i})' \Sigma_{i}^{-1} (x - \mu_{i})] + \ln p_{i}$$

where i = 1, 2, ..., g.

As mentioned before, cross validation can be used to verify the validity and effectiveness of discriminant or classification rules. Various cross validation techniques have been provided in Scout. The user can select any of those techniques and compare their performances.

• Leave One Out (LOO) cross validation, where the classification rules are obtained using (n - 1) observations (training data or set) and testing is done on the classification test data with the left out observation. This is the most commonly used cross validation method employed in statistical software. Details can be found in Lachenbruch and Mickey (1968).

- **Split** cross validation, where the data is split to form two sets: the training set and test set. The training set is used to compute the classification rules, and the test set is used to validate those rules.
- **M-Fold** cross validation, where the data is divided into **M** equal (roughly) subsets. For each of the M subsets, combined data for the (M - 1) subsets are used as the training set and the remaining subset is used as the test set. This process is repeated **M** times for each of the M subsets.
- Simple Bootstrap
- Standard Bootstrap
- Bias Adjusted Bootstrap

The details of the bootstrap methods can be found in the referenced provided with the Scout software package.

Note: The training sets and the test sets used in the various cross validation methods are obtained randomly This random selection of the training sets (e g, in robust methods) may result in some singular matrices needed to obtain the discriminant rules Scout provides appropriate error or warning messages whenever such a condition occurs Many times, in practice, matrices used to derive discriminant functions (e.g., in robust methods) become singular. This is especially true when not enough observations are available in each of the groups. When this happens, Scout gives an error message and further computations are stopped.

Scout also provides an option to classify new observations or unknown observations into existing groups. There are certain logistical rules that need to be followed when using the classification of unknown or new observations.

- The first three letters of the group name of the new or unknown observations should be "UNK" or "unk" only.
- The set of unknown or new observations should be the last subset of observations in a data set. Otherwise an error message is obtained.

There are a few rules in the DA module of Scout which will not allow the contours to be plotted on the scatter plots. These rules are:

- If the standard deviation of any of the scores is less than 10^{-7} or greater 10^{+7} , then contours will not be plotted on their respective scatter plots.
- If the coefficient variation of any of the scores is less than 10^{-7} or greater 10^{+7} , then contours will not be plotted on their respective scatter plots.
- If the absolute value of the correlation between the two variables used in scatter plots is greater than 0.99, then the contours will not be plotted.

• If the absolute difference between the standard deviations of the two variables used in the scatter plot is less than 10^{-20} , then contours will not be plotted.

10.2.1 Fisher Discriminant Analysis

10.2.1.1 Classical Fisher DA

1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Fisher DA ▷ Classical.

🔚 Scout 4.0 - [D; Narain)	Scout_Fi	or_Windov	ws\ScoutS	ource\W	orkDatInf	xcel\ASHALL]						
🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Es	stimates i	-	Multivariate EDA	GeoStats	Program	ns Window	He	lρ	
Navigation Panel		0	1	2	3	PCA		<u>، ۲</u>	77		8	 9
Name		Site ID	Sample ID	SL Ratio	Time	Discriminant Ar	nalysis (DA)		isher DA		Classical	۲, and the second se
D \Narain\Scout Fo	1	· · · · · · · · · · · · · · · · · · ·	1		2	1 1	10 59	1 7	inear DA Xuadratic DA		Huber PROP	5
	2	· · · · ·	1		2	2 1	11 32	1074		_	MVT	

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "**Options**" button for the options window.

🗐 Options, Fisher, Classical Discriminant Ar	nalysis 🗙
Cross Validation	
🗂 Split	
∫ T M Fold	
☐ Simple/Naive Bootstrap by Data Set	
🗂 Standard Bootstrap by Data Set	
🖵 Standard Bootstrap by Group	
☐ Bias Adjusted Bootstrap by Data Set	
F Bias Adjusted Bootstrap by Group	
Print to Output	OK Cancel

- Specify the preferred "Cross Validation" methods and their respective parameters.
- Specify the "Print to Output." The default is "No Scores."

- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the check boxes.

🖪 OptionsDiscriminantGraphics;	
Select Graphics	Scatter Plot Title Scatter Plot of Discriminant Scores
I Scree Plot	Scree Plot Title: Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour No Contour Individual [d0cut]
MDs Distribution for Graphics Beta Chi	C Simultaneous [d2max]
	OK Cancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the storage of the discriminant scores. No scores will be stored when "No Storage" is selected. Scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. Scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**BEETLES.xls**" was used for the classical Fisher DA. It has 74 observations and two variables in three groups. The initial estimates of location and scale for each group were the classical mean and the covariance matrix. The classification rules were obtained using those estimates. The output shows that one observation was misclassified.

Output for the Classical Fisher Discriminant Analysis.

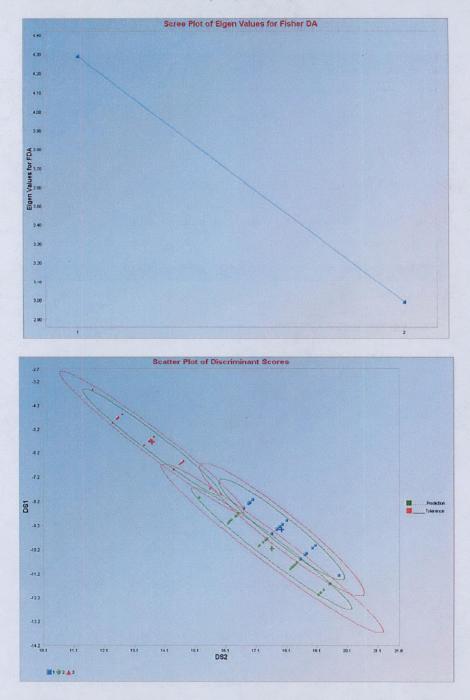
Data Set: Beetles (2 variables 3 groups).

	······		Classical	Fisher Linea	ar Discrimin	ant Analysis	3					
	User Select	ed Options										
Da	te/Time of Co	omputation	1/18/2008	10:22:23 AM								
<u> </u>		From File	D.\Narain\	Scout_For_W	indows\Sco	utSource\W	orkDatInExc	el\BEETLES				
	Fu	Il Precision	OFF			-	· - ·					
	Stora	ge Options	No Discrimi	nant Scores	will be stored	I to Workshe	et					
	Group P	robabilities:	Equal Priors	Assumed				• • •				
	Graph	cs Options	Both Scree	Plot and Sca	tter Plots are	Selected						
	Conto	our Options	Contour Ellipses drawn using Individual MD(0.05)									
	Alpha fo	or Graphics	0 05									
-	Distribut	ion of MDs	Beta Distribution used in Graphics									
			······································									
	I Number of C						Ê					
Num	ber of Select	ed Variables	2									
	•											
	Num	ber of Data	Rows per l	Group	· -							
1	2	3		T								
21	31	22										
		lean Vecto	r for Group	1 								
x1-1	x2-1											
146.2	141		<u></u>									
		ariance S M	atrix for Gr	oup1								
x1-1	x2·1											
31 66	-0 969											
-0 969	0.79					L						
				L								
		lean Vecto	or for Group	2								
x1·2	x2-2											
124 6	14 29						-					
					<u> </u>]	ļ				
		ariance S M	latrix for Gr	oup 2	.	-						
x1-2	x2·2			L								
21.37	-0 327											
-0.327	1 213											

]	N	lean Vecto	or for Group	3		
xī.3	x2-3	·	Î			
138.3	10.09					
	Соча	ariance S M	atrix for Gr	oup 3	·	
x1-3	x2-3		[1		
17.16	-0.502					
-0.502	0 944		-			
	Gr	and Mean	ector for D	ata	. .	
x1	x2		T	1		
134.8	12 99			+ ·····		
				1		
	P	ooled Cov	ariance Ma	link		
x1	×2					
23 02	·0.56					
-0.56	1.014					
		etween Gr	oups Matri	кВ		
x1	×2				[
6187	-366.5					
-366.5	263					
					1	
		Within Gro	ups Matrix \	N		
x1	x2				 	
1635	-39 73					
-39 73	72 01					
				<u> </u>		
		V Inverse E	Matrix (Wi	B)	,	
x1	×2		ļ			
3.711	-0.137					
-3 041	3.576	 		۱ ۱		
			! 		=	
		ordered Eig	envalues o	I WB		
Eval 1	Eval 2					
4 293	2 994					
					ļ.	1

Output for the Classical Fisher Discriminant Analysis (continued).
--

<u>,</u> . 1	Associat	ed Matrix of	Eigen Vec	tors of WiB	I	
Eval 1	Eval 2					
0.0287	0 0235					
-0.973	0.982					
					·	
		lered Finer	Values of \	wiß	1	
d1	d2				·····	
4 293	2.994					
1		ectors for () Irdered Eig	en Values		
· <u></u>	N	ntmalized F	igen Vecto	r 1	<u> </u>	
Eval 1	Eval 2			· ·		
0.0284	-0.963					
0.0207	0.000					
	N	ormalized E	igen Vecto	.2		
Eval 1	Eval 2					
0 0243	1.017					
0 0243	1.017		l			
·	laggificati	on Summar				
r		d Membershi	-			
Actual	1		, 3			
	20					
1 2		1	0			· · ·
	0	31				
1		0	22			
# Correct	20	31	22			
Prop Correct	95 24%	100%	100%			
		Observations				
		tly Classified				
	Incorrec	ctly Classified	1			
				· <u> </u>		
	sification 9					
Obs No.	Actual	Predicted				
17	1	2				
		Appare	nt Error Rate	0.0135	1	


LOO Actual 1 2 3	D Classific Predicted 1 17 7	Cross Valid cation Sum Membership 2 4					
LOO Actual 1 2 3	D Classific Predicted 1 17 7	cation Sumi I Membership 2	nary				
Actual 1 2 3	Predicted 1 17 7	d Membership 2					
Actual 1 2 3	Predicted 1 17 7	d Membership 2					
Actual 1 2 3	Predicted 1 17 7	d Membership 2				1	
Actual 1 2 3	1 17 7	2				1	
1 2 3	17 7		3			<u> </u>	
2 3	7	4					
3			0			1	
3 # Correct		23	1				1
# Correct	0	0	22				
	17	23	22				
op Correct	80.95%	74.19%	100%			1	
· · , , , h=							
	Total C	Observations	74				
	Correc	tly Classified	62				
	Incorrec	ctly Classified	12				
						+	 +
.00 Misclas	sificatio	n Summary					
Obs No.	Actual	Predicted					
4	1	2					
6	1	2					
10	1	2				-	
17	1	2					
31	2	1				•	
32	2	1					
39	2	1	· · · · ·				
40	2	1				+	 +
41	2	3				+	 -
44	2	1			·		
47	2	1					
51	2	1				-	
		l	LOO Error Rate	0 162			
		<u> </u>	1		I		
		Split (50/5)	D) Cross Validati	ion Result	5		
rror Rate fo							
rror Rate fo							

.

3 Fold Cross Validation Results	
Average Error Rate: 0.2158	
Simple/Naive Bootstrap (for whole dataset) Cross Validation Results Average Error Rate from Bootstrap: 0.0408	
Simple/Naive Bootstrap (Groupwise) Cross Validation Results Average Error Rate from Bootstrap: 0.0447	
Standard Bootstrap (for whole dataset) Cross Validation Results Error Rate from Bootstrap Training Set: 0.0436 Error Rate from Bootstrap Test Set: 0.0636	
Standard Bootstrap (Groupwise) Cross Validation Results Error Rate from Bootstrap Training Set: 0.0377 Error Rate from Bootstrap Test Set: 0.0570	
Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Average Correct Training Set. 70.1700	
Average Incorrect Training Set: 3.8300 Average Correct Test Set: 63.5100 Average Incorrect Test Set: 10.4900	
Error Rate Bias: -0.0900 Bias Adjusted Error Rate: 0.1035	
Bias Adjusted Bootstrap (Groupwise) Cross Validation Results Average Correct Training Set 70.8000	
Average Incorrect Training Set: 3,2000 Average Correct Test Set: 62,0600 Average Incorrect Test Set: 11,9400	
Error Rate Bias: -0.1181 Bias Adjusted Error Rate: 0.1316	

.

.

The color-coded big "+" represents the mean of the respective group, as shown in the above figure. Observations outside of the simultaneous (Tolerance) ellipse (if specified by the user) of a group category (e.g., #2) are considered to be anomalous for that particular group.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of discriminant scores and selected variables, as explained in Chapter 2.

10.2.1.2 Huber Fisher DA

1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Fisher DA ▷ Huber.

🗐 Scout 4.0 - [D;\Narain)	Scout-F	or_Windör	ws\ <u>ScoutS</u>	ource\Wa	rkOatlinE:	cel\FULLIRIS			
						Multivariate EDA		Programs Window	Help
Navigation Panel		0	1	2	3	PCA		•	R
Name		count	sp-length	sp-width	pt-length	Discriminant Ar	nalysis (DA)		Classical
D Warain\Scout Fo.	1	1	51	35	1	4 02		Linear DA I Ouadratic DA I	PROP
	2	1	49	3	1	4 02			MVT
11 1		1	47		. 1	1 0.2	· · ·	······································	

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "**Options**" button for the options window.

Options Fisher Huber Discrimi	inant Analysis	×
Select Initial Estimates Classical Sequential Classical Robust (Median, MAD) KG (Maronna Zamar)	Number of Iterations - 10 [Max = 50] Cross Validation	- Influence Function Alpha
KG (Not Orthogonalized) MCD MDs Distribution G Beta C Chisquare	Leave One Dut (LOD) Split M Fold Simple/Narve Boolstrap by Data Set Simple/Narve Boolstrap by Group	
Prink to Dulput No Scores Prink Scores	Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bootstrap by Data Set	
OK Cancel	F Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of location and scatter (scale).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

🗐 OptionsDiscriminantGraphics,	X
Select Graphics	Scatter Plot Title.
🔽 Scatter Plot	Scatter Plot of Discriminant Scores
Scree Plot	Scree Plot Title.
	Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour
Critical Alpha 0.05	C No Contour
	Individual (d0cut)
MDs Distribution for Graphics	← Simultaneous [d2max]
🕫 Beta 🦵 Chi	C Simultaneous/Individual
	OK Cancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "**OK**" to continue or "**Cancel**" to cancel the graphics options.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. Scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "**OK**" to continue or "**Cancel**" to cancel the Huber Fisher DA computations.

Output example: The data set "**IRIS.xls**" was used for the Huber Fisher DA. It has 150 observations and four variables in three groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the Huber influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that three observations were misclassified. The cross validation results suggest the same.

Output for the Huber Fisher Discriminant Analysis. Data Set: IRIS (4 variables 3 groups).

···· ·· ··· ··· ···			Robust Fi s	sher Linear I	Discrimina	nt Analysis	using Hube	Influence I	unction
	User Select	ed Options	``			•		· · · · · ·	
Da	te/Time of C	omputation	1/18/2008	10:54:42 AM					
		From File	D:\Narain\9	Scout_For_W	indows\Sco	utSource\W	orkDatInExc	el\FULLIRIS	
	Fu	III Precision	OFF						
Ir	fluence Fun	ction Alpha	0.05						
	Sq	uared MDs	Beta Distrib	ution					
	Initia	l Estimates	Robust Me	dian Vector a	nd OKG (M	aronna-Zam	ar) Matrix		
	Number o	of Iterations	10						
	Stora	ge Options	No Discrimi	hant Scores v	vill be stored	to Workshe	et		
	Group P	robabilities.	Equal Priors	Assumed	• ~				
	Graph	ics Options	Both Scree	Plot and Sca	tter Plots are	Selected			
	Conto	our Options	Contour Elli	pses drawn u	ising Individ	lual MD(0 05) snd Max M	ID(0.05)	
		or Graphics	0 05						
	Distribut	ion of MDs	Beta Distribi	ution used in I	Graphics				
	Number of (ŧ.						
Num	ber of Select	ted Variables	4						
						* * *			
	Num	ber of Data	Rows per G	iroup					
1	2	3					*	 _	
50	50	50							
		lean Vecto	· · · · · · · · · · · · · · · · · · ·	1			+		
sp·le~th-1	sp-width-1	pt-le~th-1	pt-width-1						
5.006	3 428	1.462	0.246						
		ariance S M		oup1				 	
sp·le~th-1	sp-width-1	pt-le~th-1	pt-width-1						
0.124	0.0992	0.0164	0 0103						
0.0992	0.144	0.0117	0.0093			<u></u>			
0.0164	0.0117	0 0302	0.00607						
0.0103	0.0093	0.00607	0 0111						
IQR Fix!	••••••		<u></u>						

	Final Ro	obust Mean	Vector for	Group 1
sp-le~th-1	sp-width-1	pt-le~th-1	pt-width-1	
5 008	3.431	1.463	0 245	······
J	·			
	Final Robu	st Covarian	ce S Matrix	for Group 1
sp-le~th-1	sp-width-1	pt-le~th-1	pt-width-1	
0.123	0 0965	0.0162	0.0108	
0.0965	0 1 37	0.0115	0.00989	
0 0162	0.0115	0 0289	0.00585	
0 0108	0.00989	0 00585	0.0105	
	·		L	
	h	lean Vecto	or for Group	2
sp-le~th-2	sp-width-2	pt-le~th-2	pt-width-2	
5 936	2.77	4.26	1.326	
<u>*-</u>				
	Cova	ariance S M	latrix for Gr	pup 2
sp-le~th-2	sp-width-2	pt-le~th-2	pt-width-2	
0.266	0 0852	0 183	0 0558	
0 0852	0.0985	0.0827	0.0412	
0 183	0.0827	0 221	0 0731	
0.0558	0.0412	0 0731	0 0391	
			. <u> </u>	
	FinalR	obust Mear	Vectorfor	Group 2
sp-le~th-2	1.	pt-le~th-2	pt-width-2	
5.936	2.773	4.261	1.326	
		st Covariar		r for Group 2
sp-le~th-2	sp-width-2	pt-le~th-2	pt-width-2	
0 266	0 0864	0.181	0.0554	
0.0864	0 0969	0.0834	0.0421	
0 181	0.0834	0 218	0.0727	
0 0554	0.0421	0 0727	0.0391	
			or for Group	3
sp-le~th-3	sp-width-3	pt-le~th-3	pt-width-3	
6.588	2.974	5.552	2.026	

Final Robust Mean Vector for Group 1

	Cove	ariance S M	atrix for Gr	oup 3		1
sp·le~th-3	sp-width-3	pt-le~th-3	pt-width-3		T · · ·	:
0.404	0.0938	0 303	0.0491			
0.0938	0.104	0.0714	0.0476			i
0.303	0.0714	0.305	0.0488			
0.0491	0.0476	0.0488	0.0754			i
	1	L	L			
	FinalR	obust Mear	Vector for	Group 3	<u> </u>	
sp-le~th-3	sp-width-3	pt-le~th-3	pt-width-3			
6.578	2.973	5.542	2.025			
	•		L <u></u>	<u> </u>		
	Final Robu	st Covarian	ce S Matrix	for Group 3		
sp·le~th-3	sp-width-3	pt-le~th-3	pt-width-3			
0.389	0.0918	0.287	0.0469			
0.0918	0.0997	0.0716	0.0491			
0.287	0.0716	0.287	0.046			↓
0.0469	0 0491	0.046	0.0759			
	Robus	t Grand Me	an Vector f	or Data		
sp-length	sp-width	pt-length	pt-width	······		
5.843	3.057	3 758	1.199			
	· ·					<u></u>
	Robu	st Pooled (Covariance	Matrix	l	
sp-length	sp-width	pt-length	pt-width		[
0.26	0.0915	0.162	0.0378			
0.0915	0.111	0.0557	0.0338			
0.162	0.0557	0.178	0.0417			
0.0378	0.0338	0.0417	0.0419			
	L == ==					
, <u>, , , , , , , , , , , , , , , , ,</u>	B	etween Gro	oups Matrix	B		
sp-length	sp-width	pt-length	pt-width			
61 68	-19.79	162	70.04			
-19 79	11 26	-56.89	-22.84			
162	-56 89	430.5	184.3			
70.04	·22.84	184.3	79.56			

	1	Within Grou	ips Matrix V	4		
sp-length	sp-width	pt-length	pt-width			
37.55	13 24	23.39	5.468			
13 24	16 07	8 047	4.884			
23 39	8 047	25.79	6.023			
5.468	4.884	6.023	6.059			
		;	·			
	۷	V Inverse B	Matrix (Wi	B)		
sp-length	sp-width	pt-length	pt-width	[
-2 912	1.04	-7.755	-3.315			
·6.357	2.497	-17 15	-7.252			
8.332	-3 073	22 29	9.491			
11 03	-3.666	29.1	12.53			
		ordered Eig		fWB		
Eval 1	Eval 2	Eval 3	Eval 4			
34.11	0.29	-4.08E-15	-3 04E-16			
						
		ed Matrix ol		tors of WiB		
Eval 1	Eval 2	Eval 3	Eval 4		1	
-0.188	-0 0056	0.624	-0.479			
0 418	0.599	-0.445	-0.136			
0 5 1 2	1	1			1	
0.542	-0.243	-0.478	-0.199			
0.542	-0.243 0.763	-0.478 0.43	-0.199 0.844			
	0.763	0 43	0.844			
0 705	0.763 Ore	1	0.844	WiB		
0 705 d1	0.763 0re d2	0 43	0.844	wiB		
0 705 d1 34.11	0.763 0rc d2 0.29	0 43 dered Eiger	0.844			
0 705 d1 34.11	0.763 0rc d2 0.29	0 43	0.844			
0 705 d1 34.11	0.763 0rd d2 0.29 zed Eigen V	0 43 dered Eiger /ectors for (0.844	jen Values		
0 705 d1 34.11 Normaliz	0.763 Ord d2 0.29 zed Eigen V	0 43 dered Eiger /ectors for (ormalized E	0.844	jen Values		
0 705 d1 34.11 Normaliz Eval 1	0.763 0r d2 0.29 zed Eigen V N Eval 2	0 43 dered Eiger fectors for C ormalized E	0.844	jen Values		
0 705 d1 34.11 Normaliz	0.763 Ord d2 0.29 zed Eigen V	0 43 dered Eiger /ectors for (ormalized E	0.844	jen Values		
0 705 d1 34.11 Normaliz Eval 1	0.763 0r d2 0.29 zed Eigen V N E val 2 -6 981	0 43 dered Eiger rectors for C ormalized E Eval 3 9 051	0.844	jen Values pr 1		
0 705 d1 34.11 Normaliz Eval 1 -3.147	0.763 0rd d2 0.29 zed Eigen V N E val 2 -6 981 N	0 43 dered Eiger rectors for C ormalized E Eval 3 9 051 ormalized E	0.844 Nalues of Indered Eig Igen Vecto Eval 4 11 78	jen Values pr 1		
0 705 d1 34.11 Normaliz Eval 1	0.763 0r d2 0.29 zed Eigen V N E val 2 -6 981	0 43 dered Eiger rectors for C ormalized E Eval 3 9 051	0.844	jen Values pr 1		

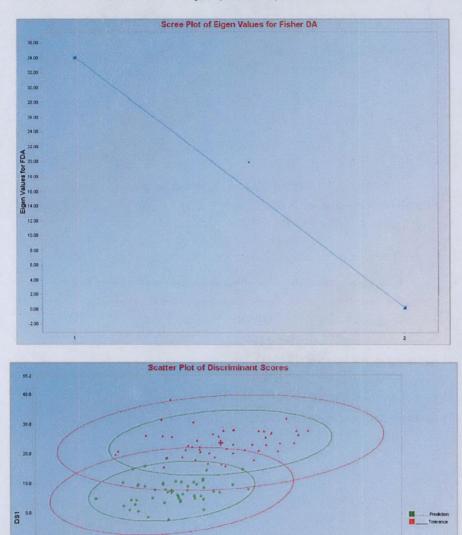
-0.0762

8.148

-3.312

10.38

.


.

	Classifica	ation Summ	ary		I		1
·	Predicte	d Membershij					
Actual	1	2	3	····			
1	50	0	0				
2	0	48	2	····			
3	0	1	49				
# Correct	50	48	49				
Prop Correct	100%	96%	98%				
	Total (150				
··		tly Classified					
		ctly Classified					
<u> </u>			J				
Mieclae	sification (Summanı					
Obs No.	Actual	Predicted					
71	2	3			•		
84	2	3					
134		2					
	J		parent Error Rate	0.02			
				0.02			
			1944 to receive a	C	Cross Valio	lation Resu	lts
LeaveOne	e Out (LOO) Cross Vali	dation Results				***
· · · · · ·							
L	00 Classif	ication Sun	imary				
	Predicte	d Membership)				
Actual	1	2	3				
1	50	0	0			· · · · · · · · · · · · · · · · · · ·	
2	Û	48	2	·			
3	0	1	49				·····
# Correct	50	48	49				
Prop Correct	100%	96%	98%				
	Total	Diservations	150				
		ctly Classified	1	,-			
		ctly Classified					· · · · · · · · · · · · · · · · · · ·
			L			l	

	<u></u>				T	1			
LOO Misc	lassificatio	n Summary							
Obs No.	Actual	Predicted			<u>+</u>				
71	2	3			+				
84	2	3							
134	3	2							
			LOO Error Rate	0.02					
			,						
			iO) Cross Valida	tion Result	\$				
Error Rate	for Trainin	g Set: 0.009	3						
Error Rate	for Test Se	t: 0.0107							
Bia	s Adjusted	Bootstrap (for whole datas	et) Cross V	alidation F	esuits			
Validation	Failed bec	uase of not	enough Non-O	utliers in G	rouyp 1 tim	es.			
Average C	orrect Trai	ning Set 14	7.5556						
Averagelr	ncorrect Tr	aining Set 2	2.4444						
Average Correct Test Set: 147.1111									
Average Incorrect Test Set: 2.8889									
Error Rate Bias: -0.0030									
Bias Adjusted Error Rate: 0.0230									
		<u></u>	····		·····				
	-	1							

On a scatter plot of discriminant scores, it is desirable to use only one ellipsoid (e.g., prediction ellipsoid) for each group. That will reduce the clutter on a graph.

29.0

43.3

39.0

DS2

S. Marth

19.0

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of discriminant scores and selected variables, as explained in Chapter 2.

-1.0

-11.0

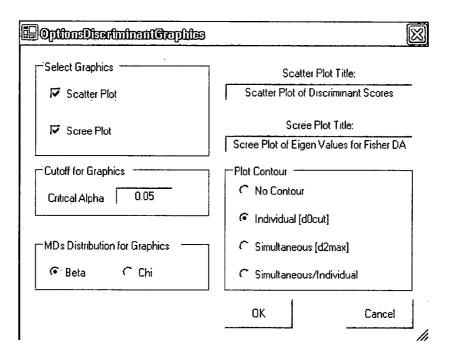
-21.0

-31.0

41.0

10.2.1.3 PROP Fisher DA

1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Fisher DA ▷ PROP.


	Scout 4.0 · [D; Marain)	Scout Fo	or_Windov	ws\ScoutS	ource\W	ork <u>Datin</u> E	xcel\ASHALL.x	<u>ls]</u>		· · ·		
ſ	🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/E	stimates P	Regression	Multivariate EDA	GeoStats	Programs	Window	Help	
	Navigation Panel		0	1	2	3	PCA		•	7	R	
	Name		Site ID	Sample ID	SL Ratio	Time	Discriminant Ar	ialysis (DA)		her DA 1 ear DA 1	Classical Huber	
	D:\Narain\Scout_Fo		1;	- 1	i	2	1 1	10 59	1	adratic DA	PROP	5 34
		2		1		2) 5'	2 1 2 1	11 32	12.00m	12.45	MVT	3.26

2. A "Select Variables" screen (Section 3.5) appears.

• Click on the "**Options**" button for the options window.

🕮 Options Fisher PROP/Discrimin	ant Analysis	X
Select Initial Estimates Classical Sequential Classical C Robust (Median, MAD)	Number of Iterations	- Influence Function Alpha
OKG (Maronna Zamar) KG (Not Orthogonalized) MCD MDs Distribution G Bela C Chisquare	「Cross Validation 「 Leave One Out (LOO) 「 Spbt 「 M Fold 「 Simple/Naive Bootstrap by Data Set	
Prink to Output Prink to Output Prink Scores OK Cancel	Simple/Narve Boctstrap by Gioup Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bootstrap by Data Set Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of location and scatter (scale).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "**Graphics**" button for the graphics options window and check all of the preferred check boxes.

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**IRIS.xls**" was used for the PROP Fisher DA. It has 150 observations and four variables in three groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the PROP influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that three observations were misclassified. The cross validation results suggest the same.

Output for the PROP Fisher Discriminant Analysis. Data Set: Iris (4 variables 3 groups).

、

r			Robust Fis	her Linear [Discriminar	nt Analysis (using PROF	^P Influence F	unction		
	User Selecte	ed Options									
Dat	e/Time of Co	omputation	1/18/2008 11 59:51 AM								
		From File	D \Narain\S	cout_For_W	indows\Sco	utSource\W	orkDatInExce	FULLIRIS			
		Precision	OFF	· + <u></u> · ·							
In	fluence Fund	tion Alpha	0 05								
	•	uared MDs	Beta Distribi	ution							
	Initia	Estimates	Robust Med	dian Vector a	and OKG (M	aronna-Zama	ar) Matrix				
<u> </u>	Number o	f Iterations	10								
	Storag	ge Options	No Discrimir	hant Scores v	will be stored	I to Workshe	et				
	Group Pr	obabilities	Equal Priors	Assumed							
	Graphi	cs Options	Both Scree	Plot and Sca	tter Plots are	Selected					
	Conto	ur Options	Contour Elli	pses drawn u	using Individ	ual MD(0 05) snd Max M	D(0 05)			
	Alpha fo	r Graphics	0 05								
	Distribut	ion of MDs	Beta Distribi	ution used in	Graphics						
	Number of C		1								
Num	ber of Select	ed Variables	4								
		ber of Data	Rows per 0	iroup				1			
1	2	3									
50	50	50									
		lean Vecto		1							
sp-le~th-1	sp-width-1	pt-le~th-1	pt-width-1								
5.006	3.428	1.462	0.246								
		ariance S M		oup 1							
sp-le~th-1	sp-width-1	pt·le~th·1	pt-width-1								
0 124	0.0992	0 0164	0 0103			!					
0.0992	0.144	0.0117	0 0093								
0.0164	0.0117		0.00607								
0 0103	0 0093	0 00607	00111								
IQR Fix!											
				1			1	İ			

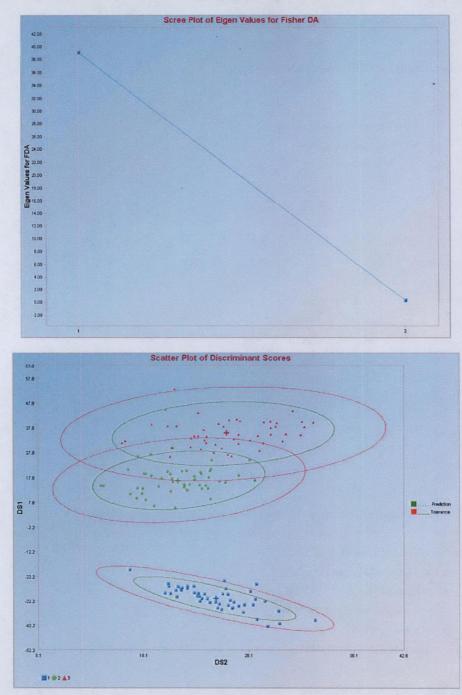
(Complete results are not shown.)

	Associat	ed Matrix of	Eigen Vec	tors of WB		1
Eval 1	Eval 2	Eval 3	Eval 4			
-0.163	-0.0206	-0 53	-0.322			-
-0.477	0 607	-0.172	0.454			
0511	-0.237	-0.178	0.475			1 -
0 696	0.758	0 811	-0.682			. !
	0					
d1	d2	lered Eigen	values of	WIB		
39.09	0.288					
ļ		ectors for 0	rdered Fig			
	N	ormalized E	igen Vecto	i 		
Eval 1	Eval 2	Eval 3	Eval 4			1-
-3.305	-9.675	10 37	14 11			1
	N.	ormalized E	igon Vooto			
Eval 1	Eval 2	Eval 3	Eval 4	n ∠ ¦		
-0 283	8.358	-3.266	10.45			
Ċ	lassificati	on Summan	,			1-
	Predicted	Membership)			-
Actual	1	2	3.			-
1	50	0	0			
2	0	49	1			1-
3	0	1	49			†-
# Correct	50	49	49			1
Prop Correct	100%	98%	98%			
	Tatal)bservations	150			
		tly Classified				
····		tly Classified				
					·	
	sification S			·		
Obs No	Actual	Predicted				1
84	2	3				1
134	3	2		·	······	1-

.

Output for the PROP Fisher Discriminant Analysis (continued).

Leave One Out (LOO) Cross Validation Results					C	ross Valid	ation Resul	ts
LOO Classification Summary Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49 Prop Correct 100% 96% 98% Total Observations 150 2 2 Total Observations 150 2 2 Correctly Classified 147 2 3 Total Observations 150 2 2 Correctly Classified 3 2 2 UOD Misclassification Summary 2 2 3 UOD Misclassification Summary 2 2 3 UOD SNO. Actual Predicted 2 3 71 2 3 3 2 LOO Error Rate 0.02 3 3 UOD Error Rate 0.02 3 3 Station Failed becuase of	·							
Predicted Membership Image: Constraint of the state of t	Leave One	Out (LOO) Cross Yalio	lation Results				
Predicted Membership Image: Constraint of the state of t								
Predicted Membership Image: Constraint of the state of t								
Actual 1 2 3	LC) O Classif	ication Sum	mary				
1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49 Prop Correct 100% 96% 98% Total Observations 150 Correctly Classified 147 Incorrectly Classified 3 147 Incorrectly Classified 3 147 Obs No. Actual Predicted 71 2 3 84 2 3 134 3 2 LOO Error Rate Dos No. Actual Predicted 71 2 3 84 2 3 LOO Error Rate LOO Error Rate Validation Failed becuase of not enough Non-Outliers in Group 1 times. Average Correct Training Set 146.6667 Average Correct Training Set 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444		Predicte	d Membership					
2 0 48 2 3 0 1 49 # Correct 50 48 49 Prop Correct 100% 96% 98% Total Observations 150 150 Correctly Classified 147 147 Incorrectly Classified 147 147 Obs No. Actual Predicted 147 71 2 3 147 134 3 2 147 LOO Error Rate 0.02 Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set 146.6667 Average Incorrect T raining Set 133:5556 Average Incorrect T est Set: 139:5556 Average Incorrect T est Set: 139:5556 Average Incorrect T est Set: 139:5556	Actual	1		3				
3 0 1 49	1	50	0	-				
# Correct 50 48 49	1	0	48	2				
Prop Correct 100% 96% 98% Total Observations 150	3	0	1	49	·			
Total Observations 150 Correctly Classified 147 Incorrectly Classified 3 UOD Misclassification Summary 100 Obs No. Actual Predicted 71 2 3 84 2 3 134 3 2 LOO Error Rate 0.02 Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set: 146.6667 Average Incorrect T rest Set: 139.5556 Average Incorrect T est Set: 10.4444	1 1	50		49				
Correctly Classified 147 Incorrectly Classified 3 LOO Misclassification Summary	Prop Correct	100%	96%	98%				
Correctly Classified 147 Incorrectly Classified 3 LOO Misclassification Summary			••••••	· · · · · · · · · · · · · · · ·				
Incorrectly Classified 3 Image Stress LOO Misclassification Summary Image Stress Obs No. Actual Predicted 71 2 3 84 2 3 134 3 2 Image Stress LOO Error Rate 0.02 Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set: 146.6667 Average Incorrect Training Set: 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444		Total	Observations	150				
LOO Misclassification Summary	· · · · · · · · · · · · · · · · · · ·	Correc	ctly Classified	147		1		
Obs No. Actual Predicted 71 2 3		Incorre	ctly Classified	3				
Obs No. Actual Predicted 71 2 3								
71 2 3	LOO Miscl	assificatio	n Summary					
84 2 3	Obs No.	Actual	Predicted		 <i></i>	+		
134 3 2 LOO Error Rate 0.02 Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set: Average Incorrect Training Set: Average Correct Test Set: 139.5556 Average Incorrect Test Set: Value	71	2	3					
LOO Error Rate 0.02 Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set: 146.6667 Average Incorrect Training Set: 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444	84	2	3	······································				
Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Validation Failed becuase of not enough Non-Outliers in Grouyp 1 times. Average Correct Training Set: 146.6667 Average Incorrect Training Set: 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444	134	3	2					
Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set 146.6667 Average Incorrect Training Set 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444			·L	LOO Error Rate	0.02			
Validation Failed becuase of not enough Non-Outliers in Groupp 1 times. Average Correct Training Set: 146.6667 Average Incorrect Training Set: 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444					L	_!	L	
Average Correct Training Set: 146.6667 Average Incorrect Training Set: 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444	Bias	Adjusted	Bootstrap (f	or whole datas	et) Cross V	Validation	Results	
Average Incorrect Training Set 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444	Validation I	Failed bec	uase of not	enough Non-C	utliers in (Grouyp 1 ti	nes.	
Average Incorrect Training Set 3.3333 Average Correct Test Set: 139.5556 Average Incorrect Test Set: 10.4444				—	···			
Average Correct Test Set: 139,5556 Average Incorrect Test Set: 10.4444	_		_					
Average Incorrect Test Set: 10.4444	1 –		-					
_	-				• ••• •••••			
EIIVI Nate DiasV. V4/4					••••••	<u> </u>		
Bias Adjusted Error Rate: 0.0607								


.

Output for the PROP Fisher Discriminant Analysis (continued).

.

.

Output for the PROP Fisher Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.1.4 MVT Fisher DA

.

1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Fisher DA ▷ MVT.

🛄 Scout 4.0 - [D: Warain)	<u>Scout</u> _F	or_Window	/s\ScoutS	ource\W	/orkDatinE	xcel\Book\HEM	OPHILIA]				
File Edit Configure Data	a Graphs	Stats/GOF	Outliers/E:	stimates	Regression	Multivariate EDA	GeoStats	Programs	Window	Help	
Navigation Panel		0	1	2	3	PCA			7	R	-9,
Name		GrpName	Group	ÜİÜÖl ∭(∆ctrvitu)	logi U L(ànhren	Discriminant Ar	nalysis (DA)		er DA	Classical Huber	
D Warain\Scout_Fo .	22	NonCarriers	1	0150					adratic DA	PROP	
D \Waraın\Scout_Fo	23	NonCarriers	1	-0125						MVT	
	24	NonCarriers	1	-0155	0 123	12			I	L	

2. A "Select Variables" screen (Section 3.5) appears.

• Click on the "**Options**" button for the options window.

🕮 Options, Fisher, MV/T: Discriminan	t Analysis	X
Classical	Number of Iterations 10 [Max = 50] [Max = 50] [Max = 50] [Max = 50]	Select Transming Percentade 0 1 Range (0 - 0 95)
OKG (Maronna Zamar) KG (Not Orthogonalized) MCD	Cross Vebdebon Leave One Out (LOG) Split M Fold	
Prink to Dutput F No Scores F Prink Scores	Simple/Narve Bookstrap by Data Set Simple/Narve Bookstrap by Group Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bookstrap by Data Set	
OK Cancel	F Bias Adjusted Bootstrap by Group]

- Specify the options to calculate the robust estimates of location and scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "**Graphics**" button for the graphics options window and check all of the preferred check boxes.

🗐 OptionsDiscriminantGraphics,	X
Select Graphics	Scatter Plot Title Scatter Plot of Discriminant Scores
🔽 Scree Plot	Scree Plot Title: Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour No Contour Individual (d0cut)
MDs Distribution for Graphics	 ← Simultaneous [d2max] ← Simultaneous/Individual
	OK Čancel

- The "Scree Plot" provides a scree plot of the eigen values.
- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "**OK**" to continue or "**Cancel**" to cancel the DA computations.

Output example: The data set "**Salmon.xls**" was used for the MVT Fisher DA. It has 102 variables in two groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the trimming percentage and critical alpha and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The W⁻¹B matrix used for computing the classification rules was singular and the calculations were stopped.

Output for the MVT Fisher Discriminant Analysis. Data Set: Salmon (2 variables 2 groups).

		Robust Fis	her Linear	Discrimina	nt <mark>Analysis</mark>	using MVT	Method					
	User Selected Optio	ns										
Da	te/Time of Computati	on 1/18/2008	2 01 48 PM	· -	-	-						
*****	From F	ile D \Narain\S	cout_For_V	/indows\Sco	utSource\W	orkDatInExc	cel\Book\SAI	MON.xls				
	Full Precisi	on OFF		-								
	Trimming Percenta	ge 10%						· · - · · · · · · · · · · · · · · · · ·				
	Initial Estimat	es Robust Me	dian Vector	and OKG (M	aronna Zam	ar) Matrix	-					
<u> </u>	Number of Iteratio	ns 10						· · · · · · · · · · · · · · · · · · ·				
	Storage Optio	ns No Discrimi	No Discriminant Scores will be stored to Worksheet									
	Group Probabilities		Equal Priors Assumed									
~~ · · -	Graphics Options Contour Options		Both Scree Plot and Scatter Plots are Selected									
			oses drawn	using Individ	ual MD(0 05)						
Alpha for Graphics		ics 0 05			· · ·							
	Distribution of M	Ds Beta Distrib	ution used in	n Graphics								
						-	•					
Tota	I Number of Observa	tions 100	[1	I	1		1				
Num	ber of Selected Varia	ables 2				-						
		<u> </u>										
				‡								
	Number of D) ata Rowsper (iroup	, <u>l</u> ,,,,			-	-				
alaskan	canadian						· · · · · · · · · · · · · · · · · · ·					
50	50						-					
	1											
	MeanVect	or for Group ala	iskan	. <u>.</u>								
Fresh~skar	Marin~skan	···	, <u></u> 									
98 38	429 7	<u> </u>	Ì				-					
	L		+									
	Covariance S I	Matrix for Group) alaskan									
Fresh~skar	Marin~skan											
260.6	-188.1						-					
-188 1	1399											
	1											
	Final Robust Mea	n Vector for Gr) Dup alaskar	. <u>1</u> <u>.</u>								
	Marin~skan			· · · · · · · · · · · · · · · · · · ·								
Fresh~skar		1	1	1	1	1	1	1				
Fresh~skar 98.42	429.8											

(Complete results are not shown.)

.

.

	Marın~dian			Group canad				
1381	366.4	<u> </u>					ļ	
Fina	al Bobust Cr	varianc	e S Matrix	for Group ca				
	Marin~dian							
300.3	224.7							
2247	610.7				-			
	Robus	t Grand I	lean Vec	tor for Data				
FreshWater	Marine							
117.9	398 1		-					
			-					
	Robu	st Poole	d Covaria	nce Matrix				
FreshWater	Marine							
241 8	0.425					-		
0.425	946.5				• 			
			-					
		etween (Groups Ma	atrix B				
FreshWater	Marine							
35403	-56624							
-56624	90567							
		¥ithin Gr	oups Mati	ix W				
FreshWater								
21281	37.38							
37.38	83292							
		(1	B Matrix ().(;D)				
FreshWater		riveise	o mauix (ļ	<u></u>
1 665	-2.663		-					
-0 681	1.089							
-0 681	1.089						ļ	
				ł		 n	1	

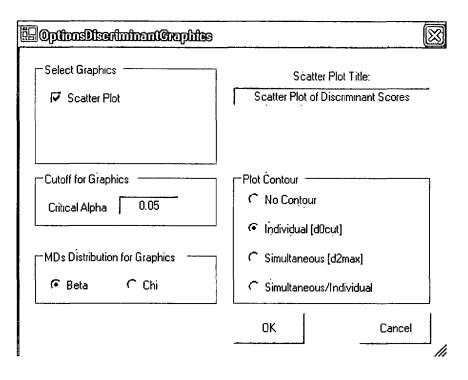
Output for the MVT Fisher Discriminant Analysis (continued).

Note. When a matrix obtained during the calculations of discriminant scores is singular, an appropriate message is displayed and the computations are stopped

10.2.2 Linear Discriminant Analysis

10.2.2.1 Classical Linear DA

.


1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Linear DA ▷ Classical.

🛛 File Edit Configure Dat	a Graphs	Stats/GOF	Outliers/Es	timates	Regression	Multivariate EDA	GeoStats	Programs Window	Help	
Navigation Panel		0	1	2	3	PCA		•	8	9
lame		Group	x1	x2		Discriminant Ar	ialysis (DA)		Classical	
D \Narain\Scout Fo	1	1	150	_	15	_		Linear DA Ouadratic DA	► Huber	
-	2	1	147	•	13	F.	Í		PROP	
	3	1	144		14				MVT	

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "**Options**" button for the options window.

Options Linear Classical Discriminant Analysis	2
- Cross Validation	
🗂 Leave One Out (LOO)	
┌── Split	
F M Fold	
└ Simple/Naive Bootstrap by Group	
☐ Standard Bootstrap by Data Set	
☐ Standard Bootstrap by Group	
☐ Bias Adjusted Bootstrap by Data Set	
F Bias Adjusted Bootstrap by Group	
- Print to Output]
No Scores C Print Scores OK	Cancel

- Specify the preferred cross validation methods and their respective parameters.
- Specify the "Print to Output." The default is "No Scores."
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on the number of observations in each group; or "User Supplied," where a column of priors can be obtained from "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage for the discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "**OK**" to continue or "**Cancel**" to cancel the DA computations.

Output example: The data set "**BEETLES.xls**" was used for the classical linear DA. It has 74 observations and two variables in three groups. The initial estimates of location and scale for each group were the classical mean and the covariance matrix. The classification rules were obtained using those estimates. The output shows that one observation was misclassified.

Output for the Classical Linear Discriminant Analysis. Data Set: Beetles (2 variables 3 groups).

Į			Classical L	inear Disci	iminant An	alysis	ı	1	
	User Selecte	ed Options							• –
Dat	e/Time of Co	mputation	1/18/2008	2 09 58 PM		~~~~~~~			
·		From File	D.\Narain\S	cout_For_W	indows\Sco	utSource\W	orkDatInÈxce	el\BEETLES	
	Ful	Precision	OFF						
	-	ge Options	1		will be stored	lo Workshe	et		
		obabilities		will be used					
	Graphi	cs Options	Scatter Plot						
		ur Options	1	oses drawn i	ising Individ	lual MD(0 05]		
		r Graphics	0 05						
	Distributi	ion of MDs	Beta Distrib	ution used in	Graphics				
			•						
	Number of C		1						
Num	ber of Select	ed Variables	2						
							!		
							l		
			Rows per (aroup	r		1	 	
1	2	3							
21	31	22					l		
			 	L	<u> </u>				ļ
		fean Vecto	or for Group	• 1 +					
81-1	x2·1		.						
146 2	141								
		 C	 Aatrix for Gr	1					
×1-1	x2·1	anance 5 M	acrix for Gr	oup I T	۱···				
31 66	-0.969					·	ļ		
-0 969	0 79								
					 			.	
		lean Vect	or for Group	2	<u> </u>				
×1-2	×2-2						!		ļ
124 6	14.29					· —			-
1240	14.25								<u> </u>
·	<u> </u>	atiance S I	Matrix for Gr	040 2					
×1·2	×2·2				· · · · · ·				
21.37	-0.327					- -			
-0 327	1 213								
	L								
		1	1	I I	1	1	1	1	1

.

(Complete results are not shown.)

ς.

.

Output for the Classical Linear Discriminant Analysis (continued).

	Classificat	ion Summar	y		<u></u>	i
	Predicte	d Membership				
Actual	1	2	3			
1	20	1	0		- .	
2	0	31	0			
3	0	0	22			
# Correct	20	31	22			
Prop Correct	95.24%	100%	100%			
		÷•••••••••••••••••••••••••••••••••••••	· · · - · · ·			
	Total	Observations	74		· · · · · · · · · · · · · · · · · · ·	
	Correc	tly Classified	73	•		
	Incorre	ctly Classified	1			
•						
Misclas	sification	Gummary				
Obs No.	Actual	Predicted				
17	1	2				
		Apparer	nt Error Rate	0.0135		
			· l			
Linear Disc	riminant F	unction Cor	nstants and	Coefficients		
		1	2	3		
Cons	tant	-620.8	-488 4	-506.7		
X	1	6.778	5 834	6.332		
X	2	17.64	17.31	13.44		

• •

			······	Cra	oss Valida	Cross Validation Results										
Leave On	e Out (LOC) Cross Vali	dation Results													
L		fication Sur			L											
		d Membership														
Actual	1	2	3													
1	20	1	0													
2	0	31	0													
3	0	0	22													
# Correct	20	31	22													
rop Correct	95 24%	100%	100%													
	.		74													
		Observations			ļ	i }										
		ctly Classified				ł										
	Incorrec	ctly Classified	1			·										
		n Summary				_										
Obs No.	Actual	Predicted														
17	1	2														
			LOO Error Rate	0 0135												
			1													
			iO) Cross Valida	tion Results												
		g Set: 0.005	1													
ErrorRate	for Test Se	et: 0.0078														
		3 Fold C	Cross Validation	Results												
Average Er	rror Rate: (0.0139														
				_												
			for whole datas	et)CrossV	alidation l	Results										
Average Er	rror Rate fr	o m Boo tstra	ap: 0.0099													
			ap (Groupwise)													

.

Output for the Classical Linear Discriminant Analysis (continued).

Output for the Classical Linear Discriminant Analysis (continued).

Standard Bootstrap (for whole dataset) Cross Validation Results	
Error Rate from Bootstrap Training Set 0.0119	1
Error Rate from Bootstrap Test Set: 0.0051	
Standard Bootstrap (Groupwise) Cross Validation Results	1
Error Rate from Bootstrap Training Set 0.0103	1
Error Rate from Bootstrap Test Set: 0.0059	
Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results	
Average Correct Training Set 73.3309	<u> </u>
Average Incorrect Training Set 0.6700	
Average Correct Test Set: 73.1100	
Average Incorrect Test Set: 0.8900	
Error Rate Bias: -0.0030	
Bias Adjusted Error Rate: 0.0165	
Bias Adjusted Bootstrap (Groupwise) Cross Validation Results	
Average Correct Training Set 73.2600	
Average Incorrect Training Set 0.7400	+
Average Correct Test Set: 73.0800	
Average Incorrect Test Set: 0.9200	+
Error Rate Bias: -0.0024	+
Bias Adjusted Error Rate: 0.0159	+

Output for the Classical Linear Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.2.2 Huber Linear DA

1. Click on Multivariate EDA ▶ Discriminant Analysis (DA) ▶ Linear DA ▶ Huber.

📲 File Edit Configure Data	a Graphs	Stats/GOF	Outliers/Es	timates Re	egression	Multivariate EDA	GeoStats	Prog	rams Window	Help		
Navigation Panel	2000	0	1	2	3	PCA		٠Ī	7	8		9
Name		count	sp-length	sp-width	pt-length	Discriminant A	nalysis (DA)	•	Fisher DA	· -		
D:\Narain\Scout_Fo	1	1	5.1	3.5	1.4	0.2			Linear DA	Contraction of the local division of the loc	Classical	
	2	1	4.9	3	1.4	0.2		L	Quadratic DA		Huber PROP	
	3	1	4.7	3.2	1.3	3 0.2				1 10 10 10	MVT	
		-	10							-		

3. A "Select Variables" screen (Section 3.5) appears.

• Click on the "Options" button for the options window.

Select Initial Estimates	-Number of Iterations	Influence Function Alpha
C Classical	10	0.05
C Sequential Classical	[Max = 50]	Range [0.0 - 1.0]
Robust (Median, MAD)	[]	
OKG (Maronna Zamar)	Cross Validation	
 KG (Not Orthogonalized) MCD 	Eave One Out (LOO) Split	
MD's Distribution	J F M Fold Simple/Narve Bootstrap by Data Set F Simple/Narve Bootstrap by Group	
Print to Output Print to Output No Scores Print Scores	F Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bootstrap by Data Set	

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

💷 OgtionsDiscriminantGraphics.	X
⊂Select Graphics	Scatter Plot Title: Scatter Plot of Discriminant Scores
Scree Plot	Scree Plot Title
Cutoff for Graphics	Scree Plot of Eigen Values for Fisher DA Plot Contour No Contour
MDs Distribution for Graphics	 Individual (d0cut) Simultaneous (d2max) Simultaneous/Individual
L <u></u>	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage for the discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "**OK**" to continue or "**Cancel**" to cancel the DA computations.

Output example: The data set "**IRIS.xls**" was used for the Huber linear DA. It has 150 observations and four variables in three groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the Huber influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that three observations were misclassified. The cross validation results suggest the same.

Output for the Huber Linear Discriminant Analysis. Data Set: IRIS (4 variables 3 groups).

			Linear Dis	criminant.	Analysis w	ith Huber					
	User Select	ed Options							+		
Da	te/Time of C	omputation	1/18/2008	2:35:20 PM					•		
		From File	D:\Narain\	Scout_For_	Windows\Se	coutSourceV	WorkDatinE>	cel\FULLIRIS			
		Il Precision	OFF								
Īi	fluence Fun	ction Alpha	0 05								
	-	uared MDs	Beta Distrib	ution							
		l Estimates	Robust Median Vector and OKG (Maronna-Zamar) Matrix								
		ofIterations	10								
	Stora	ge Options	No Discrimi	nant Scores	will be stor	ed to Works	heet				
	Group P	robabilities:	Equal Priors	will be use	3						
		ics Options	Scatter Plot								
		our Options	Contour Elli	pses drawn	using Indiv	ridual MD(0 I	05)				
		or Graphics	0 05								
	Distribut	ion of MDs	Beta Distribution used in Graphics								
	INumber of (1			
	has all Calant	ted Variables	A						1		
Num	ider of Select		14	1							
Num			4	 							
Num				 							
	Num	ber of Data		aroup							
Num 											
	Num	ber of Data		aroup							
	Num 2 50	ber of Data	Rows per (
 	Num 2 50	ber of Data 3 50 dean Vecto	Rowsper (
1 50 sp-le~th-1	Num 2 50 k sp-width-1	ber of Data	Rowspert								
 	Num 2 50	ber of Data 3 50 dean Vecto	Rowsper (
1 50 sp-le~th-1	Num 2 50 sp-width-1 3 428	ber of Data 3 50 Mean Vecto pt-le~th-1 1.462	Rows per 1	1 1							
1 50 sp-le~th-1 5 006	Num 2 50 k sp-width-1 3 428 Cove	ber of D ata 3 50 Mean Vecto pt-le~th-1 1.462 ariance S M	Rows per l	1 1							
1 50 sp-le~th-1 5 006 sp-le~th-1	Num 2 50 sp-width-1 3 428 Cova sp-width-1	ber of D ata 3 50 Mean Vecto pt-le~th-1 1.462 ariance S M pt-le~th-1	Rowspert rforGroup pt-width-1 0.246 atrixforGro	1 1							
1 50 sp-le~th-1 5 006 sp-le~th-1 0.124	Num 2 50 sp-width-1 3 428 Cova sp-width-1 0.0992	ber of D ata 3 50 4ean Vecto pt-le~th-1 1.462 ariance S M pt-le~th-1 0.0164	Rowsper for Group pt-width-1 0.246 atrix for Gin pt-width-1 0.0103	1 1							
1 50 sp-le~th-1 5 006 sp-le~th-1	Num 2 50 sp-width-1 3 428 Cova sp-width-1 0.0992 0.144	ber of D ata 3 50 Mean Vecto pt-le~th-1 1.462 ariance S M pt-le~th-1	Rowspert rforGroup pt-width-1 0.246 atrixforGro	1 1							
1 50 sp-le~th-1 5 006 sp-le~th-1 0.124	Num 2 50 sp-width-1 3 428 Cova sp-width-1 0.0992	ber of D ata 3 50 4ean Vecto pt-le~th-1 1.462 ariance S M pt-le~th-1 0.0164	Rowsper for Group pt-width-1 0.246 atrix for Gin pt-width-1 0.0103	1 1							

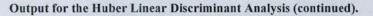
(Complete results are not shown.)

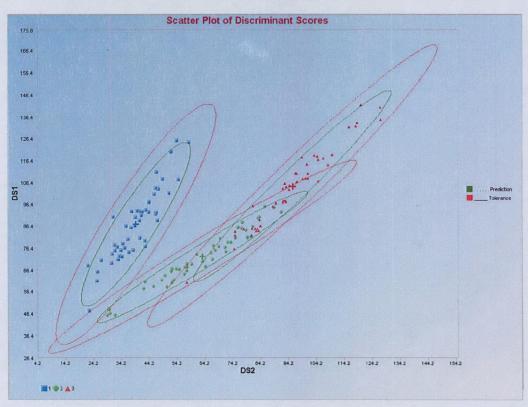
.

,

Ē Ē	lassificat	ion Summan	y į			!
	Predicte	d Membership	i	• • • • •		
Actual	1	2	3			ļ
1	50	0	0			
2	Ō	48	2			
3	0	1	49			
# Correct	50	48	49			
Prop Correct	100%	96%	98%			
		Observations	1 1			
		ctly Classified	1 1			
	Incorre	ctly Classified	3			
	sification	-				
Obs No _t	Actual	Predicted				
71	2	3				
84	2	3				
134	3	2				
		Appare	nt Error Rate	0 02]	
Linear Disc	riminant F	unction Cor				
			2	3		
Cons		-89.15	-74.4	-106.8		
sp-lei	_	23 15	157	12.59		
sp∙w		25 92	7.246	3 16		
nt-ler	ngth	-16.28 -19.74	6.078 5 586	13.92		
pt-w						

Output for the Huber Linear Discriminant Analysis (continued).


Output for the Huber Linear Discriminant Analysis (continued).


Leave One Out (LOO) Cross Validation Results LOO Classification Summary Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
LOO Classification Summary Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
Predicted Membership Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
Actual 1 2 3 1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
1 50 0 0 2 0 48 2 3 0 1 49 # Correct 50 48 49				
2 0 48 2 3 0 1 49 # Correct 50 48 49			i	
3 0 1 49 # Correct 50 48 49		1		
# Correct 50 48 49				
	1			
Prop Correct 100% 96% 98%				
				L
Total Observations 150				
Correctly Classified 147				
Incorrectly Classified 3				
LOO Misclassification Summary				L
Obs No. Actual Predicted				
71 2 3				
84 2 3				
134 3 2				
LOO Error Rate 0.02				
3 Fold Cross Validation Results				
Average Error Rate: 0.2667				
	- 1·			
Bias Adjusted Bootstrap (for whole dataset) Cross V				
Validation Failed becuase of not enough Non-Outliers in G	irouyp9time	\$.		
Average Correct Training Set 147.2857				
Average Incorrect Training Set: 2,7143				
Average Correct Test Set: 146.8132				
Average Incorrect Test Set: 3.1868				
Error Rate Bias: -0.0032 Bias Adjusted Error Rate: 0.0232				T

Cross Validation Results

.

•

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.2.3 PROP Linear DA

1. Click on Multivariate EDA ▶ Discriminant Analysis (DA) ▶ Linear DA ▶ PROP.

🖳 File Edit Configure Data	a Graphs	Stats/GOF	Outliers/E	stimates	Regression	Multivarial	te EDA	GeoStats	Progra	ams Window	н	elp	
Navigation Panel		0	1	2	3	PCA			·	7		8	9
Name		Site ID	Sample ID	SL Ratio	Time	Discrim	inant A	nalysis (DA)		Fisher DA	+	In	
D:\Narain\Scout Fo	1	1	1		2	1	1	10.59	100 Barrier	Linear DA Quadratic DA	-	Class Hube	1000
b. a cara a construction of the construction o	2	1	1		2	2	1	11.32	Ture		-	PROP	Carried House
	3	1	1		2	3	1	10.45	13.7	4 12.45		MVT	- Micente
	-	1	1		2	A	1	919	9.6	1 10.74	1	74.47	-

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "Options" button for the options window.

💷 Options, Linear, PROP Discrimina	nți Analysis,	X
Select Initial Estimates Classical Sequential Classical C Robust (Median, MAD)	Number of Iterations 10 [Max = 50]	Influence Function Alpha
OKG (Maronna Zamar) KG (Not Orthogonalized) MCD MDs Distribution	Cross Validation Leave One Out (LOO) Split M Fold Simple/Naive Bootstrap by Data Set	
Beta C Chisquare Print to Output No Scores Print Scores OK Cancel	Complexitiants Bootstrap by Group Simple/Naive Bootstrap by Data Set Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bootstrap by Data Set Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
 - Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

💷 OptionsDiscriminantGraphics,	\mathbf{X}
Select Graphics	Scatter Plot Title Scatter Plot of Discriminarit Scores
I Scree Plot	Scree Plot Title Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour No Contour ' Individual [d0cut]
MDs Distribution for Graphics	Simultaneous [d2max] Simultaneous/Individual
	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage for the discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**ASHALL7grp.xls**" was used for the PROP linear DA. It has 214 observations and six variables in seven groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the PROP influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that six observations were misclassified. The cross validation results suggest the same.

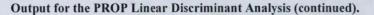
Output for the PROP Linear Discriminant Analysis. Data Set: Ashall (6 variables 7 groups).

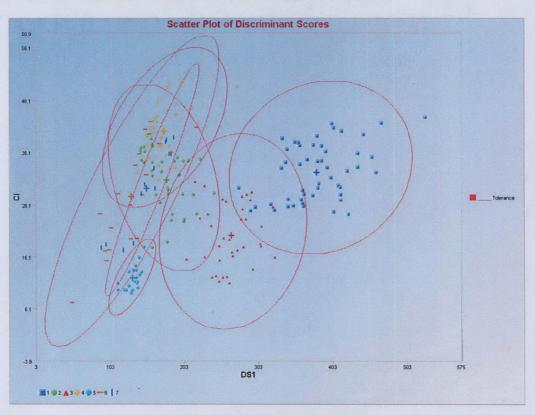
			Linear Dis	criminantA	nalysis with	PROP					
	User Selecte	•									
Da	e/Time of Co	omputation	1/18/2008	3:07.47 PM							
		From File	D \Narain\9	cout_For_W	Indows\Sco	utSource\\	WorkDatInE	xcel\ASHA	LL7grp		
	Fu	Precision	OFF								
lr	fluence Fund	ction Alpha	0.05		····						
	Squ	uared MDs	Beta Distribu								
		Estimates	Robust Median Vector and OKG (Maronna-Zamar) Matrix								
		f Iterations	10								
		ge Options	No Discriminant Scores will be stored to Worksheet								
		obabilities	Equal Priors will be used								
	-	cs Options	Scatter Plot								
		ur Options	<u> </u>	oses drawn i	using Individi	ual MD(0 C	15)				
	-	r Graphics	0.05								
	Distributi	on of MDs	Beta Distribution used in Graphics								
Num	ber of Select	ed Variables	6								
Num	ber of Select	· <u>····</u> ·······························	<u> </u>	per Group							
Num	ber of Select	· <u>····</u> ·······························	6 Data Rows	per Group 5	6	7					
1		Numberof	DataRows			7					
	2 35	Number of 3 37	Data Rows 4 35	5 23	6						
1 51	2 35	Number of 3 37 Jean Vecto	Data Rows 4 35 r for Group	5 23 1	6 20						
1 51 Ca-1	2 35 Na-1	Number of 3 37 Iean Vecto K-1	Data Rows 4 35 r for Group Cl-1	5 23 1 S04·1	6 20 ALK-1						
1 51 Ca-1	2 35	Number of 3 37 Jean Vecto	Data Rows 4 35 r for Group	5 23 1	6 20						
1 51	2 35 Na-1 16 81	Number of 3 37 Iean Vecto K-1 17.22	Data Rows 4 35 r for Group Cl-1 32 35	5 23 1 S04-1 34.86	6 20 ALK-1						
1 51 Ca-1 10 02	2 35 Na-1 16 81 Cova	Number of 3 37 Iean Vecto K-1 17.22 sriance S M	Data Rows 4 35 r for Group Cl-1 32 35 atrix for Gro	5 23 1 504.1 34.86 504.1	6 20 ALK-1 0 508						
1 51 Ca-1 10 02 Ca-1	2 35 Na-1 16 81	Number of 3 37 Iean Vecto K-1 17.22	Data Rows 4 35 r for Group Cl-1 32 35	5 23 1 S04-1 34.86	6 20 ALK-1						
1 51 Ca-1 10 02 Ca-1 7.599	2 35 Na-1 16 81 Cova Na-1	Number of 3 37 Iean Vecto K-1 17.22 sriance S M K-1	Data Rowa 4 35 r for Group Cl-1 32 35 atrix for Gro	5 23 1 SO4-1 34.86 Dup 1 SO4-1	6 20 ALK-1 0 508 ALK-1						
1 51 Ca-1 10 02 Ca-1 7.599 5.274	2 35 Na-1 16 81 Cova Na-1 -5 274	Number of 3 37 Iean Vecto K-1 17.22 sriance S M K-1 -5 41	Data Rowa 4 35 r for Group Cl-1 32 35 atrix for Gro Cl-1 -11.89	5 23 1 504-1 34.86 504-1 504-1 1304	6 20 ALK-1 0 508 ALK-1 0.33						
1 51 Ca-1 10 02 Ca-1 7.599 -5.274 5.41	2 35 Na-1 16 81 Cova Na-1 -5 274 8.901	Number of 3 37 Iean Vecto K-1 17.22 sriance S M K-1 -5 41 8 475	Data Rows 4 35 r for Group CI-1 32 35 atrix for Gro CI-1 -11.89 14 42	5 23 1 504-1 34.86 504-1 504-1 1304 -1028	6 20 ALK-1 0 508 ALK-1 0.33 -0.309						
1 51 Ca-1 10 02 Ca-1	2 35 Na-1 16 81 Cova Na-1 -5 274 8.901 8 475	Number of 3 37 lean Vecto K-1 17.22 ariance S M K-1 -5 41 8 475 8 575	Data Rows 4 35 r for Group CI-1 32 35 atrix for Gro CI-1 -11.89 14 42 13 97	5 23 1 SO4.1 34.86 Dup 1 SO4.1 13 04 -10 28 -10.47	6 20 ALK-1 0 508 ALK-1 0.33 -0.309 -0.306						

(Complete results are not shown.)

.

		(Classificatio	on Summary	,				
	Predicte	d Membership)						
Actual	1	2	3	4	5	6	7		
1	51	0	0	0	0	0	0		
2	0	32	0	0	3	0	0		
3	0	0	37	0	0	0	0		
4	0	0	0	35	0	0	0		
5	0	0	0	0	23	0	0		
6	0	0	0	0	0	18	2		
7	0	0	0	0	0	1	12		
# Correct	51	32	37	35	23	18	12		
Prop Correct	100%	91.43%	100%	100%	100%	90%	92.31%		
		Observations ctly Classified		 		<u> </u>			
									·
		ctly Classified	ь 						
Misclass	ification	Summarv							
Obs No	Actual	Predicted					 	 	
42	2	5						. 	
43	2	5							
44	2	5						 	
154	6	7							
155	6	7							
160	7	6							
^I		Apparei	nt Error Rate	0.028					
	·	Lingen	criminant Fi			6-6-1-1			
	·		2	3	and 4	5	6	7	
Const	ant	-385 2	-181.4	-270 1	179	-137	-134.9	-155.8	
		-0.455	-1 697	-1 708	2.892	0 46	2.198	3 595	
Na		-1 252	4.025	5 277	0.42	0.413	0.573	0 238	
K		20.89	-1 94	2 423	1.696	6 038	-1 306	1 907	
CI		2005	5.015	4 279	4.729	3.067	4 518	4 019	
UI UI		10 39	5.206	7 884	3.468	4.722	1 626	2 135	
SO		1 10.00	0.200	1 004	0.400	7.(22	1 1020	_ <u> </u>	


Output for the PROP Linear Discriminant Analysis (continued).


Output for the PROP Linear Discriminant Analysis (continued).

.

Cross Validation Res	ults
Split (50/50) Cross Validation Results	+
Error Rate for Training Set: 0.0827	+
Error Rate for Test Set: 0.0523	+
5 Fold Cross Validation Results	
	+
Average Error Rate: 0.0476	
Standard Bootstrap (for whole dataset) for whole dataset	-
Error Rate from Bootstrap Training Set 0.0234	
Error Rate from Bootstrap Test Set: 0.0154	
Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results	
Average Correct Training Set 209.6000	
Average Incorrect Training Set. 4.4000	
Average Correct Test Set: 207.8000	
Average Incorrect Test Set: 6.2000	\uparrow
Error Rate Bias: -0.0084	+
Bias Adjusted Error Rate: 0.0364	- -

1

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.2.4 MVT Linear DA

1. Click on Multivariate EDA ▶ Discriminant Analysis (DA) ▶ Linear DA ▶ MVT.

📲 File Edit Configure Data	Graph:	s Stats/GOF	Outliers/Es	timates R	egression	Multivariate EDA	GeoStats	Prog	grams	Window	He	elp	
Navigation Panel		0	1	2	3	PCA				7		8	9
Name		GrpName	Group	log10 (Activitu)	log1U (Antigeni	Discriminant Ar	halysis (DA)	•		er DA	+		
D:\Narain\Scout Fo	1	NonCarriers	1	-0.0056					1000	ar DA	'	Classica	1
D. Harannooda_1 o	2	NonCarriers	1	-0.1698	-0.1585	5		-L,	Qua	dratic DA	-	Huber PROP	
	3	NonCarriers	1	-0.3469	-0.1879	9			191			MVT	-
		MauCanian	1	10004	0.000	4	The second second				L	The state of the second second	and a second second

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "Options" button for the options window.

Select Initial Estimates	Number of Iterations Cutoff for Outliers	-Select Tumming
Classical	10 0.05	01
Sequential Classical	[Max = 50] Crisical Alpha	Range (0 - 0 95)
C Robust (Median, MAD)	·	
OKG (Maronna Zamar)	Cross Validation	
	🗖 Leave One Out (LOO)	
KG (Not Orthogonalized)	F Spint	
С МСО	F M Fold	
	「 Sumple/Narve Bootstrap by Data Set	
	F Simple/Narve Bootstrap by Group	
Print to Output	☐ ☐ Standard Bootstrap by Data Set	
No Scores Print Scores	☐ Standard Bootstrap by Group	
	Bias Adjusted Bootstrap by Data Set	
OK Cancel	F Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

📰 OptionsDiscriminantGraphics,	X
Select Graphics	Scatter Plot Title
I Scatter Plot	Scatter Plot of Discriminant Scores
, F Scree Plot	Scree Plot Title: Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour
Critical Alpha 0 05	C: No Contour
l	Individual (d0cut)
MD's Distribution for Graphics	
🕫 Beta 🗅 Chi	C Simultaneous/Individual
	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage of the discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**Salmon.xls**" was used for the MVT linear DA. It has one 102 variables in two groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the trimming percentage and critical alpha and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that 13 observations were misclassified.

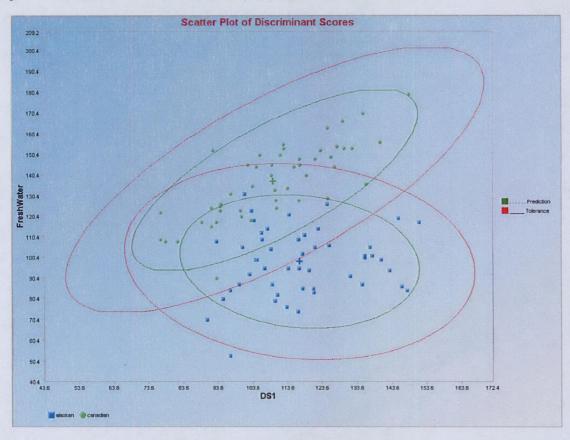
Output for the MVT Linear Discriminant Analysis. Data Set: Salmon (2 variables 2 groups).

User Selected Options Date/Time of Computation From File D Waran/Scout_For_Window/ScoutSource/WorkDathExceRBook/HEMOPHILIA Full Precession OFF Timming Percentage Timbuter of Iterations 102 Storage Options Storage Options Storage Options Scotter Probabilities Group Probabilities Equal Priors will be used Group Probabilities Cantour Options Scotter Protis selected Cantour Options Scotter Protis selected Contour Options Scotter Protis selected Scotter Protis Scotter Protis selected Scotter Protis selected Scotter Protis selected Scotter Protis Scotter Protis selected Scotter Protis selected				Linear Dis	criminant A	nalysis Usi	ng MVT Met	hod				
Fion File D Waran\Scout_For_Windows\ScoutSource\WorkDathExceRBook\HEMOPHILIA Full Precession 0FF Initial Estimates Robust Median Vector and OKG (Maronna-Zamar) Matrix Number of Iterations 10 Storage Options No Discriminant Scores will be stored to Worksheet Group Probabilities Equal Phors will be used Graphics Options Scores will be used Contour Options Scores drawn using Individual MD(0.05) Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Data Rows per Group 1 carriers nonca ⁻ rers 46 29 Mean Vector for Group carriers 1 0.0303 0.00708 Covariance S Matrix for Group carriers 1 0.0243 00148 0.0243 00148 0.0243 00148		User Selecte	ed Options		· · · · · · · · · · · · · · · · · · ·							
Full Precision OFF Immong Percentage 102; Initial Estimates Flobust Median Vector and DKG (Maronna-Zamar) Matrix Number of Iterations 10 Storage Dytions No Discrimmant Scores will be stored to Worksheet Group Probabilities Equal Phors will be used Graphics Options Scotter Pilots selected Contour Options Contour Elipses drawn using Individual MD(0.05) Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Doservations 75 Number of Data Rows per Group 1 carriers nonce Tiers 46 29 Mean Vector for Group carriers 1 0303 0.00708 Covariance S Matrix for Group carriers 1 0303 0.0148 0.0243 0.0148 0.0243 0.0148 0.0243 10/tiers Iog10"riers 1	Da	te/Time of Co	mputation	1/18/2008	3 16 35 PM							
Imming Percentage 10% Initial Estimates Robust Median Vector and OKG (Maronna-Zamar) Matrix Number of Iterations 10 Storage Options No Discriminant Scores will be stored to Worksheet Group Probabilities Equal Prosis will be used Graphics Options Scatter Plots selected Contour Options Contour Elipses drawn using Individual MD(0.05) Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics			From File	D \Narain\9	cout_For_W	/indows\Sco	utSource\W	orkDatInExc	el\Book\HEN	OPHILIA		
Initial Extrates Robust Median Vector and OKG (Maronna-Zamar) Matrix Number of Iterations 10 Storage Options No Discrimment Scores will be stored to Worksheet Group Probabilities Equal Prois will be used Contour Options Scorer Plots selected Contour Options Scorer Plots selected Contour Options Scorer Plots selected Contour Options Gordyness Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Number of Data Rows per Group 1 Carriers Inonca ^m ers 46 23 Vector for Group carriers 1 0303 000708 Covariance S Matrix for Group carriers 100148 00233 00148 00235		Ful	Precision	OFF								
Number of Iterations 10 Storage Options No Discriminant Scores will be stored to Worksheet Group Probabilities Equal Proris will be used Group Probabilities Equal Proris will be used Contour Options Scatter Plots selected Contour Options O 05 Alpha for Graphics 0 05 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Vumber of Data Rows per Group 1 Carriers nonca ^m ers 46 23 Mean Vector for Group carriers Iog10 ^m iers 1 00243 00148 00243 00148 00148 0025 Final Robust Mean Vector for Group carriers Iog10 ^m iers Iog10 ^m iers		Trimming P	ercentage	10%								
Storage Options No Discriminant Scores will be stored to Worksheet Group Probabities Equal Phors will be used Graphics Options Scatter Plots selected Contour Options Contour Elipses drawn using Individual MD(0.05) Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Vector for Group carriers 0 46 23 Mean Vector for Group carriers 0 0100*rers Iog10*rers 01010*rers 0 0203 0.0146 00243 0.0146 00148 0.0236 Final Robust Mean Vector for Group carriers Iog10*rers 0 00148 0.0243		Initial	Estimates	Robust Med	fian Vector	and OKG (M	aronna-Zama	ar) Matrix				
Group Probabilities Equal Proof will be used Graphics Options Scatter Plots selected Contour Options Contour Elipses drawn using Individual MD(005) Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Vector for Group carriers 2 46 29 Vector for Group carriers 2 Voltage 2 2 <t< td=""><td></td><td>Number o</td><td>f Iterations</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Number o	f Iterations	10								
Graphics Options Cortour Options Cortour Options OD5 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations [75 Number of Selected Variables 2 Number of Data Rows per Group carriers nonca iers 46 29 Mean Vector for Group carriers 10g10 iers log10 iers 0 303 -0 00708 Covariance S Matrix for Group carriers 10g10 iers log10 iers 10g10 iers log10 iers log10 iers 10g10 iers log10 iers log10 iers log10 iers 10g10 iers log10 iers lo		Store	je Options	No Discrimi	nant Scores	will be stored	to Workshe	et		·		
Contour Options Contour Ellipses drawn using Individual MD(005) Alpha for Graphics 005 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Number of Data Rows per Group		Group Pr	obabilities	Equal Priors	will be used							
Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Number of Data Rows per Group 1 carriers nonca ^{-ri} ers 46 29 Mean Vector for Group carriers 1 10g10 ^{-riers} 1 0303 -000708 Covariance S Matrix for Group carriers 1 10g10 ^{-riers} 1 0148 00236 Final Robust Mean Vector for Group carriers 1 10g10 ^{-riers} 1 0148 00236		Graphi	cs Options	Scatter Plot	s selected					······		
Alpha for Graphics 0.05 Distribution of MDs Beta Distribution used in Graphics Total Number of Observations 75 Number of Selected Variables 2 Number of Data Rows per Group 1 carriers nonca ^{-ri} ers 46 29 Mean Vector for Group carriers 1 10g10 ^{-riers} 1 0303 -000708 Covariance S Matrix for Group carriers 1 10g10 ^{-riers} 1 0148 00236 Final Robust Mean Vector for Group carriers 1 10g10 ^{-riers} 1 0148 00236		Conto	ur Options	Contour Ellip	oses drawn u	using Individ	ual MD(0.05)					
Total Number of Observations 75 Number of Selected Variables 2 Number of Data Rows per Group 2 catriers nonca ^m ers 46 29 Mean Vector for Group carriers 2 10g10 ^m ers 10g10 ^m ers 0 303 0 00708 Covariance S Matrix for Group carriers 2 10g10 ^m ers 2 0 0243 0.0148 0 0236 2 Final Robust Mean Vector for Group carriers 2	<u></u>	Alpha fo	r Graphics	!	· · · ···							
Number of Selected Variables 2 Number of Data Rows per Group	· · · · · · · · · · · · · · · · · · ·	Distributi	on of MDs	Beta Distribi	tion used in	Graphics						
Number of Selected Variables 2 Number of Data Rows per Group	·· ·· ·			l								
Number of Data Rows per Group carriers nonca [~] iers 46 29 Mean Vector for Group carriers log10 [~] iers 00708 Covariance S Matrix for Group carriers 0 00243 0.0148 0 00243 0.0148 0 00245	Tota	Number of C	bservations	75				1	······	1		
Carriers nonca [~] iers 46 29 Mean Vector for Group carriers log10 [~] iers log10 [~] iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10 [~] iers log10 [~] iers 0 00708	Num	ber of Select	ed Variables	2					I			
Carriers nonca [~] iers 46 29 Mean Vector for Group carriers log10 [~] iers log10 [~] iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10 [~] iers log10 [~] iers 0 00708												
Carriers nonca [~] iers 46 29 Mean Vector for Group carriers log10 [~] iers log10 [~] iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10 [~] iers log10 [~] iers 0 00708						i						
46 29 Mean Vector for Group carriers	·····	Numl	ber of Data	Rows per G	iroup	<u> </u>						
Mean Vector for Group carriers log10~rers log10~riers -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708 -0 303 -0 00708	carriers	nonca~iers				.						
log10~iers log10~iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10~iers	46	29							·			
log10~iers log10~iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10~iers		L							: !			
log10~iers log10~iers -0 303 -0 00708 Covariance S Matrix for Group carriers log10~iers		Mea	n Vector fa	r Group car	riers	!						
-0 303 -0 00708	log10~iers			·			 					
log10~iers log10~iers 0 0243 0.0148 0 0148 0 0236 Final Robust Mean Vector for Group carriers log10~iers log10~iers	-0 303											
log10~iers log10~iers 0 0243 0.0148 0 0148 0 0236 Final Robust Mean Vector for Group carriers log10~iers log10~iers									 			
0 0243 0.0148 0 0148 0 0236 Final Robust Mean Vector for Group carriers log10~iers log10~iers		Covaria	nce S Matr	ix for Group	carriers				 			
0 0148 0 0236 Final Robust Mean Vector for Group carriers log10~iers	log10~iers	log10~iers				i						
Final Robust Mean Vector for Group carriers log10~iers	0 0243	0.0148							¦	¦		
log10~iers log10~iers	0 0148	0 0236			···							
log10~iers log10~iers	·	L										
log10~iers log10~iers	····	Final Robu	st Mean Ve	ector for Gro	oup carriers	!			l			
	log10~iers					l						
	-03								 			
		<u>'</u>						·			·······	

(Complete results are not shown.)

Class	ification Su	mmary				[
	Predicted	Membership					
Actual	carriers	noncarriers					
carriers	37	9					
noncarriers	4	25					
# Correct	37	- 25					
Prop Correct	80.43%	86 21%					
)bservations	i				Ì
		tly Classified	1				
		tly Classified	13				
	sification S						
Obs No.	Actual	Predicted					
3	noncarriers	carriers					
5	noncarriers	carriers					
7	noncarriers	carriers					-
17	noncarriers	carriers					
30	carriers	noncarriers					
35	carriers	noncarriers					
58	carriers	noncarriers					
60	carriers	noncamers					
62	carriers	noncarriers					
63	carriers	noncarriers					
64	carriers	noncarriers			·		
67	carriers	noncarriers					
69	carriers	noncarriers					
		Apparei	nt Error Rate	0.173		• - • -	-
						-	-
r Discrimin	ant Functio	n Constan	is and Coeff				
~		carriers	noncarriers	•		-	İ
Con	stant	-5 435	-1.285				
log10(A	Activity)	-31.72	-9.478	• • • • • • • •			
log10(A	Antigen)	18 68	1.402				
• • • • · · · · · ·	' '			· · ·	•		

Output for the MVT Linear Discriminant Analysis (continued).


.

Output for the MVT Linear Discriminant Analysis (continued).

Cross Validati	on Results
Simple/Naive Bootstrap (for whole dataset) Cross Validation Re:	auts
Average Error Rate from Bootstrap: 0.0760	
Standard Bootstrap (for whole dataset) for whole dataset	
Error Rate from Bootstrap Training Set 0.0730	
Error Rate from Bootstrap Test Set: 0.0330	
Bias Adjusted Bootstrap (for whole dataset) Cross Validation Re	sults
Average Correct Training Set 92,9000	
Average Incorrect Training Set 7.1000	
Average Correct Test Set: 92.9000	
Average Incorrect Test Set: 7.1000	
Fron Rate Rias: N NM	

.

Output for the MVT Linear Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.3 Quadratic Discriminant Analysis

10.2.3.1 Classical Quadratic DA

1. Click on Multivariate EDA ► Discriminant Analysis (DA) ► Quadratic DA ► Classical.

File Edit Configure Data	Graphs	Stats/GOF	Outliers/Esti	imates P	Regression	Multivariate EDA	GeoStats	Prog	rams Wind	low H	lelp	
Navigation Panel		0	1	2	3	PCA			7		8	9
Name		Group	x1	x2		Discriminant Ar	nalysis (DA)	•	Fisher DA	:		
D:\Narain\Scout Fo	1	1	150	1	5				Linear DA Quadratic		Classical	
	2	1	147	1	3			-	Quadi dale		Huber	
	3	1	144	1	4						PROP	
	4	1	144	1	6						MVT	

543

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "**Options**" button for the options window.

Options; Quadratic, Classical Discriminant Analysis,	X
Cross Validation	
└ Leave One Out (LOO)	
r split	
Г M Fold	
☐ Simple/Naive Bootstrap by Data Set	
F Simple/Naive Bootstrap by Group	
🗂 Standard Bootstrap by Data Set	
☐ Standard Bootstrap by Group	
Г Bias Adjusted Bootstrap by Data Set	
F Bias Adjusted Bootstrap by Group	
	I
No Scores OK	Cancel

- Specify the preferred cross validation methods and their respective parameters.
- Specify the "Print to Output." The default is "No Scores."
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

II OptionsDiscriminantGraphics,	\mathbf{X}
Select Graphics	Scatter Plot Title
🗭 Scatter Plot	Scatter Plot of Discriminant Scores
Cutoff for Graphics	Plot Contour
Critical Alpha 0.05	🕥 No Contour
	Individual (d0cut)
MDs Distribution for Graphics	🥂 Simultaneous [d2max]
🕫 Beta 🔿 Chi	C Simultaneous/Individual
	OK Cancel

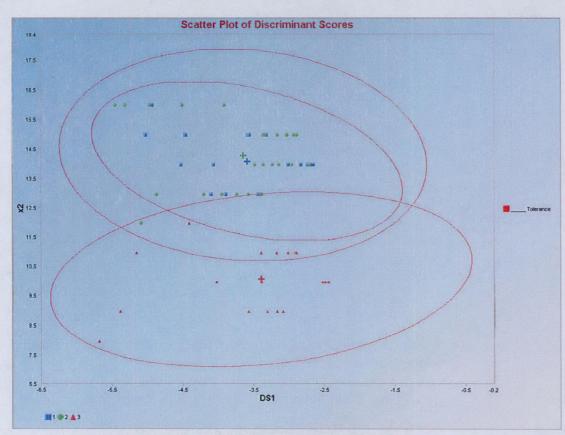
- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- • Click on "**OK**" to continue or "**Cancel**" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on the number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**BEETLES.xls**" was used for the quadratic linear DA. It has 74 observations and two variables in three groups. The initial estimates of location and scale for each group were the classical mean and the covariance matrix. The classification rules were obtained using those estimates. The output shows that one observation was misclassified.

Output for the Classical Quadratic Discriminant Analysis. Data Set: Beetles (2 variables 3 groups).

			Classical	Quadratic	Discrimina	nt Analysis			
	User Select	ed Options				······································			
Da	te/Time of Co	omputation	1/18/2008	3:23:37 PM	1				
		From File	D.\Narain\S	Scout_For_	Windows\Sc	outSource\W	/orkDatInExc	el\BEETLES	
	Fu	11 Precision	OFF						
		ge Options	1			ed to Workshi	eet		
			Equal Priors		d				
	-	-	Scatter Plot						
		our Options	1	pses drawi	n using Indivi	dual MD(0.05	5)		-
		•	0 05				•		
	Distribut	ion of MDs	Beta Distrib	ution used	in Graphics				
Tota	Number of (Theervations	74	·····				1	1
	ber of Select		1						
			· · · · · · · · · · · · · · · · · · ·			_			
	· · · · ·		·····			.			
	Num	her of Data	Rows per 0						-
1	2		liten+pere						
21	31	22							
				[!		
		1	1	1	1		1		
	h	lean Vecto	r for Group	 _1					
x1-1	x2-1	lean Vecto	r for Group	 j 1 {			 		
		lean Vecto	or for Group	 1 			 		
	x2-1	lean Vecto	or for Group	 1 			 		
	x2-1 14.1		or for Group			· · · · · · · · · · · · · · · · · · ·			
	x2-1 14.1								
146 2	x2-1 14.1 Cova								
146 2 ×1-1 31.66	x2-1 14.1 Cov a x2-1								
x1-1 31.66	x2-1 14.1 Cova x2-1 -0 969								
146 2 ×1-1 31.66	x2-1 14.1 Cova x2-1 -0.969 0.79	ariance S M		oup 1					
146 2 x1-1	x2-1 14.1 Cova x2-1 -0.969 0.79	ariance S M	latrix for Gr	oup 1					
146 2 x1-1 31.66 -0 969 x1-2	x2-1 14.1 Cova x2-1 -0 969 0 79	ariance S M	latrix for Gr	oup 1					
146 2 x1-1 31.66 -0.969 x1-2	x2-1 14.1 Cova x2-1 -0 969 0 79 0 79 k x2-2	ariance S M	latrix for Gr	oup 1					
146 2 x1-1 31.66 -0.969 x1-2	x2-1 14.1 Cove x2-1 -0 969 0 79 0 79 x2-2 14.29	ariance S M dean Vecto	latrix for Gr	2					
146 2 x1-1 31.66 -0.969 x1-2	x2-1 14.1 Cove x2-1 -0 969 0 79 0 79 x2-2 14.29	ariance S M dean Vecto	atrix for Gr	2					
146 2 x1-1 31.66 -0 969 x1-2 124 6	x2·1 14.1 Cova x2·1 -0 969 0 79 0 79 x2·2 14.29 Cova	ariance S M dean Vecto	atrix for Gr	2					

(Complete results are not shown.)


	Classific	ation Summ	nany				i i
	Predicted	d Membership)				
Actual	1	2	3				
1	20	1	0				
· 2	0	31	0		[
3	0	0	22				
# Correct	,20	31	22				
Prop Correct	95 24%	100%	100%				
	 Total (Observations	74				
		tly Classified				····	
		ctly Classified					
	meoned						
Misclas	sification S	Summary					
Obs No.	Actual	Predicted					
17	1	2					
		ļ.	Apparent Error Rate	0.0135			
		ŀ	Apparent Error Rate	0.0135			
		4	Apparent Error Rate		ss Valida	ition Resul	
			Apparent Error Rate		ss Valida	ition Resul	
LeaveOr	e Out (LOI		Apparent Error Rate		ss Valida	ntion Resul	lts
LeaveOr	e Out (LOI				ss Valida	ntion Resul	
Leave Or	ne Out (LOI				ss Valida	ition Resul	
			lidation Results		ss Valida	stion Resul	
	_00 Class	D)CrossVa	lidation Results mmary		ss Valida	ition Resul	
	_00 Class	D) Cross Va ification Su	lidation Results mmary		ss Valida	stion Resul	
	.00 Class Predicter	D) Cross Va ification Su d Membership	lidation Results mmary		ss Valida	stion Resul	
Actual	- 00 Class i Predicted	D) Cross Va ification Su d Membership 2	lidation Results mmary 3		ss Valida	stion Resul	
Actual 1	DO Classi Predicter 1 20	D) Cross Va ification Su d Membership 2 1	lidation Results mmary 0 3 0		ss Valida	stion Resul	
Actual 1 2	- OO Class i Predicter 1 20 0	D) Cross Va ification Su d Membership 2 1 31	lidation Results mmary 0 3 0 0		ss Valida	ition Resul	
Actual 1 2 3	.00 Class i Predicter 1 20 0 0	D) Cross Va ification Su d Membership 2 1 31 0	lidation Results mmary 3 0 0 22		ss Valida	stion Resul	
Actual 1 2 3 # Correct	00 Classi Predicter 1 20 0 0 20 95.24%	D) Cross Va ification Su d Membership 2 1 31 0 31 100%	lidation Results mmary 0 3 0 0 0 22 22 22 100%		ss Valida	stion Resul	
Actual 1 2 3 # Correct	DO Classi Predicter 1 20 0 0 20 95.24% Total (D) Cross Val ification Sur d Membership 2 1 31 0 31 100%	lidation Results mmary 0 3 0 0 22 22 22 100%		ss Valida	stion Resul	
Actual 1 2 3 # Correct	DO Classi Predicter 1 20 0 0 20 95.24% Total 0 Correc	D) Cross Va ification Su d Membership 2 1 31 0 31 100%	lidation Results mmary 0 3 0 0 22 22 22 100% 74 73		ss Valida	stion Resul	

Output for the Classical Quadratic Discriminant Analysis (continued).

.

Output for the Classical Quadratic Discriminant Analysis (continued).

Obs No.	Actual	Predicted			1			
17	1	2		·	<u> </u>			
		4l	LOO Error Rate	0.0135	+			
			······		L			
	``	Split (50/5	i0) Cross Validati	on Results				
Error Rate	for Trainin	g Set. 0.0000	-					
Error Rate	for Test Se							
								
		3 Fold C	Cross Validation F	lesults		• • • • • • • • • • • • • • • • • • • •		
	···							
AverageE	rror Rate: 1	0.0267			. <u>.</u>			
							ł	
Si	mple/Naiv	e Bootstrap	for whole datase	t)CrossVa	alidation l	Results		
		e Bootstrap om Bootstra		t)CrossVa	alidation l	Results		
				t)CrossVa	alidation I	Results		
				t)CrossVa	alidation I	Results		
AverageE	rror Rate fi	om Bootstra					· · · · · · · · · · · · · · · · · · ·	
AverageE	rror Rate fr Standard B	om Bootstra	p: 0.0068 r whole dataset) (
Average E Error Rate	rror Rate fi Standard B from Boots	rom Bootstra Bootstrap (fo	p: 0.0068 r whole dataset) (g Set: 0.0041					
Average E Error Rate	rror Rate fi Standard B from Boots	om Bootstra Bootstrap (fo strap Training	p: 0.0068 r whole dataset) (g Set: 0.0041					
Average E Error Rate Error Rate	rror Rate fr Standard E from Boots from Boots	om Bootstra Bootstrap (fo strap Trainin strap Test Se	p: 0.0068 r whole dataset) (g S et: 0.0041 :t: 0.0081	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bia	standard E Standard E from Boots from Boots	om Bootstrap Bootstrap (fo strap Training strap Test Se d Bootstrap (p: 0.0068 r whole dataset) (g Set: 0.0041 t: 0.0081 for whole datase	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bi Bi	rror Rate fr Standard E from Boots from Boots as Adjuste orrect Trai	tom Bootstrap Rootstrap (fo strap Training strap Test Se d Bootstrap (ning Set 73)	p: 0.0068 r whole dataset) (g S et: 0.0041 t: 0.0081 for whole datase 8000	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bio Bio Average C Average Ir	rror Rate fr Standard E from Boots from Boots as Adjuster orrect Trai acorrect Tr	tom Bootstrap Bootstrap (fo strap Training strap Test Se d Bootstrap (ning Set 73.1 aining Set Q	p: 0.0068 r whole dataset) (g S et: 0.0041 t: 0.0081 for whole datase 8000 2000	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bi Average C Average Ir Average C	standard E from Boots from Boots as Adjuste orrect Trai orrect Tr	om Bootstrap (fo strap Training strap Test Se d Bootstrap (ning Set 0, aining Set 0, t Set: 72,700	p: 0.0068 r whole dataset) (g Set: 0.0041 t: 0.0081 for whole datase 8000 2000	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bi Average C Average Ir Average Ir Average Ir	standard E from Boots from Boots from Boots as Adjuste orrect Trai correct Tr orrect Tes correct Tes	tom Bootstrap Bootstrap (fo strap Training strap Test Se d Bootstrap (ning Set 73.1 aining Set 0. t Set: 72.700 est Set: 1.300	p: 0.0068 r whole dataset) (g Set: 0.0041 t: 0.0081 for whole datase 8000 2000	CrossValic	lation Re	suits		
Average E Error Rate Error Rate Bi Average C Average Ir Average C	standard E from Boots from Boots from Boots as Adjuste orrect Trai correct Tr orrect Tes correct Tes	tom Bootstrap Bootstrap (fo strap Training strap Test Se d Bootstrap (ning Set 73.1 aining Set 0. t Set: 72.700 est Set: 1.300	p: 0.0068 r whole dataset) (g Set: 0.0041 t: 0.0081 for whole datase 8000 2000	CrossValic	lation Re	suits		

Output for the Classical Quadratic Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.3.2 Huber Quadratic DA

1. Click on Multivariate EDA ► Discriminant Analysis (DA) ► Quadratic DA ► Huber.

📲 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Es	timates Re	egression	Multivariate EDA	GeoStats Pi	rograms Window	Help
Navigation Panel		0	1	2	3	PCA	•	7	8 9
Name		count	sp-length	sp-width	pt-length	Discriminant A	Analysis (DA) 🕨	Fisher DA	
D:\Narain\Scout Fo	1	1	5.1	3.5	1.4	0.2		Linear DA 🕨	Charden
	2	1	4.9	3	1.4	0.2		Quadratic DA 🕨	Classical Huber
	3	1	4.7	3.2	1.3	0.2			PROP
	4	1	4.6	3.1	1.5	0.2			MVT
	ALL PROPERTY AND	-	F	20		0.0			Concernance

2. A "Select Variables" screen (Section 3.5) appears.

- 📰 Options, Quadratic, Huber, Discriminant Analysis, Number of Iterations Select Initial Estimates Influence Function Alpha 10 0.05 C Sequential Classical [Max = 50] Range [0.0 - 1.0] C Robust (Median, MAD) Cross Validation OKG (Maronna Zamar) F Leave One Out (LOO) C KG (Not Orthogonalized) 🗖 Split ∩ MCD M Fold MDs Distribution F Smple/Naive Bootstrap by Data Set F Simple/Naive Bootstrap by Group Print to Output Standard Bootstrap by Data Set No Scores 🖵 Standard Bootstrap by Group Print Scores F Bias Adjusted Bootstrap by Data Set F Bias Adjusted Bootstrap by Group οκ Cancel
- Click on the "**Options**" button for the options window.

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

OptionsDiscriminantGraphics	
Select Graphics	Scatter Plot Title Scatter Plot of Discriminant Scores
I Scree Plot	Scree Plot Title. Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour No Contour Individual [d0cut]
MDs Distribution for Graphics	← Simultaneous (d2max) ← Simultaneous/Individual
	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "OK" to continue or "Cancel" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "**OK**" to continue or "**Cancel**" to cancel the DA computations.

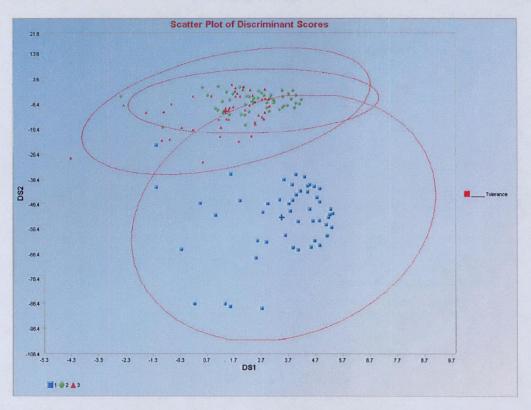
Output example: The data set "**IRIS.xls**" was used for the Huber quadratic DA. It has 150 observations and four variables in three groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the Huber influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that three observations were misclassified. The cross validation results suggest the same.

Output for the Huber Quadratic Discriminant Analysis. Data Set: IRIS (4 variables 3 groups).

			Quadratic	Discrimina	nt Analysis	with Huber		
	User Select	•		-				
			1/18/2008 3 30.55 PM					
	From File		D.\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\FULLIRIS					
		Il Precision	OFF					
r	fluence Fund	•	0 05					
	Squ	uared MDs	Beta Distrib			· · · · · · · · · · · · · · · · · · ·		
	Initia	Estimates	Robust Me	dian Vector	and OKG (M	aronna-Zama	ar) Matrix	
		f Iterations	10					
	Stora	ge Options			will be stored	to Workshe	et	
	Group Pi	obabilities		will be used				-
	Graphi	cs Options	Scatter Plot					
		ur Options	Contour Elli	pses drawn	using Individ	ual MD{0 05	snd Max N	4D(0.05)
	Alpha fo	r Graphics	0.05					
	Distribut	ion of MDs	Beta Distribi	ution used in	Graphics			
	Number of C		í				-	Ţ <u></u>
Num	ber of Select	ed Variables	4					
· · · · · · · · · · · ·								
	Num	ber of Data	Rows per 0	iroup				
1	2	3						
50	50	50						
	** - * * - * * * *		·					
	H	lean Vecto	r for Group	1				
sp-le~th-1	sp-width-1	pt-le~th-1	pt-width-1					1
5 006	3 428	1 462	0 246					
			atrix for Gro	oup1				
sp-le~th-1	sp-width-1	pt-le~th-1	pt-width-1					
0.124	0 0992	0.0164	0 0103					
0 0992	0 1 4 4	0.0117	0.0093					
0 0164	0 0117	0.0302	0.00607					1
0 0103	0 0093	0.00607	0.0111					
	· · · · · · · · · · · · · · · · · · ·							
IQR Fix!				·		t	· · ·-·	-j

.

(Complete results are not shown.)


.

	lassificati	ion Summaŋ	,				
T	Predicte	d Membership	, , , , , , , , , , , , , , , , , , , ,				
Actual	1	2	3				
1	50	0	0				
2	0	48	2				
3	0	1	49				
# Correct	50	48	49				
rop Correct	100%	96%	98%				
	Tabal	Observations	150				
		ubservations ctly Classified					
		ctly Classified					
		Cuy Liassined	J				_
Misolaa	sification	Summer					
Obs No.	Actual	Predicted				_	
71	2	3				_	
84	2	3					
134	3	2					_
134	J	-	nt Error Rate	0.02	<u> </u>		
			d-	,		k	
				0	coss Vali	dation Res	ults
			CrossValid		b		
				acioni Hesu	a. 5		
Error Pate		_	J 				
	or Test C	7- U U1G3					1
	or Test Se	et: 0.0493					
	or Test Se	et: 0.0493					
	or Test Se		es Validatio	nBeculto	· .		
	for Test Se		ss Validatio	n Results			
Error Rate I		3 Fold Cro	ss Validatio	n Results			
Error Rate I		3 Fold Cro	ss Validatio	n Results			
Error Rate I		3 Fold Cro	oss Validatio	n Results			
Error Rate I Average Er	ror Rate: (3 Fold Cra D. 2667				n Best #s	
Error Rate I Average Er Bias A	ror Rate: (djusted B	3 Fold Cro D.2667 ootstrap (fo	r whole data			n Results	
Error Rate I Average Er Bias A Average Co	ror Rate: (djusted B prrect Trai	3 Fold Cro D.2667 ootstrap (for ning Set 13	r whole data 3.6000			n Results	
Error Rate I Average Er Bias A Average Co Average In	ror Rate: (djusted B prrect Trai correct Tr	3 Fold Cro D.2667 ootstrap (for ning Set 13 aining Set 1	r whole data 3.6000 .4000			n Results	
Average Co Average In Average Co	ror Rate: (djusted B prrect Trai correct Tr prrect Tes	3 Fold Cro D.2667 Dootstrap (for ning Set 13 aining Set 1 t Set: 137.60	r whole data 3.6000 .4000			n Results	
Error Rate I Average Er Bias A Average Co Average In Average Co	ror Rate: (djusted B prrect Trai correct Tr prrect Tes correct Tes	3 Fold Cro D.2667 Dootstrap (for ning Set 13 aining Set 1 t Set: 137.60 est Set: 12.4	r whole data 3.6000 .4000			n Results	

Output for the Huber Quadratic Discriminant Analysis (continued).

۰,

Output for the Huber Quadratic Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.3.3 PROP Quadratic DA

1. Click on Multivariate EDA ► Discriminant Analysis (DA) ► Quadratic DA ► PROP.

📲 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Es	stimates Re	egression	Multivariate E	DA GeoStats	Programs	Window	Help	
Navigation Panel		0	1	2	3	PCA		•	7	8	9
Name		Site ID	Sample ID	SL Ratio	Time	Discriminar	it Analysis (DA)		ner DA	CI	SO4
D:\Narain\Scout Fo	1	1	1	2		1 1	10.59	The second second second	ar DA adratic DA	Classical	
D. Haran Docal_1	2	1	1	2		2 1	11.32	- Que		Huber	9.
	3	1	1	2		3 1	10.45	13.74	12.45	PROP	7.
	4	1	1	2		4 1	8.49	8.61	10.74	MVT	3.

2. A "Select Variables" screen (Section 3.5) appears.

• Click on the "Options" button for the options window.

elect Initial Estimates	r Number of Iterations	I Influence Function Alpha
Classical	10	0 05
Sequential Classical	[Max = 50]	Range (0.0 - 1.0)
🗘 Robust (Median, MAD)		
🖲 OKG (Maronna Zamar)	Cross Valdation	
へ KG (Not Orthogonalized)	F Leave One Out (LOO)	
<u> </u>	Г M Fold	
Ds Distribution	Simple/Narve Bootstrap by Data Set	
Beta C Chisquare C	Simple/Naive Bootstrap by Group	
nnt to Output	Standard Bootstrap by Data Set	
No Scores	Standard Bootstrap by Group	
Print Scores	F Bias Adjusted Bootstrap by Data Set	
OK Cancel	Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

🔜 OptionsDiscriminantGraphics	X
Select Graphics	Scatter Plot Title:
🔽 Scatter Plot	Scatter Plot of Discriminant Scores
I Scree Plot	Scree Plot Title.
	Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour
Critical Alpha 0 05	No Contour
	Individual (d0cut)
MDs Distribution for Graphics	← Simultaneous [d2max]
🕶 Beta 🔿 Chi	C Simultaneous/Individual
	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "**OK**" to continue or "**Cancel**" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group; or "User Supplied," where a column of priors can be obtained from the "Select Group Priors Column." The default is "Equal" priors.
- Specify the storage of discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**ASHALL7grp.xls**" was used for the PROP quadratic DA. It has 214 observations and six variables in seven groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the PROP influence function and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that seven observations were misclassified. The cross validation results suggest the same.

Output for the PROP Quadratic Discriminant Analysis.

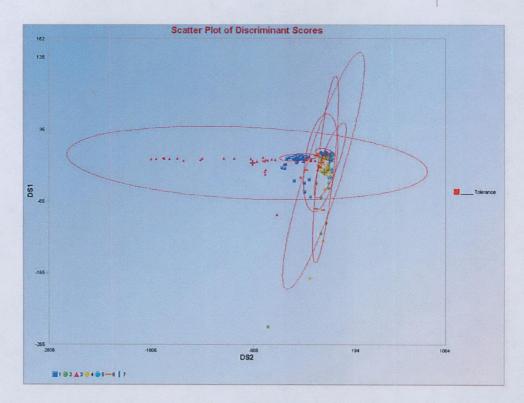
Data Set: Ashall (6 variables 7 groups).

			Quadratic	nt Analysis (with PROP					
	User Selecte	d Options								
Dat	e/Time of Co	mputation	1/18/2008	3.39 25 PM						
		From File	D.\Narain\S	cout_For_W	indows\Scol	tSource\WorkDatInExcel\ASHALL7grp				
		Precision	OFF							
In	fluence Func	tion Alpha	0 05							
		ared MDs	Beta Distribu							
		Estimates	Robust Med	fian Vector a	nd OKG (M	aronna-Zamar) Matrix				
	Number of	Iterations	10							
	Storag	e Options	No Discrimin	nant Scores v	will be stored	to Worksh	eet			
	Group Pr	obabilities	Equal Priors	will be used						
	Graphi	s Options	Scatter Plot:	s selected						
	Conto	ur Options	Contour Ellip	oses drawn u	ising Individu	ual MD(0.05	5)			
	Alpha fo	r Graphics	0 05							
	Distributi	on of MDs	Beta Distribu	ution used in	Graphics		-			
Tota	Number of C	Ibservations	214							
Num	ber of Select	ed Variables	6							
				· · · · · ·					-	
						<u> </u>		· · ·· ····		
		Number of	Data Rows	per Group						
1	2	3	4	5	6	7				
51	35	37	35	23	20	13				
			r for Group					<u> </u>	<u> </u>	
Ca-1	Na•1	K-1	CI-1	SO4-1	ALK-1					
10 02	16 81	17 22	32 35	34 86	0 508				1	
			atrix for Gro							
Ca·1	Na•1	K-1	CI-1	S04-1	ALK-1					
7 599	-5 274	·5 41	-11 89	13 04	0 33		1			
-5 274	8.901	8 475	14 42	-10 28	-0 309			1		
·5 41	8 475	8 575	13 97	-10 47	-0 306		i			
-11 89	14 42	13 97	296	-21 27	-0 555			1		
13 04	-10 28	-10 47	·21 27	26.83	0 586					
0 33	-0 309	-0 306	-0 555	0 586	0 0394					
					·				1	

(Complete output is not shown.)

		I	Classificatio	on Summar	y			
	Predicte	d Membership)					
Actual	1	2	3	4	5	6	7	
1	51	0	0	0	0	ö	0	
2	0	31	4	0	0	0	0	
3	0	0	37	0	0	0	0	
4	0	0	1	34	0		0	
5	0	0	1	Ö	22	<u> </u>	0	
6	0	0	1	0	0	19	0,	·
7	0	0	0	0	0	0	13	
# Correct	51	31	37	34	22	19	13	
Prop Correct	100%	88.57%	100%	97.14%	95 65%	95%	100%	
		ctly Classified						
Misclass	sification	Summary						
Obs No	Actual	Predicted						
42	2	3						
43	2	3						
66	2	3						
67	2	3						
143	5	3	``					
195	4	3						
211	6	3						
		Apparer	nt Error Rate	0 0327				

Output for the PROP Quadratic Discriminant Analysis (continued).


·,,,				Cross Validation Results					
.eave One O	ut (LOO) (Cross Valida	tion Resul						
		LOC) Classifica	ation Summ	aiy				
	Predicte	d Membership						· 	
Actual	1	2]	3	4	5	6	7		
1	51	0	0	0	0	0	Ō		
2	0	30	5	ō	0	Ō Ō	0		
3	0	0	37	0	0	0	0		
4	0	_ 0 _	0	35	0	0	0		
5	0		1	0	22	0	0	·····	
6	0	0	3	<u>0</u>	0	17	0		
7	0	0	3	0	0	0	10		
# Correct	51	30	37	35	22	17	10		
Prop Correct	100%	85 71%	100%	100%	95 65%	85%	76 92%		
		Dbservations							
		ctly Classified							
	Incorre	ctly Classified	12	·				 	
LOO Miscla	assificatio	n Summary							
Obs No.	Actual	Predicted	 .				.		
42	2	3							
43	2	3							
66	2	3							
67	2	3							
68	2	3					-		
143	5	3					-		
145	6	3							
152	6	3			'				
158	6	3							
163	7	3							
164	7	3							
170	7	3							
		101) Error Rate	0 0561					

Output for the PROP Quadratic Discriminant Analysis (continued).

Output for the PROP Quadratic Discriminant Analysis (continued).

Split (50/50) Cross Validation Results Validation Failed Not Enough Non-Outliers 9 times. Error Rate for Training Set: 0.0561 Error Rate for Test Set: 0.0327

Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Average Correct Training Set: 177.7000 Average Incorrect Training Set: 36.3000 Average Correct Test Set: 184.3000 Average Incorrect Test Set: 29.7000 Error Rate Bias: 0.0308 Bias Adjusted Error Rate: 0.0636

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.3.4 MVT Quadratic DA

1. Click on Multivariate EDA ▷ Discriminant Analysis (DA) ▷ Quadratic DA ▷ MVT.

□□ File Edit Configure Data Graphs Stats/GOF Outlers/Estimates Regression Multivariate EDA GeoStats Programs Window Help Navigation Panel 0 1 2 3 PCA 1 7 8 Name Group Iog1U Iog1U Iog1U Iog1U Fisher DA >	
	9
Linear DA	
D.\Narain\Scout_Fo . 1 Noricalities 1 -0.000, -0.1657 2 NonCarriers 1 -0.1698 -0.1585 Huber	-
3 NonCarriers 1 -0.3469 -0.1879 PROP	

- 2. A "Select Variables" screen (Section 3.5) appears.
 - Click on the "Options" button for the options window.

🕮 Options, Quadratic MV/IT Discrit	ninant A <u>naly</u> sis,	X
Classical Classical Csequential Classical CRobust (Median, MAD)	Number of Iterations Cutoff for Outliers 10 [Max = 50] [Max = 50]	Select Trimming Perc <u>entade</u> 01 Range (0 - 0 95)
 OKG (Maronna Zamar) C KG (Not Orthogonalized) C MCD 	Cross Validation 「Leave One Out (LOO) 「Split 「M Fold 「Simple/Narve Bootstrap by Data Set 「Simple/Narve Bootstrap by Group	
Print to Output No Scores Print Scores OK Cancel	Standard Bootstrap by Data Set Standard Bootstrap by Group Bias Adjusted Bootstrap by Data Set Bias Adjusted Bootstrap by Group	

- Specify the options to calculate the robust estimates of the location and the scatter (scale or dispersion).
- Specify the "Print to Output." The default is "No Scores."
- Specify the preferred cross validation methods and their respective parameters.
- Click "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on the "Graphics" button for the graphics options window and check all of the preferred check boxes.

🕮 OptionsDiscriminantGraphics,	
Select Graphics	Scatter Plot Title:
🔽 Scatter Plot	Scatter Plot of Discriminant Scores
Scree Plot	Scree Plot Title
	Scree Plot of Eigen Values for Fisher DA
Cutoff for Graphics	Plot Contour
Critical Alpha 0.05	C No Contour
	Individual (d0cut)
-MDs Distribution for Graphics	C Simultaneous (d2max)
🖲 Beta 🦳 Chi	C Simultaneous/Individual
	OK Cancel

- The "Scatter Plot" provides the scatter plot of the discriminant analysis scores and also of the selected variables. The user has the option of drawing contours on the scatter plot to identify any outliers. The default is "No Contour." Specify the distribution for distances and the "Critical Alpha" value for the cutoff to compute the ellipses. The defaults are "Beta" and "0.05."
- Click on "**OK**" to continue or "**Cancel**" to cancel the graphics options.
- Specify the prior probabilities. The prior probabilities can be: "Equal" for all of the groups; "Estimated," based on number of observations in each group, or "User Supplied," where a column of priors can be obtained from the "Select . Group Priors Column." The default is "Equal" priors.
- Specify the storage of the discriminant scores. No scores will be stored when "No Storage" is selected. The scores will be stored in the data worksheet starting from the first available empty column when the "Same Worksheet" is selected. The scores will be stored in a new worksheet if the "New Worksheet" is selected. The default is "No Storage."
- Click on "OK" to continue or "Cancel" to cancel the DA computations.

Output example: The data set "**Salmon.xls**" was used for the MVT quadratic DA. It has one 102 variables in two groups. The initial estimates of location and scale for each group were the median vector and the scale matrix obtained from the OKG method. The outliers were found using the trimming percentage and critical alpha and the observations were given weights accordingly. The weighted mean vector and the weighted covariance matrix were calculated. The classification rules were obtained using those weighted estimates. The output shows that six observations were misclassified. The cross validation results suggest the same.

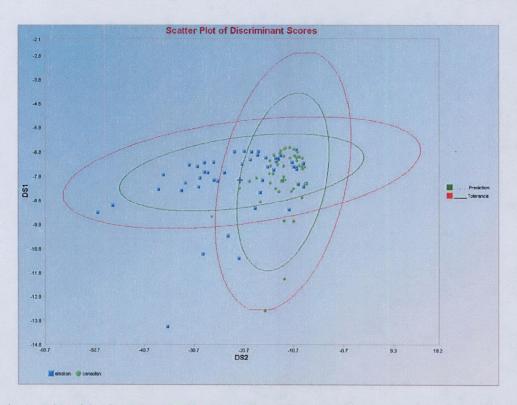
Output for the MVT Quadratic Discriminant Analysis.

Data Set: Salmon (2 variables 2 groups).

			Quadratic	: Discrimin	ant Analysis	s U sing MV	T Method			
	User Selected	Options	1							
Da	te/Time of Con	nputation	1/18/2008	3 48 10 PM						
		From File	D:\Narain\	Scout_For_1	Windows\Sci	outSourceW	WorkDallnE	xcel\Book	SALMON	
<u> </u>	Full	Precision	OFF			· · · · ·	· · · · · · ·		·····	
	Trimming Pe	rcentage	10%							
	Initial E	stimates	Robust Me	edian Vector	and OKG (N	laronna Za	mar) Matrix			
	Number of	Iterations	10							
	-	e Options	1		s will be store	d to Works	heet			
	Group Pro	babilities:		s will be use	d					
	-	s Options	Scatter Plo							
		r Options		lipses drawr	using Indivi	dual MD(0 (05) snd Ma	x MD(0.05)		
	Alpha for		0 05							
	Distributio	n of MDs	Beta Distrib	oution used	n Graphics			<i></i>		
			<u>. </u>							
	al Number of Ot		1						1	
Num	nber of Selecte	d Variables	2							
					1		1		1	
				Į						
	Numb	er of Data	Rowsper	Group			I		1	
alaskan	canadian									
50	50									
			<u> </u>				_			
		Vectorf	or Group al	askan					1	
	Marin~skan					L				
98 38	429.7		1				1		1	
				<u> </u>						
		ice S Mati	rix for Grou	p alaska n			l		1	
	Marın~skan	<u>. </u>			_					
260.6	-1881				1		ļ		Î	
-188 1	1399									
			1						;	
	Final Robus	t Mean V	ector for Gi	roup alaska	n					
	Marin~skan									
98.42	429 8					1	-			
				······································		·				

563

Class	sification Se	ummary					
	Predicter	d Membership			1		
Actual	alaskan	canadian					-
alaskan	47	3			•		
canadian	3	47					
# Correct	47	47	·				-+
Prop Correct	94%	94%			+		
	1	<u>.</u>					
	Tota	Observations	100				
	Corr	ectly Classified	94		-		
		ectly Classified		·			
	<u> </u>				+		
Miscla	ssification	Summary					
Obs No	Actual	Predicted	<u></u>				
2	alaskan	canadian					+
12	alaskan	canadian					
13	alaskan	canadian		·	•		
51	canadian	alaskan					
68	canadian	alaskan					
71	canadian	alaskan					
			rent Error Rate	0.06			
				C	ross Valid	ation Result	s
Leave On	e Out (LOO) Cross Valida	ation Results				
					1		
LOO Cla	assification	Summary					
	Predicter	d Membership		·			
Actual	alaskan	canadian					
alaskan	46	4					
canadian	3	47					
# Correct	46	47			1		
Prop Correct	92%	94%					
	··						
		Observations	1				
	Con	ectly Classified	93				


Output for the MVT Quadratic Discriminant Analysis (continued).

Output for the MVT Quadratic Discriminant Analysis (continued).

LOO Mis	classificatio	on Summary				
Obs No.	Actual	Predicted				
2	alaskan	canadian				
12	alaskan	canadian				
13	alaskan	canadian				
30	alaskan	canadian				
51	canadian	alaskan	The second			
68	canadian	alaskan				
71	canadian	alaskan				
			LOO Error Rate	0.07		

Bias Adjusted Bootstrap (for whole dataset) Cross Validation Results Average Correct Training Set 90.9000 Average Incorrect Training Set 9.1000 Average Correct Test Set: 92.6000 Average Incorrect Test Set: 7.4000 Error Rate Bias: 0.0170

Bias Adjusted Error Rate: 0.0770

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant scores and the variables, as explained in Chapter 2.

10.2.4 Classification of Unknown Observations

Unknown or new observations can be classified into existing groups. There are certain rules that need to be followed when using the unknown or new observations.

- The first three letters of the group name of the new or unknown observations should be "UNK" or "unk" only.
- The set of unknown or new observations should be the last set of observations in a data set; otherwise, an error message is obtained.
- Unknown or new observations will not be used in the cross validation.
- Unknown or new observations will not be used in the graphs.
- The results of the classification of the unknown observations are printed at the end of the output sheet.

Last set of observations.

Sterib Sterib SLReto Time Id5 Ca No K CI SO4 ALK 188 3 1 2 2 6 1511 1281 601 1752 1956 1934 189 3 1 4 2 9 535 1957 731 1907 2155 11337 191 3 1 4 2 3 946 1888 896 2214 2382 2366 978 192 3 1 4 2 5 102 1728 606 2362 1918 1047 193 3 1 4 2 2 9 3434 762 602 462 133 507 195 4 1 2 2 2 226 500 403 3746 1241 436 199 4 1 2 2 2 2639 55		D	1	2	3	4	5	6	7	8	9	10	11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Site ID	Sample ID	SL Ratio		ld5					SD4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	189	3	3, 1	2	2	6		12.81			19 56	18 34;	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	109		1	4		9	1	18 57	7 91			13 97	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	190	3	Ŋ	4	2	- i	10.09	21 09	10,74	27 15	22.06	10 73	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	191	3	1	4		i i	9 48	18 88	8 96	22.14	23.49	8 78	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	192	3	1 1	4	2	- 4	103	17 32	6 09	24 39,	23 66	8 49	-
195 4 1 2 2 9 34 34 762 6 002 40 76 1727 5 7, 196 4 1 2 2 1 23 62 5 40 4 27 35,16 13 13 5 07 197 4 1 2 2 2 22 55 5 03 4 00 37 46 12 41 4 36 198 4 1 2 2 3 21 55 5 07 3 84 32.21 11 89 5 58 200 4 1 4 2 2 3 23 7 45 33.24 1 2 37 4 38 201 4 1 4 2 1 22 2 26 58 6 82 5 21 38.67 1 2 37 4 38 201 4 1 4 2 2 2 6 58 6 82 5 27 38.867 1 2 37 4 38 203 4 4 2 3 2 4 6 677 5 2 68 38.861 1 0 72 5 76 204 4 2 2 1 3	193	3	1	· · · · · · · · · · · · · · · · · · ·	2	5		¯ [–] 17 29	8.06	23 62	19 18	10 47	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	194	- 3	1	4	2	- 6,	911	19 03	8 98	25 41		11 87	
197 4 1 2 3 2 1 1 2 2 2 2 1 3 3 3 1 1 1 2 2 2 2 1 3	195	i	រ៉េ រ	2	2	່ 9ໍ່		762	6 02	49 79	17 27	57	
198 4 1 2 2 3 2195 507 384 32.3 1189 588 199 4 1 2 2 4 2399 553 424 3326 1237 438 200 4 1 4 2 9 2556 682 521 3887 1237 438 201 4 1 4 2 1 22'83 711 545 3354 1165 324 202 4 1 4 2 1 22'83 711 545 3354 1165 324 202 4 1 4 2 2 26'35 749 587 423 10'15 335 203 4 1 4 2 3'2'4'76 678 528 4083 12'2'3 13'53 206 5 1 2 2 1'3'2'2' 1'3'2'2'5'5'5'5'2'4'5'2'2'1'2'7'5'5'5'5' 1'3'2'7'1'3'5'5'5'5'5'5'5'5'5'5'5'1'2'1'2'7'5'5'5'5'5'5'5'5'5'5'5'5'5'5'1'2'1'2'7'5'5'5'5'5'5'5'5'5'5'5'5'5'1'2'1'1'5'5'5'5	196			2			23 62	5 48	4 27	35.18 ,	13 13	5 07	+
193 4 1 2 2 4 23 9 5 53 4 24 33 26 12 25 10 33 200 4 1 4 2 9 25 56 502 521 38.67 12 37 4 38 201 4 1 4 2 1 22 73 711 545 33 54 11 65 32 4 202 4 1 4 2 1 22 73 749 587 42.33 10 72 163 203 4 1 4 2 3 24 678 526 40 83 12 59 223 205 5 1 2 2 13 23 476 423 396 965 12 28 13 76 206 5 1 2 2 13 23 476 422 10 48 13 22 13 56 207 5 1 2 2 13 24 13 56 13 22 13 56 12 25 13 36 208 5 1 4 2 1 1 1 56 <	197	4	ų i	. 2		2	22 65	5 0 3	4 03,		12 41	4 36,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	198	4	1 1	2		3	21 95	5 07	3 64	32.3	11 89	5 86 [†]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	199	i i	11	• - 2 ₁		4	23 99	5 53	4 24	33 26	12 35	10 33	
202 4 1 4 2 2 2 6 7 43 5 87 42.33 10.72 165 203 4 1 4 2 3 23 24 687 5.26 33.89 12.36 3.95 204 4 1 4 2 4 24.76 6.78 5.26 33.89 12.36 3.95 204 4 1 4 2 4 24.76 6.78 5.26 40.63 12.89 22.3 205 5 1 2 2 11.37 4.76 4.22 10.40 13.22 13.53 12.63 206 5 1 2 2 11.56 6.12 5.44 13.56 12.62 12.62 208 5 1 4 2 11.56 6.12 5.44 13.56 12.62 12.62 209 5 1 4 2 2 </td <td>200</td> <td>14</td> <td>(* T</td> <td>· - 4</td> <td>2</td> <td>9</td> <td>25 56</td> <td>6 82</td> <td>521</td> <td>38.87</td> <td>12 37</td> <td>4 38</td> <td>-</td>	200	14	(* T	· - 4	2	9	25 56	6 82	521	38.87	12 37	4 38	-
203 4 1 4 2 3 23 24 687 5.26 33.96 1 2 36 3 35 204 4 1 4 2 4 2476 678 5.26 33.96 1 2 36 3 35 206 5 1 2 2 9 1547 423 3 36 965 1 2 33 1 3 76 206 5 1 2 2 9 1547 423 3 36 965 1 2 33 1 3 76 206 5 1 2 2 1 1 3 23 4 76 4 22 10 40 1 922 1 3 53 207 5 1 2 2 1 1 55 5 12 1 2 76 1 5 39 1 2 62 208 5 1 4 2 9 1 5 2 9 49 1 3 26 1 2 5 2 1 5 99 210 5 1 4 2 9 1 5 2 43 1 6 2 7 29 1 0 4 1 2 1 9 211 6 1 2 1 1 6 45 2 4 1	201		1			1	22 29	711	5.45	39.54	ំារើថ	3 24	
204 4 4 2 4 2476 678 528 4083 1289 223 205 5 1 2 2 9 1547 428 396 965 1283 1376 206 5 1 2 2 1 1323 476 422 1048 1322 1363 207 5 1 2 2 1 1323 476 422 1049 1322 1363 207 5 1 2 2 1252 594 512 1276 1539 1279 208 5 1 4 2 1 156 619 549 1326 1252 1399 210 5 1 4 2 2 1052 613 74 17 59 1463 1079 211 6 1 2 2 1651 243 167 19 52 043 14 99 219 2125 149 211 161 127 1161 21 228 <td>202</td> <td>4</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· 4</td> <td>2</td> <td>2</td> <td>26 39</td> <td>7 49</td> <td>5 87</td> <td>42.33</td> <td>10 72</td> <td>163</td> <td></td>	202	4	· · · · · · · · · · · · · · · · · · ·	· 4	2	2	26 39	7 49	5 87	42.33	10 72	163	
205 5 1 2 2 9 15 47 4 23 3 36 9 65 12 83 13 76 206 5 1 2 2 1 13 23 4 76 4 22 10 40 13 22 13 63 207 5 1 2 2 1 252 5 54 512 12 76 15 39 12 78 208 5 1 4 2 9 14 65 6 12 5 44 13 58 12 63	203	4	i [™] 1	. 4	zÌ	3	23 24	6 87	5.26	39.98 ¹	12 36	ີ 335	
206 5 1 2 2 1 1323 476 422 10.46 1322 1363 207 5 1 2 2 1 1323 476 422 10.46 1322 1363 207 5 1 2 2 1252 594 512 1276 1539 1278 208 5 1 4 2 9 14.06 612 544 1356 1252 1399 200 5 1 4 2 1 156 619 543 1328 1252 1399 210 5 1 4 2 9 1651 243 162 729 104 1219 212 6 1 2 9 2125 443 162 1227 1041 1219 213 6 1 4 2 1 2265 445 313 3154 046<	204	4	1	4,	2	4	24 76	6 78	5 28	40 83	12 59	2.23	
207 5 1 2 2 1<	205	5	1	2	2	9	15 47	4 29	3 96	9 65	12 B3	13 76	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	206	5	1	2	2	1	13 23	4 76	4 22	10,48	13 22	13 63	
203 5 1 4 2 1 156 619 549 1328 1252 1399 210 5 1 4 2 2 1052 613 74 1759 1463 1079 211 6 1 2 2 9 1651 2.43 162 729 104 1219 212 6 1 2 2 9 1865 2.43 167 1952 043 1499 213 6 1 4 2 9 2126 445 313 3154 046 1018 214 6 1 4 2 1 2265 69 735 4405 227 359 216 1 5 4 1 2259 69 735 4405 227 359 216 1 6 4 1 254 778 621 6962 219	207	5	1	2	2	2j	12 52	5 94	5 12	12,76	15 39	12.78	
210 5 1 4 2 2 1052 613 74 1759 1463 1079 211 6 1 2 2 9 1651 243 162 729 104 1219 212 6 1 2 2 9 1651 243 162 729 104 1219 213 6 1 4 2 9 1755 427 264 261 127 1161 214 6 1 4 2 9 1755 4427 264 313 3154 046 1018 214 6 1 4 2 1 2255 445 313 3154 046 1018 215 UNK 1 5 4 1 2259 69 755 4405 227 359 216 unk 1 6 4 1 2549 778 821 4396 219 229 218	209	5	i – Ti	4	2	, e	14 06	6 12	5 44	13 58	12 69	12.62	
211 6 1 2 2 9 16 1 6 1 2 1 16 7 7 104 12 19 212 6 1 2 2 1 18 2 1 167 19 52 0 43 14 99 213 6 1 4 2 9 21 26 427 284 2812 127 1161 214 6 1 4 2 9 21 26 445 313 31 94 046 1018 215 UNK 1 5 4 1 22 95 69 7 35 4405 227 359 206 217 259 69 7 36 44 7 1 205 266 217 25 43 7 78 821 49 96 219 229 229 219	209	s	i 1	4	2	i	11 96	- 6 19	5 49	13 28	12 52	13 99	
212 6 2 2 1845 241 167 1952 043 1439 213 6 1 4 2 9 2125 427 284 2812 127 1151 214 6 1 4 2 1 2265 445 313 3154 046 1018 215 UNK 1 5 4 1 2255 69 735 4405 227 258 216 unk 1 6 2 1 233 759 804 471 206 266 217 UNK 1 6 4 2549 778 821 4956 219 229 218 219 219 218 219 210	210	5	(4	2	z	10 52	Ē 13	74	17 99	14 63	10 79	
213 6 1 4 2 9 2125 427 284 2812 127 1161 214 5 1 4 2 1 2255 445 313 3154 046 1018 215 UNK 1 5 4 1 2255 69 735 4405 227 359 216 UNK 1 6 2 1 2383 759 804 477 206 266 217 UNK 1 6 4 1 2547 778 821 4396 219 229 218 1 6 4 1 2547 778 821 4396 219 229 220 1 200 1 200 1 200 1 229 1 221 1 229 1 229 1 229 1 221 1 2229 1 2229	211	6	- 1	2	2	9	18 51	2.43	1 62	7 29	1 04	12,19	
214 6 1 4 2 1 22265 445 313 31 54 046 1018 215 UNK 1 5 4 1 2255 69 735 4405 227 359 216 unk 1 6 2 1 2383 759 804 4771 205 266 217 UNK 1 6 4 1 2549 778 821 4396 219 229 218	212	6	1	2		1	18 45	2.41	1 67	19 62	0 43	14 99	·
215 UNK 1 5 4 1 225 6 9 7 36 4405 227 359 216 unk 1 6 2 1 2383 759 804 4771 206 266 217 UNK 1 6 4 1 25 778 824 4396 219 226 218 1 6 4 1 25 778 821 4396 219 223 220 221 221 221 222 223 223 223 223 223 230	213	6	1	· · - · · · · · · · · · · · · · · · · ·	- 2	- 9	21 25	4 27	2.84	28 12	1 27	11 61	
Z16 Link 1 6 2 1 23 83 759 804 47 71 205 Z66 217 UNK 1 6 4 1 25 49 778 921 49 96 219 2.29 210 219 2.25 49 778 921 49 96 219 2.29 219 220 221 222 223 223 223 23 23 23 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 24 24 24 24 24 24 24 24 24 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 <td>214</td> <td></td> <td>1</td> <td>41</td> <td>2</td> <td>~₁¦</td> <td>22 85</td> <td>4 45</td> <td>313</td> <td>31 94</td> <td>0 46</td> <td>1018</td> <td></td>	214		1	41	2	~ ₁ ¦	22 85	4 45	313	31 94	0 46	1018	
217 UNK 1 6 4 25 49 7 78 8 21 49 96 2 19 2 29 218 219 229 200 <td>215</td> <td>UNK</td> <td>1</td> <td>5</td> <td> 4</td> <td>1</td> <td>22 59</td> <td>6 9</td> <td>7 35</td> <td>44 05</td> <td>2 27[°]</td> <td>3 59</td> <td></td>	215	UNK	1	5	4	1	22 59	6 9	7 35	44 05	2 27 [°]	3 59	
218	216	unik		6	2	1	23 83	7 59	804	47 71	2 05	2 66	
218 279 220 221 222 223		UNK	1	6	4	1	25 49	7 78	8 21	49 96	!		
220	218			· · ·						}			
221 222 223	219		i -			ł	, i			÷			
222	220		ii	+ ;	· ·	ł	ŀ		i.	• - •		-	
222		÷ ·		; - ;		- †	•					+	••
223					-		-		i			i	
		• -		i i			- i	-		- †		- !	
	224	-			- 1	1	1		I				

Unknown observations in-between data.

	0	1_1_	2	3	4	5	6	7	8	9	10	11
	Site ID	Sample ID	SL Ratio	Trme	ld5	Ca	Na	ĸ	a	504	ALK	
189] 3		2	2	-	1511	12.91	6 01,	17 52	1956	18 34	
189] 3	្រំ	1 4	2		535	18 57	7 91	18 07	21 55	13 97	
190	3	3 1	4	2		10 06	21 09	10 74	27 15	22.06	10 73	
191	3	3 1	4	2		9 48	18 68	896	~ 22 14 [°]	23 49	8 78	
192	UNK	; ī	6		<u></u> 1	25 49	7 78	8 21	49 96	2.19	2 29	
193] 3	ຊື 1	4	2	5	102	17 29	8 06	23 62	1918	10 47	-
194	3	s; 1		-2	⁶	911	19 03	6.96	25 41	21 32	11 87	
195	1	1	2	2	9	° 34 34	7 62	6 02	49 78	17 27	57	
196	4	¢ î			1 [*]	23 62	5 48	4 27	35 18	1313,	5 07	
197	14	(† 1	2		2'	22 65	5 03	4 03	37 46	1241	4 36	
198	14	r <u>i</u> 1	2	2	· 3'	21 95	5 07	Ĵ 3 64 Î	32.3	11 89	5 86	
199	1 4	₫ <u>1</u>	2		4	23 99	5 53	4 24	33.26	12.35	10 33	
200	UNK	i 1	5	· 4,	. 1	22.59	69	7 35	44 05	2.27	3.59	
201	1 4	ų 1		2	<u> </u>	22.29	711	545	39 54	1165	3 24	
202		¢ i i i	1	2	2	ີ 26.39	7 49	5.87	42.33	10 72	៍ឆេ	
203	1 4	r¦ 1	; ī 4	· _ 2	3	Z3 24 [°]	6 87	5 26	39 98	12.36	335	
204	1	ų 1	i 4	2		24 76	6 78	5 28	40 83	1259	2 23	
205	1 6	i 1	, 2	2	e	15 47	4 29	3.96	9 65	12.83	13 76	
206		i	2	2	1	13 23	4 76	4 22	T 10 48	1322	1363	
207	unk	1	6	ź	1	23 83	7 59	804	47 71	205	2 66	
208	s	5 1	1	2	,	14.06	6 12	54	13 58	12.69	12.62	
209		5	4	2	1	11 96	6 19	5 49	13 28	12.52	13 99	
210	5	5 ¹ 1		2	2	10 52	B 13	74	17 99	14 63	10 79	-
211	e	្រា	2	2	, e	18 51	2.43	⁻ 1 62	7 29	1 04	12 19	
212	6		۰. ·	2	์ 1	18.45	2.41	1 67,	19 62	043	14 99	
213		i ^{1 -} 1	4	2	· 9'	21 25	4 27		28 12	⁻ 1 27	11 61	
214	j e	s' 1	4	2	1	22.65	4 45	3.13	31 94 ¹	0 46	1018	
215		1		· -· ·	<u> </u>		4					-
216	1	1	:		-	1		:				
217		1	•	·'	' I	1	1	-	1		,	
218	1	t ·	• :	: ;	· · ·	4	1	- 1	- '	-		
219					····· ,		- • -	j-		•	1	
220	1	•	•						÷		1	
221	1	4 -	1			,				-	4	
222	1		·	-					1			
222	1		I	·	· ·	•		: '	'			

Error Message.

•

	Robust Fisher Linear Discriminant Analysis using Huber Influence Function								
User Selected Options									
Date/Time of Computation	1/16/2008 10:34 14 AM								
From File	D Warain\Scout_For_Windows\ScoutSource\WorkDatInExcel\ASHALL xls								
Full Precision	OFF								
Influence Function Alpha	0.05								
Squared MDs	Beta Distribution Robust Median Vector and OKG (Maronna-Zamar) Matrix								
Initial Estimates									
Number of Iterations	10								
Storage Options	No Discriminant Scores will be stored to Worksheet								
Group Probabilities	Equal Priors Assumed								
Graphics Options	Both Scree Plot and Scatter Plots are Selected								
Contour Options	Contour Ellipses drawn using Individual MD(0.05) 0.05								
Alpha for Graphics									
Distribution of MDs	Beta Distribution used in Graphics								
own Group data not inserte									
e reorder your data to plac	e 'unknowns' Last								
1 1									

Results of the Classification of Unknown Observations.

		1						
7	0	0	0	0	0	0	13	- <u> </u>
# Correct	51	31	37	34	22	19	13	· · · · · · · · · · · · · · · · · · ·
Prop Correct	100%	88.57%	100%	97 14%	95.65%	95%	100%	
	Total	Observations	214					-
	Correc	ctly Classified	207					
	Incorre	ctly Classified	7				!	
	ification	!						
Obs No	Actual	Predicted						
42	2	3						
43	2	3						
66	2	3						
67	2	3						
143	5	3						
195	4	3						
211	6	3					1	
		Apparent	Error Rate	0.0327				
			_					
				C	toss Valida	tion Resul	ts	
		(Groupwise)		dation Res				
		ning Set 186						
_		aining Set 27						
		Set: 176.300						
		st Set: 37.70						
Error Rate B								
Bias Adjuste	ed Error R	ate: 0.0804						
			···					
		n Observatio	n Results					
215 3								
216 3								
217 3	3		,					
			1					

.

.

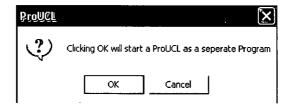
References

- Ammann, L. P. (1989). "Robust Principal Components," Communications in Statistics Simulation and Computation, 18, 857–874.
- Croux, C., Filzmoser, P., and Oliveira, M.R. (2007). "Algorithms for Projection-Pursuit Robust Principal Component Analysis," Chemometrics and Intelligent Laboratory Systems.
- Davison, A. and Hall, P. (1992). "On the Bias and Variability of Bootstrap and Cross-Validation Estimates of Error Rate in Discrimination Problems," Biometrika, Vol. 79, No. 2, June, 1992, pp. 279-284.
- Efron, B. and Tibshirani, R. (1997). "Improvements on Cross-Validation: The .632+ Bootstrap Method," Journal of the American Statistical Association, Vol. 92, No. 438, June, 1997, pp. 548-560.
- He, X., and Fung, W.K. (2000). "High Break Down Estimation for Multiple Populations with Applications to Discriminant Analysis," Journal of Multivariate Analysis, 72, 151-162.
- Hubert, M., Rousseeuw, P.J., and Vanden Branden, K. (2005). "ROBPCA: A New Approach to Robust Principal Component Analysis," Technometrics, 47, 64-79.
- Johnson, R.A, and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis, Prentice Hall, Upper Saddle River, New Jersey.
- Lachenbruch, P.A., and Mickey, M.R. (1968). "Estimation of Error Rates in Discriminant Analysis," Technometrics, Vol. 10, No. 1, 1968, pp. 1-11.
- Scout. 2002. A Data Analysis Program, Technology Support Project, USEPA, NERL-LV, Las Vegas, Nevada.
- Singh, A. and Nocerino, J.M. (1995). Robust Procedures for the Identification of Multiple Outliers, Handbook of Environmental Chemistry, Statistical Methods, Vol. 2. G, pp. 229-277, Springer Verlag, Germany.
- Snapinn, S. and Knoke, J. (1989). "Estimation of Error Rates in Discriminant Analysis with Selection of Variables," Biometrics, Vol. 45, No. 1, March 1989, pp. 289-299.
- Todorov, V. (2007). Robust Selection of Variables in Linear Discriminant Analysis, Stat. Meth. & Appl., 15:395-407.
- Valentin, T. and Pires, A. (2007). "Comparative Performance of Several Robust Linear Discriminant Analysis Methods," REVSTAT – Statistical Journal, Vol. 5, Number 1, March, 2007, pp. 63-83.
- Xie, Y., Wang, J., Liang, Y., Sun, L., Song, X. and Yu, R. (1993). "Robust Principal Component Analysis by Projection Pursuit," Journal of Chemometrics, Vol. 7, pp. 527-541.

Chapter 11

Programs

Access to two additional standalone statistical packages is provided through Scout. Those additional packages are ProUCL 4.00.04 and ParallAX.


11.1 ProUCL

ProUCL 4.00.04 is a statistical software package developed to address environmental applications.

More information on ProUCL 4.00.04 and the ProUCL Technical and the User Guide can be downloaded from the following web site: <u>http://www.epa.gov/esd/tsc/software.htm</u>.

	🖪 Şççu	<u>i</u> t [,] 20j	08 - [D: VA	larain	\ <u>Scout</u>	For_Wind	<u>ows\Scou</u>	tSource)	WorkDath	iExcel\FULL	<u>LIRIS]</u>			
Í	[말] File	Edit	Configure	Data	Graphs	Stats/GOF	Outliers/E	stimates	Regression	Multivariate E	DA GeoSta	ts Program	Window	w Help
	Navigat	tion F	Panel	ſ		0	1	2	3	4	5	ProUC		8
	Name				ſ	count	sp-length	sp-width	pt-length	pt-width		Parall	×	

Clicking on the "ProUCL" option in the "Programs" drop-down menu will bring up a prompt.

When the "OK" button is clicked on, ProUCL 4.00.04 is opened in a new window.

11.2 ParallAX

ParallAX software offers graphical tools to analyze multivariate data using a parallel coordinates system. This is a standalone program developed in 1997 by MDG Corporation, Israel.

ParallAX is started in Scout by default whenever the user starts the Scout program. A message in green text appears in the log panel with the successful starting of ParallAX. The screen of the ParallAX (see below) will be running in the background. The user can access ParallAX by minimizing Scout. If Scout failed to start ParallAX, then a message in red text appears in the log panel stating the unsuccessful starting of ParallAX. The user can then start ParallAX by either restarting Scout or by going to the directory where the file, "Scout.exe," is installed on the computer and then by clicking on the "ParallAX.exe" file twice.

🚽 File Edit Configure Dat	a Graphs	Stats/GOF	Outliers/Es	stimates R	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	3	4	5	ProUCL		1
Name		Count	Skin(x1)	Thigh(x2)	BodyFat			Parallax		

Clicking on the "ParallAX" option in the "Programs" drop-down menu will bring up a prompt.

ParallA)	K
?	Scout 2008 attempted to start ParallAX as separate program. The first entry in the log panel indicates if Scout 2008 was successfully in opening ParallAX. If ParallAX is not still running the user can restart ParallAX by either double clicking ParallAX.exe in the Scout directory or restarting Scout 2008.
	OK Cancel

When the "OK" button is clicked on, ParallAX is opened in a new window.

문은 실전에서 및 Uery Yars Lypes 서는 Scales Window 최일하기: Classifiers 또는 Help	
	<u>штп</u>
	Total size: Level
<u></u> ???	Combination:

Note to the User

When the user wants to work with the software, ParallAX, an Excel file named "**ParallAX**-**Fix.xls**," provided along with the Scout package, should be opened first. Then, the ParallAX software can be opened using the drop-down menu. This happens because the standalone program ParallAX looks for its initializing files in the folder from which the data file (*.xls or *.dat) was last accessed.

If the ParallAX software is opened immediately after opening the Scout program, then the process explained above does not need to be done.

The ParallAX User's Manual along with classification examples are provided in the appendices that follow.

Chapter 12

Windows

📴 Scout 4.0 [D: Warain)	Scout_F	or_Windm	vsjScoutS	ource/Wor	kDatInExc	eNBRADUJ	}		
g File Edit Configure Dat	a Graphs	Stats/GOF	Outlers/E	stimates Rei	pression Mi	uttivariate ED	A GeoStats	Programs	Window Help
Navigation Panel		0	1	2	3	4	5	6	Cascade
Name		Count	y	×1	×2	х3			Tile Horizontally
D \Narain\Scout_Fo PCA_MCD ost	 2	2	101	10 1' 95,	196 205	283 289		-	✓ 1 D.\Naran\Scout_For_Windows\ScoutSource\WorkDatInExcel\BPADU
PCA_Load gst	3	3	103	107	20 2 [*]	31		1	2 PCA_MCD.ost 3 PCA Load.ost
	4	4	9.5	99	21 5	31.7	1	:	J rcm_cuou.upt

Click on the Window menu to reveal the drop-down options as shown above.

The following Window drop-down menu options are available:

- Cascade option: arranges windows in a cascade format. This is similar to a typical Windows program option.
- Tile option: resizes each window vertically or horizontally and then displays all of the open windows. This is similar to a typical Windows program option.

The drop-down options list also includes a list of all of the open windows with a check mark in front of the active window. Click on any of the windows listed to make that window active. This is especially useful if you have more than 20 windows open, as the navigation panel only holds the first 20 windows.

Appendix A

•

•

ParaNAX

User's Manual MDG กาว

Copyrighted Material -- All Rights Reserved MDG Ltd

Table of Contents

<u>Section</u> Page				
1.0	Introc	duction	A-7	
2.0	Visua	al Data Exploration	A-10	
	2.1	Getting Started	A-10	
	2.2	Queries	A-11	
		2.2.1 The Basics	A-11	
		2.2.1.1 Interval Query	A-12	
		2.2.1.2 Angle Query	A-13	
		2.2.1.3 Pinch Query	A-15	
		2.2.2 More Queries	A-17	
		2.2.2.1 Polygon	A-17	
		2.2.2.2 Complex Queries	A-17	
	2.3	Supplementary Operations	A-19	
		2.3.1 Inverting Axes	A-19	
		2.3.2 Permutations	A-20	
		2.3.3 Isolate/Previous/Scale	A-21	
		2.3.4 Relative Complement	A-21	
		2.3.5 Zooming	A-22	
		2.3.6 More Supplementary Operations	A-22	
	2.4	Preprocessing		
		2.4.1 Zebra	A-24	
		2.4.2 Outliers	A-25	
3.0	Auto	omated Classification	A-27	
	3.1	Wrapping	A-27	
	3.2	The Classification Process	A-31	
		3.2.1 Analyzing the Errors	A-32	
	3.3	Nested Cavities Classifier – NC	A-33	
	3.4	Enclosed Cavities Classifier – EC	A-33	
	3.5	Error Analysis	A-34	
		3.5.1 Train-and-Test	A-34	
		3.5.2 Cross Validation	A-34	

Table of Contents (Cont.)

Figures		<u>Page</u>
1	The ParallAX main window or Graph area	A-8
2	ParallAX scatter plot of the "Computer" number versus the "SwapSpace" variable of the example data set	A-10
3	The Interval query applied on the second (Time) axis	A-13
4	The Angle query shown between the third and fourth axes	A-14
5	The Pinch query shown here between the third and fourth axes	A-15
6	The Interval query on the scatter plot of FileTable vs. Time	A-16
7	The Angle query on the scatter plot of InodeTable vs. FileTable	A-16
8	The Pinch query on the scatter plot of InodeTable vs. FileTable	A-1 7
9	The Polygon query	A-18
10	The -coords graph with one inverted axis (SwapSpace)	A-2 0
11	The Zoom function	A-22
12	An Example of the "Zebra" function applied with 7 subdivisions on the Computer Axis (1 st from the left)	A-25
13	The result of the Outliers operation (before user approval)	A-26
14	An Interval query defining the input set in the Wrapping operation	A-29
15	The result of the Wrapping operation	A-30
16	Set of "unwanted" elements by the Wrapping operation (obtained using the relative complement, "\")	A-31
17	The classification process	A-32
18	A real data set with 32 variables and 2 classes (categories)	A-35
19	Results obtained by the NC classifier	A-36

1.0 Introduction

ParallAX is a novel, some say revolutionary, tool for effectively analyzing multivariate data sets, i.e., software, discovering patterns, properties, and relations. There are two main parts for the ParallAX: the Visual Analysis portion (for doing what sometimes is called Visual Data Mining or Exploratory Data Analysis), and the *Automatic Classifiers* that find rules to distinguish elements from a given category or set of categories. The software is based on the *Parallel Coordinates* (abbreviated ||-coords) *methodology*, which transforms the search for relations in a data set to a *pattern recognition problem*. Intuitive interactive commands enable the user to work with data sets having many (i.e., hundreds or more) variables that are displayed *without* the loss of information. Of course, to really understand and appreciate this statement, one needs familiarity with the ||-coords methodology. However, such familiarity is not necessary in order to become an expert user of ParallAX and have lots of fun in the process. Everything needed is described below using as an example a *real data set*.

The main window of ParallAX, shown in Figure 1, has the familiar structure of GUI's in popular Windows applications. Starting from the top, it is composed of the: *Operational, Graph, Queries* and *Summary* areas.

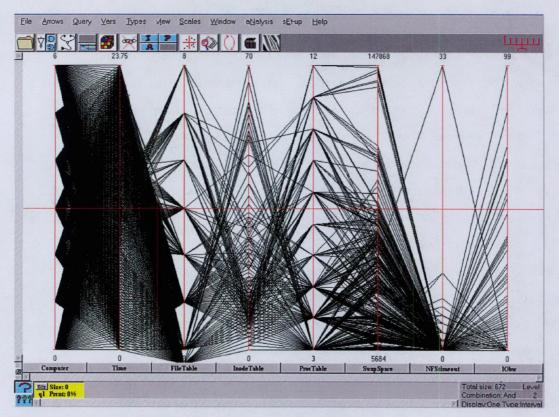


Figure 1. The ParallAX main window or Graph area.

- The "Operational" area consists of a main menu with the related pull-down menus, and a toolbar including the most frequently used operations for one touch access. The toolbar is self-explanatory and the names of the buttons are displayed when the mouse icon is pointed at them.
- The data set input is a table; the precise format is given below, where each column consists of values of a single variable. In ||-coords each variable has its own vertical axis. Typically, the scale ranges from the minimum to the maximum value occurring in the data set for that variable (see, for example, the 2nd axis labeled "Time" in Figure 1). A data record is on a single row of the table with the values for each variable separated by a blank. It is represented in ||-coords by a *polygonal line* whose vertices are at the position on each axis corresponding to its value for that variable. For example, the data item (3, -2, 0, 1.5, -4) is represented by the polygonal line having a vertex at a value of 3 on the first axis, a value of -2 on the second axis, 0 on the 3rd, 1.5 on the 4th and -4 on the 5th (last) axis. The "*Graph*" area of the

ParallAX's main window includes the axes, with their minima and maxima, the variable's label button on each axis, and the polygonal lines representing the data. The user may choose, using the *sEt-up* pull-down menu (second from the right), either a white or a black (which is the default) background for this area. A particular axis may be selected by pressing its button. A large number of variables may generate a very dense display. In such a case, the user may choose either to see the entire graph or to scroll through enlarged portions of the graph (these options are found using the *sEt-up* menu). Note: Very important - in the last line of the *sEt-up* menu make sure that the "*sort points at graph loading*" on the last option is chosen. This is especially important for improving the performance with large data sets. In real data sets some of the variable values may be missing. In *ParallAX*, a point below the actual minimum value on the variable's axis indicates missing values for some data items. In the example data set shown in Figure 1, the variable, "*FileTable*," has several missing values, which are displayed by the lowest point on the third from the left axis.

- Below the Graph is the "*Query*" area and contains a rectangular button for each query. The button's color is the same as the color of the polygonal lines selected by the query (see Figure 4 for an example). The rectangle contains the query label ("q" and the number in the sequence of invoked queries), size, and percent (% of the total data set captured by the query). As the analysis progresses many query boxes may accumulate. They may be moved with the horizontal slider under the query rectangles. Clicking on the small "Edit" button, in the query rectangle, produces a list of other color choices.
- In the "Summary" area, in the bottom right, general information is displayed. It includes the total number of polygonal lines *currently* appearing, the level of isolation (how many queries have been sequentially isolated to produce this state), the active query type, and the active query logical (Boolean operator) combination. These terms are defined below.

Scatter plot windows (see Figure 2 for example) are opened by selecting a pair of axes buttons (they do not have to be adjacent) and then clicking on the iconized button fourth from the right. The representative points of the polygonal lines selected in the main window are also highlighted by the same color. Several scatter plot windows may be opened simultaneously.

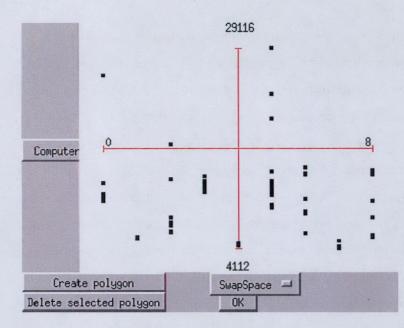


Figure 2. ParallAX scatter plot of the "Computer" number versus the "SwapSpace" variable of the example data set.

2.0 Visual Data Exploration

2.1 Getting Started

This is a good time to install *ParallAX* with all four of its directories: *Bmp*, *Dat*, *Ini* and *ParallAX*, into a separate directory. It may be helpful to prepare a data set for practice as we go through the paces. Call your data set any name you like and use the extension .dat, e.g., *testdata.dat*. The data set format is:

Comment – Write something about the data set to help your recall later on nvars = # Here write the number of variables ids = # Here write the labels (as short as possible) for the variables separated by blanks undefined_data = M # You can define any symbol here and use it consistently below data =

Data table is placed here. Each data item is in a row with blank (not tab) separated values. Missing data values are marked with M (or any other symbol to the right of the relation, "undefined_data =")

```
For example,

# This is a small data set with 5 variables, 2 data items, and 1 missing value marked by M

nvars = 5

ids = A B C D E

undefined_data = M

data =
```

1 4.4 M 17.5 .333 3 3.1 9 9.11 8.2

Input the data set into the "*Dat*" directory of *ParallAX*. From there double-click on the *ParallAX* icon and the *Main Window* should appear on the screen. Click "open" in the "*File*" menu and the list of the data sets in the *Dat* directory appears. Select a data set and press OK; a bunch of polygonal lines appear. *Do not let the picture intimidate*. Very soon you'll learn to discover quite a bit from it. This is done by means of queries which are commands selecting subsets of the data set. The simplest queries are defined by two arrowheads which may be placed anywhere in the main window (on the axes or between axes, depending on the query type). The colored polygonal lines lying between the arrows are those included in the query. From the *sEt-up* menu, the background may be changed to white (black is default), and the distance between the axes may also be changed. The default is "*Viewing the whole graph*." If there are many variables, the distance between the axes may be increased and then the graph may be "*scrolled*" using the slider under the axes labels. The *permutation* of the axes may be changed using the "*Permutation Editor*," whose button is iconized by a Rubik's Cube discussed later.

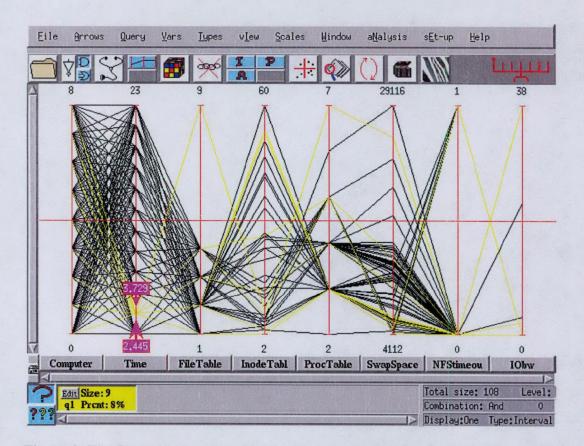
A query may be combined with other queries using set (Boolean) operators (union, intersection, and complement). Many complex queries can be constructed and displayed, either *one at a time* using the single "?" button (default) or *all at a time* with the "???" button on the lower left corner. From the *Query* menu above the button iconized by a stethoscope some or all of the queries may be deleted. To concentrate on the selected query, *isolate* it using the upper-half of the fourth button from the left. The *previous* state can be recovered with the lower-half button. Besides the queries, there are other features in addition to the *Automatic Classification Algorithms*.

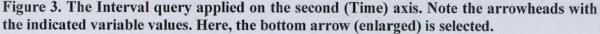
2.2 Queries

2.2.1 The Basics

ParallAX's three basic queries are:

• The *Interval* denoted by *I* – defines an *interval* range on a specific variable axis. The endpoints are selected delimiting the variable's values within the interval, and, in turn, the polygonal lines (data items) having these values.


- The *Angle* denoted by *A* defines an *angle* range between two variable axes, and, in turn, selects the polygonal lines having segments within this angle range.
- The *Pinch* denoted by *P* selects a subset of the polygonal lines *between* a pair of axes.


2.2.1.1 Interval Query

The *Interval* is the most frequently used query. It is activated by selecting its icon, *I*, on the tool bar and also selecting the desired variable axis. Placing the cursor on the axis and clicking the left mouse button causes down and up pointing arrowheads to appear. Each arrowhead is then dragged in the desired directions to specify the upper and lower end-points of the required interval. The polygonal lines, which are positioned within the specified interval, are selected. On each arrowhead the variable's value at that position is displayed next to it. This feature may be switched off using the *sEt-up* button (Hide Interval Limits). An example is shown on the second axis in Figure 3. To move a particular arrowhead, it is first selected by pointing at it with the cursor and pressing the left mouse button. When one arrowhead is selected, it is enlarged and the other becomes deselected. On occasion, it is useful to select *both* arrowheads. Pointing at the deselected arrowhead and pressing the right mouse button selects it. Once both arrowheads are selected, dragging on any of the arrowheads moves the whole interval while preserving its length. When a specific value is wanted for an interval end-point, the particular arrowhead is pointed at and the left mouse button is double-clicked. A dialogue box appears and the desired value is entered.

Within the query rectangle appear the query number (q#), and the percentage (% of the total) of the selected polygonal lines. The color of the query rectangle is the same as that appearing on the selected polygonal lines.

The "Query" pull-down menu (third position from the left) offers choices for query deletion and new query creation. New queries may also be added with the button iconized by a stethoscope. Having generated one or more queries, one may want to delete some of them. Clicking on the "*New query*" produces a new *current* query and an associated differently colored query rectangle. All the subsequent query commands will act on this and *not* on the previous queries.

2.2.1.2 Angle Query

One of the most valuable relations (correlations) among an adjacent pair of variables occurs when the corresponding portion (between the adjacent axes) of the polygonal lines are parallel (or almost parallel) segments; or those lines intersect (if at all) *outside the pair of adjacent parallel axes*. This, of course, is something that the user learns to "extrapolate" with practice.



Figure 4. The Angle query shown between the third and fourth axes. Note the selected polygonal lines (colored yellow) whose segments between those axes have the specified angle range.

From a basic result of the parallel coordinates methodology, it is known that this *pattern* corresponds to a *positive correlation* between the two variables. Among other reasons, the *Angle* query is provided in order to search for such parallel or nearly parallel lines. To activate it, the icon A is selected on the toolbar. Place the cursor on the centerline of the right axis, say X_{i_0} and click the left mouse button. Two arrowheads connected to the centerline of the left axis, X_{i-1} , appear and an example is shown between the third and the fourth axes in Figure 4. The selected arrowhead is moved to the desired angle. The same can be done, after selecting it, with the second arrowhead. This results in the coloring (i.e., selecting) of the polygonal lines whose segments between these two axes are within the specified *angle* range.

2.2.1.3 Pinch Query

The *Pinch* query is complementary to the *Angle* type, in the sense that it looks for the intersection points *between a pair of adjacent axes*. Reasoning geometrically, this *pattern* corresponds to *negative correlation* between the adjacent variables.

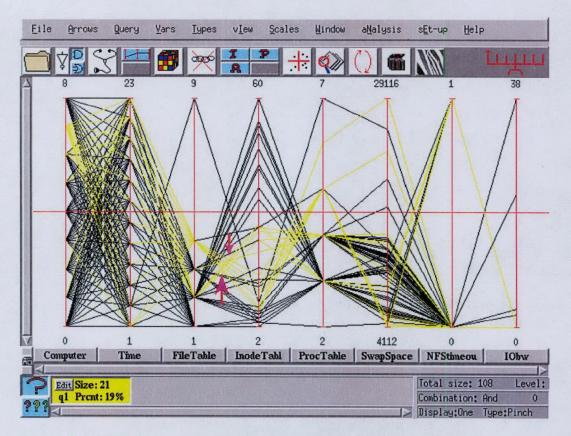


Figure 5. The Pinch query shown here between the third and the fourth axes.

As with the other queries, the **Pinch** is defined by two arrowheads that can, in principle, be located anywhere on the graph. Typically, the arrowheads are located between the adjacent axes, X_i and X_{i+I} . All of the polygonal lines whose segments between those axes (or the extension of the segments outside of those axes) that pass between the arrowheads will be included in the query, as in the example shown in Figure 5.

Although those queries may be activated (started) from the main window, they also appear on the corresponding scatter plots and may be manipulated from there by dragging a red square in the scatter plot. The arrowheads are represented in the scatter plots by lines (there is a basic point-to-line duality, or correspondence, between orthogonal and parallel coordinates). It is instructive to view those queries also in the scatter plot window. As an example, in Figures 6, 7, and 8, the scatter plot counterparts of the query types shown in the relative Figures 3, 4, and 5, are displayed (for different axes). Note that the axes labels have a button from which a different axis may be selected, thus changing the scatter plot.

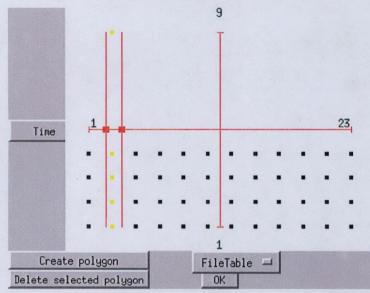


Figure 6. The Interval query on the scatter plot of FileTable vs. Time. Compare with Figure 3.

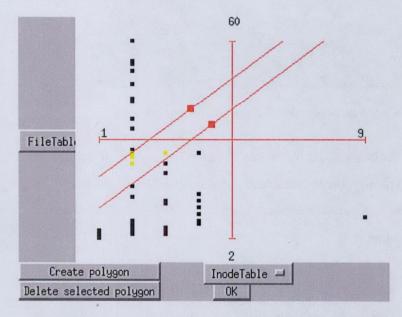


Figure 7. The Angle query on the scatter plot of InodeTable vs. FileTable. Compare with Figure 4.

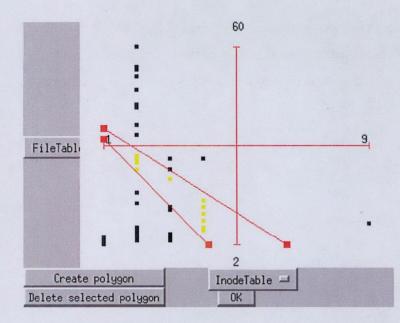


Figure 8. The Pinch query on the scatter plot of InodeTable vs. FileTable. Compare with Figure 5.

2.2.2 More Queries

2.2.2.1 Polygon

Another very useful query is the *Polygon* that is activated and operated only on a scatter plot. The polygon is specified by sequentially marking (clicking) with the cursor the vertices in the scatter plot (there are no restrictions and the polygon may have as many vertices as needed and may be convex or not). The construction of the polygon commences after the "*Create Polygon*" button is selected. All the points inside the polygon are included in the query, and the polygon may be moved after its creation, either all of it or a particular vertex (chosen by the user), by selecting and dragging any of the vertices. This query is especially useful when there are points which cannot be picked conveniently by means of the other query types (see the example in Figure 9). The polygon may be deselected with the lower button and deleted with the "*Delete Query*" option of the Query menu.

2.2.2.2 Complex Queries

A single query defines a subset of the data elements. A complex query is the result of combining a set of queries by means of the set (Boolean) operations: union (\cup) , intersection (\cap) , and complement. The corresponding operator buttons, appropriately iconized, (as digital

electronic Boolean operators), appear in the second position from the left on the toolbar. The complement (or negation) is relative to the data elements displayed when the query atom is defined; i.e., if the set of data elements included in the original query is denoted by *A*, and the

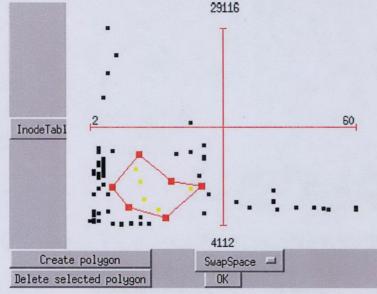


Figure 9. The Polygon query.

set of displayed data elements is denoted by P, then the complemented query, \overline{A} , will be defined as:

$$A = P \setminus A = \{ a_i \mid a_i \in P, a_i \notin A \}$$

$$(11)$$

To define a complex query, the desired set operation must first be selected (the and, \cap , operation is the default). To construct the *complement* of a query, the negation operation is selected *before* the query is constructed. For the next query, **ParallAX** will apply the existing combination of the selected buttons (union, union + negation, intersection, or intersection + negation). So be careful with this; it requires care. A very useful option is the construction of multidimensional intervals or a "multidimensional box." Select the appropriate axes buttons and also the interval, *I*, button. Place the cursor at any of the selected axes and click the left mouse button; pairs of arrowheads will appear on *all* of the selected axes. Dragging any one of the arrowheads causes all of the arrowheads pointing in the same direction to move simultaneously.

2.3 Supplementary Operations

ParallAX has additional operations to help the exploratory data and analysis which act on the axes, the display, or portions of the Graph.

2.3.1 Inverting Axes

This operation is complementary to the Angle query that searches for groups of polygonal lines that (nearly) intersect *outside* a pair of axes (i.e., clusters having a positive correlation for a particular pair of variables). The intersections may be quite distant and difficult to spot. By contrast intersections *in between* a pair of axes are much easier to notice. *Inverting* one of the adjacent axes (i.e., interchanging the minimum and maximum of the variable) reverses the situation, that is, the distant intersections now appear as intersections between the axes and vice versa. Such clusters of polygonal lines can now by picked with the *Pinch* operation. To carry out this operation, the axis to be inverted is selected and the "*Flip axes*" button (iconized third from the right) is clicked and has its minimum and maximum values marked in red (see Figure 10).

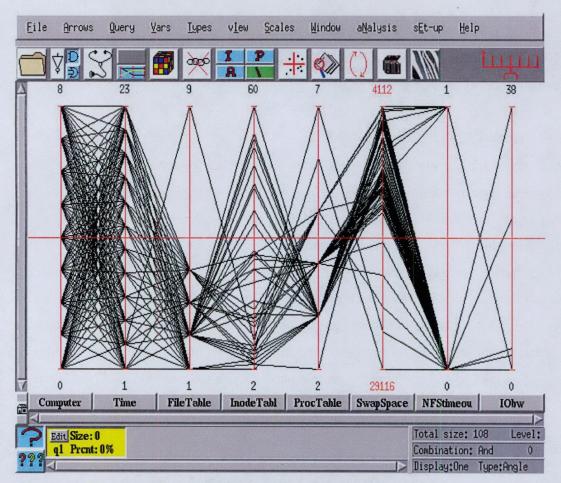


Figure 10. The ||-coords graph with one inverted axis (SwapSpace).

2.3.2 Permutations

Even though mathematical relations have clear patterns (see Bibliography) which are easily recognized by their regularity (see any elementary paper on \parallel -coords), the graph of most data sets do not look terribly "regular." However, patterns between adjacent axes are the easiest to discover. In order to discover all possible pair-wise patterns, it is not enough to look at the \parallel -coords graph in the form that it first appeared. Rather all of the possible adjacencies need to be inspected. It is possible to change the order of variables in a very efficient way. *ParalLAX* allows the user to chose about N/2 (actually $\lceil N / 2 \rceil$), where N is the number of variables, cleverly constructed permutations which *contain all possible adjacencies*, and these are automatically provided. Click the Rubik's cube button, the fourth from the left icon, and those permutations are listed on the upper right window. It is a good idea to view the data with each one listed, and then construct, by means of the permutations editor there, a *customized*

permutation containing the axes adjacencies of choice. Of course, a particular axis can be included more than once and in any position. If it is desired to view as adjacent a particular pair of variables, then enter that pair in the lower left editor window and a permutation is displayed where the required adjacency appears and the remaining variables are randomly ordered.

2.3.3 Isolate/Previous/Scale

After defining a query (or a set of queries), the user may wish to concentrate on the selected data items (i.e., polygonal lines). As already mentioned, in order to do that, clicking the top half of the fourth button from the left may isolate the current query. This yields a new graph containing only the data selected by the previous query. The graph is displayed with the values of the minima and maxima of the variables in the previous graph (before isolation). In order to update the minima and maxima of the new graph, which enlarges the space used by the graph, the user may choose *Scales* from the menu. Clicking on the button below *Isolate* returns to the *Previous* state.

2.3.4 Relative Complement

A query defines a subset of the data elements. When two or more queries have been defined, two or more subsets of elements have been specified. The user may wish to use set operations, such as the union (\bigcirc) , intersection (\cap) , or relative complement (\), to operate on the queries (sets). The use of the union and intersection operations has already been described (see *"Complex Queries"*). The *"Relative Complement,"* iconized by \, is a specialized and advanced query. When choosing this function, *ParallAX* displays the list of all of the possible

combinations $\binom{2}{2}$ possible combinations). The user chooses one of them, and a new query is

defined which is the set difference of the 2 queries chosen; i.e., if the first query is denoted by Q_A and the second query is denoted by Q_B , the resulting query, denoted by Q_R , is:

$$Q_R = Q_A \setminus Q_B = \{ a_i \mid a_i \in Q_A, a_i \notin Q_B \}$$
(12)

The new query is not directly composed of basic queries or polygons and it depends on the two other queries.

2.3.5 Zooming

When we want to view a portion of the graph in greater detail, a rectangular portion of the graph can be isolated and enlarged by means of the "*Zoom*" button, iconized by a magnifying glass. An example is shown in Figure 11.

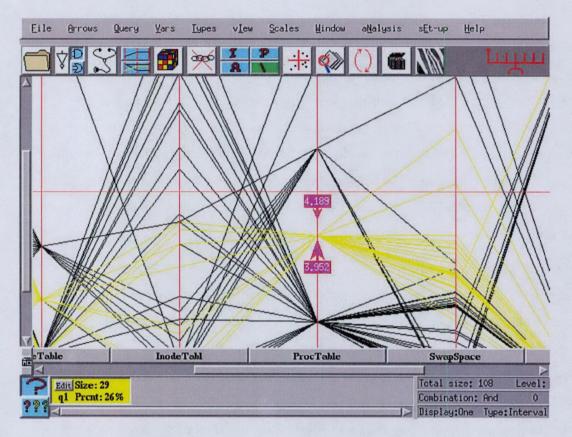


Figure 11. The Zoom function.

2.3.6 More Supplementary Operations

- Save as (from the "File" menu). It is possible to save, in the Dat directory, a subset of the data set by a separate name. This can be done by isolating the data set and using the "Save as" option from the File button. A dialogue box appears. Enter a file name with the .dat extension and the file is saved.
- Select off screen arrows (from the "Arrows" menu). Pointing at it and clicking the left mouse button selects an arrowhead. At times, arrowheads get off the screen. In order to delete them, they need to be selected first by means of this function.

- Delete selected arrows (from the "Arrows" menu). One may select, or delete, as many arrowheads as desired. If both of the arrows of a query are deleted, then the whole query is deleted. If only one arrow is deleted, then the query remains unbounded on that side, and all of the data elements found lower or higher than the remaining arrow are included in the query. This is a good way to delete a query, when many queries are operating on the data, without destroying other queries that may be present.
- New query (from "Query" menu) A new query rectangle is added and becomes the current query.
- *Clear current query (from "Query" menu)* All of the displayed queries are cleared: all arrowheads are deleted and the polygonal lines receive their original color. So, make sure that this is what you want before using.
- Delete variable (from the "Vars" menu) If the user presses some variable(s) button(s), and then chooses this function, the selected variable(s) are deleted from the display. This is equivalent to choosing the current permutation without the chosen variables. This can be very useful when there are many variables.
- *Find variable (from the "Vars" menu)* In a data set with a large number of variables, it is hard to find variables by their names. *ParallAX* comes to the rescue. Choose this from the *"Vars"* menu and a list of variables in alphabetical order appears. Choose the desired variable, and on the *Graph* the corresponding axis button is shown selected (i.e., depressed).
- Show one query / Show many queries The user may choose to see a single query or many queries simultaneously by selecting "?" or "???" respectively in the lower left hand corner. When "?" is selected, and there are several queries, the active query is chosen by selecting the appropriate query rectangle. Viewing many queries in large data sets still may cause some problems with the query colors; hopefully it will be fixed soon, so some care should be exercised.

The Vars menu contains a number of useful functions.

- When there are a large number of variables, it is tedious searching for individual variables. Clicking on *"Find Variable"* produces the list of variables alphabetically. Selecting the desired variable in the list selects the axes button of this variable. By the way, this renders that variable axis ready to operate on with the *Interval Query*.
- 2. At times it is useful to know the *order* in which the data appears in the data table. Clicking on the "*Add Index Variable*" produces a dialog box where the name of the new variable can be specified. The variable then appears at the right end of the graph and has as the value of each data item its position (rank) on the data table at input.
- 3. On occasion the user wants to designate a subset of the data set into a separate category. In such a case, the "*Add Categorical Variable*" 3rd entry on the menu is invoked and given whatever name is desired. The new variable then appears on the right hand end of the graph with the designated subset assigned the category value 1 while it's complement takes the value 0. Further subdivisions of the data set can be assigned other category values using the "*Set Category*" option on the menu.
- 4. One or more variables can be omitted from the graph by selecting the variable buttons and then invoking the "*Delete variable(s)*" options.

2.4 Preprocessing

Some operations may be used for *preprocessing* to provide the user with insights on the structure of a data set easily and early in the analysis process. Then, the data items or variables that seem superfluous, and whose presence may obscure the information, can be eliminated. In fact, such elimination plays an important part in focusing on the desired information.

2.4.1 Zebra

Zebra (banding) is a multidimensional contouring operation. It is designed to portray easily variations in *all* of the variables due to variations in one variable. To operate this function, select the axis of the desired variable and the "Zebra" button iconized in the last (most right) position of the toolbar. In the dialogue box that appears, enter the number of intervals. The selected axis is then divided into equal length intervals. It is a good idea to start with 2, view the result and then increase the number. The polygonal lines ranging in each interval are colored by a different color. The result of this operation is a contoured view of the data, highlighting different aspects, especially dependencies, intersection points, data clusters and extreme points and others. It can

also point out areas with high density and reveal periodic events. An example of Zebra results is shown in Figure 12.

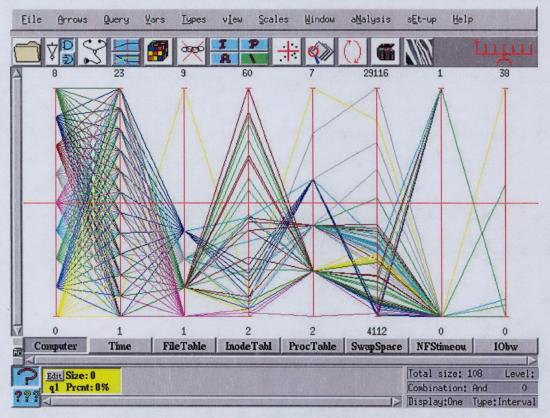


Figure 12. An Example of the "Zebra" function applied with 7 subdivisions on the Computer Axis (1st from the left).

2.4.2 Outliers

This is an automated algorithm suited to large data sets having a number of outliers. In general, application of this algorithm is recommended only for expert users (which, of course, you will soon be). It is a good idea to study the outliers of a data set and try to determine the reason that they are outliers. On the other hand, outliers determine the display scale and removing them enlarges the scale for the remaining data. This allows for the observation of patterns that may be hidden by the high density of data. It is really best to manually remove the outliers after examining each one of them. A convenient place to start eliminating data is close to the limits of the axes. Points near the limits and far from the large mass of data are good candidates for elimination.

The *Outliers* function starts an iterative algorithm that performs this task. The user may supply some parameters to the algorithm, or leave their default values. The parameters are:

- The maximum (relative) number of outliers (the default is 5%). If the algorithm reaches this value, it will stop searching fore more outliers.
- A factor, whose default value is 6, which influences the distances between elements on an axis; considered by the algorithm as a starting point for the outliers search.
- A divider (whose default value is 10) indicating the length of a segment on the axis. If we denote the divider by *d* and the axis length by *l*, the algorithm will ignore outliers whose distance to the closest element (non-outlier) is less than l/d.

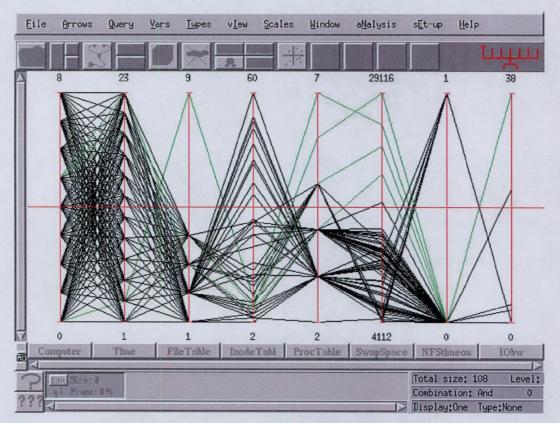


Figure 13. The result of the Outliers operation (before user approval).

The algorithm starts looking for outliers from the leftmost variable in the displayed permutation to the right. After finding all of the outliers on an axis, it passes to next axis, until the last one in the permutation is reached. Then, it starts again from the first axis, and so on. The algorithm stops when the maximum relative number of outliers is reached, or, if that does not happen, when it does not find any more outliers after passing on all of the variables in the permutation. After that, it displays all of the outliers found highlighted (colored in green) and waits for the user to approve this. The user may not approve of the choice, retaining the current graph. Otherwise, the algorithm issues an Isolate operation and displays the graph without the outliers. Even in this stage, there is a possibility to return to the previous graph, by performing the previous operation. The example shown in Figure 13 is the result of the Outliers function applied to the demo data set, with the default parameters, before the actual removal of the outliers (i.e., before the user approved it).

3.0 Automated Classification

Even though the Visual Exploration is fun and effective, it requires time and skill. Hence, the most frequent and insistent requests have been for automation of at least some of the discovery process. Some of the functions we have already presented have, of course, elements of automation. It was recently discovered that it is possible to do *automatic classification* (patent pending) effectively based on \parallel - coords. Given a data set, **P**, and a subset, **S**, a rule is sought that distinguishes elements of S from the others. Obviously, we would like this to be as accurate and efficient as possible. This is the basic classification problem and it can be directly generalized to the case where there are a number of subsets (also called *categories*) that need to be distinguished from each other. There are important trade-offs between the rule's complexity and precision. In our case, we are able to state the rule precisely (unlike the "learning" of "black boxes") as well as visually. This as we will see, turns out to be very helpful. In addition, our algorithms find the minimal subset of the variables needed to state the rule and order these variables according to their information content. The basic idea of our algorithms is geometrical and it entails the construction of a (hyper) surface that contains as many of the points of S and as few of the points of **P-S** (the complement of **S**). This brings up the important matter of measuring the precision of the rules obtained by our classifiers. We discuss this later on. There are three classifiers and they are found by clicking the "Classifier" menu's first line.

3.1 Wrapping

The simplest approach to geometrical classification is to *wrap*, in some efficient way, the points of S and then state, in as simple a way as possible the rule (which is actually the description of the wrap – an approximation of a convex surface). The algorithm, even at the expense of some

precision, further simplifies the description of the wrap. The rule is stated in terms of conditions on the variables needed to *fully* state the rule. Also these variables are optimally ordered (in terms of their information content). To apply this and any of the other classifier algorithms, the subset S needs to be specified and used as the input. In many data sets, there are one or more variables that specify various categories or classes. In that case, using the interval query isolates a specific category. Otherwise S is defined by means of the queries. When this is done, choose "Wrapping" from the Classifiers menu. The "Select axes" dialog box appears and provides an important choice; namely, to choose the variables in terms of which we would like to have the rule stated (think of the many applications where this is essential). We can "Select all" with the button and then skip the ones we want to skip. If the subset S is specified in terms of interval queries only, be sure to deselect those variables at this stage or the rule is likely to be a trivial restatement of the defining conditions. Click the OK button and the "Classifier summary" appears with the expression with the *approximate* conditions for the rule as well as the percentages of the misclassification for the "Training phase" (see below). That is, "False positives" refer to those data items in **P-S** that were misclassified as belonging to S, while "False *negatives*" are data items in S that were misclassified as *belonging* to S. If those errors are small, then this rule may suffice. Still, look in the Graph where the last query displayed contains all of the elements of S and the "False positives." The variables needed to state the rule are displayed first with arrowheads in the suggested order of their importance. It is possible to save the rule and to apply it to another data set. To do so, select the "Save classifier" option and give the rule a name in the dialog box that appears; click OK and the rule is saved in the Data directory. To apply it again on another set of data S', which is already displayed in the graph, select the category variable on which the rule is to be applied and also select the "Apply classifier" to chose the rule from the list. The result has the format already described.

As an example, we can see in Figure 14 an Interval query on the axis INodeTable. After performing the wrapping algorithm on all of the axes except for the INodeTable, the resulting query and permutation are shown in Figure 15 and the difference in Figure 16.

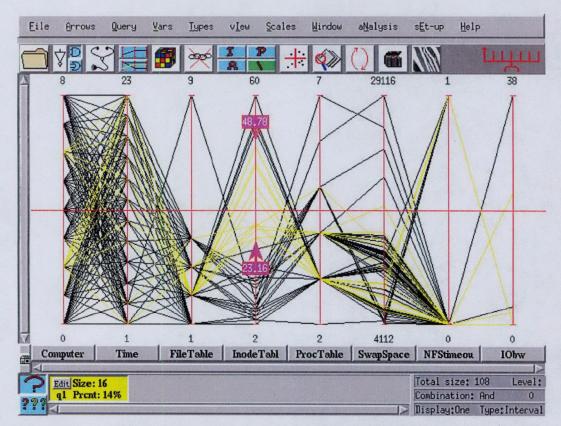


Figure 14. An Interval query defining the input set in the Wrapping operation.

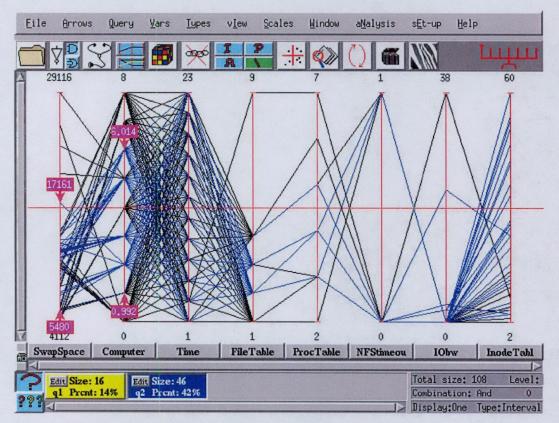
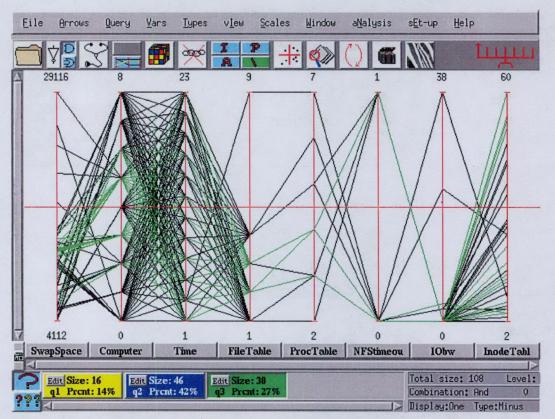
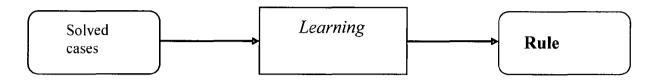
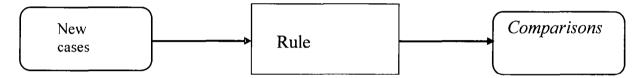


Figure 15. The result of the Wrapping operation.




Figure 16. Set of "unwanted" elements by the Wrapping operation (obtained using the relative complement, "\").

3.2 The Classification Process


ParallAX includes two very advanced classifiers: the "*Nested Cavities*" *NC* and "*Enclosed Cavities*" *EC*. Compared with 23 other well-accepted classifiers, as applied to some benchmark data sets, *in all cases*, they were the most accurate. Also, they are computationally very efficient. The classifiers exploit the inherent property of this tool, visualization, as well as the computational advantages of the ||-coords methodology. The classification results are displayed graphically on the screen giving the analyst the ability to *understand* the results. The ability to visualize the rules is lacking in many other classifiers.

The classification problem arises in a variety of fields and can be divided into two phases. In the *training phase*, the classifier "*learns*" to discriminate between classes using a data set called the training data, consisting of solved cases having samples associated with correct classification. The output of the classifier in our case is a *rule*, which is based on the solved cases. Then, there

is the *testing phase*, where the rule is applied to a new data set and the results it provides are compared to the known correct cases. Figure 17 illustrates the classification process in general.

a) The training phase.

b) The testing phase.

Figure 17. The classification process.

3.2.1 Analyzing the Errors

For the classes designated as "positive" and "negative," the error committed when predicting a positive sample as negative is called a *"false negative*" and the error committed when a negative sample is predicted positive is called a *"false positive*." The error rate of these two types of misclassification is calculated based on the following equations:

False positive error ratenumber misclassified positive cases
number of negative casesFalse negative error rateanumber misclassified negative cases
number of positive cases

Keep these formulae in mind when examining the error rates given by the classifier.

3.3 Nested Cavities Classifier – NC

This new classifier is based on an iterative top-down process of creating a (hyper)surface containing as many points of the designated subset, S, and as few points of its complement, P-S. The algorithm involves creating an exterior wrap, then constructing and removing a wrap containing all the unwanted points (and some of the wanted ones), then returning a smaller wrap with the wanted points (and some of the unwanted ones) creating a fine nesting of cavities which provide an increasingly more precise approximation for the desired subset, S. If this process converges, and it does NOT always converge, then the result (i.e., the approximate description of the (hyper) surface) is the rule, which can be quite complex. Again it is stated as conditions on the variables needed for the classification. The queries that add points have an even number while those that remove points have an odd number (except for the first one which contains the class elements). To apply the NC, select the class on which the rule is to be defined, choose "Nested Cavities" from the Classifiers menu, select the variables as for Wrapping, limit the number of iterations allowed (100 is default) and then press OK. In the beginning, especially for large sets, it is worth picking a smaller number of iterations, and if convergence looks likely, then remove the iteration restriction. A great deal can be learned from studying the classification rule. Notice the leading list of variables occurring in the successive iterations. Those who tend to occur consistently or most frequently are the most important and there are other clues that come with experience. An example of the spectacular results that may be obtained is shown in Figures 18 and 19. The classifier was applied to a data set with 32 variables and 2 classes shown in Figure 18. It is sought to find a rule to distinguish elements of class 1 from its complement class 2 whose elements are colored black. Notice how interwoven the two classes are as shown in the scatter plot of the first 2 variables shown in Figure 18. The result is displayed in Figure 19. The *NC* is the one used most frequently, as it tends to be more successful.

3.4 Enclosed Cavities Classifier – EC

On occasion, when the NC does not give satisfactory results, it is worth applying the next classifier EC. Basically, classification using the EC is based on obtaining an exterior wrap of the wanted data points. Then, removing the unwanted points with cavities that *do not contain any of the wanted points*. The result is something akin to "Swiss cheese." The operation is the same as for NC with the EC tending to be slower especially for large data sets. It is advised to use the

default settings of the 2nd dialog box until enough experience has been obtained to make judicious choices.

3.5 Error Analysis

Once a rule is obtained, it is possible and desirable to assess its precision. Two ways are provided and they are accessed from the "*Check Classifier*" option of the Classifier menu.

3.5.1 Train-and-Test

This is the most frequently used method. The data is randomly split in two. The usual proportions are either 2/3 or 1/2 for training, i.e., deriving the rule, and applying the rule (i.e., testing) on the remainder. The actual portion chosen for training is prescribed in the dialog box. Then the classifier used is chosen (Note: *Extended Cavities* and *Wrapping with Cavities* are synonyms for *NC* and *EC* respectively). Make sure to use the same list of variables and iterations as used in the derivation of the rule.

3.5.2 Cross Validation

Here all of the data set is partitioned in a number of subsets and split randomly for training and testing. This gives a better error estimate than Train-and-test but also takes much longer.

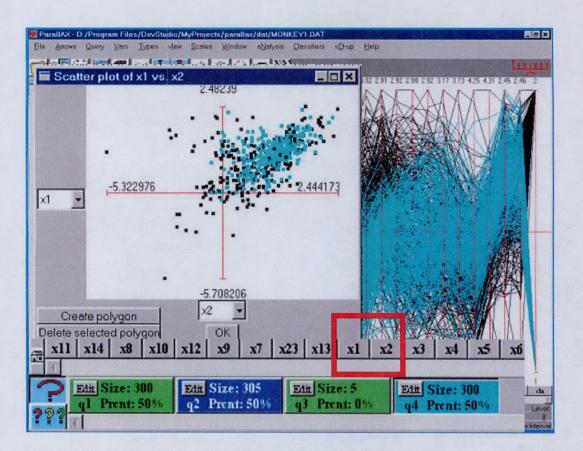


Figure 18. A real data set with 32 variables and 2 classes (categories) – the rule is sought for class 1 shown in color. The complement class 2 is shown in black. In the insert is the scatter plot of the first 2 variables in the permutation on input. An effective classification should lead to a physical separation of the 2 classes.

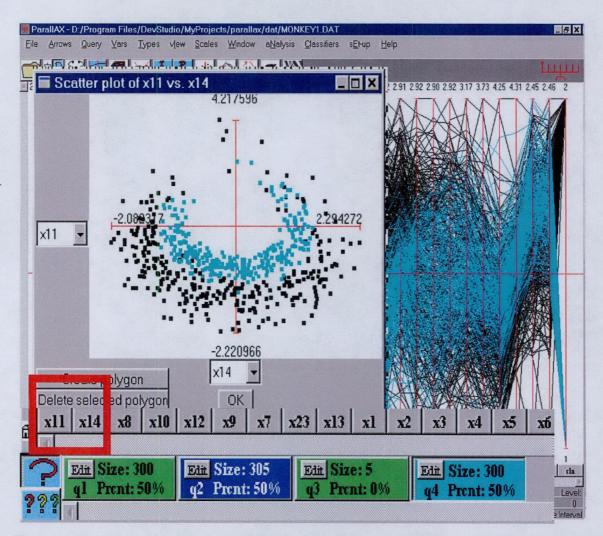


Figure 19. Above are seen some of the results obtained by the NC classifier. It turns out that only 9 of the variables are needed to specify the rule. They are placed up front sorted according to their information content. In the insert is the scatter plot of the first two variables showing a remarkable separation. Viewing the remaining scatter plots of the variables shown in the list provides a "road map" to actually seeing the RULE as represented by a 9-dimensional hypersurface embedded in the 32-dimensional space of the original data set.

The reader is requested to send any questions or comments to

A. Inselberg aiisreal@math.tau.ac.il

or mail to:

MDG Ltd

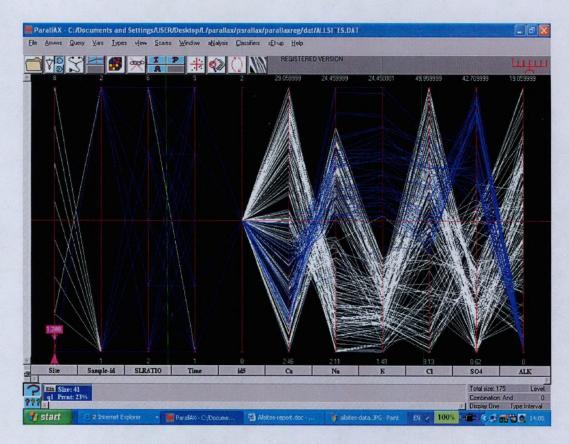
36A Yehuda Halevy Street

Raanana 43556, ISRAEL

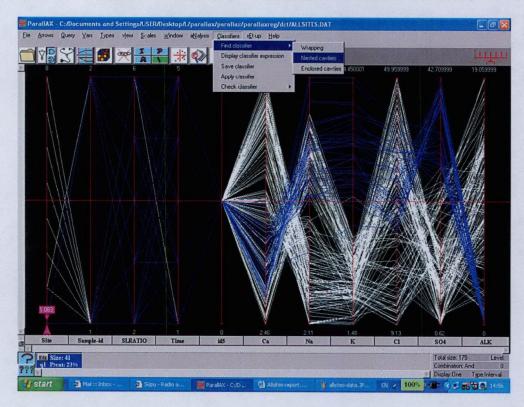
Tel/FAX: 972 - 9 - 771 - 9726

Thank you for using ParallAX!

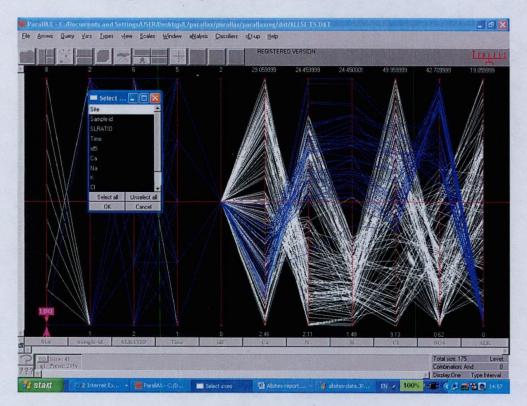
Appendix B

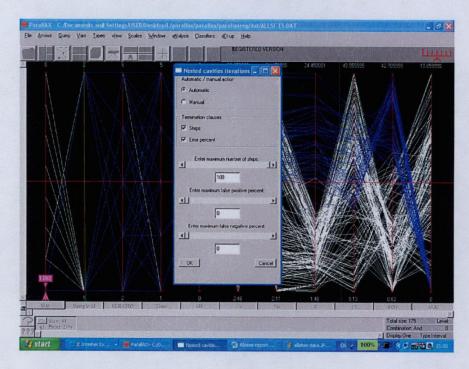

.

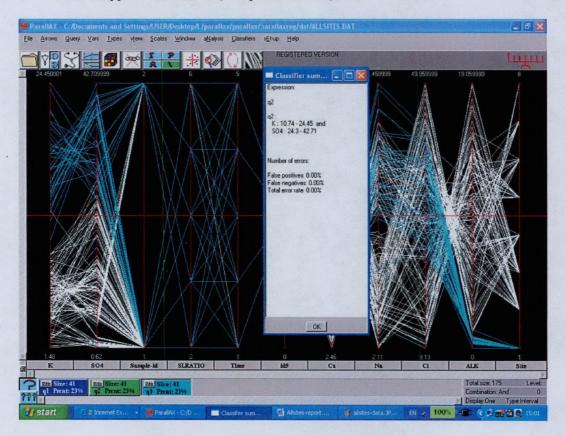
Classification Examples



The following is an example using the data set, Allsites.dat.

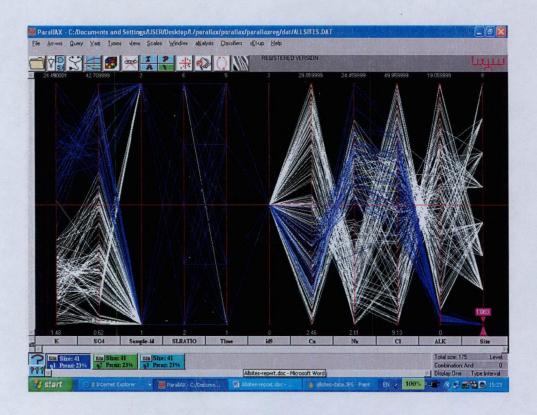

Above is the full data set; there are eight sites considered as the "classes" for classification.

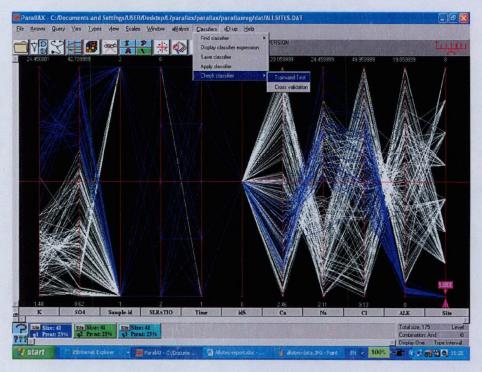

Site one is selected and is the input to the classifier.

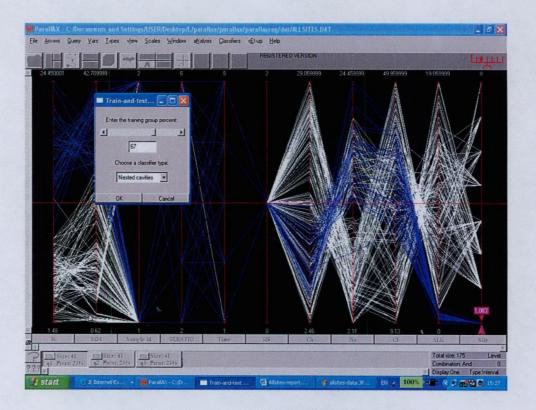


The "Classifiers" button is selected by the cursor and then the "Nested Cavities" is chosen, which is the most powerful algorithm (there are 3).

This window appears. Click on "Select All" and deselect "Sites," which is the class variable. Then click OK.

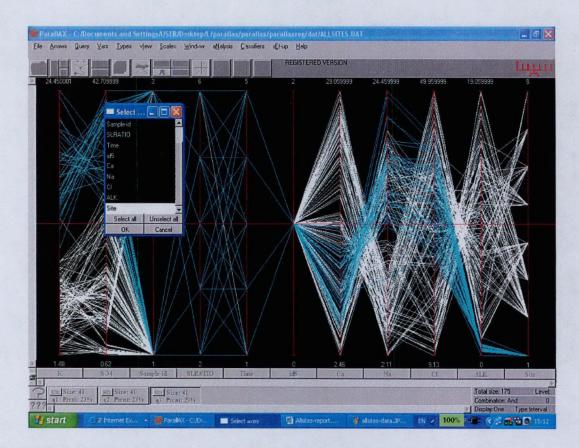

The next box appears; click OK (accept the default).

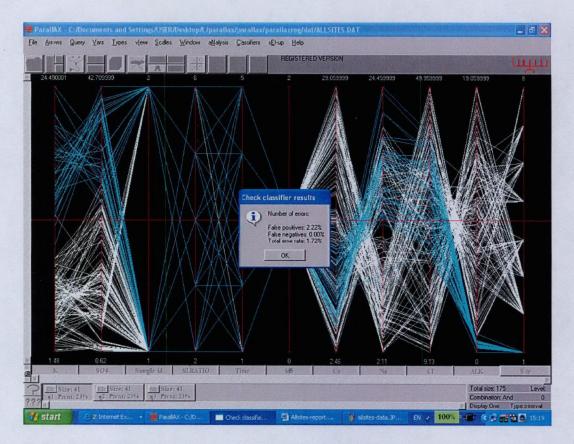

The classification result is in the above window. The rule distinguishing Site 1 from the rest is:


K: 10.74 - 24.45 and SO4: 24.3 - 42.71.

Those are the ranges for K and SO4. Note that the axes order is changed, with K being first (K is the best single predictor), SO4 being second and Site (the class variable) being last. Next, the rule's precision is tested.

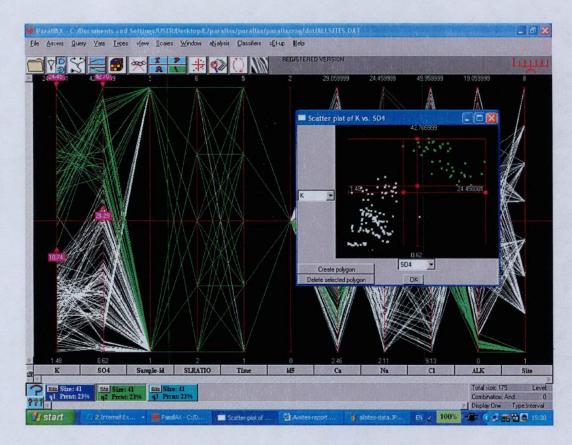
From the boxes on the bottom left, select the BLUE (leftmost) box.



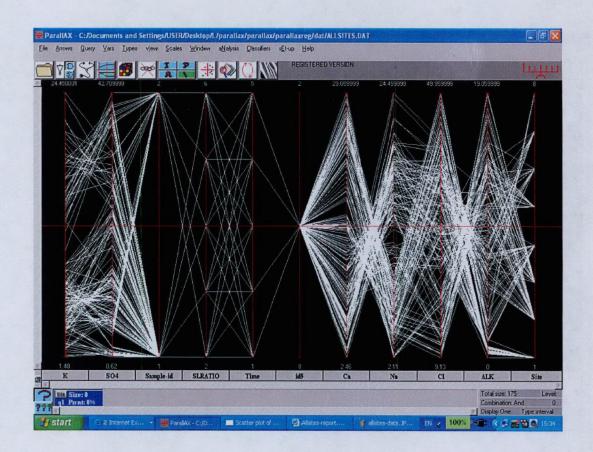


Click on "Classifiers," then (at the bottom) "Check Classifier" and then choose "Train-and-Test."

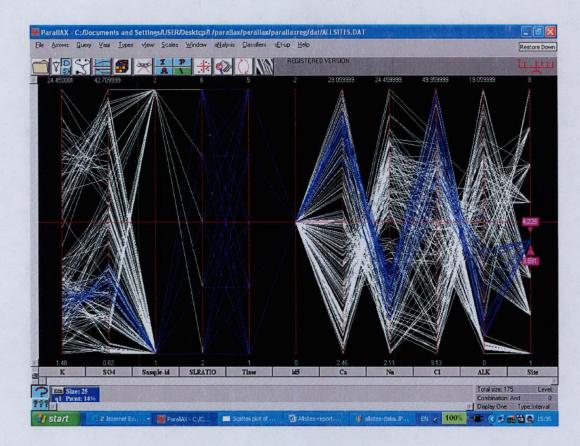
In the box which appears next, input 67 (chooses at random 67% of the data) and pick "Nested Cavities" (for the classification algorithm). A rule is then constructed based on 67% of the data, which is then tested on the remaining 33% of the data; click OK.

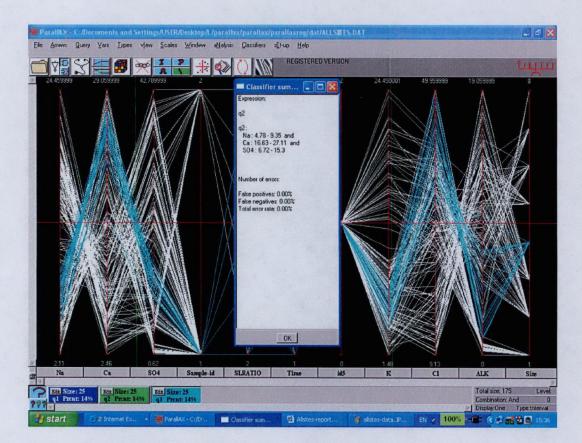


Again, "Select All" and deselect "Site," which is now at the end of the list; click OK.

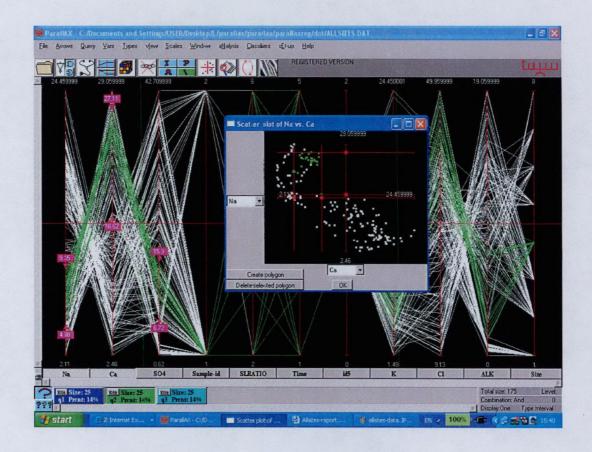


In the above window is the answer in percent of false positives, false negatives and the (weighted) average error. A high false negatives indicates that the sample is too small for a reliable rule.


Click OK and then click on the second GREEN box at the bottom left. Then click the scatter plot button on top to obtain the K vs. SO4 plot and visually see the result of the classification. Data from Site 1 is colored GREEN and is separated from the rest of the data.


Go to the Query button on top and "Delete all queries"; the following display is next.

Repeat the classification for any other site. Here, Site 4 is chosen (the last axis).


The above window is obtained.

The rule distinguishing Site 4 from the others is:

Na: 4.78 - 9.35 and Ca: 16.63 - 27.11 and SO4: 6.72 - 15.3.

The error is 0% and the plot of the first two variables is in the next window.

Appendix C

Benford's Law

(Available in pdf version only)

Bibliography

- Agullo, J., "Exact Algorithms to Compute the Least Median of Squares Estimate in Multiple Linear Regression," in L1-Statistical Procedures and Related Topics, ed. Dodge, Y., Institute of Mathematical Statistics, Hayward, CA, 1997, pp. 133-146.
- Alqallaf, F.A. Konis, K.P., Martin, R.D., and Zamar, R.H., "Scalable Robust Covariance and Correlation Estimates for Data Mining," In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Edmonton, 2002.
- Ammann, Larry P., "Robust Principal Components," Communications in Statistics Simulation and Computation, 18, 1989, pp. 857–874.
- Andersen, R., Modern Methods for Robust Regression, Sage Publications, Thousand Oaks, CA, 2007.
- Anderson, T.W., An Introduction to Multivariate Statistical Analysis, Wiley-Interscience, Third Edition, July 11, 2003.
- Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H., and Tukey, J.W., Robust Estimates of Location, Princeton University Press, Princeton, NJ, 1972.
- Appa, G.M., and Land, A.H., "Comment on 'A Cautionary Note on the Method of Least Median of Squares' by Hettmansperger, T.P. and Sheather, S.J.," The American Statistician, 47, 1993, pp. 160-162.
- Atkinson, A.C., "Fast Very Robust Methods for the Detection of Multiple Outliers," Journal of the American Statistical Association, Vol. 89, No. 428, December, 1994, pp. 1329-1339.
- Atkinson, A.C. and Mulira, H.M., "The Stalactite Plot for the Detection of Multivariate Outliers," Statistics and Computing, 1993, (3), pp. 27-35.
- Atkinson, A., and Riani, R., Robust Diagnostic Regression Analysis, Springer-Verlag, NY, 2000.
- Atkinson, A.C., and Weisberg, S., "Simulated Annealing for the Detection of Multiple Outliers Using Least Squares and Least Median of Squares Fitting," in Directions in Robust Statistics and Diagnostics, Part 1, eds. Stahel, W., and Weisberg, S., Springer-Verlag, NY, 1991, pp. 7-20.
- Balakrishnan, N., and Kannan N., "Variance of a Winsorized mean when the sample contains multiple outliers," Communications in Statistics Theory and Methods, 32, 2003, pp. 139–149.
- Barndorff-Nielsen, O., "Exponential Families," in Encyclopedia of Statistical Sciences, Vol. 2, eds. Kotz, S., and Johnson, N.L., John Wiley and Sons, NY, 1982, pp. 587-596.

Barnett, V., and Lewis, T., Outliers in Statistical Data, 3rd ed., John Wiley and Sons, NY, 1994. Beckman, R.J., and Cook, R.D., "Outliers," Technometrics, 25, 1983, pp. 119-114.

- Belsley, D.A., Kuh, E., and Welsch, R.E., Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, John Wiley and Sons, NY, 1980.
- Bernholt, T., "Robust Estimators are Hard to Compute," 2006, Technical Report Available from (http://ls2-www.cs.uni-dortmund.de/bernholt/ps/tr52-05.pdf).
- Bernholt, T., and Fischer, P. "The Complexity of Computing the MCD-Estimator," Theoretical Computer Science, 326, 2004, pp. 383-398.
- Bickel, P.J., "On Some Robust Estimates of Location," The Annals of Mathematical Statistics, 36, 1965, pp. 847-858.
- Bickel, P.J., "One-Step Huber Estimates in the Linear Model," Journal of the American Statistical Association, 70, 1975, pp. 428-434.
- Butler, R.W., "Nonparametric Interval and Point Prediction Using Data Trimming by a Grubbs-Type Outlier Rule," The Annals of Statistics, 10, 1982, pp. 197-204.
- Butler, R.W., Davies, P.L., and Jhun, M., "Asymptotics for the Minimum Covariance Determinant Estimator," The Annals of Statistics, 21, 1993, pp. 1385-1400.
- Cambanis, S., Huang, S., and Simons, G., "On the Theory of Elliptically Contoured Distributions," Journal of Multivariate Analysis, 11, 1981, pp. 368-385.
- Campbell, N. A., "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Applied Statistics, 29, 1980, pp. 231–237.
- Caroni, C., "Outlier detection by robust principal components analysis," Communications in Statistics Simulation and Computation, 29, 2000, pp. 139–151.
- Caroni, C., and Prescott, P., "Sequential Application of Wilks's Multivariate Outlier Test," Applied Statistics, 1992, 41, No. 2, pp. 355-364.
- Carroll, R.J., and Welsh, A.H., "A Note on Asymmetry and Robustness in Linear Regression," The American Statistician, 42, 1988, pp. 285-287.
- Cattell, R.B., "The Scree Test for the Number of Factors," Multivariate Behavioral Research, 1, 1966, pp. 245-276.
- Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P., Graphical Methods for Data Analysis, Duxbury Press, Boston, 1983.
- Chatterjee, S., and Hadi, A.S., Sensitivity Analysis in Linear Regression, John Wiley and Sons, NY, 1988.
- Chatterjee, Samprit, and Martin Machler, "Robust regression: A weighted least squares approach," Communications in Statistics — Theory and Methods, 26, 1997, pp. 1381–1394.

Chen, C.H. and Hardie, W., Handbook of Data Visualization, Springer, Berlin, 2008, pp. 643-680.

- Coakley, C.W., and Hettmansperger, T.P., "A Bounded Influence High Break Down Efficient Regression Estimator," Journal of the American Statistical Association, 84, 1993, pp. 872-880.
- Cook, R.D., "Deletion of Influential Observations in Linear Regression," Technometrics, 19, 1977, pp. 15-18.
- Cook, R.D., and Critchley, F., "Identifying Outliers and Regression Mixtures Graphically," Journal of the American Statistical Association, 95, 2000, pp. 781-794.
- Cook, R.D., and Hawkins, D.M., "Comment on 'Unmasking Multivariate Outliers and Leverage Points' by P.J. Rousseeuw and B.C. van Zomeren," Journal of the American Statistical Association, 85, 1990, pp. 640-644.
- Cook, R.D., Hawkins, D.M., and Weisberg, S., "Exact Iterative Computation of the Robust Multivariate Minimum Volume Ellipsoid Estimator," Statistics and Probability Letters, 16, 1993, pp. 213-218.
- Cook, R.D., and Wang, P.C., "Transformations and Influential Cases in Regression," Technometrics, 25, 1983, pp. 337-343.
- Cook, R.D., and Weisberg, S., Residuals and Influence in Regression, Chapman & Hall, London, 1982.
- Croux C, Filzmoser P, and Oliveira M.R., "Algorithms for Projection-Pursuit Robust Principal Component Analysis," Chemometrics and Intelligent Laboratory Systems, 2007.
- Czorgo, S., "Testing for Normality in Arbitrary Dimension," The Annals of Statistics, 14, 1986, pp. 708-723.
- Davies, L., and Gather, U., "The Identification of Multiple Outliers," Journal of the American Statistical Association, 88, 1993, pp. 782-792.
- Davison, A. and Hall, P., "On the Bias and Variability of Bootstrap and Cross-Validation Estimates of Error Rate in Discrimination Problems," Biometrika, Vol. 79, No. 2, June, 1992, pp. 279-284.
- DeCarlo, L.T., "On the Meaning and Use of Kurtosis," Psychological Methods, Vol. 2, No. 3, 1997, pp. 292-307.
- Devlin, S.J., Gnanadesikan, R., and Kettenring, J.R., "Robust Estimation and Outlier Detection with Correlation Coefficients," Biometrika, 62, 1975, pp. 531-545.
- Devlin, S.J., Gnanadesikan, R., and Kettenring, J.R., "Robust Estimation of Dispersion Matrices and Principal Components," Journal of the American Statistical Association, 76, 1981, pp. 354-362.

- Dixon, W.J., and Tukey, J.W., "Approximate Behavior of Winsorized *t* (trimming/Winsorization 2)," Technometrics, 10, 1968, pp. 83-98.
- Dollinger, M.B., and Staudte, R.G., "Influence Functions of Iteratively Reweighted Least Squares Estimators," Journal of the American Statistical Association, 86, 1991, pp. 709-716.

Draper, N.R., and Smith, H., Applied Regression Analysis, 2nd ed., John Wiley and Sons, NY, 1984.

- Dufour, J., Khalaf, L., and Beaulieu, M., "Exact Skewness-Kurtosis Tests for Multivariate Normality and Goodness-of-Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, 65, Supplement (2003), 0305-9049.
- Du Mond, C.E. and Lenth, R.V., "A Robust Confidence Interval for Location," Technometrics, May 1987, Vol. 29, No. 2, pp. 211-219.
- Easton, G.S., and McCulloch, R.E., "A Multivariate Generalization of Quantile-Quantile Plots," Journal of the American Statistical Association, 85, 1990, pp. 376-386.
- Efron, B. 1981. *Censored Data and Bootstrap*. Journal of American Statistical Association, Vol. 76, pp. 312-319.
- Efron, B., and Tibshirani, R.J. 1993. An Introduction to the Bootstrap. Chapman & Hall. New York.
- Efron, B. and Tibshirani, R., "Improvements on Cross-Validation: The .632+ Bootstrap Method," Journal of the American Statistical Association, Vol. 92, No. 438, June, 1997, pp. 548-560.
- Eye, A. V. and Bogat, G.A., "Testing the Assumption of Multivariate Normality," Psychology Science, Vol. 46, 2004 (2), pp. 243-258.
- Falk, M., "Asymptotic Independence of Median and MAD," Statistics and Probability Letters, 34, 1997, pp. 341-345.
- Farebrother, R.W., "Notes on the Early History of Elemental Set Methods," in L1-Statistical Procedures and Related Topics, ed. Dodge, Y., Institute of Mathematical Statistics, Hayward, CA, 1997, pp. 161-170.
- Fisher, A. and Horn, P., "Robust Prediction Intervals in a Regression Setting," Computational Statistics & Data Analysis, 17, 1994, pp. 129-140.
- Fox, J., Regression Diagnostics, Sage, 1991, Newbury Park, CA.
- Fung, W., "Unmasking Outliers and Leverage Points: A Confirmation," Journal of the American Statistical Association, 88, 1993, pp. 515-519.
- Garner, F.C., Stapanian, M.A., and Fitzgerald, K.E., "Finding Causes of Outliers in Multivariate Environmental Data," Journal of Chemometrics, Vol. 5, 1991, pp. 241-248.

- Gather, U., and Becker, C., "Outlier Identification and Robust Methods," in Robust Inference, eds. Maddala, G.S., and Rao, C.R., Elsevier Science B.V., Amsterdam, 1997, pp. 123-144.
- Giummol'e, F. and Ventura, L., "Robust Prediction Limits Based on M-estimators," Statistics and Probability Letters, 76, 2006, pp. 1725-1740
- Gnanadesikan, R., Methods for Statistical Data Analysis of Multivariate Observations, 2nd ed., John Wiley and Sons, NY, 1997.
- Gnanadesikan, R., and Kettenring, J.R., "Robust Estimates, Residuals, and Outlier Detection with Multi-response Data," Biometrics, 28, 1972, pp. 81-124.
- Gray, J.B., "Graphics for Regression Diagnostics," in the American Statistical Association 1985 Proceedings of the Statistical Computing Section, 1985, pp. 102-108.
- Green, P. J., "Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and Some Robust and Resistant Alternatives (with discussion)," Journal of the Royal Statistical Society, Series B 46, 1984, pp.149–192.
- Gross, A.M., "Confidence Interval Robustness with Long-Tailed Symmetric Distributions," Journal of the American Statistical Association, 71, 1976, pp. 409-417.

Guenther, W.C., "Shortest Confidence Intervals," The American Statistician, 23, 1969, pp. 22-25.

- Hadi, A.S., "Identifying Multiple Outliers in Multivariate Data," J.R. Statist. Soc. B, 54, No. 3, 1992, pp. 761-771.
- Hadi, A.S., and Simonoff, J.S., "Procedures for the Identification of Multiple Outliers in Linear Models," Journal of the American Statistical Association, 88, 1993, pp. 1264-1272.

Hahn, G.J. and Meeker, W.Q., Statistical Intervals, John Wiley and Sons, 1991.

- Hampel, Frank R., "The Influence Curve and its Role in Robust Estimation," Journal of the American Statistical Association, 69, 1974, pp. 383–393.
- Hampel, F.R., "Beyond Location Parameters: Robust Concepts and Methods," Bulletin of the International Statistical Institute, 46, 1975, pp. 375-382.
- Hampel, F.R., "The Break Down Points of the Mean Combined with Some Rejection Rules," Technometrics, 27, 1985, pp. 95-107.
- Hampel, Frank R.; Elvezio M. Ronchetti; Peter J. Rousseeuw; and Werner A. Stahel, Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons, New York, 1986.

Hawkins, D.M., Identification of Outliers, Chapman & Hall, London, 1980.

- Hawkins, D.M., "The Accuracy of Elemental Set Approximations for Regression," Journal of the American Statistical Association, 88, 1993, pp. 580-589.
- Hawkins, Douglas M., "A Feasible Solution Algorithm for Minimum Volume Ellipsoid Estimator in Multivariate Data," Computational Statistics, 8, 1993, pp. 95–107.
- Hawkins, Douglas M., "The Feasible Set Algorithm for Least Median of Squares Regression," Computational Statistics & Data Analysis, 16, 1993, pp. 81–101.
- Hawkins, D.M., "The Feasible Solution Algorithm for the Minimum Covariance Determinant Estimator in Multivariate Data," Computational Statistics and Data Analysis, 17, 1994, pp. 197-210.
- Hawkins, D.M., Bradu, D., and Kass, G.V., "Location of Several Outliers in Multiple Regression Data Using Elemental Sets," Technometrics, 26, 1984, pp. 197-208.
- Hawkins, D.M., and Simonoff, J.S., "High Break Down Regression and Multivariate Estimation," Applied Statistics, 42, 1993, pp. 423-432.
- He, X., and Fung, W.K., "High Break Down Estimation for Multiple Populations with Applications to Discriminant Analysis," Journal of Multivariate Analysis, 72, 2000, pp. 151-162.
- He, X., and Wang, G., "Cross-Checking Using the Minimum Volume Ellipsoid Estimator," Statistica Sinica, 6, 1996, pp. 367-374.
- Helsel, D.R. 2005. *Nondetects and Data Analysis*. Statistics for Censored Environmental Data. John Wiley and Sons, NY.
- Hettmansperger, T.P., and Sheather, S.J., "A Cautionary Note on the Method of Least Median Squares," The American Statistician, 46, 1992, pp. 79-83.
- Hills, M., "Allocation Rules and their Error Rates," Journal of the Royal Statistical Society, Series B, Vol. 28, No. 1, 1966, pp. 1-31.
- Hinich, M.J., and Talwar, P.P., "A Simple Method for Robust Regression," Journal of the American Statistical Association, 70, 1975, pp. 113-119.
- Hoaglin, D.C., Mosteller, F., and Tukey, J.W., Understanding Robust and Exploratory Data Analysis, John Wiley and Sons, NY, 1983.
- Hoaglin, D.C., and Welsh, R., "The Hat Matrix in Regression and ANOVA," The American Statistician, 32, 1978, pp. 17-22.
- Horn, P.S., "Some Easy t-Statistics," Journal of the American Statistical Association, 78, 1983, pp. 930-936.

- Horn, P.S., Pesce, A.J., and Copeland, B.E., "A Robust Approach to Reference Interval Estimation and Evaluation," Clinical Chemistry, 44:3, 1998, pp. 622-631.
- Huber, P.J., Robust Statistics, John Wiley and Sons, NY, 1981.
- Hubert, M., "Discussion of 'Multivariate Outlier Detection and Robust Covariance Matrix Estimation' by D. Pena and F.J. Prieto," Technometrics, 43, 2001, pp. 303-306.
- Hubert, M., Rousseeuw, P.J., and Vanden Branden, K., "ROBPCA: A New Approach to Robust Principal Component Analysis," Technometrics, 47, 2005, pp. 64-79.
- Hubert, M., Rousseeuw, P.J., and van Aelst, S., "High Break Down Multivariate Methods," Statistical Science, 2007.
- Hung, C.K., and Inselberg, A., "Description of Surfaces in Parallel Coordinates by Linked Planar Regions," in Mathematics of Surfaces, R. Martin, M. Sabin, and J. Winkler (Eds.), Springer-Verlag, Berlin, 2007, pp. 177-208.
- Iglewicz, B., and Hoaglin, D.C., How to Detect and Handle Outliers, Quality Press, American Society for Quality, Milwaukee, Wisconsin, 1993.
- Inselberg, A. Parallel Coordinates, Visual Multidimensional Geometry and its Applications, Springer, Berlin, (expected June 2009).
- Insightful, S-Plus 6 Robust Library User's Guide, Insightful Corporation, Seattle, WA, 2002. Available from (http://math.carleton.ca/ffhelp/Splus/robust.pdf).
- Jaeckel, L.A., "Robust Estimates of Location: Symmetry and Asymmetric Contamination," The Annals of Mathematical Statistics, 42, 1971, pp. 1020-1034.
- Jennings, L.W. and Young, D.M., "Extended Critical Values of the Multivariate Extreme Deviate Test for Detecting a Single Spurious Observation," Commun. Statist. –Simula., 1988, 17(4), 1359-1373.
- Johnson, R.A., and Wichern, D.W., Applied Multivariate Statistical Analysis, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1988.
- Justel, A., Pena, D., and Zamar, R., "A Multivariate Kolmogorov-Smirnov Test of Goodness of Fit," Statistical & Probability Letters, 35, 1997, pp. 251-259.
- Kafadar, K., "A Biweight Approach to the One-Sample Problem," Journal of the American Statistical Association, 77, 1982, pp. 416-424.
- Koltchinskii, V.I., and Li, L., "Testing for Spherical Symmetry of a Multivariate Distribution," Journal of Multivariate Analysis, 65, 1998, pp. 228-244.

- Koziol, J.A., "Probability Plots for Assessing Multivariate Normality," The Statistician, 42, 1993, pp. 161-173.
- Lachenbruch, P.A., and Mickey, M.R., "Estimation of Error Rates in Discriminant Analysis," Technometrics, Vol. 10, No. 1, February, 1968, pp. 1-11.
- Lax, D.A., "Robust Estimators of Scale: Finite Sample Performance in Long-Tailed Symmetric Distributions," Journal of the American Statistical Association, 80, 1985, pp. 736-741.
- Li, R., Fang, K., and Zhu, L., "Some Q-Q Probability Plots to Test Spherical and Elliptical Symmetry," Journal of Computational and Graphical Statistics, 6, 1997, pp. 435-450.
- Ma, Y., and Genton, M.G., "Highly Robust Estimation of Dispersion Matrices," Journal of Multivariate Analysis, 78, 2001, pp. 11-36.
- Maddela, G.S., and Rao, C.R. (editors), Robust Inference, Handbook of Statistics 15, Elsevier Science B.V., Amsterdam, 1997.
- Mallows, C., "Some Comments on Cp," Technometrics, 15, 1973, pp. 661-676.
- Marazzi, A., Algorithms, Routines, and S Functions for Robust Statistics, Wadsworth and Brooks/Cole, Belmont, CA, 1993.
- Mardia, K.V., "Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies," Sankhya, B 36, 1974, pp. 15-128.
- Mardia, K.V., "Assessment of Multinormality and the Robustness of Hotelling's T²," Applied Statistics, 24, 1975, pp. 163-171.
- Mardia, K.V., Mardia's Test of Multinormality, Kotz L., Johnson, N.L. (eds), Encyclopedia of Statistical Sciences, Vol. 5, 1985, pp. 217-221.
- Mardia, K.V., "Measures of Multivariate Skewness and Kurtosis with Applications," Biometrika, 57, 1970, pp. 519-530.
- Mardia, K.V. and Kanazawa, M., "The Null Distribution of Multivariate Kurtosis," Commun. Statist.-Simula. Computa., 12(5), 1983, pp.569-576.
- Mardia, K.V., Kent, J.T., and Bibby, J.M., Multivariate Analysis, Academic Press, London, 1979.
- Maronna, R.A., "Robust M-Estimators of Multivariate Location and Scatter," The Annals of Statistics, Vol. 4, No. 1, 1976, pp. 51-67.
- Maronna, R.A., Martin, R.D., and Yohai, V.J., Robust Statistics: Theory and Methods, John Wiley and Sons, Hoboken, NJ, 2006.

- Maronna, R.A., Stahel, W.A., and Yohai, V.J., "Bias-Robust Estimators of Multivariate Scatter Based on Projections," Journal of Multivariate Analysis, 42, 1992, pp. 141-161.
- Maronna, R.A., and Zamar, R.H., "Robust Estimates of Location and Dispersion for High-Dimensional Datasets," Technometrics, 44, 2002, pp. 307-317.
- Mayo, M.S., and Gray, J.B., "Elemental Subsets: the Building Blocks of Regression," The American Statistician, 51, 1997, pp. 122-129.
- Mecklin, C.J., and Mundfrom, D.J., On Using Asymptotic Critical Values in Testing for Multivariate Normality, Department of Mathematics and Statistics, Murray State University and University of Northern Colorado.
- Mehrotra, D.V., "Robust Elementwise Estimation of a Dispersion Matrix," Biometrics, 51, 1995, pp. 1344-1351.
- Meintanis, S. G., and Donatos G.S., "A Comparative Study of Some Robust Methods for Coefficient Estimation in Linear Regression," Computational Statistics & Data Analysis, 23, 1997, pp. 525–540.
- Møller, S.F., von Frese, J., and Bro, R., "Robust Methods for Multivariate Data Analysis," Journal of Chemometrics, 19, 2005, pp. 549-563.
- Morgenthaler, S., "A Survey of Robust Statistics," Stat. Meth. & Appl., 2007, 15:271-293.
- Morgenthaler, S., "Robust Confidence Intervals for a Location Parameter: The Configural Approach," Journal of the American Statistical Association, Vol. 81, No. 394, June 1986, pp. 518-523.
- Morgenthaler, S., Ronchetti, E., and Stahel, W.A. (editors), New Directions in Statistical Data Analysis and Robustness, Birkhauser, Boston, 1993.
- Mosteller, F., and Tukey, J.W., Data Analysis and Regression, Addison-Wesley, Reading, MA, 1977.
- Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman W., Applied Linear Statistical Models, 4th ed., McGraw-Hill, Boston, 1996.
- Olive, D.J., "Applications of Robust Distances for Regression," Technometrics, 44, 2002, pp. 64-71.
- Olive, D.J., "A Resistant Estimator of Multivariate Location and Dispersion," Computational Statistics and Data Analysis, 46, 2004, pp. 99-102.
- Olive, D.J., "Prediction Intervals for Regression Models," Computational Statistics and Data Analysis, 51, 2007, pp. 3115-3122.

- Olive, D.J., and Hawkins, D.M., "Robust Regression with High Coverage," Statistics and Probability Letters, 63, 2003, pp. 259-266.
- Ozturk, Omer, and Thomas P. Hettmansperger, "Simultaneous robust estimation of location and scale parameters: A minimum distance approach," Canadian Journal of Statistics, 26, 1998, pp. 217–229 (Corrections, 1999, ibid.27, 667).
- Pena, D., and Prieto, F.J., "Multivariate Outlier Detection and Robust Covariance Matrix Estimation," Technometrics, 2001, pp. 286-299.
- Penny, K.L., "Appropriate Critical Values When Testing for a Single Multivariate Outlier by Using the Mahalanobis Distance," Applied Statistics, Vol. 45, No. 1, 1996, pp. 73-81.
- Portnoy, S., "Using Regression Quantiles to Identify Outliers," in Statistical Data Analysis Based on the L1 Norm and Related Methods, ed. Y. Dodge, North Holland, Amsterdam, 1987, pp. 345-356.
- ProUCL 3.0, A Statistical Software, National Exposure Research Lab, EPA, Las Vegas Nevada, October 2004. The software ProUCL 3.0 can be freely downloaded from the EPA Web site: http://www.epa.gov/nerlesd1/tsc/tsc.htm

Rao, C.R., Linear Statistical Inference and Its Applications, John Wiley and Sons, NY, 1973.

- Rocke, D.M., and Woodruff, D.L., "Identification of Outliers in Multivariate Data," Journal of the American Statistical Association, 91, 1996, pp. 1047-1061.
- Rocke, D.M., and Woodruff, D.L., "Robust Estimation of Multivariate Location and Shape," Journal of Statistical Planning and Inference, 57, 1997, pp. 245-255.
- Rocke, D.M., and Woodruff, D.L., "Discussion of 'Multivariate Outlier Detection and Robust Covariance Matrix Estimation' by D. Pena and F.J. Prieto," Technometrics, 43, 2001, pp. 300-303.
- Rousseeuw, P.J., "Least Median of Squares Regression," Journal of the American Statistical Association, 79, 1984, pp. 871-880.
- Rousseeuw, P.J., and Leroy, A.M., Robust Regression and Outlier Detection, John Wiley and Sons, NY, 1987.
- Rousseeuw, P.J., and Van Driessen, K., "A Fast Algorithm for the Minimum Covariance Determinant Estimator," Technometrics, 41, 1999, pp. 212-223.
- Rousseeuw, P.J., and van Zomeren, B.C., "Unmasking Multivariate Outliers and Leverage Points," Journal of the American Statistical Association, 85, 1990, pp. 633-651.
- Ruiz-Gazen, A., "A Very Simple Robust Estimator of a Dispersion Matrix," Computational Statistics and Data Analysis, 21, 1996, pp. 149-162.

- Ruppert, D., "Computing S-Estimators for Regression and Multivariate Location/Dispersion," Journal of Computational and Graphical Statistics, 1, 1992, pp. 253-270.
- Ruppert, D., and Carroll, R.J., "Trimmed Least Squares Estimation in the Linear Model," Journal of the American Statistical Association, 75, 1980, pp. 828-838.
- Scout, A Data Analysis Program, Technology Support Project, 2002, USEPA, NERL-LV, Las Vegas, Nevada.
- Seber, G.A.E., Multivariate Observations, John Wiley & Sons, 1984.
- Simonoff, J.S., "The Break Down and Influence Properties of Outlier-Rejection-Plus-Mean Procedures," Communications in Statistics Theory and Methods, 16, 1987, pp. 1749-1769.
- Simonoff, J.S., "Outlier Detection and Robust Estimation of Scale," Journal of Statistical Computation and Simulation, 27, 1987, pp. 79-92.
- Simpson, D.G., Ruppert, D., and Carroll, R.J., "On One-Step GM Estimates and Stability of Inferences in Linear Regression," Journal of the American Statistical Association, 87, 1992, pp. 439-450.
- Simpson, James R., and Douglas C. Montgomery, "The Development and Evaluation of Alternative Generalized M Estimation Techniques," Communications in Statistics Simulation and Computation, 27, 1998, pp. 999–1018.
- Simpson, James R., and Douglas C. Montgomery, "A Performance Based Assessment of Robust Regression Methods," Communications in Statistics — Simulation and Computation, 27, 1988, pp. 1031–1049.
- Singh, A., Omnibus Robust Procedures for Assessment of Multivariate Normality and Detection of Multivariate Outliers, In Multivariate Environmental Statistics, Elsevier Science Publishers, Patil G.P. and Rao, C.R., Editors, 1993, pp. 445-488.
- Singh, A., "Outliers and Robust Procedures in Some Chemometric Applications," Chemometrics and Intelligent Laboratory Systems, 33, 1996, pp. 75-100.
- Singh, A., Maichle, R., and Lee, S., On the Computation of a 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations, EPA/600/R-06/022, March 2006.
- Singh, A. and Nocerino, J.M., Robust Procedures for the Identification of Multiple Outliers, Handbook of Environmental Chemistry, Statistical Methods, Vol. 2. G, Springer Verlag, Germany, 1995, pp. 229-277.

- Singh, A. and Nocerino, J.M., "Robust Intervals in Some Chemometric Applications," Chemometrics and Intelligent Laboratory Systems, 37, 1997, pp. 55-69.
- Singh, A. and Nocerino, J.M., "Robust Estimation of the Mean and Variance Using Environmental Data Sets with Below Detection Limit Observations," Chemometrics and Intelligent Laboratory Systems, Vol. 60, 2002, pp. 69-86.
- Singh, A. and Singh, A.K., Estimation of the Exposure Point Concentration Term (95% UCL), Using Bias-Corrected Accelerated (BCA) Bootstrap Method and Several Other Methods for Normal, Lognormal, and Gamma Distributions, Draft EPA Internal Report, 2003.
- Singh, A., Singh, A.K., and Iaci, R.J., Estimation of the Exposure Point Concentration Term Using a Gamma Distribution, EPA/600/R-02/084, October, 2002.
- Singh, A.K., Singh, A., and Engelhardt, M., The lognormal Distribution in Environmental Applications, Technology Support Center Issue Paper, 1997. 182CMB97, EPA/600/R-97/006.
- Singh, A.K., Singh, A., and Engelhardt, M., Some Practical Aspects of Sample Size and Power Computations for Estimating the Mean of Positively Skewed Distributions in Environmental Applications, 1999, EPA/600/S-99/006.
- Snapinn, S. and Knoke, J., "Estimation of Error Rates in Discriminant Analysis with Selection of Variables," Biometrics, Vol. 45, No. 1, March 1989, pp. 289-299.
- Staudte, R.G., and Sheather, S.J., Robust Estimation and Testing, John Wiley and Sons, NY, 1990.
- Stahel, W., and Weisberg, S., Directions in Robust Statistics and Diagnostics, Part 1, Springer-Verlag, NY, 1991.
- Stahel, W., and Weisberg, S., Directions in Robust Statistics and Diagnostics, Part 2, Springer-Verlag, NY, 1991.
- Stapanian, M.A., Garner, F.C., Fitzgerald, K.E., Flatman, G.T., and Englund, E.J., "Properties of Two Multivariate Outlier Tests," Comm. Statist. Simula Computa, 20, 1991, pp. 667-687.
- Stapanian, M.A., F.C. Garner, K.E. Fitzgerald, G.T. Flatman, and J.M. Nocerino. "Finding suspected causes of measurement error in multivariate environmental data." Journal of Chemometrics, 1993, 7:165-176.
- Stefanski, L.A., "A Note on High-Break Down Estimators," Statistics and Probability Letters, 11, 1991, pp. 353-358.
- Stefanski, L.A., and Boos, D.D., "The Calculus of M-estimators," The American Statistician, 56, 2002, pp. 29-38.

- Stigler, S.M., "The Asymptotic Distribution of the Trimmed Mean," The Annals of Mathematical Statistics, 1, 1973, pp. 472-477.
- Stigler, S.M., "Simon Newcomb, Percy Daniell, and the History of Robust Estimation 1885-1920," Journal of the American Statistical Association, 68, 1973, pp. 872-878.
- Stigler, S.M., "Do Robust Estimators Work with Real Data?" The Annals of Statistics, 5, 1977, pp. 1055-1098.
- Street, J.O., Carroll, R.J., and Ruppert, D., "A Note on Computing Regression Estimates Via Iteratively Reweighted Least Squares," The American Statistician, 42, 1988, pp. 152-154.
- Stromberg, A.J., "Computing the Exact Least Median of Squares Estimate and Stability Diagnostics in Multiple Linear Regression," SIAM Journal of Scientific and Statistical Computing, 14, 1993, pp. 12891299.
- Tableman, M., "The Influence Functions for the Least Trimmed Squares and the Least Trimmed Absolute Deviations Estimators," Statistics and Probability Letters, 19, 1994, pp. 329-337.
- Todorov, V., "Robust Selection of Variables in Linear Discriminant Analysis," Stat. Meth. & Appl., 2007, 15:395-407.
- Tukey, J.W., Exploratory Data Analysis, Addison-Wesley Publishing Company, Reading, MA, 1977.
- Tukey, J.W., "Graphical Displays for Alternative Regression Fits," in Directions in Robust Statistics and Diagnostics, Part 2, eds. Stahel, W., and Weisberg, S., Springer-Verlag, NY, 1991, pp. 309-326.
- U.S. Environmental Protection Agency (US EPA). 2009. *ProUCL Version 4.00.04, A Statistical Software*. The software ProUCL 4.00.04 can be freely downloaded from the U.S. EPA web site at: <u>http://www.epa.gov/nerlesd1/tsc/software.htm</u>
- U.S. Environmental Protection Agency (US EPA). 2009. *ProUCL 4.00.04. Technical Guide* Publication EPA/600/R-07/041.
- U.S. Environmental Protection Agency (US EPA). 2009. *ProUCL 4.00.04. User Guide* Publication EPA/600/R-07/038.
- Valentin, T. and Pires, A., "Comparative Performance of Several Robust Linear Discriminant Analysis Methods," REVSTAT – Statistical Journal, Vol. 5, Number 1, March, 2007, pp. 63-83.
- Velleman, P.F., and Welsch, R.E., "Efficient Computing of Regression Diagnostics," The American Statistician, 35, 1981, pp. 234-242.

- Visek, J.A., "On High Break Down Point Estimation," Computational Statistics, 11, 1996, pp. 137-146.
- Welsh, A.H., "Bahadur Representations for Robust Scale Estimators Based on Regression Residuals," The Annals of Statistics, 14, 1986, pp. 1246-1251.
- Welsh, A.H., and Ronchetti, E., "A Journey in Single Steps: Robust One-Step M-estimation in Linear Regression," Journal of Statistical Planning and Inference, 103, 2002, pp. 287-310.
- Wilcox, R.R., Introduction to Robust Estimation and Hypothesis Testing, 2nd ed., Elsevier Academic Press, San Diego, CA, 2005.
- Wilcox, Rand R., and Jan Muska, "Tests of Hypothesis About Regression Parameters When Using a Robust Estimator," Communications in Statistics — Theory and Methods, 28, 1999, pp. 2201– 2212.
- Willems, G., Pison, G., Rousseeuw, P.J., and Van Aelst, S., "A Robust Hotelling Test," Metrika, 55, 2002, pp. 125-138.
- Wisnowski, J.W., Simpson J.R., and Montgomery D.C., "A Performance Study for Multivariate Location and Shape Estimators," Quality and Reliability Engineering International, 18, 2002, pp. 117-129.
- Woodruff, D.L., and Rocke, D.M., "Heuristic Search Algorithms for the Minimum Volume Ellipsoid," Journal of Computational and Graphical Statistics, 2, 1993, pp. 69-95.
- Woodruff, D.L., and Rocke, D.M., "Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators," Journal of the American Statistical Association, 89, 1994, pp. 888-896.
- Xie, Y., Wang, J., Liang, Y., Sun, L., Song, X. and Yu, R., "Robust Principal Component Analysis by Projection Pursuit," Journal of Chemometrics, Vol. 7, 1993, pp. 527-541.
- Yohai, V.J. and Maronna, R., "Location Estimators Based on Linear Combinations of Modified Order Statistics," Communications in Statistics Theory and Methods, 5, 1976, pp. 481-486.
- Yohai, Victor J., and Zamar R.H., "High break down point estimates of regression by means of the minimization of an efficient scale," Journal of the American Statistical Association, 83, 1988, pp. 406–413. (See also ibid., 1989, 84, 636.)

Glossary

Anderson-Darling (AD) test: The Anderson-Darling test assesses whether known data come from a specified distribution.

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur during sampling design, the sampling process, or laboratory analysis).

Biweight: An influence function based on Tukey's or LAX/Kafadar's methods.

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small data sets or where sample distributions are non-normal.

Break Down point: This point represents that fraction of observations which can be altered (e.g., can be made very large) arbitrarily without affecting (influencing, distorting, changing drastically) the values of the estimates.

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean μ and variance σ^2 , the sampling distribution of the mean approaches a normal distribution with a mean (μ) and a variance σ^2/N as N, the sample size, increases.

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. Also known as the relative standard deviation (RSD).

Confidence Coefficient: The confidence coefficient (a number in the closed interval [0, 1]) associated with a confidence interval for a population parameter is the probability that the random interval constructed from a random sample (data set) contains the true value of the parameter. The confidence coefficient is related to the significance level of an associated hypothesis test by the equality: level of significance = 1 – confidence coefficient.

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random interval within which the unknown population parameter, such as the mean, or a future observation, x0, falls.

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper confidence limit (UCL) is given by the upper bound of the associated confidence interval.

Correlation: A measure of linear association between two ordered lists.

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit (UCL) of the population mean represents the confidence coefficient associated with the UCL.

Critical Alpha: The cutoff level for finding outliers.

Cross validation: The method of checking if the classification of observations in discriminant analysis are valid or not.

Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO process that clarify study technical and quality objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions.

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not contain a specific analyte from samples that contain low concentrations of the analyte. The lowest concentration or amount of the target analyte that can be determined to be different from zero by a single measurement at a stated level of probability. Detection limits are analyte- and matrix-specific and may be laboratory-dependent.

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative probability distribution function that concentrates probability 1/n at each of the *n* numbers in a sample.

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of the unknown population mean.

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f. or p.d.f.). EM is typically used to compute maximum likelihood estimates given incomplete samples.

Exposure Point Concentration (EPC): The contaminant concentration within an exposure unit to which the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure assessment.

Extreme Values: The minimum and the maximum values.

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set wholly or partly derived from a model of the data.

Graphics Alpha: The alpha values used for identifying outliers on the graphs. This is usually same as critical alpha.

Gray Region: A range of values of the population parameter of interest (such as mean contaminant concentration) within which the consequences of making a decision error are relatively minor. The gray region is bounded on one side by the action level. The width of the gray region is denoted by the Greek letter delta in this guidance.

H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution.

H-UCL: UCL based on Land's H-Statistic.

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, (H_0), representing a testable presumption (often set up to be rejected based upon the sampled data), and an alternative hypothesis (H_A), representing the logical opposite of the null hypothesis.

Individual MD(α): The α 100% critical value from the distribution of the distances (also called d0cut).

Individual Contour/Ellipsoid: Contour at Individual $MD(\alpha)$. Also called a prediction ellipsoid.

Influence Function Alpha: The values used for minimizing in Huber and PROP methods.

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to the usual estimate base d on N observations, N estimates each based on N-1 observations.

Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical distribution function (EDF).

Kurtosis: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Level of Significance: The error probability (also known as false positive error rate) tolerated of falsely rejecting the null hypothesis and accepting the alternative hypothesis.

Leverage Distances: The distances (robust or classical Mahalanobis) obtained using the independent variables in regression.

Leverage Outliers: The outliers among the independent variables in regression.

Lilliefors test: A test of normality for large data sets when the mean and variance are unknown.

M-Estimation: The process of obtaining an M-estimators.

M-Estimators: A class of statistics which are obtained as the solution to the problem of minimizing certain functions of the data.

Max MD: Largest Mahalanobis distance obtained from the dataset.

Max MD(α): The α 100% critical value of the test statistic (also called d2max).

Maximum Likelihood Estimates (MLE): Maximum likelihood estimation (MLE) is a popular statistical method used to make inferences about parameters of the underlying probability distribution of a given data set.

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a measure of central tendency.

Median: The middle value for an ordered set of n values. Represented by the central value when n is odd or by the average of the two most central values when n is even. The median is the 50th percentile.

Minimization Criterion: The criterion used in minimizing the residuals of regression.

Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest difference in means that the statistical test can resolve. The MDD depends on sample-to-sample variability, the number of samples, and the power of the statistical test.

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the parameters. If an estimator is unbiased, then its mean squared error is equal to its variance.

Non-detect (ND): Censored data values.

Nonparametric: A term describing statistical methods that do not assume a particular population probability distribution, and are therefore valid for data from any population with any probability distribution, which can remain unknown.

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the population mean. For example, for normally distributed data sets, the UCL of the population mean based upon Student's t distribution is optimum.

Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that are not representative of the population from which they were drawn. The presence of outliers distorts most statistics if used in any calculations.

p-value: In statistical hypothesis testing, the p-value of an observed value $t_{observed}$ of some random variable *T* used as a test statistic is the probability that, given that the null hypothesis is true, *T* will assume a value as or more unfavorable to the null hypothesis as the observed value $t_{observed}$.

Parameter: A parameter is an unknown constant associated with a population.

Parametric: A term describing statistical methods that assume a normal distribution.

PC Loadings: A matrix of eigen vectors for the covariance or correlation matrix.

Population: The total collection of N objects, media, or people to be studied and from which a sample is to be drawn. The totality of items or units under consideration.

Prediction Interval: The interval (based upon historical data, or a background well) within which a newly and independently obtained (often labeled as a future observation) site observation (from a compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient).

Probability of Type 2 Error (=\beta): The probability, referred to as β (beta), that the null hypothesis will not be rejected when in fact it is false (false negative).

Probability of Type I Error = Level of Significance (= α): The probability, referred to as α (alpha), that the null hypothesis will be rejected when in fact it is true (false positive).

pth **Percentile**: The specific value, X_p of a distribution that partitions a data set of measurements in such a way that the p percent (a number between 0 and 100) of the measurements fall at or below this value, and (100-p) percent of the measurements exceed this value, X_p .)

 p^{th} Quantile: The specific value of a distribution that divides the set of measurements in such a way that the proportion, p, of the measurements falls below (or are equal to) this value, and the proportion (1-p) of the measurements exceed this value.

Quality Assurance: An integrated system of management activities involving planning, implementation, assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type and quality needed and expected by the client.

Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary QA, QC, and other technical activities that must be implemented to ensure that the results of the work performed will satisfy the stated performance criteria.

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to plot the percentiles of the distribution.

Range: The numerical difference between the minimum and maximum of a set of values.

Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics for the uncensored observations and then to fill in values extrapolated from the straight line for the observations below the detection limit.

Resampling: The repeated process of obtaining representative samples and/or measurements of a population of interest.

Reliable UCL: This is similar to a stable UCL.

Regression Outliers: The outliers in the dependent variable of regression.

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good performance (that is not unduly affected by outliers) for a wide variety of data distributions.

Sample: A sample here represents a random sample (data set) obtained from the population of interest (e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative sample of the population under study. The sample is used to draw inferences about the population parameter(s).

Shapiro-Wilk (SW) test: In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample $x_1, ..., x_n$ came from a normally distributed population.

Simultaneous Contour/Ellipsoid: Contour at Max $MD(\alpha)$. Also called a tolerance ellipsoid.

Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The higher is the standard deviation, the higher is the skewness.

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits, which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g., contaminant concentration) that can occur in practice. Also, a stable UCL provides the specified (at least approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to the population mean.

Standard Deviation (sd): A measure of variation (or spread) from an average value of the sample data values.

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard error in relation to the size of the estimate, the less reliable the estimate. Standard errors are needed to construct confidence intervals for the parameters of interests such as the population mean and population percentiles.

Trimming percentage: The percentage value used for trimming outliers in MVT method.

Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on the mean. For example, a 95 percent one-sided TL for 95 percent coverage represents the value below which 95 percent of the population values are expected to fall with 95 percent confidence. In other words, a 95% UTL with coverage coefficient 95% represents a 95% upper confidence limit for the 95th percentile.

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It represents an impractically large value that cannot be achieved in practice. For example, the use of Land's H statistic often results in impractically large inflated UCL value. Some other UCLs, such as the bootstrap t UCL and Hall's UCL, can be inflated by outliers resulting in an impractically large and unstable value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or inflated UCLs.

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter of interest such as the population mean.

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently obtained observation (or an independent future observation).

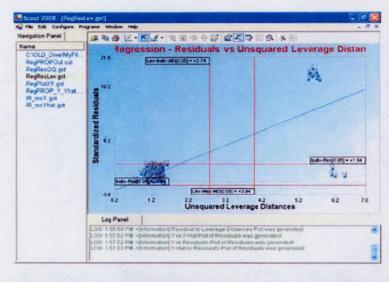
Upper Tolerance Limit (UTL): The upper boundary of a tolerance interval.

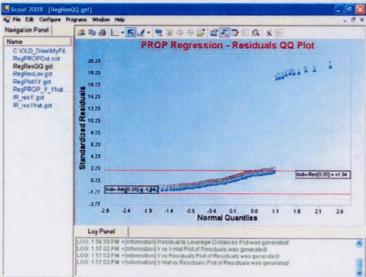
Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with the preset cut-off value. This method is sensitive to the number of outliers, but not to their actual values.

About the CD

The CD accompanying the hard copy of this report, "Scout 2008 Version 1.0 User Guide," contains the following contents:

- Scout 2008 Version 1.00.01 statistical software.
- J.M. Nocerino (editor), A. Singh, R. Maichle, N. Armbya, and A.K. Singh, "Scout 2008 Version 1.0 User Guide." U.S. Environmental Protection Agency, February 2009. (Microsoft Word format and pdf)
- A. Singh and A.K. Singh; J.M. Nocerino (editor), "ProUCL Version 4.00.04 Technical Guide." U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/041 (NTIS PB2007-107919), February 2009. (Microsoft Word format and pdf)
- A. Singh, R. Maichle, A.K. Singh, and S.E. Lee; J.M. Nocerino (editor), "ProUCL Version 4.00.04 User Guide." U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/038 (NTIS PB2007-107918), February 2009. (Microsoft Word format and pdf)
- "Robust Procedures for the Identification of Multiple Outliers," A. Singh and J.M. Nocerino. A chapter in *Chemometrics in Environmental Chemistry*, J. Einay, ed., a volume (2.G, Volume 2, Part G) in *The Handbook of Environmental Chemistry*, O. Hutzinger, ed. (Heidelberg, Springer-Verlag), 1995, pp. 229-277. (pdf format)
- A. Singh; J.M. Nocerino (editor), "On the Computation of a 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations," EPA/600/R-06/022, March 2006. (Microsoft Word and pdf)


United States Environmental Protection Agency


Office of Research and Development (8101R) Washington, DC 20460

Official Business Penalty for Private Use \$300

EPA/600/R-08/038 February 2009 www.epa.gov Please make all necessary changes on the below label, detach or copy, and return to the address in the upper left-hand corner.

If you do not wish to receive these reports CHECK HERE : detach, or copy this cover, and return to the address in the upper left-hand corner. PRESORTED STANDARD POSTAGE & FEES PAID EPA PERMIT No. G-35

Recycled/Recyclable Printed with vegetable-based ink on paper that contains a minimum of 50% post-consumer fiber content processed chlorine free