United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EMB Report 85-CCT-3 November 1986

Air

NESHAP — Cooling Towers Chromium

Emission Test Report Exxon Company, U.S.A. Baytown, Texas

EMISSION TEST REPORT

EXXON COMPANY, INC. BAYTOWN REFINERY BAYTOWN, TEXAS

ESED 85/02

EMB NO. 86-CCT-3

Prepared By Entropy Environmentalists, Inc. Post Office Box 12291 Research Triangle Park, North Carolina 27709

> Contract No. 68-02-4336 Work Assignment No. 5 PNS: 3505

> > EPA Task Manager Dan Bivins

U.S. Environmental Protection Agency Emission Measurement Branch Emission Standards and Engineering Division Research Triangle Park, North Carolina 27711

November 1986

TABLE OF CONTENTS

Section			Page
1.0	INTRO	DDUCTION	1-1
2.0	PROCI	ESS OPERATION	2-1
	2.1	Process Description and Operation 2.1.1 Tower 68 2.1.2 Tower 84	2-1 2-1 2-10
3.0	SUMM	ARY OF RESULTS	3-1
	3.1	Hexavalent Chromium and Total Chromium Emissions 3.1.1 Tower 68, Counterflow Fan Cells, Standard-	3-4 3-6
		3.1.2 Tower 68, Crossflow Fan Cells, Standard-Efficiency Drift Eliminators	3-8
		 3.1.3 Tower 68, Simultaneous Runs 3.1.4 Tower 84, Counterflow Fan Cells, High-Efficiency Drift Eliminators 	3-9 3-10
		3.1.5 Tower 84, Simultaneous Runs	3-11
	3.2	Size Distribution of Drift and Chromium 3.2.1 Size Distribution of Drift 3.2.2 Size Distribution of Chromium	3-11 3-11 3-13
	3.3	Summary of Analytical Results for Hexavalent Chromium and Total Chromium 3.3.1 Cooling Water Samples 3.3.2 Impinger Train Samples 3.3.3 Absorbent Papers and Ion Exchange Papers 3.3.4 Blanks and Quality Assurance Samples	3-14 3-14 3-16 3-21 3-22
	3.4	Absorbent Paper and Ion Exchange Paper Sampling	3-22
	3.5	Drift Rate Determination	3 - 23
4.0	SAMP	LING LOCATIONS AND TEST METHODS	4-1
	4.1	Cooling Tower No. 68 Outlets, Counterflow Riser Cells E and F, Standärd Efficiency Drift Eliminators (Sampling Location A)	4-1
	4.2	Cooling Tower No. 68 Outlets, Crossflow Riser Cell G, Standard Efficiency Drift Eliminator (Sampling Location B)	4-6
	4.3	Cooling Tower No. 68 Recirculating Water Pipes (Sampling Location C)	4-7

	4.4	Cooling Tower No. 84 Outlets, Counterflow Riser Cells A, B, C, and D, High Efficiency Drift Eliminators (Sampling Location D)	4-8
	4.5	Cooling Tower No. 84 Recirculating Water Pipes (Sampling	4-9
	4.6	Ambient Meteorological Station	4-10
	4.7	Velocity and Gas Temperature	4-10
	4.8	Molecular Weight	4-10
	4.9	Chromium Collected by Impinger Trains	4-10
	4.10	Chromium In Cooling Water	4-11
	4.11	Drift Sizing Using Aligned Nozzle and Disc Trains	4-13
	4.12	Sensitive Paper Testing	4-13
	4.13	Absorbent and Ion Exchange Paper Testing	4-14
5.0	QUAL	ITY ASSURANCE	5-1

APPENDICES

A	TEST RESULTS AND EXAMPLE CALCULATIONS Hexavalent and Total Chromium Particle Size for Hexavalent and Total Chromium ESC Water Flow and Sensitive Paper Data Hexavalent Chromium Emissions in Milligrams per Million Btu's and Micrograms per Gallon of Waterflow Cooling Tower Drop Sizing Train Results Example Calculations	A-1 A-3 A-32 A-52 A-77 A-78 A-80
В	FIELD AND ANALYTICAL DATA Impinger Train Field Data Particle Size Distribution Field Data NZ-DI Runs Sample Inventory Hexavalent and GFAA Chromium Analysis NAA Chromium Analysis	B-1 B-3 B-22 B-32 B-37 B-55
С	SAMPLING AND ANALYTICAL PROCEDURES Draft Propeller Anemometer Method Draft Cooling Tower Method ESC Measurements Particle Sizing ("Disc" and "Aligned Nozzle")	C-1 C-3 C-11 C-42 C-51
D	CALIBRATION AND QUALITY ASSURANCE DATA	D-1
Ε	MRI PROCESS DATA	E-1
F	TEST PARTICIPANTS AND OBSERVERS	F-1

LIST OF FIGURES

Figure No.		Page
2.1	Tower 68 at Exxon-Baytown Refinery	2-2
2.2	Tower 84 at Exxon-Baytown Refinery	2-3
4.1	Sketch of Cooling Tower No. 68 Showing Riser Cells and Fan Cell Stacks, Cooling Water Riser Pipes, and Sampling Locations	4-2
4.2	Sketch of Cooling Tower No. 84 Showing Riser and Fan Cells, Cooling Water Riser Pipes, and Sampling Locations	4-3
4.3	Flow Chart for Analysis of Cooling Water Samples	4-12

LIST OF TABLES

Table No.		Page
2.1	Summary of Operating Parameters and Meteorological Data During Testing of Tower 68	2-6
2.2	Summary of Operating Parameters and Meteorological Data During Testing of Tower 84	2-12
3.1A	Testing Schedule for Cooling Tower 68 at Exxon Company, Inc., Baytown Refinery	3-2
3.1B	Testing Schedule for Cooling Tower 84 at Exxon Company, Inc., Baytown Refinery	3-2
3.2	Summary of Flue Gas Conditions	3-5
3.3	Summary of Hexavalent and Total Chromium Emissions Based on Graphite Furnace Atomic Absorption (GFAA)	3-7
3.4	Summary of Sensitive Paper (SP) Drift Size Data	3-12
3.5	Summary of Particle Sizing Data Using Disc Train and Absorbent Paper	3-15
3.6	Summary of Analytical Results for Cooling Water Samples	3-17
3.7	Mineral Content and pH of Selected Cooling Water Samples	3-16
3.8	Summary of Analytical Results for Chromium	3-19
3.9	Sampling Train (Impinger) Collection Efficiency	3-21
3.10	Comparison of Measurement Methods for Total Chromium Emissions	3-24
3.11	Comparison of Measurement Methods for Drift Rates	3-26
4.1	Sampling Plan for Cooling Towers No. 68 and 84	4-4
5.1	Meter Box Calibration Audit	5-2
5.2	Audit Report Chromium Analysis	5-3

1.0 INTRODUCTION

During the week of September 1, 1986, Entropy Environmentalists, Inc. (Entropy), under contract to the U. S. Environmental Protection Agency, Emission Measurement Branch, conducted an emission measurement program at the Exxon Refinery in Baytown, Texas operated by the Exxon Company, U. S. A. The purpose of the measurement program was to provide data on chromium emissions from cooling towers in support of a possible chromium standard under the National Emission Standards for Hazardous Air Pollutants (NESHAPS).

Comprehensive testing was conducted at two cooling towers located at the Baytown Refinery. Cooling tower No. 68 consists of two sections with two counterflow cells in one section and a crossflow cell in the other section. Both sections of No. 68 are equipped with typical-efficiency drift eliminators. Cooling tower No. 84 consists of four counterflow cells, each equipped with a high-efficiency drift eliminator. These two cooling towers at the Baytown facility were selected for source testing for the following reasons:

- The refinery operates both high-efficiency and typical-efficiency drift eliminators on cooling towers with chromate-based cooling water treatment programs. The test data should provide a basis for comparing the performance of these two drift eliminator types.
- Cooling tower No. 68 has both crossflow and counterflow sections and provides a comparison of emission characteristics from these two types of tower design.
- The facility operates the two cooling towers in a manner considered representative of other industrial cooling towers.
- Operating parameters were easily maintained and monitored during the tests to ensure proper conditions existed.

• The facility agreed to allow the addition of sodium bromide (NaBr) to the cooling tower water for further evaluation of bromide as a surrogate compound for cooling tower drift emissions testing.

The cooling tower emissions were characterized using a Method 13-type impinger train following the draft cooling tower test method (Appendix C) to collect the drift from the cooling tower exhaust. The impinger contents were analyzed by Research Triangle Institute (RTI) for total chromium content by solubilizing the chromium with nitric acid and using graphite furnace atomic absorption (GFAA). The velocity of the airflow through each fan cell was determined using a propeller anemometer following the draft method (Appendix C). The gas temperature and percent moisture were also determined. The corresponding cooling water samples collected during each sampling run were analyzed by RTI for hexavalent chromium using the diphenylcarbazide wet chemical method and by North Carolina State University (NCSU) for total chromium in the filtered residue using Neutron Activation Analysis (NAA). Sampling was also conducted using an "aligned nozzle train" and a "disc train" (see Chapter 4) to determine the percentage of chromium emissions associated with drift particles smaller than a certain particle size (approximately 15 um).

An independent determination of the drift rate and drift size distribution was conducted by personnel from Environmental Systems Corporation (ESC) using their Sensitive Paper (SP) system and microscopic analysis. ESC personnel also conducted the waterflow measurements on the two cooling towers. For this, ESC used calibrated pitot tubes and a methodology similar to EPA Methods 1 and 2 for air velocity measurements.

A sampling protocol using absorbent papers and ion exchange papers in a sensitive paper holder was evaluated as part of an effort to develop a potential screening technique for cooling tower emission testing and to determine the percentage of chromium emissions associated with particles greater than a

certain particle size (approximately 30 um). These AP's were analyzed for total chromium content by NCSU using NAA.

Mr. David Randall of Midwest Research Institute (MRI) monitored the operating conditions of the cooling tower and determined when conditions were suitable for sampling. Mr. Dan Bivins (EPA Task Manager) of the Emission Measurement Branch (EMB) was present to observe the testing program. Mr. E. W. Biggers of Exxon Company served as the contact for the Baytown Refinery facility.

This report is organized into several sections that address the various aspects of the testing program. Immediately following this introduction is the "Process Operation" section describing the process involving the cooling tower tested, the cooling tower systems, and the control equipment in each tower. Following the "Process Operation" section is the "Summary of Results" section presenting tables summarizing the test conditions, the calculated emission and drift rates, the drift size distribution, and the analytical results. The next section, "Sampling Locations and Test Methods" describes and illustrates the various sampling locations for the emissions testing program and then explains the sampling strategies used. The final section, "Quality Assurance," describes the procedures used to ensure the integrity of the sampling and analysis program. The Appendices present the Test Results and Example Calculations (Appendix A); Field and Analytical Data (Appendix B); Sampling and Analytical Procedures (Appendix C); Calibration and Quality Assurance (Appendix D); MRI Process Data (Appendix E); and Test Participants and Observers (Appendix F).

2.0 PROCESS OPERATION

2.1 PROCESS DESCRIPTION AND OPERATION

The two towers tested, Nos. 68 and 84, provide cooling for a number of refining processes. Tower No. 68 serves the catalytic light end units which recover ethylene and other light end products. The cooling requirements of the vacuum distillation unit for lube oil provide the main heat load on tower No. 84. Both towers handle a constant heat load 24 hours per day. Figures 2.1 and 2.2 are sketches of tower Nos. 68 and 84, respectively.

2.1.1 Tower 68

<u>Tower Description</u> - This tower consists of four counterflow cells and one Marley crossflow cell. Each cell has one single-speed fan and redwood herringbone drift eliminators. The counterflow section has redwood splash fill and is served by two risers that distribute the water over the fill through a manifold and pressure spray nozzles. The crossflow section has plastic splash fill and is served by one riser that supplies a water distribution deck equipped with gravity flow nozzles. Water flow rates were not known before the test, but pump curves indicate that peak efficiency would be achieved at a flow rate of about 19,500 gallons per minute (gal/min). Two pumps circulate water from the northern end of the common basin to the process heat exchangers, and a third pump is on standby. Blowdown is withdrawn from the system before the water is returned to the tower. Makeup water from the San Jacinto River is supplied through a 4-inch pipeline to the basin. The fans are 18 feet in diameter in the counterflow cells and 24 feet in diameter in the crossflow cell, but the airflows were not known before the test.

Figure 2.1. Tower 68 at Exxon-Baytown refinery.

Figure 2.2. Tower 84 at Exxon-Baytown refinery.

<u>Chemical treatment and monitoring system</u> - The corrosion inhibitor is Betz 10K, which is a chromate/zinc formulation. The target concentration of chromate in the recirculating water is 10 to 15 parts per million (ppm). The solution is added automatically at a rate that is set manually. Dispersant is added automatically at a rate that is set manually. Dispersant is added in the same manner. A free chlorine residual of 0.2 to 0.5 is the target for control of microbiological growth. Chlorine gas is injected into a side stream of the makeup water and added to the southern end of the basin. Both the chromate and free chlorine residual are measured once per shift by the operating personnel and about twice a week by the Betz representative.

The pH of the water is monitored continuously, but it is not used as an automatic controller. When pH exceeds the critical control range of 6.0 to 9.0, it must be corrected by manually adding acid or caustic soda. The ratio of calcium hardness in the recirculating water to that in the makeup water defines the number of cycles of concentration. This value is only used as a general indicator of system operation. Blowdown is dictated by the conductivity, which should not exceed 1,500 micromhos (umhos). Part of the blowdown is discharged through a rotameter, but the capacity of the rotameter is insufficient to provide measurement of the full blowdown flow. Thus, a bypass is used for part of the blowdown discharge. Maximum discharge through both lines (as during the test) generally keeps the conductivity in the control range of 900 to 1,200 umhos. If it is necessary to reduce the blowdown (perhaps because of reduced load, and, therefore, reduced water recirculation), flow through the rotameter or bypass can be reduced. However, if it is necessary to increase the blowdown (because of increased conductivity of the makeup water, for example), a valve in the process area or at the pumps must be opened to increase the discharge.

<u>Operating Conditions During the Testing</u> - The operating parameters that were monitored throughout the test period to ensure that appropriate conditions existed included fan motor amperage, pump outlet pressure, hot water line pressure, water flow in each riser, temperature in each riser, basin water temperature, pH, conductivity, wind speed and direction, and dry bulb temperature. The makeup flow rate was also monitored September 2, and the blowdown was estimated that afternoon. Table 2.1 is a summary of the cooling tower operating parameters and meteorological data recorded during the test period.

On Sunday, August 31, ESC personnel measured the recirculating water flow rates. The flow in the crossflow cell was about 20 percent greater than the flow in each of the counterflow cells. The pump head pressure and the manufacturer's pump curve indicated that the flow should be about 21,500 gal/min, which is 92 percent of the measured flow (23,400 gal/min). Design flow rates for the tower were not available, but the pumps were being operated normally within 90 to 100 percent of the design flow and near peak efficiency. The amperage required by the fans was constant, although different among the four fans, and the fans were also operating normally. Therefore, no changes were made to the air or water flow rates for the test.

The drift eliminator on one side of the crossflow cell was determined to be in good condition on the visual inspection through the doorway at one end of the tower. The drift eliminators in the counterflow cells could not be inspected, but the quantity of drift out of each stack appeared similar although it may have been slightly less from cell No. 1. The quantity of steam (presumably a combination of drift and condensed water vapor) rising from cell No. 1 also appeared to be slightly less than that from the other cells. Some of the nozzles in the distribution deck on cell No. 5 were plugged, and a few of the redwood slats in the lower sections of the counterflow cells were broken; however, the overall condition of the tower was reasonably good.

Parameter	Pretest	Test series No. 1	Test series No. 2
 Date	08/31/86	09/01/86	09/02/86
Recirculating water flow, gal/min ^a Riser 1 Riser 2 Riser 3	7,307 7,260 8,827		
Fan amperage, amps Cell 1 Cell 2 Cell 3 Cell 4 Cell 5		85 90 78 90 120	84-85 89-90 77-78 90 120
Pump outlet pressure, psig Pump 3 Pump 3B		80 80	80 80
Hot water line pressure, psig		28	28
Water temperature, °F Basin 1/3 Basin 2/4 Basin 5		82-85.5 85 83-85.5	83-85 83-84.5 83-85
Hot water line, °F Riser 1 Riser 2 Riser 3		99.5-102 100-102 -103 100-102	100-102 101-102
Makeup water flow, gal/min			~325
Blowdown, gal/min			~70
Water chemistry on-line monitor pH Conductivity, µmhos		7.87-7.96 1,029-1,056	7.90-8.04 1,026-1,038
Operator analysis pH Conductivity, µmhos Free chlorine, ppm Chromate, ppm		7.7 1,000-1,057 0.2 12	7.9-8.1 1,022-1,035 0-0.1 13-14

TABLE 2.1. SUMMARY OF OPERATING PARAMETERS AND METEOROLOGICAL DATA DURING TESTING OF TOWER 68

(continued)

TABLE 2.1. (continued)

Parameter	Pretest	Test series No. 1	Test series No. 2
Vendor analysis ^b			
pH			7.9
Conductivity, umhos			1,020
m-alkalinity, ppm			80
Chromate, ppm			14
Free chlorine, ppm			0
Calcium, ppm			226
Cycles			5.9
Chromate inhibitor feed rate, ga	1 /d		4.0
Meteorological data at tower			
Wind speed. mph		4-25	1-20
Wind direction. 00-360		180-360	Unknown
Ambient temperture, °F		-89	87-91
Meteorological data at Exxon stati	on		
Wind speed, mnh	v .,	5-12	7-14
Wind direction, 00-360		90-180	90-180
Ambient temperature. °F		77.8-86.4	84_86

^aAs determined by ESC. ^bVendor analysis only performed on date of second test series.

Water meters are not installed on the makeup and total blowdown lines. To estimate these flows, alternative methods were attempted. On September 3, 1986, a meter was connected to the pressure taps on an existing orifice plate in the makeup line. This indicated an average flow of about 280 gal/min over the 6 hours of monitoring (greater in the afternoon than in the morning), but did not include the 15 to 20 gal/min diverted for chlorine injection or the amount leaking through a valve into the system from a nearby tower. That tower (No. 58) is treated with a phosphate inhibitor from Calgon. The Betz representative used the phosphate concentration in the recirculating water of tower No. 68 to calculate a gain of about 25 gal/min. The Calgon representative estimated the loss from tower No. 58 to be about 100 to 150 gal/min. The Betz calculation is probably more accurate, since Calgon only made a rough estimate of the difference in blowdown from tower No. 58 on Friday, September 5, from the blowdown earlier in the year without the benefit of a meter on the blowdown line. (Later work by Exxon confirmed that the Betz estimate was correct.)

To estimate the tower No. 68 blowdown, the combined flow through the rotameter and bypass was diverted to a 55-gallon drum. The time to fill the drum a couple of times was recorded. This produced a flow rate within 20 percent of the estimate calculated by the Betz representative based on cycles of concentration and an estimate of evaporation.

Water temperatures also are not monitored by online equipment. Therefore, fittings were attached to taps on the three risers and the hot water return line itself. Mercury-in-glass thermometers were used to record the temperature. The basin temperature was determined about 5 feet from the basin wall below cell Nos. 1, 2, and 5. A mercury-in-glass thermometer was placed in a perforated can that was attached to a length of conduit. With this method, it was not possible to determine the actual temperature drop in each cell, but the average basin temperature in all three locations was the same.

Two sources of meteorological data were available: one station set up at the tower and one maintained by Exxon refinery personnel less than a mile from the tower. Both stations indicated that the wind direction was from the southeast, and very few directional changes deviated more than 45 degrees from the southeast. Both average and peak wind speeds, however, were considerably higher at the tower station. Other than instrument calibration differences, the reason for this is not clear. There may have been a slight tunneling effect created at the tower station where the wind had to pass between the cooling tower and a cryogenic process column (and other shorter equipment) 30 to 40 yards downwind of the station. Gusts rarely exceeded 15 mph, and drift was never visible from the side of the crossflow tower. The ambient temperature also varied between the stations. The actual temperature is probably that obtained at the tower site since the several thermometers that were used recorded the same levels.

On Friday, August 29, 1986, the Exxon process personnel responsible for the tower disconnected the chlorine injection line to preclude any possible adverse health effects on test personnel. Chlorine will also react with most hydrocarbons. Thus, a decrease in the free chlorine residual concentration (normally determined once per shift) is the best indicator of a process fluid leak into the water. Alternatively, gas traps on the hot water return line, visual inspection of the surface of the water in the basin and the distribution deck of cell No. 5, and the chromate concentration were used to confirm that the process heat exchangers were not leaking. The chromate concentration, as determined by the operators each shift, was essentially constant and within the desired control range during the testing period. The Betz analysis on Tuesday, September 2, agreed with that of the operators. The pH and conductivity were also within control ranges.

2.1.2 Tower 84

<u>Tower Description</u> - The tower is a 4-cell (riser and fan) Marley counterflow design with one 22-ft diameter constant-speed fan per cell. The average airflow per fan as measured by Entropy was about 550,000 dry standard cubic feet per minute (dscfm). Each cell is equipped with PVC film fill and a high-efficiency Marley XCEL-15 drift eliminator. Water is distributed over the fill through a manifold and spray nozzles. Two pumps circulate the water from the basin extension at the south end of the tower through the process heat exchangers. A recent potassium retention time study determined that the system volume was about 550,000 gallons of water.

Blowdown is designed to be controlled by the conductivity of the recirculating water. At certain set points, a valve is actuated in a line off the main hot water return. Most of the makeup water is supplied through a 6-inch pipe to the basin extension, but part of it is diverted continuously into five smaller lines. The inhibitor, dispersant, chlorine, sulfuric acid, and caustic soda are injected into the smaller lines automatically.

<u>Chemical Treatment and Monitoring System</u> - The corrosion inhibitor, Nalco 7374, is a chromate/zinc formulation in a 7:1 ratio. The target concentration in the recirculating water is 8 to 12 ppm. The solution is injected into one of the small makeup lines for a specific fraction of every 10-minute interval. The on/off time fraction can be changed by entering new values into the computer memory. The dispersant is injected into another makeup line in an identical manner. Acid and caustic are injected based on pH set points within the control range of 6.8 to 7.5. Chlorine gas is injected continuously at a rate controlled by a free chlorine residual monitor that is generally set to keep the concentration in the range of 0.3 to 0.5. For this system, the ratio of the conductivity of the recirculating water to that of the makeup water

defines the number of cycles of concentration. The conductivity of the makeup water is about 150 umhos, and the control range for the number of cycles is 6 to 8.

Operating conditions during the testing - The tower is operating at less than design capacity, but in July 1986 full-time operation began. The following operating parameters were monitored throughout the test period to ensure that appropriate conditions existed: (1) fan motor amperage, (2) pump outlet pressures, (3) cold water line pressure, (4) water flow in each riser, (5) temperature in three of the risers, (6) basin temperature, (7) temperature in pump inlet lines, (8) pH, (9) conductivity, (10) wind speed and direction, and (11) dry bulb temperature. The computerized system that monitors inlet and outlet temperatures and the makeup, blowdown, and recirculating water flow rates was not calibrated correctly at the start of the test. With the exception of the blowdown, attempts at calibration were not successful. These problems are not considered to affect the amount of drift, and only the makeup and blowdown could not be monitored directly by the test personnel. Table 2.2 is a summary of the cooling tower operating parameters and meteorological data recorded during the test period.

On Wednesday, September 3, 1986, ESC personnel measured the water flow rates in each riser and found the flow in Risers A and B to be about 15 percent less than the flow in Risers C and D. The total flow was 25 percent greater than the tower design, and 20 percent greater than the pump ratings. From the pump head pressure and the manufacturer's pump curves, it was calculated that the flow should be about 20,600 gal/min. The measured rate was about 10 percent greater than this calculated rate. As scale and fouling increase, and with additional process heat loads, the head pressure will increase slightly and cause a decrease in the flow rate. The conditions as measured (and with

Parameter	Pretest	Test series No. 1	Test series No. 2
Date	09/03/86	09/04/86	09/05/86
Recirculating water flow, gal/min ^a Riser A Riser B Riser C Riser D	5,300 5,200 6,100 6,100		
Fan amperage, amps Cell A Cell B Cell C Cell D	60 60 60 63	60 60 60 63	60 60 60 63
Pump outlet pressure, psig Pump 84A Pump 84B		80 80	80 80
Cold water line pressure, psig			
Water temperature, °F Basin Line to pump 84A Line to pump 84B Riser A Riser C Riser D		-85 82-83 82-83 99.5-100 99.5-100 99.5-100	84-85 82-83 82-83 98.5-100 98.5-100 98.5-100
Makeup flow rate, gal/min			
Blowdown, gal/min			
Water chemistry on-line monitoring pH Conductivity, µmhos Free chlorine, ppm		6.8-7.1 Unknown 0.35-0.57	6.8-7.0 Unknown 0.15-0.30
Operator analysis pH Conductivity, µmhos Makeup conductivity, µmhos Chromate, ppm		7.25 1,200 160 12.5	7.0 1,100 150 12.5

TABLE 2.2. SUMMARY OF OPERATING PARAMETERS AND METEOROLOGICAL DATA DURING TESTING OF TOWER 84

(continued)

TABLE 2.2. (continued)

Parameter	Pretest	Test series No. 1	Test series No. 2
Vendor analysis ^b			
pH Free chlorine, ppm Chromate, ppm Conductivity, µmhos Cycles Chromate feed rate, gal/d			6.9 0.2 12.5 1,100 7.3 3.0
Meteorological data at tower Wind speed, mph Wind direction, 00-360 Ambient temperature, °F		3-22 270-360 -92	4-18 270-360 84-91
Meteorological data at Exxon station Wind speed, mph Wind direction, 00-360 Ambient temperature, °F		5-10 90-110 86-87	1-5 120-180 -86-

^aAs determined by ESC. ^bVendor analysis only performed on date of second test series.

all the fans running) represented normal operation. Therefore, no attempt was made to even the flow in the risers or to reduce the overall flow to the designed rate.

The drift eliminators could be inspected through a porthole in the fan stack below the fan. The drift eliminator in Cell A is assumed to have at least one defect because entrained droplets were observed periodically in the same area of the stack. The other drift eliminators appeared to be in good condition. The water distribution through the fill was even, although it did cascade along some vertical beams at a greater rate than along others.

The quantity of blowdown was not easily determined because the conductivity control was not working and the valves in the line were closed. Also, recirculating water can be withdrawn from the system in the process area for general ground cleaning purposes. The operators, however, indicated that they had not been using any of this water on the test days. Finally, a water balance on the process side of the overhead vacuum condensers indicated an excess of about 50 gal/min. This is just about the amount that the Nalco representatives calculated for the blowdown based on the cycles of concentration and an estimation of the evaporation loss. An analysis of the process fluid for chromate was negative. The makeup could not be monitored because of the inaccurate calibration.

The recirculating water temperature was measured with mercury-in-glass thermometers in fittings attached to taps in three of the risers. The basin temperature was determined with a mercury-in-glass thermometer at the intersection of the main basin and the basin extension. The temperatures indicated by gauges on the lines to the pumps were also recorded; they were always 2 degrees lower than the thermometer reading.

As with tower No. 68, meteorological data were available both at the tower site and from the Exxon meteorological station almost a mile away. The wind direction continued to be steady from the southeast, and the wind speeds were higher on the chart recorder at the tower station. At this site, there were no obstructions around the station except for the tower itself.

The operator log of the chromate concentration in the recirculating water was constant at the upper limit of the control range over a 2-day test period. The concentration agreed with that obtained by the Nalco representative on August 29. The pH, conductivity, and free chlorine residual were also within the control ranges.

Possible Effects on Drift Measurements - Several conditions discussed above could have an effect on the drift measurements; each is considered below.

- 1. The recirculating water flow through tower No. 84 is higher than design, which may result in a higher rate of drift than would be produced if the tower were operating at the designed rate (and at a higher temperature range). Comparison of drift measurement from Cell B (5,200 gal/min) with measurements from Cells C and D (6,100 gal/min) should confirm this. However, the current operating conditions are not an operating problem, and there is no incentive to modify them.
- 2. The rate of drift from Cell A in tower No. 84 is likely to be higher than that from Cell B because of the apparent defect in the drift eliminator of Cell A.

3.0 SUMMARY OF RESULTS

Tests were conducted to determine the mass emission rates of hexavalent chromium and total chromium from cooling tower Nos. 68 and 84 at Exxon Company's Baytown Refinery in Baytown, Texas. Four of the cells on tower No. 68 (fan cells No. 1-4) were counterflow cells and were served by two risers. Fan cell No. 5 was a crossflow type and had its own riser. Because of its configuration, tower No. 68 was treated as two separate towers for testing purposes and represented: 1) a counterflow tower with standard-efficiency drift eliminators and 2) a crossflow tower with a standard-efficiency drift eliminator. Tower 84 was a counterflow tower with a high-efficiency drift eliminators. The mass emission rate tests used a Method 13-type impinger train to sample the five fan stacks on three riser cells on tower No. 68 and the four fan stacks on four riser cells on No. 84. The testing schedules that were followed for the Exxon cooling towers are presented in Tables 3.1A and 3.1B. The results of these tests are discussed briefly below and in detail in Section 3.1.

The pollutant mass emission rates for hexavalent chromium, calculated by the ratio of areas (PMR_a) method, for the counterflow cells on tower No. 68 ranged from 275 to 25,000 milligrams per hour (mg/hr), for the crossflow cell on tower No. 68 ranged from 2,500 to 58,500 mg/hr, and for the four riser cells on tower No. 84 ranged from 210 to 9,900 mg/hr. As is evident, the pollutant mass emission rates measured for hexavalent chromium were highly variable from run to run even for runs conducted on the same cell. Measured emission values for the same cell showed, in most cases, a 10- to 50-fold difference. However,

.		Riser Fan Cel (Counter	Cell E ls 1 and 4 flow Cell)	Rise Fan Cel (Counter	r Cell F ls 2 and 3 rflow Cell)	Rise Fan (Cross	er Cell G Cell 5 Sflow Cell)
(1986)	Sample Type	No.*	24 h clock	No.*	24 h clock	No.*	24 h clock
9/1	Chromium Chromium Chromium Chromium Particle Size Particle Size	68-1-1 68-DI-1 68-NZ-1	1109-1326 1145-1345 1145-1345	68-2-1 68-DI-1 68-NZ-1	1417-1628 1354-1554 1354-1554	68-5-1 68-5-2	1050-1328 1400-1631
9/2	Chromium Chromium Chromium Particle Size Particle Size	68-4-1	1229-1446	68-3-1 68-DI-2 68-NZ-2	0933-1138 0950-1351 0950-1351	68-5-3	1033-1302
9/3	Particle Size Particle Size					68-DI-3 68-NZ-3	0910-1310 0910-1310

TABLE 3.1 A. TESTING SCHEDULE FOR COOLING TOWER 68 AT EXXON COMPANY, INC, BAYTOWN REFINERY

TABLE 3.1 B. TESTING SCHEDULE FOR COOLING TOWER 84 AT EXXON COMPANY, INC, BAYTOWN REFINERY

		Rise	r Cell A	Ris	er Cell B	Riser	Cell C	Riser	Cell D
Jate	Sample Type	Run	Test Time	Run	Test Time	Run	Test Time	Run	Test Time
(1986)		No.*	24 h clock	No.*	24 h clock	No.*	24 h clock	No.*	24 h clock
9/4	Chromium	84-A-1	0950-1200						
·	Chromium	84-A-2	1230-1441						
	Chromium					84-C-1	0953-1207		
	Chromium					84-C-2	1224-1442		
	Particle Size		1					84-DI-4	1010-1410
	Particle Size							84-NZ-4	1010-1410
9/5	Chromium			84-B-1	0850-1100				
	Chromium			84-B-2	1130-1340	1			
	Chromium							84-D-1	0835-1043
	Chromium							84-D-2	1104-1317
	Particle Size	84-DI-5	820-1220						
	Particle Size	84-NZ-5	820-1220						

Run numbers for chromium runs indicate: Cooling Tower - Riser or Fan Cell - Run. Run numbers for particle size runs indicate: Cooling Tower - Technique - Run. when simultaneous runs which were conducted on different cells were compared, the mass emission rate values typically showed only a 1- to 5-fold difference. This indicates that cooling tower chromium emissions may vary widely with time and/or ambient conditions.

The drift size distribution (drift being defined here as cooling water entrained in the exit air and emitted to the atmosphere in droplet form), along with the drift rate, was determined by Environmental Systems Corporation (ESC) using their sensitive paper (SP) technique. The results of the SP testing suggest that the drift emissions from the counterflow fan cells on tower No. 68 had an average mass mean diameter of 290 um; from the crossflow cell on tower No. 68, an average mass mean diameter of 360 um, and from the counterflow cells on tower No. 84, an average mass mean diameter of 235 um.

Another particle sizing method was evaluated for determining the percent of hexavalent chromium in particles smaller than a certain size (approximately 15 um under these sampling conditions). The sampling protocol involved using a set of paired trains; one, referred to as the "disc train," was designed to capture only the smaller particles (less than 15 um) and the other, a Method 13-type train with the nozzle aligned directly into the flow of the fan exhaust (referred to as the "aligned nozzle train"), was designed to capture all sizes of drift particles. Data from two screening techniques being evaluated utilizing absorbent paper (AP) and ion exchange paper (XP) were also used for particle sizing purposes. The AP and XP data were used based on collection (under these sampling conditions) of particles greater than approximately 30 um in diameter.

The paired train particle sizing data suggest that most of the hexavalent chromium emissions from the fan cells tested on the two towers are associated with particles less than 15 um. The data from the paper collection techniques for these cells suggest that 1.0 to 15.1 percent of the chromium emissions from

the standard-efficiency drift eliminators and 1.0 to 2.9 percent from the highefficiency drift eliminators are associated with particles greater than 30 um. The particle sizing results and the differences between the two methods are discussed in detail in Section 3.2.

The analytical results for hexavalent chromium and residue (trivalent) chromium in the cooling water samples and the total chromium in the impinger samples are presented in Section 3.3 along with the analytical results for the blanks and the quality assurance samples. The results of the analysis of the absorbent papers and ion exchange papers, which are being evaluated as screening techniques for cooling tower emissions, are also presented in Section 3.3, and the techniques are discussed in Section 3.4.

Drift rate calculations based on the water flow to the riser cells, the concentration of chromium in the cooling water, and the mass emission rates calculated from the impinger train samples and the AP and ion exchange paper samples are presented in Section 3.5. Drift rate calculations from the SP data are also presented and the drift rates calculated by the various methods are compared.

3.1 HEXAVALENT CHROMIUM AND TOTAL CHROMIUM EMISSIONS

The mass emission rates for hexavalent chromium and total chromium for the nine fan cells on the two towers were determined. Sampling was conducted isokinetically with the isokinetic values for the fifteen sampling runs ranging from 99.7% to 109.5% (see Table 3.2). The sampling runs were typically 2 hours in length, with a single traverse on each fan stack cell comprising a single sample; for fan cell 5 on tower 68, which was treated as a separate tower, two perpendicular traverses were conducted. Stack gas conditions were calculated assuming that the exhaust was saturated.

TABLE 3.2.	SUMMARY	OF	FLUE	GAS	CONDITIONS

Run No.	Date (1986)	Test Time 24 h clock	Volumetric Flow Rate Actual Standard		te b rd	Stack Temperature		Moisture	Isokinetic	
			acmh x 10 ⁶	acfh x 10 ⁶	dscmh x 10	dscfh x 10 ⁶	°c	o F	÷	*

68-1-1	9/1	1109-1326	0.576	20.35	0.543	19.19	28.9	84.1	3.9	104.0
68-4-1	9/2	1229-1446	0.542	19.15	0.502	17.74	31.7	89.0	4.6	103.6
68-2-1	9/1	1417-1623	0.508	17.93	0.474	16.73	30.8	87.5	4.3	99.7
68-3-1	9/2	0933-1138	0.558	19.72	0.513	18.10	33.2	91.8	5.0	104.9
Average _			0.55	19.3	0.51	17.9	31.2	88.1	4.5	
					Tower	68, Riser	Cell G			
68-5-1	9/1	1050-1328	1.569	55.39	1.470	51.92	30.0	86.0	4.1	102.9
68-5-2	9/1	1400-1631	1.673	59.07	1.552	54.81	31.7	89.1	4.6	102.0
68-5-3	9/2	1033-1302	1.636	57.76	1.524	53.81	30.7	87.3	4.3	102.8
Average			1.63	57.4	1.52	53.5	30.8	87.5	4.3	
			<u> </u>		Tower	84, Rise	r Cell A			
 84-A-1	9/4	0950-1200	1.038	36.67	0.959	33.86	33.1	91.5	4.9	109.5
84-A-2	9/4	1230-1441	1.054	37.23	0.985	34.80	31.0	87.9	4.4	111.5
Average			1.05	37.0	0.97	34.3	32.1	89.7	4.6	
					Tower	84, Rise	r Cell B			
84-B-1	9/5	0850-1100	1.084	38.29	1.001	35.34	32.6	90.6	4.8	105.9
84-B-2	9/5	1130-1340	1.123	39.66	1.036	36.60	32.6	90.8	4.8	107.7
Average		·····	1.10	39.0	1.02	36.0	32.6	90.7	4.8	
					Tower	84. Rise	r Cell C			
	9/4	0953-1207	0.995	35.15	0.915	32.32	34.1	93 4	5.2	106 1
84-C-2	9/4	1224-1442	0.994	35.10	0.917	32.40	33.5	92.4	5.0	106.8
Average			0.99	35.12	0.92	32.36	33.8	92.9	5.1	
		<u> </u>			Tower	84. Rise	r Cell D			
84-D-1	9/5	0835-1043	0.952	33.60	0.881	31.12	32.4	90.3	4.8	102.5
84-D-2	9/5	1104-1317	0.868	30.66	0.798	28.17	33.7	92.7	5.1	104.0
			÷				1			

Tower	68,	Riser	Cells	Ε	and	F

29.6

33.0

91.5

5.0

0.84

0.91 32.1

Average

The hexavalent chromium emissions in the drift were calculated using the values for the total chromium emissions and the ratio of hexavalent-to-total chromium in the cooling water. The assumption was made that the chromium emissions from the cooling tower fan stack maintained the same ratio of hexavalent-to-total chromium measured in the cooling water.

The concentration of hexavalent and total chromium emissions, in milligrams per dry standard cubic meter (mg/dscm), micrograms of chromium per gallon of cooling water flow through the tower for that fan cell (ug/gal), and milligrams per million Btu's of heat removed (mg/10⁶ Btu), and the mass emission rates of hexavalent and total chromium, in milligrams per hour (mg/hr) are presented in Table 3.3 for each sampling run. These results are based on the total chromium analysis conducted by RTI using GFAA with the hexavalent chromium values calculated using the ratio of hexavalent-to-total chromium in the cooling water sample for that run. The hexavalent and total chromium values are representative of the emissions from a single fan stack on the corresponding riser cell. The mass emission rates were calculated using the ratio of the fan stack area to the sampling nozzle area, the catch weight of total chromium or the calculated catch weight of hexavalent chromium, and the sampling time (see Appendix A for example calculations).

3.1.1 <u>Tower 68, Counterflow Fan Cells, Standard-Efficiency Drift Eliminators</u> <u>Flue Gas Conditions</u> - A summary of the flue gas conditions for the counterflow fan cells tested on tower No. 68 is presented at the top of Table 3.2. The volumetric flow rates were fairly constant for all four fan cells and averaged 550,000 actual cubic meters per hour (19,300,000 actual cubic feet per hour). The stack temperature for these fan cells averaged $31^{\circ}C$ ($88^{\circ}F$) and the moisture content averaged 4.5%. The isokinetic sampling rates were well within the allowable limits for all four runs.

Run	Date		Hexavalent Chromium					Total Chromium				
No.		conce	concentration			concentration			mass emissions			
		$(mg/dscm) \times 10^{-3}$	ug/gal	mg/10 ⁶ Btu	mg/hr	$(mg/dscm) \times 10^{-3}$	ug/gal	mg/10 ⁶ Btu	mg/hr			
Standard-Ef:					ficiency, Counterflow Tower 68, Riser Cell E							
1-1 4-1	9/1 9/2	44.36 0.528	99.63 1.09	257.8 2.8	25,060 275	44.49 0.528	99.91 1.09	258.5 2.8	25,130 275			
Standard-Efficiency, Counterflow Tower 68, Riser Cell F												
2-1 3-1	9/1 9/2	8.713 0.983	19.54 2.51	48.7 5.8	4,115 528	8.713 0.991	19.54 2.53	48.7 5.9	4,115 533			
			<u></u>	Standard-E	fficiency, Cross	flow Tower 68, Ris	er Cell	G				
5-1 5-2 5-3	9/1 9/1 9/2	38.69 4.61 1.63	136.40 17.00 5.94	261.5 28.6 10.1	58,560 7,300 2,550	38.69 4.61 1.63	136.40 17.00 5.94	261.5 28.6 10.1	58,560 7,300 2,550			
2-7				High Effi	ciency, Counterf	low Tower 84, Rise	r Cell A					
A-1 A-2	9/4 9/4	4.042 0.389	14.02 1.41	28.0 2.5	4,244 427	4.065 0.402	14.10 1.46	28.2 2.6	4,269 441			
				High-Effi	ciency, Counterf	low Tower 84, Rise	r Cell B					
B-1 B-2	9/5 9/5	0.650 0.205	2.16 0.72	4.4 1.2	689 229	0.652 0.206	2.17 0.72	4.4 1.2	691 230			
				High-Effi	ciency, Counterf	low Tower 84, Rise	r Cell C					
C-1 C-2	9/4 9/4	8.665 0.373	23.18 1.01	58.3 2.3	8,418 365	8.993 0.375	24.06 1.01	60.5 2.3	8,737 368			
				High-Effi	ciency, Counterf	low Tower 84, Rise	r Cell D	······································	· · · · · · · · · · · · · · · · · · ·			
D-1 D-2	9/5 9/5	0.232 11.927	0.58 27.14	1.4 68.1	210 9,898	0.234 11.957	0.58 27.21	1.4 68.3	211 9,923			

TABLE 3.3. SUMMARY OF HEXAVALENT AND TOTAL CHROMIUM EMISSIONS BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA)

<u>Hexavalent Chromium Emissions</u> - A summary of the hexavalent chromium emission values for the test runs conducted on the four counterflow fan cells on tower No. 68 is presented in Table 3.3. The hexavalent chromium concentrations for the four fan cells were quite variable and ranged from 0.0005 to 0.044 milligrams per dry standard cubic meter of exhaust gas, 1.1 to 100 micrograms per gallon of water flow to the fan cells, and 2.8 to 258 milligrams per million Btu's of heat removed from the water. The mass emission rates of hexavalent chromium for the four cells ranged from 275 to 25,100 milligrams per hour.

<u>Total Chromium Emissions</u> - The total chromium emissions for each test run on the counterflow fan cells on tower No. 68 (see Table 3.3) were also variable, but were consistent with the corresponding hexavalent chromium emissions. The total chromium emission concentrations ranged from 0.0005 to 0.044 milligrams per dry standard cubic meter, 1.1 to 100 micrograms per gallon of water flow, and 2.8 to 259 milligrams per million Btu's removed. The mass emission rates for total chromium ranged from 275 to 25,100 milligrams per hour.

3.1.2 <u>Tower 68, Crossflow Fan Cell, Standard-Efficiency Drift Eliminators</u> <u>Flue Gas Conditions</u> - The flue gas conditions for fan cell #5 (crossflow) on tower No. 68 are presented in Table 3.2. The volumetric flowrates for all three runs conducted on this cell were consistent and averaged 1,630,000 actual cubic meters per hour (57,400,000 actual cubic feet per hour). The stack temperature averaged 31° C (88° F) and the moisture content averaged 4.3%. The isokinetic sampling rates were well within the allowable range for all three runs.

<u>Hexavalent Chromium Emissions</u> - The summary of hexavalent chromium emission values for the crossflow fan cell on tower No. 68 is presented in Table 3.3. As for the counterflow cells, the hexavalent chromium concentrations for the three runs on the crossflow section of tower No. 68 were variable. They ranged from 0.0016 to 0.039 milligrams per dry standard cubic meter, 5.9 to 136 micrograms per gallon of water flow, and 10.1 to 262 milligrams per million Btu's of heat removed. The mass emission rates of hexavalent chromium ranged from 2550 to 58,600 milligrams per hour.

<u>Total Chromium Emissions</u> - The total chromium emissions for the crossflow fan cell are also presented in Table 3.3. The total chromium emission concentrations for the runs on this fan cell ranged from 0.0016 to 0.039 milligrams per dry standard cubic meter, 5.9 to 136 micrograms per gallon of water flow to the fan cell, and 10.1 to 262 milligrams per million Btu's of heat removed. The mass emission rates of total chromium ranged from 2550 to 58,600 milligrams per hour.

3.1.3 <u>Tower 68</u>. <u>Simultaneous Runs</u> - When examined as whole and cell by cell, the hexavalent chromium emissions for tower No. 68 are extremely variable from run-to-run. However, comparison of the emission values for those runs conducted simultaneously (1-1 and 5-1, 2-1 and 5-2, and 3-1 and 5-3) reveals a distinct correlation. For example, there is a 91-fold difference between the two mass emission rates calculated for riser cell E (Runs 1-1 and 4-1) and only a 2.3-fold difference between the mass emission rates for the two runs conducted simultaneously (1-1 and 5-1) on riser cells E and G. Similar comparisons show 8- and 23-fold differences in the mass emission rates for the runs for riser cells F and G, respectively, and only 1.8- and 4.8-fold

differences for the two pairs of simultaneous runs (2-1 and 5-2, and 3-1 and 5-3, respectively) conducted on these two riser cells.

3.1.4 Tower 84, Counterflow Fan Cells, High-Efficiency Drift Eliminators

<u>Flue Gas Conditions</u> - The flue gas conditions for the four pairs of runs conducted on the four counterflow fan cells with high-efficiency drift eliminators on tower No. 84 are presented in Table 3.2. The volumetric flowrates for all runs on all four cells were fairly consistent and averaged 1,010,000 actual cubic meters per hour (35,800,000 actual cubic feet per hour). For these four cells, the stack temperature averaged $33^{\circ}C$ ($91^{\circ}F$) and the moisture content averaged 4.9%. The isokinetic sampling rates for all eight runs were well within the acceptable range.

<u>Hexavalent Chromium Emissions</u> - A summary of the hexavalent chromium emissions for the test runs conducted on tower No. 84 is presented in Table 3.3. The hexavalent chromium emission concentrations for the four cells on the tower were again variable and ranged from 0.0002 to 0.012 milligrams per dry standard cubic meter, 0.7 to 27 micrograms per gallon of water flow, and 1.2 to 68 milligrams per million Btu's of heat removed. The mass emission rates of hexavalent chromium for the four cells ranged from 230 to 9,900 milligrams per hour.

<u>Total Chromium Emissions</u> - The total chromium emissions for the fan cells on tower No. 84 are also presented in Table 3.3 and were consistent with the corresponding hexavalent chromium emissions. The total chromium emission concentrations emitted by the four cells ranged from 0.0002 to 0.012 milligrams per dry standard cubic meter, 0.7 to 27 micrograms per gallon of water flow, and 1.2 to 68 milligrams per million Btu's of heat removed. The mass emission

rates of total chromium from the fan cells on this tower ranged from 230 to 9,900 milligrams per hour.

3.1.5 <u>Tower 84. Simultaneous Runs</u> - Like tower 68, when examined as a whole and cell by cell, the hexavalent chromium emissions for tower 84 are extremely variable. Comparison of simultaneous runs (A-1 and C-1, A-2 and C-2, B-1 and D-1, and B-2 and D-2), however, yields much less variability. Comparison of the hexavalent chromium emission values for the pairs of runs conducted on riser cells A and C show a 10- and a 23-fold difference, respectively. However, comparison of the values for the simultaneous runs conducted on the same two fan cells show only 2- and 1.2-fold differences. In a similar manner, comparison of the values for the pairs of runs conducted on cells B and D yield 3- and 47-fold differences, while comparison of values for the simultaneous runs on the same two cells show differences of 3.3- and 43-fold.

3.2 SIZE DISTRIBUTION OF DRIFT AND CHROMIUM

3.2.1 Size Distribution of Drift

The drift size distribution and the drift rates were measured by ESC, using their sensitive paper (SP) technique, for each fan cell tested by Entropy. The total flux, the mean particle diameter for mass and particle count, the mass emission rate, and a drift rate expressed as a percent of water flow to the fan cell are presented in Table 3.4 for each of the nine fan stacks tested. The drift rates calculated using the SP data as a percent of water flow averaged 0.007% for the counterflow cells on tower No. 68, 0.005% for the crossflow cell on tower No. 68, and 0.0007% for the counterflow cells on tower No. 84.

The mass mean diameter of the drift is that particle diameter at which half the drift mass is composed of particles with diameters larger than the mean diameter and half the mass is composed of particles with diameters smaller than

Date	Total	Flux	Mean I	Diameter	Mass Emission Bate [*]	Water Flow	Drift Rate			
	mass	count	mass	count	hate					
	(ug/m /sec) x 10	(#/m /sec) x 10	(um)	(um)	(grams/hr)	(gpm)				
	C	ooling Tower 68, R	iser Cel	ll E, Far	n Cell 1					
9/1	52.6 3.65		276	50	0.00344	4193	0.0047%			
	C	ooling Tower 68, R	iser Ce	ll F, Far	n Cell 2					
9/1	97.0	6.42	360	42	0.00636	3511	0.0103%			
	C	ooling Tower 68, R	iser Ce	ll F, Far	n Cell 3		-			
9/1	67.4	5.18	278	46	0.00442	3511	0.0072%			
Cooling Tower 68, Riser Cell E, Fan Cell 4										
9/1	45.4 5.29		248	44	0.00297	4193	0.0040%			
	Cooling Tower 68, Riser Cell G, Fan Cell 5									
9/1	48.8	9.52	360	44	0.00569	7157	0.0045%			
	С	ooling Tower 84, R	iser Ce	11 A						
9/3	6.63	1.81	282	34	0.00081	5046	0.0009%			
	C	ooling Tower 84, R	iser Ce	11 B			_ ,			
9/3	4.30	1.73	206	34	0.00052	5320	0.0006%			
Cooling Tower 84, Riser Cell C										
9/3	3.92	1.15	218	39	0.00048	6054	0.0005%			
	C	Cooling Tower 84, R	iser Ce	11 D						
9/3	6.76	1.74	234	39	0.00082	6079	0.0008%			

TABLE 3.4. SUMMARY OF SENSITIVE PAPER (SP) DRIFT SIZE DATA

*These values represent drift emission rates and cannot be compared with hexavalent and/or total chromium mass emission rates.
the mean diameter (D_{50}) . The mass mean diameter for the drift particles averaged 290 um for the counterflow cells on tower No. 68, 360 um for the crossflow cell on tower No. 68, and 235 um for the counterflow cells on tower No. 84.

3.2.2 Size Distribution of Chromium

Two methods were used for estimating the percent of hexavalent chromium in two particle size ranges. The first method involved the use of paired trains with an "aligned nozzle train" and a "disc train" (described in Section 4.11). The aligned nozzle train, which was used for a reference measurement, was designed to collect all particle sizes isokinetically. The disc train was operated at the same sampling rate as the nozzle train and was designed to collect primarily the smaller particles (less than about 15 um). The purpose of the paired train particle sizing was to determine the percent" of the chromium emissions associated with the smaller particles.

The second particle sizing method, the absorbent paper (AP) technique, was also being evaluated as a screening method for cooling tower testing. Southern Research Institute's (SoRI) Aerosal Science Division calculated the cut sizes for both particle sizing methods. Using the fan cell gas velocity and the inside diameter of the disc train probe, SoRI calculated the diameter of particles collected at 50 percent efficiency (D_{50}) by the disc train. The D_{50} for the disc train runs ranged from 12.6 to 12.7 um (see Appendices A and C) with particles less than this size range being collected. The D_{50} for the AP sampling device, which collected primerily larger particles (i.e., 30 um and up), ranged from 27.0 to 32.5 um with particles larger than this size range being collected.

The ratio of the emission rates of hexavalent chromium measured by the paired trains for runs 1, 2, 3, 4, and 5 for fan cells on risers E, F, G, D,

and A, respectively, are shown in Table 3.5. In one instance, comparing the disc train value with the impinger train value indicates that the disc train collected over 100% of the hexavalent chromium as compared to the nozzle train. In two more instances, the disc train collected over 50% of the hexavalent chromium as compared to the nozzle train. These instances suggest that a significant portion of the chromium emissions from the fan cells are associated with particles less than 15 um.

The second particle sizing method involved using the AP device attached to the traversing impinger train. The percent of chromium associated with particles greater than the 30 um cut size was calculated using the ratio of the PMR_a values for the AP device and the corresponding impinger (IMP) train run values (see Table 3.5). The ratio of the AP to impinger train values ranged from 1.0% to 15.1% for the fan cells tested. This suggests that only a small portion of the chromium emissions are associated with particles larger than 30 um.

3.3 SUMMARY OF ANALYTICAL RESULTS FOR HEXAVALENT CHROMIUM AND TOTAL CHROMIUM3.3.1 Cooling Water Samples

Two analytical techniques (see Figure 4.3) were used for the analysis of hexavalent chromium and total chromium in the cooling water samples. To measure hexavalent chromium, a portion of each cooling water sample was analyzed by RTI using the diphenylcarbazide colorimetric procedure. Another 10-ml aliquot of each cooling water sample was filtered through a Teflon filter with a 1.0-um pore size. The filter, which was used to catch the insoluble trivalent (Cr^{+3}) chromium residue, was then analyzed for total chromium by NCSU using NAA. The sum of the hexavalent chromium (Cr^{+6}) and the residue on the filter (Cr^{+3}) then represents the total chromium content of the cooling water. Cooling water blanks were taken from each cooling tower before the addition of the sodium bromide.

Rup	Hexavalent Chromium PMBc	Ratio of	Ratio of Run Hexavalent Disc to Run		Ratio	Sum of AP/IMP and Disc/	
Number	(mg/hr)	Nozzle	Number	mg/hr	Avg.	IMP train	Nozzle Ratios
Cooling Towe	er 68, Riser	Cells E an	d F, Fan Cel	lls 1 and	2, Stand	lard-Efficien	cy Drift Elimin
CT-68-DI-1	716	58.1%	1-1(AP) 2-1(AP)	149.4 145.0	147.2	1.0%	59%
CT-68-NZ-1	1,233		1-1(IMP) 2-1(IMP)	25,060 4,115	14,588		
Cooling Tow	er 68, Riser	Cell F, Fa	n Cell 3, S	tandard-E	fficiency	y Drift Elimi	nator
CT-68-DI-2	9,354	-	3-1(AP)	79.9			
<u> </u>		108.3%				15.1%	123%
CT-68-NZ-2	8,641		3-1(IMP)	528			
Cooling Tow	er 68, Riser	Cell G, Fa	an Cell 5, S	tandard-E	fficienc	y Drift Elimi	nator
CT-68-DI-3	9,282		5-1(AP) 5-2(AP) 5-3(AP)	175.1 145.6 1,057	459.2		
		92.1%				2.0%	94%
CT-68-NZ-3	10,075		5-1(IMP) 5-2(IMP) 5-3(IMP)	58,560 7,300 2,550	22,803		
	Cooling Tow	ver 84, Rise	er Cell D, H	igh-Effic	iency Dr	ift Eliminato	er en
CT-84-DI-4	467	21.6%	D-1(AP) D-2(AP)	46.9 53.1	50.0	1.0%	23%
ct-84-nz-4	2,166		D-1(IMP) D-2(IMP)	210 9,898	5,054		
	Cooling Tower 84, Riser Cell A, High-Efficiency Drift Eliminator						
CT-84-DI-5	537		A-1(AP)	68.8			
	·	35.6%				2.9%	39%
CT-84-NZ-5	1,508		A-1(IMP) A-2(IMP)	4,244 427	2,336		

TABLE 3.5. SUMMARY OF PARTICLE SIZING DATA USING DISC TRAIN AND ABSORBENT PAPER

The hexavalent chromium results for the diphenylcarbazide analysis of the cooling water samples presented in Table 3.6 show a range of 7.33 to 8.71 micrograms per milliliter (ug/ml) of hexavalent chromium. The levels of trivalent chromium determined using NAA (see Table 3.6) ranged from 0.00 to 0.309 ug/ml.

The ratio of hexavalent chromium to total chromium in the cooling water based on the NAA of the cooling water filtrate and filter residue ranged from 0.933 to 1.00 (93.3% to 100.0% hexavalent chromium). The percent hexavalent chromium value determined for each water sample collected was used to calculate the hexavalent chromium emissions from the total chromium emissions measured by the impinger train for that corresponding run.

Cooling water samples collected at the beginning and end of testing on each cooling tower were also analyzed for calcium (Ca), magnesium (Mg), manganese (Mn), and sodium (Na) content, and pH. The results for these analyses are presented in Table 3.7.

Sample	Ca	Mg	Mn	Na	рH
No.	(ug/ml)	(ug/ml)	(ug/ml)	(ug/ml)	
Blank 1-W	72.8	12.3	<0.01	83.1	6.7
Blank 2-W	66.8	11.6	<0.01	109	6.7
Blank 3-W	72.9	12.4	0.05	74.9	7.0
PS-3-W	69.0	12.0	<0.01	110	7.3
PS-5-W	74.4	11.7	0.05	94.1	6.9

TABLE 3.7. MINERAL CONTENT AND pH OF SELECTED COOLING WATER SAMPLES

3.3.2 Impinger Train Samples

The analytical results for the samples from each impinger train run and each paired train particle sizing run are presented in Table 3.8. The impinger train and paired train samples, consisting of the impinger contents and rinses, the probe rinses, and a filter, were analyzed principally by RTI using graphite furnace atomic absorption (GFAA). Each result was blank corrected using the results of a DI water or a DI water/filter blank. The chromium in each sample

Run No.	Sample Type	Sample No. Analyzed	Chromium (ug/ml)
	Cooling Tower 68	- Riser Cell E	
1-1 1-1 1-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	1-1-W 1-1-R	7.64 0.023 7.66 *
4-1 4-1 4-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	4-1-W 4-1-R	7.33 0.000 7.33 *
	Cooling Tower 68	- Riser Cell F	
2-1 2-1 2-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	2-1-W 2-1-R	7.58 0.000 7.58 *
3-1 3-1 3-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	3-1-W 3-1-R	7.45 0.065 7.51 *
	Cooling Tower 68	- Riser Cell G	
5-1 5-1 5-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	5-1-W 5-1-R	7.44 0.000 7.44 *
5-2 5-2 5-2	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	5-2-W 5-2-R	7.82 0.000 7.82 *
5-3 5-3 5-3	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	5-3-W 5-3-R	7.65 0.000 7.65 *

TABLE 3.6. SUMMARY OF ANALYTICAL RESULTS FOR COOLING WATER SAMPLES

(continued)

Run No.	Sample Type	Sample No. Analyzed	Chromium (ug/ml)			
	Cooling Tower 84 - Riser Cell A					
A-1 A-1 A-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	A-1-W A-1-R	8.19 0.048 8.24 *			
A-2 A-2 A-2	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	A-2-W A-2-R	8.33 0.270 8.60 *			
	_Cooling Tower 84 -	Riser Cell B				
B-1 B-1 B-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	B-1-W B-1-R	8.33 0.019 8.35 *			
B-2 B-2 B-2	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	B-2-W B-2-R	8.68 0.039 8.72 *			
	Cooling Tower 84 -	Riser Cell C				
C-1 C-1 C-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	C-1-W C-1-R	8.17 0.309 8.48 *			
C-2 C-2 C-2	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	C-2-W C-2-R	8.47 0.062 8.53 *			
	Cooling Tower 84 - Riser Cell D					
D-1 D-1 D-1	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	D-1-W D-1-R	8.05 0.061 8.11 *			
D-2 D-2 D-2	Cooling Water (Cr+6) Cooling Water (Cr+3) Cooling Water (Total Cr)	D-2-W D-2-R	8.71 0.022 8.73 *			

TABLE 3.6 (continued)

* This value represents the total chromium content of the cooling water and is the sum of the hexavalent chromium (Cr+6) measured by the diphenylcarbazide wet chemical method and the trivalent chromium (Cr+3) which is the chromium measured by NAA in the filtered residue of the cooling water sample.

Run Number	Sample Number	Sample Type	Sample Size	Total Chromium by NAA (ug)	Total Chromium by GFAA (ug)
		Tower 68, Riser Cell E, Fan Cel	1 1		
CT-68-1-1 CT-68-1-1	1-1-abc 1-1-AP	Impinger Contents & Filter Traversing Absorbent Paper	27.4020 ml 13.2 sq.cm	16.265	65.465
		Tower 68, Riser Cell F, Fan Cel	.1 2		
CT-68-2-1 CT-68-2-1 CT-68-2-1 CT-68-2-1	2-1-a 2-1-b 2-1-c 2-1-AP	1st Impinger & Probe Rinse Second Impinger Content Third Impinger and Filter Traversing Absorbent Paper	25.3218 ml 25.9171 ml 28.1114 ml 13.2 sq.cm	15.741	1.598 9.353 0.200
<u> </u>	<u></u>	Tower 68, Riser Cell E, Fan Cel	1 3		
CT-68-3-1 CT-68-3-1	3-1-abc 3-1-AP	Impinger Contents & Filter Traversing Absorbent Paper	26.0679 ml 13.2 sq.cm	8.738	1.388
	, i a	Tower 68, Riser Cell F, Fan Cel	114		
CT-68-4-1 CT-68-4-1	4-1-abc 4-1-AP	Impinger Contents & Filter Traversing Absorbent Paper	26.5272 ml 13.2 sq.cm	11.972	0.600
		Tower 68, Riser Cell G, Fan Cel	11 5		
CT-68-5-1 CT-68-5-2 CT-68-5-2 CT-68-5-2 CT-68-5-2 CT-68-5-3 CT-68-5-3 CT-68-5-3	5-1-abc 5-1-AP 5-2-a 5-2-b 5-2-c 5-2-AP 5-3-abc 5-3-X-1 5-3-X-1 5-3-X-2	Impinger Contents & Filter Traversing Absorbent Paper 1st Impinger & Probe Rinse Second Impinger Content Third Impinger and Filter Traversing Absorbent Paper Impinger Contents & Filter Traversing Ion Exch. Paper Traversing Ion Exch. Paper	27.5749 ml 13.2 sg.cm 23.9277 ml 24.6471 ml 19.7954 ml 13.2 sq.cm 27.2730 ml 13.2 sq.cm 13.2 sq.cm	8.379 6.967 31.528 19.037	66.683 6.701 1.973 0.182 2.902
	·	Tower 84, Riser Cell A	·····		T
CT-84-A-1 CT-84-A-1 CT-84-A-1 CT-84-A-1 CT-84-A-2	A-1-a A-1-b A-1-c A-1-AP A-2-abc	1st Impinger & Probe Rinse Second Impinger Content Third Impinger and Filter Traversing Absorbent Paper Impinger Contents & Filter	27.7122 ml 24.5078 ml 29.0468 ml 13.2 sq.cm 26.3708 ml	4.376	5.092 1.197 0.451 0.708
		Tower 84, Riser Cell B			
CT-84-B-1 CT-84-B-1 CT-84-B-2 CT-84-B-2	B-1-abc B-1-AP B-2-abc B-2-XP	Impinger Contents & Filter Traversing Absorbent Paper Impinger Contents & Filter Traversing Ion Exch. Paper	18.8088 ml 13.2 sq.cm 24.6307 ml 13.2 sq.cm	8.031 8.424	1.581 0.529

(continued)

TABLE 3.8	. (continued)
-----------	---------------

Run Number	Sample Number	Sample Type	Sample Size	Total Chromium By NAA (ug)	Total Chromium By GFAA (ug)
		Tower 84, Riser Cell C			
CT-84-C-1 CT-84-C-1 CT-84-C-1 CT-84-C-1 CT-84-C-1 CT-84-C-1	C-1-a C-1-b C-1-c C-1-AP C-2-abc C-2-XP	1st Impinger & Probe Rinse Second Impinger Content Third Impinger and Filter Traversing Absorbent Paper Impinger Contents & Filter Traversing Ion Exch. Paper	25.6174 ml 25.4790 ml 25.9525 ml 13.2 sq.cm 26.5968 ml 13.2 sq.cm	3.339 3.115	10.663 2.172 0.423 0.554
·		Tower 84, Riser Cell D			
CT-84-D-1 CT-84-D-1 CT-84-D-2 CT-84-D-2	D-1-abc D-1-AP D-2-abc D-2-XP	-Impinger Contents & Filter Traversing Absorbent Paper Impinger Contents & Filter Traversing Ion Exch. Paper	24.1260 ml 13.2 sq.cm 24.8029 ml 13.2 sq.cm	2.986 3.364	0.4588 - 21.540
		Particle Sizing, Riser Cells A,	D, E, F, and	1 G	
CT-68-DI-1 CT-68-DI-2 CT-68-DI-2 CT-68-DI-3 CT-68-DI-3 CT-84-DI-4 CT-84-DI-4 CT-84-DI-5 CT-68-NZ-1 CT-68-NZ-2 CT-68-NZ-2 CT-68-NZ-3 CT-84-NZ-5	DI-1-p DI-1 DI-2-p DI-2 DI-3-p DI-3 DI-4-p DI-4 DI-5-p DI-5 NZ-1 NZ-2 NZ-3 NZ-4 NZ-5	Disc Train Probe Rinse Disc Train Imp. & Filter Disc Train Imp. & Filter Nozzle Train Imp. & Filter	24.8876 ml 28.5310 ml 26.1345 ml 28.7162 ml 24.9680 ml 25.4153 ml 24.4289 ml 24.5252 ml 24.1451 ml 24.1605 ml 24.8408 ml 22.1188 ml 27.6306 ml 27.7520 ml 21.7376 ml		$\begin{array}{r} 4.086\\ 1.525\\ 2.630\\ 71.316\\ 3.796\\ 28.399\\ 0.849\\ 1.339\\ 1.785\\ 0.670\\ 9.866\\ 69.744\\ 34.914\\ 9.970\\ 6.385\end{array}$
		Blanks and Quality Assurance Sa	mples	·	
	* * Blank-AP Blank-XP QA-1 QA-2 QA-3 QA-4 QA-5 QA-6	Sample Train Blank 1st.Imp. and Probe Rinse Blank 2nd. Impinger Blank 3rd Imp. and Filter Blank Adsorbent Paper Blank Ion Exch. Paper Blank QA Sample 1, 7.5 ug Cr+6 on AP QA Sample 2, 7.5 ug Cr+6 on XP QA Sample 3, 7.5 ug/ml Cr+6 QA Sample 4, 7.5 ug Cr+6 QA Sample 5, 150 ng/ml Cr+6 QA Sample 6, 150 ng Cr+6	13.2 sq.cm 13.2 sq.cm 13.2 sq.cm 13.2 sq.cm 2.0 m1 25.0 m1	0.075 0.304 2.841 4.983 6.23 <0.05	0.1 0.04 0.02 7.4 ug/ml 153 ng/ml

* Blank values calculated from GFAA results for samples: P-42, P-43, Blank-f, Blank, Blank 1, and Blank 2.

was first solubilized using nitric acid so that the GFAA analysis, which measures only soluble chromium, would yield results for total chromium. A small correction factor was added to the sample results to account for a prior NAA analysis of a small aliquot of each sample (see example calculations in Appendix A).

Prior to analysis, each sample was concentrated down in a glass beaker and then transferred to another container. Each beaker used was then treated with aqua regia to solubilize any residual chromium remaining after sample transfer. This aqua regia solution (beaker residue) was also analyzed by GFAA. Thus, the analytical results presented for total chromium in each impinger sample is the sum of the total chromium for the sample measured by GFAA (with the NAA correction factor) and the residual chromium recovered from the sample concentration beakers measured by GFAA (see example calculations in Appendix A).

The sampling train collection efficiencies (for runs 68-2-1, 68-5-2, 84-A-1, and 84-C-1) are presented in Table 3.9. The collection efficiency for all runs showed greater than 93% of the chromium being collected in the first and second impingers.

Date (1986)	Run No.	1st Imp. Catch, ug	Cumulative % of Catch	2nd Imp. Catch, ug	Cumulative % of Catch	3rd Imp. Catch, ug	Cumulative % of Catch
9/1	ст-68-2-1	1.598	14.33%	9.353	98.21%	0.200	100.00%
9/1	ст-68-5-2	6.701	75.67%	1.973	97.94%	0.182	100.00%
9/4	CT-84-A-1	5.092	75.55%	1.197	93.31%	0.451	100.00%
9/4	CT-84-C-1	10.663	80.43%	2.172	96.81%	0.423	100.00%

TABLE 3.9. SAMPLING TRAIN (IMPINGER) COLLECTION EFFICIENCY

3.3.3 Absorbent Papers and Ion Exchange Papers

The analytical results for the absorbent paper and ion exchange paper measurements are also presented in Table 3.8. For these samples, the entire 47 mm papers were submitted directly to NCSU for NAA. The results in Table 3.8 are also blank corrected using the analytical results for blank papers (Blank-AP and Blank-XP).

3.3.4 Blanks and Quality Assurance Samples

The results of the analyses for the blanks and the quality assurance samples are also presented in Table 3.8. There were two blanks for the impinger train samples. The first type of blank was measured and used to correct the values for impinger train samples containing a Teflon filter. This blank consisted of a blank Teflon filter identical to the ones used in the sampling trains and 500 ml of DI water concentrated to approximately 25 milliliters. The second type of blank was measured and used to correct the values for the impinger train efficiency samples consisting of liquid only. The second blank consisted of 500 ml of DI water concentrated to approximately 25 milliliters.

Blanks for the cooling water analysis consisted of a DI water blank filtered through a 1.0-um pore size Teflon filter with the filtrate being collected for analysis. The filter and a 1.0-ml aliquot of the DI water filtrate were submitted separately for analysis. Ion exchange and absorbent paper blanks were also measured by NAA to correct for the screening method sampling (see Section 3.4). The results of the analyses of the quality assurance samples (audit samples described above) are presented in Table 3.8 and discussed in Section 5.0.

3.4 ABSORBENT PAPER AND ION EXCHANGE PAPER SAMPLING

Sampling protocols using absorbent (filter) paper (AP) and ion exchange paper (XP) were evaluated in an effort to develop a screening method for cooling tower emission testing. The absorbent papers and ion exchange papers were loaded in a device similar to the sensitive paper holder, and were exposed

to the fan stack exhaust by being attached to the traversing impinger train. The traversing papers allowed the use of the impinger train results as a reference to determine the sample collection efficiency of both types of paper. Other AP's and XP's were loaded in a sensitive paper holder and exposed to the stack exhaust at a single point. The catch of total chromium on the papers was determined by placing them directly into 2-ml vials and submitting the vials for NAA.

 PMR_a 's for total chromium for the paper tests were calculated using the exposed area of the paper (diameter of 41 mm). Some of these results are presented in Table 3.10 for comparison with the PMR_a 's calculated for the impinger train samples. (The hexavalent-to-total chromium ratios determined for the cooling water samples can be used to calculate a hexavalent chromium PMR_a for the AP's and XP's.) The PMR_a values for the AP's and XP's were lower than the corresponding PMR_a 's for the impinger trains. This low bias may be explained by the 30 um cut size calculated for the paper sampling techniques, with only particles greater than 30 um being collected, and the association of the majority of the chromium emissions with particles less than 15 um (see Section 3.2.2).

A separate report will be prepared summarizing the results of the screening tests conducted at all the cooling towers tested. The evaluation of the use of sodium bromide as a surrogate for cooling tower emission tests will also be summarized in the screening test summary report.

3.5 DRIFT RATE DETERMINATION

Drift rates for each sampling run were calculated as a percent of water flow to the individual fan cells being tested (see Appendix A). The water flow measurements made by ESC are presented in Table 3.4. The water flow values used to calculate the drift rates were determined by dividing the total water

	Pollutant Mass Rate by Ratio of Areas (mg/hr)				
Run Number	Total Chromium by Impinger Train (GFAA)	Total Chromium by Absorbent and Ion Exchange Papers (NAA)			
Cooling Tower	68, Counterflow Section, Ris	ser Cell E and F, Fan Cells 1, 2, 3 and ¹			
CT-68-1-1 CT-68-2-1 CT-68-3-1 CT-68-4-1	25,060 4,115 528 275	149.8 145.0 80.5 110.3			
Average	7,495	121.4			
Cooling	Tower 68, Crossflow Sectio	n, Riser Cell G, Fan Cell 5			
CT-68-5-1 CT-68-5-2 CT-68-5-3	58,560 7,300 2,550	175.1 145.6 1057 *			
Average	22,803	160.3			
	Cooling Tower 84,	Riser Cell A			
CT-84-A-1 CT-84-A-2	4,244 427	69.2			
Average	2,336	69.2			
	Cooling Tower 84,	Riser Cell B			
СТ-84-В-1 СТ-84-В-2	689 229	127.0 133.2 **			
Average	459	130.1			
	Cooling Tower 84,	Riser Cell C			
CT-84-C-1 CT-84-C-2	8,418 365	52.8 49.2 **			
Average	4,392	51.0			
	Cooling Tower 84,	Riser Cell D			
CT-84-D-1 CT-84-D-2	210 9,898	47.2 53.2 **			
Average	5,054	50.2			

TABLE 3.10. COMPARISON OF MEASUREMENT METHODS FOR TOTAL CHROMIUM EMISSIONS

* Ion exchange paper; results not included in cell average.

** Ion exchange paper; results included in cell average.

flow to the riser by the number of individual fan cells (one or two), because the PMR_a values used to calculate the drift rates were for individual fan cells. The drift rates from the impinger train results and the AP and XP results were calculated using the PMR_a for total chromium and the total chromium in the cooling water at the time of the sampling run. It was assumed that the concentration of chromium in the drift was the same as the concentration of chromium in the cooling water. The drift rates for the impinger train samples and the AP samples were calculated using the following formula:

% Drift Rate =
$$\frac{\text{Cr} \quad \text{PMRa} \; (\text{mg/hr}) \; \times \; 1 \; \text{hour/60 minutes}}{\text{Cr} \; \text{in water} \; (\text{mg/l}) \; \times \; \text{water flow} \; (\text{gpm}) \; \times \; 3.785 \; \text{L/gal}} \; \times \; 100\%$$

The calculated drift rates for each run are presented in Table 3.11.

Drift rate as a percent of water flow was also calculated using the mass emission rate of drift (not chromium) determined by the ESC SP method. The ESC method is used here for comparison purposes only, as it is not being considered for use as an EPA reference method. The drift was assumed to have a specific gravity of 1 gram per milliliter (g/ml). The drift rate was calculated from the ESC data using the following formula:

The calculated drift rates from the SP results are also presented in Table 3.11 as the average fan cell drift rates for each riser cell tested.

The average drift rates calculated using the impinger train mass emission rates for riser cells E and F, G, A, B, C, and D were 0.1063%, 0.1874%, 0.0248%, 0.0045%, 0.0390%, and 0.421%, respectively. They averaged 0.1469% and 0.0276% for the riser cells on cooling towers 68 and 84, respectively.

<u></u>	Drift Rate As	A Percent Of Water Flow			
Run Number	Impinger Train (GFAA)	Absorbent and Ion Exchange Paper (NAA)	Sensitive Paper		
Cooling T	Yower 68, Counterflow Sec	ction, Riser Cell E and H			
CT-68-1-1 CT-68-2-1 CT-68-3-1 CT-68-4-1	0.3444% 0.0681% 0.0089% 0.0039%	0.0021% 0.0024% 0.0013% 0.0016%	0.0047% 0.0103% 0.0072% 0.0040%		
Average	0.1063%	0.0019%	0.0066%		
Cooling	Tower-68, Crossflow Sec	tion, Riser Cell G, Fan (Cell 5		
CT-68-5-1 CT-68-5-2 CT-68-5-3	0.4842% 0.0574% 0.0205%	0.0014% 0.0011% 0.0085% *			
Average	0.1874%	0.0013%	0.0045%		
Cooling Tower 84, Riser Cell A					
CT-84-A-1 CT-84-A-2	0.0452% 0.0045%	0.0007%			
Average	0.0248%	0.0007%	0.0009%		
· · · · · · · · · · · · · · · · · · ·	Cooling Tower 8	4, Riser Cell B			
CT-84-B-1 CT-84-B-2	0.0068% 0.0022%	0.0013% 0.0013%			
Average	0.0045%	0.0013%	0.0006%		
	Cooling Tower 8	4, Riser Cell C			
CT-84-C-1 CT-84-C-2	0.0749% 0.0031%	0.0005% 0.0004%			
Average	0.0390%	0.0005%	0.0005%		
······································	Cooling Tower 8	4, Riser Cell D			
CT-84-D-1 CT-84-D-2	0.0019% 0.0823%	0.0004% 0.0004%			
Average	0.0421%	0.0004%	0.0008%		

TABLE 3.11. COM	PARISON OF	MEASUREMENT	METHODS	FOR	DRIFT	RATES
-----------------	------------	-------------	---------	-----	-------	-------

*Results not included in cell average.

The drift rates calculated using the AP and XP data and the SP results show a low bias compared to the impinger results and good agreement between the two methods themselves. The differences between the AP (and XP) and SP results and the impinger results may be explained based on the observations made by SoRI. Both the SP and other paper techniques may significantly underestimate the small droplet flux downstream of high-efficiency drift eliminators. The possibility also exists that the assumption made for calculating drift on chromium emissions is incorrect and the concentration of chromium in the drift throughout the particle size range is not the same as the concentration of chromium in the cooling water.

4.0 SAMPLING LOCATIONS AND TEST METHODS

This section describes the sampling locations and test methods used to characterize emissions from the two cooling towers tested at the Exxon Refinery in Baytown, Texas. The schematics of cooling tower Nos. 68 and 84 and relative sampling locations are shown in Figures 4.1 and 4.2, respectively. The fan stacks shown in Figures 4.1 and 4.2 have been systematically assigned numbers or letters for identification purposes only. Emissions from the fan cell stacks of both cooling tower Nos. 68 and 84 were sampled to measure chromium emission and drift rates, drift size distribution, and exhaust gas velocity. In addition, the water flow rate to each riser cell in both cooling towers was measured and water samples were taken for analysis for hexavalent and total chromium. Meteorological conditions were monitored and data collected using a portable weather station set up adjacent to each cooling tower. The sampling plan for both cooling towers is presented in Table 4.1. The subsections that follow further describe each sampling location and the applicable test methods.

4.1 COOLING TOWER NO. 68 OUTLETS, COUNTERFLOW RISER CELLS E AND F, STANDARD EFFICIENCY DRIFT ELIMINATORS (SAMPLING LOCATION A)

Emissions testing for chromium and drift emissions, and drift size distribution determinations by several methods were conducted over the four fan cell stacks (Nos. 1 through 4, see Figure 4.1) on the counterflow section of cooling tower No. 68. As shown in Figure 4.1, each counterflow riser cell for this section of cooling tower No. 68 has two fan cells; fan cells 1 and 4

TABLE 4.1. SAMPLING PLAN FOR COOLING TOWERS NO. 68 AND 84 EXXON COMPANY, BAYTOWN REFINERY

Sample Type	Sampling Location	Number of Runs	Methods
Total Chromium & Drift Emissions	A, B, D	3 (A) 2 (B) 6 (D)	EPA Method 13-type impinger train with GFAA analysis
Total Chromium Chromium & Drift Emissions	A, B, D	1 (A) 1 (B) 2 (D)	EPA Method 13-type impinger train with GFAA analysis; filters and impingers recovered separately for collection efficiency check
Drift Size Distribution and Drift Rate Determi- nation	A, B, D	1 or more at each location	Aligned nozzle and disc trains with GFAA and NAA analysis; absorbent paper with NAA analysis; sensitive paper with microscopic analysis
Recirculating Water Flowrate	С, Е	Single point check before each run; must be within 10% of initial determination by complete traverse	Calibrated pitot tube traverse
Cooling Water Samples	С, Е	3 grab samples per run com- bined into one composite sample	Cr ⁺⁶ and NAA (Cr ⁺³) analysis
Meteorological Data	Local	Hourly	Dry, wet bulb temperatures, humidity, wind speed, and wind direction

are associated with riser cell E and fan cells 2 and 3 are associated with riser cell F.

Each fan cell stack was approximately 18 feet in diameter at the plane of the fan blade. Sampling probes connected to sampling train boxes containing impingers and filter were introduced into the fan cell exhaust and were suspended from a monorail to facilitate traversing the stack. Three fan cell stacks (numbered 1, 2, and 3) were 3 feet in height and were 219 inches in diameter at the plane of the nozzle and train. The fan cell No. 4 was 15 feet in height and 244 inches in diameter at the plane of the nozzle and train. The propeller anemometer used to measure the axial component of the exhaust flow was located 3 to 5 inches above the sampling point.

A Method 13-type impinger train was used for chromium and drift emissions sample collection. The fan cell stacks were traversed along one axis at 12 points following the draft method (Appendix C). Each of the 12 points was sampled for 10 minutes for a total of 120 minutes of sampling per run. One run was conducted at each fan cell stack. The sampling run conducted at fan cell stack No. 2 had the impinger contents and filter recovered separately for a collection efficiency check.

Paired train test runs using the "disc" and "aligned nozzle" particle sizing trains (see Section 4.11) were also conducted. The first run was conducted for 120 minutes at a single point over riser cell E in addition to 120 minutes of sampling at a single point over riser cell F. The second paired test train was conducted for 240 minutes at a single point over riser cell F only.

Sensitive paper (SP) (see Section 4.12) size distribution testing was conducted once at each sampling location. Sensitive papers of 47 mm diameter were exposed at each test point. Exposure times were selected in order to produce samples with a sufficient number of stains to allow confidence in the

resultant droplet size distribution, and also to prevent overlapping stains. Local updraft air velocity values were taken at each sampling point using a Gill propeller anemometer and a Fluke digital multimeter.

Absorbent paper (AP) and ion exchange paper (XP) (see Section 4.13) samples were collected during each run at various sampling points.

4.2 COOLING TOWER NO. 68 OUTLETS, CROSSFLOW RISER CELL G, STANDARD EFFICIENCY DRIFT ELIMINATOR (SAMPLING LOCATION B)

Emissions testing for chromium and drift emissions and drift size distribution determinations by several methods were conducted directly over the fan cell stack (No. 5, see Figure 4.1) on the crossflow section of cooling tower No. 68.

The fan cell stack was approximately 24 feet in diameter at the plane of the fan blade with a height of 18 feet. Sampling probes connected to sampling train boxes containing impingers and filter were introduced into the fan exhaust and were suspended from a monorail to facilitate traversing the stack. The cell stack was 330 inches in diameter at the plane of the nozzle and train. The propeller anemometer used to measure the axial component of the exhaust flow was located 3 to 5 inches above the sampling point.

A Method 13-type impinger train was used for chromium and drift emissions sample collection. The fan cell stack was traversed along two perpendicular axes with a single traverse and twelve sampling points on each axis following the draft method (Appendix C). Each of the 12 points on each traverse axis was sampled for five minutes for a total of 120 minutes of sampling per run. Three sampling runs were conducted with the impinger contents and filter from one run recovered separately for a collection efficiency check.

One paired train run was conducted using the "disc" and "aligned nozzle" particle sizing trains (see Section 4.11) at a single point in the fan cell stack for a total of 240 minutes.

Sensitive paper (SP) (see Section 4.12) size distribution testing was conducted once at this sampling location. Sensitive papers of 47 mm diameter were exposed at each test point. Exposure times were selected to produce samples with a sufficient number of stains to allow confidence in the resultant droplet size distribution while avoiding overlapping stains. Local updraft air velocity values were taken at each sampling point using a Gill propeller anemometer and a Fluke digital multimeter.

Absorbent paper (AP) and ion exchange paper (XP) (see Section 4.13) samples were collected during each run at various sampling points.

4.3 COOLING TOWER NO. 68 RECIRCULATING WATER PIPES (SAMPLING LOCATION C)

Circulating water flow rate was determined by traversing the hot water riser pipe of each riser cell tested using a calibrated pitot tube. A complete traverse was made initally on each recirculation pipe and then a subsequent single point check was made prior to each run. The single point check was considered sufficient if the measured value was within 10% of the value determined by the initial complete traverse. If the measured value was over $\pm 10\%$ of the initial value, a complete traverse was performed again. The pitot tube traverse procedure and calibration data can be found in Appendices C and D, respectively.

During each emissions test run, a recirculating cooling water sample was taken from the hot water riser pipe of each riser cell tested. These samples were taken by hand and stored in 500 ml glass jars. Each sample was analyzed by RTI for hexavalent chromium (wet chemical method) and total soluble chromium by ICAP. Aliquots of each water sample were filtered through 1.0 um Teflon filters. Both the filter residue and the filtrate were analyzed by NCSU for total chromium by neutron activation analysis (NAA).

4.4 COOLING TOWER NO. 84 OUTLETS, COUNTERFLOW RISER CELLS A, B, C, AND D, HIGH EFFICIENCY DRIFT ELIMINATORS (SAMPLING LOCATION D)

Emissions testing for determination of chromium and drift emissions and drift size distribution using several methods was conducted at each of four fan cells on the counterflow cooling tower No. 84. A schematic of the sampling locations for cooling tower No. 84 is shown in Figure 4.2. As shown in Figure 4.2, there is only one fan cell associated with each riser cell.

The fan cell stacks were identical in construction, approximately 24 feet in diameter at the plane of the fan blade, and 18 feet in height. Sampling probes connected to sampling train boxes containing impingers and filter were introduced into the fan cell exhausts and were suspended from a monorail to facilitate traversing the stack. The cell stacks were 287 inches in diameter at the plane of the nozzle and train. The propeller anemometer used to measure the axial component of the exhaust gas flow was located 3 to 5 inches above the sampling point.

A Method 13-type impinger train was used for chromium and drift emissions sample collection. Each fan cell stack was traversed along one axis at 12 points following the draft method (Appendix C). Each of the twelve points was sampled for 10 minutes for a total sampling time of 120 minutes per run. Two runs were conducted per fan cell stack with two of these runs (one on riser cell A and one on riser cell C, see Figure 4.2) having the impinger contents and filter recovered separately for an efficiency check.

Paired train test runs using the "disc" and "aligned nozzle" particle sizing trains (see Section 4.11) were also conducted. One such run was conducted at a single point over the fan cell stack of riser cell A and the other was conducted at a single point over riser cell D. Both paired train runs were 240 minutes in length.

Sensitive paper (SP) (see Section 4.12) size distribution testing was conducted once at each sampling location. Sensitive papers of 47 mm diameter were exposed at each test point. Exposure times were selected to produce samples with a sufficient number of stains to allow confidence in the resultant droplet size distribution, and to prevent overlapping stains. Local updraft air velocity values were taken at each sampling point using a Gill propeller anemometer and a Fluke digital multimeter.

Absorbent paper (AP) and ion exchange paper (XP) (see Section 4.13) samples were collected during each run at various sampling points.

4.5 COOLING TOWER NO. 84 RECIRCULATING WATER PIPES (SAMPLING LOCATION E)

Circulating water flow rate was determined by traversing the hot water riser pipe of each riser cell tested using a calibrated pitot tube. A complete traverse was made initially on each recirculation pipe and then a subsequent single point check was made prior to each run. The single point check was considered sufficient if the measured value was within 10% of the value determined by the initial complete traverse. If the measured value was over $\pm 10\%$ of the initial value, a complete traverse was performed again. The pitot tube traverse procedure and calibration data can be found in Appendices C and D, respectively.

During each emissions test run, a recirculating cooling water sample was taken from the hot water riser pipe of each riser cell tested. These samples were taken by hand and stored in 500 ml glass jars. Each sample was analyzed by RTI for hexavalent chromium (wet chemical method) and total soluble chromium by ICAP. Aliquots of each water sample were filtered through 1.0 um Teflon filters. Both the filter residue and the filtrate were analyzed by NCSU for total chromium by neutron activiation analysis (NAA).

4.6 AMBIENT METEOROLOGICAL STATION

A portable meteorological station was assembled and operated continuously on the ground approximately 100 feet from each cooling tower tested to monitor ambient conditions at the time of sampling. Wind speed and direction were measured using a cup anemometer and directional anemometer. Ambient wet bulb/dry bulb temperatures were obtained using a psychrometer. Meteorological data collected are summarized in Chapter 2.

4.7 VELOCITY AND GAS TEMPERATURE

A propeller anemometer was used to determine the total flow velocity in the axial direction at each sampling point as described in the draft test method (see Appendix C). The temperature at each sampling point was measured using a thermocouple and digital readout.

4.8 MOLECULAR WEIGHT

Flue gas composition was essentially that of the ambient air drawn into the cooling tower via the fan. Therefore, the dry molecular weight and composition of air was used.

4.9 CHROMIUM COLLECTED BY IMPINGER TRAINS

Method 5-type sampling procedures, as described in the <u>Federal Register</u>,* were used with the Method 13-type trains to measure chromium and drift emissions at each emissions sampling location (see the draft test method in Appendix C). Sampling trains consisted of a heated, glass-lined probe and a series of Greenburg-Smith impingers (two containing 100 ml of deionizeddistilled water, one empty, and one with silica gel) with a 3-inch nominal

*40 CFR 60, Appendix A, Reference Methods 2, 3, and 5, July 1, 1980.

Teflon filter located between the third and fourth impinger. A deionizeddistilled water rinse of the nozzle, probe, appropriate filter holder portions, and impingers of the sampling train was made at the end of each test. This rinse, the impinger contents, and the filter were combined and stored in a 500 ml glass jar, except for the four sampling runs on which collection efficiency checks were made. For these four runs, the rinse, impinger contents, and filter were stored and analyzed separately.

The samples were typically concentrated to approximately 25 ml in a 500 ml glass beaker and then were transferred to another container. The 500 ml beakers used to concentrate the samples were treated with aqua regia to solubilize residual chromium and these solutions were treated as separate samples. The total chromium content of the impinger samples (after solubilization of the chromium with nitric acid) and the total chromium content of the solution containing the residual chromium from the beakers was determined by RTI using graphite furnace atomic absorption (GFAA). The total chromium catch for each impinger run is the sum of the total chromium content in the corresponding impinger sample and the total chromium content solubilized from the appropriate beaker using aqua regia.

4.10 CHROMIUM IN COOLING WATER

Cooling water samples collected were analyzed by RTI for hexavalent chromium using the diphenylcarbazide wet chemical method. Also, a 10-ml aliquot of the cooling water was filtered through a Teflon filter with a 1.0-um pore size, and the residue (trivalent chromium) and the filter were analyzed for total chromium by NAA. A flow chart for the analysis of cooling water samples is presented in Figure 4.3.

4.11 DRIFT SIZING USING ALIGNED NOZZLE AND DISC TRAINS

Paired aligned nozzle and disc trains were used to estimate the percent chromium in drift particles smaller than a certain size. The disc train consisted of the impinger train set-up described in Section 4.9 with the exception that no nozzle was attached to the probe and a plexiglass disc was attached in the plane of the flow around the opening of the probe. This configuration was designed to collect the majority of drift particles less than a certain diameter.

The aligned nozzle train was run at the same time as the disc train at the same single sampling point to serve as a reference measurement for collection of all sizes of drift particles. It was identical to the impinger train used. The nozzle was aligned directly with the flow at the point sampled; the exact flow direction and delta P at that point was determined using a three-dimensional pitot tube.

The catches from each train were analyzed as previously described for the chromium emissions and drift testing.

4.12 SENSITIVE PAPER TESTING

Sensitive paper (SP) testing was used to measure drift rate and size distribution. The SP testing relies on droplet collection by inertial impaction on water-sensitive paper held perpendicular to the flow. This paper is chemically treated so the impinging droplet generates a well-defined blue stain on the pale yellow background of the paper. The size and shape of the stain and the droplet size were correlated by calibrating the SP system with a mono-disperse water droplet generator over a range of droplet sizes and impaction velocities.

Processing of exposed SP's consisted of measuring the stain diameters using a microscope and a semi-automated GRAF PEN digitizer linked to a microcomputer

which groups stain counts by size range. A computer program employing calibration curves for specific droplet sizes and impaction velocities was used to correlate stains with their original droplet sizes. In addition, a correction factor was applied which incorporated the collection efficiency of each droplet size range.

4.13 ABSORBENT PAPER AND ION EXCHANGE PAPER TESTING

Absorbent paper (Whatman[™] 541 filter paper) held in a sensitive paper sampling device was attached to each traversing impinger train to collect drift emissions. This was part of an effort to evaluate screening techniques for cooling tower testing. The sensitive paper device and absorbent paper were positioned on the probe of the impinger train and were exposed so as to collect drift emissions during the 120 minutes of impinger train sampling. Absorbent paper samples were analyzed for total chromium by NAA.

Ion exchange paper (Schleicher and Schuell[™] DEAE (Diethylaminoethyl) cellulose membrane filter paper) was also used in the SP device to collect drift emissions as part of the effort to evaluate screening techniques for cooling towers. The positively charged papers were exposed at traverse points as well as at single stationary points in order to collect ions entrained in the drift emissions. The ion exchange paper samples were analyzed for total chromium by NAA.

5.0 QUALITY ASSURANCE

Because the end product of testing is to produce representative emission results, quality assurance is one of the main facets of stack sampling. Quality assurance guidelines provide the detailed procedures and actions necessary for defining and producing acceptable data. Two such documents were used in this test program to ensure the collection of acceptable data and to provide a definition of unacceptable data. These documents are the EPA Quality Assurance Handbook Volume III, EPA-600/4-77-027 and Entropy's "Quality Assurance Program Plan," which has been approved by the U. S. EPA, EMB.

Relative to this test program, the following steps were taken to ensure that the testing and analytical procedures produce quality data.

- Calibration of field sampling equipment. (Appendix D describes calibration guidelines in more detail.)
- Checks of train configuration and calculations.
- On-site quality assurance checks of sampling train components.
- Use of designated analytical equipment and sampling reagents.

Pre- and post-test calibrations were performed for each of the meter boxes used for sampling. Calibrations were also performed for the temperature sensing equipment, nozzles, water flow pitot tubes, anemometer sensor, and the entire propeller anemometer apparatus. Appendix D includes the calibration data sheets for each dry gas meter used for testing and data sheets for the calibrations of the other sampling equipment mentioned.

An on-site audit was performed on the meter boxes used for sampling and the data are summarized in Table 5.1. Entropy used the procedures described in the December 14, 1983 Federal Register (48F255670).

Meter Box No.	Pre-Audit Y Value	Allowable Error 0.97Y <y<1.03y< th=""><th>Calculated Yc</th><th>Within Allowable Limits</th></y<1.03y<>	Calculated Yc	Within Allowable Limits
N-6	1.0123	0.9819 - 1.0427	1.0124	2
N-10	0.9847	0.9552 - 1.0142	1.0028	1
N-12	1.010	0.9797 - 1.0403	0.9866	2
N-14	1.005	0.9749 - 1.0352	1.0173	2

TABLE 5.1. METER BOX CALIBRATION AUDIT

Audit solutions were used to check the analytical procedures of the laboratories conducting the chromium analyses. Table 5.2 presents the results of these analytical audits.

The sampling equipment, reagents, and analytical procedures for this test series were in compliance with all necessary guidelines set forth for accurate test results as described in Volume III of the Quality Assurance Handbook.

TABLE 5.2. AUDIT REPORT CHROMIUM ANALYSIS

Plant: EXXON - BAYTOWN, TX	Task No.: 3505
Date Samples Received:	Date Analyzed: 10/86
Samples Analyzed By: <u>RTI</u> NCSU	,
Reviewed By: P. GRONSE, J. Weaver	Date of Review: 10/86

Sample	ug/mL	Source of	Analytical	Audit	Relative
Number	Cr ⁺⁶ or Cr	Sample	Technique	Value	Error. %
QA-1	7.5 mg Cr+6	QAD/EEJ	NAA	2.841	- 62.1
QA-Z	7.5 M2 Cr	QAD/EE I	NAA	4,983	- 33.6
QA-3	7.5 ms/m1 Cr	QAD/EE1	GFAA	7,36	- 1.87
QA-4	7.5 MZ Cr+4	QAD/EE1	NAA	6.230	- 16.9
QA-5	0.15 ma/ml (rt6	QAD/EEI	GFAA	0.153	+ 2.0
QA-6	0,15 Mg (r	QAD/EET	NAA	20.05	767.0

APPENDIX A.

TEST RESULTS AND EXAMPLE CALCULATIONS

A-2

FIELD DATA

PLANT	EXXON	DATE	9-1-86
SAMPLING LOCATION	CT 68 FAN CELL #1	RUN NUMBER	ст-68-1-1
PERATOR	TMS	NOZZLE #	206
JAR.PRESS.,in Hg	30.2500	NOZZLE DIAMETER, inches	0.250
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-14
JEAK TEST VACUUM, in. Hg	15.0000	METER BOX ^H@	1.72
LEAK RATE, CFM	0.0010	ASSUMED MOISTURE. %	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	1417	TOT VOL. H20 COLL.(ml)	44.8
RUN STOP TIME	1623	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	65.273 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	65.465 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 37	,688.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	^н	Gas Meter	Pump	Pitot	lmp.Exit	Stack	Leak
Point	Time	Meter Reading	; Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	748.104	0.110	0.450	0.450	90	4.0	330	55	80	
A-2	5	750.130	0.110	0.450	0.450	90	4.0	330	58	80	
A-3	10	752.280	0.240	0.950	0.950	90	6.0	480	57	80	
A – 4	15	754.980	0.300	1.190	1.190	91	7.0	540	57	81	
A-5	20	757.980	0.290	1.130	1.130	92	7.0	525	56	81	
A - 6	25	761.250	0.280	1.100	1.100	93	6.0	520	56	83	
A-7	30	764.730	0.220	0.870	0.870	94	6.0	460	58	83	
A – 8	35	767.320	0.200	0.790	0.790	94	5.0	440	57	82	
A-9	40	769.940	0.140	0.560	0.560	93	5.0	370	58	82	
A-10	45	772.350	0.110	0.450	0.450	93	4.0	330	59	82	
A-11	50	774.140	0.040	0.150	0.150	93	2.0	195	59	84	
A-12	55	775.480	0.050	0.180	0.180	93	3.0	210	61	83	
B-1	60	776.730	0.040	0.170	0.170	93	3.0	205	60	83	0.000
B-2	5	777.930	0.040	0.150	0.150	92	2.0	193	60	84	0.000
B-3	10	779.040	0.030	0.100	0.100	92	2.0	159	59	84	
B - 4	15	780.070	0.070	0.280	0.280	93	3.0	263	61	87	
B-5	20	781.680	0.220	0.860	0.860	93	6.0	465	58	89	
в-6	25	784.310	0.140	0.760	0.760	94	6.0	435	58	89	
B-7	30	786.480	0.140	0.540	0.540	94	5.0	366	61	88	
в-8	35	788.880	0.190	0.730	0.730	93	6.0	424	63	86	
B-9	40	791.320	0.290	1.120	1.120	93	7.0	529	62	89	
B-10	45	794.370	0.290	1.160	1.160	94	7.0	535	62	86	
B-11	50	797.710	0.100	0.400	0.400	94	4.0	314	64	86	
B-12	55	799.600	0.140	0.550	0.550	94	5.0	369	63	86	
	120/OF	F 801.743									
FINAL DIFF/AVG	S.	53.639	0.1429		0.629	92.7				84.1	

PLANT	EXXON	DATE	9-2-86
SAMPLING LOCATION	CT 68 FAN CELL #4	RUN NUMBER	CT-68-4-1
OPERATOR	TMS	NOZZLE #	204
BAR.PRESS., in Hg	30.2000	NOZZLE DIAMETER, inches	0.255
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N14
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX He	1.72
LEAK RATE,CFM	0.0020	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

`

RUN START TIME	1229	TOT VOL. H20 COLL.(m1)	40.8
RUN STOP TIME	1446	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	0.600 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	0.600 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 46	,759.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	́н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	900.204	0.160	0.630	0.630	. 93	4.0	398	53	88	
A-2	5	902.530	0.130	0.490	0.490	94	3.0	352	54	91	
A-3	10	904.870	0.120	0.450	0.450	94	3.0	332	56	91	
A - 4	15	906.760	0.140	0.540	0.540	95	3.0	367	57	91	
· A-5	20	908.980	0.190	0.750	0.750	96	4.0	435	57	91	
A-6	25	911.420	0.130	0.500	0.500	96	3.0	354	58	91	
A-7	30	913.700	0.040	0.160	0.160	96	1.0	199	59	90	
A - 8	35	915.110	0.040	0.160	0.160	96	1.0	203	61	91	
A-9	40	916.300	0.020	0.080	0.080	96	1.0	139	60	89	
A-10	45	917.090	0.030	0.110	0.110	96	1.0	162	60	89	
A-11	50	917.980	0.020	0.080	0.080	96	1.0	143	61	90	
A-12.	55	918.910	0.020	0.100	0.100	97	1.0	155	62	89	
B – 1	60	919.780	0.040	0.190	0.190	97	2.0	209	61	89	0.000
B-2	5	921.040	0.050	0.200	0.200	97	2.0	215	60	88	0.000
в-3	10	922.390	0.040	0.180	0.180	97	2.0	204	62	88	
в-4	15	923.720	0.040	0.170	0.170	97	2.0	197	63	89	
B-5	20	925.150	0.060	0.240	0.240	98	2.0	237	64	90	
в-6	25	926.510	0.080	0.350	0.350	98	3.0	283	65	89	
B-7	30	928.220	0.130	0.530	0.530	97	3.0	349	64	87	
в – 8	35	930.480	0.130	0.550	0.550	96	3.0	355	65	86	
в-9	40	932.720	0.170	0.710	0.710	96	4.0	403	65	87	
B-10	45	935.300	0.160	0.660	0.660	96	4.0	389	66	87	
B-11	50	937.620	0.130	0.570	0.570	97	4.0	362	66	88	
B-12	55	939.990	0.100	0.440	0.440	98	3.0	318	68	88	
	120/OF	F 942.014									
FINAL											
DIFF/AVG	5.	41.810	0.0811		0.368	96.2				89.0	
9/1,2/86	EXXON REFINERY - BAYTOWN, TX	CT-68-1-1	CT-68-4-1								
--------------	---	--------------	--------------								
	Run Start Time Run Fınısh Time	1417 1623	1229 1446								
Theta	Net Run Time, Minutes	120	120								
	Net Sampling Points	24	24								
Dia	Nozzle Diameter, Inches	0.250	0.255								
Ср	Pitot Tube Coefficient	0.840	0.840								
Y	Dry Gas Meter Calibration Factor	1.002	1.002								
Pbar	Barometric Pressure, Inches Hg	30.250	30.200								
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	0.629	o.368								
Vm	Volume of Metered Gas Sample, Dry ACF	53.639	41.81								
tm	Dry Gas Meter Temperature. Degrees F	92.7	96.2								
Vm(std)	Volume of Metered Gas Sample, Dry SCF	51.968	40.161								
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	44.8	40.8								
Vw(std)	Volume of Water Vapor, SCF	2.107	1.922								
% H2O	Moisture Content, % by Volume	3.90	4.57								
Mfd	Dry Mole Fraction	0.961	0.954								
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84								
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.42	28.34								
Pg	Flue Gas Static Pressure, in. Hg	0.00	0.00								
Ps	Absolute Flue Gas Press., in Hg	30.250	30.200								
ts	Flue Gas Temperature, Degrees F	84	89								
Delta p	Average Velocity Head, in. H2O	0.1429	0.0811								
vs	Flue Gas Velocity, Ft/Sec	21.60	16.38								
Α	Stack/Duct Area, Sq. Inches	37688.0	46759.0								
Qsd	Volumetric Air Flow Rate, Dry SCFM	319,789.5	295,672.6								
Qaw	Volumetric Air Flow Rate, Wet ACFM	339,149.4	319,185.2								
% I	Isokinetıc Sampling Rate, 🛱	104.0	103.6								

9/1,2/86	EXXON REFINERY - BAYTOWN, TX	CT-68-1-1	CT-68-4-1
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	84.1	89.0
	Degrees Centigrade	28.9	31.7
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	0.5762	0.5423
	Actual Cubic Feet/hr	20.3490	19.1511
	Dry Std. Cubic Meters/hr	0.5433	0.5024
	Dry Std. Cubic Feet/hr	19.1874	17.7404

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

EMISSIONS RESULTS

ug	Catch	65.273 ug	0.600 ug
mg/dscm	Concentration, mg/dscm·	44.356 x 10E-3	0.528 x 10E-3
gr/dscf	Concentration, grains per dscf	19.3802 x 10E-6	0.2305 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	55.192 x 10E-3	0.605 x 10E-3
.kg/hr	Emission Rate, kg/hr (PMRa)	25.057 x 10E-3	0.275 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	65.465 ug	0.600 ug
mg/dscm	Concentration, mg/dscm	44.486 x 10E-3	0.528 x 10E-3
gr/dscf	Concentration, grains per dscf	19.437 x 10E-6	0.231 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	55.355 x 10E-3	0.605 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	25.131 x 10E-3	0.275 x 10E-3

.

PLANT	EXXON	DATE	9-1-86
AMPLING LOCATION	CT 68 FAN CELL #2	RUN NUMBER	ст-68-2-1
PERATOR	TMS	NOZZLE #	204
JAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.255
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N14
EAK TEST VACUUM, in Hg	15.0000	METER BOX [°] H@	1.72
EAK RATE, CFM	0.0010	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1417	TOT VOL. H2O COLL.(m1)	43.6
RUN STOP TIME	1623	TOTAL CATCH -	
[OTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	11.151 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	11.151 ug
EST. DRY MOL. WT. (Lb/Lb-Mole)) 28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	37-,688.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	1mp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	801.832	0.020	0.080	0.080	94	2.0	• 141	58	81	
A-2	5	802.640	0.020	0.100	0.100	94	2.0	• 153	56	80	
A-3	10	803.520	0.030	0.100	0.100	94	2.0	• 158	55	81	
A – 4	15	804.450	0.060	0.240	0.240	94	2.0	* 241	57	81	
A-5	20	805.730	0.140	0.550	0.550	94	4.0	* 369	57	84	
a-6	25	807.930	0.130	0.490	0.490	95	4.0	• 348	60	84	
A-7	30	810.110	0.170	0.660	0.660	96	5.0	• 403	62	85	
A - 8	35	812.410	0.170	0.680	0.680	97	5.0	• 406	60	84	
A-9	40	814.970	0.120	0.480	0.480	97	4.0	• 346	59	90	
A-10	45	817.020	0.110	0.410	0.410	98	4.0	• 322	59	91	
A-11	50	819.930	0.050	0.200	0.200	98	3.0	• 221	60	91	
A-12	55	820.410	0.060	0.230	0.230	97	2.0	* 240	62	91	
B-1	60	821.860	0.020	0.080	0.080	97	1.0	• 145	62	92	0.000
B-2	5	822.730	0.030	0.100	0.100	96	1.0	* 158	63	93	0.000
в-3	10	823.570	0.190	0.750	0.750	96	5.0	* 438	61	96	
в-4	15	826.110	0.260	1.000	1.000	96	6.0	* 503	62	94	
B-5	20	828.920	0.170	0.680	0.680	96	5.0	• 413	63	91	
в-6	25	831.510	0.230	0.900	0.900	96	6.0	• 475	62	91	
B-7	30	834.510	0.200	0.800	0.800	95	5.0	* 446	64	87	
в-8	35	836.850	0.230	0.910	0.910	95	6.0	• 476	64	89	
B-9	40	839.720	0.220	0.880	0.880	96	6.0	• 464	63	85	
B-10	45	842.630	0.170	0.690	0.690	96	5.0	• 412	63	86	
B-11	50	844.970	0.110	0.420	0.420	96	4.0	• 321	64	86	
B-12	55	846.990	0.070	0.280	0.280	96	3.0	* 263	65	86	
	120/OF	F 848.758									
FINAL						_				_	
DIFF/AVG:	S.	46.926	0.1101		0.488	95.8				87.5	

PLANT	EXXON	DATE	9-2-86
SAMPLING LOCATION	CT 68 FAN CELL #3	RUN NUMBER	ст-68-3-1
OPERATOR	TMS	NOZZLE #	206
BAR.PRESS., in Hg	30.2000	NOZZLE DIAMETER, inches	0.250
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N14
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX [^] H@	1.72
LEAK RATE,CFM	0.0010	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

.

RUN START TIME	933	TOT VOL. H2O COLL.(m1)	55.0
RUN STOP TIME	1138	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	1.376 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	1.388 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 37	,688.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	-н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	, Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	849.072	0.060	0.230	0.230	85	4.0	245	52	93	
A-2	5	850.430	0.040	0.170	0.170	86	4.0	207	54	93	
A-3	10	851.710	0.170	0.650	0.650	86	7.0	410	55	94	
A - 4	15	853.950	0.150	0.580	0.580	87	7.0	387	55	94	
A-5	20	856.390	0.150	0.570	0.570	88	7.0	383	57	94	
a-6	25	858.520	0.170	0.640	0.640	89	7.0	407	59	94	
A-7	30	860.890	0.190	0.730	0.730	89	8.0	434	58	93	
A – 8	35	863.520	0.180	0.690	0.690	89	8.0	421	58	93	
A-9	40	865.830	0.160	0.600	0.600	90	8.0	391	58	92	
A-10	45	868.410	0.180	0.700	0.700	90	8.0	423	59	91	
A-11	50	870.730	0.040	0.150	0.150	91	3.0	197	57	94	
A-12	55	872.190	0.030	0.120	0.120	91	2.0	173	57	93	
B - 1	60	873.090	0.040	0.140	0.140	91	2.0	192	58	94	0.000
B-2	5	874.180	0.040	0.150	0.150	92	2.0	195	59	89	0.000
B-3	10	875.320	0.040	0.160	0.160	92	2.0	199	59	88	
в-4	15	876.480	0.240	0.940	0.940	93	9.0	481	60	83	
B-5	20	879.170	0.240	0.940	0.940	93	9.0	479	61	83	
в-6	25	882.280	0.200	0.790	0.790	94	9.0	440	63	83	
B-7	30	884.820	0.210	0.800	0.800	94	9.0	453	61	94	
в – 8	35	887.360	0.230	0.870	0.870	94	9.0	472	61	94	
в-9	40	890.250	0.220	0.840	0.840	94	9.0	465	60	96	
B-10	45	892.890	0.220	0.870	0.870	94	9.0	471	62	95	
B-11	50	895.730	0.190	0.730	0.730	94	8.0	432	63	94	
B-12	55	898.290	0.070	0.260	0.260	94	4.0	257	65	92	
	120/OF	F 900.031									
FINAL						_					
DIFF/AVGS	5.	50.959	0.1316		0.555	90.8				91.8	

9/1,2/86	EXXON REFINERY - BAYTOWN, TX	CT-68-2-1	CT-68-3-1
	Run Start Time Run Finish Time	1417 1623	933 1138
Theta	Net Run Time, Minutes	120	120
	Net Sampling Points	24	24
Dia	Nozzle Diameter, Inches	0.255	0.250
Ср	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.250	30.200
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	o.488	0.555
Vm	Volume of Metered Gas Sample, Dry ACF	46 926	50 959
tm	Dry Gas Meter Temperature, Degrees F	95.8	90.8
Vm(std)	Volume of Metered Gas Sample, Dry SCF	45.197	49.449
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	43.6	55.0
Vw(std)	Volume of Water Vapor, SCF	2.050	2.591
% H2O	Moisture Content, % by Volume	4.34	4.98
Mfd	Dry Mole Fraction	0.957	0.950
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.37	28.30
Рg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.250	30.200
ts	Flue Gas Temperature, Degrees F	87	92
Delta p	Average Velocity Head, in. H2O	0.1101	0.1316
vs	Flue Gas Velocity, Ft/Sec	19.03	20.93
A	Stack/Duct Area, Sq. Inches	37688.0	37688.0
Qsd	Volumetric Air Flow Rate. Dry SCFM	278,776.8	301,625.7
Qaw	Volumetric Air Flow Rate, Wet ACFM	298,864.2	328,656.0
% I	Isokinetic Sampling Rate, 🕱	99.7	104.9

	EMISSIONS RESULTS		
9/1,2/86	EXXON REFINERY - BAYTOWN, TX	CT-68-2-1	ст-68-3-1
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	87.5	91.8
	Degrees Centigrade	30.8	33.2
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	0.5078	0.5584
	Actual Cubic Feet/hr	17.9318	19.7194
	Dry Std. Cubic Meters/hr	0.4736	0.5125
	Dry Std. Cubic Feet/hr	16.7266	18.0975

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	11.1514 ug	1.3759 ug
mg/dscm	Concentration, mg/dscm	8.713 x 10E-3	0 983 x 10E-3
gr/dscf	Concentration, grains per dscf	3.8070 x 10E-6	0.4293 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	9.063 x 10E-3	1.163 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	4.115 x 10E-3	0.528 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	11.151 ug	1.388 ug
mg/dscm	Concentration, mg/dscm	8.713 x 10E-3	0.991 x 10E-3
gr/dscf	Concentration, grains per dscf	3.807 x 10E-6	0.433 x 10E-6
lb/hr	Emission Rate, 1b/hr (PMRa)	9.063 x 10E-3	1.174 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	4.115 x 10E-3	0.533 x 10E-3

PLANT	EXXON	DATE	9-1-86
AMPLING LOCATION	CT 68 FAN CELL #5	RUN NUMBER	ст-68-5-1
PERATOR	DB	NOZZLE #	704
AR.PRESS.,in Hg	30.2500	NOZZLE DIAMETER, inches	0.249
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-10
_EAK TEST VACUUM, in. Hg	15.0000	METER BOX HO	1.68
LEAK RATE, CFM	0.0000	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1050	TOT VOL. H20 COLL.(ml)	55.8 ug
RUN STOP TIME	1328	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	66.683 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	66.683 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 85	,530.0		

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ĥН	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	168.400	0.050	0.170	0.170	84	2.0	210	56	86	
A-2	5	169.670	0.190	0.690	0.690	84	5.0	425	58	85	
A-3	10	171.900	0.310	1.170	1.170	85	6.0	550	58	83	
A - 4	15	174.940	0.370	1.400	1.400	88	6.0	600	61	82	
A-5	20	178.380	0.380	1.440	1.440	91	6.0	600	64	77	
a-6	25	181.830	0.050	0.190	0.190	94	2.0	220	63	81	
A-7	30	183.230	0.320	1.200	1.200	94	6.0	550	66	80	
A – 8	35	186.500	0.450	1.720	1.720	96	7.0	660	65	83	
A-9	40	190.250	0.470	1.800	1.800	98	8.0	675	64	83	
A-10	45	194.200	0.440	1.680	1.680	101	7.0	650	65	83	
A-11	50	198.040	0.270	1.040	1.040	103	6.0	510	67	82	
A-12	55	201.310	0.000	0.010	0.010	104	1.0	52	67	84	
B-1	60	201.630	0.120	0.470	0.470	100	3.0	350	69	94	0.000
B-2	5	203.665	0.330	1.240	1.240	100	6.0	570	68	94	0.000
B-3	10	206.940	0.430	1.610	1.610	100	7.0	650	69	95	
в-4	15	210.670	0.380	1.440	1.440	102	6.0	610	69	92	
B-5	20	214.350	0.130	0.510	0.510	104	4.0	360	68	89	
в-6	25	216.570	0.010	0.040	0.040	104	1.0	95	68	84	
B-7	30	217.105	0.010	0.060	0.060	99	1.0	120	70	90	
в-8	35	217.880	0.160	0.620	0.620	98	4.0	400	70	9 0	
в-9	40	220.200	0.310	1.170	1.170	99	6.0	550	69	89	
B-10	45	223.450	0.410	1.560	1.560	101	7.0	630	70	87	
B-11	50	227.110	0.320	1.260	1.260	103	6.0	560	70	86	
B-12	55	230.480	0.030	0.130	0.130	104	1.0	180	71	84	
	120/OF	F 231.560									
FINAL											
DIFF/AVG	is.	63.160	0.2047		0.943	97.3				86.0	

PLANT	EXXON	DATE	9-1-86
SAMPLING LOCATION	CT 68 PAN CELL #5	RUN NUMBER	ст-68-5-2
OPERATOR	DB	NOZZLE #	705
BAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.257
STATIC PRESS.in H20	0.0000	METER BOX NUMBER	N-10
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX HO	1.68
LEAK RATE.CFM	0.0010	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1400	TOT VOL. H2O COLL.(ml)	68.9
RUN STOP TIME	1631	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	8.856 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	8.856 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 89	5,530.0		ug

Sample	Sample ·	Dry Gas	Pitot Vel	Orifice	Ч	Gas Meter	Pump	Pitot	lmp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	231.731	0.200	0.840	0.840	96	4.0	440	56	93	
A-2	5	234.520	0.220	0.910	0.910	96	4.0	460	55	93	
A-3	10	237.400	0.330	1.420	1.420	97	6.0	570	56	91	
A – 4	15	240.888	0.420	1.790	1.790	99	7.0	640	57	91	
A-5	20	244.750	0.310	1.350	1.350	101	5.0	550	57	87	
A-6	25	248.200	0.040	0.180	0.180	102	1.0	200	58	85	
A-7	30	249.472	0.160	0.690	0.690	98	4.0	400	60	96	
A – 8	35	252.100	0.310	1.310	1.310	99	6.0	550	58	94	
A-9	40	255.320	0.410	1.720	1.720	100	7.0	635	59	- 96	
A ~ 1 O	45	259.150	0.420	1.790	1.790	102	7.0	640	60	93	
A-11	50	263.100	0.120	0.520	0.520	104	3.0	340	60	87	
A-12	55	265.280	0.010	0.050	0.050	104	1.0	110	61	86	
B-1	60	265.728	0.050	0.230	0.230	98	1.0	230	63	92	0.000
B-2	5	267.175	0.200	0.840	0.840	97	4.0	440	60	91	0.000
B-3	10	269.800	0.300	1.270	1.270	98	5.0	540	59	92	
в~4	15	273.050	0.430	1.860	1.860	99	8.0	650	61	89	
B-5	20	276.930	0.270	1.150	1.150	101	5.0	510	62	88	
в-б	25	280.180	0.100	0.430	0.430	103	2.0	310	62	86	
B-7	30	282.295	0.320	1.400	1.400	100	6.0	560	66	85	
в-8	35	285.870	0.470	2.050	2.050	101	8.0	675	64	84	
B-9	40	290.070	0.510	2.220	2.220	103	8.0	700	65	83	
B-10	45	294.450	0.480	2.110	2.110	104	8.0	685	67	86	
B-11	50	298.730	0.080	0.350	0.350	105	2.0	250	69	85	
B-12	55	300.510	0.090	0.410	0.410	104	2.0	300	69	85	
	120/OFF	302.448									
FINAL										_	
DIFF/AVGS	S.	70.717	0.2311		1.120	100.5				89.1	

'LANT	EXXON	DATE	9-1-86
SAMPLING LOCATION	CT 68 FAN CELL #5	RUN NUMBER	ст-68-5-3
PERATOR	DB	NOZZLE #	704
AR.PRESS., in Hg	30.2000	NOZZLE DIAMETER, inches	0.249
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-10
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX HO	1.68
LEAK RATE,CFM	0.0050	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1033	TOT VOL. H2O COLL.(ml)	60.4
RUN STOP TIME	1302	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	2.902 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	2.902 ug
EST. DRY MOL. WT. (Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	85,530.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ън	Gas Meter	Pump	Pitot	1mp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A – 1	0/0	302.700	0.080	0.300	0.300	86	2.0	280	56	87	
A - 2	5	304.360	0.180	0.670	0.670	86	2.0	420	56	88	
A-3	10	306.500	0.430	1.620	1.620	88	5.0	650	- 58	86	
A – 4	15	310.300	0.460	1.740	1.740	90	5.0	670	59	84	
A-5	20	314.050	0.280	7.060	1.060	94	3.0	520	60	84	
A-6	25	317.140	0.090	0.350	0.350	97	2.0	300	60	84	
A-7	30	318.972	0.320	1.200	1.200	96	6.0	560	62	83	
A - 8	35	322.200	0.470	1.800	1.800	100	8.0	675	60	84	
A-9	40	326.110	0.500	1.940	1.940	102	9.0	700	59	85	
A-10	45	330.130	0.440	1.680	1.680	104	8.0	650	60	84	
A - 11'	50	333.950	0.070	0.290	0:290	106	3.0	170	61	89	
A-12	55	335.670	0.030	0.100	0.100	106	1.0	160	62	84	
в – 1	60	336.730	0.200	0.770	0.770	102	4.0	450	65	96	0.000
B-2	5	339.430	0.330	1.260	1.260	102	6.0	575	63	95	0.000
в-3	10	342.770	0.430	1.640	1.640	103	8.0	650	64	91	
в-4	15	346.685	0.390	1.490	1.490	106	7.0	620	64	93	
B-5	20	350.320	0.160	0.640	0.640	107	4.0	400	66	86	
в-б	25	352.785	0.020	0.100	0.100	106	1.0	155	66	83	
B-7	30	353.700	0.030	0.130	0.130	100	1.0	180	69	90	
в-8	35	354.820	0.160	0.620	0.620	99	2.0	400	67	91	
в-9	40	357.280	0.300	1.140	1.140	98	2.0	545	70	90	
B-10	45	360.390	0.370	1.410	1.410	99	6.0	600	70	87	
B-11	50	363.780	0.260	0.980	0.980	100	4.0	500	70	87	
B-12	55	366.735	0.080	0.300	0.300	100	2.0	275	70	84	
	120/OF	F 368.340									
FINAL											
DIFF/AVC	s.	65.640	0.2215		0.968	99.0				87.3	

-

9/1,2/86	EXXON REFINERY - BAYTOWN, TX	ст-68-5-1	CT-68-5-2	ст-68-5-3
	Run Start Time Run Finish Time	1050 1328	1400 1631	1033 1302
Theta	Net Run Time, Minutes	120	120	120
	Net Sampling Points	24	24	24
Dia	Nozzle Diameter, Inches	0.249	0.257	0.249
Cp	Pitot Tube Coefficient	0.840	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.004	1.004	1.004
Pbar	Barometric Pressure. Inches Hg	30.250	30.250	30.200
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	0.943	1.120	0.968
Vm	Volume of Metered Gas Sample, Dry ACF	63.16	70 717	65.64
tm	Dry Gas Meter Temperature, Degrees F	97.3	100.5	99.0
Vm(std)	Volume of Metered Gas Sample, Dry SCF	60.865	67.796	62.961
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	55.8	68.9	60.4
Vw(std)	Volume of Water Vapor, SCF	2.627	3.244	2.845
%H2O	Moisture Content, 🗴 by Volume	4.14	4.57	4.32
Mfd	Dry Mole Fraction	0.959	0.954	0.957
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.39	28.34	28.37
Pg	Flue Gas Static Pressure, in. Hg	0.00	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.250	30.250	30.200
ts	Flue Gas Temperature, Degrees F	86	89	87
Delta p	Average Velocity Head, in. H2O	0.2047	0.2311	0.2215
vs	Flue Gas Velocity, Ft/Sec	25.91	27.63	27.01
A	Stack/Duct Area, Sq. Inches	85530.0	85530.0	85530.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	865,367.7	913,506.8	896,827.8
Qaw	Volumetric Air Flow Rate, Wet ACFM	923,231.4	984,581.1	962,591.2
% I	Isokinetic Sampling Rate, 🗶	102.9	102.0	102.8

€/1.2/86	EXXON REFINERY - BAYTOWN, TX	CT-68-5-1	CT-68-5-2	ст-68-5-3
	FLUE GAS TEMPERATURE			
	Degrees Fahrenheit	86.0	89.1	87 3
	Degrees Centigrade	30.0	31.7	30.7
	AIR FLOW RATES x million			
	Actual Cubic Meters/hr	1.5686	1.6728	1.6355
	Actual Cubic Feet/hr	55-3939	59.0749	57.7555
	Dry Std. Cubic Meters/hr	1.4703	1.5521	1.5237
	Dry Std. Cubic Feet/hr	51.9221	54.8104	53.8097

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

EMISSIONS RESULTS

ug	Catch	66.683 ug	8.8559 ug	2.9017 ug
mg/dscm	Concentration, mg/dscm	38.691 x 10E-3	4.613 x 10E-3	1.628 x 10E-3
gr/dscf	Concentration, grains per dscf	16.9051 x 10E-6	2.0155 x 10E-6	0.7111 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	128.991 x 10E-3	16.081 x 10E-3	5.613 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	58.562 x 10E-3	7.301 x 10E-3	2.548 x 10E-3
TO	TAL CHROMIUM (GFAA)			
ug	Catch	66.683 ug	8.856 ug	2.902 ug
ng/dscm	Concentration, mg/dscm	38.691 x 10E-3	4.613 x 10E-3	1.628 x 10E-3
gr/dscf	Concentration, grains per dscf	16.905 x 10E-6	2.016 x 10E-6	0.711 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	128.991 x 10E-3	16.081 x 10E-3	5.613 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	58.562 x 10E-3	7.301 x 10E-3	2.548 x 10E-3

PLANT	EXXON	DATE	9-4-86
SAMPLING LOCATION	CT 84 FAN CELL A	RUN NUMBER	CT-84-A-1
OPERATOR	DB	NOZZLE #	204
BAR.PRESS., in Hg	30.3500	NOZZLE DIAMETER, inches	0.255
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N - 14
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX He	1.72
LEAK RATE,CFM	0.0000	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	950	TOT VOL. H2O COLL.(ml)	64.3
RUN STOP TIME	1200	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	6.701 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	6.740 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 6	54,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	́н	Gas Meter	Pump	Pitot	1mp.Exit	Stack	Leak
Point	Time	Meter Reading	, Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
1	0/0	942.924	0.210	0.870	0.870	90	5.0	450	56	89	
	5	945.870	0.210	0.870	0.870	91	6.0	450	56	91	
2	10	948.890	0.330	1.370	1.370	92	8.0	565	56	91	
	15	952.100	0.330	1.370	1.370	95	8.0	565	57	91	
3	20	955.620	0.340	1.420	1.420	98	8.0	575	58	92	
	25	959.210	0.340	1.420	1.420	99	8.0	575	59	90	
4	30	962.950	0.280	1.180	1.180	101	7.0	525	60	89	
	35	966.225	0.280	1.180	1.180	102	7.0	525	60	89	
5	40	969.680	0.040	0.180	0.180	104	1.0	205	60	89	
	45	971.020	0.040	0.180	0.180	105	1.0	205	60	91	
6	50	972.430	0.020	0.100	0.100	105	1.0	155	60	91	
	55	973.500	0.020	0.100	0.100	107	1.0	155	63	90	
12	60	974.676	0.120	0.510	0.510	105	3.0	340	66	91	0.000
	5	976.970	0.120	0.510	0.510	105	3.0	340	64	92	0.000
11	10	979.210	0.230	0.990	0.990	105	6.0	475	63	93	
	15	982.440	0.230	0.990	0.990	106	6.0	475	63	93	
10	20	985.480	0.260	1.100	1.100	109	6.0	500	64	92	
	25	988.850	0.260	1.100	1.100	111	6.0	500	64	93	
9	30	992.160	0.270	1.140	1.140	112	7.0	510	66	93	
	35	995.420	0.270	1.140	1.140	114	7.0	510	68	95	
8	40	998.870	0.060	0.270	0.270	115	2.0	250	69	94	
	45	1000.530	0.060	0.270	0.270	115	2.0	250	70	94	
7	50	1002.310	0.020	0.100	0.100	115	1.0	150	70	92	
	55	1003.390	0.020	0.100	0.100	115	1.0	150	70	92	
	120/0F	F 1004.452									
FINAL											
DIFF/AVG	s.	61.528	0.1553		0.769	104.8				91.5	

PLANT	EXXON	DATE	9-4-86 ct-84-a-2	
AMPLING LOCATION	CT 84 FAN CELL A	RUN NUMBER		
PERATOR	DB	NOZZLE #	705	
JAR.PRESS., in Hg	30.3500	NOZZLE DIAMETER, inches	0.257	
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N - 1 4	
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX H@	1.72	
LEAK RATE,CFM	0.0000	ASSUMED MOISTURE, 🗶	2.0	

ANALYTICAL RESULTS DATA

RUN START TIME	1230	TOT VOL. H2O COLL.(ml)	60.6
RUN STOP TIME	1441	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	0.685 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	0.708 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	64,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ч	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H20)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
12	0/0	4.697	0.140	0.630	0.630	115	4.0	370	58	90	
	5	7.370	0.140	0.630	0.630	115	4.0	370	57	90	
11	10	9.850	0.270	1.200	1.200	113	5.0	510	57	91	
	15	13.200	0.270	1.200	1.200	112	5.0	510	58	91	
10	20	16.740	0.260	1.100	1.100	110	5.0	505	56	92	
	25	20.000	0.280	1.250	1.250	112	5.0	520	56	90	
9	30	23.480	0.260	1.160	1.160	112	5.0	500	59	89	
	35	26.880	0.260	1.160	1.160	114	5.0	500	60	89	
8	40	30.420	0.100	0.450	0.450	114	2.0	310	62	87	
	45	32.770	0.080	0.340	0.340	114	2.0	270	62	87	
7	50	34.630	0.030	0.150	0.150	114	2.0	180	63	84	
	55	36.100	0.030	0.150	0.150	113	2.0	180	65	85	
1	60	37.400	0.230	1.040	1.040	111	5.0	475	69	89	0.000
	5	40.750	0.230	1.040	1.040	110	5.0	475	66	89	0.000
2	10	44.000	0.310	1.410	1.410	110	6.0	550	67	87	
	15	47.620	0.310	1.410	1.410	111	6.0	550	69	88	
3	20	51.380	0.340	1.510	1.510	112	6.0	570	70	87	
	25	55.800	0.340	1.510	1.510	112	6.0	570	71	87	
4	30	59.120	0.170	0.750	0.750	113	4.0	400	70	86	
	35	62.100	0.160	0.740	0.740	112	4.0	400	70	88	
5	40	64.800	0.040	0.160	0.160	112	2.0	185	69	85	
	45	66.510	0.040	0.190	0.190	111	2.0	200	69	86	
6	50	68.000	0.040	0.190	0.190	111	2.0	200	71	86	
	55	69.565	0.040	0.190	0.190	110	2.0	200	71	86	
	120/OF	F 70.942									
FINAL		· · ·									
DIFF/AVG	S .	66.245	0.1614		0.815	112.2				87.9	

.

9/4/86	EXXON REFINERY - BAYTOWN, TX	CT-84-A-1	CT-84-A-2
	Run Start Time Run Finish Time	950 1200	1230 1441
Theta	Net Run Time, Minutes	120	120
	Net Sampling Points	24	24
Dia	Nozzle Diameter, Inches	0.255	0.257
Ср	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.350	30.350
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	0.769	0.815
Vm	Volume of Metered Gas Sample, Dry ACF	61.528	66.245
tm	Dry Gas Meter Temperature, Degrees F	104.8	112.2
Vm(std)	Volume of Metered Gas Sample, Dry SCF	58.544	62.227
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	64.3	60.6
Vw(std)	Volume of Water Vapor, SCF	3.027	2.852
% H2O	Moisture Content, 🗶 by Volume	4.92	4.38
Mfd	Dry Mole Fraction	0.951	0.956
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.31	28.37
Рg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.350	30.350
ts	Flue Gas Temperature, Degrees F	92	88
Delta p	Average Velocity Head, in. H2O	0.1553	0.1614
vs	Flue Gas Velocity, Ft/Sec	22.67	23.02
A	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	564,258.1	579,963.8
Qaw	Volumetric Air Flow Rate, Wet ACFM	611,105.2	620,454.5
% I	lsokinetic Sampling Rate, 🏌	109.5	111.5

	EMISSIONS RESULTS		
3/4/86	EXXON REFINERY - BAYTOWN, TX	CT-84-A-1	CT-84-A-2
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	91.5	87.9
	Degrees Centigrade	33.1	31.0
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	1.0383	1.0542
	Actual Cubic Feet/hr	36.6663	37.2273
	Dry Std. Cubic Meters/hr	0.9587	0.9854
	Dry Std. Cubic Feet/hr	33.8555	34.7978

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	6.7005 ug	0.6854 ug
mg/dscm	Concentration, mg/dscm	4.042 x 10E-3	0.389 x 10E-3
gr/dscf	Concentration, grains per dscf	1.7660 x 10E-6	0.1700 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	9.348 x 10E-3	0 941 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	4.244 x 10E-3	0.427 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	6.740 ug	0.708 ug
mg/dscm	Concentration, mg/dscm	4.065 x 10E-3	0.402 x 10E-3
gr/dscf	Concentration, grains per dscf	1.776 x 10E-6	0.175 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	9.402 x 10E-3	0.972 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	4.269 x 10E-3	0.441 x 10E-3

PLANT	EXXON	DATE	9-5-86
SAMPLING LOCATION	CT 84 FAN CELL B	RUN NUMBER	CT-84-B-1
OPERATOR	DB	NOZZLE #	207
BAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.307
STATIC PRESS.in H20	0.0000	METER BOX NUMBER	N-14
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX [^] H@	1.72
LEAK RATE,CFM	0.0010	ASSUMED MOISTURE, %	2.0

RUN START TIME	850	TOT VOL. H20 COLL.(ml)	91.6
RUN STOP TIME	1100	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	1.578 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	1.581 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 64	4.692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	- н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
12	0/0	80.476	0.240	2.070	2.070	88	11.0	480	55	89	
	5	84.500	0.240	2.070	2.070	89	11.0	480	56	89	
11	10	88.710	0.260	2.270	2.270	91	12.0	500	58	88	
	15	93.120	0.260	2.270	2.270	91	12.0	500	59	89	
10	20	97.570	0.260	2.270	2.270	96	12.0	500	61	90	
	25	102.020	0.300	2.670	2.670	99	13.0	540	60	90	
9	30	106.850	0.270	2.380	2.380	102	13.0'	510	60	91	
	35	111.480	0.270	2.390	2.390	104	13.0	510	60	91	
8	40	116.300	0.120	1.120	1.120	105	8.0	350	60	92	
	45	119.750	0.090	0.830	0.830	105	6.0	300	60	92	
7	50	122.490	0.070	0.670	0.670	106	6.0	270	61	91	
	55	125.210	0.070	0.670	0.670	106	6.0	270	62	91	
1	60	127.710	0.160	1.480	1.480	106	9.0	400	67	90	0.000
	5	131.500	0.160	1.480	1.480	106	9.0	400	63	91	0.000
2	10	135.320	0.250	2.310	2.310	108	12.0	500	62	92	
	15	139.850	0.260	2.320	2.320	110	12.0	500	62	91	
3	20	144.520	0.290	2.630	2.630	114	13.0	530	64	91	
	25	149.420	0.290	2.630	2.630	115	13.0	530	66	91	
4	30	154.450	0.210	1.900	1.900	118	11.0	450	67	92	
	35	158.720	0.210	1.900	1.900	118	11.0	450	68	92	
5	40	163.000	0.050	0.420	0.420	118	5.0	210	70	91	
	45	165.060	0.050	0.420	0.420	118	5.0	210	71	91	
6	50	167.310	0.030	0.290	0.290	118	4.0	175	70	90	
	55	169.030	0.030	0.290	0.290	116	4.0	175	70	90	
	120/OFI	F 170.830									
FINAL		·									
DIFF/AVC	GS.	90.354	0.1691		1.656	106.1				90.6	

PLANT	EXXON	DATE	9-5-86
AMPLING LOCATION	CT 84 FAN CELL B	RUN NUMBER	CT-84-B-2
PERATOR	DB	NOZZLE #	209
dAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.308
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-14
EAK TEST VACUUM, in. Hg	15.0000	METER BOX H@	1.72
EAK RATE, CFM	0.0000	ASSUMED MOISTURE, 🕻	2.0

RUN START TIME	1130	TOT VOL. H2O COLL.(m1)	97 - 5
TUN STOP TIME	1340	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	0.527 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	0.529 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	64,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Pt)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
1	0/0	172.800	0.160	1.420	1.420	109	5.0	390	54	90	
	5	176.580	0.170	1.570	1.570	109	6.0	410	56	90	
2	10	180.520	0.280	2.510	2.510	110	7.0	520	56	91	
	15	185.350	0.290	2.620	2.620	112	7.0	530	58	91	
3	20	190.380	0.290	2.630	2.630	114	7.0	530	58	91	
	25	195.400	0.290	2.630	2.630	116	7.0	530	58	92	
4	30	200.440	0.220	1.980	1.980	115	6.0	460	58	92	
	35	204.830	0.220	2.020	2.020	115	6.0	465	60	92	
5	40	209.750	0.160	1.490	1.490	114	5.0	400	60	93	
	45	213.140	0.140	1.250	1.250	114	5.0	365	62	91	
6	50	216.750	0.030	0.270	0.270	113	2.0	170	62	91	
	55	218.370	0.030	0.290	0.290	112	2.0	175	64	91	
12	60	220.185	0.180	1.650	1.650	110	6.0	470	68	90	0.000
	5	224.250	0.160	1.490	1.490	110	6.0	400	65	90	0.000
11	10	228.150	0.310	2.810	2.810	110	8.0	550	65	91	
	15	233.270	0.270	2.420	2.420	110	7.0	510	66	91	
10	20	238.640	0.310	2.820	2.820	112	8.0	550	69	91	
	25	243.375	0.330	2.980	2.980	113	8.0	565	70	91	
9	30	248.700	0.280	2.540	2.540	113	8.0	520	71	90	
	35	253.600	0.280	2.540	2.540	113	8.0	520	72	90	
8	40	258.570	0.120	1.090	1.090	114	5.0	340	71	90	
	45	261.870	0.120	1.090	1.090	114	5.0	340	73	90	
7	50	265.200	0.050	0.420	0.420	114	2.0	210	75	89	
	55	267.450	0.040	0.370	0.370	110	2.0	200	75	90	
	120/OF	F 269.515									
FINAL			. .							_	
DIFF/AVG:	S.	96.715	0.1814		1.788	112.3				90.8	

9/5/86	EXXON REFINERY - BAYTOWN, TX	CT-84-B-1	CT-84-B-2
	Run Start Time Run Finish Time	850 1100	1130 1340
Theta	Net Run Time, Mınutes	120	120
	Net Sampling Points	24	24
Dia	Nozzle Diameter, Inches	0.307	0.308
Cp	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.250	30.250
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	1.656	1.788
Vm	Volume of Metered Gas Sample, Dry ACF	90.354	96.715
tm	Dry Gas Meter Temperature, Degrees F	106.1	112.3
Vm(std)	.Volume of Metered Gas Sample, Dry SCF	85.678	90.744
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	91.6	97 - 5
Vw(std)	Volume of Water Vapor, SCF	4.313	4.587
%H2O	Moisture Content, % by Volume	4.79	4.81
Mfd	Dry Mole Fraction	0.952	0.952
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.32	28.32
Pg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.250	30.250
ts	Flue Gas Temperature, Degrees F	91	91
Delta p	Average Velocity Head, in. H2O	0.1691	0.1814
vs	Flue Gas Velocity, Ft/Sec	23.67	24.53
А	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	589,015.6	609,927.1
Qaw	Volumetric Air Flow Rate, Wet ACFM	638.138.3	661,075.0
% I	Isokinetic Sampling Rate, 🛣	105.9	107.7

	EMISSIONS RESULTS		
9/5/86	EXXON REFINERY - BAYTOWN, TX	CT-84-B-1	CT-84-B-2
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	90.6	90.8
	Degrees Centigrade	32.6	32.6
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	1.0842	1.1232
	Actual Cubic Feet/hr	38.2883	39.6645
	Dry Std. Cubic Meters/hr	1.0007	1.0363
	Dry Std. Cubic Feet/hr	35.3409	36.5956

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	1.5778 ug	0.5268 ug
mg/dscm	Concentration, mg/dscm	0.650 x 10E-3	0.205 x 10E-3
gr/dscf	Concentration, grains per dscf	0.2841 x 10E-6	0.0896 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	1.519 x 10E-3	0.504 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	0.689 x 10E-3	0.229 x 10E-3
тот	AL CHROMIUM (GFAA)		
ug	Catch	1.581 ug	0.529 ug
mg/dscm	Concentration, mg/dscm	0.652 x 10E-3	0.206 x 10E-3
gr/dscf	Concentration, grains per dscf	0.285 x 10E-6	0.090 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	1.522 x 10E-3	0.506 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	0.691 × 10E-3	0.230 x 10E-3

.

PLANT	EXXON	DATE	9-4-86
SAMPLING LOCATION	CT 84 FAN CELL C	RUN NUMBER	CT-84-C-1
OPERATOR	TMS	NOZZLE #	206
BAR.PRESS.,in Hg	30.3500	NOZZLE DIAMETER, inches	0.250
STATIC PRESS.in H2O	1.0000	METER BOX NUMBER	N – 1 O
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX HO	1.68
LEAK RATE,CFM	0.0010	ASSUMED MOISTURE, %	2.0

RUN START TIME	953	TOT VOL. H2O COLL.(ml)	60.8
RUN STOP TIME	1207	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	12.775 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	13.259 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 6	4,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Pt)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
1	0/0	368.639	0.230	0.850	0.850	90	6.0	469	55	91	
	5	371.400	0.230	0.870	0.870	93	6.0	473	53	90	
2	10	373.920	0.330	1.250	1.250	94	8.0	568	55	92	
	15	399.610	0.330	1.250	1.250	94	8.0	566	56	91	
3	20	380.570	0.340	1.310	1.310	94	8.0	580	58	91	
	25	384.340	0.330	1.270	1.270	95	8.0	571	57	91	
4	30	387.720	0.150	0.570	0.570	96	5.0	382	58	91	
	35	390.410	0.160	0.610	0.610	98	5.0	401	58	99	
5	40	392.480	0.030	0.120	0.120	98	2.0	176	59	99	
	45	393.690	0.030	0.090	0.090	98	2.0	158	61	102	
6	50	394.670	0.030	0.100	0.100	100	2.0	166	60	103	
	55	395.630	0.030	0.100	0.100	100	2.0	163	61	104	
12	60	396.691	0.150	0.590	0.590	97	5.0	389	57	92	396.633
	5	398.910	0.130	0.510	0.510	` 98	5.0	362	58	91	396.691
11	10	400.980	0.230	0.870	0.870	99	6.0	471	58	92	
	15	403.870	0.240	0,910	0.910	100	7.0	481	59	92	
10	20	406.620	0.250	0.970	0.970	102	7.0	496	61	92	
	25	409.810	0.260	1.000	1.000	101	7.0	503	60	91	
9	30	412.630	0.250	0.960	0.960	102	7.0	493	60	91	
	35	415.590	0.210	0.820	0.820	102	6.0	455	61	90	
8	40	418.520	0.020	0.070	0.070	102	1.0	129	60	91	
	45	419.610	0.040	0.170	0.170	102	2.0	206	59	92	
7	50	420.800	0.020	0.070	0.070	102	1.0	133	60	92	
	55	421.800	0.020	0.080	0.080	102	1.0	143	62	92	
	120/0FI	F 422.680									
FINAL											
DIFF/AVG	s.	53.983	0.1424		0.642	98.3				93.4	

PLANT	EXXON	DATE	9-4-86
AMPLING LOCATION	CT 84 FAN CELL C	RUN NUMBER	CT-84-C-2
PERATOR	TMS	NOZZLE #	704
BAR.PRESS., in Hg	30.3500	NOZZLE DIAMETER, inches	0.249
STATIC PRESS.in H20	1.0000	METER BOX NUMBER	N-10
_EAK TEST VACUUM, in Hg	15.0000	METER BOX H@	1.68
LEAK RATE, CFM	0.0100	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1224	TOT VOL. H2O COLL.(ml)	58.8
RUN STOP TIME	1442	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	0.550 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	0.554 ug
CST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	64,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	^н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
12	0/0	422.870	0.150	0.590	0.590	98	3.0	389	53	93	
	5	425.590	0.130.	0.510	0.510	98	2.0	362	55	92	
11	10	427.510	0.230	0.870	0.870	98	2.0	471	56	92	
	15	430.420	0.240	0.910	0.910	98	3.0	481	. 58	92	
10	20	432.990	0.250	0.970	0.970	98	3.0	496	59	92	
	25	436.110	0.260	1.000	1.000	99	3.0	503	60	91	
9	30	439.050	0.250	0.960	0.960	98	3.0	493	59	91	
	35	442.290	0.210	0.820	0.820	98	3.0	455	59	91	
8	40	444.730	0.020	0.070	0.070	97	1.0	129	60	91	
	45	445.640	0.040	0.170	0.170	96	1.0	206	61	93	
7	50	447.280	0.020	0.070	0.070	96	1.0	133	60	94	
	55	447.990	0.020	0.080	0.080	96	1.0	143	60	93	
6	60	449.032	0.030	0.100	0.100	94	1.0	163	58	93	448.918
	5	450.110	0.030	0.100	0.100	94	1.0	166	60	93	449.032
5	10	451.100	0.030	0.090	0.090	94	1.0	158	61	93	
	15	452.080	0.030	0.120	0.120	94	1.0	176	62	93	
4	20	453.290	0.160	0.610	0.610	93	4.0	401	61	93	
	25	455.580	0.150	0.570	0.570	93	4.0	382	62	93	
3	30	457.910	0.330	1.270	1.270	92	6.0	571	63	93	
	35	461.410	0.340	1.310	1.310	92	6.0	580	64	93	
2	40	464.720	0.330	1.250	1.250	92	6.0	566	63	93	
	45	468.160	0.330	1.250	1.250	92	6.0	568	65	92	
1	50	471.190	0.230	0.870	0.870	92	5.0	473	65	91	
	55	474.010	0.230	0.850	0.850	92	5.0	469	65	92	
	120/OF	F 476.710									
FINAL					_						
DIFF/AVC	GS.	53.726	0.1424		0.642	95.2				92.4	

9/4/86	EXXON REFINERY - BAYTOWN, TX	CT-84-C-1	CT-84-C-2
	Run Start Time Run Finish Time	953 1207	1224 1442
Theta	Net Run Time, Minutes	120	120
	Net Sampling Points	24	24
Dia	Nozzle Diameter, Inches	0.250	0.249
Ср	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.004	1.004
Pbar	Barometric Pressure, Inches Hg	30.350	30.350
Delta H	Avg. Pressurc Differential of Orifice Meter, Inches H2O	0.642	0.642
Vm	Volume of Metered Gas Sample, Dry ACF	53 983	53.726
tm	Dry Gas Meter Temperature, Degrees F	98.3	95.2
Vm(std)	Volume of Metered Gas Sample, Dry SCF	52.065	52.109
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	60.8	. 58.8
Vw(std)	Volume of Water Vapor, SCF	2.861	2.768
% H2O	Moisture Content, % by Volume	5.21	5.04
Mfd	Dry Mole Fraction	0.948	0.950
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.28	28.29
Pg	Flue Gas Static Pressure, in. Hg	1.00	1.00
Ps	Absolute Flue Gas Press., in Hg	30.424	30.424
ts	Flue Gas Temperature, Degrees F	93	92
Delta p	Average Velocity Head, in. H2O	0.1424	0.1424
vs	Flue Gas Velocity, Ft/Sec	21.73	21.71
Α	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	538,701.2	539,977-3
Qaw	Volumetric Air Flow Rate, Wet ACFM	585,805.2	585,068.5
z 1	Isokinetic Sampling Rate, %	106.1	106.8

EMISSIONS RESULTS		
EXXON REFINERY - BAYTOWN, TX	CT-84-C-1	CT-84-C-2
FLUE GAS TEMPERATURE		
Degrees Fahrenheit	93.4	92.4
Degrees Centigrade	34.1	33.5
AIR FLOW RATES x million		
Actual Cubic Meters/hr	0.9953	0.9940
Actual Cubic Feet/hr	35.1483	35.1041
Dry Std. Cubic Meters/hr	0.9153	0.9174
Dry Std. Cubic Feet/hr	32.3221	32.3986

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

.

9/4/86

ug	Catch	12.7753 ug	0.5498 ug
mg/dscm	Concentration, mg/dscm	8.665 x 10E-3	0.373 x 10E-3
gr/dscf	Concentration, grains per dscf	3.7861 x 10E-6	0.1628 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	18.542 x 10E-3	0.804 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	8.418 x 10E-3	0.365 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	13.259 ug	0.554 ug
mg/dscm	Concentration, mg/dscm	8.993 x 10E-3	0.375 x 10E-3
gr/dscf	Concentration, grains per dscf	3.929 x 10E-6	0.164 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	19.244 x 10E-3	0.810 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	8.737 x 10E-3	0.368 x 10E-3

PLANT	EXXON	DATE	9-5-86
SAMPLING LOCATION	CT 84 PAN CELL D	RUN NUMBER	CT-84-D-1
OPERATOR	TME	NOZZLE #	707
BAR.PRESS.,in Hg	30.2500	NOZZLE DIAMETER, inches	0.299
STATIC PRESS.in H2O	1.0000	METER BOX NUMBER	N-10
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX [^] H@	1.68
LEAK RATE,CFM	0.0090	ASSUMED MOISTURE, 🕇	2.0

RUN START TIME	835	TOT VOL. H2O COLL.(ml)	73.4
RUN STOP TIME	1043	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	0.455 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	0.459 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	54,692.0		ug

Sample,	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	lmp.Exit	Stack	Leak
Point	Time	Meter Reading	Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
12	0/0	484.748	0.080	0.610	0.610	90	4.0	276	55	85	
	5	487.090	0.090	0.700	0.700	92	4.0	293	56	84	
11	10	489.910	0.220	1.760	1.760	94	7.0	465	58	84	
	15	493.270	0.230	1.800	1.800	94	7.0	472	58	87	
10	20	497.310	0.240	1.870	1.870	94	7.0	483	59	89	
	25	501.190	0.250	1.960	1.960	94	8.0	496	58	90	
9	30	505.230	0.240	1.870	1.870	95	7.0	485	58	91	
	35	509.270	0.250	1.940	1.940	95	8.0	494	57	92	
8	40	513.320	0.090	0.680	0.680	96	4.0	293	58	92	
	45	515.890	0.080	0.600	0.600	96	3.0	274	59	93	
7	50	518.220	0.020	0.140	0.140	96	1.0	132	58	93	
	55	519.360	0.020	0.130	0.130	96	1.0	127	59	93	
6	60	520.370	0.020	0.190	0,190	96	1.0	153	56	92	0.000
	5	521.820	0.020	0.170	0.170	96	1.0	148	57	91	0.000
5	10	523.100	0.040	0.280	0.280	96	2.0	189	58	91	
	15	524.620	0.040	0.340	0.340	97	2.0	206	60	92	
4	20	526.680	0.240	1.910	1.910	95	8.0	489	59	92	
	25	530.520	0.220	1.740	1.740	93	7.0	467	61	91	
3	30	534.150	0.260	2.020	2.020	94	8.0	503	62	92	
	35	538.390	0.280	2.150	2.150	96	9.0	519	64	92	
2	40	542.820	0.230	1.820	1.820	97	7.0	478	63	91	
	45	547.010	0.240	1.880	1.880	96	8.0	486	64	90	
1	50	550.830	0.100	0.800	0.800	96	4.0	316	65	91	
	55	553.560	0.110	0.830	0.830	95	5.0	323	64	90	
	120/OF	F 556.269									
FINAL											
DIFF/AVGS	S.	71.521	0.1307		1.175	95.0				90.3	

PLANT	EXXON	DATE	9-5-86
SAMPLING LOCATION	CT 84 FAN CELL D	RUN NUMBER	CT-84-D-2
PERATOR	TME	NOZZLE #	707
AR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.299
STATIC PRESS.in H20	1.0000	METER BOX NUMBER	N-10
EAK TEST VACUUM, in . Hg	15.0000	METER BOX [^] H@	1.68
EAK RATE, CFM	0.0080	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	1104	TOT VOL. H2O COLL.(ml)	72.7
RUN STOP TIME	1317	TOTAL CATCH -	
'OTAL NET RUN TIME (Minutes)	120	HEXAVALENT CHROMIUM (GFAA)	21.485 ug
'ITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.004	TOTAL CHROMIUM (GFAA)	21.540 ug
ST. DRY MOL. WT. (Lb/Lb-Mole)	28.84	TOTAL CATCH -	
TACK/DUCT AREA (in2)	64,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	^н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Pt)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
1	0/0	556.523	0.150	1.140	1.140	92	5.0	379	52	90	
	5	559.680	0.150	1.180	1.180	94	5.0	385	52	90	
2	10	562.930	0.260	2.000	2.000	96	8.0	502	53	92	
	15	566.970	0.240	1.910	1.910	98	8.0	489	53	92	
3	20	570.920	0.230	1.830	1.830	100	7.0	479	55	92	
	25	574.950	0.240	1.870	1.870	101	8.0	483	58	92	
4	30	578.020	0.130	1.050	1.050	102	5.0	362	57	92	
	35	582.160	0.130	1.010	1.010	100	5.0	354	58	91	
5	40	585.120	0.020	0.130	0.130	101	1.0	126	59	92	
	45	586.310	0.010	0.110	0.110	102	1.0	119	61	92	
6	50	587.350	0.020	0.130	0.130	100	1.0	124	61	92	
	55	588.600	0.010	0.110	0.110	98	1.0	120	63	92	
7	60	589.510	0.010	0.110	0.110	96	1.0	119	63	95	0.000
	5	590.590	0.020	0.130	0.130	96	1.0	130	61	94	0.000
8	10	591.760	0.020	0.180	0.180	96	2.0	149	61	93	
	15	593.070	0.030	0.260	0.260	96	2.0	182	62	94	
9	20	594.640	0.210	1.630	1.630	98	7.0	433	64	93	
	25	598.240	0.240	1.980	1.980	100	8.0	499	65	94	
10	30	602.420	0.220	1.730	1.730	98	7.0	468	65	94	
	35	606.330	0.230	1.770	1.770	99	7.0	472	66	94	
11	40	610.180	0.170	1.350	1.350	100	6.0	412	65	93	
	45	614.010	0.150	1.140	1.140	100	5.0	379	65	94	
12	50	617.210	0.120	0.900	0.900	99	4.0	337	67	94	
	55	619.670	0.120	0.960	0.960	97	5.0	348	67	93	
	120/OF	F 622.638									
FINAL											
DIFF/AVG	s.	66.115	0.1082		1.025	98.3				92.7	

9/5/86	EXXON REFINERY - BAYTOWN, TX	CT-84-D-1	CT-84-D-2
	Run Start Time Run Finish Time	835 1043	1104 1317
Theta	Net Run Time, Minutes	120	120
	Net Sampling Points	24	24
Dia	Nozzle Diameter, Inches	0.299	0.299
Cp	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.004	1.004
Pbar	Barometric Pressure, Inches Hg	30.250	30.250
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	1.175	1.025
Vm	Volume of Metered Gas Sample, Dry ACF	71.521	66.115
tm	Dry Gas Meter Temperature, Degrees F	95.0	98.3
Vm(std)	Volume of Metered Gas Sample, Dry SCF	69.256	63.616
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	73.4	72.7
Vw(std)	Volume of Water Vapor, SCF	3.453	3.423
% H2O	Moisture Content, % by Volume	4.75	5.11
Mfd	Dry Mole Fraction	0.953	0.949
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.33	28.29
Ρg	Flue Gas Static Pressure, in. Hg	1.00	1.00
Ps	Absolute Flue Gas Press., in Hg	30.324	30.324
ts	Flue Gas Temperature, Degrees F	90	93
Delta p	Average Velocity Head, in. H2O	0.1307	0.1082
vs	Flue Gas Velocity, Pt/Sec	20.78	18.96
A	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	518,718.3	469,512.5
Qaw	Volumetric Air Flow Rate, Wet ACFM	560.062.5	511.001.5
% 1	lsokinetic Sampling Rate, 🕇	102.5	104.0

	EMISSIONS RESULTS		
€/5/86	EXXON REFINERY - BAYTOWN, TX	CT-84-D-1	CT-84-D-2
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	90.3	92.7
	Degrees Centigrade	32.4	33.7
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	0.9516	0.8682
	Actual Cubic Feet/hr	33.6038	30.6601
	Dry Std. Cubic Meters/hr	0.8813	0.7977
	Dry Std. Cubic Feet/hr	31.1231	28.1707

CONCENTRATIONS AND EMISSION RATES - PMRa

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	0.4553 ug	21.4854 ug
mg/dscm	Concentration, mg/dscm	0.232 x 10E-3	11.927 x 10E-3
gr/dscf	Concentration, grains per dscf	0.1014 x 10E-6	5.2113 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	0.462 x 10E-3	21.801 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	0.210 x 10E-3	9.898 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	0.459 ug	21.540 ug
mg/dscm	Concentration, mg/dscm	0.234 x 10E-3	11.957 x 10E-3
gr/dscf	Concentration, grains per dscf	0.102 x 10E-6	5.224 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRa)	0.466 x 10E-3	21.856 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRa)	0.211 x 10E-3	9.923 x 10E-3

PLANT SAMPLING LOCATION OPERATOR BAR.PRESS., in Hg STATIC PRESS. in H20 LEAK TEST VACUUM, in.Hg	EXXON COOLING TOWER 68 B.RUDD 30.2500 0.0000 15.0000	FAN CELLS 1 & 2	DATE RUN NUMBER NOZZLE # NOZZLE DIAMETER,inches METER BOX NUMBER METER BOX `H@	9/1/86 CT-68-DI-1 Disc 1.614 N-12 1.76
LEAK RATE.CFM RUN START TIME	0.0050 Analytic 1145	AL RESULTS DATA	ASSUMED MOISTURE, %	2.0
RUN STOP TIME TOTAL NET RUN TIME (Minutes) PITOT TUBE COEFFICIENT GAS METER CALIB. FACTOR (Y)	1554 240 0.840 1.002		TOTAL CATCH - HEXAVALENT CHROMIUM (GFAA) TOTAL CATCH - TOTAL CHROMIUM (GFAA)	5.596 ug 5.611 ug
EST. DRY MOL. WT.(lb/lb-Mole STACK/DUCT AREA (in2)) 28.84 37,688.0		TOTAL CATCH -	ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	• н	Gas Meter	Pump	Pitot	1mp.Exit	Stack	Leak
Point	Time	Meter Reading	Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	468.874	0.370	3.520	3.520	94	10.0	600	59	81	
**	15	484.590	0.370	3.520	3.520	96	10.0	600	62	82	
••	30	500.380	0.370	3.520	3.520	99	10.0	600	64	84	
**	45	516.860	0.370	3.520	3.520	100	10.0	600	65	85	
••	60/0	533.690	0.370	3.520	3.520	100	10.0	600	62	87	
	15	547.380	0.370	3.520	3.520	100	10.0	600	64	87	
••	30	564.120	0.370	3.520	3.520	100	10.0	600	62	86	
••	45	578.710	0.370	3.520	3.520	100	10.0	600	65	86	
••	120/0	593.670	0.370	3.520	3.520	100	10.0	600	61	85	
••	15	609.330	0.370	3.520	3.520	99	10.0	600	63	86	
••	30	627.810	0.370	3.520	3.520	100	10.0	600	64	87	
	45	641.070	0.370	3.520	3.520	100	10.0	600	66	85	
"	180/0	656.170	0.370	3.520	3.520	100	10.0	600	62	84	593.670
••	15	671.870	0.370	3.520	3.520	101	10.0	600	60	86	593.800
"	30	687.430	0.370	3.520	3.520	100	10.0	600	63	86	
	45	702.920	0.370	3.520	3.520	100	10.0	600	65	87	
	240/OF	F 718.714									
FINAL	_										
D1FF/AVG	S.	249.710	0.3700		3.520	99-3				85.3	

PLANT	EXXON	DATE	9/1/86
AMPLING LOCATION	COOLING TOWER 68 FAN CELLS 1 & 2	RUN NUMBER	CT-68-NZ-1
)PERATOR	B.RUDD	NOZZLE #	208
JAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.312
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-6
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX [°] H@	1.71
LEAK RATE,CFM	0.0040	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	1145	TOT VOL. H2O COLL.(ml)	220.0
RUN STOP TIME	1554	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	9.840 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	9.866 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	37,668.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	- н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	958.858	0.370	3.520	3.520	85	14.0	600	61	81	
*1	15	974.920	0.370	3.520	3.520	92	14.0	600	63	82	
"	30	990.860	0.370	3.520	3.520	97	14.0	600	58	84	
••	45	1007.540	0.370	3.520	3.520	98	14.0	600	60	85	
	60/0	1024.600	0.370	3.520	3.520	99	14.0	600	62	87	
	15	1038.660	0.370	3.520	3.520	99	14.0	600	64	87	
	30	1055.890	0.370	3.520	3.520	100	14.0	600	62	86	
"	45	1070.380	0.370	3.520	3.520	101	14.0	600	62	86	
•1	120/0	1085.450	0.370	3.520	3.520	98	14.0	600	63	85	
	15	1101.470	0.370	3.520	3.520	100	14.0	600	65	86	
••	30	1119.580	0.370	3.520	3.520	97	14.0	600	66	87	
••	45	1133.290	0.370	3.520	. 3. 520	99	14.0	600	66	85	
	180/0	1149.340	0.370	3.520	3.520	98	14.0	600	60	84	85.450
*1	15	1165.270	0.370	3.520	3.520	99	14.0	600	63	86	85.600
"	30	1181.350	0.370	3.520	3.520	97	14.0	600	62	86	
••	45	1196.980	0.370	3.520	3.520	96	14.0	600	61	87	
	240/0F1	F 1212.875									
FINAL											
DIFF/AVC	S.	253.867	0.3700		3.520	97.2				85.3	

.

9/1/86	EXXON REFINERY - BAYTOWN. TX	CT-68-DI-1	CT-68-NZ-1
	Run Start Time Run Finish Time	1145 1554	1145 1554
Theta	Net Run Time, Minutes	240	240
	Net Sampling Points	16	16
Dıa	Nozzle Diameter, Inches	1.614	0.312
Ср	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.250	30.250
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	3.520	3.520
Vm	Volume of Metered Gas Sample, Dry ACF	249.71	253.867
tm	Dry Gas Meter Temperature, Degrees F	99.3	97.2
Vm(std)	Volume of Metered Gas Sample, Dry SCF	240.754	245.695
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	215.6	220.0
Vw(std)	Volume of Water Vapor, SCF	10.147	10.356
% H20	Moisture Content, % by Volume	4.04	4.04
Mfd	Dry Mole Fraction	0.960	0.960
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.40	28.40
Ρg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.250	30.250
ts	Flue Gas Temperature, Degrees F	85	85
Delta p ´	Average Velocity Head, in. H2O	0.3700	0.3700
vs	Flue Gas Velocity, Ft/Sec	34.80	34.80
Α	Stack/Duct Area, Sq. Inches	37688.0	37668.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	513,361.9	513,089.1
Qaw	Volumetric Air Flow Rate, Wet ACFM	546,450.9	546,161.0
% I	Isokinetic Sampling Rate, 🟅	3.6	98.3

.

	EMISSIONS RESULTS		
9/1/86	EXXON REFINERY - BAYTOWN. TX	CT-68-DI-1	CT-68-NZ-1
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	85.3	85.3
	Degrees Centigrade	29.6	29.6
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	0.9284	0.9279
	Actual Cubic Feet/hr	32.7871	32.7697
	Dry Std. Cubic Meters/hr	0.8722	0.8717
	Dry Std. Cubic Feet/hr	30.8017	30.7853

CONCENTRATIONS AND EMISSION RATES - PMRc

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	5.5963 ug	9.8397 ug
mg/dscm	Concentration, mg/dscm	0.821 x 10E-3	1.414 x 10E-3
gr/dscf	Concentration, grains per dscf	0.3587 x 10E-6	0.6179 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.578 x 10E-3	2.718 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.716 x 10E-3	1.233 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	5.611 ug	9.866 ug
mg/dscm	Concentration, mg/dscm	0.823 x 10E-3	1.418 x 10E-3
gr/dscf	Concentration, grains per dscf	0.360 x 10E-6	0.620 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.582 x 10E-3	2.725 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.718 x 10E-3	1.236 x 10E-3

PLANT	EXXON	DATE	9/2/86
SAMPLING LOCATION	COOLING TOWER 68 FAN CELL #3	RUN NUMBER	CT-68-DI-2
OPERATOR	B.RUDD	NOZZLE #	Disc
BAR.PRESS., in Hg	30.2000	NOZZLE DIAMETER, inches	1.614
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-12
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX H@	1.76
LEAK RATE, CFM	0.0060	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	950	TOT VOL. H2O COLL.(ml)	263.7
RUN STOP TIME	1351	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	73.355 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	73.946 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (1n2) 3'	7,688.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	îн	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Readin	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	719.600	0.350	3.210	3.210	86	10.0	585	63	93	
••	15	735.890	0.350	3.210	3.210	90	10.0	585	60	93	
"	30	749.060	0.350	3.210	3.210	94	10.0	585	60	93	
**	45	763.720	0.350	3.210	3.210	94	10.0	585	58	92	
••	60/0	778.580	0.350	3.210	3.210	98	10.0	585	64	91	
*1	15	794.220	0.350	3.210	3.210	99	10.0	585	66	93	
••	30	809.690	0.350	3.210	3.210	98	10.0	585	65	93	
••	45	824.420	0.350	3.210	3.210	99	10.0	585	61	93	
•1	120/0	839.280	0.350	3.210	3.210	99	10.0	585	62	92	
*1	15	856.140	0.350	3.210	3.210	99	10.0	585	60	93	
**	30	874.310	0.350	3.210	3.210	100	10.0	585	57	92	
*1	45	887.590	0.350	3.210	3.210	101	10.0	585	60	93	
	180/0	900.780	0.350	3.210	3.210	102	10.0	585	62	93	0.000
	15	914.580	0.350	3.210	3.210	102	10.0	585	63	93	0.000
	30	930.090	0.350	3.210	3.210	104	10.0	585	64	92	
••	45	945.100	0.350	3.210	3.210	103	10.0	585	62	92	
	240/OFF	959.240									
FINAL											
DIFF/AVG	S.	239.640	0.3500		3.210	98.0				92.6	

PLANT	EXXON	DATE	9/2/86
AMPLING LOCATION	COOLING TOWER 68 FAN CELL #3	RUN NUMBER	CT-68-NZ-2
PERATOR	B.RUDD	NOZZLE #	208
JAR.PRESS., in Hg	30.2000	NOZZLE DIAMETER, inches	0.312
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-6
LEAK TEST VACUUM, in .Hg	15.0000	METER BOX [°] H@	1.71
LEAK RATE, CFM	0.0020	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	950	TOT VOL. H2O COLL.(ml)	269.6
RUN STOP TIME	1351	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	69.186 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	69.744 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (1n2)	37,668.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ън	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	216.300	0.350	3.210	3.210	87	13.0	585	66	93	
"	15	233.020	0.350	3.210	3.210	91	13.0	585	60	93	
**	30	246.590	0.350	3.210	3.210	94	13.0	585	58	93	
••	45	261.810	0.350	3.210	3.210	94	13.0	585	61	93	
	60/0	276.990	0.350	3.210	3.210	97	13.0	585	64	91	
••	15	293.010	0.350	3.210	3.210	98	13.0	585	64	93	
••	30	308.520	0.350	3.210	3.210	97	13.0	585	65	93	
••	45	323.560	0.350	3.210	3.210	97	13.0	585	66	93	
**	120/0	338.420	0.350	3.210	3.210	97	13.0	585	62	92	
••	15	355.630	0.350	3.210	3.210	98	13.0	585	60	93	
"	30	372.860	0.350	3.210	3.210	99	13.0	585	61	92	
••	45	386.910	0.350	3.210	3.210	100	13.0	585	62	93	
**	180/0	400.660	0.350	3.210	3.210	101	13.0	585	63	93	0.000
••	15	414.390	0.350	3.210	3.210	101	13.0	585	64	93	0.000
	30	430.280	0.350	3.210	3.210	103	13.0	585	65	92	
	45	446.020	0.350	3.210	3.210	103	13.0	585	62	92	
	240/OF1	460.522									
FINAL											
DIFF/AVO	s.	244.222	0.3500		3.210	97.3				92.6	

.

-

9/2/86	EXXON REFINERY - BAYTOWN. TX	CT-68-D1-2	CT-68-NZ-2
	Run Start Time Run Finish Time	950 1351	950 1351
Theta	Net Run Time, Minutes	240	240
	Net Sampling Points	16	16
Dia	Nozzle Diameter, Inches	1.614	0.312
Cp	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.200	30.200
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	3.210	3.210
Vm	Volume of Metered Gas Sample, Dry ACF	239.64	244.222
tm	Dry Gas Meter Temperature, Degrees F	98.0	97 - 3
Vm(std)	Volume of Metered Gas Sample, Dry SCF	231.036	235.744
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	263.7	269.6
Vw(std)	Volume of Water Vapor, SCF	12.413	12.691
%H2O	Moisture Content, 🗶 by Volume	5.10	5.11
Mfd	Dry Mole Fraction	0.949	0.949
Md	Estimated Dry Molecular Wt, $Lb/Lb-Mole$	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.29	28.29
Pg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.200	30.200
ts	Flue Gas Temperature, Degrees F	93	93
Delta p	Average Velocity Head, in. H2O	0.3500	0.3500
vs	Flue Gas Velocity, Pt/Sec	34.17	34.17
А	Stack/Duct Area, Sq. Inches	37688.0	37668.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	491.113.4	490,783.5
Qaw	Volumetric Air Flow Rate, Wet ACFM	536,552.2	536,307.9
% I	lsokinetic Sampling Rate, %	3.6	98.6

	EMISSIONS RESULTS		
9/2/86	EXXON REFINERY - BAYTOWN. TX	CT-68-DI-2	CT-68-NZ-2
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	92.6	92.6
	Degrees Centigrade	33.6	33.7
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	0.9116	0.9112
	Actual Cubic Feet/hr	32.1931	32.1785
	Dry Std. Cubic Meters/hr	0.8344	0.8338
	Dry Std. Cubic Feet/hr	29.4668	29.4470

CONCENTRATIONS AND EMISSION RATES - PMRc

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	73.3547 ug	69.1863 ug
mg/dscm	Concentration, mg/dscm	11.213 x 10E-3	10.364 x 10E-3
gr/dscf	Concentration, grains per dscf	4.8991 x 10E-6	4.5284 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	20.623 x 10E-3	19.050 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	9.354 x 10E-3	8.641 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	73.946 ug	69.744 ug
mg/dscm	Concentration, mg/dscm	11.303 x 10E-3	10.448 x 10E-3
gr/dscf	Concentration, grains per dscf	4.939 x 10E-6	4.565 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	20.789 x 10E-3	19.203 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	9.430 x 10E-3	8.710 x 10E-3

PLANT	EXXON	DATE	9/3/86
SAMPLING LOCATION	COOLING TOWER 68 FAN CELL #5	RUN NUMBER	ст-68-рі-3
OPERATOR	B.BRIDGES	NOZZLE #	Disc
BAR.PRESS.,in Hg	30.2500	NOZZLE DIAMETER, inches	1.614
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-12
LEAK TEST VACUUM, in.Hg	15.0000	METER BOX HO	1.76
LEAK RATE,CFM	0.0130	ASSUMED MOISTURE, 🗶	2.0

RUN START TIME	910	TOT VOL. H2O COLL.(ml)	202.3
RUN STOP TIME	1310	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	32.195 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	32.195 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 85	5,530.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ĥН	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	959.405	0.370	3.540	3.540	88	9.0	600	61	81	
**	15	975.010	0.370	3.540	3.540	99	9.0	600	61	81	
*1	30	990.510	0.370	3.540	3.540	100	9.0	600	60	84	
*1	45	1006.170	0.370	3.540	3.540	100	9.0	600	61	83	
•1	60/0	1021.960	0.370	3.540	3.540	103	9.0	600	62	83	
••	15	1037.520	0.370	3.540	3.540	103	9.0	600	64	85	
••	30	1053.420	0.370	3.540	3.540	103	9.0	600	63	84	
	45	1069.240	0.370	3.540	3.540	103	9.0	600	61	83	
	120/0	1085.350	0.370	3.540	3.540	104	9.0	600	61	83	
••	15	1101.165	0.370	3.540	3.540	104	9.0	600	60	84	
	30	1117.185	0.370	3.540	3.540	104	9.0	600	61	84	
	45	1133.185	0.370	3.540	3.540	104	9.0	600	62	84	
	180/0	1149.350	0.370	3.540	3.540	104	9.0	600	62	83	0.000
	15	1165.220	0.370	3.540	3.540	104	9.0	600	63	82	0.000
••	30	1181.150	0.370	3.540	3.540	104	9.0	600	63	82	
	45	1197.120	0.370	3.540	3.540	104	9.0	600	63	82	
	240/OFI	1213.129									
FINAL DIFE/AVG	c	253 724	0 3700		3 540	101 0				83.0	
5111/HVG	5.	233.124	0.3700		5.540	101.9				03.0	
FIELD DATA

PLANT	EXXON	DATE	9/3/86
AMPLING LOCATION	COOLING TOWER 68 FAN CELL #5	RUN NUMBER	ст-68-NZ-3
PERATOR	B.BRIDGES	NOZZLE #	208
JAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.312
STATIC PRESS.in H20	0.0000	METER BOX NUMBER	N-6
_EAK TEST VACUUM, in. Hg	15.0000	METER BOX [°] H@	1.71
_EAK RATE, CFM	0.0020	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	910	TOT VOL. H2O COLL.(ml)	202.5
RUN STOP TIME	1310	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	34.914 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	34.914 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 8	35,530.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ЪН	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Tıme	Meter Readin	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	460.657	0.370	3.540	3.540	88	15.0	600	66	81	
••	15	476.220	0.370	3.540	3.540	96	15.0	600	64	82	
••	30	491.940	0.370	3.540	3.540	99	15.0	600	61	83	
	45	507.745	0.370	3.540	3.540	100	15.0	600	60	83	
	60/0	523.640	0.370	3.540	3.540	101	15.0	600	60	83	
	15	539.450	0.370	3.540	3.540	101	15.0	600	62	84	
	30	555.350	0.370	3.540	3.540	101	15.0	600	63	83	
••	45	570.160	0.370	3.540	3.540	102	15.0	600	62	83	
••	120/0	587.010	0.370	3.540	3.540	102	15.0	600	60	84	
	15	602.820	0.370	3.540	3.540	101	15.0	600	62	84	
	30	628.620	0.370	3.540	3.540	102	15.0	600	64	84	
*1	45	634.385	0.370	3.540	3.540	102	15.0	600	64	84	
••	180/0	650.100	0.370	3.540	3.540	102	15.0	600	64	83	0.000
••	15	665.895	0.370	3.540	3.540	102	15.0	600	65	83	0.000
••	30	681.650	0.370	3.540	3.540	102	15.0	600	64	83	
	45	697.460	0.370	3.540	3.540	102	15.0	600	63	82	
	240/OFH	713.340									
FINAL											
DIFF/AVC	SS.	252.683	0.3700		3.540	100.2				83.1	

ISOKINETIC SAMPLING TRAIN FIELD DATA AND RESULTS TABULATION

9/3/86	EXXON REFINERY - BAYTOWN. TX	ст-68-рі-3	CT-68-NZ-3
	Run Start Time Run Finish Time	910 1310	910 1310
Theta	Net Run Time, Minutes	240	240
	Net Sampling Points	16	16
Dıa	Nozzle Diameter, Inches	1.614	0.312
Cp	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.250	30.250
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O	3.540	3.540
Vm	Volume of Metered Gas Sample, Dry ACF	253.724	252.683
tm	Dry Gas Meter Temperature, Degrees F	101.9	100.2
Vm(std)	Volume of Metered Gas Sample, Dry SCF	243.493	243.251
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	202.3	202.5
Vw(std)	Volume of Water Vapor, SCF	9.520	9.531
% H2O	Moisture Content, % by Volume	3.76	3.77
Mfd	Dry Mole Fraction	0.962	0.962
Md	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.43	28.43
Рg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ρs	Absolute Flue Gas Press., in Hg	30.250	30.250
ts	Flue Gas Temperature, Degrees F	83	83
Delta p	Average Velocity Head, in. H2O	0.3700	0.3700
vs •	Flue Gas Velocity, Ft/Sec	34.71	34.71
A	Stack/Duct Area, Sq. Inches	85530.0	85530.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	1,170,243.5	1,170,101.3
Qaw	Volumetric Air Flow Rate, Wet ACFM	1,236,902.2	1,236,991.1
% I	Isokinetic Sampling Rate, 🕺	3.6	96.9

	EMISSIONS RESULTS		
9/3/86	EXXON REFINERY - BAYTOWN. TX	CT-68-D1-3	ct-68-NZ-3
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	83.0	83.1
	Degrees Centigrade	28.3	28.4
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	2.1015	2.1017
	Actual Cubic Feet/hr	74.2141	74.2195
	Dry Std. Cubic Meters/hr	1.9883	1.9880
	Dry Std. Cubic Feet/hr	70.2146	70.2061

CONCENTRATIONS AND EMISSION RATES - PMRc

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	32.1948 ug	34.9139 ug
mg/dscm	Concentration, mg/dscm	4.669 x 10E-3	5.069 x 10E-3
gr/dscf	Concentration, grains per dscf	2.0402 x 10E-6	2.2147 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	20.464 x 10E-3	22.212 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	9.282 x 10E-3	10.075 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	32.195 ug	34.914 ug
mg/dscm	Concentration, mg/dscm	4.669 x 10E-3	5.069 x 10E-3
gr/dscf	Concentration, grains per dscf	2.040 x 10E-6	2.215 x 10E-6
lb/hr	Emission Rate, 1b/hr (PMRc)	20.464 x 10E-3	22.212 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	9.282 x 10E-3	10.075 x 10E-3

FIELD DATA

PLANT	EXXON	DATE	9/4/86
SAMPLING LOCATION	COOLING TOWER 84 PAN CELL D	RUN NUMBER	CT-84-DI-4
OPERATOR	B.RUDD	NOZZLE #	Disc
BAR.PRESS.,in Hg	30.3500	NOZZLE DIAMETER, inches	1.614
STATIC PRESS.in H20	0.1000	METER BOX NUMBER	N-6
LEAK TEST VACUUM.in.Hg	15.0000	METER BOX H@	1.71
LEAK RATE, CFM	0.0170	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	1010	TOT VOL. H2O COLL.(ml)	257.9
RUN STOP TIME	1410	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	2.171 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	2.188 ug
EST DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 64	1,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ън	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	713.502	0.360	3.360	3.360	90	8.0	590	64	88	
••	15	728.800	0.360	3.360	3.360	92	8.0	590	65	88	
	30	744.420	0.360	3.360	3.360	94	8.0	590	65	88	
••	45	759.650	0.360	3.360	3.360	96	8.0	590	67	88	
••	60/0	775.080	0.360	3.360	3.360	98	8.0	590	67	88	
••	15	792.490	0.360	3.360	3.360	99	8.0	590	61	89	
**	30	806.310	0.360	3.360	3.360	101	8.0	590	59	89	
**	45	824.170	0.360	3.360	3.360	102	8.0	590	63	92	
••	120/0	837.660	0.360	3.360	3.360	102	8.0	590	66	93	
	15	852.910	0.360	3.360	3.360	103	8.0	590	62	93	
••	30	868.730	0.360	3.360	3.360	103	8.0	590	65	93	
	45	884.820	0.360	3.360	3.360	103	8.0	590	64	93	
	180/0	900.110	0.360	3.360	3.360	103	8.0	590	64	93	0.000
••	15	915.280	0.360	3.360	3.360	103	8.0	590	64	93	0.000
••	30	930.270	0.360	3.360	3.360	103	8.0	590	64	93	
••	45	946.270	0.360	3.360	3.360	103	8.0	590	65	93	
	240/OFF	961.934									
FINAL DIFF/AVG	S.	248.432	0.3600		3.360	99.7				90.9	

FIELD DATA

PLANT	EXXON	DATE	9/4/86
GAMPLING LOCATION	COOLING TOWER 84 FAN CELL D	RUN NUMBER	CT-84-NZ-4
PERATOR	B.RUDD	NOZZLE #	208
AR.PRESS.,in Hg	30.3500	NOZZLE DIAMETER, inches	0.312
STATIC PRESS.in H2O	0.1000	METER BOX NUMBER	N-12
EAK TEST VACUUM, in. Hg	15.0000	METER BOX H@	1.76
.EAK RATE, CFM	0.0170	· ASSUMED MOISTURE, %	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	1010	TOT VOL. H2O COLL.(ml)	253.5
TUN STOP TIME	1410	TOTAL CATCH -	
'OTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	9.896 ug
JITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	9.970 ug
IST. DRY MOL. WT. (Lb/Lb-Mole)) 28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2)	64,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	ĥ	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	213.302	0.360	3.360	3.360	90	12.0	590	62	88	
"	15	227.040	0.360	3.360	3.360	92	12.0	590	64	88	
••	30	242.210	0.360	3.360	3.360	94	12.0	590	64	88	
**	45	257.320	0.360	3.360	3.360	95	12.0	590	66	88	
••	60/0	272.280	0.360	3.360	3.360	97	12.0	590	66	88	
••	15	290.160	0.360	3.360	3.360	102	13.0	590	63	89	
	30	303.960	0.360	3.360	3.360	106	13.0	590	62	89	
••	45	321.620	0.360	3.360	3.360	106	13.0	590	65	92	
"	120/0	334.820	0.360	3.360	3.360	107	13.0	590	66	93	
	15	350.430	0.360	3.360	3.360	108	13.0	590	62	93	
	30	365.870	0.360	3.360	3.360	108	13.0	590	64	93	
**	45	381.860	0.360	3.360	3.360	108	13.0	590	66	93	
"	180/0	697.090	0.360	3.360	3.360	108	13.0	590	66	93	0.000
"	15	412.240	0.360	3.360	3.360	108	13.0	590	66	93	0.000
"	30	427.170	0.360	3.360	3.360	108	13.0	590	66	93	
	45	442.510	0.360	3.360	3.360	108	13.0	590	66	93	
	240/OFF	458.782									
FINAL											
DIFF/AVC	GS.	245.480	0.3600		3.360	102.8				90.9	

ISOKINETIC SAMPLING TRAIN FIELD DATA AND RESULTS TABULATION

9/4/86	EXXON REFINERY - BAYTOWN. TX	CT-84-DI-4	CT-84-NZ-4
	Run Start Time Run Finish Time	1010 1410	1010 1410
Theta	Net Run Time, Minutes	240	240
	Net Sampling Points	16	16
Dia	Nozzle Diameter, Inches	1.614	0.312
Ср	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.350	30.350
Delta H	Avg. Pressure Differential of	2 260	
	Orifice Meter, Inches H20	3.360	3.360
Vm	Volume of Metered Gas Sample, Dry ACF	248.432	245.48
tm	Dry Gas Meter Temperature, Degrees F	99.7	102.8
Vm(std)	Volume of Metered Gas Sample, Dry SCF	240.053	235.884
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	257.9	253.5
Vw(std)	Volume of Water Vapor, SCF	12.141	11.930
% H2O	Moisture Content, % by Volume	4.81	4.81
Mfd	Dry Mole Fraction	0.952	0.952
Md	Estimated Dry Molecular Wt. Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.32	28.32
Pg	Flue Gas Static Pressure, in. Hg	0.10	0.10
Ps	Absolute Flue Gas Press., in Hg	30.357	30.357
ts	Flue Gas Temperature, Degrees F	91	91
Delta p	Average Velocity Head, in. H2O	0.3600	0.3600
vs	Flue Gas Velocity, Ft/Sec	34.49	34.49
A	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	860,602.5	860,602.5
Qaw	Volumetric Air Flow Rate, Wet ACFM	929,709.8	929,709.9
% I	Isokinetic Sampling Rate, 🌫	3.7	96.6

	EMISSIONS RESULTS		
9/4/86	EXXON REFINERY - BAYTOWN. TX	CT-84-DI-4	CT-84-NZ-4
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	90.9	90.9
	Degrees Centigrade	32.7	32.7
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	1.5796	1.5796
	Actual Cubic Feet/hr	55.7826	55.7826
	Dry Std. Cubic Meters/hr	1.4622	1.4622
	Dry Std. Cubic Feet/hr	51.6362	51.6362
	CONCENTRATIONS AND EMISSION RATES - PMI	Rc	
	HEXAVALENT CHROMIUM (GFAA)		
ug	Catch	2.1713 ug	9.8957 ug
mg/dscm	Concentration, mg/dscm	0.319 x 10E-3	1.482 x 10E-3
gr/dscf	Concentration, grains per dscf	0.1396 x 10E-6	0.6473 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.030 x 10E-3	4.775 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.467 x 10E-3	2.166 x 10E-3
	TOTAL CHROMIUM (GFAA)		

ug	Catch	2.188 ug	9.970 ug
mg/dscm	Concentration, mg/dscm	0.322 x 10E-3	1.493 x 10E-3
gr/dscf	Concentration, grains per dscf	0.141 x 10E-6	0.652 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.037 x 10E-3	4.811 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.470 x 10E-3	2.182 x 10E-3

FIELD DATA

PLANT	EXXON	DATE	9/5/86
SAMPLING LOCATION	COOLING TOWER 84 FAN CELL A	RUN NUMBER	CT-84-DI-5
OPERATOR	B.RUDD	NOZZLE #	Disc
BAR.PRESS.,in Hg	30.2500	NOZZLE DIAMETER, inches	1.614
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-12
LEAK TEST VACUUM,in.Hg	15.0000	METER BOX Hê	1.76
LEAK RATE, CFM	0.0170	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	820	TOT VOL. H20 COLL.(ml)	226.7
RUN STOP TIME	1220	TOTAL CATCH -	
TOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	2.439 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	2.454 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 64	,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	Imp.Exit	Stack	Leak
Point	Time	Meter Reading	; Head	(in.H20)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A-1	0/0	469.307	0.360	3.450	3.450	98	10.0	595	63	86	
••	15	484.420	0.360	3.450	3.450	99	10.0	595	65	86	
••	30	499.490	0.360	3.450	3.450	101	10.0	595	60	87	
"	45	514.710	0.360	3.450	3.450	102	10.0	595	58	87	
••	60/0	530.000	0.360	3.450	3.450	102	10.0	595	60	88	
"	15	545.720	0.360	3.450	3.450	102	10.0	595	63	88	
	30	560.660	0.360	3.450	3.450	101	10.0	595	65	87	
н	45	576.010	0.360	3.450	3.450	101	10.0	595	66	87	
••	120/0	591.220	0.360	3.450	3.450	98	10.0	595	63	88	
••	15	606.640	0.360	3.450	3.450	98	10.0	595	61	87	
••	30	621.990	0.360	3.450	3.450	98	10.0	595	65	87	
"	45	639.810	0.360	3.450	3.450	98	10.0	595	63	88	
*1	180/0	652.860	0.360	3.450	3.450	99	10.0	595	66	88	0.000
**	15	668.330	0.360	3.450	3.450	101	10.0	595	67	88	0.000
	30	683.700	0.360	3.450	3.450	101	10.0	595	62	88	
*1	45	698.990	0.360	3.450	3.450	100	10.0	595	59	88	
	240/OFF	714.331									
FINAL											
DIFF/AVG	s,	245.024	0.3600		3.450	99.9				87.4	

FIELD DATA

PLANT	EXXON	DATE	9/5/86
SAMPLING LOCATION	COOLING TOWER 84 FAN CELL A	RUN NUMBER	CT-84-NZ-5
OPERATOR	B.RUDD	NOZZLE #	208
BAR.PRESS., in Hg	30.2500	NOZZLE DIAMETER, inches	0.312
STATIC PRESS.in H2O	0.0000	METER BOX NUMBER	N-6
LEAK TEST VACUUM, in. Hg	15.0000	METER BOX [°] H@	1.71
LEAK RATE, CFM	0.0090	ASSUMED MOISTURE, 🗶	2.0

ANALYTICAL RESULTS DATA

RUN START TIME	820	TOT VOL. H2O COLL.(ml)	209.9
RUN STOP TIME	1220	TOTAL CATCH -	
FOTAL NET RUN TIME (Minutes)	240	HEXAVALENT CHROMIUM (GFAA)	6.346 ug
PITOT TUBE COEFFICIENT	0.840	TOTAL CATCH -	
GAS METER CALIB. FACTOR (Y)	1.002	TOTAL CHROMIUM (GFAA)	6.385 ug
EST. DRY MOL. WT.(Lb/Lb-Mole)	28.84	TOTAL CATCH -	
STACK/DUCT AREA (in2) 6	4,692.0		ug

Sample	Sample	Dry Gas	Pitot Vel	Orifice	•н	Gas Meter	Pump	Pitot	1mp.Exit	Stack	Leak
Point	Time	Meter Reading	g Head	(in.H2O)		Temp.	Vac.	Anemometer	Temp.	Temp	Check
No.	(min)	(Cu.Ft)	(in.H2O)	Ideal	Actual	(deg.F)	(in.Hg)	(so)MV	(deg.F)	(deg.F)	
A - 1	0/0	970.905	0.360	3.450	3.450	94	14.0	595	61	86	
••	15	986.150	0.360	3.450	3.450	96	14.0	595	66	86	
••	30	1002.150	0.360	3.450	3.450	98	15.0	595	60	87	
••	45	1017.290	0.360	3.450	3.450	99	15.0	595	58	87	
"	60/0	1032.530	0.360	3.450	3.450	100	15.0	595	63	88	
••	15	1047.070	0.360	3.450	3.450	101	15.0	595	66	88	
	30	1061.520	0.360	3.450	3.450	100	15.0	595	65 .	87	
	45	1075.600	0.360	3.450	3.450	96	15.0	595	66	87	
••	120/0	1089.760	0.360	3.450	3.450	96	15.0	595	62	88	
••	15	1103.200	0.360	3.450	3.450	95	15.0	595	60	87	
"	30	1116.530	0.360	3.450	3.450	95	15.0	595	61	87	
"	45	1131.720	0.360	3.450	3.450	95	15.0	595	63	88	
**	180/0	1143.170	0.360	3.450	3.450	97	15.0	595	65	88	0.000
*1	15	1156.620	0.360	3.450	3.450	98	15.0	595	61	88	0.000
••	30	1170.070	0.360	3.450	3.450	98	15.0	595	57	88	
••	45	1183.360	0.360	3.450	3.450	98	15.0	595	59	88	
	240/0F1	F 1196.665									
FINAL											
DIFF/AVC	SS.	225.760	0.3600		3.450	97.3				87.4	

ISOKINETIC SAMPLING TRAIN FIELD DATA AND RESULTS TABULATION

9/5/86	EXXON REFINERY - BAYTOWN. TX	CT-84-DI-5	CT-84-NZ-5
	Run Start Time Run Finish Time	820 1220	820 1220
Theta	Net Run Time, Minutes	240	240
	Net Sampling Points	16	16
Dia	Nozzle Diameter, Inches	1.614	0.312
Cp	Pitot Tube Coefficient	0.840	0.840
Y	Dry Gas Meter Calibration Factor	1.002	1.002
Pbar	Barometric Pressure, Inches Hg	30.250	30.250
Delta H	Avg. Pressure Differential of	0 450	o ()-o
	Orllice Meter, Inches H2O	3.450	3.450
Vm	Volume of Metered Gas Sample, Dry ACF	245.024	225.76
tm	Dry Gas Meter Temperature, Degrees F	99.9	97 - 3
Vm(std)	Volume of Metered Gas Sample, Dry SCF	235.932	218.432
Vlc	Total Volume of Liquid Collected in Impingers and Silica Gel, ml	226.7	209.9
Vw(std)	Volume of Water Vapor, SCF	10.671	9.880
% H2O	Moisture Content, % by Volume	4.33	4.33
Mfd	Dry Mole Fraction	0.957	0.957
Mđ	Estimated Dry Molecular Wt, Lb/Lb-Mole	28.84	28.84
Ms	Wet Molecular Weight, Lb/Lb-Mole	28.37	28.37
Pg	Flue Gas Static Pressure, in. Hg	0.00	0.00
Ps	Absolute Flue Gas Press., in Hg	30.250	30.250
ts	Flue Gas Temperature, Degrees F	87	87
Delta p	Average Velocity Head, in. H2O	0.3600	0.3600
vs	Flue Gas Velocity, Ft/Sec	34.41	34.41
A	Stack/Duct Area, Sq. Inches	64692.0	64692.0
Qsd	Volumetric Air Flow Rate, Dry SCFM	865,425.7	865,424.8
Qaw	Volumetric Air Flow Rate, Wet ACFM	927,530.3	927,530.5
% I	Isokinetic Sampling Rate, %	3.6	89.0

	EMISSIONS RESULTS		
9/5/86	EXXON REFINERY - BAYTOWN. TX	CT-84-DI-5	CT-84-NZ-5
	FLUE GAS TEMPERATURE		
	Degrees Fahrenheit	87.4	87.4
	Degrees Centigrade	30.8	30.8
	AIR FLOW RATES x million		
	Actual Cubic Meters/hr	1.5759	1.5759
	Actual Cubic Feet/hr	55.6518	55.6518
	Dry Std. Cubic Meters/hr	1.4704	1.4704
	Dry Std. Cubic Feet/hr	51.9255	51.9255

CONCENTRATIONS AND EMISSION RATES - PMRc

HEXAVALENT CHROMIUM (GFAA)

ug	Catch	2.4392 ug	6.3458 ug
mg/dscm	Concentration, mg/dscm	0.365 x 10E-3	1.026 x 10E-3
gr/dscf	Concentration, grains per dscf	0.1595 x 10E-6	0.4483 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.183 x 10E-3	3.325 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.537 × 10E-3	1.508 x 10E-3
	TOTAL CHROMIUM (GFAA)		
ug	Catch	2.454 ug	6.385 ug
mg/dscm	Concentration, mg/dscm	0.367 x 10E-3	1.032 x 10E-3
gr/dscf	Concentration, grains per dscf	0.160 x 10E-6	0.451 x 10E-6
lb/hr	Emission Rate, lb/hr (PMRc)	1.191 x 10E-3	3.345 x 10E-3
kg/hr	Emission Rate, kg/hr (PMRc)	0.540 x 10E-3	1.517 x 10E-3

FITOT TRAVERSE FOR EPA/ENTROPY(EXXON):CT68-RISER A-9/01/86

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP.=13.523 SPECIFIC GRAVITY OF WATER AT AMB. TEMP. = 0.996 SPECIFIC GRAVITY OF WATER AT WATER TEMP. = 0.995 AVERAGE DIAMETER OF PIPE AT TRAVERSE FLANE= 14.13(IN) AVERAGE AREA OF PIPE AT TRAVERSE PLANE= 156.7 (SQ IN) PITOT TUBE SERIAL NUMBER=WF6A PITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV DIAMETER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC
PT	(IN)	(IN)	(IN FL)	(FFM)	(IN FL)	(FFM)
12	$0.36 \\ 1.15$	0.23 0.68	3.95 6.97	814.98 1079.46	4.46 7.94	866.00 1152.13
3	2.07	1.00	7.72	1133.71	10.00	1290.31
4	3.19	1.39	8.87	1212.16	10.77°	1335.69
5	4.83	1.97	9.48	1248.52	10.80	1332.61

AVG=1097.77 (FFM) AVG=1195.35 (FFM)

6	9.30	3.53	9.18	1216.18	11.28	1348.13
7	10.93	4.10	8.40	1159.03	10.19	1276.57
8	12.06	4.50	7.78	1112.55	7.87	1118.97
9	12.97	4.81	3.05	695.14	4.60	853.69
10	13.76	5.09	0.20	177.68	0.30	217.62

AVG= 872.12(FPM) AVG= 962.99(FFM)

AVG. VELOCITY=1032.06(FPM)

AVG. SOR OF MAN DEFLEC. = 2.55(SOR(IN OF FL))

FLOW RATE (LOCAL BLOCKAGE) = 8400. (GPM)

FLOW RATE (AVG. BLOCKAGE) = 8386. (GPM)

AVG. BLOCKAGE= 2.75(SQ IN)

TOT TRAVERSE FOR EFA/ENTROFY(EXXON):CT68-RISER B-9/01/86

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP.=13.523 SPECIFIC GRAVITY OF WATER AT AMB. TEMP. = 0.996 SPECIFIC GRAVITY OF WATER AT WATER TEMP. = 0.995 AVERAGE DIAMETER OF PIFE AT TRAVERSE PLANE= 16.13(IN) AVERAGE AREA OF PIPE AT TRAVERSE PLANE= 204.2(SQ IN) FITOT TUBE SERIAL NUMBER=WF6A PITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV DIAMETER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC
Т	(IN)	(IN)	(IN FL)	(FFM)	(IN FL)	(FPM)
1	0.41	0.26-	1.06	422.26	0.41	262.61
2	1.32	0.74	2.69	671.09	2.68	669.84
3	2.36	1.10	3.56	770.64	3.40	753.12
4	3.65	1.55	4.32	847.03	4.08	823.17
5	5.51	2.20	4.52	863.63	4.37	849.18

AVG= 714.93(FPM) AVG= 671.58(FPM)

6	10.61	3.99	4.38	842.64	4.33	837.82
7	12.48	4.64	4.54	855.09	4.16	818.52
8	13.76	5.09	3.17	712.92	3.65	764.99
9	14.81	5.46	1.15	428.60	2.87	677.09
10	15.71	5.77	0.20	178.46	0.25	199.52

AVG= 603.54(FFM) AVG= 659.59(FFM)

AVG. VELOCITY= 662.41(FPM)

AVG. SOR OF MAN DEFLEC. = 1.64(SOR(IN OF FL))

FLOW RATE(LOCAL BLOCKAGE) = 7026. (GPM)

FLOW RATE (AVG. BLOCKAGE) = 7022. (GPM)

AVG. BLOCKAGE= 3.10(SQ IN)

A-53

PITOT TRAVERSE FOR EPA/ENTROPY(EXXON):CT68-RISER C-9/01/86

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP.=13.526 SPECIFIC GRAVITY OF WATER AT AMB. TEMP.= 0.996 SPECIFIC GRAVITY OF WATER AT WATER TEMP.= 0.995 AVERAGE DIAMETER OF FIFE AT TRAVERSE FLANE= 16.83(IN) AVERAGE AREA OF FIFE AT TRAVERSE FLANE= 222.3(SQ IN) FITOT TUBE SERIAL NUMBER=WF6A FITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV I	DIAMETER 2
TRAV	FOS	BLOCK	DEF	VC	DEF	VC
ΡT	(IN)	(IN)	(IN FL)	(FPM)	(IN FL)	(FPM)
1	0.43	0.27	1.40	485.35	1.52	505.73
2	1.37	0.75	2.40	634.09	2.22	609.85
3	2.46	1.14	3.12	721.73	2.94	700.60
4	3.80	1.61	3.32	742.92	3.07	714.40
5	5.75	2.29	3.45	754.98	3.48	758.26
			AVG	= 667.81(F	PM)	AVG= 657.77(FPM)
6	11.07	4.15	3.25	726.57	3.29	731.03
7	13.02	4.83	3.20	718.71	2.97	672.40
8	14.36	5.30	2.70	658.75	2.71	659.97
9	15.45	5.68	2.26	601.63	2.05	573.00
10	16.39	6.01	0.26	203.75	0.28	211.44
			AVG	= 581.88(F	FFM)	AVG= 573.57(FPM)

AVG. VELOCITY= 620.26(FPM) AVG. SQR OF MAN DEFLEC.= 1.53(SQR(IN OF FL)) FLOW RATE(LOCAL BLOCKAGE)= 7163.(GPM) FLOW RATE(AVG. BLOCKAGE)= 7157.(GPM) AVG. BLOCKAGE= 3.22(SQ IN) PITOT TRAVERSE FOR EPA/ENTROPY(EXXON):CT84-RISER A(9/3/86)

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP.= 2.936 SPECIFIC GRAVITY OF WATER AT AMB. TEMP.= 0.995 SPECIFIC GRAVITY OF WATER AT WATER TEMP.= 0.995 AVERAGE DIAMETER OF PIPE AT TRAVERSE PLANE= 17.19(IN) AVERAGE AREA OF PIFE AT TRAVERSE FLANE= 232.0(SQ IN) PITOT TUBE SERIAL NUMBER=WF6A FITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV DIAMETER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC
PT	(IN)	(IN)	(IN FL)	(FFM)	(IN FL)	(FFM)
1	0.44	0.28	5.18	367.43	3.73	311.79
2	1.40	0.77	5.82	388.65	6.18	400.49
3	2.52	1.16	7.23	432.44	7.20	431.54
4	3.89	1.64	7.53	440.40	7.51	439.82
5	5.88	2.33	7.93	450.58	7.88	447.16
			AVE	i= 415.90(f	FPM)	AVG= 406.56(FFM)

6	11.31	4.23	7.91	446.29	8.43	460.73
7	13.30	4.93	7.93	445.49	8.37	457.68
8	14.67	5.41	7.33	427.40	8.44	458.62
9	15.78	5.80	6.33	396.50	8.27	453.75
10	16.75	6.14	4.28	325.54	6.10	388.64

AVG= 408.24(FPM) AVG= 443.88(FPM)

AVG. VELOCITY= 418.65(FPM)

AVG. SOR OF MAN DEFLEC.= 2.63(SOR(IN OF FL))

FLOW RATE(LOCAL BLOCKAGE) = 5045. (GPM)

FLOW RATE (AVG. BLOCKAGE) = 5046. (GPM)

AVG. BLOCKAGE= 3.28(SQ IN)

FITOT TRAVERSE FOR EFA/ENTROFY(EXXON):CT84-RISER B(9/3/86)

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP. = 2.931 SPECIFIC GRAVITY OF WATER AT AMB. TEMP. = 0.994 SPECIFIC GRAVITY OF WATER AT WATER TEMP. = 0.995 AVERAGE DIAMETER OF FIFE AT TRAVERSE FLANE= 16,94(IN) AVERAGE AREA OF PIPE AT TRAVERSE FLANE= 225.3(SO IN) FITOT TUBE SERIAL NUMBER=WF6A PITOT TUBE COEFFICIENT=0.833

			TRAV DIA	TRAV DIAMETER 1		METER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC ¹	
PT	(IN)	(IN)	(IN FL)	(FPM)	(IN FL)	(FPM)	
1	0.43	0.27	8.26	463.54	4.22	331.32	
2	1.38	0.76	10.80	528.87	7.38	437.20	
3	2.48	1.14	12.80	574.79	8.62	471.69	
4	3.83	1.62	12.80	573.58	8.97	480.16	
5	5.79	2.30	11.71	546.93	9.33	488.20	

AVG= 537.54(FPM) AVG= 441.71(FPM)

6	11.15	4.18	7.33	429.08	8.72	468.00
7	13.11	4.86	6.28	395.93	9.84	495.60
8	14.46	5.34	5.88	382.29	9.61	488.73
9	15.55	5.72	5.02	352.62	9.43	483.29
10	16.50	6.05	2.78	262.01	7.98	443.91

AVG= 364.38(FPM) AVG= 475.90(FPM)

AVG. VELOCITY= 454.89(FPM) AVG. SOR OF MAN DEFLEC. = 2.86(SQR(IN OF FL)) FLOW RATE(LOCAL BLOCKAGE) = 5323.(GPM) FLOW RATE(AVG. BLOCKAGE) = 5320.(GPM) AVG. BLOCKAGE= 3.24 (SQ IN)

FITOT TRAVERSE FOR EPA/ENTROPY(EXXON):CT84-RISER C(9/3/86)

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP. = 2.933 SFECIFIC GRAVITY OF WATER AT AMB. TEMP. = 0.994 SPECIFIC GRAVITY OF WATER AT WATER TEMP. = 0.995 AVERAGE DIAMETER OF FIFE AT TRAVERSE FLANE= 17.25(IN) AVERAGE AREA OF PIPE AT TRAVERSE PLANE= 233.7(SO IN) FITOT TUBE SERIAL NUMBER=WF6A PITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV DIAMETER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC
PT	(IN)	(IN)	(IN FL)	(FPM)	(IN FL)	(FPM)
1	0.44	0.28	9.85	506.48	4.95	359.05
2	1.41	0.77	14.22	607.27	9.42	494.26
3	2.53	1.16	16.46	652.25	11.09	535.38
4	3.90	1.64	17.47	670.58	11.93	554.14
5	5.90	2.34	15.37	627.08	11.98	553.63

AVG= 612.73(FPM) AVG= 499.29(FPM)

11.35	4.25	8.97	475.11	10.22	507.13
13.35	4.95	7.38	429.63	10.13	503.35
14.72	5.43	7.07	419.63	9.21	478.94
15.84	5.82	6.17	391.34	9.00	472.64
16.81	6.16	3.85	308.67	7.75	437.94
	11.35 13.35 14.72 15.84 16.81	11.35 4.25 13.35 4.95 14.72 5.43 15.84 5.82 16.81 6.16	11.35 4.25 8.97 13.35 4.95 7.38 14.72 5.43 7.07 15.84 5.82 6.17 16.81 6.16 3.85	11.354.258.97475.1113.354.957.38429.6314.725.437.07419.6315.845.826.17391.3416.816.163.85308.67	11.354.258.97475.1110.2213.354.957.38429.6310.1314.725.437.07419.639.2115.845.826.17391.349.0016.816.163.85308.677.75

AVG= 404.87(FFM) AVG= 480.00(FFM)

.

AVG. VELOCITY= 499.22(FPM)

AVG. SOR OF MAN DEFLEC. = 3.13(SQR(IN OF FL))

FLOW RATE(LOCAL BLOCKAGE) = 6060.(GPM)

FLOW RATE (AVG. BLOCKAGE) = 6054. (GPM)

AVG. BLOCKAGE= 3.29(SQ IN)

•

FITOT TRAVERSE FOR EPA/ENTROPY(EXXON):CT84-RISER D(9/3/86)

SPECIFIC GRAVITY OF FLUID AT AMB. TEMP. = 2.933 SPECIFIC GRAVITY OF WATER AT AMB. TEMP. = 0.994 SPECIFIC GRAVITY OF WATER AT WATER TEMP. = 0.995 AVERAGE DIAMETER OF FIFE AT TRAVERSE FLANE= 17.19(IN) AVERAGE AREA OF FIFE AT TRAVERSE PLANE= 232.0(SD IN) FITOT TUBE SERIAL NUMBER=WF6A PITOT TUBE COEFFICIENT=0.833

			TRAV DIAMETER 1		TRAV DIAMETER 2	
TRAV	POS	BLOCK	DEF	VC	DEF	VC
PT	(IN)	(IN)	(IN FL)	(FFM)	(IN FL)	(FPM)
1	0.44	0.28	7.94	454.73	6.12	399.23
2	1.40	0.77	11.08	536.04	8.25	462.54
3	2.52	1.16	14.09	603.45	9.89	505.58
4	3.89	1.64	15.11	623.62	10.82	527.71
5	5.88	2.33	15.75	634.76	12.12	556.83

AVG= 570.52(FPM) AVG= 490.38(FPM)

6	11.31	4.23	11.57	539.55	11.73	543.26
7	13.30	4.93	9.54	488.43	10.95	523.29
8	14.67	5.41	9.20	478.64	9.96	498.02
9	15.78	5.80	7.67	436.28	8.88	469.43
10	16.75	6.14	6.24	392.92	7.13	420.01

AVG= 467.17(FFM) AVG= 490.80(FFM)

AVG. VELOCITY= 504.72(FPM) AVG. SQR OF MAN DEFLEC. = 3.17(SQR(IN OF FL)) FLOW RATE (LOCAL BLOCKAGE) = 6082. (GPM) FLOW RATE (AVG. BLOCKAGE) = 6079. (GPM) AVG. BLOCKAGE= 3.28(SQ IN)

A-58

AREA SAMPLED= 43.80 M2 BAY-84-A

		L.09	MASS	COUNT	Z MASS	Z CUUNT
D(LOW)	D(HI)	D(HI)	FLUX	FLUX	SMALLER	SMALLER
UM	UM		UG/M2/SEC	#/M2/SEC		
****	****	****	*******	********	******	********
10.	20.	1.30t	2.816+02	1.59F.+05	0+423	38,391
20.	30,	1.477	5.326+02	6+51E104	1.227	54,130
30.	40.	1.602	1.846+03	8.18E+04	3.998	73.912
40.	50.	1.699	2+37E+03	4.965+04	7.567	85,901
50.	60.	1.778	2.33E+03	2.676+04	11.077	92.359
60.	70.	1.845	1.718403	1,191404	13.651	95,227
70.	90.	1.954	2.49E+03	9.28E+03	17,406	97.472
90.	110.	2.041	1.31E+03	2.50E+03	19.379	98.076
110.	130.	2,114	1.571103	1.74E+03	21.751	98 .4 96
130.	150.	2.176	1.24E+03	1.216+03	24.377	98.78 9
150.	180.	2,255	3.52E+03	1.506+03	29.694	99.152
180.	210.	2.322	3.821.103	9.84E+02	35.462	89.390
210.	240.	2,380	4.00E+03	6.715+02	41.499	99.552
240.	270.	2.431	4.36F+03	5+036+02	48.083	99.674
270.	300.	2.471	5.20E+03	4.296402	55,931	99.777
300.	350.	2.544	7+9311+03	4.416+02	67.892	99.BB4
350.	400.	2.602	6.74E+03	2.44E+02	78.059	99.943
400.	450.	2.653	4.43E+03	1.100102	84.746	99.470
450.	500.	2,699	3.736+03	6+656+01	90.375	99 . 986
500.	600.	2.778	4.14E103	4.756+01	96.624	99.997
600.	200+	2+845	1.21E+03	8+43 <u>6</u> +00	78,453	99.499
700.	800+	2.903	0.00E-01	0.00E-01	98.453	55 . 259
800.	900.	2.954	1.026+03	3.19E+00	100.000	100.000

- A-59 TOTAL MASS FLUX= 6.63E+04 UD/H2/SEC
- TOTAL COUNT FLUX# 1.81E+07 #/M2/SFC
- MASS MEAN DIAMETER= 282. UM
- COUNT MEAN DIAMFIFR= 34. UM

MASS EMISSION RATE = 2.90E+00 GRAMS/SEC

×) * * * *)•1 **********	1.0	5+0 1:		0.0 50 ******	().() /(********	(),() {{ *******	1.1 95 *********	5.0 99 **********	2•0 59	7.9
*	ι	• • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•		• • • • • • • • • • • • • • • • •		• 1
*	•	•	•	•	•	• •	•	•	•	• •		•
r. tr				•	•	•	•	• •		• •		• ′
*				•	•		•	•	•	•		•
*	•	•	•	•	•	• •	•	•	•	• •	•	•
*	•	•		•	• ·	• • •	•	• •		• •		4
*		м		•	•	. C	•	• •	•	• •	•	•
*	•	•	•	•	•	• •	•	•	•	• •		4
*	•	•	•	•	•	•	•	•		• •	•	•
*	•			•	•	•	•	•		• •		•
30. *			M				(:,			,,		
*	•	•	•	•	•	•	•	•		• •	,	•
*	•	•	•	•	•	•	•	•	•	•		•
*				4	•	•	•	C	•	• •	•	•
*	•	•	•	•	•	•	•	•	•	• •	•	•
*	ι. γ	•	•	. м	•	•	•	•	•	•		•
*			•	• •	•	•	•	•	•	•	•	•
60. *	r			•M-	•					• •	·	•
*	t ,		•	•	• M	•	•	•	· ·	• •	•	•
r t			•	• •	•	•	•	•	. L	•		•
*	ι,	, .	•	•	•	•	•	•	•	•		•
*	K .		•	•	•	•	•	•	•	• • •	•	÷
100. 1	r . r			•	• " •	• •	•	• • • • • • • • •	• •	• Li (,	•
1	k .		•	•	. м	•	•	•	•	. U		•
A	k .	, ,	•	•	• •	•	•	•	•	• •	•	•
51	k s		• -	•	• n	•	•••	•	•	• L ·	•	•
0			•	•	. н	•	•	•	•	. с	,	•
1	k .		•	•	•	•	•	•	•	• •	•	•
ןג זי	Fe t		•	•	•	• . M	•	•	•	r r		•
200. 1	,		,		•	•	•			•		•
×	k.	, ,	•	•	•	• M	•	•	•	• 0		4
2 1 	k.	•	•	•	•	• Mi	•	•		•	С	•
4 7	r i K j	,	•	•	•	. н	•	•	•	•	. c	•
300. 1	k	, ,	•		•	•	•-M			• • • • • • • • • • • • •	<u>-</u> Ç <u>-</u>	,
X	k .	•	•	•	•	•	•	•	•	• •	r ,	•
r k	r 4 k -		•	•	•	•	• •	•		• :1	· · · ·	•
1			•	•	•	•	•	• M	•	• •	, C	•
1	k .	•	•	•	•	•	•	•	•	• •	•	• ~
300. 1	k − • ·		•	•	•	•	•	• • • • • •	M	•		• L •
k	 K .	•	•	•	•	•	•	•	•	•	•	•
*	¢ .	• .	•	•	•	•	•	•	•	•м :	:	٠
k v	F.	•	•	•	•	•	•	•	•	н н . М		•
, a y	r 1 k 1		•	•	•	•	•	•	•	• • •	•	•
800. 1	k		•	•	,	•		•		•M	,	•
1	₿ (•	•	•	•	•	•	•	•	•	• •		•
, (* (•	•	•	•	•	•	•	•	•	· ·	•
		***********	<u>****</u> ******	*********	******	*******	2**** <u>**</u>	******	********	*********	**********	* **

AREA SAMPLED= 43,80 M2 BAY-84-8

		LOG	MASS	COUNT	X MASS	Z COUNT
D(LOW)	D(HI)	D(HI)	FILUX	F1.UX	SMALLER	SHALLER
UM	บท		UG/M2/SEC	#/M2/SEC		
*****	****	****	*******	********	********	********
10.	20.	1.301	1.90E+02	1.08E+05	0.442	27,232
20.	30.	1.477	9.85E+02	1.208405	2.732	57.704
30.	40.	1.602	1.21E+03	5.386404	5.539	71.310
40.	50.	1.699	2.37F+03	4.96E+04	11.040	83.860
50.	60.	1.778	2.57E+03	2.956+04	17.016	91.327
60.	20.	1.045	2.271 +03	1.58E+04	22.303	95.330
70.	90.	1.954	2.471.103	9.20F+03	28.039	97+658
90.	110.	2.041	1.276+03	2+43E+03	30.995	98.273
110.	130.	2.114	1.68E+03	1.85E+03	34+895	98.742
130.	150.	2.176	1.86E+03	1+29E+03	39.219	99.070
150.	180.	2.255	2.895+03	1.23E103	45.938	99.381
180.	210.	2.322	3.39F+03	8.73E+02	53,817	99.602
210.	240.	2.380	3.53E+03	5.97E+02	62.021	99.751
240.	270.	2.431	3.30E+03	3.80E+02	69.699	99.848
270.	300.	2.471	2.571+03	2.12F+02	75+678	99.901
300.	350.	2.544	3.956+03	2.20E+02	84.861	99.957
350.	400.	2.602	2.34E+03	8.466+01	90.291	99.4 <i>7</i> 8
400.	450.	2.653	2.415+03	5.996+01	95 . 886	99.991
450.	500.	2.649	7.89F102	1.41E+01	97.721	99.997
500.	600.	2.778	9.80E+02	1.12E+01	100.000	100.000

H TOTAL COUNT FLUX= 1.73E+07 #/H2/SEC

HASS MEAN DIAMETER= 206. UM COUNT MEAN DIAMFIER= 34. UM

.

.

MASS EMISSION RATE= 1.88E+00 GRAMS/SEC

**) * * *		1.0	5.0 J:	5.9 3(*******).0 50).0 7().0 84)•1 95 **********	.0	.0 90).9 ***1
*	•											, 1
*	•		•					•				
*	•		•		• •	•	•	•			•	, 1
*	•		• •	• •	• •	, , ,	•	• •	•		,	• 1 • 1
*	•	. M	• 4					•			•	• 1 • 1
*	•		, , ,	; •		, 4	•	•				اد . اد .
*	•							•	•		•	, 1 , 1
50. *- *			H			,	-{:			*****		X
*	•											• 7 • 7
*				н							•	, 1 , 1
*	•	, ,	•		•	•	•				•	. 1
*	•	, i	• •	• •	•	•	•				•	• 3 • 7
60. *- *	• •	,	•	• • • • • • • • • •	• -M		•	, , ,	, <u>(</u>) , ,	· · · · · · · · · · · · · · · · · · ·	,	•1 • 1
*	•		•	•	• M	•	•	• •) (C)	, , , ,	•	اد د اد د
A-6	•		•	•	• •	• •	•	•	•			لا م ۲
	•		•			4	•			C		• * • 1
*	•	•	•	•	•	м	•		•	c c	•	• 7 • 7
*	•	• •	•	•	•	м .	• .	•	,	c .)	• 1
*	•	•	•	•	• •	. н	•	• •	• •	. C.	F 1	* * * 1
*	•	• • • •	•	•	•	• •	•	• •			•	لا . د .
* 200			• •	•		. M.					; 	• • • •
*	•	•	•	•	•	•	•М			•	C C	• • • •
*	•	5 · · · ·	•	•	•	•	. н			,		•
300. *		, 		•	•	• •		-M			C	•
*	•	•	•	•	•	•	•	. м		t	•	:c ;
*	•	•	•	•	•	•	•	•	м.	• • •	•	• •
*	•	•	•	•	•	•	•	•	· ·	1	•	• (
500. * *		, ,	• •	, ,		•	, _ 	•	,, ,	H	,	•t
*	•	•	•	•	•	•	•	•	•	•	•	. (
*		•	•	•	•	•	•	•				. (
800. *		,				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • •				(
*	•	•	•	•	•	•	•	•	•		•	• •
		•		•	ر بلد بلد با الد م					• * ***	*** t#	• ·

AKEA SAMPLED= 43.80 N2 BAY-84-C

1			LNG	MASS	COUNT	% MASS	Z COURT
	D(LOW)	D (H D)	11(HT)	FLUX	FLUX	SMALLER	SMALLER
	UM	UM		UG/M2/SEC	#7M27SEC		
	*****	****	*****	********	********	*******	********
1	10.	20.	1.301	1.111102	6.28E+04	0.283	23.847
2	20.	30.	1.477	2.291 102	2.801 +04	0.867	34.460
3	30.	40.	1.602	1.90E103	81.47E+04	5./1/	66,600
1	40.	50.	1.699	2.031103	4.26F104	10.904	821.773
5	50.	60.	1,778	1.78E+03	2:051104	15.453	90.541
6	60.	70.	1.845	1.38E+03	9.58E103	18,967	94.177
1	70.	90.	1,954	1.731+03	6+44E+03	23.371	96.621
8	90.	110.	2.041	1.326+03	2.51E+03	26.725	97.5/4
9	110.	130.	2.114	t./0F10.3	1.886+03	31.054	98.286
10	130.	150.	2.176	1.631+03	1.14E+03	35,219	98.717
11	150.	180.	2.255	2.820103	1.200403	42.401	94.1/1
12	180.	210.	2.322	2.83E+03	7.29E+02	49.620	99.448
13	210.	240.	2,380	2.971103	4.98E+02	57.194	99.637
14	240.	270.	2,431	3.00E103	3.45L102	64.835	99.768
15	270.	300.	2.477	2.070103	1.716402	/0.107	99.832
16	300.	350.	2.544	3.44F+03	1.918402	78.874	49,905
12	3:50.	400.	2.602	4.661103	1.691102	90.756	<u> </u>
18	400.	450.	2.653	2.466103	6.12F+01	97.031	99,99%
19	450.	500.	2.699	1.161103	2.07E+01	100.000	100.000

TOTAL MASS FLUX= 3.92FT04 UG/H2/SFC TOTAL COUNT FLUX= 1.15ET07 F/M2/SEC MASS MEAN DIAMETER= 218. UM COUNT MEAN DIAMETER= 39. UM

MASS EMISSION RATE= 1./2FF00 GRAMS/SEC

*	0.1	1.0	5.0	1:	.9.3().0 50).0 7().0 8/	95	5.0 99	9.() 9 [.]	9
*	ጥ ኮኮጥ ና ጥ ጥ ጥ ጥ ቀ	ት በ ሰጠታዊ የምርጉ ምርጉ ምር የ	* * * * * * * * * * * *	• • • • • • •	е н т т т т			· · · · · · · · · · · · · · · · · · ·			1 ዓ ዓ ጥ ዓ ጥ ዋ ጥ ጥ ጥ ጥ ቀ	•
*	•	•	•	•	•	•	• •			,	•	•
*	•	•	•	•	•	•				•	•	•
*	•	•	•	•			•			•	•	•
*	•	•	•	•						•	•	•
*	•	n .	•	•	، الم ا	•	• •			•	•	;
*	•	•	•	•	•		•				•	:
*		M		•							•	•
. *	•	•	•	•			•			1	•	
*	•	•	•	•		•	• •	• •	•	•	•	:
*	•	•	, н ,	•	•	•	• (·			•	•	•
*	•	•	•	м.		•	•		•		•	•
*	•	•	•	•			•	•		•	•	:
× ۵۵۰ ×		•		• r •	1		•	•	·		,	•
× *	•	•	۰ ۱	•	М	•	•		. C	•	•	•
·A *	•	•	•	•		•	•	•	•	•	•	•
*	•	•	•		м	•	•	•	•		•	
100, *	•	• •	•		 I	, 4	, ~ ~ ~			 С		•
*	•	•	•	•		. м	•	•		. C	•	•
*	•	•	•	•		. м	• •		•		•	•
*	•	•	•	•			•	•		• •	•	
*	•	•	•	•		. м	•	•	•	. Γ	•	•
200, *	·,			, - , -		М		•		,		•,
*	•	•	•	•		•	. ^и м	•	•	•	• C	•
*	•	•	•	•		•	. м	•	•	•	• (;	•
300, *	•		•			•	• M	•	,	•	•	:
*	•	•	•	•		•	•	. K		•	• • C	:
· *	•	•	•	•		•	•	•	. н	•	•	•
*	•	•	•	•		•	•	•	•	. н	•	•
±00° ≰			•			•	•	•	•		•	:
*	•	•	•	•••		•	•	•	•	•	•	•
*	•	•	•	•		•	•	•	•	•	•	:
800.	(,			• • • • • •			,	•	•	•	,	•
4 (,	•	•		•	•	•	• •	•	•	•,
							•	•	•		· · · · · · · · · · · · · · · · · · ·	•

I			1.06	MASS	COURT	7 MOSS	% COUNT
	0(L()W)	11(111)	D(HI)	FEUX	ELOX.	SMALLER	SMALLER
	UM	UM		NEXWOXEED	IV MOVER D		
	*****	****	*****	******	*******	*********	********
1	10.	20.	1.301	1.33E+02	2-528104	0.197	14.887
2	20.	30.	1.477	9.01E102	1,101,105	1.529	46.540
3	30.	40.	1.602	1.426403	6.311104	1.6.14	67.590
4	40.	50.	1.099	5.171103	6.641104	9.308	79.061
5	50.	60.	1.778	3+34E+03	3.831104	13.247	98.619
6	60.	/0.	1.845	2.771.103	1.531104	12.344	\$1.527
1	70.	90.	1.954	3.266103	1.226404	22.167	96.582
я	90.	110.	2.041	2.20E403	4.206403	25,427	97.638
9	110.	130.	2.114	2+14E+03	2.371403	28.594	98.233
10	130.	150.	2.176	2.30F+03	1.606103	32.001	98.636
11	150.	180.	2,255	3.471 103	1.48E+03	3/.13/	99.007
1.2	180.	210.	2,322	4.711103	1.21E103	44.106	99+312
13	210.	240.	2.380	5.158103	8.63E102	51.720	28.538
14	240.	270.	2.431	1407EE03	5.04F102	59.215	ウビン・アウ
15	270.	300.	2.477	55571403	オンゲビーウン	67.448	941.790
16	300.	350.	2.544	8.511103	4.74F302	月0.042	. 202
17	350.	400.	2.002	A.211101	えいわれていい	89.202	19 . 96 %
18	400.	450.	1.553	21.971 I C	Z V KRE (+ 1	93.618	. 9 (2.1
19	45.01	509.	1.449	1.711 101	4、946-10-1	S. 1. A. S.	1.114
20	ריריתי.	600.	2.118	5.001002	1.120.001	· S · OE.	
24	600.	70.07	1.045	0.001 + 1	0 041 -1	28.0012	1
22	740.	81.16	2,903	67211-102	2+8411400	100.000	100.000

TOTAL MASS FLOX: 6.760 FOA UG/M2/SEC TOTAL COUNT FLOX: 1.740107 1/M2/SEC MASS MEAN DIAMETER: 234. UM COUNT MEAN DIAMETER: 39. UM

MASS EMISSION RATE: 2.96F100 BRADS/SEE

1	(Kakaka	0.1	1.0 **********	5.0 1: ********	טיס גאאאא איז	0.0 10 *********	5.0 *******	0.0 B	1•1	7•0 99 **********	?.() 99 + <i>*+</i> ******	• ') * * *
r k	r - r - k k	• •		•	•	•	•	•	•		•	*
k k	k k		- 	•				•	•		• •	*
k A	k,	• •	, . ,	•		•	•	•	•		•	*
+	ki ti			•			•	•	•		•	*
+ +		. N.	•	•		•	•	•	•	 	•	4
+				•		•		•	,	·	•	1
30. 1			M	• • • • • • • • • • • • • • • • • • • •		, (-	,	, 	, 	, '	,,	1
		• •	•	•			•	•		· · ·	•	1
1	•			• •		•	. (.	•			•	•
1		•		•		•		•			•	;
+		 		, М		•	•	, С ,	•		•	{ 1.
۱ ، ٥٨ الا	, ,	, , ,		M . •	, , ,	,		• •	, (`			* *
* *	к. к.			•	. М.		•	•	, (° .		•	* *
k K	k,	•	, . ,	•	•	•	•	•	•		. •	* *
100. 1	k . k	,	,	, ,	. М					.C	• 	* ~-*
k k	k . k .	• •	•	•	• H	•	•	•	•	. C .	•	*
k k	к.,	• •		•	• •	1 . •		•	•	, C .	•	* *
1 1	; ;	• •	, ,	•	•	. M		•	•		•	*
4) 	• •	,	•	• •	. н		• •	•	с.	•	¢ *
200. 1) r .	,, ,		• • • • • •	<u>-</u>	м		•	• • • • • • • • • • • • •	`. С.		* *
k k	k . k .	• •	, .	•	•	1 .	1 •	•	•		(, , , , ,	* *
300, X	k . k ,	• •		• •	• •	,	. н М-				. С	**
k k	k k	•	• •	•	• ·	• · ·	•	. н	•	•	с.	*
1	k . k .	• •	, ,	•	• •	•	•	•	. <u>ห</u>	•	•	* C*
k k	k k	•	•	•	• •	•	•	•	. M	•	•	* C
500. 3	¥ \$ -	,		, ·	• • • • • • •			, ,		н	· · · · · · · · · · · · · · · · · · ·	(C
۲ ز	₽ ≮	•	•	•	•	•	•	•	•	м.	•	C C
;	* {	•		•	•	•	, ,	•	•	м.	•	
(• •					,		•~			• • • • •	(.

SUMMARY DRUP SILE DISTRIBUTION

AREA	ទាំកមារ សម	18.64	H')
BAY- 68-1			

1			1.06	MASS	1 (10)(1)	2 11455	2 CDUN1
	$\mathcal{L}(\mathcal{L}(\mathcal{W}))$	I(HI)	D(HL)	EE UX	11112	SHOLLER	SHOULER
	UN	UM		UGZMPZSEC	■2M1241-0		
	* * + * *	*****	* * * * *	*********	*********	*********	*********
I	10.	יי`.	1.301	5.10E102	2.8914.05	0.097	18.677
2	20.	30.	1.47/	1.396403	1.791100	0.560	29:673
.5	30.	40,	1.602	5.951403	21.65E405	1.491	44.795
1	41).	50.	1.699	1.271+04	2:354.105		63,973
5	50.	60.	1.778	L. 48F 104	1.201.105	6.711	. 4. 243
6	60.	20.	1.845	1.751.101	1.156195	10.115	11 1. 0.3.2
1	20.	50.	1.954	3.391104	1.221105	16,564	91,275
8	50.	110.	2.041	2.834401	5.408404	21.932	54.719
Ŷ	110.	130.	2.114	2.88F101	4.18E404	22.411	96.719
10	130.	150.	2.176	キュアシビキウキ	1.256 104	30.022	97.5Rb
i 1	150%	180.	1.255	1.1301.1013	1.1.21.1.11	565 1 152	$\Omega_{\infty} \simeq 10^{-1}$
12	180.	21.94	2.321	3.091104	2.961103	42,023	911.1374
13	210.	240.	2.390	2.856104	4.781.103	47,440	99.184
14	240.	70.	2.431	6.011.104	2.171 403	55.164	22.405
131	270.	300.	21422	4.621404	21434403	60,033	S9.601
16	300.	350.	2.544	5.161104	2+871103	69.846	99.707
17	3:,0,	400,	2.602	4.406404	1.191403	78.210	20.890
181	400.	450.	2.653	2.94104	7.301.102	113.786	22.53
19	450.	500.	2.647	2.641104	オンフトナウン	104.204	99.956
20	500.	600.	2.773	21,788,403	2.191102	24.013	99,989
24	600.	200.	2.845	1,829-104	1+271+02	97.544	シュ・タッン
.2	700.	800.	2,903	2,456403	3.321101	48.940	27.930
23	800.	900,	2.954	5-401403	1.701.101	100.000	100,000

TOTAL MASS FLUX: $(\cdot, 25E+05)$ UG/M2 SEC TOTAL COUNT FLUX: (3, 55E+07) (1, 107)SEC MASS MEAN DEAMETER: (276) (1M)COUNT MEAN DEAMETER: (50) (1M)

MASS ENISSION FAILS - 1.24E401 GROMS/SEC

0 	•	• • • • • • • • •		•	· ـ ·	•	··	· · · · · ·				
ວິ: ກ	•	• 7 • . u	. '	•	•	•	• •	•		• • •	*	
5	•		· ω	•	•	•	• •	, , , ,	, ,	••••	*	
* ''	•	•	·	• •	• •	•	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • •	*	.003
*	5	•	· · · · · · · · · · · · · · · · · · ·	:н	•	•	• •			• •	*	
*	5	•	•	• ч	•	•	•	• •	, ,	• •	* *	
*	• • •	•	•	•	. M		•	•	, ,	• •	*	
*		•	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	¥	.002
*	· .	• • •	•	•	•	•น	•		, (,	• •	*	
*		•	•	•	•	' W	•			· · ·	*	1007
* ' * '		; ບ	•	•		. н	•	•	•	• •	*	002
* *		•		•	•	•	• •	•	•	• •	*	
*			•	•		, [,]	•			• •	*	
* *		•	•	•	•	•		•			*	
*		•	•	•	•	•	ч • • • • • • • • • • • • • • • • • • •	· •	• •	• • •• • • • • • • • • • • •	* *	.001
* * *			· J	•	•	•	· ·	•	•	e •	*	68
*		•		•	•	•	•	•	•	• •	*	A-
* *		•		• .)	•	•	•	• H	•	• • •	*	
*'	· · · · · · · · · · · · · · · ·	•		·)	·	•	• • • •	·	•	· · · · · · · · · · · · · · · · · · ·	**	•09
* ·		•	•	•	۰) ۲	•	•	•	•	• •	*	
* .	1	•	•	•	•	. ว	•	•		• •	*	
* .	•	•	•	•	•	•	•	•	•	• •	*	
* *	· ·	•	•	•	•	• •)	•	• •	• •	· • • • • • • • • • •	* *	' 0£
* *		• •	•	•	•	•	•	•	•	• •	*	
* *	•	•	• •	•	•	•	•	•	•	• •	∵ * •	
* •		•	•	•	•	•	•)	•	•	. н.	*	
+ ·	, ,	•	•	•	•	•	•	•	<i>,</i>	· ·	*	
* *		•	•	•	•	•	•	•	•	· ·	*	
*		•	•	•	•	r 1	•	•	•	· ·	*	
\$ ****	, 	**********	* * * * <i>* * * * *</i> * * *			* * * * * * * * * *		• • • • • • * * * * * * *	/ / * * + / * * * /	 ***********	*	
0.6	56 G*.	56 0*9	1. j.	18 01	02 010	5° - 0°	05 a''	.1 0.0	. 0.	1 1.0)	

AREA SAMPLEN= 23.64 M2 BAY-68-2

		1.06	HASS	COUNT	% MASS	% ((UNI)
1:(1,0W)	D(HI)	D(HI)	FEUX	H UX	SHALLER	SMALLER
UM	UH		NG/M2/SEC	I/MR/SEC		
* * * + *	*****	* * * * *	******	* * * * * * * * * *	********	*********
10.	20.	1.301	1.73L103	タテノフトキの島	0.1/8	35.965
20.	30.	1.477	1.691+03	2.06E 105	0.352	43.551
30.	4().	1.602	7.28E103	3+24E+05	1.102	55.481
40.	50.	1.699	2+670104	5.60E+05	3.85B	76.106
50.	60.	1.778	1.986104	2.28E105	5.904	84.487
60.	70.	1.845	1.75E104	1.21E105	7.203	89.955
70.	90.	1.954	3.36E104	1.256105	11,164	93.565
90.	110.	2.041	3.62F104	6.925104	14.897	96.110
110.	130.	2.114	2.86E104	3.17E104	17.850	97.275
130.	150.	2.176	2.96E+04	2.06E104	20.907	98.035
150.	180.	2,255	4.076+04	1.731.104	25.105	98.672
180.	210.	2,322	3.60E104	9.271 103	28.817	99.013
210.	240.	2.380	3.40E+04	5.70E+03	32,322	99.223
240.	270.	2.431	3.80E104	4.37L103	36.238	99.384
270.	300.	2.471	4.236104	3.49E103	40,600	99.513
300.	350.	2.544	8.731104	4.860103	49.605	99.691
350.	400.	2.602	8.64E+04	3.13E103	58.514	94,807
400.	450.	2.653	7.42F104	1.85L103	66.169	94.875
450.	500.	2.679	6.49E104	1,16E+03	72.863	99.917
500.	600.	2.778	1.276+05	1.46E+03	85,941	99.971
600.	700.	2.845	\$/.58E104	5.27E102	93.256	99.990
700.	800.	2.903	5.51E104	2.50E102	99.410	99.999
800.	900.	2.954	5.43E103	1.69E+01	100.000	100.000
	L(LOW) UH ***** 10. 20. 30. 40. 50. 60. 70. 90. 110. 130. 150. 180. 210. 240. 270. 300. 350. 400. 450. 500. 600. 700. 800.	Image: Image and the image	$\begin{array}{c c} 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\$	IDG MASS D(LOW) D(HI) D(HI) H(HI) H(HI) UM UM UM UG/M2/SEC ***** ***** ***** ***** 10. 20. 1.301 1.73L403 20. 30. 1.472 1.69H03 30. 40. 1.602 7.28E403 40. 50. 1.699 2.67E404 50. 60. 1.778 1.98E404 60. 70. 1.845 1.75E404 70. 90. 1.954 3.36E404 90. 110. 2.041 3.62F404 110. 130. 2.114 2.86E404 130. 150. 2.176 2.96E404 150. 2.176 2.96E404 150. 180. 210. 2.320 3.60E404 210. 240. 2.380 3.40E404 270. 300. 2.477 4.23E404 300. 350. 2.602	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TOTAL MASS FLUX= 9.70E+05 UG/M2/SEC TOTAL COUNT FLUX= 6.42F407 #/M2/SEC MASS MEAN DIAMETER= 360. UM COUNT MEAN DIAMETER= 42. UM

MASS EMISSION RATE = 2.29E+01 GRAMS/SEC

) * * * *).1 	1.0	5.0 i ********	51.9 31 ******	().0 5	0.0 7 [.]	().0 8- ******	4.1 9: ********	5.0 99 ******	7.0 99	
	* .	n an	ан на арада арада арада арада арада ар	•	•	•	•	•	•	•	ан тап	- - -
	* .	•	•	•	•	•	•	•	•	•	•	•
	* :	•	•	•	•	•	•	•	•	•	•	•
	¥ . * .	•	•	•	•	•	•	•	•	•	•	•
	* ·	. M	•	•	•	. с	•	•	•	•	•	•
	* .	•	•	•	•	•	•	•	•	•.	•	•
	* .	•	•	•	•	•	•	•	•	•	•	•
30.	* ; * ;	M-	•	• • • • • • • • • • • • • • • • • • • •		, L	,		•	•	,	
	* .	•	•	•	•	•	•	•	•	•	•	•
	* . *	•	. н	•	•	•	• •C	•	•	•	•	•
	* *	•	•	•	•	•	•	•	•	•	•	•
	*	•	•	н	•	•	•	• C	•	•	• .	•
60.	* *			M		,	,	•C				•;
A	*	•	•	. м	•	•	•	•	. C	•	•	•
-70	* . *	•	•	•	•	•	•	•	•	•	•	•
	* *	•	•	. м	•	•	•	•	. с	•	•	•
100.	* *	,		•	 м	•				, ~~~~~~~. C		
	*	•	•	•	. м	•	•	•	•	- • • C	•	•
	*	•	•	•	•	•	•	•	•	•	•	•
	*	•	•	•	•	•	•	•	•	• L •	•	•
	* *	•	•	•	: н	•	•	•	•	• •	•	•
200.	* *	,	•			 M	•	•		. С	, 	• ·
	* *	•	•.	•	•	. M	•	•	•	• C	•	•
300.	* *	, 	•	•		. м м		•				:
	*	•	•	•	•		•	•	•	•		•
	*	•	•	•	•	• •	•	•	•	•	· · ·	•
	*	•	•	•	•	•	. n	•	•	•	• L	•
500.	* *~	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•			. М 	• M		•	С С-	• • :
	*	•	•	•	•	•	•	•	M	•	•	
	* *		•	•	•	•	•	•	. н'	•	•	, ; , ;
							•	•	• •	-		(

SUMMARY DROP SIZE DISTRIBUTION

AREA SAMPLENS 23.64 H2 HAY-6H- 3

ł			1.0G	HASS	1.0081	Z MASS	Z COUNT
	D(LOW)	D (HI)	1(11)	ET UX	1 UX	SMALLER	SMOLL FR
	UM	UH		UG/M2/SEC	T/M2/SFC		
	****	****	****	********	*******	********	*********
1	10.	20.	1.301	9.67E+02	5.471105	(0,143.)	24,967
2	20.	,40 ,	1.477	2.13L103	2.60E105	0.459	36.841
3	30.	40.	1,602	1.06E104	4./1E105	2.027	58.341
4	40.	50.	1.699	1.566404	3.26E+05	4.336	13.2.27
5	50.	60.	1.7/8	1.38E+04	1.596105	6.317	80.474
6	60.	70.	1.845	1.586104	1.106105	8,728	85.485
1	20.	90.	1.954	3.506104	1.311.105	1.4.925	91,450
8	5 0.	110.	2.041	3.39F+04	6.481 +04	18,957	\$4.408
4	110.	1.30 .	2.114	3.171104	3.111104	23.664	96.008
10	130.	150.	2.176	3./11+04	2.586104	29.162	97.186
11	150.	180.	2,255	5.19F104	2.216104	36.856	98.193
1.2	180.	210.	2.322	5.58F404	1.44E+04	45,128	98.848
13	210.	240.	2,380	5.14E+04	8.621103	52.752	99,242
14	240.	270.	2.431	5.44E+04	6.276103	60.823	59.528
15	270.	300.	2.47/	4.576104	3.271103	67.599	99.700
16	300.	350.	2.544	6.74E+04	3.751103	77.595	99,871
17	350.	400.	2.602	3.831104	1.395403	83.249	99,934
18	400.	450.	2.653	2.48E+04	6.16E+02	86.944	99+962
19	450.	500.	2.699	2.49E+04	4.45E102	90.644	99,983
20	500.	600.	2.778	1.896404	2.171102	93.442	99.993
23	600.	700.	2.845	1.360+04	9.46E+01	95.459	99.997
22	700.	600.	2,903	1.120104	5.071101	97.120	99.599
23	800.	900.	2,954	0.00E-01	0.00E-01	97.120	94.949
24	900.	1000.	3.000	0.00F-01	0.00F-01	97.120	ኇኇ፞፞፞፞፞፞ኇኇ
25	1000.	1200.	3.079	0.00E-01	0.00F-01	97.120	99,554
?6	1200.	1400.	3.146	1.946104	1.695101	100,000	100.000

TOTAL MASS FLUX= 6.74E105 UG/M2/SEC IDTAL COUNT FLUX= 5.181407 1/H2/SEC MASS MEAN DIAMETER= 278. UM COUNT MEAN DIAMETER= 46. UM

HASS EMISSION RATE = 1.59FT01 GRAMS/SFC

	C * * * *),1 	1.0	1: *******	5.9 3(0.0 50)+0 7(0.0 8- *******	4.1 95 #****	5+0	9.0	9.9 ***
	* .))	• •	•	•	, , , , , , , , , , , , , , , , , , ,		•	•	•	•	•
	* .	1	•	•	•	•	•	•	•	•	•	•
	* . * .	•	•	•	•	•	•	•	•	•	•	•
	* . * .	•	,	•	•	•		•	•	•	•	•
	* .		•	•	•	•	•	•	•	•	•	•
	* . *´.	n n	•	•	• L •	•	• · · · ·	•	•	•	•	•
	* . * .		•	•	•	•	• ·	•	•	•	•	•
30	* . *~-	K			•			•		,	• •	•
50,	* •		•	•	•	• •	•	•	•	•	•	•
	* . * .		•	•	•	•	•	•	•	•	•	•
	* .		. н	•	•	•	. С	•	•	•	•	•
	* .		•	• •	•	•		•	•	•	•	•
	* .	•	•	•	•	•		•	•	•	•	•
. 60.	* * .		• • • • • • • • • • • • • • • • • • • •	• M •	•	•		,(; •	• • • • •	,	•	•
	* . * .		•	. м	•	•		. (C	•	•	•
	* .		•	•	•	•	,	•	•	•	•	•
	* . * .	,	•	•	M	•	•	•	• • C ·	•	•	•
100.	∗ * .	,	• • •	•	. м	,, ,		• •	. — — — — — — — — — — — — — — — — — — —	, •	,	•
	* .		•	•	. м	•		•	. (•	•	•
	≁ . ≭ . ⊥	•	•	•	•			•	•		•	•
`	* .	•	•	•	•	• •		•	•	•	•	•
	* . * .	•	•	•		. H		•	•	•	•	•
200.	*		•		•	. м			•	,	•	•
	* •	•	•	•	•		1	•	•	. c	•	•
	* . * .	•	•	•	•	•	м	•	•	•	• 、 • (•
300.	* * .	,			•	,, ,	M-		•		,	• • • •
	* •	•	•	•	•	•	•	• H	•	•	• C	•
	* •	•	•	•	•	•	•	. н	•	•	. с	
	* '	1	•	•	•	•	•	•	. M	•	•	:c
500.	* * .		•	, ,	•	, ~~~~~~~~. •	. <u>-</u>	•	• M	,	,	•
	* .	•	٠	•	•	•		•	• K	•	•	•
	≁ • ¥		•	•	•	•	•	•	• M	•	•	• (
	*		,				• 	•	و و سودین میں	•	•	• (

AREA SAMPLED= 23.64 M2 BAY-68-4

I			LUG	MASS	COUNT	X HASS	X COUNT
	D(LOW)	D(HI)	D(H1)	FLUX	FLUX	SHALLER	SMAI LER
	· UH	UM		UG/M2/SEC	#/H2/SEC		
	*****	****	****	*********	*******	********	********
3	10.	20.	1.301	8.56E+02	4.84E+05	0.189	21.658
2	20.	30.	1.477	2.39E+03	2.93E+05	0.716	34.747
3	30.	40.	1,602	1.02E+04	4.55E+05	2.967	55.106
4	40.	50.	1.699	1.656104	3.45E+05	6.597	70.551
5	50.	60.	1.778	1.94E+04	2.236+05	10.881	80.535
6	60.	70.	1.845	1.94E+04	1.356405	15.164	86.581
7	70.	90.	1.954	4.23E+04	1.58E+05	24.472	93,630
8	90.	110.	2.041	3.73E+04	7.12E+04	32,684	96.814 '
9	110.	130.	2.114	2.50E+04	2.76E+04	38,195	98.051
10	130.	150.	2.176	2.08E+04	1.458+04	42.780	98.699
11	150.	180.	2,255	2.86E+04	1.226+04	49.087	99.243
12	180.	210.	2.322	2.55E+04	6.56E+03	54.698	99.536
13	210.	240.	2.380	1.828104	3,04F+03	58,699	99.673
14	240.	270.	2,431	1.86E+04	2.14E+03	62.801	99.769
15	270.	300.	2.477	1.66F+04	1.376+03	66.457	99,830
16	300.	350.	2.544	2.572+04	1.436+03	72.128	99.894
17	350.	400.	2,602	2.70E+04	9.79E102	78,082	99,938
18	400.	450.	2.653	1.65E+04	4.11E+02	81.721	99.956
19	450.	500.	2.699	2,69E+04	4.798+02	87.636	99.97 <i>1</i>
20	500.	600.	2,778	3.09E+04	3.55E+02	94.439	99,993
21	600.	700.	2,845	1.696104	1.18E+02	98.172	99.998
22	700.	800.	2.903	5.59E+03	2.53E+01	99.403	100.000
23	800.	900.	2.954	2.71E+03	8.42E+00	100.000	100.000

A-73

TOTAL MASS FLUX= 4.54E+05 UG/H2/SEC TOTAL COUNT FLUX= 5.29E+07 #/H2/SEC MASS MEAN DIAMETER= 248, UH COUNT MEAN DIAMETER= 44, UH

MASS EMISSION RAIE= 1.07E+01 GRAMS/SEC

r) ****) . 1 *********	1.0	5.0 1	5.9 3(0.0 50).0 B4	1.1 9	5.0 99	7.0 9	9.9
	* •	, ,	•	•	•	•	•		•	•	· · · · · · · · · · · · · · · · · · ·	* * *
4 1	* · * ·	•	•	•	•	•			•	•	•	•
) 	* . •		•	•	•	•	•	• •	•	•	•	•
4	* .	•	•	•	•	•		, i	•	•	•	•
k 1	* . • .		•	•	•	•			•	•	•	•
	* •	н	•	•	C C	•			•	•	•	•
r k	* .	•	•	•	•	•	•	•	•	•	•	•
*	‡ . t .		•	•	•	•				•	•	•
30. 1	• •,		.M			C:				,		
*	≮ . ŧ .		•	•	•	•	• •		• · · ·	•	•	•
*	* ·		•	•	•	•			•	•	•	•
1	к. к.		• n	•	•	•			•	•	•	:
*	¢.		•	. м	• •		c.		•	•	•	•
#	ŧ .		•	•	•			_		•		
60. * *	₽ ₽			•M	•	,		·	,	•	,	•
*	ŧ.		•	•	·H	•		, c	2	•		•
алан 1. 1	••• •••		•	•	•	•		•	•	•	•	•
* Z *	t. t.		•	•	. н	•			С	•	•	•
100.	ŧ,		•		•			,				•
- *	* .	•	•	•	•		• •	, ,	•	• L •	•	•
1 1	* . * .		•	•	•	. н				• C		•
ł	*	•	•	•	•	н				C C		
r t	≭ . ≭ .		•	•	•		•		•	•	•	•
200.1	*		•	•		М.				. С		•
2001 1	* 6	•	•	•	•	•	м		•	•	С	•
r r	₹ . * .	•	•	•	•	•	, M ,		• •	• •	5 C	•
700	* i		•	•	•		н			•	С — С — — — — — — — — — — — — — — — — —	•
300. 1	*~~·	,		• '	•					•	, <u>-</u>	•
4 x	* . * .		•	•	•		ł	1	•	•	С	•
	¢ .		•	•	•			н	•	•	C	
4 4	₩., ₩.,		•	•	•	• · ·	, ,	м	•	•		.c
500. *	≰~ , ≠				•				M	,, ,	. 	•
r k	* .		•	•	•	•	, , , , , , , , , , , , , , , , , , ,		. н	•	•	•
4 1	* . * .	,	•	•	•					. м		•
			•	-	-	-	•					
-	î ,			•	•	•	•	•	• ·	•		•

AREA SAMPLEN= 42.00 M2 BAY-68-5

t			LOG	MASS	COUNT	% MASS	X COUNT
•	D(LOW)	D(HI)	11(111)	FLUX	FLUX	SMALLER	SMALLER
	UM	UM		UG/M2/SEC	#/M2/SEC		
	*****	*****	****	*******	********	********	********
1	10.	20.	1.301	9.57E102	5.41E105	0.196	23.887
2	20.	30.	1.477	3.062103	3.74E+05	0.823	40.382
3	30.	40.	1,602	9.14E+03	4.071105	2.697	58.337
4	40.	50.	1.699	1.38E104	2.89E+05	5,521	71.074
5	50.	60.	1,778	1.68E104	1.936105	8.974	79.604
6	60.	70.	1.845	1.92E+04	1.3.4E+05	12,908	85,491
7	70.	90.	1.954	4.156104	1.556105	21.421	92,323
ค	90.	110.	2.041	4.41E104	8.426104	30.459	96.038
ÿ	110.	130.	2.114	3.721.104	4.11E+04	38.089	97.852
10	130.	150.	2.176	2.98E+04	2.08E+04	44.203	98,768
11	150.	180.	2.255	3.125+04	1.33E104	50.603	99.353
12	180.	210.	2.322	2.18E+04	5.60E103	55.065	99.601
13	210.	240.	2.380	1.7RE104	2.99E103	58.715	99.732
14	240.	270.	2.431	1.656104	1.90E+03	62.090	99.816
15	270.	300.	2.477	1.48E+04	1.22F+03	65.121	99.870
16	300.	350.	2.544	1.960104	1.091103	69.140	99.518
17	350.	400.	2.602	1.791104	6.471.102	72.805	99.946
18	400.	450.	2.653	2.021104	5.038102	76.951	59.569
19	450.	500.	2.699	1.231.104	2.196102	79.469	99.978
20	500.	600.	2.7/8	2.481104	2.85E102	84.557	59.591
21	600.	700,	2.845	1.101404	7.686101	86.820	99.594
22	700,	B00.	2.903	1.861104	8.44E101	90.641	88.898
07	800.	900.	2.954	6.781 +03	2.116 +01	92.031	99.899
24	900.	1000.	3.000	5.68F103	1,26E+01	93.195	99.099
25	1000.	1200.	3.079	2.941103	4.221100	93.797	100.000
26	1200.	1400.	3.146	0.000 01	0.001 01	93.797	100.000
27	1400.	1600.	3.204	0.001-01	0.00F 01	\$3,797	100.000
28	1600.	1800.	3.255	0.000-01	0.00F - 01	93.797	100.000
29	1800.	2000.	3.301	3.031104	8.421100	100.000	100.000

TOTAL MASS FLUX= 4.88E405 UG/M2/SEC TOTAL COUNT FLUX= 9.52E407 #/M2/SEC MASS MEAN DIAMETER= 360. UM COUNT MEAN DIAMETER= 44. UM

MASS EMISSION RATE= 2.05E+01 GRAMS/SEC

k	0 * * * *	• 1	1.0	5.0 15	5.9 3(******).0 5().0 7(*******		4.1 95 ******	.0	7.0 99	7.9
k k	k . K .		•	•					•	· · · · · · · · · · · · · · · · · · ·		•
k	к., к.,		•	•	•				•			•
, A			•	•	•	•			•	•	•	•
k			•	•	•		•		•	•	•	•
r k	· •	м	•	•	C .	•	•		•	•	•	•
r X	с. с.		•	•	•) 1	•	•	•	•	•	•
r r	ι.		•	•	•	•	•	• · ·	•	•	•	• •
30.1	((.		•-M	• • • •	•	C	•		• • ·	, <u>-</u>	, ,	• :
k k	t .		•	•	•		•		•	•	•	• •
k k	t .		. м	•			C		•		•	
1			•	м	•			•	•	•	•	• •
k .			•	• 11	•	1	•		•	•	•	• •
60. I	k .		•	•	•		,	•	•	•	•	• ;
r k	ι.		•	. н	•	•	•	• I	•	•	•	• ;
ג ג	k.		•	•	•	•	•		•	•	•	• •
100. 1	κ				. м				С		•	• • • •
	k .		•	•	•	м	•	•	. (- 	•	•
ניע	, , k ,		•	•	•	. н	•		•	С	•	•
r K	k .		•	•	•	. м	•	•	•	. C	•	•
ג נ	к. к.		•	•	•	•	•	•	•	•	•	•
200, 2	k . k		•			, ,	1 •		, ,	. С	• •	
נ	k. k.		•	•	•		.м . м		•	•	, C , C	•
ر د	k . k .		•	•	•	*	. м		•	•	· · ·	•
300.	k		•		• • • • • • • • •		M				C	:
3	, , k ,		•	•	•		. н	•	•	•	· · C	• •
3			•	•	•	•	. I	1	•	•	•	ċ
3	к. к.		•	•	•	•	•	, , М	•	•	•	• C
500. 3	k k ,				•	, ,	•	•M	,	, ,	, ,	•(
ر ۲	k. k.		•	•	•		•	. Н	•	•	· ·	. (
;	k . k .		•	•	•	• <u>.</u>			. М			, с , г
800. 1	k			• •				,,	M			C
	•			•			- ,		•			· ·
HEXAVALENT	CHROMIUM EMI COOLING TOWE	SSIONS RS 69 (IN MIL AND 84.	LIGRAMS PER	R MILLION B' Pany, Inc.,	TU'S AND M BAYTOWN,	ICROGRAMS P Ti	ER GALLON OF	WATERFLOW			
-------------------	--	-----------------------	-----------------------	--	-------------------------------------	-----------------------------------	------------------------------------	---	--------------------------	--------------------------		
fun	Water Flow (lbs/hr)	Inlet Temp. (F)	Basın Teas. (F)	Dry Air Flow (lbs/hr)	Inlet Air Enthalapy (BTUs/1b)	Inlet Air Humidity (1bs/1b)	Outlet Air Humidity (lbs/lb)	Evaporative Heat Lose (mnBTUs/hr)	Hexavalen Eni 	t Chromium ssions 		
********	======================================	er 69,	stand:	ard-Efficier	ncy Drift E	inainator.	Counterflo	w Riser Cell	========= E			
1-1 4-1	2,096,500 2,095,500	101 102	84 84	1,494,901 1,381,946	40.6 42.0	0.018 0.019	0.0251 0.0296	97.22 98.05	257.8 2.80	99.57 1.69		
Average	2,095.500	102	84	1,438,424	41.3	0.019	0.0273	97.64	130.28	50,33		
2222222222	icoling Tok	ier 69,	Stand	ard-Efficie	ncy Drift E	liainator,	Lounterilo	w Riser Cell	F			
2-1 3-1	1,755,500 1,755,509	101 101	85 84	1,303,267 1,409,990	42.6 42.5	0.020 0.022	0.0277 0.0322	84.50 91.15	48.7 5.79	19.57 2.51		
Average	1,755,500	101	95	1,355,629	42.6	0.021	0.0299	87.83	27.25	11.02		
	Cooling Tox	er 69.	Stand	ard-Efficie	ncy Brift E	liminator,	Crossflow	fiser Cell G				
5-1 5-2 5-3	3,578,500 3,578,500 3,578,500	101 101 101	84 84 84	4.044,568 4.267,699 4.191,799	39.6 44.8 44.8	0.018 0.021 0.020	0.0254 0.0295 0.0277	223.91 255.12 251.34	261.53 28.61 10.14	136.32 16.99 5.94		
Average	3,578,500	101	84	4,168,689	43.1	0.020	0.0279	243.46	100.10	53.08		
512225555	Cooling To	ver 84,	Hıgh-	============================ Efficiency	================== Drift Elimi	nator, Cou	interflow Ri	ser Cell A				
A-1 A-2	2,523,000 2,523,000	100 100	85 85	2,637,694 2,710,920	42.0 44.8	0.022 0.021	0.0315 0.0283	151.38 161.60	28.04 2.49	14.01 1.33		
Average	2,523,000	100	85	2,674,307	43.4	0.022	0.0297	156.49	15.26	7.07		
	Ecoling To	xer 84,	, Hıgh-	Efficiency	Drift Elimi	nater, Cou	interflow Ri	iser [ell B				
5-1 5-2	2,660,000 2,660,000	99 99	85 85	2,752,986 2,851,140	42.0 44.8	0.022 0.021	0.0309 0.0309	156.92 169.34	4,39 1,22	2.16 0.65		
Average	2.660,000	99	85	2,802,053	43,4	ú.022	0.0307	163.13	2,80	1.40		
	Cooling To	e====== wer 84,	====== , hıçh-	Efficiency	Drift Eliai	nator, Cou	unterflow R	iser Cell C				
C-1 C-2	3,027,000 3.027,000	100 100	85 85	2,517,728 2,523,960	42.0 44.8	0.022 0.021	0.0334 0.0322	154.34 161.61	58.27 2.32	24.75 1.03		
 Average	3,027,000	100	85	2,520,844	43.4	0.022	0.0328	157.98	30.29	12.89		
======	Cooling Tow	====== er 84,	High-E	Efficiency I	brift Elimin	nator, Cou	nterflow Ri	ser Cell D				
D-1 D-2	3,039,500 3,039,500	 97 99	85 85	2,424,248 2,194,443	42.0 44.8	0.022 0.021	0.0309 0.0328	148,47 145,33	1.41 58.11	0.58 27.13		
Average	3,039,500	 99 ======		2,309,346	43.4	0.022	0.0318	145.90		13.85		

Southern Research Institute 2000 Nim : Average South PC Box 55501, Dring Johan - Haberta 3525, 5505 (200, 005 upp)

November 18, 1986

Scott C. Steinsberger ENTROPY Environmentalists Inc. P.O. Box 12291 Research Triangle Park, NC 27709-2291

Dear Scott:

Enclosed is a summary table with particle size cut values for the data you sent me from the three cooling tower tests.

If you have any questions, feel free to call me.

Sincerely yours,

2 shlen

Ashley DA Williamson Head, Aerosol Science Division

ADW/fea Enclosure Project: 6112

COOLING TOWER DROP SIZING TRAIN RESULTS - EXXON, BAYTOWN REFINERY

	Disc/Nozzle Train Run No.							
	1	2	3	4	5	average		
Stack Gas Velocity (ft/s)	34.8	34.2	34.7	34.5	34.4			
Disc Train D50 Cut Size (um)	12.55	12.66	12.56	12.60	12.62	12.60		
Disc Train Probe D50 Cut Size (um)	5.07	5.11	5.08	5.09	5.10	5.09		

Absorbent Paper/Impinger Train Run No.

	1-1	2-1	3-1	5-1	5-2	D-1	D-2	A-1	average
Stack Gas Velocity (ft/s)	21.6	19	20.9	25.9	27.6	20.8	19	[•] 22.7	30.24
Absorbent Paper D50 Cut Size (um)	30.46	32.48	30.97	27.82	26.95	31.04	32.48	29.72	

	EXAMPLE PARTICULATE TEST	CALCULATIONS		
	Cooling Tower No. 68 - Ex Baytown, TX	xon Refinery		
Run No.	CT-68-1-1			
VOLUME OF	DRY GAS SAMPLED AT STANDAR	RD CONDITIONS		
Vm(c+d)	- 17 64 * V * Vm * -	(Pbar + Del	ta H/13.6)
viii (sca)	- 17.04 % I % Vm	(460 +	 tm)	
Vm(std)	= 17 64 * 1 0020 *	53 639 *	0.250 +	0.629 /13.6)
viii (B cu)	- 17.04 1.0020	55.057	(460 +	92.7)
Vm(std)	= 51.968			
VOLUME OF	WATER VAPOR AT STANDARD CO	DNDITIONS		
Vw(std)	= 0.04707 * Vlc			
Vw(std)	= 0.04707 * 44.76 =	2.107 SCF		
PERCENT MO	DISTURE, BY VOLUME, AS MEAS	SURED IN FLUE	GAS	
%H2O = 1	.00 * Vw(std) / (Vw(std) +	Vm(std))		
%H2O =	2.107		3.98	
	2.107 +	+ 51.968		
DRY MOLE F	RACTION OF FLUE GAS			
Mfd = 1	- %H2O/100			
Mfd =	1 - 3.9% =	0.961		
WET MOLECU	ILAR WEIGHT OF FLUE GAS			
Ms = (M	1d * Mfd) + (0.18 * %H2O)			
Ms =	(28.84 * 0.961)+	+ (0.18 *	3.9)=	28.42 LB/LB-MOLE

EXAMPLE CALCULATIONS Page 2 Run No. CT-68-1-1 ABSOLUTE FLUE GAS PRESSURE Ps = Pbar + Pq / 13.6Ps = 30.250 + (0.000 / 13.6) = 30.25AVERAGE FLUE GAS VELOCITY [Note: (Delta p)avg is square of avg sq. root] (Delta p)avg * (460 + ts) vs = 85.49 * Cp * SQRT[-----] Ps * Ms 0.1429 * (460 + 84.1) vs = 85.49 * 0.840 * SQRT [------·----] 30.25 * 28.42 vs = 21.60 FT/SEC DRY VOLUMETRIC FLUE GAS FLOW RATE @ STANDARD CONDITIONS Tstd Ps 60 Qsd = ---- * Mfd * vs * A * -----_____ ts + 460 144 Pstd 60 528 30.25 Qsd = ---- * 0.961 * 21.60 * 37688 * ----- * -----144 84.1 + 460 29.92 Qsd = 319,789 SCFMWET VOLUMETRIC STACK GAS FLOW RATE @ FLUE GAS CONDITIONS Qaw = 60/144 * vs * AQaw = 60/144 * 21.59 * 37688 = 339,149 ACFM PERCENT OF ISOKINETIC SAMPLING RATE (ts + 460) * Vm(stsd) Pstd 100 8I = ---- * --- * -------______ Tstd 60 Ps * vs * Mfd * Theta * Area-Nozzle, sq.ft. 29.92 100 (84.1 + 460) * 51.968 %I = ---- * --- * -----_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 528 60 30.25 * 21.60 * 0.961 * 120.0 *0.000340 %I = 104.0 % A-81

Run No. CT-68-1-1

GRAINS PER DRY STANDARD CUBIC FOOT : - HEXAVALENT CHROMIUM

7000 ugs gr/DSCF = ----- * -----453,592 Vm(std)

gr/DSCF = 7000 65.273 453,592 51.968 = 19.383 x 10E-6

POUNDS PER HOUR - PMRa

PMRa =	Mass : Time	Area of * Area of	Stack Nozzle	
Lb/Hr =	60 min * 453,592	1 1000	ugs * * Theta (min)	Area of Stack Area of Nozzle
Lb/Hr =	60 min * 453,592	1 1000	65.273 * 120	37,688.0 * 0.049

- -

Lb/Hr =	55.242	x	10E-3
---------	--------	---	-------

.

Run No. CT-68-1-1 POLLUTANT CONCENTRATION - AIRFLOW ______ Mass (mg) 35.34 ft3 mg Vol. Metered (dscf) m3 dscm 0.065273 35.34 ft3 = 44.387851 mg/dscm------51.968 m3 POLLUTANT CONCENTRATION - WATER FLOW TO FAN CELL _____ PMRa (mg/hr) 1,000 ug/mg Water Flow Rate (gal/min) 60 min/hr 25060 1,000 ug/mg ----- = 99.610 ug/gal 60 min/hr 4,193 POLLUTANT CONCENTRATION - EVAPORATIVE HEAT LOSS Evaporative Heat (L1t1 + Gh1) - (L1 - G(ae2 - ae1)) * t2 Loss (MMBTU/hr) = -----10E6 BTU/MMBTU ae1 = Entering air humidity (lbs/lb)0.0180ae2 = Exiting air humidity (lbs/lb)0.0251G = Air flow (lbs dry air/hr)1,494,901h1 = Entering air enthalpy (BTU/lb)40.6L1 = Hot water flow (lbs/hr)2,096,500t1 = Hot water temperature (Degrees F)101t2 = Cold vistor temperature (Degrees F)84t2 = Cold water temperature (Degrees F) - 84 Evaporative Heat Loss (MMBTU/hr) = 97.225 MMBTU/hr mg/hr ----- = 257.753 mg/MMBTU MMBTU/hr

EXAMPLE CALCULATIONS Page 5

Run No. CT-68-1-1

MASS EMISSION RATE (RATIO OF AREAS) - ABSORBENT PAPERS

Mass (ug)	.001 mg	Stack Area (in2)	6.452 cm2
*	*		*
Sample Time (hrs)	ug	Area exposed paper	in2
16.265	.001 mg	37,688	6.452 cm2
=	*	* *	
2	ug	13.2 cm2	in2

= 149.8 mg/hr

DRIFT RATE - ABSORBENT PAPER

Mass Emission Rate (mg/hr) * 1 hr/60 min * 100 Water conc.(mg/L) * Water Rate (gpm) * 3.785 1/gal = 149.8 * 1hr/60min * 100 = 7.66 * 4193 * 3.785 1/gal

DRIFT RATE - IMPINGER TRAIN

Mass Emission Rate (mg/hr) * 1 hr/60 min * 100 Water conc.(mg/L) * Water Rate (gpm) * 3.785 1/gal = $\frac{25060.0 * 1 hr/60 min * 100}{7.66 * 4193 * 3.785 1/gal} = 0.344\%$

DRIFT RATE - SENSITIVE PAPER

Mass Emission Rate (g/sec) * 60sec/min * 100 Water Rate (gpm) * 1 g/ml * 3,785.4 ml/gal = 12.4 * 60 sec/ min * 100 = 4193 * 3.785 l/gal = 0.0047% TOTAL CHROMIUM IN IMPINGER AND DI AND NZ SAMPLES _____ B * A * 0.001 L/gram = C C - L = DD * E = F2 g (ml) H * ----- = I G F (or D) + I + J = KA = Sample weight sent for GFAA analysis (grams) B = Sample concentration (GFAA) (ug/L)C = Total chromium in GFAA sample (ug) D = Blank corrected total chromium in GFAA sample (ug) E = Correction factor for 2 ml taken by NAA (if needed) F = Adjusted total chromium in GFAA sample (ug) G = Original sample weight sent for NAA analysis (grams) H = Total chromium calculated and reported from NAA (ug) I = Total chromium contribution from 2 ml NAA aliquot (ug) J = Total chromium contribution from beaker residue (GFAA) (ug) L = Appropriate blank (ug) K = Total chromium for sample (ug)

Run No. CT-68-1-1

.

Note: Letters refer to columns in table which follows.

EXXON REFINERY - Baytown, TX

	A	В	С	D	E	F	G	Н	I	J	К
Sample I.D.	Sample Wt. grams	Sample Conc. (GFAA) ug/L	Total Cr (GFAA) ug	Blank Corr. Tot. Cr (GFΛΛ) ug	Corr. Factor For 2 ml Taken By NAA	Adjusted Tot. Cr (GFAA) ug	Original Sample Wt. grams	Total Cr calc. 2mi Aliq. (NAA) ug	Total Cr in 2ml Aliq. (NAA) ug	Total Cr in Residue (GFAA) Ug	Tolal Cr per Sample ug
EXX 1-1-abc Impin & Filter	3.9872	4048.0	16.1402	16.0402	1.079	17.3031	27.4020	38.2110	2.7889	45.3730	65.4650
EXX 2-1-a Impin 1 & Rinse	4.5960	116.0	0.5331	0.4331	1.086	0.4703	25.3218	0.0000	0.0000	1.1280	1.5983
EXX 2-1-b Impin 2	5.7761	98.0	0.5661	0.5261	1.084	0.5700	25.9171	0.0000	0.0000	8 7830	9.3530
EXX 2-1-c Impin 3 & Filter	5.0710	37.0	0.1876	0.1676	1.077	0.1805	28.1114	0.2760	0.0196	0.0000	0.2001
EXX 3-1-abc Impin & Filter	4.3544	164.0	0.7141	0.6141	1.083	0.6652	26.0679	2.2120	0.1697	0.5530	1.3879
EXX 4-1-abc Impin & Filter	4.0700	129.0	0.5250	0.4250	1.082	0.4597	26.5272	1.3300	0.1003	0.0400	0.6000
EXX 5-1-abc Impin & Filter	5.5819	3152.0	17.5941	17.4941	1.078	18.8622	27.5749	26.8560	1.9479	45.8730	66.6831
EXX 5-2-a Impin 1 & Rinse	5.5360	474.0	2.6241	2.5241	1.091	2.7543	23.9277	0.5880	0.0491	3.8980	6.7014
EXX 5-2-b Impin 2	3.9242	37.0	0.1452	0.1052	1.088	0.1145	24.6471	0.0000	0.0000	1.8580	1.9725
EXX 5-2-c Impin 3 & Filter	5.5629	33.0	0 1836	0.1636	1.112	0.1820	19.7954	0.0000	0.0000	0.0000	0.1820
EXX 5-3-abc Impin & Filter	4.7916	157.0	0.7523	0.6523	1.079	0.7039	27.2730	2.3830	0.1748	2.0230	2.9017
EXX A-1-a Impin 1 & Rinse	3.9885	176.0	0.7020	0.6020	1.078	0.6488	27.7122	0.0000	0.0000	4.4430	5.0918
EXX A-1-b Impin 2	4.7429	46.0	0.2182	0.1782	1.089	0.1940	24.5078	0.0000	0.0000	1.0030	1.1970
EXX A-1-c Impin 3 & Filter	4.3238	95.0	0.4108	0.3908	1.074	0.4197	29.0468	0.4530	0.0312	0.0000	0.4508
EXX A-2-abc Impin & Filter	5.8390	58.0	0.3387	0.2387	1.082	0.2582	26.3708	0.4530	0.0344	0.4150	0.7076
EXX B-1-abc Impin & Filter	4.3312	86.0	0 3725	0.2725	1.119	0.3049	18.8088	4.0770	0.4335	0.8430	1.5814
EXX B-2-abc Impin & Filter	4.1091	107.0	0.4397	0.3397	1 088	0.3697	24.6307	1.2500	0.1015	0.0580	0.5292
EXX C-1-a Impin 1 & Rinse	3.8370	616.0	2.3636	2.2636	1.085	2.4553	25.6174	0.0000	0.0000	8.2080	10.6633
EXX C-1-b Impin 2	4.9444	76.0	0.3758	0.3358	1.085	0.3644	25.4790	0.0000	0.0000	1.8080	2.1724
EXX C-1-c Impin 3 & Filter	3.9388	88.0	0.3466	0.3266	1.083	0.3539	25.9525	0.8950	0.0690	0.0000	0 4229
EXX C-2-abc Impin & Filter	4.2507	110.0	0.4676	0.3676	1.081	0.3975	26.5968	2 0790	0.1563	0.0000	0.5538
EXX D-1-abc Impin & Filter	4.0658	110.0	0.4472	0.3472	1.090	0.3786	24 1260	0.9670	0.0802	0.0000	0.4588
EXX D-2-abc Impin & Filter	5.0054	497.0	2.4877	2.3877	1.088	2.5971	24.8029	49.8490	4.0196	14.9230	21.5397
EXX Blank 1 Sample Train	4.8572	31.0	0.1506		1.078	0.0000	27.7461	0 4440	0.0320	0.0000	0.0320
EXX Blank 2 Water Blank	4.0529	110.0	0.4458		1.091	0.0000	23.9783	0.2630	0.0219	0.0000	0.0219

	A	В	С	D	Ε	F	G	Н	I	J	К
EXX DI-1f Disc Part. Sizing	6.1437	236.0	1.4499	1.3499			28.5310	2.5010	0.1753	0.0000	1 5252
EXX DI-1p Disc Part. Sizing	5.3081	550.0	2.9195	2.8195			24.8876	2.0320	0.1633	1.1030	4.0857
EXX DI-2f Disc Part. Sizing	4.8507	12755.0	61.8707	61.7707			28.7162	83.0610	5.7850	3.7600	71.3156
EXX DI-2p Disc Part. Sizing	5.8429	348.0	2.0333	1.9333			26.1345	1.1310	0.0866	0.6100	2.6299
EXX DI-3f Disc Part. Sizing	5.4802	4365.0	23.9211	23.8211			25.4153	32.4620	2.5545	2.0230	28 3986
EXX DI-3p Disc Part. Sizing	6.0048	432.0	2.5941	2.4941			24.9680	0.6130	0.0491	1.2530	3.7962
EXX DI-4f Disc Part. Sizing	5.3343	269.0	1.4349	1.3349			24.5252	0 0500	0.0041	0.0000	1.3390
EXX DJ-4p Disc Part. Sizing	6.0489	37 0	0.2238	0.1238			24.4289	1.9140	0.1567	0.5680	0 8485
EXX DI-5f Disc Part. Sizing	6.0280	94.0	0.5666	0.4666			24.1605	0.4570	0.0378	0 1650	0.6695
EXX D1-5p Disc Part. Sizing	5.7065	46.0	0.2625	0.1625			24.1451	0.0500	0.0041	1 6180	1.7846
EXX NZ-1 (w/o filter)	5.5912	421.0	2.3539	2.2539			24.8408	1 7210	0.1386	7 4730	9.8655
EXX NZ-2pf Nozzle Train	4.1097	6510.0	26.7541	26.6541			22.1188	5 7110	0.5164	42 5730	69.7435
EXX NZ-3pf Nozzle Train	3.6007	6300.0	22.6844	22.5844			27.6306	15.8120	1.1445	11.1850	34.9139
EXX NZ-4 (w/o filter)	5.7369	287 0	1.6465	1.5465			27.7520	0 0000	0.0000	8.4230	9.9695
EXX NZ-5pf Nozzle Train	4.2465	1208.0	5.1298	5.0298			21.7376	1.5950	0.1468	1.2080	6.3845

L GFAA ug Impin & Filter-Blank Value 0.1 Impin 1 & Rinse-Blank Value 0.1 Impin 2-Blank Value 0.04 Impin 3 & Filt-Blank Value 0.02 APPENDIX B.

FIELD AND ANALYTICAL DATA

B-2

Preliminary Field Data

PLANT NAME EXXON - BAYTOWN REFINER
LOCATION BAYTOWA TX
SAMPLING LOCATION CT.68 From CEUS #
DUCT DEPTH FROM INSIDE FAR WALL TO OUTSIDE OF PORT
NIPPLE LENGTH
DEPTH OF DUCT
WIDTH (RECTANGULAR DUCT)
EQUIVALENT DIAMETER: $D_{E} = \frac{2 \times DEPTH \times WIDTH}{DEPTH + WIDTH} = \frac{2()}{(} +) =$
DISTANCE FROM PORTS TO NEAREST UPSTREAM DOWNSTREAM FLOW DISTURBANCE
DIAMETERS
STACK AREA = $(109.5)^{2}$ TT = 37,668 IN ²

Point	2 OF DUCT DEPTH	DISTANCE FROM INSIDE WALL	DISTANCE FROM OUTSIDE OF FORT
	2.1	45/E	
2	6.7	145/8	
3	11.8	257/8	
4	17.7	38 3/4	
5	25.0	543/4	
6	35,6	78	
7	644	141	
8	75.0	164/4	<u> </u>
9	82.3	1801/4	
10	582	193 18	
[11	933	2+43/2	
12	97.9	2143/8	
13			
14			
15			
16			
17			
18			<u> </u>
19			<u> </u>
20			
21			
22			
23			
24			

LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

	4	6	ε	10	12	14	16	16	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.6	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	B.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7	1		89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8	1		96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9	1			91.B	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10				97.4	86.2	79.9	71.7	61.B	38.8	31.5	27.2
111					93.3	85.4	78.0	70.4	61.2	39.3	32.3
12	!				97.9	90.1	83.1	76.4	69.4	60.7	39.8
13						94.3	87.5	81.2	75.0	6E.5	60.2
14						98.2	91.5	85.4	79.6	73.8	67.7
15							95.1	89.1	83.5	76.2	72.8
16							96.4	92.5	87.1	82.0	77.0
17	1							95.6	90.3	85.4	80.6
18	1							98.6	93.3	86.4	83.9
19	1								96.1	91.3	86.8
20	1								98.7	94.0	89.5
21										96.5	92.1
22										98.9	94.5
23											96.B
24	-										98.9

LOCATION OF TRAVERSE POINTS IN RECTANGULAR STACKS

	2	3	4	5	6	7	. 8	9	10	11	12
	25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
3		83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4			87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
5				90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
6					91.7	78.6	68.8	61.1	55.0	50.0	45.8
7						92.9	81.3	72.2	65.0	59.1	54.2
8							93.8	83.3	75.0	68.2	62.5
9	i							94.4	85.0	77.3	70.8
10	;								95.0	86.4	79.2
11	1									95.5	87.5
12	<u>.</u>										95.8

	COMPA ADDRE SAMPL DATE BAROM SAMP	NY NAM SS B ING LO 9-1-1 HETRIC PLING T PLING T	$E \frac{E \pi \pi \omega \lambda}{A + f \omega \lambda},$ cation $ET G$ $E G$ PRESSURE, IN RAIN LEAK TE RAIN LEAK RA	<u>-</u> <u>е</u> <u>-</u> <u>е</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>е</u> <u>-</u> <u>-</u> <u>е</u> <u>-</u> <u>е</u> <u>-</u> <u>е</u> <u>-</u> <u>е</u>	2 m (A ~ (TEA) CU.	3 M LEADE), 25 M, IN, FT./MIN	R 1005) 5 Hg 15 . C.D	TATIC P 7	TECHNIC RESSURE	RUN NUM TIME ST TIME FI IANS	BER CT.C ART 110 NISH 13 20	26	
$\begin{array}{c} \underline{a/f}_{P} \text{ itots. PRE-TEST} \\ \underline{a/f}_{P} \text{ itots. POST.TEST} \\ \underline{a/f}_{P} \text{ itots.PIMP} \\ \underline{a/f}_{P} itots.PIMP$	EQ	UIPMEN	T CHECKS				IDEN	TIFICAT	ION NUM	BERS			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NAPIT NAPIT NAPIT NAPORS	OTS, P OTS, P GAT SAM DLAR BA RMOCOU	RE-TEST OST-TEST IPLING SYSTEM G PLE @ <u>\$0</u>	۹ ۵ _۲	REA MET UMB SAM PRO	GENT BO ER BOX ILICAL PLE BOX BE	x 1/4 	NOZZLE T T 0	206 /C READ /C PROB RSAT PUI EDLAR B	DIAM OUT E MP AG	ETER		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FIL	.TER #	TARE			NOM	OGRAPH	SET-UP	1	NOMOGRA	.PH # -43	<u></u>	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Na	7			₽н [@]		1.72	<u> </u>	FACTOR		A	<u> </u>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					MET	ER TEMP	-73-	s	TACK TE				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					76 141			N			·]
CLOCK METER Pitot STITING (4). METER VACUUM BOX EXIT STACK LK. CHECK SAMPLE TIME. PEADING. Reading STITING (4). METER VACUUM BOX EXIT STACK LK. CHECK POINT MIN. CU. FT. $mV \Delta p$ IDEAL ACTUAL $0^{\circ}F$ CAUGE $0^{\circ}F$ $0^$			DRY GAS]		0815	LCE	GAG	PIMP	FILTER			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CLOCK	METER	Pit	tot	SETTING	5 (ΔH),	METER	VACUUM	BOX	EXIT	STACK	LK. CHECK
POINT MIN. CU. FT. MV ΔP IDEAL ACTUAL O_F O_F O_F O_F O_F 1 0/0 748.104 330 0.11 0.45 0.45 90 4 11/4 55 80 2 10 750.13 13000.11 0.45 0.45 90 4 57 80 2 10 752.25 460.2410.950.55 90 6 57 80 15 750.95 520.0241.13 1.13 91 7 57 81 3 20 753.95 520.0241.13 1.13 1.13 92 7 56 81 4 30 764.73 460.022.0.87 0.57 94 60 57 72 82 5 40 76.92 44 370.041 0.56 5.56 73 57 72 82 4 30 764.73 460.020 0.57 93 2 57 82 5 40 95.923 10.57 82 2 5	SAMPLE	TIME,	READING.	Read	ling	IN.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	POINT	MIN.	CU. FT.	mv	∆p	IDEAL	ACTUAL	°F	GAUGE	0 _F	O _F	° _F	L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	010	748.104	330	0.11	0.45	0.45	90	4	NA	155	80]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<.	750-13	330	0.11	0.45	0.44	90	4		58	80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	FO	75228	490	024	0.95	0.95	90	6		57	80	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	757.98	540	0.80	1.19	1.19	91	17		157	81	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20	257.98	525	0.29	1.13	1.13	92	7	ļ_ i	56	81	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	761.25	520	0.28	1.10	1.10	93	6	 	56	83	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 4_	30	764.73	460	0.22	0.87	0-87	94	6	<u> </u>	58	123	4 ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	35	767.32	440	0.20	0.79	2.77	94	5		57	82	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>	40	769.94	370	0.14	0.56	2.5-6	73	5-		58	82	4
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		45	772.35	330	0.11	0.45	0.45	93			5-9	152	+
7 $b0$ 74 310 0.17 73 3 $b0$ 83 65 777.93 193 0.00 0.17 93 3 $b0$ 83 65 777.93 193 0.00 0.15 0.15 93 2 60 84 70 779.04 1590.02 0.10 0.16 92 2 57 84 70 779.04 1590.02 0.10 0.10 92 2 57 84 75 750.07 2630.02 0.28 0.28 93 3 601 87 9 80 781.68 4630.22 0.86 93 6 58 89 10 $9.786.48$ 3660.44 0.54 0.54 93 6 58 89 10 $9.786.48$ 3260.44 0.54 0.773 93 6 6.3 86 11 100 791.32 5290.29 1.12 <t< td=""><td>- Ke</td><td></td><td>774.14</td><td>172</td><td>0-04</td><td>0.15</td><td>0.15</td><td>93</td><td>12</td><td></td><td>109</td><td>100</td><td>4</td></t<>	- Ke		774.14	172	0-04	0.15	0.15	93	12		109	100	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	770 48	200	0.05	0.18	0.18	93	2		60	8.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K.E.	1222.93	197	0.04	0.15	<u></u>	43	2		60	84	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	70	779.04	1159	0.02	0.10/	0.10	92	2		59	540	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	350.07	263	0.07	m. 24	0.25	93	2		61	87	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	80	781.68	465	دد.ه	0.86	0.86	93	16		58	89	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·····	8.5	784.31	435	0.1	0.76	0.76	94	6		158	189]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	90	786.48	366	0.14	0.54	0.54	94	15		61	88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		95	788.88	424	0.19	0.73	0.73	93	6	-	63	86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	100	791.32	529	0.29	1.12	1.12	93	7		62	89	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		105	794.37	535	0.29	1.16	1.16	94	17_	<u> / </u>	62	86	<u></u>
115 799.60 3690.14 0.53 0.53 94 5- 63 86 130/07/801.743	12	110	797.71	314	010	0.40	0.40	94	+4		64_	186	4
130/07/801.743	<u> </u>	115	799.60	1369	$p \cdot 14$	2.53	0.55	<u>144</u>	15		63	86	<u> </u>
	L	130/07	1801.+43	1	!	<u> </u>	L	1	<u> </u>	<u> </u>	<u></u>	<u> </u>	4

 $\frac{53,639}{V_{M}},\frac{1429}{(\sqrt{\Delta P})^{2}},\frac{629}{\Delta H},\frac{93}{T_{M}}$ 84___ т_s

							····					7
COMPAI	NY NAME	ETTON	- 8	em 1	3			F	RUN NUM		8-2-1	
ADDRES	55 <u>^</u>	A tow w .	<u>T</u> ¥			•		1	TIME ST	ART 14	<u></u>	
SAMPL	ING LOO	CATION 2	<u>68</u> ,	FAN	I CEH				TIME FU	NISH 7/	a 2 3	
DATE _	4/1/8	le		TEA	M LEADER	a Ims)	······································	TECHNIC	IANS II	<u>n</u>		
BAROM	ETRIC I	PRESSURE, IN	I. HG	30	•25-	S'	TATIC P	RESSURE	. IN. H	2 ⁰		
SAMP	LING TI	RAIN LEAK TE	ST V	ACUU	M, IN. H	+G						
SAMP	LING TH	RAIN LEAK RA	TE,	cu.	FT./MIN	. 0.00				· ·	•	
EQ	UIPMEN	T CHECKS				IDEN	TIFICAT	ION NUM	BERS			
NAPIT	OTS, P	RE-TEST		REA	GENT BO	×	NOZZLE	204	DIAM		-55	
NA PIT	OTS, P	OST - TEST		MET	ER BOX	NY	T	/C READ		<u> </u>	<u></u>	
N/M ORS	AT SAM	PLING SYSTEM	4	UMB	ILICAL	UL	т	/C PROBI				
ALL TED.	LAR BA		0-	SAM	PLE BOX		U		$\frac{m^{-}}{M^{-}} = \frac{1}{N} \frac{1}{N}$	9		Į
	RMOCOU			PRO		CRAPH	SET .UP			PH #		
		IANL			<u></u>).	70	<u> </u>	500700		-		
	4			7H ^G	ER TENR	9	C	TACK TE	MP SE			
				₩ M	OISTURE	2	R	EF. AP				
												<u> </u>
		DRY GAS	Ī		0915		GAS		FUTED	IMP]
	CLOCK	METER	Pi	tot	SETTING		METER	VACUUM	BOX	EXIT	STACK	LK. CHECK
CANDLE	TIME	READING.	Rea	ding	IN.	H ₇ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	0 _F	GAUGE	° _F	° _F	0 _F	
		2	1				911		1.10		e l'	
	010	201.632	441	0.02	80.08	3.08	74	2	N/G		81	4
	5	802.64		0.01	-0-10	<u>v·10</u>	-74			20		
.	70	803.52	10 X	0.03	0.10	2.70	14	- d		5-2	<u>×</u>	
	15	504.45	241	0-04	0.24	0.54	94			2+	21	
3	20	805 43	5/0]	0.14	0.55	0.55	34	4		5 +	54	
	- 22	Y0 +	1390	0.13	0.41	0.49	<u>a</u>	+4		60	10 mg	
4	30	<u>×10.11</u>	403	0.7	0.66	0.69	76	15-		62	00	
	35	812.41	1400	20.17	0.68	0.68	77	5		60	84	
5	40	\$14.97	1344	0.12	6.48	0.48	77	4		51_	170	4
	45	x17.02		0.11	0.11	041	178	4		134	7/	
le	50	<u>814.7 ₹</u>	<u> 22 </u>	0.05	0.20	0.20	178	3		60	7/	4
	55	820.4	1240	10.06	0.23	0.23	77	l d		62	7/	
7	60	801.86	1145	10.03	0.08	0.00	77	<u> </u>	<u>+</u>	62	12	-
	65	8220 + 3	152	0.03	0.10	¢.10	76	<u> </u>	<u>├</u> ──	63	175	+
<u>r</u>	70	823.5+	1438	10.19	0.75	0.75	76	13	<u>├ </u>	6	196	4
	75	8-0-11	1503	0.26	1.00	1.00	4	6	+	62	14	
7	80	828.92	413	0.17	0.68	0.68	90		<u>├</u>	63	17/	-
	85	1231.51	<u>47</u>	0.23	0.70	0.40	146	0	┼──┼──	162	17/	
10	90	134.18	4.46	$\omega \cdot \omega$	0.80	0.00	195	15-		64	87	-
}	75	x36.x2	476	0.23	0.41	0.4	175	19		64	84_	<u></u>
μ	100	834. + -	46	0.2	20.88	0.88	46	6	<u> </u>	63	185	4
<u> </u>	105	842.65	1410	40.13	-0.69	0.69	76	5		16 <u>5</u>	126	
12	110	844.97	1221	0.1	0.42	10.42	96	4	<u> </u>	64	86	-
	115	846.99	<u>63</u>	0.07	10.28	0.28	176	3	<u> </u>	165	86	·
L	120/01/	848.758	<u> </u>	<u> </u>	<u> </u>	!	<u> </u>		1			1
		<u> </u>										

 $\frac{46,926}{\sqrt{M}} \frac{1101}{\sqrt{\Delta P}^2}$ 1488 96 87_ ∆н т_м тs

,

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	COMPANY NAME $\mathcal{LIAOM} - \mathcal{EMB}$ RUN NUMBER $\mathcal{CI68-3-1}$ ADDRESS \mathcal{BAYDWN} , \mathcal{Tx} TIME START $\mathcal{D933}$ SAMPLING LOCATION $\mathcal{LT68}$, $\mathcal{FANCE/1 # 3}$ TIME FINISH $\mathcal{II38}$ DATE $\mathcal{I2/86}$ TEAM LEADER $\mathcal{DN5}$ TECHNICIANS \mathcal{Tm} BAROMETRIC PRESSURE, IN. HG 30.2 STATIC PRESSURE; IN. H ₂ 0 1 SAMPLING TRAIN LEAK TEST VACUUM, IN. HG $\mathcal{I5}$ SAMPLING TRAIN LEAK RATE, CU. FT./MIN. \mathcal{OOD} $\mathcal{O'DD0}$ 1 EQUIPMENT CHECKS IDENTIFICATION NUMBERS \mathcal{M} PITOTS, PRE-TEST REAGENT BOX NOZZLE $\mathcal{206}$ DIAMETER $'2.5^{\circ}$ \mathcal{M} PORSAT SAMPLING SYSTEM WETER BOX $\mathcal{M14}$ T/C PROBE \mathcal{S}^{-2} $\mathcal{M4}^{\circ}$ \mathcal{M} THERMOCOUPLE @ $\mathcal{92}$ OF PROBE $\mathcal{2}^{-1}$ TEDLAR BAG $\mathcal{M4}$ $\mathcal{M4}$ \mathcal{MA} \mathcal{MA} $\mathcal{M4}$ $\mathcal{M4}$ $\mathcal{M4}$ $\mathcal{M4}$ \mathcal{MA} $\mathcal{M4}$ $\mathcal{M4}$ $\mathcal{M4}$ $\mathcal{M4}$ $\mathcal{M4}$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					MET % M	OISTURE	2	S	$EF. \Delta P$	······································	12		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE	CLOCK TIME, MIN.	DRY GAS METER READING, CU. FT.	Pi Read mv	tot ding Δp	OR I F SETT I NO I N. I DEAL	FICE S (ΔΗ), H ₂ O	GAS METER TEMP. ^O F	PUMP VACUUM IN. HG GAUGE	FILTER BOX TEMP. OF	IMP. EXIT TEMP. ^O F	STACK TEMP. OF	LK. CHECK READINGS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2/2	510 077	12100	0.06	- 23	0 2 2	80	11	Alla	<u> </u>	93	······································
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		010 5	849.072	1207	2.00	0.25	0.17	81	<u> </u>		54	93	{ }
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	10	851.71	410	0.17	D.65	0.65	86	17		55	94	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.	15	85-3.95	387	0.19	0	0.58	87	17	1	55	94	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	20	856.39	383	0.15	0.57	0.57	88	7		57	94	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	858.52	407	0.17	0.64	0.64	89	4		59	94	<u>]</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	30	860.89	434	0.19	0.73	0.73	89	8		58	93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		35	863.52	421	0.18	0.69	0.69	89	8		58	93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	40	865.83	391	0.16	0.60	0.60	90	8		5-7	192	4.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ	45	868.41	423	0.18	6.70	0.70	90	18		59	91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	50	870-73	197	0.04	0.15	0.15	91	3		5-7	94	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[585	872.19	173	0.03	0.12	0:12	91	2		52	93	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	60	873.09	192	0.04	0.14	0.14	91	12	<u> </u>	58	194	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		65	874.18	1195	0.04	0.15	0.15	92	2		89	59	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	70	875.32	1198	0.04	0.16	0.16	1	A		57	188	- ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		75	876.48	481	0.24	0.94	0.94	75	7		60	183	. <u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	80	279.17	14 74	0.24	0.94	0.44	73	7	┼──┼──	6	103-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 85	882.28	4-40	0.20	0.79	0.79	74	17	+/	63	83-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>w</u>	90	884.81	1453	0.2/	0.80	10.20	74	0	<u>├/</u>	6/	174	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	75	XX++·SO	47-	<u>[0, 1]</u>	0.52	0.82	94	- <u>T</u>		6/	74	t I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	105	RAD LS	403	0-22	0.01	0.84	90	9		60	19:-	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		105	15/2-72	H 71	0.12	0.7 ×	6.87	1911	15/	+₩	62	190	<u>+</u> +
12dd1900.031	1.04	110	C4C . 1 G	20	0.17	0.71	n. 1	4.1	- <u> </u>	1	6	92	4
		1.15	1900. 1021	-37	10.07	- 20		14	++		<u></u>	1/2	<u>+</u>
	L	- you		<u></u>	!	!	<u>!</u>	i	<u>!</u>	<u> </u>	<u>. </u>		_

50,959 .1316 ,555 91 (√∆P)² ΔH $\boldsymbol{\tau}_{\boldsymbol{\mathsf{M}}}$ VM

R-6

92

т_s

Preliminary Field Data

					· · · · ·						
F	PLAN	ΤN	AME .	E	15	- E	XX	<u>k</u> c		.	_
L			ـــــ ا		3py	row	2	T	(-
S	SAMF	LING	S LC	CAT	ION	<u>CT.</u>	68	Fr	N	51	<u>'</u>
E F	UCT	DE NSIDE I	PTH far w	ALL T	דטס ס	SIDE	OF PO	RT _		-	
				Ν	IPPL	E LE	ENGT	-н_			_
				DE	PTH	OF	DUC)T _	24	4	_
		۷	VIDTI	H (r	ECTAN	IGULA	R DUC	די			
E	QUIVA	ENT	DIAME	TER:			<u>۷</u>				
) _E =2	DEPT	<u>TH×W</u> H+WI	DTH DTH	$=\frac{2}{(}$		<u>+</u>	;=	=		
Ī	DIST	ANC	E F	RON	1						
F	PORT	I SI	N O'	IEAF	RESI		STRE	<u>AM</u>	DOM	NSTRE	<u>AM</u>
F	FLOW	DI I	STU	IRBA	NCE	E			<u> </u>		
	-			DIAM	ETER	s					
3	STAC	k af	REA=	42	<u>2)</u>	٢		=	46,	750	1 w²
• _							_				
	LOC	ATION	OFT	RAVE	RSE F	OINTS	IN C	IRCUL	AR ST	TACKS	
	4	÷.	5	10	12	14	16	18	20	22	24
2	25.0	4.4 14.6 79.6	10.5	8.2	6.7	5.7	4.9 8.5	4.4	3.9	3.5	3.2
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
6		95.6	8D.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
8	l		96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9 10	: }			91.8 97.4	82.3 88.2	73.1 79.9	62.5 71.7	38.2 61.8	30.6 38.8	26.2 31.5	23.0 27.2
11					93.3 97.9	85.4 90.1	78.0 83.1	70.4 76.4	61.2 69.4	39.3 60.7	32.3 39.8
13						94.3 98.2	87.5 91 5	81.2 85 4	75.0 79.6	68.5 73 B	60.2
15	1 						95.1	89.1	83.5	78.2	72.8
17	1						76.4	92.5	90.3	85.4	B0.6
1E 19	1							98.6	93.3 96.1	88.4 91.3	83.9 86.8
20 21									96.7	94.0 96.5	89.5 92.1
22										98.9	94.5
23	1										96.8

DRAW HORIZONTAL LINE THROUGH DIAMETERS If more than 6 and 2 diameters and if duct dia. is less than 24", use 8 or 9 points. DIAMETERS PARTICULATE VELOCITY UP DOWN 8 + 2.0 / 12 7 1.75 16 6 - 1.5 20 / _ 1.25 5 🚽 16 24 or 25 2 -. 0.5

Point	Z OF DUCT DEPTH	DISTANCE FROM INSIDE WALL	DISTANCE FROM OUTSIDE OF PORT
	21	5/8	
2	6.7	163/8	
3	11.18	2834	10 Pages.
4	17.7	43 1	
5	25.0	61	
6	35	8678	
7	644	157 1/8	
8	75.D	183	
9	82.3	20034	
10	88.2	215%	
11	93.3	1 75/2	
12	97.9	238 7/0	
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

	LOCATION	0F	TRAVERSE	POINTS	N	RECTANGULAR	STACH
--	----------	----	----------	--------	---	-------------	-------

	2	3	4	_ 5	6	7	Б	9	10	11	12
1	25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
3	i	83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4	1		87.5	70.0	56.3	50.0	43.8	38.9	35.0	31.8	29.2
5				90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
6]				91.7	78.6	68.8	61.1	55.0	50.0	45.8
7	İ					92.9	81.3	72.2	65.0	59.1	54.2
8							93.8	83.3	75.0	68.2	62.5
9								94.4	85.0	77.3	70.8
10	1								95.0	86.4	79.2
11										95.5	87.5
12											95.8

.

COMPA ADDRE SAMPL DATE BAROM SAMP SAMP EQ	NY NAM 355 3 ING LO $9/2/ETRICLING TLING TNIPMENOTS, P$	$E = \frac{2770 N}{1000 N}$ $CATION CT 68$ $F 6$ $PRESSURE, IN RAIN LEAK TE RAIN LEAK TE RAIN LEAK RA TCHECKS PRE-TEST$	2. 7. 2. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	13 TEA 30 ACUU CU. REA	M LEADE .2 M, IN. FT./MIN GENT BO	R (7215) HG 15 0.00 IDEN X	TATIC P <u>4</u> TIFICAT NOZZLE		RUN NUM TIME ST. TIME FII IANS , IN. H BERS DIAM	BER <u>(1</u> ART <u>12</u> NISH <u>14</u> 20 <u>1</u> ETER <u></u>	<u>25-3-</u>	
	AT SAM	PLING SYSTEM	I	UMB	ILICAL	12	т	C PROB	E <u>S</u>	7		
	LAR BA	G IPLE (d	o _f	SAM PRO	PLE BOX	12	о т	RSAT PU EDLAR B	MP			
FIL	TER #	TARE			NOM	OGRAPH	SETOUP		NOMOGRA	PH #		
N	A-			۵н _а	<u>.</u>	22	c	FACTOR	\sim			
			_	MET		<u>90</u> 2	s	TACK TE	мр <u>70</u>			
				% M			R					
		DRY GAS			ORI	FICE	GAS	PUMP	FILTER	IMP.		
	CLOCK	METER	Pi	tot	SETTING	G (AH),	METER	VACUUM	BOX	EXIT	STACK	LK. CHECK
SAMPLE	TIME, MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	OF	GAUGE	^O F		O _F	READINGS
1	010	900.204	200	0.16	0.63	0.63	92		NIA	53	28	
	5	902.53	352	0.13	0-49	0-49	94	3		574	81	1
h	n	904.87	3.32	0.12	0.45	2.45	94	3		56	91	
	45	906.76	367	0.14	0.54	0.54	95	3		157	191	i
3	20	908.98	435	0.19	0.75	0.75	96	4		57	91	4
	25	911.42	354	0.3	0.50	0.50	96	3		58	91	
Ŷ	30	913.70	199	0.04	0.16	0.16	96	<u> </u>		59	90	
	35	915-11	203	0.04	0.16	0.16	96	1		61	91	
5-	40	916.30	139	0.02	0.08	0.08	96	<u> </u>	ļ	60	189	4
	4.5	917.09	162	0.03	0.11	0.11	96			60	89	
6	50	917.98	143	0.02	0.08	0.08	96	<u> </u>	<u> </u>	61	190	-
	55-	918.91	155	0.02	0.10	0.10	97	<u> </u>	<u> </u>	62	189	
2	60	919.78	209	0.04	0.19	0.19	77	2	1	61	89	1
	65-	921.04	25	0.05	0.20	0.20	97_	2		60	88	<u> </u>
8	70	122.39	1204	0.04	0.18	0.15	192	12	<u> </u>	62	188	4
[3	923.72	197	0.a	0.17	10.17	97	1~	<u> </u>	63	107	<u> </u>
9	50	425.15	12.37	0.06	0.24	0.24	98	2	<u> </u>	164	70	4
	85	925.51	283	80.0	0.35	0.35	98	3		65	89	
io	90	928.22	349	0.13	0.53	0.53	97_	3		64	87	4
	15-	930.48	1355	0.13	0.55	10.55	96	3		65	156	
<u> </u>	100	1932.72	1403	0.17	0.71	0.71	96	4		6.5	184	4
<u> </u>	105-	735 . 50	1389	0.16	0.66	0.66	176		$\left \right\rangle$	66	182	<u> </u>
12	110	737.62	1002	0.13	0.57	0.57	97	4	<u> ₩</u>	66	88	4
	15	939.99	کلک ¦	10.10	0.44	0.44	175			68	11	<u></u>
L	12541	142-014	<u>!</u> 1	!	!	!	·	L	±	<u>!</u>		1

<u>41,81</u> vm .08/2 (VAP)²

z

96 <u>.368</u> ∆н $\tau_{\rm M}$

89 ' T_s

B-8

Preliminary Field Data

PLANT NAME EXXON - BAYTOWN REFINERY
LOCATION BAYTOWN TX '
SAMPLING LOCATION CT. 68 FAN COLL#5
DUCT DEPTH
NIPPLE LENGTH
DEPTH OF DUCT
WIDTH (RECTANGULAR DUCT)
EQUIVALENT DIAMETER: $D_{E} = \frac{2 \times DEPTH \times WIDTH}{DEPTH + WIDTH} = \frac{2()}{()} =$
DISTANCE FROM PORTS TO NEAREST DOWNSTREAM FLOW DISTURBANCE
DIAMETERS
STACK AREA= $(1\%5)^{2}\pi$ = 85530 IN ²

Point	Z OF DUCT DEPTH	DISTANCE FROM INSIDE WALL	DISTANCE FROM OUTSIDE OF FORT
	2.6	67/8	
2	6.7	221/8	
3	(1.8	39	
4	17.7	5.8-3/8	
5	25.0	821/2	
6	35.6	1171/2	
7	64.4	212 1/2	
8	75.0	24712	<u> </u>
9	82.3	2715/8	
10	BB.2	291	
	93.3	3077/8	
12	97.9	32348	
13			
14			
15		<u> </u>	
16			
17		ļ	
18		<u> </u>	
!9			
20			
21			
22			
23			
24			

LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

	4	6	8	10	12	14	16	iε	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	B.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.B	16.5	14.6	13.2
7			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8			96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9				91.B	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10	1			97.4	88.2	79.9	71.7	61.B	38.8	31.5	27.2
11	i				93.3	85.4	78.0	70.4	61.2	39.3	32.3
12	ļ				97.9	90.1	83.1	76.4	69.4	60.7	39.8
13	ł					94.3	87.5	81.2	75.0	68.5	60.2
14	}					98.2	91.5	85.4	79.6	73.8	67.7
15	i						95.1	89.1	83.5	78.2	72.8
16	1						98.4	92.5	87.1	82.0	77.0
17	1							95.6	90.3	85.4	80.6
18	i i							98.6	93.3	88.4	83.9
19	i								96.1	91.3	86.8
20	•								96.7	94.0	89.5
21	1									96.5	92.1
22	i									98.9	94.5
23	[96.8
24	1										98.9

LOCATION OF TRAVERSE POINTS IN RECTANGULAR STACKS

	2	3	4	5	6	7	8	9	10	11	12
1	25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2,	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
3		83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4			87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
5				90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
6					91.7	78.6	68.8	61.1	55.0	50.0	45.8
7						92.9	81.3	72.2	65.0	59.1	54.2
8							93.8	83.3	75.0	68.2	62.5
9								94.4	85.0	77.3	70.8
10									95.0	86.4	79.2
11										95.5	87.5
12											95.8

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	COMP/ ADDRI SAMPI DATE BARON SAMI SAMI	ANY NAM ESS METRIC PLING T PLING T	E <u>EXXO</u> <u>BAYTOW</u> CATION <u>COOL</u> -86 PRESSURE, IN RAIN LEAK TE RAIN LEAK RA	N -/ <i>NG</i> -/ <i>NG</i> -/ <i>NG</i> -/ <i>NG</i> -/ <i>NG</i>	7 7 7 1 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AS <u>UER (0</u> M LEADE D. <u>25</u> M, IN. FT./MIN	8 FAN R Z HG 15 HG 15	<u>CFU</u> B TATIC P 	# 5 TECHNIC RESSURE	RUN NUMI TIME STA TIME FIN IANS , IN. H	BER <u>C7</u> ART <u>1</u> NISH <u>2</u> 20	68.5-1 050 328	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E	QUIPMEN	T CHECKS		}		IDEN	TIFICAT	ION NUM	BERS			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ PI	TOTS, P	RE-TEST		REA	GENT BO	x 205		704		ETER · 2	49	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	рг	TOTS, P	OST-TEST		MET	ER BOX	<u></u>	<u>и</u> т	/C READ	олт <i>0</i>	13		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OR	SAT SAM	PLING SYSTER	4	UMB	ILICAL	<u></u>	т	/C PROB	E			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DLAR BA	NG IPLE (d	0 _F	SAM PRO	IPLE BOX	·	о т	RSAT PU	MP AG			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		TED #	TARE			NOM	OGRAPH	SET-UP			рн <u>#</u> '		4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	<u>_ IER </u>	IARE			1401	11.9						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					ΔH _@		1.01	C	FACTOR		_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					- MEI - % M	ER IEMP		2 B	EF. AP	mr	<u></u>		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													<u>]</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			DRY GAS			ORI	FICE	GAS	PUMP	FILTER	IMP.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CLOCK	METER	Pi	tot	SETTIN	G (ΔH),	METER	VACUUM	вох	EXIT	STACK	LK. CHECK
POINT MIN. CU. FT. MV DP IDEAL ACTUAL CF GAUGE CF CF CF CF A I D I68.400 210 ID II II II 84 2 - 56 840 2.5 I/44.670 445 II II II III III III 5 - 58 83 3 IO III 40 III III III III III IIII IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAMPLE	TIME,	READING.	Read	ding	<u>IN.</u>	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	POINT	MIN.	CU. FT.	mv	q۵	IDEAL	ACTUAL	0 _F	GAUGE	F	UF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A I	D	168,400	20	105	<i>רו</i> ,	.17	84	2		56	8/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5	169.670	425	.19	:64	. 69	84	1.5	-	58	85]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	10	171.900	550	.31	1.17	1.17	85	6	-	58	83	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	15	174.940	600	.37	1.40	1.40	88	6	-	61	82	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	20	178.380	600	.38	1.44	1.44	91	6	-	64	77	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	25	181.830	220	.DS	, 19	. 19	94	2	-	63	81	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	30/0	183230	550	32	1.20	1.20	94	6	-	66	80	4 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5	186.500	460	45	1.72	1.72	96	7	<u> </u>	65	83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10	190,250	673	47	1.80	1.80	98	8	-	64	83	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	15	194.000	1650	,49	1.68	1.68	101			05	83	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	15	198.040	510	IT -	1.04	1.04	103	6		61	80	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RA	4010	211620	20	1 (7	10		104	2		1.9	a11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	1203665	570	132	1.24	17.4	HOU	6		68	94	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	110	201.940	450	.43	1.61	161	100	7	-	69	95	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	45	210.670	1010	. 38	1,44	1.44	102	.10	-	69	92	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	20	214.350	360	13	.51	151	104	4	-	68	89	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	25	216.570	195	.01	.04	,04	104		-	68	84]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	90/0	217.105	120	101	,06	,00	99	1	-	70	90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	5	217.880	400	.16	,62	.62	98	4	_	7.0	190	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,0	10	220,200	550	31	1117	1.17	99	6	-	69	89	
8 20 227110 560 32 1.26 1.26 103 6 - 70 86 7 25 230.480 180.03 13 1.3 104 1 - 71 84 120/017 231.560	9	15	223.450	630	.4(1.56	1.56	101	17	-	70	87	
7 25 230.480 180,03.13 13 104 1 - 71 84 120/014 231.560	8	120	227110	560	32	1.26	1.26	103	6		70	86	
120/014 231.560	1	25	230.480	180	,03	.13	13	104	<u> </u>		71	84	ļ
	L	120/014	231.560	1	1	1	<u> </u>	L	<u> </u>	<u> </u>	1		1

86 $\frac{63.16}{v_{M}} + \frac{2047}{(\sqrt{\Delta P})^{2}}$, 943 97 тм τ_s ΔH

B-10

COMPAN ADDRES SAMPL DATE BAROMI SAMPI SAMPI EQU PITC PITC ORSJ TEDI THEI FIL	NY NAME SS ING LOO P-/- ETRIC I LING TI LING TI UIPMEN OTS, PI OTS, PI OTS, PI AT SAME LAR BA RMOCOU TER #	EXXD N <u>BAY</u> TOW CATION <u>CODE</u> CATION <u>CODE</u> CATION <u>CODE</u> CATION <u>CODE</u> ATTION <u>CODE</u> PRESSURE, IN RAIN LEAK TE RAIN LEAK TE RAIN LEAK TE RAIN LEAK TE TARE	ING ING ST V TE,	TEAU TEAU 30 ACUU CU. REA MET UMB SAM PRO	A S M LEADE M, IN. I FT./MIN GENT BO ER BOX ILICAL PLE BOX BE NOM	8 FAN (R	<u>CELL</u> TATIC PI _	TECHNIC RESSURE 10N NUME 10N NUME	RUN NUME TIME STA TIME FIN TANS TIME FIN TANS TIME FIN TANS TIME FIN TANS TIME FIN TANS TIME STA TANS TIME STA TANS TIME STA TANS TIME STA TANS TIME STA TANS TIME FIN TANS TIME STA TANS TIME FIN TANS TIME STA TANS TIME FIN TANS TIME STA TANS TIME STA TANS TIME FIN TANS TIME STA TANS TIME FIN TANS TIME TIME STA TANS TIME STA TANS TIME STA TANS TIME STA TANS TIME STA TANS TIME STA TANS TANE TANK TANK TANE TANK TANK TANK TANA TANA TANA TANA TANA	HERC <u>T</u>	57		
ΔΠ@ ΔΠ@ C FACTOR METER TEMP STACK TEMP % MOISTURE REF. ΔP													
SAMPLE	CLOCK TIME, MIN.	DRY GAS METER READING, CU. FT.	Pi Rea mv	tot ding [] [] p	OR IF SETTING IN. IDEAL	- ICE 5 (ΔΗ), H ₂ O ACTUAL	GAS METER TEMP. ^O F	PUMP VACUUM IN. HG GAUGE	FILTER BOX TEMP. ^O F	IMP. EXIT TEMP. OF	STACK TEMP. OF	LK. CHECK READINGS	
SAMPLE TIME, CU. FT. $\mathbb{MV} \Delta \mathbb{P}$ IDEAL ACTUAL OF GAUGE OF OF OF OF OF \mathbb{P} ALL \mathbb{P} READ \mathbb{P} ALL \mathbb													
	5	234.520	46D	.12	,91	.91	96	4		55	93	 	
10	10	237.400	570	33	1.42	1.42	97	6	-	56	91		
9	18	240.880	640	.42	1.714	1.79	9.7	5	-	57	87		
7	25	248.200	200	,04	,18	,18	102	1		58	85		
1	3010	249,472	400	16	,129	.69	99	4	-	60	96		
2	5	252.100	550	31	1.31	1.31	99	6		58	914		
3	10	255.320	635	41	1.72	172	100	7		59	96	ا _ I	
4	15	259 150	640	42	1.19	11.79	102	1		60	93	<u> </u>	
	25	215 781	1540	NIV	105	105	104			hi	86	4	
AI	60 17	265.718	230	105	123	1.7.3	98	1	-	63	92	·	
2	5	267.175	440	20	.84	1.84	97	4	-	60	91		
3	10	269.800	540	30	1.27	1.27	98	5	-	59	92		
4	1.5	273.050	650	43	1.86	1.86	99	8		61	89		
5	10	276,930	510	127	1.18	1.15	101	5		62	88	-	
6	25	280,180	310	10	43	.43	103	2		62	86		
	9010	282,243	100	32	1.40	1:40	100	6		66	185	-	
10	10	290000	10 13	15-1	1272	205	10	8		65	82		
9	15	294450	1.85	48	2.11	2.11	1/14	8	-	67	1 86	4	
8	20	298 730	280	.08	.35	.35	105	2.	-	69	85	1	
1	25	300.510	300	.09	141	,41	104	2		69	85	1	
	120/OFF	302.448			<u> </u>								
	L	<u> </u>	J										

89 ^Ts $\frac{70.717}{v_{M}}$ $\frac{2311}{(\sqrt{\Delta P})^{2}}$ 1.12 100 ∆н т_м

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	COMPA ADDRE SAMPL	NY NAM SS <u>A</u> ING LO	E EXKON ANT OWN, CATION COOL	TE, ING	XAZ TU	UER la	8 Cél	L715		RUN NUMI TIME STA TIME FII	BER (<u>1</u>) ART <u>10</u> NISH <u>1</u>	58-5-3 33 302	
BARPLING TRAIN LEAK RETST VACUUM. IN. HG. J. 9 SAMPLING TRAIN LEAK RETST VACUUM. IN. HG. 2015 EQUIPMENT ORACLES TO LEAK RATE, CU. FT./MIN. (DDS 1015 DENTIFICATION NUMBERS THE NOR THEST DENTIFICATION NUMBERS THERE RAG DENTIFICATION NUMBERS THERE RAG THERE RAG DENTIFICE GAS TOND ONDERAPT LET THERE RAG THERE RAG THERE RAG ONDERAPT NAMP THERE RAG CLOCK METER DENTIFICE GAS MPLIE ONDERAPT LET ONDERAPT NAMP THEREW Colspan="2">STACK TEMP THEREW Colspan="2"	DATE	9-2	-80		TEA	M LEADE	RÌ	B	TECHNIC	IANS	BB		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAROM	ETRIC	PRESSURE, I	ч. на		8-2:	s	TATIC P	RESSURE	, IN. H	2°		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMP	LING T	RAIN LEAK TH	IST V		M, IN.	$HG _ (2)$	2-7			·	·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMP		RAIN LEAK R	ATE,	<u>. </u>	F1./MIN		L <u>10/</u> 2				· <u></u>	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EQ	UIPMEN	T CHECKS				<u>IDEN</u>	TIFICAT	ION NUM	BERS			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PIT	OTS, P	RE - TEST		REA	GENT BO	x <u>205</u>	NOZZLE	704		ETER	249	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PIT	OTS, P	OST-TEST		MET	ER BOX	<u></u>	<u>) </u> т	/C READ	out	<u>[]]</u> 		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ORS	AT SAM	PLING SYSTEM	M	UME	ILICAL		T	C PROB	E			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TED	DAR BA	G PLE G	0 _F	PRC	BF		U	EDLAR B	MP AG	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TED #	TAPE			NOM		SET.UP		NOMOGRA			1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u><u><u>F</u>1L</u></u>	IER T	1 ARE				1 1.8						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Δ H			0	FACTOR				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					MET	ER TEMP		S	EF. ΔP	mur <u></u>			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DRY GAS	1		081	TICE	GAS		FUTED	I MP		
SAMPLE TIME, POINT READING, MIN. Reading Cu. FT. IN. H20 mV Δp TEMP. IDEAL ACTUAL TEMP. OF TEMP. GAUGE TEMP. OF EMP. State </td <td></td> <td>CLOCK</td> <td>METER</td> <td>Pi</td> <td>tot</td> <td>SETTING</td> <td>G (ΔΗ).</td> <td>METER</td> <td>VACUUM</td> <td>BOX</td> <td>EXIT</td> <td>STACK</td> <td>LK. CHECK</td>		CLOCK	METER	Pi	tot	SETTING	G (ΔΗ).	METER	VACUUM	BOX	EXIT	STACK	LK. CHECK
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE	TIME,	READING,	Rea	ding	IN.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	0 _F	GAUGE	° _F	° _F	0 _F	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AI	0	302.700	280	08	. 30	.30	510	2	<u> </u>	5%	87	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5	304.360	40	18	.67	.67	86	2	-	56	88	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	10	306,500	650	43	1.62	1.62	88	5	-	58	86	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	15	310.300	670	1.46	1.74	1.74	90	5	-	59	84	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	20	314.050	520	.28	11.06	1.06	44	3	-	60	84	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	25	317.140	300	109	.35	.35	97	2	-	60	84	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	30/0	318,972	560	.32	1.20	1.20	96	6		62	83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	5	322.200	675	47	1.80	1.80	100	8	-	60	84	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10	326.110	700	,50	1,94	1.94	102	9		39	35	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	15	330,130	650	,44	1.68	1.68	104	8		60	84	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-W	232.950	1010	107	.27	.27	100			61	00	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6010	221. 410	100	103	10	10	100		-	60	61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2 1	5	239 1170	575	1 22	1710	1710	in	- <u>T</u>		62	95	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	10	247,770	150	42	164	1/24	107	8	-	64	91	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	15	346. 185	1.10	. 39	149	149	106	17	-	64	93	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	7.0	350, 320	400	1/2	64	64	107	4	-	66	86	<u></u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	25	352.785	155	102	,10	10	106	1		66	83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	19010	353.700	190	03	13	13	100	1/	-	69	40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	5	354.820	400	.16	1,62	.62	99	2	-	67	91]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10	357.280	545	. 30	1.14	1.14	98	12	-	10	90	· 60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	15	360.390	100	1.37	1.41	1.41	99	Ð	-	70	87	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	10	363.780	500	.26	.98	.98	100	4	<u> </u>	70	87	4
120/04 368.340	1	25	366.735	275	.08	,30	.30	100	2	<u> </u>	70	84	ļ
		120101	368.340		<u> </u>	l	<u> </u>		<u> </u>	<u> </u>		l	1

 $\frac{65.64}{V_{M}},\frac{2215}{(V\Delta P)^{2}}$,968 99 87 ∆н тs $\tau_{\rm M}$

ъ-12

Preliminary Field Data

PLANT NAME EMB- EXXON
LOCATION BAYTOWN, TX
SAMPLING LOCATION COLING TOWER # 84
DUCT DEPTH FROM INSIDE FAR WALL TO OUTSIDE OF PORT
NIPPLE LENGTH
DEPTH OF DUCTZB7"
WIDTH (RECTANGULAR DUCT)
EQUIVALENT DIAMETER: $D_{E} = \frac{2 \times \text{DEPTH} \times \text{WIDTH}}{\text{DEPTH} + \text{WIDTH}} = \frac{2()}{()} + \frac{2()}{()} =$
DISTANCE FROM PORTS TO NEAREST UPSTREAM DOWNSTREAM FLOW DISTURBANCE
DIAMETERS
STACK AREA= $(143.5)^2 T = 64.672 m^2$

Point	Z OF DUCT DEPTH	DISTANCE FROM INSIDE WALL	DISTANCE FROM OUTSIDE OF FORT
	2.1	ه)	
2	6.7	19/4	
3	11.8	337/8	
4	17.7	50 ³ /4	
5	25.0	713/4	
6	35.6	102/8	
7	64.4	1847/8	
8	75.0	215 /4	
9	82.3	236 /4	
10	88.2	253/8	
	93.3	26734	
12	97.9	28	
13			
!4			Ì
15			<u> </u>
16			ļ
17			<u> </u>
i8		 	<u> </u>
19			
20		ļ	1
21			
22			i
23			
24			<u>i</u>

LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

	÷	6	8	10	12	14	16	18	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7	1		89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8	i '		96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9				91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10				97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11					93.3	85.4	78.0	70.4	61.2	39.3	32.3
12					97.9	90.1	83.1	76.4	69.4	60.7	39.8
13						94.3	87.5	81.2	75.0	68.5	60.2
14						98.2	91.5	85.4	79.6	73.8	67.7
15							95.1	89.1	83.5	78.2	72.8
16							98.4	92.5	87.1	82.0	77.0
17								95.6	90.3	85.4	80.6
18								98.6	93.3	88.4	83.9
19									96.1	91.3	86.8
20									98.7	94.0	89.5
21										96.5	92.1
22										98.9	94.5
23	1										96.8
24						_					98.9

LOCATION OF TRAVERSE POINTS IN RECTANGULAR STACKS

	2	3	4	5	6	7	8	9	10	11	12
1	25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
3		83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4			87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
5				90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
6					91.7	78.6	68.8	61.1	55.0	50.0	45.8
7						92.9	81.3	72.2	65.0	59.1	54.2
8							93.8	83.3	75.0	68.2	62.5
9								94.4	85.0	77.3	70.8
10									95.0	86.4	79.2
11										95.5	87.5
<u>11</u>											95 5

COMPA ADDRE SAMPL DATE BAROM SAMF SAMF SAMF	INY NAM	$E = E \times 2$ $E \times 2$	M N. HG EST V ATE,	772 TEA 32 ACUU CU. REA MET UMB SAM PRO	EXAS DER 6 M. LEADE D. 35 M. IN. FT./MIN GENT BOX CER BOX CER BOX CER BOX DE BOX BE	84 CE RS HGS I.	TATIC P TATIC P 10 0000 TIFICAT NOZZLE 7 7 7 7 7 7 7 7 7 7 7	TECHNIC RESSURE	RUN NUM TIME ST. TIME FILL IANS	BER (1) ART 09. NI SH _/ /3/3 2 ⁰ ETER	200 200 255	
F11	TFR #	TARE			<u></u>	OGRAPH	SET-UP		NOMOGRA	PH #		
				<u>^u</u>		1.7	v	FACTOR		-		
				MET	ER TEMP		c	TACK TE	MP	-		
				% M	0 I STURE	:	R	EF. AP				
L							1				1	
		DRY GAS	Di	+ - +	ORI	FICE	GAS	PUMP	FILTER	IMP.		
	CLOCK	READING	Read	ding	SETTIN	G (AH), Hao	METER	VACUUM	BOX	EXIT	TEMP	LK. CHECK
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL		GAUGE	O _F	O _F	° _F	READINGS
		B111 994	1150	(1)	47	00	20	<		51	64	<u></u>
/	5	945 870	450	21	87	- 8/	<i>GI</i>	<u> </u>		56	<u> </u>	1
2	10	948. 890	1565	77	137	137	92	R	-	56	91	1
	15	952,100	565	33	137	/ 37	95	8	-	57	91	1
3	20	955,620	575	.34	1.42	1.42	98	8	-	58	92	1
	25	959.210	575	.34	1.42	1.42	99	8	-	59	90]
4	30	962.950	525	.28	1.18	1.18	[0]	7	-	60	89	
	35	966,225	525	,28	1.18	1.18	102	7	-	60	89	
5	40	969.680	205	.04	. 18	.18	104	1		60	89	1
	45	1971.020	205	.04	.18	.18	105	1		60	91	
6	50	972.430	155	.02	.10	.10	105		-	60	91	4
	600	973.500	155	.02	.10	,10	107	1_/		63	90	<u> </u>
12	60/0	974.676	340	.12	.51	.5/	105	3	-	66	91	4
	5	976.970	340	.12	.51	1.51	105	3	-	64	92	<u> </u>
//	10	979.210	475	.23	.99	. 99	105	6		63	93	4
	13	982.440	4/2	123	.99	.97	106	6	-	05	93	<u> </u>
10	20	785.480	500	16	1.10	1.10	109	<u>_</u> [<u>_</u>	1	64	91	4
	25	988-850	500	.76	1.10	1.10		6		67	75	<u> </u>
	20	776.160	5/0	27	1.14	1.14	1172		-	66	75	1
0	<u> </u>	1772.420 Car son	40	<u></u>	1.14	1.14	114	2-		64	90	<u> </u>
/ -	40	770.0 10	<u>her</u>	N.		47	115	12		70	01	4
7	50	000.070	100	Ma		10	115			70	41	1
<u> </u>	55	ANZ 760	150	N7.	10	10	115	· · · ·	-	20	61	4
	KADhir	004 452	100				1.0				<u> </u>	1
L	1 white		1		1	÷	<u></u>	. <u>+</u>	i	• ···	<u> </u>	→

 $\frac{61.528}{V_{M}} \frac{1553}{(\sqrt{\Delta P})^{2}} \frac{1769}{\Delta H} \frac{105}{T_{M}}$

Δн т_м B-14

92 т_s

COMPAL ADDRE SAMPL DATE _ BAROM SAMP SAMP EQ PIT PIT PIT ORS TED THE FIL	NY NAME SS ING LOO G-4. ETRIC I ETRIC I TOTS, PI TOTS, PI	EXXO BAYTON CATION COOL 86 PRESSURE, IN RAIN LEAK TE RAIN LEAK RA T CHECKS RE-TEST OST-TEST PLING SYSTEM G PLE @ TARE	N N IAJG ST V ATE,	TEA TEA ACUU CU. REA MET UMB SAM PRO	XA5 CC SC M LEADE 0.3 FT./MIN FT./MIN FT./MIN FT./MIN ER BOX ILICAL PLE BOX BE	4 (. EL R D 	L # A B TATIC PI TATIC PI TIFICAT NOZZLE TIFICAT T T SET-UP T C	TECHNIC RESSURE ION NUM 705 /C READ /C PROB RSAT PUI EDLAR B	RUN NUME FIME STA FIME FIN IANS , IN. H BERS BERS DIAME OUT AG NOMOGRAI	ETER	257	
	<u> </u>			MET	ER TEMP		S	TACK TE				
				% M	OISTURE	·	R	EF. AP				
SAMPLE	CLOCK	DRY GAS METER READING,	Pi Read	tot ding	OR II SETT I NO IN.	FICE G (ΔΗ), H ₂ O	GAS METER TEMP.	PUMP VACUUM IN. HG	FILTER BOX TEMP.	IMP. EXIT TEMP.	STACK	LK. CHECK READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	° _F	GAUGE	° _F	0 _F	° _F	
12	0	004.697	370	.14	.63	.63	115	4	-	58	90	
	5	007.370	370	.14	.63	.63	115	4	-	37	90	
	10	009.850	510	.27	1.20	1,20	113	5		57	91	4
	15	013.200	510	21	1.20	1.20	112	5	-	58	91	
10	20	016.140	505	10	1.10	1.10	110	3	-	20	90	-
a	30	012 400	500	26	1.05	116	117	5		59	59	
	35	026. 880	500	126	1.16	1.16	114	5		60	49	• ·
8	40	030.420	310		.45	45	114	2	-	62	87	
	45	032.770	270	.08	. 34	.34	114	2		62	82	1
7	50	034.630	190	.03	.15	.15	114	2	-	63	84	
	55	036.100	180	.03	.15	.15	113	2	-	65	85	
/	60/0	037.400	475	1.23	1.04	1.04	111_	5	-	69	89_	4
	5	040.750	475	1.23	1.04	1.04	110	5		66	89	
L	10	044.000	550	.31	1.41_	1.41	110	6		61	87	4
	12	071.600	550	21	1.41	1. TI	119	6		07	48	+
	25	001. 200 055800	570	1 24	1.01	1.51	112			51	49	4
4	130	159 120	400	17	25	75	113	4	-	70	86	
· · · · ·	38	062.100	400	.14	.782	.74	117-	4	-	70	88	4
- 5	40	064.800	185	.04	.16	.16	112	Z	-	69	85	1
	45	066.570	200	.04	.19	19	111	2	-	69	86	
6	50	068.000	200	104	.19	.19	111	2	-	7/	86	
	55	069.565	200	.04	.19	.19	110	2	-	71	86	
L	to off	070.942	<u> </u>			Í				[<u> </u>	1
	L										_	

 $\frac{66,245}{V_{M}},\frac{16/4}{(12P)^{2}},\frac{18/5}{2},\frac{1/2}{B-15}$

88 т_s

COMPA ADDRE SAMPL DATE BARON SAMF SAMF EC PIT ORS	INY NAM	PRESSURE, II TRAIN LEAK TH TRAIN LEAK TH TRAIN LEAK RU TC CHECKS PRE-TEST POST-TEST PLING SYSTEM	N. HG EST V ATE,	TEA TOWA TEA ACUU CU. REA MET UMB	S <u>ER 84</u> M LEADE Q.25 M. IN. FT./MIN FT./MIN GENT BO ER BOX HLICAL	<u>CELL</u> R <u>D</u> HG <u>J</u> HG <u>J</u> NO I DEN X <u>V</u> V 14	B TATIC P 14 1020 TIFICAT NOZZLE 1 T	TECHNIC RESSURE	RUN NUM TIME ST. TIME FIL IANS	$\frac{\partial \mathcal{E}}{\partial \mathcal{E}}$	14 <u>B-1</u> 150 100 307	
	ERMOCOU	IPLE @	٥ _F	PRO		-	т	EDLAR B	AG			
<u>F 11</u>	TER #	TARE			NOM	OGRAPH	SET-UP		NOMOGRA	PH #]
-	< _			۵He) <u> </u>	1.72	c	FACTOR				
				MET	ER TEMP	-	s	TACK TE	MP		<u> </u>	
				% M	O I STURE		R	REF. AP				
		DRY GAS			ORI	FICE	GAS	PUMP	FILTER	IMP.		
	CLOCK	METER	Pi	tot	SETTIN	G (∆H),	METER	VACUUM	вох	EXIT	STACK	LK. CHECK
SAMPLE	TIME,	READING,	Rea	ding LAD	IN.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
POINT	IMIN.		1110	<u> 25</u>	IDEAL	ACTUAL	F	GAUGE	F	-F		<u></u> _
12	0	080.476	480	,24	207	2,07	88	11	-55	55	89	-
	5	084.500	480	.24	2.07	2.07	89			36	- 99	
//	10	088.710	200	120	2.21	2.21	41	12		38	88	4
	13	093,100	500 6700	26	201	2.21	61	12		27	87	<u></u>
	25	109010	5110	20	2.67	2.67	16	13	-	61	GD	4
G	30	106.850	570	12	2.38	238	102	17		60	01	
	35	111.480	510	.77	2,39	239	104	13		60	91	4 ·
8	40	111.300	357	.17.	1.17.	117.	105	8	-	60	92	·
	45	119750	300	.09	.83	. 87	105	6	-	60	92	1
7	60	122.490	270	07	.67	.67	106	6	-	61	91	
	55	125,210	270	07	.67	.67	106	6	-	62	91	1
1	6010	127.710	400	,16	1.48	1.48	106	9	-	67	90	
	5	131.500	400	16	1.48	1.48	106	9	-	63	91	
2	10	135.320	500	.25	2.31	2.31	108	12	-	62	92	4
	15	139,850	500	.26	2.32	2.32	/10	12		62	91	<u> </u>
3	20	144.520	530	.29	2.63	2.63	114	13	-	64	91	4
ļ	25	149.420	530	.29	2.63	2.63	115	13	-	66	91	<u> </u>
4	30	154.450	450	,21	1.90	1.90	118	11	-	67	92	4
<u> </u>	35	158.720	450	11	1.90	1.90	118	11		68	92	
5	40	163,000	210	105	.42	.42	118	5	-	10	91	.
├ ──,	75	165.060	2/0	05	.42	.42	118	5		71	91	
6	150	167.310	175	105	.29	.29	118	4	-	10	90	4
	122	164.030	173	205	.07	.29	110	4		70	70	
L	TWDIE	110.350		Į	1	1	!	<u> </u>	<u> </u>	<u>l</u>	1	1

90,354 .1691 (+<u>\</u>P)² v_M

1.66 106 ΔH тм

91 ۲_s

R_16

COMPAI ADDRE SAMPL DATE_ BAROM SAMP SAMP SAMP SAMP	NY NAME SS ETRIC LING T LING T UIPMEN OTS, P OTS, P OTS, P AT SAM	E EXXON BAYTOWN CATION COOL 5-80 PRESSURE, IN RAIN LEAK TE RAIN LEAK TE RAIN LEAK RA T CHECKS RE-TEST OST-TEST PLING SYSTEM G	A	AS TEAL ACUU CU. REA MET UMB SAM	WER S M LEADER 2. 25 M. IN. IN FT./MIN GENT BO ER BOX ILICAL PLE BOX	34 0E R HG . ,000 <u>IDEN</u> X 	IL B D TATIC PI ID ODD TIFICAT NOZZLE H T O	TECHNIC RESSURE	RUN NUME TIME STA TIME FIN IANS IN. H BERS DIAMI DUT P	BB 0 ETER	308 308		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
C FACTOR C FACTOR METER TEMP STACK TEMP % MOISTURE REF. ΔP													
SAMPLE	CLOCK TIME, MIN.	DRY GAS METER READING, CU. FT.	Pi Read MV	tot ding Δp	OR IF SETT INC IN. IDEAL	FICE $(\Delta H),$ H_2O ACTUAL	GAS METER TEMP. O _F	PUMP VACUUM IN. HG GAUGE	FILTER BOX TEMP. ^O F	IMP. EXIT TEMP. O _F	STACK TEMP. ^O F	LK. CHECK READINGS	
1	0	172.800	390	16	1.42	1.42	109	5	-	54	<i>40</i> <i>40</i>		
2	10	180.520	528	128	2.51	2,51	110	7	-	56	91		
3	20	190.380	530	,29	2.62	2.62	114	7	-	58	91		
4	30	200.440	530	1.29	2.63	7.63	116	6		<u>58</u> 58	92 92] .	
	35	204.830	465	.22	2.02	2.02	115	6	-	60	92	 	
3	40	213,140	365	14	1.25	1.25	114	5	-	60	95	1	
6	50	216.750	170	03	. 27	,27	113	2	-	62	91		
12	6010	218.50	420	18	1.65	1.65	110	6	-	68	91		
	5	224.250	400	1.16	1.49	1.49	110	6	-	65	90	•	
	10	228,150	550	31	281	281	110	8	-	65	91		
10	20	238640	550	131	2.82	2.82	112	8		60	91		
	25	243.375	505	.33	2.98	2.98	113	8	-	70	91		
9	30	248.700	520	.28	254	2.54	113	8	<u> </u>	171	90	4	
0	40	258 510	24	112	1234	109	115	8	-	72	90		
	45	261.870	340	12	1.09	1.09	114	5	-	73	90	1	
1	50	265,200	210	105	1.42	.42	114	2	-	15	89		
ļ	55	267.450	200	104	1.37	37	110	2	-	15	90	1	
L		107.213		J	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	_ <u></u>	<u>Ч</u> .	

٠

 $\frac{96,715}{V_{M}},\frac{18/4}{(1,2P)^{2}},\frac{1.79}{2},\frac{112}{B-17}$ 91____ т_s

COMPANY NAME <u>ETRON - EMB</u> RUN NUMBER CT 84-C-1												
ADDRESS DATY TOWN IX TIME START ON STAR												
SAMPLING LOCATION - 104 THY LETT - THE FINISH TECHNICIANS TH												
		PRESSURE IN	 L. НG	: 3	0.35	S	TATIC P	RESSURE	. IN. H	,0 /		
	BAROMETRIC PRESSURE, IN. IN IN IS STATIC PRESSURE, IN. 120											į
SAMPLING TRAIN LEAK RATE, CU. FT./MIN. 0.001 0.001 0.001												
					. <u> </u>		TIFICAT		BEBC			1
EQ	UTPMEN	I CHECKS				IDEN	TIFICAT		BERG	1	<u></u>	
<u>></u> PIT	OTS, P	RE-TEST		REA	GENT BO	x <u></u>	NOZZLE	206	DIAM		-50	
PIT	OTS, P	OST-TEST		MET	ER BOX	NIO	т	/C READ	<u>007 _00</u>	09		
ORS	AT SAM	PLING SYSTEM	1	UMB	ILICAL	<u> 12</u>	T	/C PROB	E <u>4-</u>	10		
TED	LAR BA	G	0	SAM	PLE BOX		°	RSAT PU	MP	- 		
	RMOCOU	PLE @ <u>[0</u>	F	PRO	BE	· · · · · · · · · · · · · · · · · · ·	T	EDLAR B	AG			ļ
FIL	TER #	TARE			NOM	OGRAPH	SET-UP	!	NOMOGRAI	¤H: #		
				۵He	ı	.68	c	FACTOR				
				MET	ER TEMP	-95	s	TACK TE	мрс	2		
				% M	OISTURE	<u> </u>	R	EF.∆P			<u> </u>	
L						· · · · · · · · · · · · · · · · · · ·		<u> </u>	- 			ג ד
		DRY GAS			ORI	FICE	GAS	PUMP	FILTER	IMP.		1
	CLOCK	METER	Pi	tot	SETTING	; (AH),	METER	VACUUM	вох	EXIT	STACK	LK. CHECK
SAMPLE	TIME.	READING,	Read	ding	1N.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	° _F	GAUGE	F	° _F	°F	<u>_</u>
1	0/0	368.639	469	0.23	0.85	0.85	90	6	NA	55	91	
٤.	5	371.110	473	0.23	0.87	0-87	93	6		53	90	
2	10	373.92	5-68	0.33	1.25	1.25	94	8		55	92	
	15	377.61	-66	0.33	1.25	1.25	94	8		56	GI	
3	20	340.57	580	0.34	1.31	1.31	94	8		5-8	91	
	25	384.34	571	0.33	1.27	1.27	95	8		5-7	91	
11	30	782.72	282	0.15	0.57	0.57	96	5		58	91	
		360.41	401	0.16	0.61	0.61	94	5		58	99	
<	44	392.48	126	0.03	0.12	0.12	90	2		-9	99	
-3	40	293.69	1-4	0.07	0.7-	0.09	94	2			102	1
7	<u></u>	29/1.17	<u> </u>	0.03	<u></u>			2		(0)	103	
		390-17	11/2	5.05	a. 10	0.15	100	<u> </u>		61		1
12		201 / 41	200	<u></u>		0.70	97	5		<u></u>	91	396.691
	60	700.01	<u>180</u>	0.12	0-37	0.01	a<,	5	<u> </u>	5-5	4/	396.62:
	~~	378 //	1.21	0.27	0.07	0.87	49	<u> </u>		~ S	92	
	7-	40011	4.20	0.01		O.C.	100	7		9	97	1
	#5	400.0T	14X1	0.24	0.11	0.71	100			61	1 1 2	<u>├</u> ────────────────────────────
	80	400.62	474	0 21	0.7 +	0.1+	10 -		<u> </u>		01	1
0	85	404.81	003	0.20	1.00	0.44	101	· · · ·	+	(aQ	<i>VI</i>	
-7	70	412.65	413	10.23	0.96	0.70	102	$\frac{1}{1}$	+	<u> </u>	1.71	1
	95	415-57	1455	0.21	10.82	0.82	10-	<u> </u>		61	101	
L X	100	418.52	127	10.02	10.02	0.07	102	<u> </u>	+ $+$	<u> </u>	11	4 -
	105	4(7.61	206	0.04	0.17	0.13	102	$\frac{2}{1}$	<u> </u>		112	
<u> </u>	10	1420.80	1133	10.02	10.07	0.07	102	<u> </u>	<u> </u>	<u>6D</u>	71	4
	1.5	421.74	1143	10-02	10.08	0.08	102	<u> </u>		62	12	<u> </u>
l	120/01/	422.680	<u> </u>		l	l	!	<u> </u>	<u> </u>		L	1
			J									

53,983 1424 (+<u></u>2) (+<u></u>2) v_m

642 98 ∆н -т_м В+18

93_ т_s

LAVITORALE TITES NULV

COMPAN	Y NAME	EXTON _	Em	6				F	RUN NUM	BER CT8	4-2-2	-
ADDRES	55 <u>B</u>	44 town	Γ χ						TIME ST	ART 12	24_	
SAMPLING LOCATION CT84, FAU CELL C TIME FINISH 1442												
DATE 9/4/86 TEAM LEADER TMS TECHNICIANS TM												
BAROMETRIC PRESSURE, IN. Hg 30.35 STATIC PRESSURE, IN. H20 1												
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG 12												
SAMPL			. / E, ,	<u> </u>								{
EQ	JIPMEN	T CHECKS				IDEN	TIFICAT	ION NUM	BERS		ļ	
PIT	DTS. P	RE - TEST	1	REA	GENT BO	×	NOZZLE	704		ETER	249	
PIT	DTS, P	OST-TEST		MET	ER BOX	N 10	т	C READ	OUT 00	09		
ORS/	AT SAM	PLING SYSTEM	L	UMB	ILICAL	U2_	т	C PROB	= <u>5</u> -	2		1
	LAR BA	6	•	SAM	PLE BOX	22	0	RSAT PU				
THE	RMOCOU	PLE @ <u>90</u>	0 ₅	PRO	BE _1_			EDLAR B	AG	<u> </u>		[
FIL	TER #	TARE			NOM	OGRAPH	SET-UP		NOMOGRA	.PH #		
	- '			۵Ha	<u></u>	68	c	FACTOR				
				MET	ER TEMP	95	s	TACK TE	MP _ <u>90</u>			
				% M	OISTURE	2	R	EF.∆P			<u> </u>	
				<u> </u>						<u></u>		<u>,</u>
	Ì	DRY GAS	1		ORI	FICE	GAS	PUMP	FILTER	IMP.		
	CI-OCK	METER	Pi	lot	SETTING	5 (AH),	METER	VACUUM	вох	EXIT	STACK	LK. CHECK
SAMPLE	TIME,	READING,	Rea	ding	1N.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	° _F	GAUGE	F.	^o _F	1 ⁰ F	
12	0/0	1122.670	1256	015	0.59	0.59	98	3	NA	53	93	
	5	425.59	362	10.13	0.51	0.51	98	2		155	192	
2011	10	422.51	441	0.21	0.51	0.87	98	2	i _	156	92	
	1-	1130.42	1151	10.20	A 41	0.91	98	2	i	50	92	
710	<u> </u>	1122.99	1,9/	0.25	0.97	0.97	190	2		5-9	92	
	<u> </u>	03-11	503	10.26	1.05	1.00	99	2		60	91	1
- 9	30	4.29.05	47	0.26	0.96	0.96	90	2		<u>69</u>	91	
	20	11121.19	40	10.21	0 02	0.62	90	 		1-9	91	
00		44 77	109	0.21	0.2	0.02	99	1	<u> </u>	60	191	<u> </u>
	40	4 + + +	1006	10.07	0 15	0.07	96		<u>}</u> -}-	61	93	- ·
67	45	117 28	1.23	0.01	0 07	12.02	91			160	911	
		1. 7. 89	1100	0.01	0.04	0.04	96	14-7		60	1 4 2	{
76		44 7 7 7	1/43	0.02	A 10		911			50	93	449.022
22	60	444.03-	165	0.03	0.10	0.10	91.	1	 	100	193	448-918
85			1.~	8	0.09	0.00	94	÷		60	93	
- <u>-</u>	70	NED SC	1.7/	0.00	0.12	0.10	91	/	<u>├──</u>	62	95	4 [
A 11		404 OX	110	11-			44		 -	161	192	; /
4.4		453:41	401	0.14	10.61	10.61	93	<u></u>	<u>├</u> ┼	101	193	
10.7	85	455.58	182	10.15	10.57	0.0+	13	4	+	162	102	<u>+</u>
12 5	70	45+.11	5+1	21	1-2+	1-27	100	6	┼─┼──	6	197	4
14	95	461.41	540		11.51	1-31	19-	10	<u>}-</u> <u>}-</u>	<u>164</u>	103	
772	100	464. 7-	564	10.35	1.25	1.25	12	10	\	<u>+63</u>	175	4
	105	468.16	567	0.35	11-25	1.15		6	<u> </u>		172	
+=	110	470. 9	47-3	0.25	10.87	10.87	142	15	+	K0.5	$\frac{17}{10}$	┥ │
}	115	14+4.01	401	10.23	10-85	10-85	192	15	+++-	185	142	<u> </u>
L	12doff	476.710	1	<u> </u>	<u> </u>	<u> </u>	1	1	<u>⊥_Ψ</u>	<u> </u>	<u> </u>	1
	10	1										

642 95 $\frac{53,726}{v_{M}},\frac{1424}{(\sqrt{\Delta P})^{2}}$ 92 ∆н в-19 τ_s тм

COMPA ADDRE SAMPL DATE BAROM SAMF	INY NAM	E EXAM - CATION CT & C - 86 PRESSURE, IN RAIN LEAK TE RAIN LEAK RA	2 / 7 / 4 , 4 ,	TEAU TEAU 30 ACUU	CAN M LEADE D. 25 M. IN. FT./MIN	R DAIS) TATIC P 9 9 000	TECHNIC RESSURE	RUN NUM TIME ST TIME FII IANS 7 , IN. H	BER (1) ART <u>08</u> NISH <u>10</u> - <u>M</u> 2 ⁰ _/	4 <u>-D-1</u> 35 43	
EQUIPMENT CHECKS IDENTIFICATION NUMBERS												
PIT	TOTS, P	RE-TEST	i	REA	GENT BO	x <u>~</u>		707			199	
-PIT	TOTS, P	OST - TEST		MET	ER BOX	NIO	T	/C READ	ол <u>оо</u>	<u>99</u>		
ORS	SAT SAM	PLING SYSTEM	4	UMB	ILICAL	$\frac{0}{1}$	Ť	C PROB	E			
	RMOCOU	C PLE @ <u>90</u>	0 _F	PRO	BE <u>2</u>		О	EDLAR B				
FIL	TER #	TARE			NOM	OGRAPH	SET-UP	<u> </u>	NOMOGRA	РН #		
				лно	1.6	, 8	c	FACTOR	<u> </u>			
				MET	ER TEMP	93	s	TACK TE	MP <u>90</u>)		
				% М	OISTURE	2	R	EF.∆P		<u> </u>		
L			'	 I			· <u>·</u> ··································		1		1	
		DRY GAS	Di Pit	tot	ORI	FICE	GAS	PUMP	FILTER	IMP.		
	CLOCK	READING.	Read	ling	SETTING	5 (ΔΗ), H ₂ O	TEMP	IN HG	BOX TEMP	EXIT	STACK	READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	° _F	GAUGE	° _F	0 _F	0 _F	
	0/2	1184.748	276	08	.61	19.61	90	4	alla	6	85	
	5	487.09	293	१०.	. 70	0.61	92	4		5-6	84	
21	10	469.91	465	. 22	1.76	1.76	94	7		58	84	
	15-	493.27	472	.23	1.80	1.50	94	7		58	87]
310	20	497.31	483	. 74	1.87	1.87	94	7		59	89	ļ
	25	501.19	4%	.25	1.96	1.96	44	8	<u>├──</u>	58	4.0	<u> </u>
# 4	30	545.23	485	. 24	$\left[8 + \right]$	1.87	9.5	2		58	71	d ·
	35	509.2+	474	123	1.94	1-94	15	8		5 +	72	
28	40	513.52	270	58	0 60	0.60	91	4	<u>}</u>	58	972	1
\$7	45	518.22	152	.02	0.14	0.10	96	 		58	93	
	55	519.36	127	.02	D.13	0-13	26	1		59	93	
₹6	60	520.37	153	,62	0.19	0.19	96			56	92	
	65	521.82	148	.02	0.17	0.17	96	1		5-2	91	<u> </u>
\$5	70	523.10	189	.04	D.28	0-28	96	2	<u> </u>	58	91	4
	25	524.62	206	<u>,04</u>	0.34	0.34	97	2	<u> </u>	60	22	
84	80	526.68	489	.24	1.91	1-91	195	<u> </u>		59	192	4
1005	85	510.57	467	. 22	1. +4	1.24	193	7		6/	7/	
12	<u>70</u>	534-15	503	.60 -a	2,15	2.02	96	9	<u>├ </u>	67	92	4
102	100	542.82	471	. 23	1.82	1.82	97	7	i †	64	91	
	105	547.01	446	,24	1.86	1.88	196	X		64	90	1
121	110	550.83	316	<u>.</u>	0.80	0.40	96	4	V	65	91	
	115	553.56	323	.11	0,83	0.83	25	5		64	90	<u> </u>
	120/01	1550.269				l	<u> </u>		l	1	<u> </u>	1
	1 1	ł	1								-	

70,521 ,1307 VM (VDP)2

95 1.17 Δн - т_м

90 ۲_s

R-20

RUN NUMBER CTF4-D-D COMPANY NAME EXTON - EMB ADDRESS <u>BAYTOWN</u> TX. SAMPLING LOCATION <u>CT 84</u>, <u>FAN CLII</u> D DATE <u>9-5-86</u> TEAM LEADER <u>DM3</u> TECHNICIANS <u>IM</u> BAROMETRIC PRESSURE, IN. HG 30.25 STATIC PRESSURE, IN. H20 / SAMPLING TRAIN LEAK TEST VACUUM, IN. HG 15 8 SAMPLING TRAIN LEAK RATE, CU. FT./MIN. 0.008 0.005 IDENTIFICATION NUMBERS EQUIPMENT CHECKS PITOTS, PRE-TEST METER BOX N/D T/C READOUT 0009 PITOTS, POST-TEST UMBILICAL U2 T/C PROBE ---- ORSAT SAMPLING SYSTEM SAMPLE BOX 21 ORSAT PUMP TEDLAR BAG THERMOCOUPLE @ 90 OF PROBE _2 ~_____ TEDLAR BAG _____ NOMOGRAPH SET-UP NOMOGRAPH #____ FILTER # TARE ΔH_Q 1.68 C FACTOR METER TEMP <u>90</u> STACK TEMP <u>90</u> % MOISTURE <u>2</u> REF. ΔP GAS PUMP FILTER IMP. DRY GAS ORIFICE Pitot SETTING (AH), METER VACUUM BOX METER EXIT STACK LK. CHECK CLOCK READING, Reading IN. H20 TEMP. IN. HG TEMP. SAMPLE TIME. TEMP. TEMP. READINGS GAUGE OF ۰_۲ 0_F CU. FT. MV AP IDEAL ACTUAL OF POINT MIN. 5 N/A 52 90 0/0 556.523 3790.151.14 1.14 92 5 559.68 3850.141.18 1.18 94 5 52 90 192 10 562.93 5020.262.00 2.00 196 8 53 15 566.97 489 0.24 1.91 1.91 28 8 53 92 7 55 92 20 570.92 4790.23 1.83 1.83 100 25 574.95 18 58 192 4830.24 1.87 1.87 101 92 52 30 579.02 3620.13 1.05 1.05 102 5 4 58 99 1.01 100 3-582.16 3540.13 1.01 5 40 585.12 136 0.02 0.13 0.13 101 1 59 192 192 119 0.01 0.11 61 45 586.31 0.11 102 6 50 587.35 1240.02 0.17 0.13 100 61 192 5558.60 1200.01 0.11 0.11 98 63 92 60 589.51 45000 0.11 1 to 1 96 195 2 11 63 65 590.59 130 0.02 0.13 0.13 96 1 61 94 1149 0.02 0.18 0.18 96 61 123 8 70 591.76 2 75- 593.07 182 0.03 0.26 0.26 96 12 62 94 80 594.64 4530.21 1.63 1.63 28 64 193 499 0.24 1.98 1.98 100 85 598.24 8 63-194 90 602.42 468 0.22 1.73 1.73 198 ーイ 65 194 10 95-606-33 472 0.23 1.77 1.77 99 7 66 96 412 0.17 1-35 1.35 100 6.5 193 100 610.18 105 614.01 3790.15 1.14 1.14 100 65-194 5 1337012 0.98 0.90 99 12 110 618.21 67 19'4 4 115 619.67 3480.12 0.96 0.96 97 5 67 93 120/11 622,638

 $\frac{66.115}{V_{M}} \frac{1082}{(\sqrt{\Delta P})^{2}} \frac{103}{\Delta H}$ ∆н т_м

93

т₅

B-21

COMPAL ADDRE SAMPL DATE BAROM SAMP	NY NAME SS ING LOO ETRIC I LING TI LING TI	E = EMB $BATE$ $CATION COL DL - BC DL - BC DTESSURE, IN RAIN LEAK TE RAIN LEAK RA$	- <u>()</u> ()) () () () () () () () () () () () ()		2 A) X M LEADE B⊂625 M, IN. FT./MIN	- <u>Γ</u> Δλ (ε R <u>B</u> R 	145 (5 1450 TATIC P 15 5 0.00		RUN NUM TIME ST TIME FII IANS , IN. H	BER <u>C1.</u>	<u>68-D</u> I <u>15</u> 554	
EQUIPMENT CHECKS												
	OTS, PI OTS, PO AT SAM	RE-TEST OST-TEST PLING SYSTEM		REA MET UMB	REAGENT BOX NOZZLE DISC DIAMETER METER BOX T/C READOUT UMBILICAL T/C PROBE							
	RMOCOU	PLE @ 80	0 _F	PRO		Ç-,	<u>е</u> т	EDLAR B	AG			
FIL	TER #	TARE			NOM	OGRAPH	SET-UP		NOMOGRA	PH #		
				۵He		1.79	<u> </u>	FACTOR	. <u> </u>			
				MET	ER TEMP		S	TACK TE	MP			
												<u>]</u>
SAMPLE	CLOCK TIME, MIN.	DRY GAS METER READING, CU. FT.	Pi Rea mv	tot ding Ap	OR II SETTING IN. IDEAL	FICE G (AH), H ₂ O ACTUAL	GAS METER TEMP. O _F	PUMP VACUUM IN. HG GAUGE	FILTER BOX TEMP. ^O F	IMP. EXIT TEMP. ^O F	STACK TEMP. ^O F	LK. CHECK READINGS
A. 4		468.874	(00	0.37	2 57	252	94			69	81	
<u></u>	15	484.59	1	1	1	3.52	94	1:10		62	82	
	30	500.38				352	ବବ	01		64	84	
	45	· 5 1 Cer. 8 C	1	*	4	3.52	100	4		65	85	
	0/40	573.69	}]	<u> </u>	<u> </u>	3.52	09	10	<u> </u>	62 KJ	REL	4
	- 20	54412	[3.74	10		<u> </u>	V T (Э	RL	
	45	- <78,71				2 57	100	10		65	84	LOTAN CHISCH
	120/0	593.670	i	1		3.52	100	10		61	85	593,800
	15	609.33				3.52	99	10		63	86	
	30	627.81				3052	100	10		54	87	
	45	- 641.07				3.52	100	91		66	-85	
	1896	656.17		 +		3.52	100	10		62	84	4
	15	671.87		ļ		3.52	10(10		60	66	
	30	787.43	1	<u> </u>		132	100	10	<u> </u>	63	66	4
	45	106.72				3.54	/@	10		62	OT	
	27935	+10.+14	<u> </u>						! 	1 		4
									<u> </u>			<u> </u>
				İ							1	1
											1	
L			ļ			ļ			ļ	<u> </u>		
			<u> </u>		ļ		<u> </u>	<u> </u>	<u> </u>		<u> </u>	4
					<u> </u>	1	 	 		!		<u> </u>
			<u> </u>	!	1	<u> </u>	<u> </u>	!	<u>I. </u>	<u></u>	l	1

85 249.71 0.37 3,52 99 $(\sqrt{\Delta P})^2$ v_м т_s Δн $\tau_{\rm M}$ B-22

COMPANY NAME <u>EMB-EX</u> ADDRESS <u>BPTOWN</u> SAMPLING LOCATION <u>COL</u> DATE <u>D9.02.86</u> BAROMETRIC PRESSURE. IN. HO SAMPLING TRAIN LEAK TEST SAMPLING TRAIN LEAK RATE, <u>EQUIPMENT CHECKS</u> <u>PITOTS, PRE-TEST</u> DATE <u>DET TEET</u>	XDN TX TAN LEADER B. P. G 30.2 ST VACULIM, IN. HG S CU. FT./MIN. D.DO IDEN REAGENT BOX	RUN N TIME TIME TIME TIME TADD TECHNICIANS TATIC PRESSURE, IN. <u>10</u> RUN N TIFICATION NUMBERS NOZZLE DISC DI	Imber CT68+DT START 0950 FINISH 1351 H20 AMETER	2						
- ORSAT SAMPLING SYSTEM - TEDLAR BAG - THERMOCOUPLE @ 10 °F	UMBILICAL U.I. SAMPLE BOX 27 PROBE 6.0	METER BOX NIC I/C READOUT OUS UMBILICAL U.II T/C PROBE S.S SAMPLE BOX 27 ORSAT PUMP PROBE S.A TEDLAR BAG								
<u>FILTER # TARE</u>	FILTER # TARE NOMOGRAPH SET-UP NOMOGRAPH #									
CLOCK DRY GAS CLOCK METER Pi READING, Rea POINT MIN. CU. FT. MV	ORIFICE Ltot SETTING (ΔΗ), ading IN. H20 ΔP IDEAL	GAS PUMP FILTE METER VACUUM BOX TEMP. IN. HG TEMP ^O F GAUGE ^O F	ER IMP. EXIT STACK TEMP. TEMP. OF OF	LK. CHECK READINGS						
PA 719.600 58: 15 235.89	5.95 3.21 3.21	90 10	- 63 93 60 93	 						
39749.06 4 45763.72	¥ ¥ 3.21 3.21	94 10	58 92							
15 794.22	3.2(98 10	66 91 66 9B	<u></u>						
30 809.69	3.21	<u>18</u> 99 (0)	65 93							
1200 B39.28	3.21	99 10	60 93	4						
30 87431	B :2(180 10	57 92							
180/0 900.28	3.21	102 10	$(2 \ \beta 3)$							
5 930.09		104 10	64 72							
240000 959.240	2,44	162 10								
				4						
				<u> </u>						

 $\frac{239.64}{v_{M}} \frac{35}{(\sqrt{\Delta P})^{2}} \qquad \frac{3.2}{P} \frac{98}{7}$ $\frac{3.2}{98}$ $\frac{3.2}{98}$ $\frac{3.2}{98}$ B-23

93 т_s

SAMPLING LOCATION COOLING DATE 09.03.86 BAROMETRIC PRESSURE, IN. H SAMPLING TRAIN LEAK TEST SAMPLING TRAIN LEAK RATE,	TX TEAM LEADER B.BR G <u>30.25</u> VACUUM, IN. HG <u>15</u> CU. FT./MIN. <u>D.D</u>	TATIC PRESSURE	TIME START $_$ TIME FINISH \angle TANS $_$ TINS $+_20$ $_$	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>					
EQUIPMENT CHECKS									
PITOTS, PRE-TEST PITOTS, POST-TEST ORSAT SAMPLING SYSTEM TEDLAR BAG THERMOCOUPLE @OF	REAGENT BOX L METER BOX <u>N:(L</u> UMBILICAL <u>U.II</u> SAMPLE BOX <u>2</u> PROBE	REAGENT BOX NOZZLE DISC DIAMETER METER BOX N:(L T/C READOUT 0009 UMBILICAL U.U T/C PROBE S.S SAMPLE BOX 27 ORSAT PUMP							
FILTER # TARE	NOMOGRAPH	SET-UP	Nomograph #						
	ΔH@ METER TEMP % MOISTURE	C FACTOR STACK TEN REF. ∆P	мр						
DRY GAS CLOCK METER P: SAMPLE TIME, READING, Rea POINT MIN. CU. FT. MV	ORIFICE SETTING (ΔΗ), ading IN. H ₂ O ΔP IDEAL ACTUAL	GAS PUMP METER VACUUM TEMP. IN. HG ^O F GAUGE	FILTER IMP. BOX EXIT TEMP. TEMP. ^O F OF	STACK LK. CHECK TEMP. READINGS ^O F					
A.4 0/0 959.405 Lor	37 3.54 5.54	88 9	- 65	81					
15 975.010	3.54	44 9	<u>(e)</u>	81					
45 006 870 V	V V 1254	100 9	61	83					
60/0 021.960	3.54	103 9	102	83					
15 037.520	3.54	103 9	64	<u>PS</u>					
30 053,420	3.54	103 9	43	84					
45 069 240	3.54	103 7		50					
12 10/ 165	2.54	104 9	60	<u>A</u> U					
30 117.185	3.54	104 9	61	84					
45 133.185	3.54	104 9	62	84					
100/0149.350	3.54	104 9	42	83					
15 165.220	<u>3.sv</u>	104 4	65						
30 181.150	3.54	104 9	63	67					
249661213 179									
			· · · · · · · · · · · · · · · · · · ·						
		<u> </u>							

83 253724 <u>,37</u> (VAP)² <u>3, 54</u> 102 VM т_s ΔH т_м B-24

COMPANY NAME EMB-EXX	od		RUN NUMBER CT.	H ATT 4						
ADDRESS DAYTOWN			TIME START							
SAMPLING LOCATION DOLING	LOWER # 04	- FANGELE D	TIME FINISH	<u>+10</u>						
DATE DE DE TEAM LEADER D'ECHNICIANS										
BAROMETRIC PRESSURE, IN. HG STATIC PRESSURE, IN. HZU I LO										
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG										
SAMPLING TRAIN LEAK RATE, CU. FT./MIN. U.D. +										
EQUIPMENT CHECKS										
PITOTS, PRE-TEST	REAGENT BOX									
PITOTS, POST-TEST	METER BOX	$\frac{1}{2}$ $\frac{1}$								
ORSAT SAMPLING SYSTEM										
TEDLAR BAG	SAMPLE BOX									
	PROBE	DELAR								
FILTER # TARE	NOMOGRA	TH SET-UP	NOMOGRAPH #							
	Δ H @Ι	· +· L C FACTO	~							
	METER TEMP	STACK T								
	% MOISTURE	REF. ΔΡ								
	<u> </u>									
DRY GAS	ORIFICE	GAS PUMP	FILTER IMP.							
CLOCK METER Pi	tot SETTING (AH	I), METER VACUUN	BOX EXIT	STACK LK. CHECK						
SAMPLE TIME, READING, Rea	ding IN. H ₂ O	TEMP. IN. HO	TEMP. TEMP.	TEMP. READINGS						
POINT MIN. CU. FT. MV	AP IDEAL ACTU	AL F GAUGE	F F							
A.4 0/0 713.502 50	36 3.36 3.3	6 90 3	- 64	68						
115 728.80 1	1 3.3	6 92 8	- 65	88						
30 744.42	3.8	6 94 7	- 65	881						
UC 755 (5 V	Y Y 3.3	6 96 2	- 67	PL						
141 775 08		((2))	1 1 7	R						
15 291 49				RS						
				R						
	3.3			<u> </u>						
40 624.14	5.3		63							
	2.3									
15 852.41	3.3	6 105 0	6	43						
30 868 73	3,	<u>8 6 6 2 8</u>	62	<u> </u>						
43 884.82	5.3	6 103 8	64	13						
1890 900.11	2.	26 603 0	64	<u>97</u>						
15 9(5,28	3.7	6 103 0	64	93						
30 930.27	3.7	76 103 6	64	53						
45 946.27	3-	76 103 8	65	93						
240/07 961.934										
L	· · · · · · · · · · · · · · · · · · ·									
				<u></u>						

- -

 $\frac{248.432}{v_{M}}$ $\frac{136}{(\sqrt{\Delta P})^{2}}$

3,36 100 **Δн т_м** B-25

91

T_s
PARTICULATE FIELD DATA

COMPANY NAME ADDRESS SAMPLING LOCATION SOLLING TO DATE BAROMETRIC PRESSURE, IN. HO SAMPLING TRAIN LEAK TEST N SAMPLING TRAIN LEAK RATE,	102 TX TX TEAM LEADER <u>B. Rus</u> <u>30.25</u> STAT ACUUM, IN. HG <u>15</u> CU. FT./MIN. <u>0.017</u> 0	RUN NUMBER CT.84 DI. TIME START <u>0820</u> LA TIME FINISH <u>1220</u> DO TECHNICIANS IC PRESSURE, IN. H ₂ 0 <u>15</u> DO TECHNICIANS	4
EQUIPMENT CHECKS PITOTS, PRE-TEST PITOTS, POST-TEST ORSAT SAMPLING SYSTEM TEDLAR BAG THERMOCOUPLE @ 85 °F FILTER # TARE	IDENTIF REAGENT BOXNO METER BOXNO UMBILICAL(I SAMPLE BOX27 PROBE6.0 NOMOGRAPH SET ΔH_{0} METER TEMP % MOISTURE	ICATION NUMBERS ZZLE 0.3 T/C READOUT 0.009 T/C PROBE 5.5 ORSAT PUMP	
CLOCK METER Pi SAMPLE TIME, READING, Rea POINT MIN. CU. FT. TW	ORIFICE Content of the setting (ΔΗ), ME ding IN. H ₂ O TE ΔD IDEAL ACTUAL	GAS PUMP FILTER IMP. TER VACUUM BOX EXIT STACK EMP. IN. HG TEMP. TEMP. OF GAUGE OF OF OF	LK. CHECK READINGS
A.4 00 469.307-595 15 484.42 30 499.49 45 514.71	.36 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 4 3.45 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
15 \$45.72 30 550.66	3.45	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.45 3.45 3.45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
45 639.81 180/10 652.86 15 668.33 30 683.70	3.45 3.45 3.45 3.45 3.45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
45 698.99 24907= 714.331	3.45	100 11 59 88	

245.024 ,36 VM (VAP)² (VAP)²

3,45 100 т_м Δн

87

т_s

B-26

COMPANY NAME EMB - EXXON RUN NUMBER ST.68-NZ-1 ____ ADDRESS ______BAYTOWN, TX _______ TIME START 1145 SAMPLING LOCATION COLLING TOWER 68 - FONCELLS LEZ TIME FINISH 1554 DATE 09.01.85 ______ TEAM LEADER B. RUDD TECHNICIANS ______ BAROMETRIC PRESSURE, IN. HG ______ STATIC PRESSURE, IN. H20 ____ SAMPLING TRAIN LEAK TEST VACUUM, IN. HG 15 _____ SAMPLING TRAIN LEAK RATE, CU. FT./MIN. P.004 P.002 IDENTIFICATION NUMBERS EQUIPMENT CHECKS REAGENT BOX ____ NOZZLE 208 DIAMETER 0.314 ____PITOTS, PRE-TEST METER BOX N.S T/C READOUT 009 PITOTS, POST-TEST UMBILICAL _____ T/C PROBE _____ ORSAT SAMPLING SYSTEM SAMPLE BOX _____ ORSAT PUMP _____ TEDLAR BAG PROBE ______ TEDLAR BAG _____ NOMOGRAPH SET-UP NOMOGRAPH #____ FILTER # TARE 1.71 C FACTOR ΔH@ ____ METER TEMP _____ STACK TEMP _____ * MOISTURE _____ REF. ΔP ____ DRY GAS ORIFICE GAS PUMP FILTER IMP. Pitot SETTING (AH), METER VACUUM BOX STACK LK. CHECK METER EXIT CLOCK SAMPLE TIME, READING, Reading IN. H20 TEMP. IN. HG TEMP. TEMP. | TEMP. | READINGS °_F_ 0_F CU. FT. mv Ap IDEAL ACTUAL 0_F 0<u>-</u> GAUGE POINT MIN. A.4 0/0 958.858 600 0 37 3.52 352 85 14 61 81 92 | 14 3.52 63 15 974.92 1111 名こ 97 141 30 990.84 3.52 58 84 V 451007.54 98 14 60 1.25 3.52 24.60 600 3.52 14 621 87 87 99 64 15 38.66 3.52 44 30 55.89 86 3.52 hool 14 521 70.38 R6 LOAK CHOCK 451 3.52 101 141 62 63 85 85.600 #:2 1/20/01 85.450 3,52 981 14 ব 1101,47 ଟ୍ଟ୍ 151 3.52 100 65 66 87 119.52 3.52 971 141 30 45 133.29 99 14 66 85 3.52 601 100/01 14 149.34 84 3.52 98 85__ 15 165.27 1 14 651 354 991)W 18436 .971 62 65 20 350 i\$ 196.98 92 45 352 C11 87 240/000 1212.875

 $V_{M} = (\sqrt{\Delta P})^{2}$

253,867 0.37 3.52 97 ∆H

Тм

85

T_s

R-27

PARTICULATE FIELD DATA

COMPANY NAME <u>EMB</u> - EXX ADDRESS <u>BAYTOWA</u> SAMPLING LOCATION <u>CONTACT</u> DATE <u>OTO2.86</u> BAROMETRIC PRESSURE, IN. HO SAMPLING TRAIN LEAK RATE,	DN TX TOWER <u>5 - FDN CELL # 3</u> TEAM LEADER <u>B. RUDD</u> TECH <u>30.2</u> STATIC PRESE VACUUM, IN. HG_ <u>15</u> <u>13</u> CU. FT./MIN. <u>D.DOR</u> <u>0.001</u>	
EQUIPMENT CHECKS PITOTS, PRE-TEST PITOTS, POST-TEST ORSAT SAMPLING SYSTEM TEDLAR BAG THERMOCOUPLE @ 90 °F	IDENTIFICATION REAGENT BOX NOZZLE METER BOX N. (o T/C F UMBILICAL U.D. SAMPLE BOX Z > PROBE TEDLA	NUMBERS DIAMETER $Q_3 3/2$ READOUT <u>000</u> PROBE <u>S.5</u> PUMP <u></u>
<u>FILTER # TARE</u>	NOMOGRAPH SET-UP	NOMOGRAPH #
CLOCK METER Pi SAMPLE TIME, READING, Rea POINT MIN. CU. FT. MV	ORIFICE GAS PUT tot SETTING (ΔΗ), METER VAC ding IN. H2O TEMP. IN. ΔP IDEAL ACTUAL OF GAU	MP FILTER IMP. JUM BOX EXIT STACK LK. CHECK HG TEMP. TEMP. TEMP. READINGS GE OF OF OF
0/0 216.300 585 15 253.02 26 246.57	353.21 3.21 87 13 3.21 91 1 3.21 94 1	
45 261.81; V 60/0 276.99 15 293.01	V V 3.21 94 1 3.21 97 1 3.21 97 1	3 64 98 3 64 98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.21 97 3.21 97 1 3.21 97	$\frac{5}{5} = \frac{5}{66} = \frac{93}{7}$
36 372.86 45 386.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15 414.39 30 430.28 45 446.22	3.21 IDI 3.21 IDI 3.21 IO3 I 3.21 IO3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
240/257 460.522		

244,222 ,35 97 3,21 (√∆P)² v_M ΔH т_м

93 тs

B-28

COMPANY NAME <u>EMB-EX</u> ADDRESS <u>BAYTOWN</u> SAMPLING LOCATION <u>COOLUN</u> DATE <u>O9.03.86</u> BAROMETRIC PRESSURE, IN. HO SAMPLING TRAIN LEAK TEST N SAMPLING TRAIN LEAK RATE, EQUIPMENT CHECKS <u>EQUIPMENT CHECKS</u> <u>PITOTS, PRE-TEST</u> ORSAT SAMPLING SYSTEM <u>TEDLAR BAG</u> <u>THERMOCOUPLE @ BO</u> <u>FILTER # TARE</u>	XON TX TEAM LEADER <u>6. GROUT</u> TE <u>30</u> 25 STATIC PRE ACUUM, IN. HG <u>5</u> <u>55</u> CU. FT./MIN. <u>0.002</u> <u>0.004</u> <u>IDENTIFICATIO</u> REAGENT BOX <u>NOZZLE</u> METER BOX <u>N. 60</u> T/C UMBILICAL <u>1.01</u> T/C SAMPLE BOX <u>2.6</u> ORS PROBE <u>6</u> TEC <u>NOMOGRAPH SET-UP</u> <u>0H</u> ₀ <u>1.7</u> C F	RUN NUMBER $CT_68 \cdot N2 \cdot 3$ TIME START <u>0910</u> TIME FINISH <u>13.00</u> CHNICIANS SSURE, IN. H ₂ 0 NUMBERS <u>2.08</u> DIAMETER <u>0.312</u> READOUT <u>0.09</u> PROBE <u>5.5</u> AT PUMP NOMOGRAPH #	
	METER TEMP STA	ACK TEMP	
DRY GAS CLOCK METER Pi SAMPLE TIME, READING, Rea POINT MIN. CU. FT. MV	ORIFICE GAS H .tot SETTING (ΔΗ), METER V .ding IN. H20 TEMP. ΔP IDEAL ACTUAL OF	PUMP FILTER IMP. ACUUM BOX EXIT STACK N. HG TEMP. TEMP. AUGE OF OF OF	LK. CHECK READINGS
A.4 D/D/400 (57 km	32 354 351 88	15 - 66 81	
15 476.220 1	1 1 3.54 94	15 44 82	
30 491.940	3.54 99	15 61 83	
45507.745 V	V V 3.54 100	15 60 83	
60/0 523640	3.54 101	15 40 85	``
15 559.430	5.34 101	15 (22 84	
4553.330	3.54 101	15 67 R3	
120 10 587 810	3.54 102	es lo By	
- 15602.810	3.54 101	15 62 84	
30 618,620	3.54 102	15 64 84	
457634.385	3.54 102	15 64 BK	
1806 650,100	3.54 102	15 64 83	
- 15 663 895	3.54 102	15 45 83	
34(681.650	2.54 102	$\frac{1}{16}$	
4. 471.400	3.34 102		
(13. 3. 40	++		
			!
			-

252,683 137 VM (VAP)²

<u>3,54 100</u> ∆н

 $\tau_{\rm M}$

83

۲_s

B-29

PARTICULATE FIELD DATA

		,JZ			
COMPANY NAME EMB- EXX		RUN NUMBER CT.84 DE-4			
ADDRESS BAYTOWN	TX	TIME START 1010			
SAMPLING LOCATION COOLING	TOWER 84 - FRINCELLD	TIME FINISH 1410			
DATE 09.04.86	TEAM LEADER B. RUD TECHN	ICIANS			
BAROMETRIC PRESSURE, IN. HG 30.35 STATIC PRESSURE, IN. H ₂ O 0.10					
SAMPLING TRAIN LEAK TEST	ACUUM, IN. HG				
SAMPLING TRAIN LEAK RATE,	CU. FT./MIN. 0.0170.0				
FOULPMENT CHECKS	IDENTIFICATION N	JMBERS			
	<u>TBEITTER</u>	208			
PITOTS, PRE-TEST	REAGENT BOX NOZZLE	DIAMETER			
PITOTS, POST-TEST	METER BOX T/C RE	ADOUT			
ORSAT SAMPLING SYSTEM	UMBILICAL T/C PR	DBE			
TEDLAR BAG	SAMPLE BOX ORSAT I	2UMP			
THERMOCOUPLE @ F	PROBE TEDLAR	BAG			
FILTER # TARE	NOMOGRAPH SET-UP	NOMOGRAPH # HP41CV			
	METER TEMP				
	% MOISTURE 2 REF AL				
DRY GAS	ORIFICE GAS PUMP	FILTER IMP.			
CLOCK METER PI	LOL SETTING (AH), METER VACUU	M BOX EXIT STACK LK. CHECK			
SAMPLE TIME, READING, Rea	ATHO IN. H20 TEMP. IN. H	G TEMP. TEMP. TEMP. READINGS			
POINT MIN. CU. FT. MV	IDEAL ACTUAL OF IGAUGE				
A-40/0 213 302 510	36 3.36 3.36 90 12	- 62 38			
15 227.04 1	3.36 92 12	- 64 28			
30 242 21	3.36 54 12	- 64 88			
45 267 32 V	V V 3.36 20 12	- CG PH			
1/12 272 70	3 36 97 17	66 88			
15 240 11	2 2 10 2 12	(3 89			
	2.36 10-13				
45 56 60					
120/0 334.82	3.56 07 15				
15 390.43	5.36 108 13				
30 365.87	3.54 108 1.5				
45 381.86	3.36 108 13				
180/0 397.09	3.36 /08 /3	<u> </u>			
15 412.24	3.36 108 13	6.6 53			
30 427.17	336 108 13	16 57			
45 442.51	3.36 108 13	66 57			
240/0= 458.782					
<u> </u>	<u>├</u>				
	<u>+</u> +++++				
		·· + ·· ·· · · · · · · · · · · · · · ·			

245,48 ,36 VM (VAP) (<u>√∆</u>₽)²

3,36 103 ΔH т_м

9/ т_s

B-30

COMPA ADDRE SAMPL DATE BAROM SAMP	NY NAME	E EMB-EX BAUTON CATION COOL STOR PRESSURE, IN RAIN LEAK TES	Х <u>о</u> 	TX TO TEA 3 ACUU	MERDER MLEADER P. 25 M. IN. I	t - FAN (R_B.RL 	ADD ATIC PI	TECHNIC RESSURE	RUN NUME	BER CT. 8	4-N7- 520 220	h
SAMP	LING TI	RAIN LEAK RA	ΓE,	cu.	FT./MIN	<u> 0.004</u>	<u>0,014</u>					
EQ	UIPMEN	T CHECKS				IDENT	IFICAT	ION NUM	BERS			
	OTS, PI	RE-TEST		REA	GENT BO	x	NOZZLE	208		ETER $\frac{Q}{Q}$. 3(2	
	OTS, PO	DST-TEST			ER BOX	<u>1.09</u>	т <u> </u>	/C READO /C PROBI	SUT	5.5		
TED	LAR BA	G		SAM	PLE BOX	26	0	RSAT PU	MP			
	RMOCOU	PLE @ BS	0 ₇	PRO	BE	6	т	EDLAR B	AG			
FIL	TER #	TARE			NOM	OGRAPH S	SET-UP	I	NOMOGRAI	PH #		
				۵He	ı <u> </u>	1.71	с	FACTOR	<u> </u>			
			_	MET	ER TEMP		S'	TACK TE	MP		<u> </u>	
				% M			R	EF. AP				
	1	DEY GAS			OPU				EU TER			
	CLOCK	METER	Pi	tot	SETTING	= (ΔH).	METER	VACUUM	BOX	EXIT	STACK	LK. CHECK
SAMPLE	TIME,	READING,	Read	iina	IN.	H ₂ 0	TEMP.	IN. HG	TEMP.	TEMP.	TEMP.	READINGS
POINT	MIN.	CU. FT.	mv	Δp	IDEAL	ACTUAL	0 _F	GAUGE	F	U _F	^O F	
A.4	0/01	970.905	593	.36	3.45	3.45	94	14		61	99	
	15	886.15				3.45	<u>م (م</u>	14		66	20	
	30	1002.15			ļ	3.45	98	15		60	87	
	45	14.29	Ý	V	*	3.45	99	15		58	87	
}	160/0	32.53			<u> </u>	3.45	100	15		63	<u>दिर</u> ्च	
}		44.04		1 1	<u> </u>	2.45	101			66	82	
<u> </u>	<u> </u>	15(0		<u> </u>]	3.43	96		<u> </u>		87	
	120/0	R9 2(<u> </u>	3 4 -	- 66			50	- R &	
	1 15	103.20		1	1	3.45	95	1 15		60	87	! !
	30	116.53				3.45	95	15		61	87	
	45	131.72		l		3.45	95	15		63	88	<u> </u>
ļ	180/0	143,17	 	 	 	3.45	- 47	12	<u> </u>	5	88	
	15	156.62		 	[3-45	<u> </u>	5	<u> </u>	61	68	<u> </u>
	30	140.04	/ 	<u> </u>	! 	3-45	<u> </u>	<u> () </u>	/ 1	27	<u>6</u>	1
	45	110= ((<	 			0.70		1 13	l		00	
	1245/3P	1110.065			<u> </u>	1 1		<u> </u>				1
	1	_					<u>. </u>	1 			<u> </u>	
	1											
	1							!				
	<u> </u>				<u> </u>	 		ļ	<u> </u>		<u> </u>	<u> </u>
<u> </u>		<u> </u>			1				<u> </u>	1	1	4
		<u> </u>	 		<u>}</u>			 		<u> </u>	1	
L	<u> </u>		<u> </u>	[<u>!</u>	<u></u>		<u>!</u>	L	!	1	1
	·	20	ر 			• •• •	<u> </u>				0-	
		225,76	<u> </u>	6	-	3,45	97	-				_
		V _M	(🗸	P) ²		Δн	т _м				т	
						В-3	31				3	
						_						

87 ^Ts

EXXON COMPANY, U.S.A., BAYTOWN REFINERY, BAYTOWN, TX FIELD SAMPLE INVENTORY, COOLING TOWERS 68 AND 84

Page 1 of 4

Sample	Date						
10	Sampied	Description	Analy515				
Blank 1-W	08/29/86	Pre-Br Cooling Water(68)	RTI:Cr+6,Zn,Res.,Minerals				
Blank 2-W	09/01/86	Pretest Cooling Water(68)	RTI;Cr+6,Zn,Res.,Minerals				
1 - 1 - W	09/01/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
2-1-W	09/01/86	Tower 68 Cooling Water	RTI:Cr+6,Zn,Res.				
3-1-W	09/02/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
4-1-W	09/02/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
5-1-W	09/01/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
5-2-W	09/01/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
5-3-W	09/02/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.				
Blank 3-W	09/03/86	Pretest Cooling Water(84)	RTI;Cr+6,Zn,Res.,Minerals				
A-1-W	09/04/86	 Tower 84 Cooling Water 	RTI;Cr+6,Zn,Res.				
A-2-W	09/04/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
B-1-W	09/05/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
8-2-W	09/05/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
C-1-W	09/04/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
C-2-₩	09/04/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
_D-1-W	09/05/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
D-2-W	09/05/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
PS-3-W	09/03/86	Tower 68 Cooling Water	RTI;Cr+6,Zn,Res.,Minerals				
PS-4-W	09/04/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.				
PS-5-W	09/05/86	Tower 84 Cooling Water	RTI;Cr+6,Zn,Res.,Minerals				
1-1-abc	09/01/86	Tower 68 Sampling Train	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn				
2-1-a	09/01/86	lower 68 Sampling Irain	RII; Cr, Zn: NAA; Cr, Br, Na, Zn				
2-1-0	09/01/86	lower 68 Sampling Irain	RII: Lr, Zn: NAA; Lr, Br, Na, Zn				
Z-1-C Z-1b-	09/01/86	Tower 68 Sampling Frain	RHILL, ZOINAA, LE, BE, NA, ZO				
3-1-abc	09/02/86	Tower 68 Sampling Train	RII; UF, ZD: NAA; UF, BF, NA, ZD				
s-1-abc	09/01/06	Tower 66 Sampling Train	PTICE 701NAGE BE NO 70				
5-7-a	09/01/86	Tower 68 Sampling Train	RTICE 75:NAA:CE BE No 75				
5-7-b	09/01/86	Tower 68 Sampling Train	PTI CE ZDINACICE BE No ZD				
5-2-5	09/01/86	Tower 68 Sampling Train	RTI-Cr 7p:NOA:Cr Br Na 7p				
5-3-abc	09/07/85	Tower 58 Sampling Train	RTI: Cr 7n: NAA: Cr 8r Na 7n				
A-1-a	09/04/86	Tower 84 Sampling Train	RTI:Cr.Zp:NAA:Cr.Br.Na.Zp				
A-1-b	09/04/86	Tower 84 Sampling Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
A-1-c	09/04/86	Tower 84 Sampling Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
A-2-abc	09/04/86	Tower 84 Samolino Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
B-1-abc	09/05/86	Tower 84 Sampling Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
B-2-abc	09/05/86	Tower 84 Sampling Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
C-1-a	09/04/86	Tower 84 Sampling Train	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn				
С-1-ь	09/04/86	Tower 84 Sampling Train	RTI:Cr,Zn:NAA;Cr,Br,Na,Zn				
C-1-c	09/04/86	Tower 84 Sampling Train	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn				
C-2-abc	09/04/86	Tower 84 Sampling Train	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn				
D-1-abc	09/05/86	Tower 84 Sampling Train	RTI; Cr, Zn: NAA; Cr, Br, Na, Zn				
D-2-abc	09/05/86	Tower 84 Sampling Train	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn				
Blank 1	09/09/86	Sample Train Blank	RTI; Cr, Zn: NAA; Cr, Br, Na, Zn				
Blank 2	09/09/86	RTI Water Blank	RTI;Cr,Zn:NAA;Cr.Br,Na,Zn				
Analysis (NAA RTI;Cr,Zn RTI;Cr+6	Analysis Code NAA = Nuclear Activation Analysis at N.C.S.U. for elements listed RTI;Cr,Zn = Total Chromium and Zinc by Atomic Absorption at RTI RTI;Cr+6 = Hexavalent Chromium by Colorimetric Determination at RTI						
RTI:Res.	= Total	Chromium of residue after fi	ltration of sample				

•

EXXON COMPANY, U.S.A., BAYTOWN REFINERY, BAYTOWN, TX FIELD SAMPLE INVENTORY, COOLING TOWERS 68 AND 84

Page 2	рf	4

Sample ID	Date Sampled	Description	Analysis
Blank 1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
Blank 2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
1-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
2-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr.Br,Na,Zn
3-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Er,Na,Zn
4-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
5-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
5-2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
5-3-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
Blank 3-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
A-1-F	09/08/86	- Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
A-2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
B-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
8-2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
C-1-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
C-2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
D-1-F	09/08/86	Cooling Water Filtrate	NAA:Cr,Br,Na,Zn
D-2-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
PS-3-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
PS-4-F	09/08/86	Cooling Water Filtrate	NAA;Cr,Br,Na,Zn
PS-5-F	09/08/86	Cooling Water Filtrate	NAA; Cr, Br, Na, Zn
Blank-4-F	09/08/86	D.I. Water Filtrate	NAA;Cr,Br,Na,Zn
Blank 1-R	09/08/86	Cooling Water Residue	NAA, Cr., Br., Na, Zn
Blank 2-R	09/08/86	Cooling Water Residue	NAA;Cr,Br,Na,Zn
1-1-R	09/08/86	Cooling Water Residue	NAA;Cr,Br,Na,Zn
2-1-R	09/08/86	Cooling Water Residue	NAA;Cr,Br,Na,Zn
3-1-R	09/08/86	Cooling Water Residue	NAA;Cr,Br,Na,Zn
4-1-R	09/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
5-1-R	09/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
5-2-R	09/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
5-3-R	09/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
Blank 3-R	07/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
A-1-R	09/08/86	Cooling Water Residue	NAA: Cr.Br.Na.Zn
A-2-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. Zn
B-1-R	09/08/86	Cooling Water Residue	NAA:Cr.Br.Na.Zn
8-2-R	07/08/86	Cooling Water Residue	NAA: Cr. Br. Na. Zn
C-1-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. Zn
C-2-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. 7n
D-1-R	07/08/86	Cooling Water Residue	NAA: Cr. Br. Na. Zn
D-2-R	09/08/86	Cooling Water Residue	NAA: Cr.Br.Na.Zn
PS-3-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. 7n
PS-4-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. 7n
PS-5-R	09/08/86	Cooling Water Residue	NAA: Cr. Br. Na. 7n
Blank-4-R	09/08/86	D.I. Water Residue	NAA:Cr.Br.Na.Zn
Analysis	Code		
NAA	= Nuclear	Activation Analysis at N.	C.S.U. for elements listed
RTI;Cr,Zn	= Total C	hromium and Zinc by Atomic	: Absorption at RTI

RTI:Cr+6 = Hexavalent Chromium by Colorimetric Determination at RTI

RTI;Res. = Total Chromium of residue after filtration of sample

EXXON COMPANY, U.S.A., BAYTOWN REFINERY, BAYTOWN, TX FIELD SAMPLE INVENTORY, COOLING TOWERS 68 AND 84 Page 3 of 4

Sample ID	Date Sampled	Description	Analysis
1-1-I	09/01/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
2-1-I	09/01/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
3-1-I	09/02/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
4 - 1 - I	09/02/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
A-1-I	09/04/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
E - 1 - I	09/05/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
C-2-I	09/04/86	Station. Midget Impinger	NAA;Cr,Br,Na,Zn
PS-DI-1-p	09/01/86	Disc Particle Sizing	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn
PS-DI-1	09/01/86	Disc Particle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-2-p	09/02/86	Disc Farticle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-2	09/02/86	Disc Particle Sizing	RTI; Cr, Zn: NAA; Cr, Br, Na, Zn
PS-DI-J-p	09/03/86	Disc Particle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-J	09/03/86	Disc Particle Sizing	RTI; Cr. Zn: NAA; Cr. Br. Na, Zn
PS-DI-4-p	09/04/86	Disc Particle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-4	09/04/86	Disc Particle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-5-p	09/05/86	Disc Particle Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-DI-5	09/05/86	Disc Particle Sizing	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn
FS-NZ-1	09/01/86	Nozzle Part. Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-NZ-2	09/02/86	Nozzle Part. Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
PS-NZ-3	09/03/86	Nozzle Part. Sizing	RTI:Cr.Zn:NAA:Cr.Br.Na.Zn
PS-NZ-4	09/04/86	Nozzle Part. Sizing	RTI:Cr,Zn:NAA:Cr,Br,Na,Zn
PS-NZ-5	09/05/86	Nozzle Part. Sizing	RTI;Cr,Zn:NAA;Cr,Br,Na,Zn
QA-1	09/09/86	AP QA Sample	NAA:Cr.Br.Zo
QA-2	09/09/86	XP QA Sample	NAA:Cr.Br.Zn
QA-3	09/09/86	DA Sample 3	RTI:Cr.Zn
	09/09/86	QA Sample 4	NAA:Cr.Br.Zn
0A-5	09/09/86	QA Sample 5	RTI:Cr.Zn
QA-6	09/09/86	OA Sample 6	NAA;Cr,Br,Zn

Analysis Code

NAA = Nuclear Activation Analysis at N.C.S.U. for elements listed RTI;Cr = Total Chromium by Atomic Absorption at RTI RTI;Cr+6 = Hexavalent Chromium by Colorimetric Determination at RTI RTI;Residue = Total Chromium of residue after filtration of sample

EXXON COMPANY, U.S.A., BAYTOWN REFINERY, BAYTOWN, TX FIELD SAMPLE INVENTORY, COOLING TOWERS 68 AND 84

Page 4 of 4

Sample ID	Date Sampled	Description	Analysis
1-1-AF	09/01/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
1-1-EW	09/01/86	Stationary Absorb. Paper	NAA;Cr,Br,Na,Zn
1-1-NS	09/01/86	Stationary Absorb. Paper	NAA;Cr,Br,Na,Zn
2-1-AP	09/01/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
2-1-SEX	09/01/86	Stationary Ion Exch. Paper	NAA: Cr., Br., Na, Zn
2-1-NEX	09/01/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
3-1-AF	09/02/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
3-1-EW	09/02/86	Stationary Absorb. Paper	NAA;Cr,Br,Na,Zn
3-1-NS	09/02/86	Stationary Absorb. Paper	NAA;Cr,Br,Na,Zn
4-1-AP	09/02/86	Traversing Absorb. Paper	NAA:Cr,Br,Na,Zn
4-1-X10	09/02/86	Stationary lon Exch. Paper	NAA;Cr,Br,Na,Zn
4-1-X20	09/02/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
4-1-X30	09/02/86	Stationary lon Exch. Paper	NAA:Cr,Br,Na,Zn
4-1-X60	09/02/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
4-1-XP	09/02/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
5-1-AP	09/01/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
5-2-AP	09/01/86	Traversing Absorb. Paper	NAA:Cr,Br,Na,Zn
5-3-X-1	09/02/86	Traversing Ion Exch. Paper	NAA;Cr,Br,Na,Zn
5-3-X2	09/02/86	Traversing Ion Exch. Paper	NAA;Cr,Br,Na,Zn
A-1-AP	09/04/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
A-1-X	09/04/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
A-2-X	09/04/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
B-1-AP	09/05/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
B-2-XP	09/05/86	Traversing Ion Exch. Paper	NAA:Cr,Br,Na,Zn
C-1-AP	09/04/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
C-2-XP	09/04/86	Traversing Ion Exch. Paper	NAA;Cr,Br,Na,Zn
C-1-X	09/04/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
C-2-X	09/04/86	Stationary Ion Exch. Paper	NAA:Cr,Br,Na,Zn
D-1-AP	09/05/86	Traversing Absorb. Paper	NAA;Cr,Br,Na,Zn
D-2-XP	09/05/86	Traversing Ion Exch. Paper	NAA;Cr,Br,Na,Zn
D-1-X	09/05/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
PS-3-X1	09/03/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
PS-3-X2	09/03/86	Stationary Ion Exch. Paper	NAA;Cr,Br,Na,Zn
Blank-AP	09/09/86	Adsorbent Paper Blank	NAA;Cr,Br,Na,Zn
Blank-XP	09/09/86	Ion Exch. Paper Blank	NAA;Cr,Br,Na,Zn

Analysis Code

NAA = Nuclear Activation Analysis at N.C.S.U. for elements listed RTI;Cr = Total Chromium by Atomic Absorption at RTI RTI;Cr+6 = Hexavalent Chromium by Colorimetric Determination at RTI RTI;Residue = Total Chromium of residue after filtration of sample

Beater No. Sample ID Run No.

73	EXX J-J-abc Impin 1 Filter	CT68 1-1
<u>]</u>	E(X I-1-a Impin 1 % Rinse	CT69 2-1
35	EXX 2-1-5 Impin I	6768 I-1
20	EXX I-1-c Impin J & Filter	CT68 I-1
37	EX) I-1-abc İmpin & Filter	ST45 J-1
79	EXX 4-1-abc Iroin & Filter	CT68 4-1
39	EXX 5-1-abc lopin & Friter	CT68 5-1
40	EXx 5-7-a Impin 1 & Rinse	CT68 5-1
41	EXX 5-2-5 Impin 2	CT68 5-2
47	EXX 5-2-c Impin 7 % Filter	CT68 5-2
4 7	EXX 5-3-ebc Iccic & Filter	CT6P 5-7
- 	EXX A-1-a Incin 1 % Ringe	ET64 A-1
45	EXX Á-1-b Impin I	CT84 P-1
4 5	EXA A-1-c Impin J & Filter	CT84 4-1
47	EXX A-1-abc Impin & Filter	CT84 A-2
48	EXA B-1-abc Impin & Filter	CT84 E-1
4 🖓	EXX B-2-abc Impin & Filter	CT84 E-2
50	EXX C-1-a Impin 1 % Rinse	CT94 C-1
51	EXX C-1-5 lmpin 2	CT84 C-1
51	EXX C-1-c Impin I % Filter	CTS4 C-1
53	EXX C-2-abc İmpin & Filter	CT94 C-2
54	EXX D-1-abc Impin & Filter	CT84 D-1
55	EX) D-2-abc Impin & Filter	CT84 D-2
55	Exi Blank 1 Sample Train	
57	EXX Blant 2 Water Blank	
92	EXX DI-1f Disc Fart. Sizing	CT-68-DI-1
93	EXX D1-1p Disc Fart. Sizing	CT-68-D1-1
94	EXX DI-2f Disc Part. Sizing	CT-68-01-2
95	EXX DI-2p Disc Part. Sizing	CT-68-DI-2
96	EXX DI-3f Disc Fert. Sizing	CT-39-DI-J
57	EXX DI-3p Disc Part. Sizing	CT-68-D1-7
95	EXX DI-4f Diec Part. Sizing	21-84-DI-4
95	EXX DI-4p Disc Fart. Sizing	CT-84-DI-4
100	EXX DI-5f Disc Part. Sizing	CT-84-DI-5
101	EXX D1-5p Disc Fart. Sizing	CT-84-DI-5

WET CHEMICAL ANALYSIS SHEETS

.

.

DATE RECEIVED: _	11-17-85	DATE ANALYZED	11-17	10	11-20
ANALYST:	Wilson	CLIENT:	Entro	15	
ANALYTE:	Total Cr	-			

RTI #	CLIENT #	GPAA SAMPLE CONCENTRATION ICP
		Total ug/L ug/s ug/sL

.

33		4050		3650
34		116		98
35		98		100
3.6		37		51
37		164		120
38	<u></u>	129		102
39		3150		4800
40		474		520
41		37		19
42		33		13
43		157		235
ų 4		176		153
45		46	. <u></u>	23
46		95		77
47		58		64
48		86		74
49		107		99
50		616		822
	-			

WET CHEMICAL ANALYSIS SHEETS

DATE RECEIVED: _	11-17-86	DATE ANALYZED	11-17 to	11-20
ANALYST:	Wilson	CLIENT:	Entrous	
ANALYTE:	Total Cr	····		

RTI #	CLIENT #	GFAA SAMP	LE CONCENTRATI	ION ICP
51	<u></u>	76		65
52		88		_ 77
53		110		89
54		110		90
<u></u>		4970		4370
56		3/_		32
57		110		63
58		129		130
59	•	1380		1270
60		5980		6390
61		139		158
<u>_62</u>	د <u>برست م</u>	1080		1300
63		5480		6430
	·			
				. <u></u>
				·····

QUALITY CONTROL REPORT FORM

ELEMENT Cr - GF4A
Date 11-17/11-20
Analyst B. M. Wilson
NBS 16436
• SRMOT CHECK STD
Certified or Prepared conc. 18.0
Average Reported Conc. 18.8
<pre>% Difference <u> </u></pre>
• DUPLICATES SAMPLE 30
Concentration A $149 \text{ pp} = \frac{A-B}{(A+B/2)} \times 100 = \frac{6.2\%}{6.2\%}$
· RECOVERY Not Applicable (No disestion)
<u>C spiked () - C unspiked ()</u> x 100 = C True Spiked ()
Method of Standard Additions Employed? yes no <u>X</u> .
Highest Std run 50 pbb Flame N/A Flameless
Lowest Starun 25 ppb N20/C2H2
Detection Limit / ppb Air/C2E2
Blank levels No Sumple PREP_ BKG. Corr. yes / no
Zeeman

COMMENTS:

Figure 3. Quality control report form for method

	ATOMIC SPECTRO	SCOPY ANALYSIS SH	EETS
DATE RECEIVED:	11/17/86	DATE ANALYZE	D:/17 - 11/20
ANALYST: /	3. M. Wilson	CLIENT:	Entropy
ANALYTE:	Chromium	ICP GFAA	
MATRIX:	dilute acid		
ATOMIZATION (E MODE: FLAME	XCITATION)	FLAMELES	S d.Furnace <u>×</u>
(check one)	b.Hydride c.ICAP		e.Hg Cold Vapor
Wavelength	357. 8 um		
Slit	0.7 um		
LIGHT SOURCE T	YPE: Hollow Cathod	e 🗸	
(check one)	Electrodeless Other	Discharge	
ATOMIZATION/EX	CITATION CONDITION	S	
a. Flame:	Fuel	; flow cc/min	
(convention)	Oxidant	; flow cc/min	
	Burner type;	· · · · · · · · · · · · · · · · · · ·	
b. Flame:	Fuel	; flow cc/min	
(hydride)	Oxidant	; flow cc/min	
	Purge Gas	; flow cc/min	
	Sample Vol	m].	
		B-40	

.

.

	ATOMIZATION CONDITIONS (Continued)	
c. Reducing Ag	gent NaBH	
	Zinc	
d. ICAP	Nebulization Rate	cc/min
	Torch Height	
	Other	
e. Furnaces	Dry <u>30</u> s @ <u>140</u> °C	
	Char 20 s @ 1 850 °C	
	Atomize <u>2400</u> s@_2600 °C	
	Purge Gass @ <u>300</u> cc/min	Argou.
	Flow Mode: Interrupt <u>×</u> Normal	
	Cuvette type platform	
	Matrix Modification $M_4(NO_3)_2$	
	<i>v</i> -	
f. Hg Cold Va	por Sweep Gas@	_cc/min.
	Sample Volml	
Sample 1	Pretreatment	
	Reducing Agent NaBH ₄	
	(check one) SnCl ₄	
Standardizati	on Mode	
(check	one) a. direct calibration \times	
	b. spike	
	c. standard additions	
Standard Anal	ysis: <u>Concentration</u> <u>Absorbance</u>	Mean
	0 25 ppb	- 0.026
	25 pp3	0.13: 0.161
	<u></u>	0.286
Regression Con	stants m,bauto	curve corr.
Correlation C	Coefficient $R = 0, 9998$	

.

WET CHEMICAL ANALYSIS SHEETS

DATE RECEIVED: <u>11-24-86</u> DATE ANALYZED <u>11-24 ICP) 12-8(GRAA</u> ANALYST: <u>Willsm</u> CLIENT: <u>Entroyy</u> ANALYTE: <u>Total Cr</u>

RTI	#	CLIENT	ŧ	GFAA	SAN	PLE	CONCENTRA	TION J	2	P
				Fotel	ug∕	L	29/9 -	цđ	1.1	-

92		234		249
93		550		596
44		12, 800		10,200
<u>95</u>		348		378
96		4380		3920
97	•	432		473
		2/9		
_78				262
99	-	37		66
100		94		81
101		46		81
102		421		401
103		6510		4360,5120
104		6300		4867
105		287		282
106		7.21	هيدهيرهاب	z27
<u></u>				
101		<u>مر کور من م</u>		
108		1210		940
109		6040		4285
110		51		54
111		43		84
//-				12 5
1/2		80		120
113		414		362

WET CHEMICAL ANALYSIS SHEETS

DATE RECEIVED:	11-24-86	DATE ANALYZED	11-26(ICP) 12-8 (GFAA)
ANALYST:	lili-1 son	CLIENT:	Fan tropy	
ANALYTE:	Total Cr		<i>/</i> '	

RTI #	CLIENT #	G-FAA SAMP		TON ICP	
114		(20	***	///	
115		1 53		187	
116		<u> </u>		52	
117	مریحد خدرده	108		122	
118		1490		1220	
119		8040		5838 451	0
120		149,000		150	
	هن و من به من	lua pym		ت	
(•			- <u></u>	
			مغير جماريته -		
	هيو هينو سن				
				· ·	
					
			<u></u>		
				<u></u>	

в-43

QUALITY CONTROL REPORT FORM

ELEMENT <u>C</u> - GFAA
Date 12-8-86
Analyst B. M. Wilson
• SRM_N ^{BS} or CHECK STD.
Certified or Prepared conc. 18-0
Average Reported Conc. 18.8, 19.7
8 Difference 4.4, 9.0
EX: • DUPLICATES #74
Concentration A 86 Concentration B 79 $(A+B/2)$ $x 100 = 8.5$
· RECOVERY (No. digestion involved)
<u>C spiked () - C unspiked ()</u> x 100 = C True Spiked ()
Method of Standard Additions Employed? yes no $ imes$
Highest Std run Flame Flameless
Lowest Std run N ₂ 0/C ₂ H ₂
Detection Limit Air/C ₂ H ₂
Blank levels BKG. Corr. yes no

COMMENTS:

ATOMIC SPECTROSCOPY ANALYSIS SHEETS

NATE PECELVED.	12-8-86 11-24-81 NATE ANALYZED: 12-8-86
ANALYST: K	3. M. Wilson CLIENT: Entropy
ANALYTE:	(GFAA) dotal Cr
MATRIX:	celute mitric and
ATOMIZATION (E)	(CITATION)
	a Conventional ELAMELESS d Europace
(chock one)	
(check one)	
Wavelength	357.8 um
Slit	0.7 um
LIGHT SOURCE T	YPE: Hollow Cathode 📈
(check one)	Flertrodeless Discharge
(encer one)	Other
ATOMIZATION/FX	CITATION CONDITIONS
a El amos	Fuel : flow cr/min
	Ovidant : flow co/min
(convencion)	Gridant; How CC/min
b C 1-max	Burner type;
u.riame:	ruei; riow cc/min
(hydride)	Uxidant ; flow cc/min
	Purge Gas; flow cc/min
	Sample Vol ml.

QUALITY CONTROL REPORT FORM

ELEMENT Cr
Date 9-29-86
Analyse Grobse/Wilson
• SRM OF CHECK STD.
Certified or Prepared conc. 46.0 Mg/L , 18.6
Average Reported Conc. 49.6. 19.9
& Difference 7.5 6.
• DUPLICATES
Concentration A $\frac{9,83}{(A+B/2)}$ A-B x 100 = $\frac{5.9}{(A+B/2)}$
• RECOVERY
<u>C spiked () - C unspiked ()</u> x 100 = C True Spiked ()
Method of Standard Additions Employed? yes no
Hignest Std run 100 Flame Flameless GFA
Lowest Std run 10.0 N20/C2H2
Detection Limit 0.25 Air/C2H2
Blank levels BKG. Corr. yes 🗶 no
COMMENTS.

COMMENTS:

.

Figure 3. Quality control report form for method

QUALITY CONTROL REPORT FORM

		ELEMENT_	Zn	
Date	9-28-86			
Analyst	Crobse	<u></u>		
• SRM_	or CHECK	STD.		
Cert	fied or Prep	ared conc.	0,200	
Avera	age Reported	Conc	:0.199	
			& Difference 0.5	
• DUPL: Conce Conce	ECATES (NZ - entration A_ entration B_	-5-pf) 0.70 0.73	$\frac{A-3}{(A+3/2)} \times 100 = $	4.2
• RECOV	/ERY			
C	spiked (C Tru) - C uns le Spiked (piked () x 100 =	\leq
Method (of Standard A	dditions E	mployed? yes no>	<
Hignest	Std run	1. 0	Flame_XFlameless	
Lowest	Std run	7.2	N20/C2H2	
Detecti	on Limit	0.02	Air/C2E2X	
Blank 1	evels -	-	BKG. Corr. yes no	\ltimes

COMMENTS:

Figure : Quality control report form for method

WET CHEMICAL ANALYSIS SHEETS

DATE RECEIVED:	9-9-86	DATE ANA	LYZED	10-8-86	
ANALYST:B,M,	Wilson	CLIENT:	Ehr	hom	
ANALYTE:	hexavalent	Chromiun		ΰð	

RTI 🖸	CLIENT #	SAMPLE CONCENTRATION		
		Total ug	µg∕g	µg/mL
QA-3	QA-3			7.50
BIK-1-W	B1K-1-~			8.30
B1K-2-W	letc.			7.10
<u>BIK-3-</u> W				6.23
1 - 1 - w				7.42
2-1-W				7,17
3-1-W				7.10
4-1-W				7.04
5-1-W	· [7.17
5-2W				7.17
5-3-W				7.17
<u>A-1-w</u>				7.17
4-2-W				7,17
<u>B-1-W</u>				7,54
B-2-W				7.67
<u>C-1-</u> W				7,54
C-Z-W				1,42
<u>D-1-W</u>				7.79
D-Z-W				7.79
<u>AS-3-W</u>				7.54
<u>PS - 4-</u> W				7.42
PS-5-W				8.04
				
			·····	

QUALITY CONTROL B	REPORT FORM
ELEMENT_	C+ +6
Date1D - 8 - 86	
Analyst Wilson	
• SRMOT CHECK STD	
Certified or Prepared conc.	•
Average Reported Conc	·
	<pre>§ Difference</pre>
• DUPLICATES QA-3	
Concentration A 7.54 Concentration B 7.44	$\frac{A-B}{(A+B/2)} \times 100 = \frac{/./}{}$
• RECOVERY	
<u>C spiked () - C un:</u> C True Spiked	spiked () x 100 =
Method of Standard Additions	Employed? yesno
Highest Std run 0.4 µg/ml	- Flame Flameless
Lowest Std run0, /	N20/C2H2
Detection Limit0.0/	Air/C2E2
Blank levels	BKG. Corr. yesno
COMMENTS: External QA - that by	results compared to ICP

Figure 3. Quality control report form for method

Cr Recovery Tests

Sample #	ppm	VOL(mL)	ug recovered
EPA 2 WS 378 (72ppb)	0.0762	_	_
EPA 1 WP1178 (7.1ppb)	0.0080	-	_
Reagent Blank	0.0047	25	0.12
Beaker # 319	1.90		47.5
·· # 320	0.0498	1.	1.25
# 32/	0.356	۰,	8.90
# 363	0.0329		0.82
# 367	0.1072	L #	2.68
# 368-X	6.0867	41	2.16
# 369	1.92	11	47.9
# 372-	0.1606	(1	4.02
# 373	0.0790	"	1.98
# 374	0.0765	**	1.91
# 375	0,1660	47	4.15
# 358-X	0,1824	"	4.56
# 360	0.0448		1.12
# 380	0.1017		2.54
# 2107	0.0324		0.81
# 179	0.1188		
# 174	0.0874		
# 392	0.3330		
# 396	0.0770		

Sample #	-ppm	vol(mL)	My recovered
			· ·
2030	0.0253	25	
185	0.0529	l	
193	0.0356		
196	0.682		
659	0. 0851		
679	0.1278		
376	0.0488		
377	0.0481		
2005	0.0291		
682	0.2355		
379	0.0548		
166	0-1538		
2110	0.0274		
307	0.0479		
2132	0.0694		
C-318	0.0917		
656	0,384		
657	1.788		
658	0.5325		
654	0.422		
655	0.1334		
2133	0.0184		
2134	0.0333		
2004	0,0605	\checkmark	

B-53

× +

$$\frac{Sample #}{2007} \frac{ppm}{0.1658} \frac{vol.(mL)}{25} m_{1-1-overed}$$

$$2008 0.0938
2031 0.0614
2033 0.0218
369 1.848
162 0.0551
619 0.0151
636 0.0345
637 0.015
642 0.0115
643 0.0124
007 0.0115
643 0.0124
007 0.0137
143 0.0213
144 0.0557
146 0.0108
151-A 0.0152
160 0.2158
Reayet Bik 0.0054$$

NUCLEAR ENERGY SERVICES

ACTIVATION ANALYSIS REPORT

CLIENTDr. William G. DeWees
Entropy Environmentalists, Inc.P. O. No.Box 12291
Research Triangle Park, N.C. 27709Date of Report
Phone

EXPERIMENTAL PARAMETERS

18 Hr. Irradiation - $1.5 \times 10^{13} n/cm^2$ -sec.

Monitored Decay

600 And 1000 Sec. Counts On An Ortec 35%, 25%, And 21% GeLi Detectors Coupled To An ND6620 Computerized Gamma Detection System

ANALYSIS RESULTS

DATA TABLES ATTACHED

Tilsauth Issued by:

Jack N. Weaver Head, Nuclear Services

68-02-4336

348783

10/06/86

781-3550

B-55

TABLE 1 Continued

NAA Of Trace Elements In Filters And Solutions

(ugrams element/sample)

Sample Description	Br	Na	Cr	Zn
D-1-R	1.734 ± 2.1%	6.938 ± 14.3%	1.869 ± 1.5%	93.464 ± 0.7%
D-2-R	2.052 ± 1.9%	6.580 ± 13.2%	3.436 ± 1.4%	212.47 ± 0.4%
PS-3-R	0.263 ± 6.3%	5.438 ± 14.2%	2.135 ± 1.6%	37.187 ± 1.1%
PS-4-R	1.358 ± 2.2%	3.781 ± 16.1%	2.644 ± 1.5%	26.988 ± 1.3%
PS-5-R	2.027 ± 1.7%	4.781 ± 17.1%	2.537 ± 1.5%	35.187 ± 1.1%
Blank 4-R	0.141 ± 14.3%	5.776 ± 12.3%	1.260 ± 2.3%	151.64 ± 0.5%
QA-1	0.319 ± 8.4%	4.943 ± 10.2%	2.916 ± 1.2%	114.98 ± 0.7%
QA-2	0.447 ± 6.6%	6.569 ± 9.1%	5.287 ± 1.0%	96.408 ± 0.8%
QA-4	0.479 ± 5.3%	2.131 ± 17.0%	6.230 ± 1.1%	117.66 ± 0.8%
1-1-AP	15.549 ± 0.6%	49.339 ± 3.5%	16.340 ± 0.5%	166.12 ± 0.5%
1-1-EW	19.228 ± 0.5%	57.156 ± 3.0%	9.693 ± 0.8%	148.28 ± 0.6%
1-1-NS	27.201 ± 0.7%	79.448 ± 3.9%	7.511 ± 0.9%	136.71 ± 0.6%
2-1-AP	36.805 ± 0.7%	118.42 ± 4.6%	15.816 ± 0.5%	206.48 ± 0.5%
2-1-SEX	87.435 ± 0.5%	235.36 ± 4.2%	49.858 ± 0.3%	48.841 ± 1.1%
2-1-NEX	62.773 ± 0.6%	135.29 ± 4.0%	47.948 ± 0.3%	68.981 ± 0.8%
3-1-AP	18.099 ± 0.9%	90.833 ± 3.3%	8.813 ± 0.8%	151.21 ± 0.5%
3-1-EW	46.011 ± 0.7%	176.48 ± 4.4%	10.357 ± 0.8%	106.09 ± 0.7%
3-1-NS	32.278 ± 0.6%	138.56 ± 3.4%	9.557 ± 0.7%	96.759 ± 0.7%
4-1-AP	26.902 ± 0.6%	110.81 ± 2.4%	12.047 ± 0.7%	111.32 ± 0.8%

В-57∙

TABLE 1 Continued

NAA Of Trace Elements In Filters And Solutions

(ugrams element/sample)

Sample Description	Br	Na	Cr	Zn
4-1-X10	14.288 ± 0.8%	69.121 ± 3.0%	3.579 ± 1.3%	116.66 ± 0.8%
4-1-X20	12.955 ± 1.0%	56.564 ± 4.0%	3.205 ± 1.2%	115.71 ± 0.7%
4-1-X30	35.749 ± 0.6%	135.63 ± 2.2%	8.096 ± 1.0%	127.731 ± 0.7%
4-1-X60	67.724 ± 0.5%	125.95 ± 3.9%	21.105 ± 0.5%	126.94 ± 0.7%
4-1-XP	76.480 ± 0.6%	151.46 ± 3.5%	29.070 ± 0.5%	18.683 ± 2.5%
5-1-AP	30.183 ± 0.6%	87.448 ± 2.9%	8.454 ± 0.9%	110.77 ± 0.8%
5-2-AP	20.001 ± 0.7%	84.268 ± 2.8%	7.042 ± 1.0%	109.72 ± 0.8%
5-3-X-1	116.18 ± 0.5%	94.400 ± 7.5%	31.832 ± 0.4%	27.691 ± 1.9%
5-3-X-2	67.867 ± 0.5%	117.50 ± 4.7%	19.341 ± 0.5%	146.59 ± 0.6%
A-1-AP	48.078 ± 0.5%	108.79 ± 2.7%	4.451 ± 1.4%	19.491 ± 2.3%
A-1-X	117.95 ± 0.5%	190.65 ± 3.1%	9.375 ± 1.1%	98.401 ± 0.9%
A-2-X	94.476 ± 0.5%	157.61 ± 3.6%	9.741 ± 1.0%	32.437 ± 1.8%
B-1-AP	34.401 ± 0.7%	92.500 ± 4.6%	8.106 ± 0.8%	57.865 ± 0.9%
B-2-XP	73.227 ± 0.6%	173.97 ± 3.7%	8.728 ± 0.9%	41.373 ± 1.1%
C-1-AP	23.455 ± 0.7%	49.387 ± 6.0%	3.414 ± 1.4%	182.78 ± 0.5%
C-2-XP	43.552 ± 0.5%	65.506 ± 3.7%	3.419 ± 1.7%	100.56 ± 0.8%
C-1-X	87.851 ± 0.6%	163.20 ± 3.3%	7.624 ± 1.1%	127.26 ± 0.8%
C-2-X	19.738 ± 0.7%	28.704 ± 5.8%	4.144 ± 1.3%	114.36 ± 0.7%
D-1-AP	33.447 ± 0.5%	125.02 ± 2.3%	3.061 ± 1.6%	168.74 ± 0.6%

מצומ

TABLE 1 Continued

NAA Of Trace Elements In Filters And Solutions

(ugrams element/sample)

Sample Description	Br	Na	Cr	Zn
D-2-XP	25.021 ± 0.5%	32.950 ± 4.8%	3.668 ± 1.2%	29.400 ± 1.4%
D-1-X	32.857 ± 0.5%	52.759 ± 3.5%	13.937 ± 0.8%	150.50 ± 0.7%
PS-3-X1	28.683 ± 0.6%	68.704 ± 3.4%	60.999 ± 0.3%	112.53 ± 0.8%
PS-3-X2	37.060 ± 0.5%	98.745 ± 2.9%	55.810 ± 0.3%	30.120 ± 1.7%
Blank AP	0.272 ± 10.8%	7.791 ± 10.0%	0.075 ± 2.4%	99.070 ± 0.7%
Blank XP	0.145 ± 18.5%	4.100 ± 11.9%	0.304 ± 2.4%	106.467 ± 0.8%

TABLE 2

QA NBS SRM Analyses

(ugrams element/gram SRM)

Sample Description	Br	Na
NBS SRM 1566	54.047 (55.0 ± 6.0)	5052.79 (5100.0 ± 300)
NBS SRM 1566	56.179 (55.0 ± 6.0)	5057.77 (5100.0 ± 300)
NBS SRM 1566	55.782 (55.0 ± 6.0)	5047.40 (5100.0 ± 300)
NBS SRM 1566	56.169 (55.0 ± 6.0)	5071.32 (5100.0 ± 300)
NBS SRM 1566	54.603 (55.0 ± 6.0)	5304.96 (5100.0 ± 300)
NBS SRM 1566	53.400 (55.0 ± 6.0)	5059.36 (5100.0 ± 300)
NBS SRM 1566	54.456 (55.0 ± 6.0)	5081.58 (5100.0 ± 300)
NBS SRM 1566	52.623 (55.0 ± 6.0)	4866.91 (5100.0 ± 300)
NBS SRM 1566	56.616 (55.0 ± 6.0)	5048.41 (5100.0 ± 300)
NBS SRM 1566	56.455 (55.0 ± 6.0)	5201.38 (5100.0 ± 300)
NBS SRM 1566	54.139 (55.0 ± 6.0)	5200.69 (5100.0 ± 300)
NBS SRM 1566	53.962 (55.0 ± 6.0)	5181.34 (5100.0 ± 300)
NBS SRM 1566	53.497 (55.0 ± 6.0)	5179.45 (5100.0 ± 300)
NBS SRM 1084		
NBS SRM 1084		
NBS SRM 1572	7.684 (8.2 ± 1.6)	170.301 (160.0 ± 20.0)
NBS SRM 1577-A	8.772 (9.0 ± 2.0)	2310.30 (2430 ± 130.0)

*QA Note: The values shown in brackets are the certified or best known value for this element in these National Bureau of Standards Reference Materials processed and analyzed along with the unknown samples.

TABLE 2 Continued

QA NBS SRM Analyses

(ugrams element/gram SRM)

Sample	Description		<u>Cr</u>				Zn		
NBS SR	M 1566	0.660	(0.69	± 0.2	27)	858.53	(852.0	± 1	14.0)
NBS SR	M 1566	0.474	(0.69	± 0.2	27)	848.30	(852.0	± 1	4.0)
NBS SR	M 1566	0.606	(0.69	± 0.2	27)	845.56	(852.0	± 1	4.0)
NBS SR	M 1566	0.497	(0.69	± 0.2	27)	858.86	(852.0	± 1	14.0)
NBS SR	M 1566	0.581	(0.69	± 0.2	27)	845.10	(852.0	± 1	4.0)
NBS SR	M 1566	0.496	(0.69	± 0.2	27)	845.65	(852.0	± 1	14.0)
NBS SR	M 1566	0.599	(0.69	± 0.3	27)	874.58	(852.0	± 1	L4.0)
NBS SR	M 1566	0.899	(0.69	± 0.2	27)	858.57	(852.0	± 1	L4.0)
NBS SR	M 1566	0.501	(0.69	± 0.2	27)	856.16	(852.0	± 1	14.0)
NBS SR	M 1566	0.768	(0.69	± 0.3	27)	877.87	(852.0	±]	14.0)
NBS SR	M 1566	0.568	(0.69	± 0.2	27)	855.53	(852.0	± 1	4.0)
NBS SR	M 1566	0.559	(0.69	± 0.2	27)	843.08	(852.0	±]	14.0)
NBS SR	M 1566	0.657	(0.69	± 0.2	27)	849.12	(852.0	± 1	4.0)
NBS SR	M 1084	101.45	(100.0	± 3.0	0)				
NBS SR	M 1084	98.472	(100.0	± 3.0	0)				
NBS SR	M 1572	0.726	(0.8	± 0.2	2)	26.487	(29.0	±	2.0)
NBS SR	M 1577-A					121.73	(123.0	±	8.0)

*QA Note: The values shown in brackets are the certified or best known value for this element in these National Bureau of Standards Reference Materials processed and analyzed along with the unknown samples.

NUCLEAR ENERGY SERVICES

ACTIVATION ANALYSIS REPORT

CLIENTDr. William G. DeWees
Entropy Environmentalists, Inc.
Box 12291
Research Triangle Park, N.C. 27709P. O. No.68-02-4336Date of Report
Phone348762Date of Report
Phone10/20/86781-3550

EXPERIMENTAL PARAMETERS

18 Hr. Irradiation - $1.5 \times 10^{13} n/cm^2$ -sec.

Monitored Decay

600 And 1200 Sec. Counts On An Ortec 35%, 25%, And 21% GeLi Detectors Coupled To An ND6620 Computerized Gamma Detection System

ANALYSIS RESULTS

DATA TABLES ATTACHED

Issued by:

Jack N. Weaver Head, Nuclear Services

TABLE 1 Continued NAA Of Trace Elements In Solutions And Filters

(ugrams element/sample)

Sample Description	Br	Na	Cr	<u>Zn</u>	
NZ-4-PF-2	7.152 ± 0.8%	5.250 ± 7.2%	0.782 ± 4.9%	0.535 ± 11.6%	
NZ-5-PF	240.60 ± 0.5%	241.29 ± 2.3%	1.855 ± 2.2%	10.259 ± 10.9%	
1-1-I	5.302 ± 2.8%	32.468 ± 6.7%	0.289 ± 14.3%	2.362 ± 17.18	
2-1-1	10.889 ± 1.5%	55.227 ± 3.9%	0.793 ± 16.0%	4.491 ± 14.2%	
3-1-I	2.745 ± 4.0%	16.045 ± 9.2%	<0.05	<0.20	
4-1-1	3.788 ± 3.2%	90.453 ± 3.4%	0.155 ± 15.5%	1.638 ± 15.0%	
A-1-I	9.097 ± 2.1%	237.73 ± 2.0%	13.669 ± 2.3%	2.700 ± 17.2%	
B-1-I	12.356 ± 1.8%	46.283 ± 5.5%	<0.05	<0.20	
C-2-I	8.869 ± 2.0%	24.603 ± 8.4%	<0.05	3.886 ± 15.9%	
QA-6	0.800 ± 6.9%	1.742 ± 15.5%	<0.05	1.595 ± 19.3%	

TABLE 2

QA NBS SRM Analyses

(ugrams element/gram sample)

Sample D	escription		Br			Na	
NBS SRM	1566	54.790	(55.0	± 6.0)	5112.11	(5100.0 ±	300.0)
NBS SRM	1566	55.426	(55.0	± 6.0)	5130.56	(5100.0 ±	300.0)
NBS SRM	1566	54.303	(55.0	± 6.0)	5049.29	(5100.0 ±	300.0)
NBS SRM	1566	53.424	(55.0	± 6.0)	5199.83	(5100.0 ±	300.0)
NBS SRM	1566	53.718	(55.0	± 6.0)	5116.12	(5100.0 ±	300.0)
NBS SRM	1566	54.587	(55.0	± 6.0)	5074.01	(5100.0 ±	300.0)
NBS SRM	1566	56.777	(55.0	± 6.0)	5025.03	(5100.0 ±	300.0)
NBS SRM	1577-A	10.102	(9.0	± 2.0)	2405.03	(2430.0 ±	130.0)
NBS SRM	RM50				1296.92	(1100.0 ±	50.0)
NBS SRM	1632-A	38.035	(41.0	± 4.0)	817.11	(840.0 ±	40.0)
TABLE 2 Continued

QA NBS SRM Analyses

(ugrams element/gram sample)

Sample Description	Cr	Zn
NBS SRM 1566	0.572 (0.69 ± 0.27)	858.80 (852.0 ± 14.0)
NBS SRM 1566	0.653 (0.69 ± 0.27)	861.44 (852.0 ± 14.0)
NBS SRM 1566	0.806 (0.69 ± 0.27)	848.35 (852.0 ± 14.0)
NBS SRM 1566	0.760 (0.69 ± 0.27)	873.05 (852.0 ± 14.0)
NBS SRM 1566	0.730 (0.69 ± 0.27)	855.23 (852.0 ± 14.0)
NBS SRM 1566	0.624 (0.69 ± 0.27)	857.95 (852.0 ± 14.0)
NBS SRM 1566	0.734 (0.69 ± 0.27)	865.28 (852.0 ± 14.0)
NBS SRM 1577-A		121.61 (123.0 ± 8.0)
NBS SRM RM50		12.612 (13.6 ± 1.0)
NBS SRM 1632-A	33.235 (34.4 ± 1.5)	
NBS SRM 1084	99.248 (100.0 ± 3.0)	
NBS SRM 1084	102.08 (100.0 ± 3.0)	

*<u>QA NOTE</u>: The values shown in brackets in TABLE 2 are the certified or best known values for these elements in these NBS Standard Reference Materials processed and analyzed along with your unknown samples. APPENDIX C.

SAMPLING AND ANALYTICAL PROCEDURES

DRAFT METHOD - 6/19/86 Review Cnly Do Not Quote or Cite METHOD¹²- DIRECT MEASUREMENT OF GAS VELOCITY AND VOLUMETRIC FLOWRATE UNDER CYCLONIC FLOW CONDITIONS (PROPELLER ANEMOMETER)

For Internal EPA

1. Applicability and Principle

1.1 Applicability. This method applies to the measurement of gas velocities in locations where cyclonic flow conditions exist and gas temperatures range from 0° to 50° C (e.g. cooling tower exhausts).

1.2 Principle. A propeller anemometer is used to measure gas velocity directly. The area of the stack cross section at the sampling location is used to calculate volumetric flowrate, and temperature and pressure measurements are used to correct volumes to standard conditions.

2. Apparatus

Specifications for the apparatus are given below.

2.1 Propeller Anemometer. A vane axial propeller anemometer capable of measuring gas velocities to within 2 percent. The manufacturer's recommended range (all-angle) shall be sufficient for the expected minimum flow rates at the sampling conditions. Temperature, pressure, moisture, corrosive characteristics, and sampling location are factors necessary to consider in choosing a suitable propeller anemometer.

2.2 Data Output Device. A digital voltmeter, analog voltmeter, stripchart recorder, data-logger, or computer capable of displaying propeller anemometer output to within 1 percent and at a minimum frequency of 1 reading per minute.

2.3 Temperature Gauge. Same as Method 2, Section 2.3 for volume correction to standard conditions.

2.4 Barometer. Same as Method 2, Section 2.5 for volume correction to standard conditions.

2.5 Calibration Equipment.

2.5.1 Synchronous Motor. A variable speed synchronous motor capable of providing a known constant rotational speed to the input shaft of the propeller anemometer for purposes of comparing and adjusting the output signal to known values.

2.5.2 Bearing Torque Disc. A variable torque applicator capable of applying a range of torques to the input shaft of the propeller anemometer from 0 to the manufacturer's recommended "poor performance" criterion.

2.5.3 Wind Tunnel. A wind tunnel capable of providing stable velocities over the expected range of velocities to be measured. Air flow should be fully developed turbulent flow in the axial direction only. Means shall be available to quantify ambient temperature and pressure for correction to standard conditions. Means shall also be available to rotate the propeller anemometer, within the wind tunnel, through 180° ($\pm90^{\circ}$ of the centerline) and note the angle of rotation in 10° increments.

2.5.4 Calibration Pitot Tube. Same as Method 2, Section 2.7 for determination of wind tunnel velocities to within 1 percent.

2.5.5 Differential Pressure Gauge for Calibration Pitot Tube. Same as Method 2, Section 2.8 for use with the standard pitot tube during wind tunnel velocity determinations.

3. Procedure

3.1 Proper Mounting of Propeller Anemometer. Attach the propeller anemometer to a suitable device (probe, rail, rod, etc.) to facililtate traversing the stack/duct cross-section. Ensure that all flow obstructions created by (1) the sampling support equipment (rail, etc.) are a minimum of 2 propeller diameters downstream of the propeller and (2) the sampling equipment (nozzles) are a minimum of 2 inches upstream of the propeller and have a maximum obstructive area (projected area) 10% the size of the propeller's area of rotation. Ensure that the propeller anemometer is properly aligned with the centerline of the stack/duct and stably mounted (vibration and subsequent misalignment will create serious errors in the velocity and volumetric flow rate results). Connect electrical connections for velocity data recording as shown in Figure \underline{p} -1.

3.2 Cross Sectional Area. Determine the stack/duct dimensions at the sampling location. Include the total area (at the sampling location) without regard to the velocity in the stack.

3.3 Zero Output System. Zero all recording devices by carefully bringing the propeller anemometer to a stand-still. Record ambient temperature and pressure data and note time and date as shown in the example data sheet Figure Ph -2.

3.4 Determination of Gas Velocity. Measure the gas velocity and temperature at the traverse points specified by Method 2 or other applicable method. (<u>Note</u>: Due to the size of most propellers, traverse points within 10 cm of a side-wall will be unmeasureable.) Alternatively, based on the preliminary traverse or the previous measurement, the stack temperature may be

С-5

Figure 12-1. Propeller Anemometer Positioning and Mounting in Cooling Tower Fan Stack.

FIGURE $\ensuremath{\mathbb{R}}_{1^{\prime}}\ensuremath{-}\ensuremath{2}$. Example velocity and volumetric flowrate data sheet

-

Date	Run	
Operators	Time (start/finish)	· · · · · · · · · · · · · · · · · · ·
Stack/duct dimensions		m (in.)
Cross sectional area		m ² (in. ²)
Anemometer ID no.	Calibration Date	
Anemometer electromechanic	al ratio	<u></u>
Anemometer axial/rotations	al velocity ratio	
Ambient Temperature	^O C (^O F) Barometric Pressure	mm Hg (in. Hg)

Traverse	Stack/Du	ict Temp.	Anemomet	er Output	Gas Velocity		
point no.	t _s , ^c C (^o F)	T _s , ^o K (^o R)	V _a , mV	v _r , rpm	v _s , m/s (A/s)		
,							

-

measured at a single point if the gas temperatures at all points were within 5° F of the average temperature.

4. Calibration

4.1 Propeller Anemometer. The propeller anemometer shall be calibrated before its initial use in the field. Both electro/mechanical and performance parameters shall be checked during calibration according to the procedures supplied by the manufacturer. Calibration procedures in 4.1.1, 4.1.2 and 4.1.3 shall be conducted before the initial field use. Calibration procedures in 4.1.3 shall be conducted for each propeller in use and whenever the structural integrity of a propeller or shaft/generator housing is in question.

4.1.1 Generator Output Test. To assess the integrity of the electrical output, a variable speed synchronous motor to rotate the propeller anemometer input shaft at known rotational velocities will be required. A minimum of two speeds shall be used to check the electrical output of each shaft/generator housing. The two speeds chosen shall fall on either side of the expected shaft velocities under field use.

Couple the synchronous motor to the anemometer input shaft according to the manufacturer's specifications (to ensure no slippage occurs). Attach an output device to the anemometer electrical outputs and start motor. Obtain the first rotational test speed and record the anemometer output in either mV DC or rpm. Obtain the second rotational test speed and record the anemometer output. Continue with additional rotational test speeds if applicable. Repeat each test speed in order to obtain a total of three output readings for each speed.

Average the three output readings from each rotational test speed applied and compare these results with the manufacturer's specifications (e.g., linear rpm/mV ratio). Results should compare with specifications to within 2 percent.

4.1.2 Bearing Torque Test. To assess the integrity of the mechanical bearings supporting the input shaft, a bearing torque test shall be conducted. Attach to the anemometer input shaft a torque applicator (e.g., bearing torque disc) which will apply a range of known, repeatable torques beyond the manufacturer's "poor performance" criterion. Starting with a 0.1 gm-cm torque, continually increase the applied torque in 0.1 gm-cm increments until the shaft begins to turn. Record the applied torque required to create shaft rotation and repeat two times. Results from all three tests should be below the manufacturer's specification for "poor performance." Conduct this check after the non-axial flow calibration to document the torque required during the calibration.

4.1.3 Non-Axial Flow Test. Assess the representativeness of manufacturer's angular flow calibration curve by conducting a wind tunnel test on each propeller in use and generating a percent response-vs-wind angle curve for comparison. Attach the propeller anemometer to the wind tunnel to allow a full 180° rotation ($\pm 90^{\circ}$ from the center line) within the tunnel. Connect all other apparatus to display/record anemometer outputs.

With the wind tunnel operating at 15 to 25 fps, determine the velocity at the propeller location using a standard pitot, differential pressure gauge, barometric pressure and temperature. Starting with the propeller anemometer oriented into the direction of flow (0°) rotate and record the output readings at 10° increments from 0° to + 90° and 0° to - 90° . Plot these results on a percent response-vs-wind angle graph and compare to the manufacturer's specifications. Differences should be within 3 percent at each point for the 100% axial flow response. Using the 100% axial flow response compute a velocity result and compare it to the velocity results measured using the standard pitot probe. This difference should be within 3 percent of the pitot probe results at 0° . Repeat this test at a velocity of 25 to 40 fps; compute the percent deviations as above.

<u>Note</u>: If the results of the propeller anemometer initial calibration tests are not within the required specifications, then either corrective maintenance should be implemented to correct the deficiencies or the equipment in question should be considered unsatisfactory and replaced.

4.1.4 Field Use and Recalibration.

4.1.4.1 Field Use. When the propeller anemometer is used in the field, the manufacturer's electromechanical ratio and axial/rotational velocity ratio shall be used to perform the velocity calculations.

4.1.4.2 Recalibration. After each test run, both a bearing torque check and a generator output test shall be conducted. If the bearing torque check is more than twice the torque recorded after calibration or is in the range of "poor performance" as described by the manufacturer, the anemometer must be repaired or replaced and the run repeated. The generator output test results must be within 5 percent of the predicted value or the system must be repaired or replaced and the run repeated. Alternatively the tester may opt to conduct both checks at the conclusion of all runs. However, if both criteria are not met, all runs must be repeated.

If both checks meet the above criteria and a visual inspection of the propeller shows no apparent changes, no additional calibrations must be conducted. Whenever the propeller anemometer fails to meet either of the

above requirements or the propeller becomes damaged, a complete recalibration as described in 4.1.1, 4.1.2 and 4.1.3 must be conducted.

4.2 Temperature Gauge. After each test series, check the temperature gauge at ambient temperature. Use an American Society for Testing and Materials (ASTM) mercury-in-glass reference thermometer, or equivalent, as a reference. If the gauge being checked does not agree within 2 percent (absolute temperature) of the reference, the temperature data collected in the field shall be considered invalid or adjustments of the test results shall be made, subject to the approval of the Administrator.

4.3 Barometer. Calibrate the barometer used against a mercury barometer prior to the field test as described in Method 2.

5. Calculations

Carry out the calculations, retaining at least one extra decimal figure beyond that of the acquired data. Round off figures after the final calculation.

5.1 Nomenclature.

- $A_s = Stack cross-sectional area, m².$
- C = Constant, anemometer manufacturer's axial/rotational velocity ratio, cm/rev.

P = Barometric pressure, mm Hg.

P = Average static pressure, mm Hg.

 $Q_s = Volumetric flow rate at standard conditions (20°C and 760 mm Hg), m³/min.$

 $T_s = Absolute stack temperature, ^OK.$

t_s = Stack temperature, ^CC.

V_a = Anemometer voltage output, mV.

v = Rotational velocity, anemometer output, rpm.

- v = Stack gas velocity, m/sec.
- 5.2 Velocity. $v_r = C_e V_a$ $v_s = C_r v_r/100$
 - $= C_{p} C_{p} V_{p} / 100$

(Eq. <u>P-</u>-1)

(Eq. P--2)

- 5.3 Volumetric Flow Rate.
 - $Q_{s} = A_{s} v_{s} \qquad (Eq. \frac{\nu_{-3}}{3})$ $= 60 A_{s} C_{r} C_{e} V_{a}/100$
- 6. Bibliography
 - 1. Gill, G.C., H.W. Carson, and R.M. Holmes. A Propeller-Type Vertical Anemometer. J. Applied Meteorology, December 1964.
 - 2. Gill, G.C. The Helicoid Anemometer. Atmosphere, Vol. 11, No. 4, 1973.

DRAFT METHOD - 1/23/87

METHOD CT - DETERMINATION OF CHROMIUM EMISSIONS FROM COOLING TOWERS

1. Applicability and Principle

1.1 Applicability. This method applies to the determination of total chromium and hexavalent chromium (Cr^{+6}) emissions from cooling towers. The hexavalent chromium emissions are calculated from the total chromium mass emission rate using the ratio of hexavalent-to-total chromium in the cooling water.

1.2 Principle. Chromium emissions are collected from the exit of the cooling tower cell(s) using an impinger train for sample collection and the propeller anemometer for velocity measurement. The impinger train is the same design as described in EPA Method 13 with the exception that the filter is made of Teflon^{**} and a propeller anemometer is used in place of the pitot tube. The impinger train samples are analyzed for total chromium (1) using Neutron Activation Analysis (NAA) or (2) by solubilizing all the chromium using nitric acid and measuring by Graphite Furnace Atomic Absorption (GFAA) or Inductively-Coupled Argon Plasmography (ICAP). Cooling water samples are also collected and analyzed both for total chromium by NAA, GFAA, or ICAP and hexavalent chromium by the diphenylcarbazide colorimetric method. (See Citations 1, 2, and 3 of Bibliography.)

2. Range, Sensitivity, Precision, and Interferences

2.1 Range. For a minimum analytical accuracy of \pm 15 percent, the lower limit of the range is 0.05 ug total sample catch for chromium. This accuracy can only be obtained when the analytical laboratory is told that the sample concentration is extremely low. There is no upper limit.

2.2 Sensitivity. A minimum detection limit of 0.05 ug of Cr should be observed.

2.3 Precision. The overall precision of the sample collection and analysis for a tower containing 4 ppm of Cr^{+6} (4 ug/ml) in the cooling water and emitting 1 ug/mg Cr^{+6} is about 35 percent with a 95 percent confidence

^{*} Mention of trade names or specific products does not constitute endorsement by the U. S. Environmental Protection Agency.

interval. A higher chromium content and/or a higher chromium emission rate should improve the precision. No precision measurements have been made for towers emitting less chromium. When less chromium is expected, sampling times should be increased to collect the minimum amount of chromium (0.05 ug).

2.4 Interference. Sodium can interfere with the measurement of chromium by NAA. Since sodium has a short half-life, the sodium interference can be minimized by allowing the samples to radiate for approximately 14 days prior to analysis. In studies conducted by EPA, approximately 100 ppm of sodium in cooling water did not effect the analytical accuracy.

3.0 Apparatus

3.1 Sampling Train. A schematic of the sampling train used in this method is shown in Figure CT-1. Commercial models of this train are available. All portions of the train that will come into direct contact with the sample should be cleaned with 1:1 HNO₃ and rinsed thoroughly before field use. After each sample is taken in the field, rinse with 0.1 N HNO₃ and follow with a water rinse.

The operating and maintenance procedures for the sampling train are described in APTD-0576 (Citation 3 in the Bibliography). The sampling train consists of the following components:

3.1.1 Probe Nozzle. Stainless steel (316) or glass with sharp, tapered leading edge. The angle of taper shall be $\leq 30^{\circ}$ and the taper shall be on the outside to preserve a constant internal diameter. The probe nozzle shall be of the button-hook or elbow design, unless otherwise specified by the Administrator. If made of stainless steel, the nozzle shall be constructed from seamless tubing; other materials of construction may be used, subject to the approval of the Administrator.

A range of nozzle sizes suitable for isokinetic sampling should be available, e.g., 0.32 to 1.27 cm (1/8 to 1/2 in.)--or larger if higher volume sampling trains are used--inside diameter (ID) nozzles in increments of 0.16 cm (1/16 in.). Each nozzle shall be calibrated according to the procedures outlined in Section 6.

3.1.2 Probe Liner. Borosilicate or quartz glass tubing with a heating system capable of maintaining a gas temperature at the exit end during sampling of $120 \pm 14^{\circ}$ C ($248 \pm 25^{\circ}$ F), or such other temperature as specified by an applicable subpart of the standards or approved by the Administrator for

Figure C_1 -1. Sampling Train for Measuring Cooling Tower Emissions.

a particular application. (The tester may opt to operate the equipment at a temperature lower than that specified.) Since the actual temperature at the outlet of the probe is not usually monitored during sampling, probes constructed according to ATPD-0581 (Citation 5 of Bibliography) and utilizing the calibration curves of APTD-0576 (or calibrated according to the procedure outlined in APTD-0576) will be considered acceptable.

In potentially explosive atmospheres, the probe shall not be heated. If the probe is positioned lower than the sample box, a cyclone or equivalent can be used to collect the condensed water and drift, thus preventing it from dripping back out of the probe into the fan cell.

Whenever practical, every effort should be made to use borosilicate or quartz glass probe liners. Metal liners (e.g., 316 stainless) which contain chromium are not allowed.

3.1.3 Propeller Anemometer. A propeller anemometer as described in Section 2.1 of Method <u>PA</u>, or other device approved by the Administrator. The propeller anemometer shall be attached to the sampling train (as shown in Figure TA-1) to allow constant monitoring of the stack gas velocity. The center of the propeller anemometer shall be placed 2 to 4 inches directly above the nozzle and aligned with the nozzle opening. The propeller anemometer shall have known electromechanical and axial/rotational velocity ratios which have been verified during calibration (see Section 4 of Method PA).

3.1.4 Data Output Device. A digital or analog millivolt meter, stripchart recorder, data-logger, or computer as described in Section 2.2 of Method <u>PA</u>. This output device shall be used for the measurement of the voltage output from the propeller anemometer.

3.1.5 Impingers. Four impingers connected as shown in Figure \underline{CT} -1 with ground-glass (or equivalent), vacuum-tight fittings. For the third and fourth impingers, use the Greenburg-Smith design, modified by replacing the tip with a 1.3 cm inside diameter (1/2 in.) glass tube extending to 1.3 cm (1/2 in.) from the bottom of the flask. For the second impinger, use a Greenburg-Smith impinger with the standard tip. The tester may use modifications (e.g., flexible connections between the impingers or materials other than glass), subject to the approval of the Administrator. Place a thermometer, capable of measuring temperature to within 1°C ($2^{\circ}F$), at the outlet of the fourth impinger for monitoring purposes.

3.1.6 Filter Holder. Borosilicate glass, with a glass frit filter support and a silicone rubber gasket. Other materials of construction (e.g., Teflon[™], Viton) may be used, subject to the approval of the Administrator. The holder design shall provide a positive seal against leakage from the outside or around the filter. The holder shall be attached between the third and fourth impinger.

3.1.7 Forceps. Plastic.

3.1.8 Metering System. Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within $3^{\circ}C$ (5.4°F), dry gas meter capable of measuring volume to within 2 percent, and related equipment, as shown in Figure $C\underline{\tau}$ -1. Other metering systems capable of maintaining sampling rates within 10 percent of isokinetic and of determining sample volumes to within 2 percent may be used, subject to the approval of the Administrator. When the metering system is used in conjunction with a propeller anemometer, the system shall enable checks of isokinetic rates.

Sampling trains utilizing metering systems designed for higher flow rates than that described in APTD-0581 or APTD-0576 may be used provided that the specifications of this method are met.

3.1.9 Barometer. Mercury, aneroid, or other barometer capable of measuring atmospheric pressure to within 2.5 mm (0.1 in.) Hg. In many cases, the barometric reading may be obtained from a nearby national weather service station, in which case the station value (which is absolute barometric pressure) shall be requested and an adjustment for elevation differences between the weather station and sampling point shall be applied at a rate of minus 2.5 mm (0.1 in.) Hg per 30 m (100 ft) elevation increase or vice versa for elevation decrease.

3.1.10 Flue Gas Temperature. A temperature sensor as described in Section 2.3 of Method <u>PA</u>. The temperature sensor shall be attached to the sampling probe in a configuration such that the tip of the sensor extends beyond the leading edge of the probe sheath, does not touch any metal, and is in an interference-free arrangement with the nozzle. As an alternative (as described in Method <u>PA</u>), if all points are within 5° F of the average stack temperature, the temperature of the stack may be determined at a single point.

3.1.11 Cooling Water Sample Bottle. A glass or polyethylene bottle 25 ml or greater is required to collect a cooling water sample during each run. Clean with 1:1 HNO₂ and rinse thoroughly before use.

3.1.12 Equipment for Sampling in Potentially Explosive Areas. Class I Division 1 Locations: Currently available equipment cannot be readily modified for use in Class I Division 1 locations.

Class I Division 2 Locations: Two gas monitors are required to continuously monitor the atmosphere both at the cooling tower discharge point and the area around the meter box. The gas monitors must be of the continuous type (LEL meters or similar devices) and equipped with an alarm that indi- cates when 40 percent of the lower explosive limit (LEL) has been reached. The meter box must be equipped with an explosion-proof switch to shutdown all power to the box in case of an emergency. The electrical cord running to the meter box must be S0-type line and must be equipped with an explosion-proof plug.

3.2 Sample Recovery. Clean all items for sample handling or storage with 1:1 HNO₃ and rinse thoroughly before use. The following items are needed:

3.2.1 Probe-Liner and Probe-Nozzle Brushes. Nylon bristle brushes with a handle (at least as long as the probe) of Nylon, Teflon^M, or a similar material which does not contain chromium. The brushes shall be properly sized and shaped to brush out the probe liner and nozzle.

3.2.2 Wash Bottles--Two. Glass wash bottles are recommended; polyetheylene wash bottles may be used at the option of the tester.

3.2.3 Glass Sample Storage Containers. Chemically resistant, borosilicate glass bottles, for water washes, 500-ml or 1000-ml. Screw cap liners shall either be rubber-backed Teflon[™] or shall be constructed so as to be leak-free. (Narrow mouth glass bottles have been found to be less prone to leakage.) Alternatively, polyethylene bottles may be used.

3.2.4 Forceps. Plastic.

3.2.5 Graduated Cylinder and/or Balance. To measure condensed water to within 1 ml or 1 g. Graduated cylinders shall have subdivisions no greater than 2 ml. Most laboratory balances are capable of weighing to the nearest 0.5 g or less. Any of these balances is suitable for use here and in Section 5.0.2.

3.2.6 Plastic Storage Containers. Air-tight containers to store silica gel.

3.2.7 Funnel and Rubber Policeman. To aid in transfer of silica gel to container; not necessary if silica gel is weighed in the field.

3.2.8 Funnel. Glass or polyethylene, to aid in sample recovery.

3.3 Sample Preparation for Analysis. Clean all items for sample handling or storage with 1:1 HNO₃ and rinse thoroughly before use. The following items are needed:

3.3.1 Beakers. Borosilicate glass in sizes adequate for concentrating aqueous samples (600-ml or larger) and digesting cooling water residue filters (25- to 50-ml).

3.3.2 Hot Plate.

3.3.3 Storage Vials. Borosilicate glass, 40-ml capacity, with cap and Teflon[™] liner, such as EPA-approved vials for water analysis.

3.3.4 Analytical Balance. To measure within 0.1 mg.

3.3.5 Vacuum Filter Unit. Plastic or glass, 47-mm in diameter.

3.3.6 Graduated Cylinder. In a size slightly larger than size of cooling water sample bottles.

3.3.7 Glass Sample Storage Containers. Same as 3.2.3.

3.3.8 NAA Vials (Optional). For NAA of cooling water residue only. The laboratory conducting the NAA analysis should be contacted and the proper screw-type vials obtained for the filters used to collect the residue.

3.4 Analysis. Three analytical methods have presently been shown to be satisfactory for analysis of total chromium in cooling tower samples: GFAA, ICAP, and NAA. One of these methods is used for the analysis of the impinger train samples and the residue portion of of the cooling water samples. (Additional specifications will be added to this section upon final selection of the analytical method.) Analysis for hexavalent chromium in the cooling water samples is performed following the Draft Method - "Determination of Hexavalent Chromium Emissions from Stationary Sources." The necessary apparatus is listed in Section 3.3 of the method.

4. Reagents

Unless otherwise indicated, all reagents must conform to the specifications established by the Committee on Analytical Reagents of the American Chemical Society. Where such specifications are not available, use the best available grade.

4.1 Sampling. The reagents used in sampling are as follows:

4.1.1 Water. Approximately 300 to 400 ml of deionized water for impinger reagent and for sample cleanup; deionized water is also required for reagent preparation. Significant levels of chromium must not be present in the water. It is recommended that water blanks be checked prior to sampling to ensure that the chromium content is less than 0.1 part per billion (0.1 ug

per liter); this can be accomplished by concentrating one liter of the water and . analyzing by the appropriate technique.

4.1.2 Filters. Teflon[™] or equivalent filters with 0.5-micron or smaller pore size. The filter must have a chromium blank value of less than 0.005 ug chromium per filter. Many glass fiber filters exceed the limit for chromium and should not be used.

4.2 Sample Recovery. The reagents used in sample recovery are as follows:

4.2.1 Water. Approximately 300 to 400 ml of distilled water for impinger reagent and sample cleanup; significant levels of chromium must not be present in the water. (See Section 4.1.1.)

4.2.2 Nitric Acid, 0.1 N. Slowly add 7 ml of concentrated nitric acid (HNO_2) to water in a 1-liter flask; dilute to the mark.

4.3 Sample Preparaton and Analysis. As previously noted in Section 3.4, three analytical methods are presently believed satisfactory for analysis of total chromium in the impinger train samples and the cooling water sample residues. The Draft Method for Hexavalent Chromium is used to measure the hexavalent chromium in the cooling water filtrate. The reagents needed to prepare the impinger train samples and cooling water aliquots for total chromium analysis are listed below. The reagents necessary for the hexavalent chromium analysis of the cooling water filtrate are listed in Section 4.3 of the Draft Method. (Additional specifications for reagents needed for total chromium analysis will be added to this section upon final selection of the analytical method.)

4.3.1 Water. See Section 4.1.1.

4.3.2 Nitric Acid. Concentrated.

4.3.3 Nitric Acid, 1:1 (v/v). Slowly add an equal volume of concentrated nitric acid (HNO₂) to water.

4.3.4 Filters. Teflon, 1.0-um pore size, 47-mm diameter for collecting insoluble residue in cooling water.

4.3.5 Aqua Regia. Slowly add 1 part of concentrated nitric acid to 3 parts concentrated sulfuric acid.

4.3.6 Performance Audit Sample. A performance audit sample shall be obtained from the Quality Assurance Division of EPA and analyzed with the field samples. The mailing address to request the samples is:

> U. S. Environmental Protection Agency Environmental Monitoring System Quality Assurance Division Source Branch, Mail Drop 77-A Research Triangle Park, North Carolina 27711

5. Procedure

5.1 Sampling. The complexity of this method is such that to obtain reliable results, testers should be trained and experienced with the test procedures.

5.1.1 Pretest Preparation. All the components shall be maintained and calibrated according to the procedure described in APTD-0576, unless otherwise specified herein.

Weigh several 200- to 300-g portions of silica gel in air-tight containers to the nearest 0.5 g. Record the total weight of the silica gel plus container, on each container. As an alternative, the silica gel need not be preweighed, but may be weighed directly in its impinger or sampling holder just prior to train assembly.

Check filter visually against light for irregularities and flaws or pinhole leaks. Label filters of the proper diameter on the back side near the edge using numbering machine ink. Alternatively, the filter holder, or other means of tracking the filter to ensure that the filter is recovered with the proper sample, may be used. The filters are not preweighed since the analysis is a chemical determination.

5.2 Determination of Measurement Site. Due to the configuration of cooling towers, Method 1 cannot be used to determine measurement sites. Following are several alternatives for determining measurement sites for cooling towers.

5.2.1 Selection of Number of Fan Cells to be Tested. For towers with three or less cells, all cells shall be tested. For towers with 4 or 5 cells, at least 3 cells shall be tested. For towers with 6 or more fan cells, a minimum of half of the cells shall be tested.

5.2.2 Criteria for Selecting Cells and Traverse Direction. The following criteria must be met:

- (a) Every run must consist of two traverses.
- (b) Every equal area cell must be represented by at least two runs.
- (c) A single traverse direction may be used for all towers containing more than one cell.
- (d) Based on the prevailing winds, the extreme inward and outward cells are initially identified and selected for sampling.
- (e) After identifying the extreme inward and outward cells, the remaining cells to be sampled (sufficient to equal required minimum) are selected at random.
- (f) The mass emission rate for the tower is the sum of the averages for each of the equal area cells.
- (g) The traverse direction at the stack exit may be selected by the tester.

- (h) The order for sampling the cells may be selected by the tester.
- (i) All runs must be consecutive; none may be conducted simultaneously.
- (j) When a tower contains two distinctly different types of mist eliminators, the cells with different mist eliminators must be considered in the same manner as if the cells have different areas.

The following six examples are given to better define the approach for selecting the cells to be sampled. Circles represent fan cells, the small rectangles show the recommended location for scaffolding, and the dotted lines indicate traverse directions. Cells on towers with multiple fan cells are selected in pairs to reduce the amount of scaffolding needed to conduct the testing. The order of the sample runs and traverses presented are only examples and the order is left to the tester.

EXAMPLE 1

Prevailing wind direction is not used to select the traverse direction; tester may select the most convenient directions at 90° apart.

- Three runs will be conducted with a traverse in both directions.
- The Mass Emission Rate is the average of the three runs.

EXAMPLE 2

Prevailing wind direction is not used in the selection of cells; the tester may select the most convenient traverse directions.

- For Runs 1 and 2 each cell is traversed twice; for Run 3 both cells are traversed once.
- The Mass Emission Rate would be the average of the three runs multiplied by two.

EXAMPLE 3

- Cells 1 and 3 will be tested based on the prevailing winds.
- A coin toss selects Cell 4.
- Each cell is traversed twice.
- The Mass Emission Rate is the average of the three runs calculated using the combined area of all four cells.

EXAMPLE 4

- Cells 1 & 3, and 12 & 14 are selected based on the prevailing winds, which eliminates for selection their representative equal area cell pairs of 4 & 2 and 13 & 11, respectively.
- Cells 5 & 7, 6 & 8, 7 & 9, and 8 & 10 are available for selection.
- Cells 6 & 8 are selected by a random drawing which eliminates their equal area cell pair 7 & 5.
- Therefore, Cell 9 is traversed twice, since it is not yet represented by another equal area cell.
- Run 1 is a traverse of Cells 12 and 14; Run 2 is a traverse of Cells 6 and 8; Run 3 is a traverse of Cells 1 and 3; and Run 4 is two traverses of Cell 9.
- The Mass Emission Rate is the average of Runs 1, 2, and 3 calculated using the area of the twelve cells that they represent plus Run 4, using the area of the two cells it represents.

EXAMPLE 5

Cells 2, 3, 4, and 5 have the same area. Cell 1 is much larger, but is located on the same tower.

- Cells 2 and 5 are selected based on the prevailing winds.
- Cell 3 was selected by a flip of a coin.
- Cell 1 must be represented by two runs.
- Cells 2, 3, and 5 are traversed twice for Runs 1, 2, and 3, respectively.
- Cell 1 is traversed two times each for Runs 4 and 5.

• The Mass Emission Rate is the average of Runs 1, 2, and 3 calculated using the area of Cells 2, 3, 4, and 5 plus the average of Runs 4 and 5 using the area of Cell 1.

EXAMPLE 6

- Cells 1 & 10 and 5 & 6 were selected based on the prevailing winds.
- Cells 2 & 3, 3 & 4, 7 & 8, and 8 & 9 are available for selection.
- Cells 8 and 9 were selected by random drawing.
- Cell 11 will be traversed twice because it has no other representative cell.
- Run 1 will traverse Cells 1 and 2.
- Run 2 will traverse Cells 5 and 6.
- Run 3 will traverse Cells 8 and 9.
- Run 4 will traverse Cell 11 twice.
- The Mass Emission Rate is the average of Runs 1, 2, and 3 calculated using the area of the 10 cells traversed plus the average of Run 4 calculated using the area of Cell 11.

5.2.3 Criteria for Selecting Traverse Points. The following criteria must be met:

- (a) The traverse line may be located in any plane near the exit of the cell. The tester may alternatively select any plane that is not affected by the wind to a greater degree than the cell exit plane (i.e., for a large cells--an access door in the cell stack or a point 2 feet above the cell on a calm day).
- (b) Twelve points shall be sampled on each traverse for a minimum of 5 minutes per point. The points shall be located on the traverse line at the percentage of the diameter as shown below:

Point	1	-	2.1%	Point 2	-	6.7%	Point	3	-	11.8%
Point	4	-	17.7%	Point 5	-	25.0%	Point	6	-	35.6%
Point	7	-	63.4%	Point 8	-	75.0%	Point	9	-	82.3%
Point	10	-	88.2%	Point 11	-	93.3%	Point	12	-	97.9%

(c) No point shall be closer than 9 inches from the wall. All points that are calculated at less than 9 inches from the wall shall be relocated at 9 inches from the wall.

5.3 Preliminary Determinations. Select the cells and the sampling points as described in Section 5.2. Determine the stack pressure, temperature and the range of velocities using Method <u>PA</u>. Determine the moisture content with a wet and dry bulb thermometer, or assume saturation at the stack temperature and calculate the moisture.

Select a nozzle based on the range of velocities, such that it is not necessary to change the nozzle size in order to maintain isokinetic sampling rates. During the run, do not change the nozzle size.

Select a total sampling time greater than or equal to the minimum total sampling time based on 5 minutes per point and 2 hours per run.

The sampling time at each point shall be the same. It is recommended that the number of minutes sampled at each point be an integer or an integer plus one-half minute, in order to avoid timekeeping errors.

5.4 Preparation of Collection Train. Clean all portions of the sampling train which will come into direct contact with the sample with 1:1 HNO₃ and rinse thoroughly with water. During preparation and assembly of the sampling train, keep all openings where contamination can occur covered until just prior to assembly or until sampling is about to begin.

Place 100 ml of water in each of the first two impingers, leave the third impinger empty, and transfer approximately 200 to 300 g of preweighed silica gel from its container to the fourth impinger. More silica gel may be used, but care should be taken to ensure that it is not entrained and carried out from the impinger during sampling. Place the container in a clean place for later use in the sample recovery. Alternatively, the weight of the silica gel plus impinger may be determined to the nearest 0.5 g and recorded. Using plastic forceps or clean disposable gloves, place a labeled (identified) filter in the filter holder. Be sure that the filter is properly centered and the gasket properly placed so as to prevent the sample gas stream from circumventing the filter. Check the filter for tears after assembly is completed.

A glass liner or equivalent must be used. Install the selected nozzle using a Viton A O-ring or Teflon[™] ferrules. Mark the traverse monorail or other system to denote the proper distance in the exit plane of the cells for each traverse run with equal diameter cells.

Set up the train as in Figure CT-1, using (if necessary) a very light coat of silicone grease on all ground glass joints, greasing only the outer portion (see APTD-0576) to avoid possibility of contamination by the silicone grease.

Place crushed ice around the impingers.

5.4.1 Leak-Check Procedure.

5.4.1.1 Pretest Leak-Check. A pretest leak-check is recommended, but not required. If the tester opts to conduct the pretest leak-check, the following procedure shall be used.

After the sampling train has been assembled, leak-check the train at the sampling site by plugging the nozzle and pulling a 380 mm (15 in.) Hg vacuum. <u>Note</u>: A lower vacuum may be used, provided that it is not exceeded during the test.

The following leak-check instructions for the sampling train described in APTD-0576 and ATPD-0581 may be helpful. Start the pump with bypass valve fully open and coarse adjust valve completely closed. Partially open the coarse adjust valve, and slowly close the bypass valve until the desired vacuum is reached. <u>Do not</u> reverse direction of bypass valve; this will cause water to back up into the probe. If the desired vacuum is exceeded, either leak-check at this higher vacuum or end the leak-check as shown below, and start over.

When the leak-check is completed, first slowly remove the plug from the inlet to the nozzle, and immediately turn off the vacuum pump. This prevents the water in the impingers from being forced backward into the probe and silica gel from being entrained backward into the filter holder.

5.4.1.2 Leak-Checks During Sample Run. If, during the sampling run, a component (e.g., filter assembly or impinger) change becomes necessary, a leak-check shall be conducted immediately before the change is made. The

leak-check shall be done according to the procedure outlined in Section 5.4.1.1 above, except that it shall be done at a vacuum equal to or greater than the maximum value recorded up to that point in the test. If the leakage rate is found to be no greater than $0.00057 \text{ m}^3/\text{min} (0.02 \text{ cfm})$ or 4 percent of the average sampling rate (whichever is less), the results are acceptable, and no correction will need to be applied to the total volume of dry gas metered; if, however, a higher leakage rate is obtained, the tester shall either record the leakage rate and plan to correct the sample volume as shown in Section 7.3 of this method, or shall void the sample run.

Immediately after component changes, leak-checks are optional; if such leak-checks are done, the procedure outlined in Section 5.4.1.1 above shall be used.

5.4.1.3 Post-Test Leak-Check. A leak-check is mandatory at the conclusion of each sampling run. The leak-check shall be done in accordance with the procedures outlined in Section 5.4.1.1, except that it shall be conducted at a vacuum equal to or greater than the maximum value reached during the sampling run. If the leakage rate is found to be no greater than $0.00057 \text{ m}^3/\text{min}$ (0.02 cfm) or 4 percent of the average sampling rate (whichever is less), the results are acceptable, and no correction need be applied to the total volume of dry gas metered. If, however, a higher leakage rate is obtained, the tester shall either record the leakage rate and correct the sample volume as shown in Section 7.3 of this method, or shall void the sampling run.

5.4.2 Sampling in Class I Division 2 Locations. The following procedures must be conducted in addition to all plant safety requirements. Plant regulations take precedent over any requirements stated below. The following steps must be taken to allow testing at cooling towers in a Class I Division 2 area (as classified in accordance with API RP 500A):

- (1) The plant safety officer must first monitor the area and deem it safe.
- (2) Proper personnel safety equipment must be obtained and properly utilized during the test.
- (3) A gas monitor (LEL or similar device) must be used to continuously monitor the atmosphere both at the cooling tower discharge and in the area around the meter box. Each gas monitor must have an alarm that is set to indicate when 40% of the lower explosive limit (LEL) is obtained in either area.

- (4) The sample collection equipment in the cooling tower discharge stream must not contain any electrical components with the exception of the generator in the propeller anemometer which generates less than one millivolt.
- (5) The electrical cord running to the meter box must be a SO-type line and must be equipped with an explosion-proof plug.
- (6) The meter box must be equipped with an explosion-proof switch to shutdown all power in case of an emergency.
- (7) All power to the meter box must be shutdown using the explosion-proof switch any time the alarm sounds on the LEL meter or the plant alarm sounds.
- (8) The testers must evacuate the area of the cooling tower if the LEL alarm sounds and the safety officer must deem the area safe prior to the return of any testing personnel.

5.4.3 Cooling Tower Operation and Ambient Conditions. Based on communications with the Cooling Tower Institute (Citation 5 of the Bibliography), the following guidelines are recommended which relate to tower operating parameters and ambient environmental conditions during testing:

- (1) <u>Ambient Wind Speed</u>: Ideally the average wind speed during the drift measurement should be less than 5 to 6 miles per hour. More realistically, the average wind speed, measured in an open and unobstructed location within 100 feet upwind of the tower at a point 5 feet above basin curb elevation, should not exceed 10 miles per hour. Wind gusts should not exceed 15 miles per hour and should not exceed 1 minute duration.
- (2) <u>Heat Load</u>: Measurements may be taken with or without heat load (on a mechanical draft cooling tower).
- (3) <u>Ambient Temperature and Humidity</u>: Measurements may be taken at any non-freezing ambient temperature/humidity condition.
- (4) <u>Stability of Test Conditions</u>: Variations in average ambient air temperatures should not exceed the following limits during the drift measurement period:
 ***Wet-bulb temperature 2°F per hour
 - ***Dry-bulb temperature 5⁰F per hour
- (5) <u>Water Flow</u>: The measurements should be taken at normal operating waterflow conditions, i.e., design flow + 10%.

(6) <u>Water Quality</u>: Measurements should not be taken during temporary upset conditions in water chemistry, i.e., the cycles of concentration for the circulating water at the time of the drift measurement should be within a reasonable proximity of normal levels.

5.5 Train Operation. During the sampling run, maintain an isokinetic sampling rate (within 20 percent of true isokinetic unless otherwise specified by the Administrator).

For each run, record the data required on a data sheet such as the one shown in Figure $\underline{(1)}$ -2. Be sure to record the initial dry gas meter reading. Record the dry gas meter readings at the beginning and end of each sampling time increment, when changes in flow rates are made, before and after each leak-check, and when sampling is halted. Take other readings required by Figure $\underline{(1)}$ -2 at least once at each sample point during each time increment and additional readings when significant changes (20 percent variation in velocity head readings) necessitate additional adjustments in flow rate.

To begin sampling, position the nozzle at the first traverse point with the tip pointing parallel to the axis of the fan. Immediately start the pump, and adjust the flow to isokinetic conditions. Standard isokinetic sampling nomographs are designed for use with a Type "S" pitot and will have to be modified for use with the propeller anemometer. Isokinetic sampling rate and calculation programs using the Hewlett-Packard 41 are available from EPA (Citation 6 of Bibliography). Traverse the cell as required by Method PA.

If the pressure drop across the filter becomes too high, making isokinetic sampling difficult to maintain, the filter may be replaced in the midst of the sample run. It is recommended that another complete filter assembly be used rather than attempting to change the filter itself. Before a new filter assembly is installed, conduct a leak-check (see Section 5.4.1.1). The pollutant catch shall include the summation of all the filter assembly catches.

At the end of the sample run, turn off the coarse adjust valve, turn off the pump, remove the probe and nozzle from the stack, record the final dry gas meter reading, and conduct a post-test leak-check, as outlined in Section 5.4.1.2. Also, conduct a bearing torque check on the propeller anemometer and a constant rpm check on the electrical system. The torque must not exceed twice the torque when calibrated. If the torque check does not meet the requirements, clean and/or replace the propeller anemometer and repeat the run. Alternatively, the torque check may be conducted after the last run. If

FIGURE C1-2. CHROMIUM FIELD DATA FORM

Plant	Meter calibration (Y)	Nozzle identification number
City	Probe liner material	Nozzle diameter mm (in.)
Location	Probe heater setting	Thermometer number 2
Operator	Ambient temperature	Final leak rate m ^{-/min} (cfm)
Date	Barometric pressure (P ₁) mm (in.) llg	Vacuum during leak-check
Run number	Assumed moisture	mm (in.) Hg
Sample box number	Static pressure (P_) mm (in.) H ₂ O	Bearing torque check
Meter box number	Anem. electromechanical ratio	Constant rpm check
Meter AH@	Anem. axial/rotational velocity ratio	Filter number
Remarks		

Traverse point number	Sampling time (0), min	Clock time, (24 h)	Vacuum mm (in.) Hg	Stack tempera- ture (Ts), °C ^s (°F)	Anemometer output, millivolt or rpm	Velocity, m/s (ft/sec)	Pressure differ- ential orifice meter (ΔH), mm (in.) H ₂ O	Gas sample volyme (Y), m ² (ft ²)	Gas sa temp. gas m Inlet, °C(°F)	mple at dry eter Outlet, °C(°F)	Temp. of gas leaving condenser or last impinger C (°F)
	<u> </u>						-				
										{	
	· · · · · · · · · · · · · · · · · · ·	 									
							· · · · · · · · · · · · · · · · · · ·				
				······································						 	
	Total		Max	Avg				Total	Avg	Avg	Max

it does not pass, all runs must be repeated. The constant rpm check of the electrical system must be within 5 percent of the calibration value. If the system does not meet the requirements, repair or replace the system and void the run. Alternatively, the check may be conducted after the last run. If it does not pass, all runs must be repeated.

5.6 Calculation of Percent Isokinetic. Calculate percent isokinetic (see Calculations, Section 7) to determine whether the run was valid (80 to 120% isokinetic) or another test run should be made. If there was difficulty in maintaining isokinetic rates due to source conditions, consult with the Administrator for possible variance on the isokinetic rates.

5.7 Collection of Cooling Water Sample. A cooling water sample shall be collected during each run. The sample should be collected once during each run using a glass or polyethylene bottle from a location that would be representative of water entering the cooling tower. Alternatively, the tester may assume that all the chromium in the tower is in the hexavalent state and, therefore, need not collect cooling water samples to correct the data for non-hexavalent chromium.

5.8 Sample Recovery. Begin proper cleanup procedure as soon as the probe is removed from the stack at the end of the sampling period. Wipe off all external matter near the tip of the probe nozzle and place a cap over it to keep from losing part of the sample.

Before moving the sampling train to the cleanup site, remove the probe from the sampling train, wipe off the silicone grease, and cap the open outlet of the probe. Be careful not to lose any condensate, if present. Remove the filter assembly, wipe off the silicone grease from the filter holder inlet, and cap this inlet. Remove the umbilical cord from the last impinger, and cap the impinger. After wiping off the silicone grease, cap off the inlet to the first impinger and any open impinger inlets and outlets. The tester may use ground-glass stoppers, plastic caps, or serum caps to close these openings.

Transfer the probe and filter-impinger assembly to an area that is clean and protected from the wind so that the chances of contaminating or losing the sample is minimized.

Inspect the train before and during disassembly, and note any abnormal conditions. Treat the samples as follows:

5.8.1 Container No. 1 (Probe, Filter, and Impinger Catches). Using a graduated cylinder, measure to the nearest ml, and record the volume of the water in the first three impingers; include any condensate in the probe in

this determination. Transfer the impinger water from the graduated cylinder into a polyethylene or glass container. Add the filter to this container. (The filter may be handled separately using procedures subject to the Administrator's approval.) Taking care that dust on the outside of the probe or other exterior surfaces does not get into the sample, rinse all sample-exposed surfaces (including the probe nozzle, probe fitting, probe liner, first three impingers, impinger connectors, and front half of the filter holder) with 0.1 N HNO₃. Use less than 500 ml for the entire wash. Add the washings to the sample container. Perform the 0.1N HNO₃ rinses as follows:

Carefully remove the probe nozzle and rinse the inside surface with 0.1 N HNO_3 from a wash bottle. Brush with a nylon bristle brush, and rinse until the rinse shows no visible particles, after which make a final rinse of the inside surface. Brush and rinse the inside parts of the Swagelok fitting with 0.1 N HNO_3 in a similar way.

Rinse the probe liner with 0.1 N HNO_3 . While squirting the solution into the upper end of the probe, tilt and rotate the probe so that all inside surfaces will be wetted. Let the rinse drain from the lower end into the sample container. The tester may use a funnel (glass or polyethylene) to aid in transferring the liquid washes to the container. Follow the rinse with a probe brush. Hold the probe in an inclined position, and squirt 0.1 N HNO_3 into the upper end as the probe brush is being pushed with a twisting action through the probe. Hold the sample container underneath the lower end of the probe, and catch all rinse and particulate matter that is brushed from the probe. Run the brush through the probe three times or more. Rinse the brush with 0.1 N HNO_3 , and quantitatively collect these washings in the sample container. After the brushing, make a final rinse of the probe as described above: It is recommended that two people clean the probe to minimize sample losses.

Rinse the inside surface of each of the first three impingers (and connecting glassware) three separate times. Use a small portion of 0.1 N HNO_3 for each rinse, and brush each sample-exposed surface with a nylon bristle brush, to ensure recovery of fine particulate matter. Make a final rinse of each surface and of the brush.

After ensuring that all joints have been wiped clean of the silicone grease, brush and rinse the inside of the filter holder (front-half only) with 0.1 N HNO₃. Brush and rinse each surface three times or more if needed. Make a final rinse of the brush and filter holder.

After all 0.1 N HNO₃ rinsings have been collected in the sample container, tighten the lid so that the liquid will not leak out when it is shipped to the laboratory. Mark the height of the liquid level to determine whether leakage occurs during transport. Label the container clearly to identify its contents.

This cleanup must be conducted for each of the test runs. Between sampling runs, rerinse all the sample-exposed surfaces of the train and the probe and impinger brushes with water. Keep brushes clean and protected from contamination.

5.8.2 Container No. 2 (Sample Blank). Prepare a blank by placing an unused Teflon^m filter in a container and adding a volume of water and 0.1 N HNO₃ equal to the total volume in Container No. 1. Process the blank in the same manner as for Container No. 1. Only one sample blank must be collected for each test series.

5.8.3 Container No. 3 (Silica Gel). Note the color of the indicating silica gel to determine whether it has been completely spent and make a notation of its condition. Transfer the silica gel from the fourth impinger to its original container and seal. The tester may use a funnel to pour the silica gel and a rubber policeman to remove the silica gel from the impinger. It is not necessary to remove the small amount of dust particles that may adhere to the impinger wall and are difficult to remove. Since the gain in weight is to be used for moisture calculations, do not use any water or other liquids to transfer the silica gel. If a balance is available in the field, the tester may follow the analytical procedure for Container No. 3 in 5.10.2.

5.9 Sample Preparation For Analysis. The entire aqueous sample is concentrated to a nominal volume of 25 ml. The specific procedures follow.

Note the liquid levels in Containers No. 1 and No. 2 and confirm on the analytical data form (Figure (1-3) or similar form) whether or not leakage occurred during transport. If noticeable leakage has occurred, either void the test run or use methods, subject to the approval of the Administrator, to correct the final results. Treat the contents of each sample container as described below:

5.9.1 Container No. 1 (Probe Filter and Impinger Catch). To condense the sample, place the sample or a portion of the sample, including the Teflon filter, in a beaker; add approximately 10 mls of concentrated HNO_3 , cover with a watch glass, and heat to $105^{\circ}C$ in a hood. After the liquid contents are removed from the container, rinse the sample container with 0.1 N HNO_3 and add

the rinse to the sample. If difficulty is encountered in evaporating the sample without bumping, a few TeflonTM chips may be added. Condense the sample to a nominal 25 ml; <u>do not</u> allow it to go to dryness. Transfer the condensed sample to a clean, tare-weighed storage vial. Rinse the beaker with 4 ml or less of 1:1 HNO_3 and add to the vial. Seal the vial and reweigh. Record the vial tare weight and final weight on the analytical data form. By assuming a specific gravity of 1.0, the difference between the tare and final weights (in g) is used as the sample volume (in ml). This volume is necessary to calculate the total ug of Cr in the sample after analysis using GFAA or ICAP, since the results are on a concentration basis. Transfer the samples to the NAA, GFAA, or ICAP laboratory.

5.9.2 Container No. 2 (Sample Blank). Treat in the same manner as described in Section 5.9.1 above.

5.9.3 Preparation of Cooling Water Samples. Shake the cooling water sample container to suspend any settled solids. Immediately pour through a 1.0 um-pore size Teflon filter in a vacuum filtration unit. When filtration is complete, use some of the filtrate to rinse the sample bottle and filter this rinse through the same filter. Measure the volume of the filtrate using a graduated cylinder and record on the analytical data sheet; transfer the filtrate to a clean sample storage container.

If the impinger samples are to be analyzed by NAA, transfer the Teflon filter holding the filtered residue to a precleaned screw-type vial suitable for NAA. If the samples will be analyzed by GFAA or ICAP, place the filter in a beaker with 5 ml of aqua regia and heat on a hot plate in a hood. Bring to a low boil for approximately 15 minutes. Transfer the solution to a 100-ml volumetric flask, rinsing the filter and the beaker well with water. Dilute to the mark. Take a portion of the solution, transfer it to a 40-ml storage vial, and submit it to the NAA, GFAA, or ICAP laboratory as appropriate.

5.9.4 Preparation of Performance Audit Sample. Pipette the volume of audit sample as indicated in the EPA audit instructions into a cleaned storage vial. The audit sample will be used to assess the accuracy of the analytical procedures.

5.10 Analysis.

5.10.1 NAA, GFAA, or ICAP Analysis. These three analytical methods have presently been shown to be satisfactory for analysis of cooling tower chromium samples. Submit impinger train samples and cooling water residue samples to

FIGURE CT- 3. SAMPLE PREPAR	ATION AND A	NALYTICAL DATA	FORM			
Plant Name	·	·····				
Sampling Location	Sampling Date					
Total Chromium Analyst	Date	NAA 🛛 GFAA 🗌	ICAP			
Hexavalent Chromium Analyst		Date				
Run ID Nos.	Run	1 Run 2	Run 3			
Silica Gel						
Final wt. g						
Initial wt, g (minus)						
Wt gained, g						
Cooling Water Samples Sample ID Nos. Volume filtered (V_w) , ml GFAA or ICAP results $(G_w)^*$, ug Cr/ml NAA results (N_w) , * ug Cr Cr in residue $(G_w \times V_w \text{ or } N_w)$, ug Cr Cr ⁺⁶ results for filtrate (H_w) , ug Cr ⁺⁶						
Impinger Train Samples						
Sample ID NOS.	<u></u>					
Nolume of condensed corple (W) = = = =	<u> </u>					
CEAA on ICAR negative (C) $\frac{1}{s}$ and $\frac{1}{s}$			<u> </u>			
NAA poculta $(N)^*$ ug (P)						
$\frac{(n + n)}{s} = \frac{(n + n)}{s} + \frac{(n + n)}{s$						
s s s s, ug cr		<u></u>				
Performance Audit Sample						
Sample ID No(s).						
Cr ⁺⁰ results, ug Cr ⁺⁰						
GFAA or ICAP results, ug/ml	<u> </u>					
NA results, ug Cr			<u> </u>			

*Values should be blank corrected before being entered. Blank value must be less than or equal to 0.01 ug for NAA or 0.00004 ug/ml for GFAA or ICAP. If this value is exceeded, subtract only 0.01 ug or 0.00004 ug/ml for the blank values. the NAA, GFAA, or ICAP laboratory. (Additional specifications will be added to this section upon final selection of the analytical procedure for this method).

5.10.2 Container No. 3. Weigh the spent silica gel (or silica gel plus impinger) to the nearest 0.5 g using a balance. This step may be conducted in the field.

5.10.3 Cooling Water Filtrate. Analyze a representative portion using the Draft Method - "Determination of Hexavalent Chromium Emissions from Stationary Sources."

6. Calibration

Maintain a laboratory log of all calibrations.

6.1 Probe Nozzle. Probe nozzles shall be calibrated before their initial use in the field. Using a micrometer, measure the inside diameter of the nozzle to the nearest 0.025 mm (0.001 in.). Make three separate measurements using different diameters each time, and obtain the average of the measurements. The difference between the high and low numbers shall not exceed 0.1 mm (0.004 in.). When nozzles become nicked, dented, or corroded, they shall be reshaped, sharpened, and recalibrated before use. Each nozzle shall be permanently and uniquely identified.

6.2 Propeller Anemometer. The propeller anemometer assembly shall be calibrated according to the procedure outlined in Section 4 of Method β_A .

6.3 Metering System. Before its initial use in the field, the metering system shall be calibrated according to the procedure outlined in APTD-0576. Instead of physically adjusting the dry gas meter dial readings to correspond to the wet test meter readings, calibration factors may be used to correct mathematically the gas meter dial readings to the proper values. Before calibrating the metering system, it is suggested that a leak-check be conducted. For metering systems having diaphragm pumps, the normal leak-check procedure will not detect leakages within the pump. For these cases the following leak-check procedure is suggested: make a 10-minute calibration run at 0.00057 m³/min (0.02 cfm); at the end of the run, take the difference of the measured wet test meter and dry gas meter volume; divide the difference by 10, to get the leak rate. The leak rate should not exceed 0.00057 m³/min (0.02 cfm).

After each field use, the calibration of the metering system shall be checked by performing three calibration runs at a single, intermediate orifice setting (based on the previous field test), with the vacuum set at
the maximum value reached during the test series. To adjust the vacuum, insert a valve between the wet test meter and inlet of the metering system. Calculate the average value of the calibration factor. If the calibration has changed by more than 5 percent, recalibrate the meter over the full range of orifice settings, as outlined in APTD-0576.

Alternative procedures, e.g., using the orifice meter coefficients, may be used, subject to the approval of the Administrator.

Note: If the dry gas meter coefficient values obtained before and after a test series differ by more than 5 percent, the test series shall either be voided, or calculations for the test series shall be performed using whichever meter coefficient value (i.e, before or after) gives the lower value of total sample volume.

6.4 Probe Heater Calibration. The probe heating system shall be calibrated before its initial use in the field according to the procedure outlined in APTD-0576. Probes constructed according to APTD-0581 need not be calibrated if the calibrations curves in APTD-0576 are used.

6.5 Temperature Gauges. Use the procedure in Section 4.2 of Method P_A to calibrate in-stack temperature gauges. Dial thermometers, such as are used for the dry gas meter and condenser outlet, shall be calibrated against mercury-in-glass thermometers.

6.6 Leak-Check of Metering System Shown in Figure \underline{CT} -1. That portion of the sampling train from the pump to the orifice meter should be leak-checked prior to initial use and after each shipment. Leakage after the pump will result in less volume being recorded than is actually sampled. The following procedure is suggested (see Figure 5-4 of Method 5): close the main valve on the meter box. Insert a one-hole rubber stopper with rubber tubing attached into the orifice exhaust pipe. Disconnect and vent the low side of the orifice manometer. Close off the low side orifice tap. Pressurize the system to 13 to 18 cm (5 to 7 in.) water column by blowing into the rubber tubing. Pinch off the tubing, and observe the manometer for one minute. A loss of pressure on the manometer indicates a leak in the meter box; leaks, if present, must be corrected.

6.7 Barometer. Calibrate against a mercury barometer as described in Method PA.

6. Calculations

Carry out calculations, retaining at least one extra decimal figure beyond that of the acquired data. Round off figures after the final calculation. Other forms of the equations may be used as long as they give equivalent results.

C-36

6.1 Nome	nclature
A	= Cross-sectional area of nozzle, m^2 (ft ²).
A	= Cross-sectional area of $cell(s)$, m^2 (ft ²).
B	= Water vapor in the gas stream, proportion by volume.
Cr ⁷⁶	= Concentration of hexavalent chromium in cooling water, ug/ml.
Cr	= Concentration of total chromium in cooling water, ug/ml.
I	= Percent of isokinetic sampling.
L	= Maximum acceptable leakage rate for either a pretest leak
u	check or for a leak check following a component change;
	equal to 0.00057 m^3 /min (0.02 cfm) or 4 percent of the
	average sampling rate, whichever is less.
L,	= Individual leakage rate oberved during the leak check
-	conducted prior to the "i th " component change (i = 1, 2,
	3n), m ³ /min (cfm).
L	= Leakage rate observed during the post-test leak check, m^3/min
F	(cfm).
M _{Cr} +6	= Mass of hexavalent chromium in cooling water sample, ug.
Mn	= Total amount of chromium matter collected, ug.
Mresidue	= Mass of chromium residue in cooling water sample, ug.
Mw	= Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole).
P. bar	= Barometric pressure at the sampling site, mm Hg (in. Hg).
Ps	= Absolute stack gas pressure, mm Hg (in. Hg).
P std	= Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
R	= Ideal gas constant, 0.06236 $(mmHg)(m^3)/(^{O}K)(g-mole)$
	[21.85 (in. Hg)(ft ³)/(⁰ R)(lb-mole)].
T	= Absolute average dry gas meter temperature
	(see FigureC1-2), ^O K (^O R).
T s	= Absolute average stack gas temperature (see Figure \underline{CT} -2),
	°K (°R).
T _{std}	= Standard absolute temperature, 293 ⁰ K (528 ⁰ R).
Vlc	= Total volume liquid collected in impingers and silica gel
	(see Figure <u>C1</u> -3), ml.
V _m	= Volume of gas sample as measured by dry gas meter,
	dm ³ (dcf).
V m(std)	= Volume of gas sample measured by the dry gas meter,
	corrected to standard conditions, dsm^3 (dscf).

V w(std)	=	Volume of water vapor in the gas sample, corrected to
w(2004)		standard conditions, sm ³ (scf).
V cw1	=	Volume of cooling water sent for NAA or Cr ⁺⁶ , ml.
V Cw2	=	Volume of cooling water which represents residue sent for NAA,
		ml.
v _s	=	Stack gas velocity, calculated by Method <u>PA</u> , Equation 2-9,
		using data obtained from Method PA , m/sec (ft/sec).
Y	=	Dry gas meter calibration factor.
∆H	=	Average pressure differential across the orifice meter (see
		Figure \underline{CT} -2), mm H ₂ O (in. H ₂ O).
θ	=	Total sampling time, min.
θ1	=	Sampling time interval, from the beginning of a run until the
,		first component change, min.
θ _i	H	Sampling time interval, between two successive component
-		changes, beginning with the interval between the first and
		second changes, min.
θ	=	Sampling time interval, from the final (n th) component change
P		until the end of the sampling run, min.
13.6	=	Specific gravity of mercury.
60	=	Sec/min.
100	Ξ	Conversion to percent.

7.2 Average Dry Gas Meter Temperature and Average Orifice Pressure Drop. See data sheet (Figure c_T -2).

7.3 Dry Gas Volume. Correct the sample volume measured by the dry gas meter to standard conditions $(20^{\circ}C, 760 \text{ mm Hg or } 68^{\circ}F, 29.92 \text{ in. Hg})$ by using Equation cT-1.

$$V_{m}(std) = V_{m} Y \frac{T_{std}}{T_{m}} \left(\frac{P_{bar} + \Delta H/13.6}{P_{std}} \right)$$

= K₁ V_m Y P_{bar} + (\Delta H/13.6)
$$\frac{T_{m}}{T_{m}}$$
Equation cT-1
Where: K₁ = 0.3858 °K/mm Hg for metric units.
= 17.64 °R/in. Hg for English units.

<u>Note</u>: Equation <u>C1</u>-1 can be used as written unless leakage rate observed during any of the mandatory leak-checks (i.e., the post-test leak-check or leak-checks conducted prior to component changes) exceeds L_a . If L_p or L_i exceeds L_a , Equation <u>C1</u>-1 must be modified as follows:

(a) Case I. No component changes made during sampling run. In this case, replace V_m in Equation c_1 -1 with the expression:

 $[V_{\mathbf{m}} - (L_{\mathbf{p}} - L_{\mathbf{a}})^{\theta}]$

(b) Case II. One or more component changes made during the sampling run. In this case, replace V_m in Equation CT-1 by the expression:

$$[V_{m} - (L_{1} - L_{a})\theta - \sum_{i=2}^{n} (L_{i} - L_{a})_{\theta i} - (L_{p} - L_{a})_{\theta p}]$$

and substitute only for those leakage rates $(L_i \text{ or } L_p)$ which exceed L_a .

7.4 Volume of Water Vapor.

$$V_{w(std)} = V_{1c} \frac{\rho_{w} R T_{std}}{M_{w} P_{std}} = K_2 V_{1c}$$

Where: $K_2 = 0.001333 m_3^3/ml$ for metric units.
= 0.94707 ft³/ml for English units.

$$B_{ws} = \frac{V_{w}(std)}{V_{m}(std) + V_{w}(std)}$$
EquationC-3

<u>Note</u>: In saturated or water droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one from the impinger analysis (Equation C_{-3}), and a second from the assumption of saturated conditions. The lower of the two values of B_{ws} shall be considered correct. The procedure for determining the moisture content based upon assumption of saturated conditions is given in the Note of Section 1.2 of Method 4. For the purposes of this method, the average stack gas temperature from Figure C_{-2} may be used to make this determination, provided that the accuracy of the in-stack temperature sensor is + $1^{\circ}C$ ($2^{\circ}F$).

7.6 Total Chromium Weight. Determine the total chromium catch from the sum of the weights obtained from Containers 1 and 2 less the blank (see

Figure C1-3). Note: Refer to Section 4.1.5 to assist in calculation of results involving two or more filter assemblies or two or more sampling trains.

7.7 Conversion Factors.

From	To	Multiply By
scf	m ³	0.02832
g/ft ³	gr/ft^3	15.43
g/ft ³	lb/ft ³	2.205 x 10 ⁻³
g/ft ³	g/m ³	35.31

7.8 Isokinetic Variation.

7.8.1 Calculation From Raw Data.

$$I = \frac{100 \text{ T}_{\text{s}} [\text{K}_{3} \text{ V}_{1\text{c}} + (\text{V}_{\text{m}} \text{ Y/T}_{\text{m}})(\text{P}_{\text{bar}} + \Delta \text{H}/13.6)]}{60 \text{ } \theta \text{ v}_{\text{s}} \text{ P}_{\text{s}} \text{ A}_{\text{n}}}$$
Equation $\underline{C}-4$
Where: $\text{K}_{3} = 0.003454 \text{ (mm Hg)}(\text{m}^{3})/(\text{ml})(^{\circ}\text{K}) \text{ for metric units.}}_{3 = 0.002669 \text{ (in. Hg)}(\text{ft}^{3})/(\text{ml})(^{\circ}\text{R})} \text{ for English unit.}$

7.8.2 Calculation From Intermediate Values.

$$I = \frac{T_{s} V_{m}(std) P_{std} 100}{T_{std} V_{s} \theta A_{n} P_{s} 60 (1-B_{ws})}$$

= $K_{4} \frac{T_{s} V_{m}(std)}{P_{s} V_{s} A_{n} \theta (1-B_{ws})}$ Equation CT-5
Where: $K_{4} = 4.320$ for metric units.
= 0.09450 for English units.

7.9 Acceptable Results. If 80 percent $\leq I \leq 120$ percent, the results are acceptable. If the results are low in comparison to the standard and "I" is beyond the acceptable range, or, if "I" is greater than 120 percent, the Administrator may opt to accept the results. Use Citation 4 to make judgements. Otherwise, reject the results, and repeat the test.

$$Cr^{+6} = \frac{{}^{M}Cr^{+6}}{V_{cw_{1}}}$$
Equation c_-6
$$Cr = Cr^{+6} + \frac{{}^{M}residue}{V_{cw_{2}}}$$
Equation c_-7

Note: If all the chromium in the cooling water was assumed to be in the hexavalent state, then Cr^{+6} would equal 1.

7.11 Pollutant Mass Rate.

 $PMR_{a} = \frac{M_{n} A_{s} 60}{\Theta A_{n} 454,000,000} Cr^{+6}$ Equation <u>CT-8</u> $= K_{5} \frac{M_{n} A_{s}}{\Theta A_{n}} \frac{Cr^{+6}}{Cr}$

Where: $K_5 = 0.1322 \times 10^{-6}$ both units.

- 8. Bibliography
 - Cox, X. B., R. L. Linton, and F. E. Butler. Determination of Chromium Specialization in Environmental Particles; Multitechnique Study of Ferrochrome Smelter Dust. ES&T, Vol. 19, No. 4, April 1985.
 - Entropy Environmentalists, Inc. Emission Test Report: Munters Corporation, Fort Meyers, FL, ESED 85/02b. Draft report prepared for the U. S. Environmental Protection Agency under Contract No. 68-02-4336, Work Assignment No. 3, June 1986.
 - Butler, F. E., J. E. Knoll, and M. R. Midgett. Chromium Analysis at a Ferrochrome Smelter, A Chemical Plant and a Refractory Brick Plant. JAPCA, 36:581-584, 1986.
 - Rom, Jerome J. Maintenance, Calibration, and Operation of Isokinetic Source Sampling Equipment. Environmental Protection Agency, Research Triangle Park, NC, APTD-0576, March 1972.
 - Martin, Robert M. Construction Details of Isokinetic Source-Sampling Equipment. Environmental Protection Agency, Research Triangle Park, NC, APTD-0581, April 1971.

- 6. Letter Communication. From John W. Cooper, Jr., P. E. of the Cooling Tower Institute to Pamela C. Bellin of Midwest Research Institute, concerning cooling tower operating parameters and ambient conditions during emission testing, March 24, 1986.
- 7. Clay, Frank. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators. U. S. Environmental Protection Agency, Research Triangle Park, NC, EPA 340/1-85-018, September 1985.

.

ESC MEASUREMENTS

Instrumentation - ESC used the following instruments to collect data during test:

1. Sensitive Paper System

Manufacturer: Environmental Systems Corporation

Description: A special filter medium is chemically treated to produce a distinct color change when wetted. Droplets impinging on the papers produce blue stains which may be correlated with droplet size. The system operator records updraft velocity and selects exposure times which yield serviceable concentrations of stains. Knowing exposure times and updraft velocities, analysts studying the papers with microscopes can calculate droplet size and size distribution.

2. Air Speed (Updraft at Exit Plane)

Manufacturer:	R. M.	Young Company	
Model:	27106	Gill Propeller Anemometer	

Description: A generator-type anemometer with excellent linearity and off-axis response. Used to measure fan updraft velocity to establish isokinetic sampling air flow rate. Readout is by digital voltmeter. In conjunction with this sensor, the operator measures the air flow direction with a vane-type sensor to make a correction for off-axis flow, if necessary.

C-43

3. Digital Voltmeter

Manufacturer: John Fluke Manufacturing Company

Model: 8022B

Serial Nos. 2920260, 2920262

Description: Three (3) 1/2 digit DVM used to measure output signals corresponding to fan updraft velocity and velocity vector.

PITOT TUBE MEASUREMENT PROCEDURE

- 1. Remove tube and inspect remove tip protection cap.
- With appropriate couplings connected (typically 2" NPT male), pull reinforcing sleeve and "stinger" fully inside coupling and screw coupling snugly into gate valve (tighten with pipe wrench).
- 3. Open valve fully, after making sure once again the stinger is fully retracted. With valve fully open, push pitot tube stinger through the reinforcing sleeve. Lock into place and purge manometer and lines of all air. Zero the manometer (i.e., no differential pressure should be indicated, with total pressure and static pressure ports reading "static" prior to inserting tube in pipe).
- 4. Slowly insert pitot tube into pipe until a deflection is detected. Mark the tube clearly at the stuffing box. Push tube fully across the pipe until it contacts the other side. Mark tube clearly again and retract until zero deflection is seen again. Check this point with previous mark. Measure distance between marks and add 3/16" to indicated diameter (for offset in static/total sensing port location). Compare this diameter to the nominal diameter of the pipe.
- 5. Calculate and mark measurement stations. No fewer than 20 stations per diameter should be used for pipes greater than 36" diameter. Check to see if manometer is zeroed and initiate traverse. Visual readings of manometer should be no less than one minute. Periodic checks using 25-50 instantaneous manometer readings averaged and compared with the "eyeball" average at a single point should be conducted.
- Other perpendicular traverses should be conducted similarly with center-point readings compared from each traverse for consistency.
- 7. Ambient temperature and water temperature should be measured during traverse to correct manometer balancing fluid and water density, respectively.
- Pitot tube tip should be inspected for blockage/damage before and after each traverse.
- 9. Any anomalies or problems, such as vibration, apparent backflow, etc. should be noted.

Fig. 1—Pipe Caliper.

 \mathbf{I}^{N} these instructions the various operations are stated in their natural order of progression, and each subject is completely treated in its paragraph for easy reference.

Pipe Caliper-See Fig. 1.

This instrument consists of a brass rod which passes through an eccentric stuffing-box. The lower end is hook shaped, and to the other end is attached an index collar and handle.

To attach the caliper, pull the rod all the way up and screw the stuffing-box on the corporation cock, making a water-tight joint with the leather washer.

Open the corporation cock and push the rod in until it touches the pipe. (See Fig. 1.) Turn rod 180°. Measure the distance between index collar and stuffing-box. Pull rod up until hook just touches the pipe. Again measure from stuffing-box to index collar. The inside diameter of pipe is equal to the difference between these two measurements plus one inch, the one inch being added for the length of the hook

Caution should be taken to push the rod against the walls of the pipe slowly and gently, since the pipe may be coated with tubercles and incrustations, or there may be sand or sediment on the bottom. Should the rod be pushed too forcefully against the pipe, these interior conditions would not be detected. Remember that it is the actual working diameter of pipe, as near as can be determined, that should be used in flow calculations.

SIMPLEX PITOT ROD

Description

The Simplex PFA Pitot Rod illustrated in Fig. 2 is a pair of tubes in a casing. One tube transmits the Reference pressure received at the side orthces, and the other tube transmits the impact pressure received at the Impact orthce, which faces the flow.

The Simplex Rod is provided with a split clamp which holds the tube in position and prevents it being pushed out by the water pressure, a stuffing-box which can easily be packed with any suitable packing and a stop collar near the orifice end of the rod to limit the withdrawal of the rod through the stuffingbox.

Rod-Corporation Connection

The threads of the connection nut of the Simplex rod and of the pipe caliper hts a 1" Muelier Corporation Cock. The requirements of the corporation cock are for a male thread $1\frac{1}{2}$ " O.D—tweive threads per inch and a 1" clear opening. Where other makes of corporation cocks are employed, an adapter should be provided having male threads to fit the Simplex item and female threads to fit the corporation cock

Attaching Fitot Rod

Before attaching Pitot Rod to corporation cock, be sure to remove the protecting cap from the orifice ind, then see that the tube is fully drawn up so that it vill escape corporation plug. Screw connection nut in corporation cock, making a water-tight joint by the leather washer.

Have all cocks on Pitot Rod closed, and then open the corporation. Open the air cocks at top of Pitot Rod to blow the air out of tube and also out of top of pipe, should any be lodged there.

Push the Rod in until it touches the pipe, and measure the distance from index collar to traverse scale flange. Pull the Rod out a distance equal to the radius of the pipe minus $\frac{1}{5}$ inch and secure the Rod in this position by tightening the clamp collar, and at the same time being sure that the arrow on the crown casting of Rod points in the direction of the flow.

If the direction of the flow is unknown, this can be determined by the use of the manometer connected to the Pitot Rod. Observe the deflection in manometer when arrow on crown casting points along the pipe in one direction. Then revolve the Pitot Tube 180° so that the arrow points along the pipe in the opposite direction. The water will be flowing in the direction that produces the greater deflection of the liquid in manometer.

Fig. 3-Manometer.

Fig. 4-Travorsing-Equal Area Mathod.

The Pitot Rod located as described above has its orifices at the center of the pipe. This is the usual location for flow determination when connected to recorder or manometer.

MANOMETER-See Figs. 3, 4

Description

In principle this instrument is α U-tube.

The top assembly is provided with fittings which connect to each side and in num to each other through valve (e). Plug cocks (i) and (r) and air cocks (a_i) and (a_r) are also provided at this point on the manometer. (See Fig. 4.)

The top assembly is easily removable for pouring liquid into manometer or for the insertion of the cleaning brush. The glass should always be clean so that the liquid will not cling to the surface, but will form a clear and even meniscus in each side. This is especially important when the deflection of the liquid is small.

A manometer connected to a Simplex Pitot Rod constitutes one of the simplest forms of a meter for indicating the rate of flow.

Connecting Manometer to Pitot Rod

The manometer may be connected with two lengths of hose, either directly to the Pitot Rod at (I) and (R), as shown in Fig. 4, or it may be connected at (D) and (R) at the Recorder (Fig. 10) when the latter is connected to the Pitot Rod. While using the manometer thus connected, shut off the Recorder by closing cocks (I) and (R) on Recorder. Whenever the manometer is being filled with liquid or is blown off for expelling possible collectons of an from it, always first close cocks (I) and (R) at Recorder. Likewise, whenever an is being blown from Recorder always first close cocks (I) and (R), thus shutting off the manometer to prevent the danger of blowing the liquid from same. (See Fig. 10.)

FILLING MANOMETER WITH LIQUID AND BLOWING OUT AIR

Remove wing nut on top of manometer. Lift off top assembly, exposing holes to glass. Pour liquid, previously mixed (as explained on Page 6), through a funnel into either hole.

It is usually desirable to fill the manometer half full of liquid, since the maximum deflection equal to the length of a glass tube will be obtainable by this amount of liquid.

Having poured liquid into manometer, replace the p assembly and tighten wing nut Fill manometer with water and expel all air from hose connections and manometer. Care must be exercised not to blow int the liquid. To guard against this keep one side of the manometer closed while blowing out air from the other side. For example, to blow air through the impact line, have all cocks at manometer closed except open (a₁) and open (i). Opening and closing (j) several times during the procedure will facilitate filling the gauge glass with water, since this will give more opportunity for the air from the glass to escape through (a₁). Close (i) and (a₁). Likewise, fill the other side with water and expel air by opening (a_r) and (r).

Having thus blown till no air appears, close (r), and inally, to insure that no air is trapped in the bypass connection, open cock (e) and having (a_i) open, slightly open (r). Close (r) before the liquid reaches the top of the glass. Close (a_i) and (e) and open (i) and (r), when the manometer will be in service and the deflection of the liquid is a measure of the velocity of the water flowing by the orifices of Pitot Tube.

Cock (e) is an equalizing cock and when open the pressures in the two glasses tend to equalize. When (e) is open the liquid in each glass should come to the same level provided either (i) or (r) or both are closed. It is necessary that at least one be closed.

This enables the operator to prove that no air is in the manometer.

When the deflections of the liquid are to be observed for velocity indications, cocks (e), (a_i) and (a_i) are closed and cocks (i) and (r) are open.

LIQUID FOR MANOMETER

When measuring low velocities use a low specific gravity and for high velocities use a beaver mixture of liquid. If the velocity being measured is so high that it will deflect the liquid in the manometer more than the length of the glass, then it will be necessary to use a heavier liquid.

The liquid usually used in the manometer is a mixture of carbon tetra-chloride and benzne or benzol, colored with a small quantity of red coloring powder. The liquids are mixed in such proportions that the resultant mixture will have any desired specific gravity between the limits of 1.10 and 1.50. Specific gravities of 1.25 and 1.50 are most commonly used.

The specific gravity of carbon tetra-chloride is about 1.60, and if this liquid is too light, then for a heavier liquid use bromotorm, whose specific gravity is about 2.95. This likewise can be mixed with carbon tetra-chloride to obtain gravities between 1.60 and 2.96. Bromotorm in its commercial state usually contains some alcohol. For this reason it should be washed with water and then filtered through filter

Fig. 5-Test for Specific Gravity.

paper before using in manometer. Do not inhale its fumes.

• . *

. ...

For differential pressures too great for the abovenamed liquids use mercury, whose specific gravity is 13.58.

Specific Gravity Determination

The specific gravity of the liquid or mixture can be determined by pouring same in a glass cylinder and floating a hydrometer in the liquid. The lighter the liquid, the deeper will the hydrometer be submerged. Read the specific gravity on the hydrometer scale at the surface of the liquid.

If a hydrometer is not available or other range of hauid gravity is employed, the specific gravity can easily be determined in the following manner.

Pour the liquid to be checked into the manameter and then pour some water into one side of the manometer, which will deflect the liquid. There may be water in one side only or in both sides of the manometer, and it is only necessary to have more water in one side than in the other so as to produce a deflection of the liquid. In the interest of close accuracy it is advisable to have as large a deflection as possible. It will be understood that for the determination of the specific gravity both legs of the manometer are open to atmosphere, that is, cocks (a,) and (a,) are open and cocks (i) and (r) are closed if the manometer is connected to the Pitot Rod. Do this at least twice in order to cross check the result.

The specific gravity of the liquid then is

$$a - b$$

$$S = -\frac{d}{d}$$
 when there is water in both sides

α and S = - when water is in one side only, in d which case b equals zero.

where S = specific gravity of liquid

- a = larger water column on liquid
- b = smaller water column on liquid
- d = deficction of liquid

Temperature affects the specific gravity Therefore a determination of specific gravity as detailed above will give the proper value only if made directly before and/or after the test

Mixing Liquids

Having decided on the specific gravity of the hauid mixture to be used, the formula below will be iound helpful and time saving.

$$S_{-} = S_{-}$$

$$T = \frac{S_{-} - S_{-}}{S_{-} - S_{-}} \times B$$
where $S_{-} =$ specific gravity of mixture
 $S_{-} =$ specific gravity of carbon tetra-
chloride
 $S_{-} =$ specific gravity of benzol
 $T =$ volume of carbon tetra-chloride
 $B =$ volume of benzol

For example, if $S_1 = 1.60$, $S_2 = .87$, and it is destred to have $S_{-} = 1.245$ of the mixture, then

$$T = \frac{1.245 - .87}{1.60 - 1.245} XB = \frac{.375}{.355}B$$

T = 1.057 B

SIMPLEX CONTROLS Sneet 4 No. 4 Station: No. 2 Date MAR 5, 1970 Nomunai Dic. 16 Colipered Dic. 15 74 A1363 SaFI. indicate in circle, position of top used for this Traverse. V= 1.667 V=-1 Vo" v= 1.29 Va" Note: For Simplex Round Rod Use | 667 Fiat Rod Use 1.840 looking up-stream s= Sp.G. of Monometer Liquid 1.60 G= FVc1 where F=station factor = 646.300 AC Trov. coef by this traverse, $C = \frac{V_m}{V_c} = \frac{4.73}{5.49} = \frac{.862}{.100}$ Average of all traverses, $C = \frac{.000}{.000} = \frac{.0000}{.0000}$ Time of traverse, from 10 AM to 1015 AM By whom RDL Also see sheet B NC_4_ and shuers A Nos_5 LOCOTION MIDLAND, WEST OF RT. 17 VOLUES OF V \mathcal{D} Co Vc C ν 5.50 17.50 302 5.40 .560 6 700117.50 341 15.401 .632 185011900 376 15611.670

		0.0	1 1 1			
	3	10.00	1001	407	5.31	.765
	2	1300	17001	465	5.31	.575
		15.50	2000	5.04	<u>5,77</u>	.578
	-1	23.00	20 00	6.09	5.77	1.025
	1-2	21.50	2100	599	5.95	1.005
	-3	2300;	21.00	6.09	5.95	1.005
	- 4	1700	17.50	531	5.40	.983
	- 5	15,00	16001	5.00	515	.970
	-6	(1.25)	14 00	6.32	4.82	. 895
			TOTAL	56 75	65.84	
, ,			AVG	4.73	5 49	<u> </u>
	1				} 	
		}	1		<u></u>]
5		i!				
		1	1			}

Fig. 6-Typical Data Sheet A.

For high velocities, where a smaller deflection is desired, use Bromoiorm, Sp. G. = S. = 2.9f 70°F. This liquid may be mixed with carbon-te chloride to give a mixture lighter than 2.90 desired, the Sp G. of mixture being determ by manometer balancing or by formulas. In latter case

$$T = \frac{S_{-} - S_{1}}{S_{-} - S_{-}} \times B$$

It must be borne in mind, however, that the specific gravity determined under actual test conditions is the value used in flow calculations

of the pipe. It may, however, be made at the side of the pipe or at any other point on the circumference It is desirable that the pipe be not tapped so deep that the corporation cock will extend through pipes and project beyond the inside surface of the wall of the pipe.

When it is impossible to make tap in a long straight length of pipe, say where the nearest up-stream valve, tee, or bend is less than 20 or 30 diameters from the station, then two taps about 90° apart with one about 4" to 6" ahead of the other should be tapped in the pipe.

For steel pipes first attach a strap service clamp to pipe.

An accurate record should always be made and kept on file giving the location of all stations and the distance of same from at least two fixed landmarks.

PIPE TRAVERSE-See Figs. 4, 6, 7

The object of making the pipe traverse by the use of the Pitot Rod and the manometer is to ascertain the relation between the mean velocity and the center velocity in the pipe. The Pitot Tube measures velocity only at the point in the pipe where the orifices are located. If the orifices of the Pitot Tube be moved along the diameter of the pipe it will be noticed that the velocities are different for different locations of the orifices, and that they gradually increase as we approach the center of the pipe. Therefore, to accurately determine the quantity of water flowing it is necessary to know the traverse coefficient, $C = V_{-}/V_{c}$, that is the relation of the mean velocity to the center velocity.

The method to be employed in making the traverse is that of dividing the pipe into imaginary rings or annuli having equal areas, and then taking readings of the deflections of the liquid in the manometer when the orifices of the Pitot Tube are placed at a point i each ring such that a circle through that point wi divide the ring into two equal areas.

This is illustrated in Fig. 4. Refer to the right-har lower corner where arcular cross-section of a pir is shown. Here the pipe is divided into five rings equal area. R_1 is the radius to the orifice locatic for the first ring. R_2 is the radius to the orifice locatic for the second ring. R_1 is the radius to the orifice locatic for the second ring. R_1 is the radius to the circuference of ring (a). The area of ring (a) equals the area of ring (b). The rings (a), (b), (c), (d), (e), (f), (g), (h), (i) and (j) have equal areas and the area of any one of these is equal to ball the area of any one of rings, 1, 2, 3, 4, or 5.

The orifice locations for any size pipe may be calculated by iormula (15) page 13 or they may be selected from the table of orifice locations on page 15.

SIMPLEX CONTROLS

Sheet B No

TRAVERSE STATIONS-See Fig. 4

Wherever a main is tapped for the purpose of measuring the flow of water, let it be called a station and named or designated by an assigned number.

When selecting a location for a station always, if possible, select a point in the pipe line where there is a considerable length of straight pipe line, where the flow will be undisturbed by valves, tees, or bends.

Tap the pipe at the selected location for a one-inch corporation cock. The tap is usually made on the top

August 13, 1986

Mr. Bill Dewees Entropy Environmentalists P.O. Box 12291 Research Triangle Park, NC 27709-2291

Dear Bill:

I would like to expand on the results I gave you on the phone concerning your tests at Paducah. As I understand it, your team ran the paired trains that we recommended, one train being a conventional isokinetic impinger train and the other an impinger train sampling from a tube with a disk-shaped collar positioned at 90 degrees from the direction of gas flow. Our best estimate on the collection behavior of this train comes from the theory of Zebel (In Recent Developments in Aerosol Science, Edited by David T. Shaw, Wiley, NY, 1978). The only experimental data we know of was for a geometry with a slightly different collar by Liu and Pui (Aerosol Sampling Inlets and Inhalable Particles, Atmospheric Environment, <u>15</u>, 589-600, 1981). According to Zebel's paper, the collection efficiency of drops by the disk train should be given by the equation below:

$$Eff = \frac{1}{1 + 1.09 \text{ STK}}$$
(1)

where

 $STK = V \rho CD^2 / 9\mu d$ (2)

and

V = gas stream velocity (cm/sec) ρ = droplet density (1 gm/cm³ in this case) C = Cunningham correction factor (~ 1 for this size) D = droplet diameter (cm) μ = gas viscosity (about 180 x 10⁻⁶ poise) d = sampling tube inner diameter (cm)

Although their geometry is slightly different from our setup, the equation fits the data of Liu and Pui fairly well when the correct tube diameter is assumed (see Figure 1). Table 1 contains calculated D_{50} values

Southern Research Institute

Mr. Bill DeWees August 13, 1986 Page 2

for the four "90° train" runs. Note that while the calculated D_{50} is on the order of 13-16 µm, the efficiency curves are broad, and significant collection occurs at higher droplet sizes. The calculated collection efficiencies for the velocities encountered by the "90° trains" at Paducah are plotted in Figure 2. I have also done a convolution (see Table II) of the calculated collection efficiency of the 90° train with one of the size distributions reported by ESC. If their size distributions are good in the smaller size range, the 90° trains should collect less than 10 percent of the drift mass. I do have some questions about their technique, though, which I will discuss below.

Although you did not directly ask us to analyze the ESC technique, I felt a word about it was in order. The most definitive experimental work of which we are aware is that of May and Clifford (The Impaction of Aerosol Particles on Cylinders, Spheres, Ribbons and Discs, Ann. Occup. Hyg. 10, 83-95, 1967), which gives efficiency curves for the disk body impactor such as those used for our study. I have enclosed a copy of their results (their Figure 7) which illustrates it. In their plot the parameter $P=\lambda/\ell$ is given by half the value of STK in equation 2 (where d now is the paper disk diameter). Thus P is proportional to the square of the droplet diameter D. Using this data the disk D₅₀ value expected for the velocity range covered can be calculated and are included in Table I.

I draw two conclusions from the May and Clifford data. First, it is probably a decent approximation to assume that the sum of the collection by the paper disk and the 90° train will be approximately the same as the isokinetic nozzle train for all sizes, with the greatest error of approximation occurring for particles about 20 μ m. The efficiency curves for a disk impactor and those of the 90° sampling train are fairly "sloppy" in terms of particle size separation. The paper disk collects large droplets, and the 90° train collects the smallest droplets, with near unit efficiency. Thus both significant ends of the size spectrum are collected well.

A second point I should emphasize is that the sensitive paper results are subject to some question below about 25-50 μ m. While presumably ESC can distinguish spots corresponding to 10-20 μ m size droplets, they may underestimate the actual flux of these drops. The Ranz and Wong (IMpaction of Dust and Smoke Particles, Industial and Engineering Chemistry, <u>44</u>, 1371-81, 1952) collection efficiency used by ESC to establish correction factors does not seem to be fitted by the experimental data seen on Figure 7 of May and Clifford. Southern Research Institute

Mr. Bill DeWees August 13, 1986 Page 3

The relative contribution of droplets in the 10-50 um size range may not be significant for the low efficiency drift eliminators in this study. However, the sensitive paper may significantly underestimate the small droplet flux downstream of higher efficiency collectors or in any duct where a condensation droplet mode exists.

Please let me know if I can be of further help.

Sincerely yours,

Ashley D. Williamson Head, Aerosol Science Division

ADW/fea cc: Dan Bivins Project 6112 SoRI-EAS-86-755

		Calculated D ₅₀ values, un				
Run Number	Duct Velocity ft/sec	Right Angle Train	Paper Disc			
1	30.97	13.3	25.5			
3	22.25	15.7	30.1			
4	21.06	16.1	30.9			
5	33.67	12.7	24.4			

0-56

· ZEBEL'S				SIZE DISTRIBUTION COLLECTED					
ART.	ASI	PIRATI	ION EF	FF	BY	RIGHT	ANGLE	TRAIN	
DIA.	v =	v =	v =	Y =	ASSUMED	v =	v =	v =	v =
um)	31.0	<u>33 7</u>	22 3	21.1	<u>SIZE DIST</u>	<u>31 0</u>	33 7	<u>22.3</u>	21_1
5	88	87	91	91	(800)	701.6	694.1	726.8	730 4
15	44	42	52	54	955	422.2	402.4	500.9	514.0
25	22	21	28	30	573	127.2	119.0	162.9	169.3
35	13	12	17	18	1480	188.0	174.6	249.3	260.9
4.5	8	7	11	11	2490	201.5	186.4	271.8	285.4
55	6	5	8	8	4650	258.8	238.9	352.6	370.9
65	4	4	б	6	6840	277.0	255.4	379.5	399.7
80	3	2	4	4	1670	45.3	41.7	62.3	65.7
100	2	2	2	3	1830	32.1	29.5	44 3	46.8
120	1	1	2	2	1600	19.6	18.0	27.1	28,6
140	1	1	1	1	1640	14.8	13.6	20.5	21.6
165	1	1	1	1	2080	13.5	12.4	18.8	19.8
195	0	0	1	1	1690	7.9	7.3	11.0	11.6
225	0	0	0	- 1	1790	6.3	58	8.7	9.2
255	0	0	0	0	907	2.5	2.3	3.4	3.6
285	0	D	0	0	1530	3.4	3.1	4.7	4,9
325	0	0	D	0	1890	3.2	2.9	4.4	4.7
375	0	0	0	0	1290	1.6	1.5	2.3	2.4
425	0	0	0	0	937	0.9	0,8	1.3	1.4
475	0	0	D	0	1540	1.2	1.1	1.7	1.8
550	0	0	0	0	484	0,3	0.3	0.4	0.4
650	0	0	0	0	1380	0.6	0.5	0.8	0.9
750	0	0	0	0	894	0,3	0.3	0.4	0.4
850	0	0	0	0	0	0.0	0.0	0.0	0.0
950	0	0	0	0	0	0.0	0.0	0.0	0.0
1100	0	0	0	0	0	0.0	0.0	0.0	0.0
1300	0	0	0	0	5240	0.6	0.5	0.8	0.8

TOTAL PARTICLE FLUX:	46180	2330.2	2212.4	2856.7	2955.3
FRACTION OF PARTICLE					
MASS COLLECTED:		0.0504	0.0479	0.0618	0.0639

FIG. 6. Experimental and theoretical impaction efficiency of long ribbons.

and HERRMANN (1949) also found that their experimental E was substantially lower than the theoretical prediction.

Discs

Figure 7 shows much the same picture as Fig. 6 in the relation between theory and experiment and needs little further comment except that discs have received less attention in the literature than the other geometrical forms.

Scatter of values from the replicate determinations at each point was very small at the lower end of the curves (large objects, small particles, low wind speed) but turded to become much larger at the upper end of the curve, the spread sometimes APPENDIX D.

CALIBRATION AND QUALITY ASSURANCE DATA

CALIBRATIONS

All measuring equipment Entropy uses is initially calibrated before use. Equipment which can change calibration is both checked upon return from each field use and is also periodically recalibrated in full. When an instrument is found out of calibration, it is so noted in the report and appropriate adjustments are made to the final results. The equipment is then repaired and recalibrated or retired as needed. Specific equipment is handled as follows:

Propeller Anemometer - All propeller anemometers were calibrated and/or checked using the procedures in the draft test method for the use of the propeller anemometer. This included a full calibration in the wind tunnel at 10° increments of flow alignment angles from -90° to $+90^{\circ}$. The electrical system was checked with a constant rpm motor to ensure proper outputs. The bearing torque on the anemometer shaft was checked with a bearing torque check device. All propeller anemometers used in this program meet the requirements as specified by the EPA draft method.

Dry Gas Meter and Orifice Meter - All Entropy meter boxes are calibrated upon purchase and at least once every six months against a secondary test meter (one calibrated against a wet test meter) according to their usage history. Basic procedures are outlined in the EPA Publication No. APTD-0576. The only differences are in the choice of flow rates used and the volumes metered at each flow rate. After each field use, quick checks are performed to ensure delta H@ changes of less than 5%. These checks compare the orifice against the dry gas meter. If greater than 5% changes occur, recalibration and repair are instituted.

<u>Nozzles</u> - Each nozzle is calibrated upon purchase, and thereafter whenever it becomes apparent that the nozzle has become damaged. Each nozzle is inspected upon return to laboratory from each field use. The diameter is measured on five different axes, with the high and low readings differing by no more than 0.00^4 inches as a tolerence.

Temperature Measuring Instruments - After each field use, the thermocouples or thermometers are calibrated against an ASTM precision mercury-in-glass thermometer across a wide range of temperatures. If the initial reading is not within $\pm 1.5\%$ of the absolute temperature reading of the standard thermometer, the instrument is adjusted until it is in the acceptable range.

Three-Dimensional Pitot Tube - Prior to field use, the 3-D pitot tube was calibrated in the wind tunnel using the procedures described in EPA Method 1A. The pitot tube meets all requirements of the Method. $\frac{\text{Magnehelic}^{R} \text{ Gauges}}{\text{Gauges}} - \text{After each field use, each Magnehelic}^{R}$ Gauge is calibrated against an inclined manometer at three different settings (low, medium, high) over the range of the individual gauges. If the readings differ more than + 5% from the manometer readings, the Magnehelics^R are recalibrated.

Barometer - After each field use, each barometer is checked against a mercury barometer.

UNITED SENSOR TYPE DAT 3-DIMENSIONAL PROBE

COMPANY NAME	SANTEE LOO	<u>e</u> r			
PROBE: I.D.	B1323 - 7	LENGTH	- <u>-</u> 7	SERIAL E_	7
DATE OF CALIB	RATION 7-2-	85	T	ESTER	
FOR STD. PITOT	Lp 0.730	IN.H_0	°₽	0.99	
P_ 0.760	IN.H_0 P	- P (() ×	د_ ²)	2150	1N.H_2D
BARD. PRESSURE	29.6 IN.HG		7 0,	VELOCITY	FT/SEC

YAW ANGLE TEST

PERCENT OF TOTAL PROBE LENGTH	20	40	60	80	100	
INDICATED YAN ANGLE		- 1	- 2	0	- 1	arc - 0.8

.

PITCH ANGLE TEST

PITCH	F - F2	P4 - P5	P 1	P . P 5	P P T - S	P P
DEGREES	INIHZO	+ IN.H20	IN.H7D	P1 - P2	P . P 2	Р Р Т - 5
+60	0.330	+ 0.610	0.440	1.85	2.17	-0.448
+ 5 5	10.460	+ 0.640	0.590	1.39	1.55	-0.238
+s o	0.530	+ 0.520	0.720	0.981	1.35	-0.056
725	0.590	+ 0.420	0.740	0.712	1.21	-0.028
	0.650	+ 0.340	0.750	0.523	1.10	-0.014
÷35	0.710	+ 0.260	0.760	0.366	1.01	0
+3 0	0.730	+ 0.200	0.760	0.274	0.980	0
+25	0.730	+ 0.150	0.760	0.206	0.980	0
~ 20	0.710	+ 0.110	0.760	0.155	1.01	0
÷1 5	0.690	+ 0.070	0.760	0.101	1.04	0
+1 0	0.680	+ 0050	0.760	0.074	1.05	0
- 5	0.670	+ 0.020	0.760	0.030	1.07	0
D	0.660	- 0.015	6.760	0.015	1.08	0
- 5	0.660	- 0.040	0.760	-0.061	1.08	0
-10	0.660	- 0.060	0.760	-0.091	1.08	0
-15	0.660	- 0.090	0.760	-0.136	1.08	0
-20	0.660	- 0.120	0.760	1-0.182	1.08	0
-25	-0.660	1-10.170	0.760	-0.258	1.08	0
-30	0.650	- 0.230	0.760	-0.354	1.10	0
-25	0.640	-1 0.280	0.750	-0.438	1.12	1-0.014
-40	0.640	- 0.350	0.720	-0.547	1.12	-0.056
-45	0.630	- 0.440	0.690	0.698	1.13	-0.098
-50	0.630	- 0 590	0.640	-0.937	1.13	0.168
-55	0.510	- 0.610	0.540	-1.20	1.40	-0.31
-60	0.460	- 0.690	0360	-1.50	1.55	-0 56

ENTROPY

PROBE ID: B1323-7 Date: 070385

Anele	F1-F2	F4-F5	F1	FT	Ft-Fs	=	f 1	62	fЗ
60	0.3300	0.6100	0.4400	0.7150	0.7400	=	1.8485	2.1667	-0.4474
55	0.4400	0.6400	0.5900	0.7150	0.7400		1,3913	1.5543	-0.2378
50	0.5300	0.5200	0.7200	0.7150	0.7600	-	0.2311	1.3491	-0.0559
45	0.5900	0.4200	0.7400	0.7150	0.7400	=	0.7117	1.2119	-0.0280
40	0.4500	0.3400	0.7500	0.7150	0.7600	=	0.5231	1.1000	~0.0140
35	0.7100	0.2600	0.7600	0.7150	0.7600	==	0.3662	1.0070	Ó,UQQQ
30	0,7300	0.2000	0.7400	0.7150	0.7600	=	0.2740	0.9795	0,0000
25	0.7300	0.1500	0.7600	0.7150	0.7600	=	0.2055	0.9795	0.0000
20	0.7100	0.1100	0.7400	0.7150	0.7600	=	0.1549	1.0070	0,0000
15	0.4200	0.0700	0.7400	0.7150	0.7600	=	0.1014	1.0362	0.0000
10	0.4800	0.0500	0.7400	0.7150	0.7600	=	0.0735	1.0515	0,0000
5	0.4700	0.0200	0.7600	0.7150	0.7600	=	0.0299	1.0672	0.0000
Q	0.2400	0.0100	0.7400	0.7150	0.7600	=	0.0152	1.0833	0,0000
-5	0.4400	-0.0400	0.7600	0.7150	0.7600	=	-0.0404	1.0833	0.0000
-10	0.6600	-0,0400	0.77.00	0.7150	0.7400	=	-0.0202	1.0833	0. 0000
-15	0.6600	-0.0900	0.7400	0.7150	0.7600	=	-0.1364	1.0833	0.0000
-20	0.4400	-0.1200	0.7600	0.7150	0.7600	=	-0.1818	1.0833	0,0000
-25	0.6600	-0.1700	0.7400	0.7150	0.7400	=	-0.2576	1.0833	0.0000
- 30	0.6500	-0.2300	0.7400	0.7150	0.7400		-0.3538	1.1000	0,0000
-35	0.6400	-0.2800	0.7500	0.7150	0.7600	=	-0.4375	1.1172	-0.0140
-40	0.6400	-0.3500	0.7200	0.7150	0.7600	=	-0.5469	1.1172	-0.055%
- 4 5	0.6300	-0.4400	0.6900	0,7150	0.7600	=	-0.6284	1.1349	-0.0279
-50	0.6200	-0.5000	0.6400	0.7150	0.7600		-0.9365	1.1342	-0.1678
-55	0.5100	-0.6100	0.5400	0.7150	0.7600	=	-1.1961	1.4020	-0.3077
-70	0.4400	-0.4900	0.3400	0.7150	0.7400	=	-1.5000	1.5543	-0.5594

Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	Dia. 5	Average
11-30-82	TWA	.258	. 256	. 255	. 258	. 25 7	0.257"
11-18-83	PLO	-262	.259	.260	.260	.26	0.260"
3-8-84	JNC	.254	.256	.256	. 257	. 257	0.256"
7-5-84	GML	, 2 56	-254	255	. 253	,256	0.255 "
3-25-85	MRH	,255	.756	, 254	,256	.257	0.256"
7-19-85	LWB	.252	.253	.253	.254	.251	0.253 n
2.26. 86	BB	.253	. 251	.254	.252	. 253	0.253
3-21-80	LE	.259	,260	,258	1261	.260	0.260
7-1-86	BB	.254	. 256	.256	.253	.255	0.255
ļ					<u> </u>	<u> </u>	
				ļ		ļ	
			<u></u>				
	<u> </u>					<u> </u>	
	<u> </u>		<u> </u>		<u> </u>	ļ <u>.</u>	
ļ		<u> </u>					
ļ							
		ļ					
				·		[
		 	 	1		 	
		<u> </u>		 			
			 	 	<u> </u>	 	
ļ	<u> </u>	<u> </u>		 		<u> </u>	<u> </u>
		<u> </u>	 				
						<u> </u>	
	 		<u> </u>				
		 	 	ļ			<u> </u>
			ţ			1	1

Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	Dia.5	Average
11-30-82	TWA	. 255	. 255	.256	.256	,256	0.256 "
4-15-83	PLO	1260	.260	.259	.258	. 259	0.259 "
11-18-83	PLO	.257	.258	.259	.259	·257	0.258 "
3-8-84	JNC	.253	.254	.255	.253	.252	0.253"
7-5-84	GML	, 251	. 253	.250	.254	252	0,252"
3.25.85	mRH	,252	1251	,252	,250	1751	0.251"
7-19-85	LWB	.247	.244	.247	.247	.246	0.246"
2-26.86	ଓଡ	•249	.250	.252	• 248	. 251	0.250
7-1-86	T3T3	. 249	.250	.250	.251	.251	0.250
				<u> </u>			
			· · · · ·				

Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	D1a. 5	Average
11-30-82	TWA	,309	. 310	.310	.310	. 309	0.310"
11-18-83	PLO	.314	.314	.312	.315	314	0.314
3-8-84	JNC	.312	. 3/2	. 3//	.312	. 3/2	0.312"
7-5-84	GML	, 365	.306	304	. 302	.204	0.304"
1/3/85	ATM	.313	, 310	. 310	.311	.311	0.311"
3-25-85	MRH	. 307	,308	,305	. 307	, 306	0.307"
7-19-85	RWB	.305	,306	.307	1305	. 303	0.305"
2.26.86	BB	• 310	• 311	· 308	• 309	• 307	0.309
7-1-86	BR	.307	.305	.308	.306	· 308	0.307
							· · · · · · · · · · · · · · · · · · ·
							<u> </u>
							ļ
						 	<u> </u>
ļ	ļ 						
	ļ				ļ	 	ļ
							ļ
	ļ		<u> </u>	l			
	<u> </u>	ļ	[
ļ	<u> </u>	ļ					ļ
	ļ				ļ		
	ļ	ļ					
	L			ļ			l

NOZZLE NUMBER: 208

					·		
Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	Dia. 5	Average
11-30-82	TWA	.301	, 303	.301	.300	.302	0.301"
4-15-83	PLD	.303	.301	. 303	. 302	. 30 Z	0.302"
11-18-83	PLO	.304	.305	302	.304	.303	0.303"
3-8-84	JNC	.303	. 305	.306	. 305	.303	0.304 "
7-5-84	GMC	. 303	. 301	, 304	,304	.301	0,303"
3.25.45	M RH	.301	,305	,307	, 304	, 304	0.303"
7-19-85	RWB	, 301	. 305	.304	.302	,303	0-303"
2-26.86	BB	- 308	.305	.307	. 307	. 304	0.306
7-1-86	-313	-311	- 313	. 313	.312	.311	0.312
						`	
		-					
			; <u> </u>				
	-		<u> </u>			<u></u>	

D-10 NTROPY NVIRONMENTALISTS, INC.

Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	Dia.5	Average
11-30-82	TWA	. 312	,311	.310	,309	. 310	0.310"
4-15-83	PLO	.313	. 314	1313	.315	-313	D.314"
11-18-83	PLO	· 315	-313	.316	.313	.315	0.314"
3-8-84	JNC	. 308	.312	. 3/2	. 310	.308	0.310"
10-23-84	54	.310	. 306	.307	.306	.310	0.308"
1/3/85	ATM	1312	1312	.311	.310	1311	0.311
3.25.85	MRH	.308	, 305	.306	. 308	, 309	0,307"
7-19-85	RWB_	.301	, 305	.302	.304	.30Z	0.303"
2-26.86	BB	.315	. 315	• 314	•313	.313	0.314
7-1-86	BB	.308	309	308	. 306	.307	0.308
 	·				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	 				ļ		······································
 				 			
				 	ļ	<u> </u>	
 	 				<u></u>	ļ	ļ
 					ļ. 	 	
						<u> </u>	ļ
							ļ
L					<u></u>		<u> </u>
					<u> </u>	<u> </u>	<u> </u>
ļ	ļ	 		ļ	<u> </u>	ļ	
				 		<u> </u>	ļ
		ļ	ļ	<u> </u>		ļ	<u> </u>
						· · · · · · · · · · · · · · · · · · ·	
				<u> </u>	<u> </u>		<u> </u>
		 		ļ			ļ
	<u> </u>						

NTROPY NVIRONMENTALISTS, INC.

	1	<u>.</u>				<u>_</u>	
Date	Initials	Dia.l	Dia. 2	Dia. 3	Dia.4	Dia.5	Average
12-2-82	ST	.239	. 243	242	.242	. 243	0 242"
4-6-83	PLO	- 246	.244	.244	· 243	. 245	0.244"
11-18-8:	3 PLO	,244	.246	.244	.246	.245	0.245"
3-8-84	JNC	.244	.245	. 245	.247	. 244	0.245"
7-10-84	TTM	.247	·247	.248	.247	.246	0.847
10-23-94	ATM	.242	.242	.243	.242	.243	0.242
10.24.8S	GC	· 246	. 246	. 248	.249	.247	0.247
2-13-86	T. M.D.	.248	.247	.250	.251	.248	0.249
ļ	<u></u>						

NOTE: All diameters measured in inches.

Date	Initials	Dia. l	Dia. 2	Dia. 3	Dia. 4	Dia. 5	Average
12-2-82	57	.255	254	.552	,253	255	0.254"
4-6-83	PLO	. 260	, 259	. 258	. 258	. 259	0.259"
11-18-83	PLO	.260	.257	.25	.259	.260	0.299"
3-8-84	JNC	.253	-254	.254	. 255	. 255	0.254 "
7-6-84	TTM	.253	. <u>253</u>	<u>. 252</u>	<u>, 253</u>	<u>, </u>	0.253
10-23-84	ATM	.249	.251	.252	.250	.249	0.250
2-19-85	JDE	. 251	.252	.250	.252	.253	0.252
10-24.85	GC	.256	.257	.254	·257	.256	0.256
2-13-86	T. MGD.	. 252	.255	.254	.255	.253	0.254
10-32-94	B.B	257	.255	. 258	.255	.259	C.257
- <u></u>							
 							
	<u> </u>			 			
}					<u> </u>		
					[
<u> </u>							
			 	<u> </u>	<u> </u>		
				<u> </u>	<u> </u>		
						<u> </u>	
				 	 		<u> </u>
 							
		<u> </u>		<u> </u>	<u>}</u>		
					+		

NOTE: All diameters measured in inches.
NOZZLE NUMBER: <u>707</u>

Date	Initials	Dia, 1	Dia, 2	D1a. 3	Dia. 4	Dia. 5	Average
12-2-82	<u> </u>	.299	298	. 300	.300	· 50/	0.300
11-18-8:	PLO	.304	,302	.304	.302	,303	0.303
3-8-84	JNC	.300	.302	.303	.302	. 301	0.302"
7-6-84	TTM	. 302	.301	.30a	.30a	.301	0.30a
10-23-84	ATM	. 298	.298	.298	.297	-Z96	0.297
10.24.85	GC	· 297	.296	. 294	.296	·2 <i>9</i> 7	·296
2-13-86	T. MCD.	.293	.293	.295	.296	.294	0.294
6-30-86	B.B	. 299	.298	. 300	. 297	, 299	0.299
						-	
<u> </u>							
			<u> </u>				
						· · · · · · · · · · · · · · · · · · ·	
ļ							
ļ							
ļ							

NOTE: All diameters measured in inches.

BAROMETRIC PRE	SSURE : <u>29.34</u>	DATE: 2-/	8-86	_ CALIB	RATED BY: 77		
MERCURY - IN- GLA	SS REFERENCE NU	MBER: 20124	56	AMBIE	NT TEMP.: <u>6</u>	9	
			R		5		
CAL IBRATION SYSTEM USED	POTENTIOMETER I.D. NUMBER	THERMOCOUPLE/ THERMOMETER I.D. NUMBER	REFERENCE THERMOMETER TEMPERATURE		MEAN TEMPERATURE OF Hg COLUMN	THERMOCOUPLE/ THERMOMETER TEMPERATURE	Δτ ^Β <u><</u> 1.5°
				T _c (OF)		$T_t (O_F)$	
Builing WATER	0009	5-2	210	212	.120	213	.15:
	600 9	5-2	210	212	118	213	.15%
	0009	5-2	210	212	120	213	. 15%
	0009	5-9	208	210	110	212	.32
	0009	1 - 5	209	211	110	212	.159
	10009	5-9	210	212	160	212	.0%
	0/3	1 5-4	208	210	110	209	. 15:
	013	1 5-4	210	212	110	210	. 3 %
	013	5-4	210	212	110	210	. 3 %
	1005	7-8	208	210	110	213	,45
	005	7-8	210	Z11	128	213	. 3 %
	1005	7-8	200	212	110	213	- 154
	-013		210		120		
	613	5-1					
	013	5-1					
۱ ۲	005	5-50	210	212	120	213	15
<u></u>	1005	5-50	210	212	120	213	.15 °,
	005	1 5-50	210	212	100	213	.15 -
, 	007	7-4	210	212	120	212	0
	007	7-4	210	212	120	212	0
L	007	7-4	210	12:2	115	2,2	0
	013	7-2	210	212	96	211	,15%
	613	7-2-	210	212	115	211	.159
	013	7-2	210	1212	120	211	.15 ;
·	1005	5-51	210	212	100	214	, 3 %
	005	5-51	210	1212	120	214	.3 %
	005	5-51.	210	212	120	213	.15 %
	-						

TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

1

CORRECTED TEMPERATURE = $T_C = T_0 + .00009 (T_0-20) (T_0-T_m)$

TEMPERATURE DIFFERENCE = $\Delta T = [(T_C, ^{O}F + 460) - (T_t, ^{O}F + 460)] \times 100 \le 1.5\%$ T_C, ^OF + 460

TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

BAROMETRIC PRESSURE: 29.32 DATE: 2-1	9-86 CALIBRATED BY:
MERCURY-IN-GLASS REFERENCE NUMBER: 196185	AMBIENT TEMP.:70°
	B s

CAL IBRATION SYSTEM USED	POTENTIOMETER	THERMOCOUPLE/ THERMOMETER I.D. NUMBER	REFEREN THERMON TEMPER T _O (^O F)	NCE METER ATURE	MEAN TEMPERATURE OF Hg Column T _m (^O F)	THERMOCOUPLE/ THERMOMETER TEMPERATURE T _t (^O F)	Δ7 <u><1.5</u>
the Dile	205	<u> </u>	400	410		299	1 71
1701 012	005	<u> </u>	400	410	100	299	1.00
	005	5-4	400	410	100	400	1.2
	0(3	5-2	400	410	146	400	1.12
	0/3	5-2	400	410	//	400	1.15
	013	5-2	410	410	110	399	1.72
	005	7-2	400	410	111.	402	.97
	005	7-2	400	410	110	402	1.97
	005	7-2	400	410	116	402	. 47.
	<u>↓</u> /3	7-4	400	410	112	401	1.02
	0/3	2-4	400	410	110	400	1.15
	013	7-4	400	410	116	460	1.15 04
	005	7-8	400	410	1,2	401	11.03
	005	7-8	400	410	116	403	.8
	015	7-8	400	410	1/0	402	.92.4
	0/3	5-9	400	410	112	396	1.61
	013	5-9	400	410	116	398	1.38
	013	5-9	400	410	110	397	149'
	005	5-50	400	41D	116	401	1.03
	005	5-50	400	410	118	40/	1.03
	005 .	5-50	400	410	114	401	1.070
	013	5-51	400	410	116	399	1.2
	0/3	5-51	406	410	118	400	1.15
	013	5-51	400	410	110	400	1.150
		9-1	400-		+26	399	
	1-013	9-7-	400		124	3 7 7	
	-0:3	9-/	400	1	122	397	<u> </u>
			<u> </u>				1
		<u> </u>					<u> </u>
T T							

CORRECTED TEMPERATURE = $T_C = T_0 + .00009 (T_0-20) (T_0-T_m)$

.

TEMPERATURE DIFFERENCE = $\Delta T = [(T_C, ^{O}F + 460) - (T_L, ^{O}P + 460)] \times 100 \le 1.5\%$ $T_C, ^{O}F + 460$

D-16

TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

BAROMETRIC PR	essure: 29.50	DATE: 2-	20-86	_ CAL IB	RATED BY:		
MERCURY - IN- GL	ASS REFERENCE NU	MBER: 196185	1	AMBIE	NT TEMP .:	6	
	<u></u>	<u></u>	B	<u> </u>			
CAL IBRATION SYSTEM USED	POTENTIOMETER	THERMOCOUPLE/ THERMOMETER 1.D. NUMBER	REFERE THERMO TEMPER	NCE METER ATURE	MEAN TEMPERATURE OF Hg Column	THERMOCOUPLE/ THERMOMETER TEMPERATURE	Δτ ^Β <u><1.5</u>
		· · · · · · · · · · · · · · · · · · ·	T _o (^o F)	T _c (°F)	T _m (°F)	Tt (°F)	
Hot OiL	005	6-2	400	410	120	400	1.15
· /	005	6-2	400	410	122	401	1.03:
	005	6-2	400	410	112	40/	1.03
	013	7-2	400	410	120	396	1.61 0
	0/3	7-2	400	410	120	3 96	1.61
	0/3	7-2	400	410	112	396	1.61
	005	5-11	400	410	116	401	1.03
	005	5-11	400	410	122	400	1.15 %
ļ	005	5-11	400	409	126	400	1.04 0
	013	6-3	400	410	116	396	1617
	013	6-3	400	410	122	394	1.84 0
1	013	6-3	400	409	126	393	1.840
	005	6-1	400	410	116	396	1.61 %
	005	6-1	400	41D	122	398	1.389
	005	6-1	400	1410	112	399	126
	013	2-1	400	1410	116	396	1.61 0
	013	7-1	400	410	122	398	11385
	013	7-/	400	410	112	399	1.26
	005	6-0	400	1410	118	401	11.03
	005	6-0	400	410	112	401	1.030
	005	10-0	400	410	120	401	11.03 "
	013	5-7	400	141D	118	1 395	1.72-
	0(3	5-7	400	410	112	395	1.72
	013	5-7	400	410	120	395	1.72 '
	005	4-10	400	410	114	399	1.26
	005	4-10	400	1410	114	402	.92 ;
	005	4-10	400	410	108	403	1.8 %
	0/3	4-5	400	410	114	398	1.38
4	013	4-5	400	410	114	400	11.15
	0/3	4-5	400	410	108	402	.92

CORRECTED TEMPERATURE = $T_C = T_0 + .00009 (T_0-T_m)$

TEMPERATURE DIFFERENCE = $\Delta T = [(T_C, ^{O}F + 460) - (T_L, ^{O}F + 460)] \times 100 \le 1.5\%$ $T_C, ^{O}F + 460$

D-17

Meter Bo	x Number	<u>NG</u>		Calibr	ation by	T. T. cu	-fa-		
Standard	. Meter N	lumber: _	612057	Standa	rd Meter	Gamma:	1.002		
Date: 6-12-86 Barometric Pressure (P.): 29.36 in. Hg									
*Date: *Barometric Pressure (Pb): in. Hg PRETEST CALIBRATION									
Sta	ndard Me	ter		Meter B	ox Meter	ing System			
Gas Volume (V _{ds})	Temp. (t _{ds})	Time (Ə)	Orifice Setting (AH)	Gas Volume (V _d)	Temp. (t _d)	Coeff.	∩н _@		
£t ³	•	min.	in. H ₂ 0	· £-£-3	• 도	(Y_)	in. H ₂ 0		
4.200	12	10.0	0,50	4.123	75.	1.0252	1.61		
4.189	72	10.0	0.50	U.133	76	1:0219	1.62		
8.206	72	10-0	2.1	8.316	F4.5	1.0067	1.74		
8.190	72	10.0	2-1	8.369	92.5	1.0130	1.73		
12.120	72	10.0	4.8	12.419	95	1.0056	1.79		
12.113	72	10.0	4.8	12.503	95.5	1.0016	1.79		
				A	verage	1.0123	1.71		
$Y_{d} = \frac{Y_{ds} * V_{ds} * (t_{d} + 460) * P_{b}}{V_{d} * (t_{ds} + 460) * (P_{b} + H/13.6)}$									
	∠H ^g =	0.0317 P _b * (t _c	×∕_H + 460)	*	+ 460) Yas * V	* 0 1s			

D-18

ENTR DPY

Meter Box Number: NID	Calibration by: M& Decel
Standard Meter Number:	<u>0838323</u> Standard Meter Gamma: <u>).0042</u>
Date: <u>4-8-86</u> Baron	metric Pressure (Pb): 29.20 in. Hg
*Date: *Bar	ometric Pressure (P _b): in. Hg

Sta	ndard Me	ter		Meter B	ox Meter	ing System	
Gas Volume (V _{ds}) £t ³	Temp. (tds) •F	Time (0) min.	Orlfice Setting (Δ H) in. H ₂ O	Gas Volume (V _d) £t ³	Temp. (t _d) °F	Coeff. (Y _d)	∆ _H @ in. H ₂ 0
4.144	12	10.0	0.50	4.330	82	.9779	1.64
4.218	74	10.0	D.5D	4.353	רר	. 9773	1.61
9.345	74	10.0	2.1	8.557	81	.9869	1.71
8.271	74	10.0	2.1	8.562	हप	9830	1.73
12 560	73	10.D	4.8	12-929	88	.9510	סר.ו
12.504	72	10.0	4.8	12.926	90	. 9923	1-70
				A	verage	. 9847	1.68

$$Y_{d} = \frac{Y_{ds} * V_{ds} * (t_{d} + 460) * P_{b}}{V_{d} * (t_{ds} + 460) * (P_{b} + H/13.6)}$$
$$\Delta H_{e} = \frac{0.0317 * \Delta H}{P_{b} * (t_{d} + 460)} * \left[\frac{(t_{ds} + 460) * \theta}{Y_{ds} * V_{ds}}\right]^{2}$$

D-19

Meter Bo	Meter Box Number: N12 Calibration by: T. Tanda									
Standard	Standard Meter Number: 1017057 Standard Meter Gamma: (+002									
Date: <u>5</u>	Date: $5 - 13 - 8C$ Barometric Pressure (P _b): 29.55 in. Hg									
*Date: _	*Date: *Barometric Pressure (P _b): in. Hg PRETEST CALIBRATION									
Sta	ndard Me	ter		Meter B	ox Meter	ing System	2			
Gas Volume (V _{ds})	Temp. (t _{ãs})	Time (0)	Orifice Setting (AH)	Gas Volume (V _d)	Temp. (t _d)	Coeff.	△H _@			
ft ³	°F	min.	in. H ₂ O	ft ³	۰F	(Y_)	in. H ₂ O			
3.909	70	10.0	.50	4.029	85	.558	1.80			
3.921	70	10.0	.50	4.049	87	. 995	1.78			
8.045	70	10.0	2.1	8.219	83	1.00	179			
8.024	70	10.0	2.1	8.204	84	1.00	1.80			
12.400	70	10.0	4.8	12.371	50.5	1.031	1.70			
12.384	70	10.0	4-8	12.374	92.5	1.033	1.70			
				A	verage	1.01	1.70			
	$Y_{d} = \frac{Y_{ds} * V_{ds} * (t_{d} + 460) * P_{b}}{V_{d} * (t_{ds} + 460) * (P_{b} + H/13.6)}$									
	<u>∩</u> н _@ =	0.0317 P _b * (t _c	×∆H + 460)	* (t _{as}	+ 460) Yas * Va	* 0 2 is				

D-20

Meter Bo	x Number	• <u> </u>		Calibr	ation by	1.10	yloc			
Standard	Standard Meter Number: 1017057 Standard Meter Gamma: 1002									
Date: Le	Date: <u>Le-5-86</u> Barometric Pressure (P _b): <u>Z9.60</u> in. Hg									
*Date: _	*Date: *Barometric Pressure (P _b): in. Hg <u>PRETEST CALIBRATION</u>									
Sta	ndard Me	ter		Meter B	ox Meter	ing System	L .			
Gas Volume (V _{ds})	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
ft ³	°F	F min. in. H_2O ft ³ °F (Y _d) in. H_2O								
4.044	73	1D.0	0.50	4.125	83	.9995	1.71			
4.024	13	ID.D	0.50	4.131	83.5	.9540	1.72			
8.158	73	10.0	2.10	8.182	79.5	1.0060	1.77			
8.130	73	10.0	210	8.230	82.5	1.0022	1.78			
12.543	73.5	10-0	4.8	12.767	88.5	1.00022	1-69			
12.519	74	10.0	4-8	12.810	92.5	1.0012	1.69			
				А	verage	1.0005	1-72			
	Average 1.0005 1.72 $Y_{d} = \frac{Y_{ds} * V_{ds} * (t_{d} + 460) * P_{b}}{V_{d} * (t_{ds} + 460) * (P_{b} + H/13.6)}$ $\Delta H_{e} = \frac{0.0317 * \Delta H}{P_{b} * (t_{d} + 460)} * \left[\frac{(t_{ds} + 460) * \theta}{Y_{ds} * V_{ds}}\right]^{2}$									

D-21 ENTROPY

Dry Gas	Neter Identific	cation: <u> </u>	017057	Cali	oration by: _	<u> </u>	londen		
Dalr:	4-1-66	Burome	tric Pressure (r _b): <u>ζ΄</u> ,	<u> </u>	ß		Doce	- + 7
"Date:		*Barome	tric Pressure ()	r _b):	in, 11	ß		MENTALIBTA,	INC.
Approx. Flow Ratr (Q) cfm	Spiromete Gas Volume (V _S) (t ³	r Tomp. (է _դ) Դբ	Dry Gas Gas Volume (V _{ds}) ۲ ل ¹	Heter Temp. (t _{ds}) °i	Pressure (Ap) in. H ₂ 0	Time (()) min.	Flow Nale (y) cfm	Meter Meter Coc(f. (Y _{ds})	Avg. Heter Coeff. (Ÿ _{ds})
0.40	<u>4.022</u> <u>4.117</u> <u>4.117</u>	18.8 79.3 19.7	4.062 4.061 4.065	80 50 80	0.85	10.0 10.0 10.0	0 3471 D.4021 D.4088	1 0001 1. 01300 1. 0289	
0.60	6.166	79.7 79.7 79.7	4.035 6.016 6.015	80 80 80	1.3 1.275 1.25	0.0 0 0 0 0	0.5938 0.6018 0.5155	1.0055 1.0223 1.0119	
0.90	8.097 8.132 8.114	79.7 79.7 79.3	7.994 8.003 7.946	80 80 80	<u>235</u> 240 2.45	10.0 10.0	0.7902 D.7937 D.7925	1.0074 1.0107 1.0100	
1.0	10.128	788 788 788	10 1K1 10 .081 10 .092	80 80 80	3.875 3.80 3.80	10.0 10.0 10.0	0.9901 0.9936 0.9945	D. 9936 1 DU11 1 DU29	
12	12 359	18.8 78.8	12305	80 80	5.5	10.0 10.0	1.2012 1.2011	0.9932 0.9935	

80

<u>53</u>

 $(v_s) (t_{ds} + 460) (P_b)$

12.214

788

78.8

フーッン

1.2

12. 313

.

$$Y_{ds} = \frac{(v_s) (v_{ds}) (v_s + 460) (P_b + (p / 13.6))}{(v_{ds}) (v_s + 460) (P_b + (p / 13.6))}$$

Q = (17.64) $\frac{(F_b) (V_s)}{(t_s + 460) (3)}$

D.9925

1.2031

10.0

Dry Gas	Heter Identifi	cation:	017057	Cali	bration by: _	- <u></u>			
Dale: _	4-1-86	Barome	tric Pressure ((Pb): <u>25</u> .	.86 . in. 1	lg			
"Date: _		"Barome	tric Pressure (r _b):	in. lig				
Approx. Flow Rate (Q) cfm	Spiromet Gas Volume (V _s) ft ³	er Temp. (L _S) °F	Dry Gas Gas Volume (V _{ds}) ft ³	Heter Temp. (t _{ds}) °F	Pressure (Δp) in. H ₂ O	Time (O) min.	Flow Rate (Q) cfm	Heter Heter Coeff. (Y _{ds})	Avg. Meter Coeff. (Ÿ _{ds})
1.4	14 454 14 444 14.399	71.7 78.8 78.5	14.462 14.446 14.406	81 80.5 80	7.625 7.55 7.575	10.0 10.0 10.0	1.4107 1.4120 1.4076	D.9834 0.9847 0.9834	
		· · · · · · · · · · · · · · · · · · ·		- Y-		1.00	>2		

 $(v_s) (t_{ds} + 160) (P_b)$ $v_{ds} = \frac{(v_{ds}) (t_s + 160) (P_b + (p / 13.6))}{(v_{ds}) (t_s + 160) (P_b + (p / 13.6))}$

•.

n−23

-

Dry Gas Meter Identification: 6838323 Calibration by: Mf

Date: 3-7.6-86 Barometric Pressure (Pb): 30.12 in. Hg

MANE NTROPY RONMENTALISTS, INC.

*Date: 3-27-86 *Barometric Pressure (P_b) : <u>29.85</u> in. Hg

Approx.	Spiromete	er	Dry Gas	Heter		,			
Flow Rate (Q) cfm	Gas Volume (V _s) ft3	Temp. (t _s) °F	Gas Volume (V _{ds}) ft ³	lemp. (t _{ds}) °F	Pressure (Ap) in. H ₂ O	lime (0) min.	Flow Rate (Q) cfm	Meter Meter Coeff. (Y _{ds})	Avg. Meter Coeff. (Ÿ _{ds})
	2.924	62.4	2.906	81	0.40	10.00	0.2864	1.0026	
0.30	2.969	82.8	2.869	81	.40	19.00	.2906	1.0304	
	3.652	83.3	3.501	8	.40	12,00	.3571	1.0377	·
*	4.235	80.6	4.330	- 11	0.85	12.00	. +125	.9100	·
9.40	4.545	80.6	4.370	78	.85	10.00	. +427	1.0328	
	4.417	80.6	4.745	79		10.00	:4302	1.0114	
	5.328	78.8	5.206	45	1.10	10.00	.5271	1.0135	
1.50	5.383		5.212		1.15	10.00	.5317	1.025	
	5.301	19.7	5.166	- 78	1.15	10.00	.5219	1.020	·
¥	8.288		B.216	- 79	2.65	10.00	,8067	.9985	
0.80	4.397	82	8.214	80	2.65	10.00	. 8058	1.2119	
	8.352	82.4	8.199	80	2.65	10.00	,8108	1.0075	
	10.638	\$3.3	10.472	<u> </u>	4.15	19.00	1.040	1.0014	
1.00	10.656	83.3	19.534	- 81.5	4.15	10 00	1.042	. 9981	
	10.528	-83.3	10.450	81.5	4.15	(0.00	1.0296	.9941	
.									

 $Y_{ds} = \frac{(V_s) (t_{ds} + 460) (P_b)}{(V (t_1 - 60) + 7777)}$

 $Q = (17.64) \frac{(P_b) (V_s)}{(t_s + 460) (a)}$

Dry Gas Meter Identification: 6838323 Calibration by: MF

Date: 3-26-86 Barometric Pressure (P_b) : 30,12 in. Hg

MUNTROPY INC.

Date: 3-27-66

*Barometric Pressure (Pb): <u>29.85</u> in. Ilg

Approx. Flow Rate (Q) cfm	Spiromete Gas Volume (V _s) ft ³	Temp. (t _s) °F	Dry Gas Gas Volume (V _{ds}) ft ³	Meter Temp. (t _{ds}) °F	Pressure (Ap) in. H ₂ 0	Time (O) mín.	Flow Rate (Q) cfm	Meter Meter Coeff. (Y _{ds})	Avg. Meter Coeff. (Ÿ _{ds})
* 1.20	12.304 12.117 12.186	82.4 82.4 82.4	12.168 12.065 12.100	50 80 80	5.50 5.50 5.50	10.00 (0.00 10,00	1.1945 1.1821 1.1830	0.9972 .9914 .9892	
1.35	13.698 13.552 17.752	82.4 82.4 81.5	13.494 13.505 13.712	79.5 80 80	6.85 6.85 7.00	10.00 10.00 (0.00	1.3418 33 35	.9931 .9826 .9833	
					15=	1.0	042		

 $Y_{ds} = \frac{(v_s) (t_{ds} + 460) (P_b)}{(v_{dr}) (t_{rr} + 460) (P_b + (p / 13.6))}$

 $Q = (17.64) \frac{(P_b) (V_s)}{(t_s + 460) (9)}$

Date:	Q-4-86	Time:	15:47
Client:	EMB. EXXON BAYTOWN	Auditor:	BB
P _{bar} :	<u>30,35</u> in. Hg.	Meter Box No .:	N-4
Δн@:	171	Pretest Y:	1.0123

Orifice	Dry gas	Meter	Duration
gauge	meter	Temperatures	of
reading	reading	T _i /T _f	run
AH@	V _i /V _f		e
in.H ₂ 0	ft ³		min.
1.71	963.300	88	10
	970.803	90	

Dry Gas meter volume V _m ft ³	Meter temperature average t _m O _F	Pretest Y 0.97Y 1.03Y	Calculated ^Y c	Audit 0.97Y < Y _C < 1.03Y Acceptable
7,503	B٩	D. 9819 1. D427	1.0124	

	Calculated Y _c									
10	0.0319	(tm +	460)	1/2	=	10	/0.0319(89	+ 460)	1/2
v _m	(Ph	bar)		(7.503)	(30.	35/	

Figure 5.2. Meter box audit.

Date:	9/4/86	_	Time:	1520
Client:	EMB	-	Auditor:	T. M. Denald
P _{bar} :	30.35	in. Hg.	Meter Box No.	: N 10
ΔH _@ :	1.68	-	Pretest Y:	0-9847

Orifice gauge reading ^A H ₀ in. H ₂ 0	Dry gas meter reading V _i /V _f ft ³	Meter Temperatures T _i /T _f	Duration of run 0 min.
1.68	484.671 477.103	\$ 8 \$ 8	10

Dry Gas meter volume V ft ³	Meter temperature average t o _F	Pretest Y 0.97Y 1.03Y	Calculated ^Y c	Audit 0.97Y < Y < 1.03Y Acceptable
2568	88	0.9552	1.0028	
T		1.0142		

		(Calculated Y	;	
10 V m	$\begin{bmatrix} 0.0319 \ (tm + 460) \\ P \\ bar \end{bmatrix}$	1/2	= <u>10</u> (7.568)	$ \begin{bmatrix} 0.0319(88 + 460) \\ (32.85) \end{bmatrix} $	1/2

Figure 4. Meter box audit.

Date:	09.04.86		Time:	1542
Client:	EMB-EXXON		Auditor:	BER
P har:	30.35	In. Hg.	Meter Box No.:	N-12
∆r _e :	1.76		Pretest Y:	1.01

Urifice	Dry gas	Meter	Duration
gauge	meter	Temperatures	of
reading	reading	T _i /T _f	run
^{A H} 0	Vi/Vi		O
ln. H ₂ 0	ft3		min.
1 7.0	462.101	89	10
1.76	469.804	ŶΦ	

Dry Gas meter volume V ft ³	Meter temperature average tm Cr	Pretest Y 0.97Y 1.03Y	Calculated Yc	Audit 0.97Y < Y < 1.03Y Acceptable
7.703	89.5	0.9797	0.9866	

Calculated Y							
$\frac{1C}{V}$	$\frac{[C.0319 (\pi - 460)]}{P_{c}}$	·] 1/2	= 10	<u>(03)</u>) 1/2	
13	Dar	J	· • ·		50, 50	J	

Figure 5.2. Meter box audit

Date:	9-4-86	Time:	1530
Client:	EMB-EXXON BAYTOWN	Auditor:	DB
P _{bar} :	<u>30.35</u> in. Hg.	Meter Box No.:	N-14
Δ H@:	1.72	Pretest Y:	1.005

Orifice gauge reading A H@ in. H ₂ O	Dry gas meter reading V _i /V _f ft ³	Meter Temperatures T _i /T _f	Duration of run e min.
4 7 7	72.804	100	10
1.72	80.356	103	

Dry Gas meter volume ^V m ft ³	Meter temperature average t _m o _F	Pretest Y 0.97Y 1.03Y	Calculated ^Y c	Audit 0.97Y < Y _C < 1.03Y Acceptable
9 :552	101.5	0.97097	1,0773	

Calculated Y _c						
10 v _m	$\left(\frac{0.0319 (tm + 460)}{P_{bar}}\right)$	1/2	= 10	$ \begin{pmatrix} 0.0319(101.5 + 460) \\ (30.35) \end{pmatrix} 1/2 $		

Figure 5.2. Meter box audit.

4 11 in employ attion ALIBRATION OF PROPELLER ANEMOMETERS - 6-18-86 DR _____ ANEMOMETER #1 VOLTAGE $(MV) \propto (TPHY_MV)$ RPM's 900_____250 3.60 332 1200 3.6/ 415 1500 3.61 1800 -500 3.60 ~= 3.61 ANEMOMETER #2 VOLTAGE (mV) ~ (rpm/mV) RPM's 900 250 3.60 1200 332 3.61 1500 416 3.61 500 3.60 1800 $\propto = 3.61$ ANEMOMETER #3 $\ll (rpm/mV)$ VOLTAGE (MV) RPM's 900 250 3.60 333 1200 3.60 _ _. _ 416 1500 3.61 ____ 1800 500 3.60 $\propto = 3.60$

················

CALIBRATION OF PROPELLER ANEMOMETERS 6-18-86 DR_ ANEMOMETER #4 $\propto (rpm/mV)$ RPM's VOLTAGE (mV) 900 248 3.63 1200 331 3.63 _____ 1500 413 3.63 498 3.61 1800-~=3.63 ____ ANEMOMETER #5 ~ (rpm/mV) VOLTAGE (mV) RPM's 250 900 3.60 33/ 1200 3.63 411 3.65 1500 3.64 1800 495 $\alpha = 3.63$ _____ THE VARIABILITY OF THE RESULTS IS WITHIN THE LIMITS OF THE TEST METHOD. THEREFORE, AN X OF 3.60 TPM/MY SHOULD BE USED FOR ALL FIVE ANEMOMETERS. D-31

	BEARING TORQUE	E TESTS 6-18-86
		DR
ANEMOMET	TER#])ISC TORQUE
11		0.3 gr-cm
2		0.2 gr-cm
3		0.3 gr-m
4		3 ar-(M)
5		D = C M
	····	
······································	· <u>- · · · · · · · · · · · · · · · · · ·</u>	
	The Corrigan Maria	- ACCOCIATED INITI
NOIE :	THE CRITICAL VALUE	$= \frac{1}{10000000000000000000000000000000000$
	FOOR PERFORMANCE	E WOULD BE 0.997-CM
7	HEREFORE ALL D	SENSORS ARE IN
/	VENT CONDITION	1
		<u> </u>
		
	<u> </u>	
		·
	· •	
n ar an an an an an an an an an an an an an	_ `	
	n_32	

WNEHDMETER CALIB. DF ESC =4 FURWARD(AS LEFT)1-7-86

VEL(FPM)=3445.2+V0LTS+ 20.2

VALTS	V(MPS)	V(FPM)	VPRED(FPM)	ERR(%)	CL(FPM)	CL(%)
0.107	2.00	394	359	1.230	5.205	1.338
0.221	3 .9 8	784	782	0.238	4.330	0.554
0.338	E.00	1181	1185	-0.302	3.557	0.300
0.452	7.99	1573	1577	-0.291	3.019	0.191
0. 566	10.01	1971	1970	0.017	2.818	0.143
0.680	11.99	2360	2363	-0.112	3.023	0.128
0.795	14.02	2760	2759	0.028	3.570	0.129
0.90E	1 5.9 8	3146	3149	-0.085	4.318	0.137
1.021	18.00	3543	3538	0.160	5.183	0.147

m. &. Claut.

Calibration of Two Standard Simplex Pitot Tubes (WF 6 (PFA 2338) and WF6A) for Environmental Systems Corporation Knoxville, Tennessee

We deft. long standard Simplex tubes (WF 6 and WF 6A) were calibrated at two speeds between 7 and 10 fps in a 24-in. spiral-riveted pipe line (tube lengths are approximate). The line has a 30-foot test section of 24-inch seamless steel pipe whose thickness is 3/8 inches and whose internal diameter at the craverse location is 1.9378 ft (based on a series of eight internal diametral measurements at the traverse location). Water was pumped through the pipe line by means of a 20 x 20-in. centrifugal pump driven by a 200 HP synchronous motor running at 500 rpm.

The actual flow rate was obtained volumetrically by timing the rise of a float gage in a tank which had a uniform area of 199.7 :q.ft. The elapsed time was indicated by means of a digital :top watch reading to 0.01 sec. Rise distances of 8 to 9 ft were imployed. Horizontal and vertical traverses were taken at a test station some 97 ft downstream from a long radius bend with rough jurning vanes and some 14 ft upstream from another bend. Two sets of traverse ports are available: for normal length tubes. ruely vertical and horizontal traverses can be made; for tubes of extended length, the "vertical" port is 20 degrees off from rue vertical so as to allow the tube to extend into a 5-ft deep channel while the "horizontal" port is 100 degrees from true vertical so as to allow the tube to clear other laboratory sipes. The former ports were used in these calibrations. Each praverse consisted of velocity readings at 17 points. The Pitot :ube positions tabulated and used in plotting the accompanying iraphs are based on the distance of the impact hole of the Pitot 'rom the pipe wall on the far side of the pipe from the ittachment device. Pressure differentials were obtained with a iifferential pot-type manometer using carbon tetrachloride as the gage fluid; these observations were read in feet, tenths, and hundreths. In obtaining manometer differentials, it was recessary to average the fluctuations over a period of time (usually a minute or so).

The calibration coefficients have been evaluated both in terms of a pipe velocity based on the actual pipe area and on an area corrected for the blockage effects of the Pitot tube. The area of the pipe at the test section was evaluated to be 2.9493 sq.ft. The area of the Pitot tube exposed to the flow when inserted to each reference position was calculated (see attached plockage calculation sheet). The average of these areas (0.0301 sq.ft. for PFA 2338) has been taken as the blockage area. The set area of the pipe for this Simplex was, therefore, Anet = 2.9493 - 0.0301 = 2.9192 sq.ft. The net pipe velocity would be the total flow rate as measured volumetrically divided by this rea; e.g., Vnet = Q/Anet = 30.2027/2.9192 = 10.3461 fps for the traverses at the largest flow rate. The nominal velocity for his flow rate was Vnom = 30.2027/2.9493 = 10.2406 fps.

The gage readings, the velocities calculated therefrom, and ther pertinent information from the test runs are tabulated on he accompanying data sheets and computer printouts. The average indicated velocity from the Pitot tube was calculated by averaging the fourteen velocities determined at the mid-areas of qual-area annuli (values at traverse locations 1, 9, and 17, not at mid-areas, were excluded). These experimental points were plotted and a smooth curve was drawn through them. These curves ppear in the accompanying figures. Where any of the xperimental points deviated substantially from this smooth curve (usually where there is evidence of vibration), a velocity alue from the smooth curve was substituted for the indicated elocity. These values are also listed on the data (computer) heets as adjusted velocities.

he procedure for averaging the velocity values at equal area nnuli is in accord with an accepted procedure (cf, the ABME report of Fluid Meters). The procedure for substituting curve alues for indicated values is based on the following line of pasoning: Manometer readings, at locations where tube vibration or other flow abnormalities occur, can and do vary considerably from normal values. When the tube is vibrating, the manometer eadings usually increase. Inclusion of these higher values in _ne coefficient calculations reduces the tube coefficient below that which would obtain without the vibration. Bince vibration f the tube depends on many factors (tube extension, flow elocity, packing stiffness, mass and elastic characteristics of the rod, flow fluctuation severity, etc.) and since in field use hese factors could well come together differently than in the alibration runs, it is felt that such readings should be replaced with values taken from the smooth curve through the points free of vibration or other abnormalities. From many, any previous calibration runs using this test station, the eneral shapes of the velocity profiles, modified by Pitot tube blockage, are well known. Accordingly, the smooth curves (drawn phoring "contaminated" values) can be produced with quite a gigh degree of confidence. At the same time, it must be stated that not all velocity determinations suspected on the basis of factile and/or audible signals of being influenced by vibration urn out to deviate significantly from the smooth curve drawn Through the mean of the points. Contrariwise, when there is no tactile or audible evidence, it is not assured that the tube is ibration free and the velocity points might register higher shan normal on the velocity profile. In the case of the present tests, tactile and audible evidence of vibration did appear at any of the traverse positions when testing these unreinforced mplexes. In fact, for Tube 6A, when the tube was extended towards the opposite wall, the vibrations became guite violent.

net adjusted coefficient has been calculated using the adjusted traverse velocities and the average pipe velocity based on the pipe area corrected for Pitot tube blockage. This falibration coefficient is calculated by dividing the net pipe elocity determined volumetrically (10.3461 fps for the example case shown above) by the average adjusted Pitot tube velocity as fpllows: C = 10.3461/12.4165 = 0.8333 (horizontal high velocity) -averse for PFA 233B (WF6). In the writer's view, a coefficient ased on adjusted Pitot velocities and a pipe velocity corrected or blockage must be used for interpreting measurements made in ipes of other sizes. The following table summarizes the alculation of the coefficients.

second method of interpreting the data which accounts for itot tube blockage in each individual velocity determination is resented in Appendix A. This method allows the velocity profile 5 be plotted free, so to speak, of blockage effects. The rofiles shown on the accompanying graph(s) are skewed because f the presence of the rod and concomitant flow blockage. With his second interpretation, this skewedness can be effectively emoved. As can be seen in the summary tables, the coefficients re little affected.

ased on the traverses at velocities between 7 and 10 fps, the pefficient recommended for use with standard Simplex tube PFA 33B (WF6) is <u>0.8466</u>, for PFA (WF6A), it is <u>0.8326</u>. In using hese values, the flow area should be taken as corrected for itot blockage (with tube extended halfway across the pipe or, ore precisely, using an average of the blocking areas figured or each reference position. See attached sheets and the BASIC omputer program for blockage calculations). If either the ominal or corrected average coefficients are used, the ppropriate methods must be used to determine the average ndicated or corrected velocity as well as the nominal pipe elocity.

t should be noted that both of these Simplex tubes calibrated n the high side of many Simplex calibrations. Exactly the same rocedures are employed in each test. The reason why some tubes alibrate high, some low, some average is not known. Quite. ossibly, slight differences in geometric configuration are responsible. There is also the possibility that there is a efinitive variation of coefficient with pipe velocity. In veneral, the coefficient of a well-designed Pitot tube is relocity-invariant, unless wide ranges in velocity are considered. In our calibration of Simplex tubes, the coefficient usually appears to decrease with increase in pipe relocity although the variation is never very large - a band of plus or minus one percent contains most of the data points. In these present calibrations, there was a consistent trend in this same direction. The direction of traverse, whether vertical or norizontal, did not seem to be a crucial factor in the calibrations.

Recently, a calibration test of a reinforced Simplex gave a rather clear indication as to a possible reason why some tubes give higher coefficients. At the request of a client who was observing the calibrations and to eliminate the necessity of moving the Simplex rod inside the reinforcing tube, a long 18 to 20 in. nipple was put between the valve and the Pitot. This nipple was some ordinary schedule pipe found in the laboratory. During the course of the calibrations, when the Pitot was taken in and out of the test pipe, the forces of tightening the nipple caused the nipple to distort. By the end of the calibration the nipple was quite bent and showed it. When the results were analyzed, it was found that the coefficient increased gradually and consistently as time of day progressed or as the pipe was becoming more and more distorted. When we retested the same tube ining a heavy schedule nipple of the same length, the inlibration was right at the average of many tests. To be sure, the same situation did not obtain in these present calibrations with regard to a long nipple. However, the same type of result include be obtained with a standard unreinforced Simplex if its ind was bent so that it did not traverse directly across the pipe on a diameter but went off on some chord of the inosymmetric calibratic.

-- te 5/30/86 Signed

Table. Calculation of Pitot Coefficients Standard Simplex PFA 2338 (WF 6)(6 ft. long)

Traverse	Horiz.	Vert.	Horiz.	Vert.
Nom Velocity Q/Apipe fps	7.273	7.273	10.241	10.241
Ave Ind Vel	B.773	B.602	12.627	12.427
Nom Ind C	0.8291	0.8456	0.B110	0.8240
Ave Nom Ind C			0.6274	
Net Velocity Q/Anet fps	7.34B	7.34B	10.346	10.346
Ave Adj Vel	B.657	8.483	12.416	12.346
Net Adj C	0.8488	0.8662	0.8333	0.8380
Ave Net Adj C			0.8466	
Ave Corr Vel	8.566	B.394	12.286	12.216
Corr Adj C	0.8491	0.8665	0.8335	0.8383
Ave Corr Adj C			0.8468	
Apipe = 2.	9493 sq.	.ft. f	net = 2.9	7172 sq.ft.

	Table. Calcu	ulation of	Pitot	Coefficier	its
	Standard Simp	Dlex PFA	(WF	6A)(6 ft.	long)
Traverse	Horiz.	Vert. H	Horiz.	Vert.	
Nom Velocit	Ξ Υ				
D/Apipe fp:	7.273	7.273	10.34B	10.348	
Ave Ind Vel	8.856	B.731	12.855	12.552	
Nom Ind C	0.7966	0.8159 (0.8213	0.8331	
Ave Nom Inc		(0.8167		
Net Velocit Q/Anet fps	γ 7.350	7.350	10.348	10.348	
Ave Adj Vel	B.703	B.673	12.749	12.518	
Net Adj C	0.8445	0.8474	0.B117	0.8267	
Ave Net Ad		I	0.8326		
Ave Corr Ve	el B.610	B.581	12.611	12.384	
Corr Adj C	0.8447	0.8477	0.8120	0.6269	
Ave Corr At	j C	(0.8328		
Apipe	e = 2.9493 mg	ft. Ane	t = 2.9	172 sq.ft.	,

•

.

CUSTODY SHEET FOR REAGENT BOX # 0205

PLANT NAME <u>Erron-Baytown Tr.</u> SAMPLING LOCATION <u>Cooling Tower 68 Francell</u> #5

Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locked?
CT68-5-1	9-1	KAD	/	9-1	90	1600	
CT68-5-2	9-1	KAD		9-1	90	KUD	
2.768-5-3	9.2	KOD		9-2	90	KOD	
		L	<u> </u>				
Receive	d in Lab	Date 9[8	Initials	Locked?	Zero & S Initials	Span Baland	ce
Samplin	g Method:	EMB-Spein No tone with	I Tyle	t:/ton	Filter #	Tare Weight (mgms) !	Used . on Test
Remarks	:						
						<u></u> -	
							.=
				-39			
			NVIRONMENT	ALISTEINC			•

CUSTODY SHEET FOR REAGENT BOX # 0215

Date of Make	eup <u>8/26/86</u>	InitialsM	JP Locked?	
Individual I	lare of Reagent:	<u>200.0</u> m	ls. of Distiller	HZO
Individual I	<pre>lare of Reagent:</pre>	m	ls. of	
Individual S	Silica Gel Tare Weight	200.0	gms.	

PLANT NAME <u>EXTON-BAYtown (EMB)</u> SAMPLING LOCATION <u>Cooling tower #68, francells 1, 2+3</u>.

Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locke
CT68-1-1	9-1	KOD	/	9-1	90	KAD	
CT68-2-1	9-1	1600	/	9-1	90	KOD	/
<u>et68-3-1</u>	9-2	1400	<u> </u>	9.2	95	145D	
	····-						
Receive	d in Lab	Date 9[8	Initials J.F.J.	Locked?	Zero & S Initials	pan Balanc	
Samplin	g Method:	msw/ Tet	lon Pilters	- NO	Filter #	Tare U Weight (mgms) D	Jsed on Test
Remarks	:			<u></u>			
			NTROPY D	-40			

NVIRONMENTALISTS, INC.

CUSTODY SHEET FOR REAGENT BOX # 0218 .

Date of Makeup _	8 26 86	Initials	NJP	Locked?
Individual Tare	of Reagent:	200.0	mls. of	DISTILLED +20
Individual Tare	of Reagent:		mls. of	
Individual Silic	a Gel Tare Weight	0.005	a	ms.

PLANT NAME <u>Exzon Baytown - EMB</u> SAMPLING LOCATION <u>CT-C8, CT-84</u>

Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locked?
CT68-NZ-1	9-1	K6-D	~	<u>918 alz</u>	90	KOD	
CT68-DI-1	P 9-1	K6D		978 alz	8 5	KND	/
CT65-207	29-2	KOD	/	5/8 9/2	90	ISAD	/
c7-68-4	19-2	KOD	~	912	90	ZAD	L
CT68-DT-2	5-2	RISD		9/2	90	400	-
07-81-62	9-4	140		\$2	20	KAD	~
Receive	d in Lab	Date 9/8	Initials	Lockeď?	Zero & S Initials	Span Balances	ce
Samplin	g Method:	EMB - Spec	I Teffer	f Har	Filter #	Tare Weight (mgms)	Jsed on Test
Remarks	:	·					
						<u> </u>	
						<u> </u>	
			NTROPY)-41		·	

MANNA NVIRONMENTALISTE, INC.

CUSTODY SHEET FOR REAGENT BOX # 0228

Date of Makeup $8/26/86$	Initials	MJD Locked?
Individual Tare of Reagent:	200.0	mls. of Distilled Hzo
Individual Tare of Reagent:	· · · · · · · · · · · · · · · · · · ·	mls. of
Individual Silica Gel Tare We	ight 200.0	gms.

PLANT NAME	Exxon	Bayton -	EMB	
SAMPLING LOC	ATION	-68 -	CT-84	

Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locke
(7-68-12-1	9-1	KOD	/	9-1	90	KAD	/
CT-68-07-3	9.3	KOD	/	9-3	90	157D	
CT-6942-3	9.3	KUD	/	9-3	85	WHD	/
GT-94-0-1	9-4	KOD	1	9-4	80	KOP	~
CT-34-A-1	9-4	14AD	1	9-4	90	140	/
CT-84-4-2	9-4	NGD	-	2-4	90	1651	~
Receive	d in Lab	Date 9/8	Initials	Locked?	Zero & S Initials	Span Balance J.F.J.	
Samplin	g Methoâ:	: <u>m5/wja</u>	da Pilku	Nə	Filter #	Tare U Weight (mgms) T	Jsed on Test
Remarks	:	<u>~</u>					······································
)-42			

MENNVIRONMENTALISTS, INC.

CUSTODY SHEET FOR REAGENT BOX # 0221

	Date of	Makeup _	8/15/86	Ini	tials <u> </u>	NJD	Locked?	V
	Individu	al Tare	of Reagent:	200	.0 1	mls. of <u> </u>)ISTILLED -	420
	Individu	al Tare	of Reagent:		I	mls. of		
	Individu	al Silic	a Gel Tare	Weight	200.0	gms	•	
	PLANT NA	AME <u>É</u>	yen Paytown	<u> </u>	·····			
	SAMPLING	G LOCATIC	N _CT_8	·Ψ				
			t					-
	Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locked?
۷	T-84-N24	9-4	ILAD	6	9-4	90	1LAD	<i>v</i>
(7-84 DE-Y	9-4	1660	V	9.4 <u>7</u>	90	KOD	
C	7-24-8-1-2	9-5	K50	~	9-5	90	IND	L L
Ċ	CT-840-1-2	9-5	KAD		9-5	85	100	
» Sa	7-8412-5	9-5	(141)	~	2-5	25	Nal	
Pr.S	CT 8Y - 5	9-5	440		9-5	25	LAD	
	Received	d in Lab	Date	Initials J.F.J.	Locked?	Zero & Span Balance Initials J.F.J.		
	Sampling	; Method:	M5/W F	flor Filmer	 >	Filter #	Tare Weight (mgms)	Used on Test
	Remarks:	:						
							<u> </u>	
				VTROPY	3			

NVIRONMENTALISTS, INC.

APPENDIX E.

MRI PROCESS DATA

APPENDIX F.

TEST PARTICIPANTS AND OBSERVERS

F**-**2

.

SAMPLING PROGRAM PARTICIPANTS AND OBSERVERS

Name	Organization	Responsibility
Dan Bivins	EPA, Emission Measurement Branch	EPA Task Manager
Barry F. Rudd	Entropy Environmentalists, Inc.	Project Coordinator
Tom McDonald	Entropy Environmentalists, Inc.	Sampling Team Leader
Doug Biggerstaff	Entropy Environmentalists, Inc.	Sampling Technician
Scott Steinsberger	Entropy Environmentalists, Inc.	Sampling Technician
Kent Daeke	Entropy Environmentalists, Inc.	Sampling Technician
Robert W. Bridges	Entropy Environmentalists, Inc.	Sampling Technician
Tony Mastrianni	Entropy Environmentalists, Inc.	Sampling Technician
John Lewis	Environmental Systems Corporation	Field Engineer
David Randall	Midwest Research Institute	Process Monitoring
E. W. Biggers	Exxon Company	Facility Contact

United States Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711

.

Official Business Penalty for Private Use \$300

If your address is incorrect, please change on the above label, tear off, and return to the above address. If you do not desire to continue receiving this technical recort sories, CHECK HERE [1]; tear off label, and return h to the

~