TOXIC SUBSTANCE STORAGE TANK CONTAINMENT ASSURANCE AND SAFETY PROGRAM

TRAINING MANUAL

MARYLAND DEPARTMENT OF

STATE OF MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE OFFICE OF ENVIRONMENTAL PROGRAMS SCIENCE AND HEALTH ADVISORY GROUP

MD-489-D502

TOXIC SUBSTANCE STORAGE TANK CONTAINMENT ASSURANCE AND SAFETY PROGRAM: TRAINING MANUAL

PREPARED UNDER U.S. ENVIRONMENTAL PROTECTION AGENCY GRANT NUMBER CS807904010 AUTHORIZED BY SECTION 28 OF THE TOXIC SUBSTANCES CONTROL ACT

BY:

Ecology and Environment, Inc. Buffalo, New York and

Whitman, Requardt and Associates Baltimore, Maryland

FOR:

STATE OF MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE OFFICE OF ENVIRONMENTAL PROGRAMS SCIENCE AND HEALTH ADVISORY GROUP 201 WEST PRESTON STREET BALTIMORE, MARYLAND 21201

SEPTEMBER 1983

U.S. Environmental Protection Agenci U.S. Environmental Protection Recourse U.S. Environmental Protection Agen Rection TLL Information Resource Rection Contest De Mail (Street 1910) AL Criestnul Street 19101 Philadelphia, PA Contra and the second and the second

DISCLAIMER

This report has been reviewed by the State of Maryland Department of Health and Mental Hygiene, Office of Environmental Programs, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Department of Health and Mental Hygiene, or the United States Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Because hazardous materials vary widely in their characteristics and in the manner in which they should be stored, the material contained within this Manual can serve only as a guide. It is the responsibility of the storage facility owner to seek the assistance of appropriately qualified professionals with the necessary skills to design a storage system which can be used safely, and which provides the necessary measures for public and environmental protection.

ACKNOWLEDGEMENTS

Development of this document was accomplished with the assistance of an advisory committee representing the following State of Maryland agencies:

 Department of Health and Mental Hygiene

Office of Environmental Programs

- Air Management Administration
- Waste Management Administration
- Science and Health Advisory Group
- Department of Public Safety and Correctional Services

State Fire Marshall's Office

 Department of Natural Resources

Water Resources Adminis-

• Department of Licensing and Regulation

Maryland Occupational Safety and Health Administration

also,

 Maryland Casualty Company, Baltimore

We also wish to express our appreciation for the guidance and direction provided throughout this project by Mr. K.K. Wu, Toxics Integration Coordinator, U.S. Environmental Protection Agency, Region III, Philadelphia, Pennsylvania.

TABLE OF CONTENTS

<u>Section</u>			<u>Page</u>
1	INTR	ODUCTION	1-1
2	CHEM	ICAL COMPATIBILITY	2-1
3	STOR	AGE SYSTEM DESIGN ELEMENTS	3-1
	3.1	TYPES OF STORAGE TANKS	3-1
	3.2	VALVES	3-8
	3.3		3-8
	3.4	FACILITY SITING	3-10
	3.5	SPILL CONTAINMENT AND CONTROL	3-10
	3.6	IGNITION SAFEGUARD	3-13
	3.7	FAIL-SAFE AND WARNING DEVICES	3-14
4	CORR	OSION CONTROL	4-1
5	INSP	ECTION AND MAINTENANCE	5-1
	5.1	TEST METHODS	5-1
	5.2	AREAS OF INSPECTION	5-2
	5.3	INSPECTION FREQUENCIES	5-12
	5.4	PRIORITIES FOR CORRECTIVE ACTION	5-22
	5.5	TANK CLEANING	5-22
	5.6	TANK CLOSURE	5-30
6	חבחכ		6 1
U	FERS	DEDSONAL DEOTECTIVE EQUIDMENT	0-1 6 1
	0.1 6 0	ACTIVITIES IN HAZADOOUS ADDAS	0-1 6 5
	0.2	ACTIVITES IN MALAKUUUS AKEAS	0-0 6 5
	ი.ა	FIRST AID AND MEDICAL SURVEILLANCE	0-5

Table of Contents (Cont.)

Section

7SPILL CONTROL AND PREVENTION7-17.1LAND SPILLS7-17.2SURFACE WATER SPILLS7-17.3ATMOSPHERIC RELEASES7-47.4SPILL PREVENTION AND CONTINGENCY PLANNING7-16

Page

LIST OF TABLES

Table		<u>P age</u>
2-1	List of Chemical Classes	2-2
3-1	Storage Tank Type for Liquid Chemicals, 25°C (77°F)	3-2
3-2	Existing Structural Guidelines	3-3
3-3	Approximate Bearing Capacities	3-5
3-4	Fire Protection Techniques for Storage of Selected Hazardous Materials	3-15
3-5	Selected Methods of Extinguishing Chemical Fires	3-16
4-1	Metal Failure Frequency Over a Two-Year Period	4-2
4-2	Corrosion Control Methods	4-9
4-3	Typical Inhibitors and the Corrosion Systems in Which They are Effective	4-12
4-4	Comparative Resistances of Typical Coatings	4-15
5-1	Application of Non-Destructive Testing Methods	5-2
5-2	Non-Destructive Test Methods	5-3
5-3	Typical Aboveground Tank System - Areas of Concern	5-11
5-4	Minimum Inspection Tasks and Frequencies	5-23
6-1	Chemical Resistance of Protective Clothing Materials	6-2
6-2	Selection of Respirators	6-6
6-3	Respirator Protection Factors	6-7
7-1	Properties of Sorbent Material	7-14

LIST OF ILLUSTRATIONS

Figure		<u>Page</u>
3-1	Foundation Schematic for Outdoor Tanks	3-6
3-2	Illustrative Ring Wall Foundation	3-7
3-3	Assessment of Vertical and Horizontal Tank Supports	3-9
3-4	Safe Separation Distances from Spills of Common Liquid Industrial FuelsFire Threat	3-11
3-5	Spill Containment and Control Flow Chart	3-12
4-1	Corrosion Due to Improper Inlet Nozzle Placement	4-3
4-2	Stress Corrosion Cracking	4-4
4-3	Interior Galvanic Corrosion due to Coupling Copper and Steel Pipe	4-5
4-4	Oxygen Concentration Cell with Rust on Tank Wall	4-6
4-5	Impingement Attack	4-7
4-6	Differential Environment Underground	4-8
4-7	Cathodic Protection by the Sacrificial Anode Method	4-16
4-8	Cathodic Protection by the Impressed Current Method	4-17
5-1	Areas of Concern in Typical Aboveground Vertical Tank System	5-9
5-2	Areas of Concern in Typical Horizontal Tank System	5-10
5-3	Leak Testing Log	5-13
5-4	Critical Areas of Gate Valve	5-14
5-5	Critical Areas of Globe Valve	5-15

.

List of Illustrations (Cont.)

Figure		<u>Page</u>
5-6	Critical Areas of Diaphragm Valve	5-16
5-7	Critical Areas of Butterfly Valve	5-17
5-8	Critical Areas of Safety (Pressure Relief) Valve	5-18
5-9	Types and Critical Areas of Check Valves	5-19
5-10	Critical Areas of Ball Valve	5-20
5-11	Areas of Concern in a Typical Tank Foundation	5-21
5-12	Daily Inspection Checklist	5-25
5-13	Weekly Inspection Checklist	5-26
5-14	Monthly Tank Inspection Log	5-28
5-15	Thickness Testing Log	5-29
7-1	Cross-Section and Interceptor Trench Containment and Collection System for Floating Contaminants	7-2
7-2	Schematic of Deep Groundwater Recovery Well for Floating Contaminants	7-3
7-3	Cross-Section of a Typical Boom, Showing Major Parts	7-5
7-4	Schematic of Typical Boom Anchoring System	7 - 6
7-5	Schematic of Typical Underflow Dam	7-7
7 - 6	Cross-Section of Typical Floating Weir Skimming Unit	7-8
7-7	Illustration of Floating Suction Skimming Unit	7-9
7-8	Cross-Section of Typical Oleophilic Drum Skimmer	7-10
7-9	Schematic of Inclined Plane Belt Skimmer	7-11
7-10	Schematic of Oleophilic Belt Skimmer	7-12
7-11	Schematic of Oleophilic Rope Skimmer	7-13
7-12	Emergency Phone Numbers Form	7-17
7-13	Emergency Data Sheet Form	7 - 18

SECTION 1

INTRODUCTION

Accidental spills or releases of hazardous materials can have effects such as contamination of groundwater and surface water, exposure of populations to hazardous materials, destruction of property, severe financial liabilities, and adverse corporate publicity.

It is estimated that 40% of all spill incidents are caused by equipment failures, and 18% by human error. Many of these spills could be prevented by appropriate application of design, maintenance, testing, and inspection procedures.

In order to reduce the occurrence of spills or releases from storage facilities, the design of the facilities and maintenance and operating procedures should be evaluated. If they do not meet current standards, appropriate corrective measures should be implemented. These measures constitute a Containment Assurance and Safety Program. Objectives of such a program include:

- Utilization of the most recent chemical, technical, and structural standards for storage system design and maintenance;
- Standardization of preventive maintenance and inspection practices;
- Education of management, maintenance, and inspection personnel in proper hazardous materials control practices; and
- Provision of guidelines for developing a spill prevention program.

The <u>Toxic Substance Storage Tank Containment Assurance and Safety</u> <u>Program: Guide and Procedures Manual</u> was developed to provide basic guidelines upon which a containment assurance and safety program should be based. It provides guidelines for various design, maintenance, inspection, and emergency procedures, and refers to the appropriate standards and codes with which storage tanks should be in compliance.

This <u>Training Manual</u> is intended to be a companion to the <u>Guide</u> and <u>Procedures Manual</u> by providing an introduction to and summary of its contents. Subjects highlighted include:

- Chemical compatibility issues;
- Storage system design elements;

- Maintenance and inspection procedures;
- Health and safety issues; and
- Spill prevention and countermeasures.

The Training Manual is not intended to be a substitute for the Guide and Procedures Manual. Rather, it is meant to identify areas of key importance, and may serve as the basis for an in-plant training program. Users of The Training Manual are advised to consult the Guide and Procedures Manual and the appropriate bibliographies therein for detailed information on a given topic.

SECTION 2

CHEMICAL COMPATIBILITY

Care must be taken to avoid inadvertent mixture of incompatible chemicals and materials. Combining two or more incompatible chemicals may result in such consequences as:

- Heat generation;
- Fire;
- Explosion; or
- Gas generation.

Exposure of construction materials to incompatible chemicals may result in:

- Corrosion;
- Loss of structural integrity; or
- Total destruction of tank and pipe system.

Therefore, an inspector must be able to identify potentially incompatible chemical/chemical or chemical/material combinations.

Table 2-1 lists the major chemical classes. An extensive listing of chemicals within these classes is found in Appendix A. By identifying the classes to which two chemicals belong, the Chemical Compatiblity Matrix in Appendix B may be used to determine the likely reactions resulting from their combination. (The matrix assumes chemicals of 100% concentration at 25°C and 760 mm Hg).

The procedure for using the Chemical Compatibility Matrix (Appendix B) is as follows:

- 1. Determine the chemical classes to which two chemicals belong, as listed in Table 2-1 and Appendix A.
- 2. Locate the chemical class with the higher number on the left side of the Appendix B chart.
- 3. Follow that row to the right until it intercepts the column with the lower number.
- 4. The abbreviation at the point of intersection (explained in the matrix legend) indicates the likely reaction.
- 5. If the point of intersection is blank, the classes are considered generally compatible. Two or more abbreviations

2-1

Table 2-1

LIST OF CHEMICAL CLASSES

Chemical Class Number	Class Name
1	Acids, mineral, non-oxidizing
2	Acids, mineral, oxidizing
3	Acids, organic
4	Alcohols and glycols
5	Aldehydes
6	Amides
7	Amines, aliphatic and aromatic
8	Azo compounds, diazo compounds, and hydrazines
9	Carbamates
10	Caustics
11	Cyanides
12	Dithiocarbamates
13	Esters
14	Ethers
15	Fluorides, inorganic
16	Hydrocarbons, aromatic
17	Halogenated organics
18	Isocyanates
19	Ketones
20 ·	Mercaptans and other organic sulfides
21	Metal compounds, inorganic
22	NITTIGES
23	Nitrites
24	Nitro compounds
25	Hydrocarbons, allphatic, unsaturated
26	Hydrocarbons, aliphatic, saturated
27	Peroxides and hydroperoxides, organic
28	Phenols and cresols
29	Organophosphates, phosphothioates, and phosphodithioates
30	Sulfides, inorganic
31	Epoxides
32	Combustible and flammable materials
33	Explosives
34	Polymerizable compounds
35	Oxidizing agents, strong
36	Reducing agents, strong
37	Water and mixtures containing water
38	Water reactive substances

Source: Hatayama, et al., 1980.

indicate a series of expected reactions in the order in which they would be expected.

As an example, consider determining the compatibility of toluene diisocyanate and nitric acid. From Table 2-1 and Appendix A it is determined that these compounds are in Class 18 (Isocyanates) and Class 2 (Oxidizing Mineral Acids), respectively. Since 18 is the higher number, locate Class 18 on the left side of the matrix and follow that row to the right until it intersects the column for Class 2. The abbreviations "H," "F," and "GT" appear at the point of intersection. Consulting the legend, it is determined that the primary consequences of mixing these two classes of chemicals would be heat generation (H). Secondary consequences resulting from the generation of heat would be fire (F) and generation of toxic gases (GT).

Resistance of tank construction materials to corrosion by given chemicals is of primary importance for avoiding tank failure. Appendix C provides a matrix of general compatibility between specific chemicals and a variety of commonly used storage tank, liner, and appurtenance construction materials.

To use the Appendix C Chemical/Material Compatibility Matrix, find the chemical of interest in the vertical axis. Then follow the row to the right until it intersects the column for the material of interest. The symbol at the point of intersection should be interpreted as follows:

- + = The chemical/material combination is generally suitable under most conditions.
- c = The chemical/material combination is conditionally suitable, depending upon such factors as temperature, concentration, presence of trace contaminants, degree of agitation, method of material fabrication, etc. More specific data should be obtained from the reference sources cited, to determine suitability under specific conditions.
- -- = The chemical/material combination is generally unsuitable under most conditions.
- N = Data are insufficient to determine suitability in general. Refer to appropriate references for more specific data.

Corrosion rates are dependent on a variety of factors such as chemical concentration, temperature, and humidity. Furthermore, in choosing the appropriate material for use with a specific type of chemical, it is necessary to consider such factors as:

- Rate of corrosion that may occur;
- Pressure resistance;
- Inherent strength; and
- Degree of material permeability.

Because of variances caused by factors such as the above, use of the Chemical/Material Compatibility Matrix should be limited to a preliminary screening of appropriate materials for a given chemical application. Professional and technical sources should be consulted for the final chemical/material selection.

SUGGESTED EXERCISES

- 1. Name possible consequences of combining two or more incompatible chemicals.
- 2. Name possible consequences of exposing chemicals to incompatible construction materials.
- 3. Identify the chemical classes to which the following compounds belong:
 - Chloroform,
 - Parathion,
 - Hydrogen sulfide,
 - Hydrogen peroxide,
 - Mercuric oxide.
 - Hydrochloric acid,
 - Sulfuric acid,
 - Vinyl chloride,
 - Benzoyl peroxide, and
 - Styrene.
- 4. Identify the likely chemical reactions resulting from the following chemical class combinations:
 - Aromatic Hydrocarbons and Oxidizing Mineral Acids,
 - Ketones and Aldehydes;
 - Caustics and Isocyanates;
 - Water-reactive Substances and Aromatic Hydrocarbons; and
 - Peroxides and Nitriles.
- 5. Identify the likely reactions resulting from the following chemical combinations:
 - Baygon and Sulfuric Acid,
 - Potassium Nitrate and Zinc sulfate,
 - Vinyl chloride and Potassium hydroxide,
 - Diazinon and Ammonium sulfide, and
 - Formaldehyde and Hydrogen peroxide.
- 6. Identify the degree of suitability of the following chemical and material combinations:
 - Epoxy resins and Acetone,
 - Pentachlorophenol and Stainless steel,
 - Glass and Ammonium flouride,

- Oleum and Mild Steel, and
 Nickel and Cresote.
- 7. In addition to chemical compatibility, what other factors must be considered in determining suitability of chemical and material combinations?

SECTION 3

-STORAGE SYSTEM DESIGN ELEMENTS

3.1 TYPES OF STORAGE TANKS

Tanks may be classified simply in terms of the internal vapor pressures they are designed to sustain. This yields three types:

- Atmospheric, for operating pressures close to atmospheric;
- Low-pressure, for operating pressures from 0.5 to 15 pounds per square inch gage (psig);
- High-pressure, for operating pressures above 15 psig.

By determining the vapor pressure of a chemical at a given temperature, it is possible to specify the appropriate tank type. Table 3-1 illustrates appropriate tank types for a number of specific chemicals, assuming operation at $25^{\circ}C$ (77°F). Other factors which must be considered in storage system selection include, but are not limited to:

- Vapor control measures;
- Applications to which the system will be subjected;
- Strength, resistance, and suitability of materials to use in system construction;
- Static load induced by the tank contents;
- External loads, such as wind, on the tank;
- Desired tank capacity; and
- Specific gravity of the tank contents.

Table 3-2 lists the major technical design standards applicable to atmospheric, low-pressure, and high-pressure tanks.

Tank foundations should provide uniform, adequate support and avoid creating local corrosion sites. Foundations should be underlain by sufficient pervious material to provide flexible, continuous support, and to prevent accumulation of moisture under the tank. The bearing capacity (Table 3-3) of the supporting soils should be sufficient to support the tank load. For large tanks with high shells, a foundation ringwall may be required to distribute the tank load more evenly. Figures 3-1 and 3-2 illustrate two types of tank foundations.

Table 3-1

STORAGE TANK TYPE FOR LIQUID CHEMICALS, 25°C (77°F)

Chemical	Tank Type	Chemical	Tank Type
Acetaldehyde	H	Ethylene diamine	A
Acetamide	A	Ethylene dichloride	L
Acetic acid	Α	Ethylene glycol	Α
Acetone	L	Ethylene glycol monoethyl ether	Α
Acetonitrile	L	Formic acid	L
Acetophenone	A	Freons	Ĥ
Acrolein	L	Furfural	Α
Acrylonitrile	L	Gasoline	Α
Allyl alcohol	L	Glycerine	Α
Ammonia	H	Hydrocyanic acid	L
Benzene	L	Ispoprene	L
Benzoic acid	Α	Methyl acrylate	L
Butane	.H	Methyl amine	н
Carbon disulfide	L	Methylchloride	H
Carbon tetrachloride	L	Methyl ethyl ketone	L
Chlorobenzene	L	Methyl formate	Ľ
Chloroethanol	Α	Naphtha	Α
Chloroform	L	Nitrobenzene	A
Chloropicrin	L	Nitrophenol	A
Chlorosulfonic acid	A	Nitrotoluene	Α
Cumeme	A	Pentane	L
Cyclohexane	L	Petroleum oil	А
Cyclohexanane	Α	Propane	н
Dichloromethane	L	Pyridine	Α
Diesel oil	A	Styrene	Α
Diethyl ether	L	Sulfuric acid	А
Dimethylformamide	А	Sulfur trioxide	L
Dimethyl pthalate	А	Tetrachloroethane	Α
Dioxane	L	Tetrathydrofuran	L
Epichlorohydrin	A	Toluene	A
Ethanol	L	Trichloroethylene	L
Ethyl acetate	L	Xylene	Α
Ethyl benzene	A		

Key: A = Atmospheric, less than 0.5 psig L = Low Pressure, less than 15 psig but greater than 0.5 psig H = High Pressure, greater than 15 psig

Source: Ecology and Environment, 1982.

Table 3-2

.

Tank Type	Existing Guidelines	Promulgating Organization	Comment
High Pressure	Boiler and Pressure Vessel Code Section VIII, Divisions 1 and 2 Section X, fiberglass rein- forced plastic pressure vessels	American Society of Mechanical Engineers 345 E. 47th Street New York, NY 10017 212/705-7722	
Low Pressure	Standard 620, recommended rules for design of large, welded, low-pressure storage tanks	American Petroleum Institute 201 L Street, NW Washington, DC 20057 202/457-7000	Applicable to non- petroleum as well as petroleum storage tanks Sections VIII and X of the ASME Boiler and Pressure Vessel Code also apply
Atmospheric	Standard 650, welded steel for oil storage	API	Applicable to non- petroleum as well as petroleum storage tanks
	Standard 12A, oil storage tanks with riveted shells	API	
	Standard 12B, bolted pro- duction tanks	API	
	Standard 12D, large welded production tanks	API	
	Standard 12E, wooden pro- duction tanks	API	
	Standard 12F, small welded production tanks	API	

EXISTING STRUCTURAL GUIDELINES

Table 3-2 (Cont.)

Tank Type	Existing Guidelines	Promulgating Grganization	Comment
Atmospheric (Cont.)	Standard for welded aluminum- alloy storage tanks, ANSI B96.1 - 1981	American National Standards Institute, Inc. 1430 Broadway New York, NY 10018	
	Standard steel tanks, D100-67	American Water Works Association 6666 W. Quincy Ave. Denver, CO 80234 303/794–7711	Adaptable to storage tanks of chemicals as well as water
	Steel underground tanks for flammable and combustible liquids, UL 58	Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312/272-8800	
	Steel above-ground tanks for flammable and combustible liquids	Same as above	

Source: Ecology and Environment, Inc., 1982.

Table 3-3

APPROXIMATE BEARING CAPACITIES

Soil Type	Tons/Square Foot
Soft clay	1
Dry fine sand	2
Dry fine sand with clay	3
Coarse sand	3
Dry hard clay	3.5
Gravel	4
Rock	10 to 40

Source: Perry and Chilton, 1973.

SOURCE: Staniar, 1959.

Figure 3-1 FOUNDATION SCHEMATIC FOR OUTDOOR TANKS

SOURCE: Staniar, 1959.

Smaller tanks resting on supports require saddles that contact at least 120° of the tank circumference. The saddles should be channelized to drain precipitation and spillage, and they should be continuously sealed along all points of contact. Wear plates should be installed between the tank and saddle, but should not be of decomposable materials which may encourage corrosion. Figure 3-3 illustrates types of vertical and horizontal support.

3.2 VALVES

Selection of the appropriate valve type and materials is based on such factors as:

- Liquid viscosity and corrosivity;
- Pressure; and
- Type of service.

The major valve types are as follows:

- Gate for flow isolation;
- Globe for throttling or flow-regulating;
- Diaphragm for regulating service under pressure of 0 to 50 pounds per square inch (psi);
- Butterfly for regulating and isolating service;
- Ball for regulating service;
- Pressure relief for emergency venting of excessive vapors and liquids; and
- Check to prevent reversal of flow through a pipe.

3.3 TANK VENTING

Tank vents and vapor emission controls are required to compensate for the following conditions:

- Air intake during tank emptying;
- Vapor exhaust during tank filling;
- Tank "breathing" because of temperature fluctuations;
- Evaporation of tank contents; and
- Emergencies, such as fires.

Venting under normal operating conditions can be achieved with open vents, pressure vacuum valves, pressure relief valves, and pilotoperated relief valves. Further specifications may be obtained from API Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks.

High pressure tanks require the use of emergency venting only. Such methods may include pressure relief valves, rupture discs, or gages or manholes designed to open at excessive pressures.

SOURCE: Staniar, 1959

Figure 3-3 ASSMENT OF VERTICAL AND HORIZONTAL TANK SUPPORTS

Emissions may be controlled in several manners. Safety relief valves are often connected to piping systems which reroute the discharge to a remote discharge point or to a control device. Other control methods for atmospheric and low-pressure tanks are floating roofs, flexible diaphragms, and lifter roofs. Devices for control of discharged vapors include carbon adsorption, thermal and catalytic incinerators, and refrigerated condensors.

3.4 FACILITY SITING

Prediction of safe facility locations is dependent on a variety of physical, chemical, statistical, meteorological, and demographic factors specific to the existing or proposed facility. These factors should be incorporated into a hazard and risk analysis consisting of the following steps:

- Identification of types and causes of potentially hazardous accidents;
- Determination of chance of such accidents occurring at the facility; and
- Prediction of the consequences of an accident.

This analysis requires the use of such tools and methods as a fault tree analysis, analysis of relevant historical data, and mathematical models such as the Gaussian Point Source Model, Pasquill-Gifford dispersion coefficients, or the United States Coast Guard Vulnerability Model. Further guidelines, based on flammability, are provided by NFPA 30 Flammable and Combustible Liquids Code, and by the United States Department of Housing and Urban Development's "Safety Considerations in Siting Housing Projects" (see Figure 3-4).

3.5 SPILL CONTAINMENT AND CONTROL

Facilities should incorporate physical controls to contain the spread of spilled product. Factors which should be incorporated into facility design and operation include:

- Drainage lines from areas of expected light spillage to oilwater separation or sump;
- Development of a positive contingency control plan;
- Control of storm runoff via sewers, ditches, etc.;
- Retention or diversion structures; and
- Impervious surfaces (natural or synthetic).

Figure 3-5 outlines the necessary elements in a spill containment and control system.

Selection of materials used for containment or collection is dependent upon:

SOURCE: United States Department of Housing and Urban Development, 1975.

Figure 3-4 SAFE SEPARATION DISTANCES FROM SPILLS OF COMMON LIQUID INDUSTRIAL FUELS - FIRE THREAT

- Degree of impermeability required;
- Longevity or weather resistance required; and
- Compatibility with the stored material.

Some commonly used containment materials include:

- Natural clays;
- Treated bentonite clays;
- Synthetic membrane liners;
- Asphalt; and
- Concrete

Each of these materials must be evaluated individually to determine its appropriate application at a given facility.

Secondary containment structures should be able to contain at least the entire volume of the largest tank within the containment area, plus an additional 10% allowance to accommodate accumulated precipitation or other materials. These areas should be equipped with manually operated release valves (normally kept closed and locked) so that accumulated rainwater may be removed from the area periodically.

3.6 IGNITION SAFEGUARD

Hazardous materials storage facilities should be evaluated to determine the presence of or need for fire protection safeguards. The evaluation should determine at least the following:

- The type, quantity, and location of equipment necessary for the detection and control of fires, leaks, and spills;
- The methods necessary for protection of equipment and structures from the effects of fire exposure;
- Fire protection water systems;
- Fire extinguishing and control equipment;
- The equipment and processes to be incorporated within an Emergency Shutdown System (ESD) including an analysis of subsystems, if any, and the need for depressuring specific vessels or equipment during a fire;
- The type and location of sensors necessary to initiate automatic operation of the ESD or its subsystems;
- The availability and duties of individual plant personnel and the availability of external response personnel during an emergency; and
- The protective equipment and special training needed by the individual plant personnel for their respective emergency duties.

Table 3-4 provides illustrative guidelines for fire prevention during storage of hazardous materials.

Electrical ignition sources can be eliminated through adherence to NFPA 70, the <u>National Electric Code</u>. To prevent static ignition, the following safeguards may be used:

- "Avoid splash-filling" of tanks or other strenuous agitation of contents. The discharge from a fill hose into a tank should be close to the bottom of the tank.
- Limit the velocity of the incoming stream to 1 m/sec to minimize the agitation of tank contents and subsequent build-up of charge.
- Eliminate ungrounded objects.
- Eliminate spark promoters within a tank such as protruding metal surfaces or floating objects.
- Bond and ground all metallic objects on RP tanks.
- Electrically ground tank fill nozzles to the tank during tank loading.

Additional preventive measures include:

- Performing "hot work," such as welding, only after the area is determined to be cleared of flammable gases and vapors;
- Limiting smoking to designated safe areas;
- Using only intrinsically safe devices within flammable areas; and
- Compliance with other regulatory or administrative controls.

Flammable gas detectors, fire detectors, and smoke or temperature sensors should be installed to sound alarms at continuously attended locations, or to activate emergency shutdown systems. Fire extinguishing methods must be readily available in accordance with NFPA Standard Number 10, as well as NFPA Standards 11, 11-A, 11-B, 12, 12-A, 12-B, 16, and 17. Methods for controlling some specific chemical fires are shown in Table 3-5.

3.7 FAIL-SAFE AND WARNING DEVICES

Various sensing and warning devices can be used to prevent spills by activating shut-off or diversion mechanisms, or by providing alarms of adverse circumstances. Devices are available for level detection, leak monitoring, and gas detection.

Level detectors are used to monitor tank contents and alert the operator of potential overfill situations. They may be linked to alarm or control mechanisms. Types of level detectors include:

Table 3-4

FIRE PROTECTION TECHNIQUES FOR STORAGE OF SELECTED HAZARDOUS MATERIALS

Chemical	Fire Prevention	
Cyanides	Avoid physical damage; insulate from acids	
Chromic acid	Separate from oxidizable materials; ayoid storage on wooden surfaces; remove spills	
Hydrofluoric acid	Corrodes many materials except lead, wax, poly- ethylene, and platinum; store in vented area	
Hydrochloric acid	Separate from oxidizable materials; store in cool, vented area; avoid contact with common metals	
Nitric acid	Separate from metallic powders, carbides, hydrogen sulfide, turpentine, organic acids, and oxidizable materials; avoid direct sunlight	
Sulfuric acid	Avoid nitrates, powdered metals, chlorates, and other oxidizable materials	
Acetic æcid	Avoid oxidizable and combustible materials; keep above freezing point	
Ferric chloride	Protect against physical damage; store in cool, vented area	
Ammonium persulfate	Keep away from strong oxidizers like chlorates, nitrates, and nitrites	
Caustics	Store in dry place; avoid moisture; separate from ignitable materials	
Ammonia	Store in cool, vented area; avoid combustible materials; avoid chlorine, bromine, iodine, acids	
Alkaline wastes	Store in cool, vented area; avoid flammable mate- rials	
Mercury	Store in cool, vented area away from combustibles	
Tetraethyl lead and lead oxide mixed	Store in cool, vented area; avoid strong oxidiz- ing agents; store in sprinklered area	
Lead compounds and oxides	Store in cool, dry place; avoid storage on wood floors; avoid combustibles	
Zine compounds	Store in cool, dry, vented area; avoid strong acids and alkalies	
Sodium compounds	Store away from combustibles; avoid high tempera- tures	
Aluminum, phosphorus compounds, and sulphur compounds	Keep dry; insulate from acids, caustics, and chlorinated hydrocarbons; avoid combustible mate- rials	

Source: Ecology and Environment, Inc., 1982.

Table 3-5

SELECTED METHODS OF EXTINGUISHING CHEMICAL FIRES

·	
Chemical	Extinguishing Methods
Cyanides	Use water; do not use CO₂ extinguishers; avoid toxic fumes
Chromic acid	Use water; caution should be exercised against possibility of stream explosion
Hydrofluoric acid	Use water; neutralize with soda ash or lime; if water is ineffective, use "alcohol foam"
Hydrochloric acid	Use water; neutralize with soda ash or slaked lime
Nitric scid	Use a water spray; neutralize with soda ash or lime
Sulfuric acid	Use large amounts of water; reaction may occur; neutralize with ash or lime; sand or gravel also will help
Acetic acid	Use water spray, dry chemical, "alcohol foam," or carbon dioxide
Ferric chloride	Use water
Ammonium persulfate	Use water spray or water flooding; avoid toxic fumes
Caustics	Flood with water; avoid spattering or splashing
Ammonia	Stop flow of material; use water to keep container cool; avoid fumes
Alkaline wastes	Use water; neutralize with dilute acid (acetic) if necessary
Mercury	Use water; avoid toxic mercury vapor
Tetraethyl lead and lead oxide mixed	Fight fires from explosion-restraint location; use water, dry chemical, foam, or carbon dioxide
Lead compounds and oxides	Use flooding amounts of water
Zinc compounds	Smother with suitable dry powder
Sodium compounds	Use water, dry powder; neutralize with appropriate chemical, if necessary
Aluminum, phosphorus compounds, and sulphur compounds	Do not use water; smother with suitable dry powder

Source: Ecology and Environment, Inc., 1982.

- Float-activated devices characterized by a buoyant member on the liquid surface, coupled to an indicating gauge.
- Electrical capacitance sensors typically consisting of a rod electrode positioned vertically within a tank, and a second electrode which is usually the tank wall. The electrical capacitance measured between the electrodes indicates the height of the interface along the rod electrode.
 - Optical sensors which operate on the principle of light beam refraction in fluids. An electronic control device generates a signal which is converted to a light pulse by sensors mounted in the tank. The light pulse is transmitted through the tank via fiber optics, through a prism, and then out again through fiber optics. The light pulse is then reconverted to an electronic signal which indicates the liquid level.
 - Ultrasonic sensors which utilize principles of sound wave generation to monitor liquid level. They may use piezoelectric transmitters and receivers to indicate presence of liquid within a specific area, or sonar transmitters to measure distance between the liquid/vapor interface and a sonar receiving element.
 - Thermal conductivity sensors which consist of two temperature-sensitive probes connected in a Wheatstone bridge. When the probes are in air or gas, the probes are at the maximum temperature differential and highest voltage. As they become submerged, the probe temperatures equalize and the voltage across the bridge drops.

These devices may be limited to either mechanical, electronic, or pneumatic devices which can be used to operate alarms, valves, or pumps, shut down filling operations, or divert flow to emergency overflow tanks.

Leak detectors are used to detect liquid leaks onto the ground surface, or into the surrounding groundwater. Leak detection devices can be placed within a diked area to quickly reveal the first occurrence of a spill. For underground tanks, sensors can be placed within slotted groundwater monitoring wells situated close to the storage area in a downgradient direction. Spilled material that has saturated the soil and entered the groundwater table will be readily detected. However, the variety of chemicals that can be detected in this manner may be limited by specific physical or chemical properties. Specific equipment manufacturers should be contacted for information on specific applications.

Types of leak detectors include:

• Electrical resistivity sensors - consisting of one or more sensors which deteriorate in the presence of the stored product. Once a spill or leak is detected in this manner, the sensors must be replaced.

- Interstitial sensors which monitor either the pressure, vacuum, or presence of fluid between walls of a double-walled tank.
- Thermal conductivity sensors which, when connected to an electronic control device, can detect any changes in the thermal conductivity of their surrounding environment to determine if a leak or spill has occurred. These detectors can determine if the monitored area is dry, wet with water, or wet with leaking product.

<u>Gas detectors</u> are another form of leak detector used to monitor a variety of flammable, non-flammable, or toxic gases and vapors in the ambient air or in dry, permeable soil. They can be portable or permanently installed, and may be used near valves and fittings, in the backfill, or in specifically installed vapor wells. Types of gas detectors include:

- Combustible gas detectors;
- Oxygen detectors;
- Gas-specific detectors (e.g., CO, H₂S, etc.);
- Infrared analyzers;
- Photoionization detectors; and
- Flame-ionization detectors.

Combustible gas detectors can be used to detect conditions which present an explosive hazard as a result of the release of any flammable or combustible gases, or vapors from flammable or combustible liquids. Other detectors are a ailable for specific gases, such as carbon monoxide or hydrogen sultide. Infrared analyzers are particularly useful in identifying single compounds that are infrared-active. These would include carbon dioxide, halogenated hydrocarbons, and most other hydrocarbons.

At unattended hazardous materials storage facilities, the appropriate sensing and warning devices should be connected to an alarm circuit. This circuit should transmit the alarm to a continuously attended facility to indicate any symptoms of trouble such as abnormal temperatures, pressure increases, level changes, etc. The sensing devices may also be used to activate ventilation equipment or process interruption equipment.

Use of the above liquid and gas leak detection devices may be supplemented by such methods as inventory control, periodic soil and surface water sampling, and groundwater monitoring well sampling for long-term monitoring and documentation of surrounding environmental conditions.

SUGGESTED EXERCISES

- 1. Name several factors which must be considered in selecting the appropriate type of storage system.
- 2. Name and distinguish characteristics of three types of storage tanks, based on internal operating pressures.
- 3. Identify two objectives of tank foundation design.
- 4. Identify two technical standards applicable to low-pressure storage tanks.
- 5. Name six types of valves and the types of service for which they are appropriate.
- 6. Identify five conditions which require tank ventilation.
- 7. Name three types of vapor emission control devices.
- 8. Describe the three steps of a hazard and risk analysis of a proposed storage facility site.
- 9. Identify several factors which should be incorporated into facility design to contain and control spilled materials.
- 10. How is the volume of a secondary containment structure determined?
- 11. Identify four methods to control ignition resulting from static electrical charges.
- 12. Discuss five areas which must be evaluated in a determination of fire protection safeguards for a hazardous materials storage facility.
- 13. Identify three types of fail-safe devices and provide at least two examples of each.

3-19
SECTION 4

CORROSION CONTROL

Corrosion results in more tank failures than any other cause. Factors influencing corrosion include:

- Velocity and pressure of chemical material streams;
- Compatibility of tank materials with tank contents;
- Environmental factors, such as moisture; and
- Inappropriate corrosion control methods.

Types of corrosion include:

- Uniform surface degradation (such as oxidation);
- Intergranular;
- Pitting;
- Stress cracking;
- Fatigue;
- Galvanic;
- Thermogalvanic;
- Crevice;
- Oxygen concentration cell;
- Erosion;
- Cavitation;
- Impingement attack;
- Mechanical;
- Fretting;
- Hydrogen embrittlement;
- Stray current; and
- Differential environment cell.

Frequencies of metal failure attributed to various types of corrosion are listed in Table 4-1. Illustrations of various corrosion types appear in Figures 4-1 through 4-6.

A variety of methods are available to control the types of corrosion. These include:

- Corrosion inhibitors;
- Cathodic or anodic protection;
- Protective liners; and
- Protective coatings.

Control methods for various types of corrosion are summarized in Table 4-2. Applications of Corrosion Inhibitors are listed in Table 4-3, and comparative resistances of protective coatings are summarized in

Table 4-1

METAL FAILURE FREQUENCY OVER A TWO-YEAR PERIOD (56.9% Corrosion and 43.1% Mechanical)*

Corrosion Failurest	Percent (%)
Uniform corrosion	31.5
Stress corrosion cracking, Corrosion fatigue	23.4
Pitting corrosion	15.7
Intergranular corrosion	10.2
Corrosion-erosion, Cavitation damage, Fretting corrosion	9.0
High temperature corrosion	2.3
Weld corrosion	2.3
Thermogalvanic corrosion	2.3
Crevice corrosion	1.8
Selective attack	1.1
Hydrogen damage	0.5
Galvanic corrosion	0.0

*The percentages can vary considerably in other industrial locations or environments.

Source: Pludek, 1977.

SOURCE: Shields and Dessert, 1981.

Figure 4–1 CORROSION DUE TO IMPROPER INLET NOZZLE PLACEMENT

Figure 4–2 STRESS CORROSION CRACKING

SOURCE: Department of the Navy, 1964.

Figure 4–3 INTERIOR GALVANIC CORROSION DUE TO COUPLING COPPER AND STEEL PIPE

SOURCE: Department of the Navy, 1964.

Figure 4-4 OXYGEN CONCENTRATION CELL WITH RUST ON TANK WALL

Table 4-2

CORROSION CONTROL METHODS

Type of Corrosian	Control Methods
Uniform Corrosion	• Inhibitors
	 Protective coating
	Anodic protection
Intergranular Corrosion	 Avoiding temperatures that can cause contaminant precipitation during heat treatment or welding
Pitting Corrosion	 Protective coating
	 Allowing for corrosion in wall thickness
Stress-Corrosion	 Reducing residual or applied stresses
cracking	 Redistributing stresses
	 Avoiding misalignment of sections joined by bolts, rivets, or welds
	 Materials of similar expansion coefficients in one structure
	• Protective coating
	• Cathodic protection
Corrosion Fatigue	 Minimizing cyclic stresses and vibrations
	• Reinforcing critical areas
	 Redistributing stresses
	 Avoiding rapid changes in load, temperature, or pressure
	 Inducing compressive stresses through peening, swagging, rolling, vapor blasting, chain tumbling, etc.
Galvanic Corrosion	 Avoiding galvanic couples
	 Completely insulating dissimilar metals (Paint alone is insufficient)
	 Using filler rods of same chemical composition as metal surface during welding
	 Avoiding unfavorable area relationships
	 Using replaceable parts of the anodic (attacked) metal
	Cathodic protection
	• Inhibitors

•

Table 4-2 (Cont.)

Type of Corrosion	Control Methods				
Thermogalvanic Corrosion	 Avoiding non-uniform heating and cooling Maintaining uniform coating or insulation thickness 				
Crevice Corrosion; Concentration Cells	 Minimizing sharp corners and other stagnant areas Minimizing crevices to a minimum, especially in heat transfer areas and in aqueous environments containing inorganic solutions or dissolved oxygen Enveloping or sealing crevices Protective coating Removing dirt and mill-scale during cleaning and 				
	 Welded butt joints with continuous welds instead of bolts or rivets Inhibitors 				
Erosion; Impingement Attack	 Decreasing fluid stream velocity to approach laminar flow Minimizing abrupt changes in flow direction Streamlining flow where possible Installing replaceable impingement plates at critical points in flowlines Filters and steam traps to remove suspended solids and water vapor Protective coating Cathodic protection 				
Cavitation Damage	 Maintaining pressure above liquid vapor pressure Minimizing hydrodynamic pressure differences Protective coating Cathodic protection Injecting or generating larger bubbles 				
Fretting Corrosion	 Installing barriers which allow for slip between metals Increasing load to stop motion, but not above load capacity Porous protective coating Lubricant 				

.

Table 4-2 (Cont.)

Type of Corrosion	Control Methods				
Hydrogen Embrittlement	Low-hydrogen welding electrodes				
	 Avoiding incorrect pickling, surface preparation, and treatment methods 				
	 Inducing compressive stresses 				
	 Baking metal at 200-300°F to remove hydrogen 				
	 Impervious coating such as rubber or plastic 				
Stray-current Corrosion	 Providing good insulation on electrical cables and components 				
	 Grounding exposed components of electrical equipment 				
	 Draining off stray currents with another conduct- ing material 				
	 Electrically bonding metallic structures 				
	 Cathodic protection 				
Differential-environment Cells	 Underlaying and backfill underground pipelines and tanks with the same material 				
	 Avoiding partially buried structures 				
	e Protective coating				
	 Cathodic protection 				

Source: Adapted from Pludek, 1977.

Table 4-3

TYPICAL INHIBITORS AND THE CORROSION ENVIRONMENT IN WHICH THEY ARE EFFECTIVE

•

Inhibitor	Inhibitor Concentration (percent by weight)	Environment	Metals to be Protected
Benzanilide	0.2	Lubricants	Cd-Ni: Co-Pbb bearings
Borax	2-3	Alcohol anti-freeze	Car cooling systems
Calgon	small	Water	Steel
Dioctyl ester of sulpho- succinic acid	0.05	Refined petroleum	Pipelines
Disodium hydrogen phosphate	0.5	Citric acid	Steel
Erythritol	small	K2504	Mild steel
Ethylaniline	0.5	HC solutions	Ferrous metals
Formaldehyde	small	Oil wells	Oil-well equipment
Mercaptobenzthiazole	1	HC solutions	Iron and steel
Morpholine	0.2	Water	Heat exchangers
Oleic acid	small	Polyhydric alcohol	Iron
Phenyl acridine	0,5	H ₂ SO ₄ solutions	Iron
Potassium dichromate	0.05-0.2	Tap water	Iron-brass
Potassium dihydrogen Phosphate + sodium nitrał	small + te 5 percent	Seawater	Steel
Potassium permanganate	0.1	NaOH solutions	Aluminum
Pyridine + phenylhydrazine	0.5 + 0.5	HC solutions	Ferrous metals
Quinoline ethiodide	0.1	H ₂ 50 ₄	Steel
Rosin amine-ethylene oxid	de 0.2	HC solutions	Mild steel
Sodium benzoate	0.5	NaCl solutions	Mild steel
Sodium carbonate	small	Condensate	Iron
Sodium chromate	0.07	CaCl ₂ brine cooling water	Copper-brass rectifiers
Sodium dichromate	0.025	Water	Air conditioning
Sodium dichromate + sodium nitrate	0.1 + 0.05	Water	Heat exchangers

.

Inhibitor	Inhibitor Concentration (percent by weight)	Environment	Metals to be Protected
Sodium hexametaphosphate	0.002	Water (about pH 6)	Lead
Sodium metaphosphate	Small	Ammonia	Mild steel
Sodium nitrite	0.005	Water	Mild steel
Sodium orthophosphate	1	Water (pH 7.25)	Iron
Sodium silicate	Small	Seawater	Zn; Zn - Al alloys
Tetramethylammonium oxide	0.5	Aqueous solutions of organic solvents	Iron and steel
Thiourea	1	Acids	Iron and steel

Source: Uhlig, 1971.

1

Table 4-4. Cathodic protection is illustrated in Figures 4-7 and 4-8. Suitability of many protective liner materials can be found in Appendix C.

.

.

Table 4-4

Sunlight and Water Coating Type Oxidation Stress Abrasion Heat Acid Alkali Salts Solventa Water ? Acrylic Alkyd Asphalt Chlorinated Rubber Εροχγ Furan Inorganic (metallic) ? ? Latex Neoprene Oil Base Phenolic Saran ? Urethanes Vinyl

COMPARATIVE RESISTANCES OF TYPICAL COATINGS

Scale: 1 = Nonresistant

10 = Extremely resistant

? = Insufficient data

Sources: NACE, Process Industries Corrosion, 1975. Staniar, W., ed. <u>Plant Engineering Handbook</u>, 1959.

SOURCE: Department of the Navy, 1964.

Figure 4–7 CATHODIC PROTECTION BY THE SACRIFICIAL ANODE METHOD

SOURCE: Department of the Navy, 1964.

Figure 4—8 CATHODIC PROTECTION BY THE IMPRESSED CURRENT METHOD

SUGGESTED EXERCISES

- 1. Name three factors which influence presence and rate of corrosion.
- 2. Identify and distinguish at least six types of corrosion.
- 3. Which four types of corrosion account for 80% of all corrosionrelated metal failure?
- 4. Identify appropriate corrosion control methods for the types of corrosion identified in question 3.
- 5. Identify inhibitors which may be used to protect the following combination of metals in corrosive environments:
 - Steel and water,
 - Mild steel and ammonia,
 - Aluminum and sodium hydroxide solutions,
 - Zinc and seawater,
 - Iron and steel and hydrocarbon solutions.
- 6. Rank the following coatings in order of resistance to solvents, alkalis, and abrasion, respectively:
 - Acrylic
 - Epoxy
 - Latex
 - Asphalt
 - Oil base
- 7. Describe the differences between cathodic and anodic protection.

SECTION 5

INSPECTION AND MAINTENANCE

A successful maintenance and inspection program will:

- Minimize probability of accidental spills or releases,
- Reduce risks of fire or exposure,
- Maintain safe working conditions,
- Detect potential trouble spots and begin corrective action before serious damage occurs, and
- Reduce monetary losses.

Therefore, an inspection program must be able to identify such problem areas as:

- Excessive corrosion or erosion,
- Structural fatigue or metal cracking,
- Deterioration of liners and appurtenances,
- Weakening or cracking of welds and joints, and
- Leakage of valves, pipes, and tanks.

5.1 TEST METHODS

There are several methods for nondestructive testing of the structural integrity of aboveground tanks, or of underground tanks before installation. These methods include:

- Radiographic,
- Ultrasonic,
- Wet magnetic particle,
- Dry magnetic particle,
- Liquid (dye) penetrant,
- Hydrostatic.
- Eddy current, and
- High-voltage spark.

The appropriate test type for detecting specific defects are summarized in Table 5-1. An extensive listing of applications and limitations of various test types is found in Table 5-2.

5.2 AREAS OF INSPECTION

Figures 5-1 and 5-2 illustrate specific areas of aboveground tanks which should be inspected. Table 5-3 denotes the references

Table 5-1

	Test Type									
Type of Imperfection Detected	Visual	Random Radiographic	100% Radiography	Ultrasonic	Wet Magnetic Particle	Dry Magnetic Particle	Liquid Penetrant	Hydrostatic	Eddy Current	Spark Testing
VALVE Cracks Strength TANK Cracks or surface discontinuties Subsurface dis- continuties	x	x		X	x	X	x	X	x x	x x
Strength WELDS Crack Incomplete penetration	x x	x	x	. ^	x	x	x	x		
Porosity Slag inclusions			X ··· X							

APPLICATION OF NON-DESTRUCTIVE TEST METHODS

SOURCE: Ecology and Environment, Inc., 1982.

5-2

Table 5-2

NON-DES	TRUCTI	VE TEST	METHODS

.

•

Method	Measures or Detects:	Applications	Advantages	Limitations
Acoustic emission	Crack initiation and growth rate Internal cracking in welds during cooling Boiling or cavitation Friction or wear Plastic deformation	Pressure vessels Stressed structures	Remote and continuous surveillance Permanent record Dynamic (rather than static) detection of cracks Portable Triangulation techniques to locate flaws	Transducers must be placed in con- tact with surface of part to be tested Highly ductile materials yield low amplitude emissions Part must be stressed or operating Test system noise needs to be filtered out
Acoustic-impact (tapping)	Debonded areas or delaminations in metal or non-metal composites or laminates Loose rivets or fasteners Crushed core	Brazed or adhesive- bonded structures . Bolted or riveted assemblies Composite structures Honeycomb assemblies	Portable Easy to operate May be automated Permanent record or posi- tive meter readout No couplant required	Part geometry and mass influences test results Impactor and probe must be reposi- tioned to fit geometry of part Reference standards required Pulser impact rate is critical for repeatability

Table 5-2 (Cont.)

Method	Measures or Detects:	Applications	Advant ages	Limitations
Eddy current (200 Hz to 6 MHz)	Surface and subsurface cracks and seams Alloy content Heat treatment varia- tions Wall thickness, coating thickness Crack depth Conductivity Permeability	Tubing "Spot checks" on all types of surfaces Proximity gage Metal detector Metal sorting Measure conductivity	No special operator skills required High speed, low cost Automation possible for symmetrical parts Permanent record capability for symmetrical parts No couplant or probe con- tact required	Conductive materials Shallow depth of penetration (thin walls only) Masked or false indications caused by sensitivity to variations such as part geometry, lift-off Reference standards required Permeability variations
Electric current	Cracks Crack depth Resistivity Wall thickness Corrosion-induced wall thinning	Metallic materials Electrically conduc- tive materials	Access to only one surface required Battery or DC source Portable	Edge effect Surface contamination Good surface contact required Difficult to automate Electrode spacing Reference standards required

Table 5-2 (Cont.)

Method	Measures or Detects:	Applications	Advant eges	Limitations
Fluoroscopy (Cine-fluorography) (Kine-fluorography)	Level of fill in containers Foreign objects Internal components Density variations Voids, thickness Spacing or position	Particles in liquid flow Presence of cavitation Operation of valves and switches	High-brightness images Real-time viewing image magnification Permanent record Moving subject can be observed	Costly equipment Lack of geometric sharpness Thick specimens Speed of event to be studied Viewing area
Holiday detector High voltage (spark)	Inegrity of coatings or linings	Detects holidays in coatings of thickness >15 mils	Portable Easy to operate	Possible damage if dielectric strength exceeded
Holiday detector Low voltage	Integrity of coatings	Detects holidays in coatings of thickness <20 mils	Portable Easy to operate	Requires contact with substrate
Leak testing	Leaks Helium, Ammonia, Smoke, Water, Air Bubbles, Radioactive gas, Halogens	Joints Welded, Brazed, Adhesive-bonded Sealed assemblies Pressure or vacuum chambers Fuel or gas tanks	High sensitivity to extremely small, tight separations not detectable by other NDI methods Sensitivity related to method selected	Accessibility to both surfaces of part required Smeared metal or contaminants may prevent detection Cost related to sensitivity

.

Table 5-2 (Cont.)

Met hod	Measures or Detects:	Applications	Advant ages	Limitations
Magnetic particle	Surface and slightly subsurface defects; cracks, seams, porosity, inclusions	Ferromagnetic mate- rials; bar, forgings, weldments, extrusions, etc.	Advantage over penetrant is that it indicates subsur- face defects, particularly inclusions	Alignment of magnetic field is critical Demagnetization of parts required after tests
	Permeability variations Extremely sensitive for locating small tight cracks		Relatively fast and low cost May be portable	Parts must be cleaned before and after inspection Masking by surface cnatings
Magnetic field	Cracks Wall thickness Nonmagnetic coating thickness on steel	Ferromagnetic mate- rials Inspection of coat- ings on steel Wall thickness of nonmagnetic materials	Measurement of magnetic material properties May be automated Easily detects magnetic objects in nonmagnetic material Portable	Permeability Reference standards required Edge-effect Probe lift-off Loss of accuracy on curved surfaces

Table 5-2 (Cont.)

5-7

Met hod	Measures or Detects:	Applications	Advant ages	Limitations	
Microwave (300 Miz-300-Ghz)	Cracks, holes, deboned areas, etc., in non- metallic parts	Reinforced plastics	Between radio waves and and infrared in the elec- tromagnetic spectrum	Will not penetrate metals Reference standards required	
	Changes in composition degree of cure, moisture		Portable	Horn to part spacing critical	
	cont ent		Contact with part sur- face not normally • required	Part geometry	
	Thickness measurement			Wave interference	
			Can be automated	Vibration	
Penet rants (Dye or fluorescent)	Defects open to sur-	All parts with nonab- sorbing surfaces forgings, weldments, castings, etc.)	Low cost	Surface films, such as coatings, scale, and smeared metal may pre- vent detection of defects Parts must be cleaned before and after inspection	
	porosity, seams, laps,		Portable		
	erc.) Through-wall leaks		Indications may be further examined visually		
			Results easily interpreted	Defect must be open to surface	
				Bleed-out from porous surfaces can mask indications of defects	

.

.

Table 5-2 (Cont.)

Method	Measures or Detects:	Applications	Advantages	Limitations
Radiography (X-rays-film)	Internal defects and variations; porosity; inclusions; cracks; lack of fusion; geometry variations; corrosion thinning Density variations Thickness, gap and position Misassembly Misalignment	Castings Electrical assemblies Weldments Small, thin, complex wrought products Nonmetallics Composites	Permanent records; film Adjustable energy levels (5 kv-25 mev) High sensitivity to density changes No couplant required Geometry variations do not affect direction of X-ray beam	High initial costs Orientation of linear defects in part may not be favorable Radiation hazard Depth of defect not indicated Sensitivity decreases with increase in scattered radiation
Ultrasonic (0.1-25MHz)	Internal defects and variations; cracks, lack of fusion, poros- ity, inclusions, delami- nations, lack of bond, texturing Thickness	Wrought metals Welds Brazed joints Adhesive-bonded joints Nonmetallics In-service parts	Most sensitive to cracks Test results known im- mediately Automating and permanent record capability Portable High penetration capability	Couplant required Small, thin, complex parts may be difficult to check Reference standards required Trained operators for manual inspec- tion Special probes

Source: NACE, 1980.

SOURCE: Ecology and Environment, Inc., 1983.

AREAS OF CONCERN IN TYPICAL ABOVEGROUND VERTICAL TANK SYSTEM (See Table 5–3 for requirements)

SOURCE: Ecology and Environment, Inc., 1983.

Figure 5-2 AREAS OF CONCERN IN TYPICAL HORIZONTAL TANK SYSTEM

Table 5-3

TYPICAL ABOVEGROUND TANK SYSTEM - AREAS OF CONCERN

Item	Requirement				
A	Tank fill valve should be in the closed position and locked when not in use.				
8	The gate valve used for emptying the diked containment area should be of the hand-operated variety only and should be closed and locked at all times.				
С	All valves should be inspected for signs of leakage or deterioration.				
D, E	Inlet and outlet piping, as well as tank flanges should be checked for leakage and to insure that ade- quate support is provided				
F, G	Automated fill control and discharge control equipment should be checked to see that it is operating pro- perly.				
Η	The tank shell surface should be visually inspected for areas of rust, or other deterioration. Particular attention should be paid to peeling area, welds and seams.				
I	The ground surface inside the diked area should be checked for obvious signs of leakage or spillage.				
3	The liquid level sensing device should be checked to insure that there is adequate freeboard.				
K	External stairways and walkways should be checked to insure that they are unobstructed and sound.				
- L	The oil/water separator should be checked for adequate feeeboard and to insure that it is operating properly.				

Source: Ecology and Environment, Inc., 1983

designated in Figure 5-1. Leaks in underground tanks can be detected by a number of hydrostatic, liquid-level, sonic, or indirect measurements. These tests include:

- Kent-Moore (Heath Petro-tite) test;
- J-tube manometer test;
- Arco HTC Leak Test
- Laser beam leak detection;
- Sunmark Leak Lokator;
- Sonic measurement test;
- Inventory control records; and
- Monitoring wells.

Usually only two or three of these tests are authorized for use in any one jurisdiction. Consequently, it is the responsibility of the tank owner to be sure the procedure to be used is authorized in that jurisdiction. Records of leak test results should be kept in a log. A suggested format is illustrated in Figure 5-3. Although the specific information to be recorded will vary with the type of test used, the format illustrates the type of data that should be recorded.

Tank liners of magnetic materials may be tested by the magnetic particle method. Other metal liners may be tested by the dye penetrant method. Non-conductive liner materials may be tested by the high voltage spark test.

Valves require frequent visual inspection for leaks and imperfections. When tanks are out of service, valves should be dismantled for inspection of internal conditions. Caliper measurements of body thickness should be taken, especially if corrosion is visible. After reassembly, the valves should be pneumatically or hydrostatically tested. Specific critical inspection areas of common valve types are illustrated in Figures 5-4 through 5-10.

Other storage facility areas requiring routine inspection are:

- Stairways and walkways;
- Flame arrestors:
- Dikes and berms:
- Grounding and electrical connections:
- Pressure and vacuum vents;
- Liquid level gaging and detection equipment;
- Water drains;
- Pipe supports and connections; and
- Foundations.

Figure 5-11 illustrates areas of a typical tank foundation which should be inspected.

5.3 INSPECTION FREQUENCIES

The intervals for performing various inspection tasks should be determined on a case-by-case basis. Factors which should be considered in determining those frequencies include:

- The chemical nature of the material stored;
- Known or expected corrosion rates;

		LEAK		- <u>, </u>	<u></u>		
FACILITY OWNER: CAPACITY:							
ADDRESS :			VOLUME IN TANK :				•
TANK 1			PRODUCT ADDED TO FILL TESTER:				
CONTENTS:			TOTAL QUANTITY IN TANK:				
		<u> </u>			Net Volume Change		1
Time	Description of Procedures	Volume or Level	Change in Volume or Level	Temperature Change	This Reading	Cumulative	
					····		·
	······································						
Test Reputts	/Fort if instings						-
TODE NOBULLO							
			Signatu	re of Tester		· · · · · · · · · · · · · · · · · · ·	
			- Oncesta	otions			
			organiz				· .
			Address				
 ·	· · · · · · · · · · · · · · · · · · ·						

SOURCE: Ecology and Environment, Inc., 1983.

.

SOURCE: British Valve Manufacturers Association, 1966.

Figure 5-4 CRITICAL AREAS OF GATE VALVE

SOURCE: Perry and Chilton, 1973.

Figure 5-5 CRITICAL AREAS OF GLOBE VALVE

SOURCE: British Valve Manufacturers Association, 1966.

Figure 5–6 CRITICAL AREAS OF DIAPHRAGM VALVE

Figure 5–7 CRITICAL AREAS OF BUTTERFLY VALVE

SOURCE: British Valve Manufacturers Association, 1966.

.

Figure 5–8 CRITICAL AREAS OF SAFETY (PRESSURE RELIEF) VALVE

SOURCE: Perry and Chilton, 1973.

Figure 5–9 TYPES AND CRITICAL AREAS OF CHECK VALVES

SOURCE: Perry and Chilton, 1973.

Figure 5-10 CRITICAL AREAS OF BALL VALVE

Figure 5-11 AREAS OF CONCERN IN A TYPICAL TANK FOUNDATION

- Acceptable corrosion allowances;
- Historical or previously observed conditions; and
- Facility location.

Table 5-4 outlines suggested frequencies for a variety of inspection tasks. In order to standardize inspection procedures, suggested inspection records are illustrated in Figures 5-12 through 5-15.

5.4 PRIORITIES FOR CORRECTIVE ACTION

Priorities for correcting adverse conditions are based largely on the potential consequences of failure to correct the conditions, and the probability that those consequences will occur. When time or resources are factors, priority must be given to correcting those defects with the highest probability of causing the worst consequences. Among the factors to be considered in determining maintenance and repair priorities are:

- Age of the facility;
- Construction materials;
- Physical/chemical/toxicological properties of the stored materials;
- Ouantities stored;
- Operation of warning or control devices;
- Geologic/hydrologic/topographic properties of the facility;
- Design specifications and tolerances;
- Size and proximity of adjacent population;
- Monetary value of the stored materials, facility, and off-site property; and
- Likely consequences of storage system failure.

In any situation, it is best to take corrective action at the earliest detection of problems.

5.5 TANK CLEANING

Tank cleaning procedures must be performed carefully to prevent inadvertent spills, releases, reactions, or personnel exposure. Proper equipment to be used includes:

- Air monitoring equipment;
- Protective clothing;
- Appropriate ventilation or air supplies;

Table 5-4

MINIMUM INSPECTION TASKS AND FREQUENCIES

Frequency	Task
Daily	Visually check valve stems and flanges for leakage
	Visually check piping for misalignment, bending, or leakage with particular attention to tees, couplings, elbows, and connections
	Inspect ground surface around vertical and horizontal tanks for signs of leakage
	Check discharge and fill control equipment before product is transferred to insure that it is functioning properly
	Check liquid level in the tank before product is added to insure adequate capacity
	Check gate valve from diked area to insure that it is closed and locked
	Check walkways and stairways for obstructions
	Check and record inventory of tank contents
Weekly	Check liquid level gaging equipment to insure that it is functioning properly
	Check roof drains for obstructions
	Check vents and pressure-relief devices for obstructions
	Check grounding lines and connections for integrity
·	Check stairways for damaged rungs or handrails
	Check containment dike or berm for integrity
	Does oil/water separator or equivalent require pumping
	Check separator discharge for clarity
	Does diked area require drainage
	Check fire extinguishing equipment
Monthly	Inspect all exterior tank surfaces, welds, rivets/bolts, foundation
	Check impressed current rectifiers
	Inventory all spill control and other emergency response equipment
Quarterly	Non-destructive thickness testing of piping and valves

Table 5-4 (Cont.)

Frequency	Task
Semi-Annually	Thickness testing for shell walls
(at scheduled down-time)	Inspection of liners
	Leak testing of foundation
	Leak testing of underground tanks assembly
Annually (at scheduled down-time)	Test structural stability of support structures for elevated tanks and test pressure relief valves for calibration
	Measure tank-to-soil potential

Source: Ecology and Environment, Inc., 1983.

.

Daily Inspection Checklist PAGE _____ OF _____ TANK INSPECTED BY LOCATION DATE FILL LEVEL CONTENTS Unaccept-able (Specify) Inspection Tank Accept-Referred To Recommended Corrective Action Is fill valve locked and closed? Is dike gate valve locked and closed? Condition of valve # Condition of inlet piping Condition of outlet piping Fill control equipment functioning? Discharge control equipment functioning? Visual check of tank shell integrity Evidence of leakage on ground? Is there adequate freeboard in tank Are stairways and walkways unobstructed

SOURCE: Ecology and Environment, Inc., 1983.

WEEKLY INSPECTION CHECKLIST

TANK	

PAGE OF	·
INSPECTED BY	

FILL LEVEL

Accept- able	Unaccept- able (specify)	Recommended Corrective Action	Referred To
	Accept-	Accept- able (specify)	Accept- able Unaccept- able Recommended Corrective Action Image: Strate

SOURCE: Ecology and Environment, Inc., 1983.

Item	Accept- able	Unaccept- able (specify)	Recommended Corrective Action	Referred To
Check ignition safeguards: Isolated metal objects and fill nozzels grounded?				
Absence of spark promoters from tank interior?				
Inlet flow rate sufficiently limited?				
Ground con- nections secure?				
Metallic shunta intact?				

Figure 5–13 WEEKLY INSPECTION CHECKLIST (Cont.)

	MONTHLY TANK INSPECTION LOG	i de la construcción de la constru	
TANK #	LOCATION:	FILL LEVEL:	
CONTENTS	INSPECTED BY:	DATE:	PAGE OF
lten	Observations	Recommendations for Corrective Action	
Yank shell and roof -Discoloration or flaking of coating -Localized corrosion -Structural damago -Development of hairline cracks -Bulging or cavitation -Deterioration at joints and connections			
Welds -Localized corrosion -Separatin or distortion of welded components -Development of hairline cracks			
Rivets/bolts -Localized corrosion -Loosened components -Missing			
Foundations/supports -Cracking or deterioration of concrete ringwall or support -Uneven settlement -Slippage of tank from foundation or support -Guckling of saddle or vertical supports	· · · · ·		

Figure 5–14 MONTHLY TANK INSPECTION LOG

5-29

- Appropriate cleaning equipment, such as steam nozzles, agitators, sandblasters, etc.;
- Safety belts and lines; and
- First aid kits.

Procedures for cleaning tanks will vary with the specific job to be performed. However, they may be generalized as follows:

- Purge tanks and lines of contents;
- Purge all residual vapors;
- Monitor tank interiors for gases, vapors, and oxygen content;
- Provide adequate ventilation of vapors, and fresh air supply for personnel;
- Use hot or cold cleaning solutions compatible with the residual tank contents; and
- Take precautions to prevent spills of cleaning materials.

5.6 TANK CLOSURE

Tank closure may be temporary, pending future usage, or permanent, at the end of the useful life of the tank. Temporary closure is performed by:

- Removing tank contents;
- Filling with water and corrosion inhibitors;
- Capping all fill and draw-off lines; and
- Opening all vent lines.

Permanent closure may be achieved by removal or by abandonment in place. For permanent closure, the tank should be:

- Emptied of all liquids, solids, sludges, and vapors;
- Thoroughly cleaned;
- Filled with an inert solid, such as sand, gravel, or concrete;
- Capped at all fill, vent, draw-off, and access points;
- Securely anchored if aboveground; and
- If it is to be disposed of, rendered unusable or dismantled.

SUGGESTED EXERCISES

- 1. Name three objectives of a maintenance and inspection program.
- 2. Identify areas of concern on which an inspection program should focus.
- 3. Identify the applications and limitations of the following nondestructive test methods:
 - Wet magnetic particle,
 - Eddy current,
 - Ultrasonic,
 - Radiographic, and
 - Spark testing.
- 4. Identify six tests for detecting leakage in underground tanks. Which are approved or use in this facility's regulatory jurisdiction?
- 5. Identify eight areas which should be inspected in a typical aboveground tank system.
- 6. Identify critical inspection areas for the following valve types:
 - Globe,
 - Diaphragm,
 - Ball, and
 - Butterfly.
- 7. Which factors must be considered in determining inspection frequencies?
- 8. Identify three inspection tasks which must be performed at daily, weekly, and semi-annual intervals, respectively.
- 9. Name six factors to be considered in determining maintenance and repair priorities.
- 10. Describe procedures to be employed during tank cleaning.
- 11. Describe procedures to be employed during temporary tank closure.

SECTION 6

PERSONNEL HEALTH AND SAFETY

Health and safety hazards can be controlled by:

- Hazard elimination or substitution;
- Engineering controls;
- Administrative controls; and
- Personal protective equipment.

Control of health and safety hazards are regulated by OSHA or by appropriate state regulations. These standards should be supplemented by ANSI, NIOSH, and ACGIH recommendations, which are more extensive, more up-to-date, and often referenced by the state or OSHA regulations.

6.1 PERSONAL PROTECTIVE EQUIPMENT

Hazardous materials facility personnel should be provided with and use appropriate equipment to protect against skin or respiratory exposures. Materials for hand and body protection include:

- Leather, asbestos, wool, and aluminized materials for heat protection;
- Padded material for protection against cuts, blows, and bruises; and
- Impervious materials, such as natural and synthetic rubber, neoprene, vinyl, and polypropylene. Resistance of some of these impervious materials to selected chemicals is shown in Table 6-1.

Standards for respiratory protection programs specify a number of requirements, including:

- Written standard operating procedures on respirator selection and use;
- Instruction and training in use and limitations of respirator; and
- Routine cleaning, inspection, and maintenance.

Respirators should be selected on the basis of:

• Nature of the hazard;

	Neo- prene	Poly- vinyl Chloride (PVC)	Paracril/ PVC	Polyur- ethane	Chlorinated Polyethy- lene	Butyl Rubber	Natural Rubber	Nitrile	Vitron	Poly- vinyl Acetate (PVA)
Acetaldehyde	С	С	A	С	I	A	A	С	U	U
Acetic Acid	A	С	Α	С	Α	С	A	A	U	U
Acetone	A	C	U	С	A	С	A	С	U	U
Acrylonitrile	Α	С	A	Α	Α	С	C	С	I ·	I
Ammonium Hydroxide	A	A	A	A	A	A	A	A	- A · ·	U
Amyl Acetate	С	C	Α	С	Ċ	С	С	С	υ	A
Aniline	С	С	A	Α	Α	C	С	С	L	С
Benzaldehyde	С	С	Α	C	С	Α	C	С	U	Α
Benzene	C	ម	С	A	С	U	U	C	С	Α
Benzyl Alcohol	A	C	Α	C	A	A	A	A	I	I
Benzyl Chloride	C	С	A	С	Ŭ	С	С	С	С	1
Butyl Acetate	C	С	Α	С	Α	С	С	Ċ	U	Α
Butyl Alcohol	A	Α	A	С	Α	Α	Α	A	I	С
Carbolic Acid	C	С	Α	Α	Α	C	Α	С	Α	E
Carbon Disulfide	C	C	A	C	С	U	С	С	Ι	A
Carbon Tetrachloride	C	C	A	С	C	U	C	Α	A	A
Chloroacetone	C	U	C	Ć	U	С	C	С	I ·	I
Chloroform	С	С	A	С	U	U	C	C	A	A

CHEMICAL RESISTANCE OF PROTECTIVE CLOTHING MATERIALS

Table 6-1

A=Acceptable U=Unacceptable

C=Conditionally Acceptable I=Insufficient Data

Note: This table is provided as a guide only. The user is advised to contact the protective clothing manufacturer regarding the specific applicability and limitations of a material under proposed conditions of use.

10010 0~1 (LUIIL.	.)	Cont	6-1 (Table
-------------------	----	------	-------	-------

	Neo- prene	Poly- vinyl Chloride (PVC)	Paracril/ PVC	Polyur- ethane	Chlorinated Polyethy- lene	Butyl Rubber	Natural Rubber	Nitrile	Vitron	Poly- vinyl Acetate (PVA)
Coal Tar Products	С	С	A	Α	C	C	C	С	I	I
Cyclohexane	C	C	U	Α	A	U	С	A	A	I
Diacetone Alcohol	A	A	A	С	Α	A	A	A	I	I
Dibutyl Phthalate	С	С	Α	С	С	Α	С	A	A	A
Ethanol	Α	A	Α	С	I	Α	A	A	A	U
Ethyl Ether	С	C	Α	С	A	С	С	Α	U U	A
Ethylene Glycol	A	A	Α	C	A	Α	Α	Α	Α	С
Formaldehyde	С	A	A	С	A	С	A	A	A	U
Formic Acid	Α	Α	Α	Α	Α	Α	A	С	U	U
Furfural	Α	С	Α	C	Α	A	Α	C C	U	С
Gasoline	Α	C	Α	A	A	U	С	A	A	A
Glycerine	A	A	Α	C	Α	A .	A	A	A	A
Hydrobromic Acid	Ä	A	A	C	A	A	I	I	I	I
Hydrochloric Acid	Α	Α	Α	U	A	Α	A	Α	A	U
Hydrofluoric Acid	C	C	С	U	Α	Α	A	Α	. A	U
Hydrogen Peroxide	Α	A	A	A	Α	С	A	Α	C	U
Hydrogen Sulfide	A	Α	A	U	. A	A	· I	I	A	I
Isopropyl Alcohol	Α	A	A	С	Α	A	A	A	A	U
Kerosene	А	С	Α	Α	Α	U	.C	Α	Α	A
Lactic Acid	Α	A	A	Α	A	A	A	A	A	С
Linseed Oil	A	A	A	С	A	С	C	A	, А	A

A=Acceptable U=Unacceptable C=Conditionally Acceptable I=Insufficient Data

Note: This table is provided as a guide only. The user is advised to contact the protective clothing manufacturer regarding the specific applicability and limitations of a material under proposed conditions of use.

••

Table 6-1 (Cont.)

	Neo- prene	Poly- vinyl Chloride (PVC)	Paracril/ PVC	Polyur- ethane	Chlorinated Polyethy- lene	Butyl Rubber	Natural Rubber	Nitrile	Vitron	Poly- vinyl Acetate (PVA)
Malic Acid	A	A	A	С	I	U .	I	I	I	I
Methyl Acetate	A	С	С	С	A	A	С	С	I	I
Methanol	A	Α	Α	С	A	A	A	A	С	U
Methyl Ethyl Ketone	C	U	С	С	C	A	A	U	U	С
Nitric Acid	С	С	Α	U	C	С	C	С	A	U
Nitrobenzene	С	C	A 1	С	C	U	С	C	A	I
Oleic Acid	A	A	A	С	A	A	С	A	A	A
Perchloroethylene	С	U	Α	С -	С	U	U	Α	A	A
Phosphoric Acid	A	Α	Α	С	. A	Α	A	Α	A	U
Pine Oil	Α	Α	Α -	С	Α	U	С	Α	I	I
Potassium Hydroxide	A	A	A	С	A	A	A	A	C	U
Sodium Hydroxide	Α	C	· A	С	٨	С	A	A	С	U
Sulfuric Acid	С	C *	Α	U	С	С	С	С	C	U
Tannic Acid	A	- A	Α	A	Α	A	A	A	A	U
Toluene	C	ບ	Α	A	C	U	С	C	A	Α
Trichloroethylene	С	C	A	С	C	U	C	C	A	A
Triethanolamine	Α	A	Α.	С	Å	A	A	A	U	A
Turpentine	С	C	A	C	A	U	C	A	A	A

A=Acceptable U=Unacceptable C=Conditionally Acceptable I=Insufficient Data

Source: Ecology and Environment, Inc., 1982, from manufacturers' data.

Note: This table is provided as a guide only. The user is advised to contact the protective clothing manufacturer regarding the specific applicability and limitations of a material under proposed conditions of use.

•

6-4

- Characteristics of the work to be performed;
- Location of the hazardous area with respect to safe breathing zones;
- Time period for which respiratory protection will be needed;
- Extent of worker's activity in the hazardous area;
- Physical characteristics, capabilities, and limitations of various respirator types; and
- Respirator fit and protection factors.

Respirators may be classified as either air-supplied or airpurifying. Air supplied respirators are required when oxygen levels are less than 19.5%, and may also be used when toxic gases, vapors, or particles exceed permissible concentrations. These include selfcontained breathing apparatus (SCBA) or air-line respirators. If the atmosphere is determined to be immediately dangerous to life and health, the air-supplied respirator must be of the continuous flow type with escape provisions, or it may be a pressure-demand or positive-pressure closed-circuit SCBA. Air purifying respirators are used to remove gaseous or particulate contaminants, and can only be used when oxygen levels exceed 19.5%. These include simple filter, chemical cartridge and cannister respirators. Table 6-2 provides guidelines for respirator selection, and Table 6-3 lists protection factors which can be achieved under optimum conditions.

6.2 ACTIVITIES IN HAZARDOUS AREAS

In areas of possibly ignitable vapors, no work with ignition sources can be performed unless the vapor concentrations are monitored. All metal equipment should be properly grounded and bonded, and use of non-sparking tools and intrinsically safe equipment is advised. Smoking should be prohibited in these areas.

Work in confined spaces requires:

- Oxygen and vapor monitoring;
- Adequate fresh air supplies;
- Constant audible and visible communication;
- Adequate rescue resources; and
- Appropriate training in first aid and cardio-pulmonary resuscitation (CPR).

6.3 FIRST AID AND MEDICAL SURVEILLANCE

A facility should have a medical surveillance program which ensures that workers are fit to perform their duties, and provides continual follow-up to monitor effects of potential exposures.

Table 6-2

SELECTION OF RESPIRATORS

Hazard	Respirator (see note)
Oygen deficiency, immediately dangerous to life and health.	Air-line, continuous-flow, pressure-demand type with escape provisions. Air-line, continuous- flow helmet, hood, or suit, with escape pro- visions. Self-contained breathing apparatus (pressure-demand type, or positive-pressure, closed-circuit type).
Oxygen deficiency, <u>not</u> immediately dangerous to life and health.	Self-contained breathing apparatus. Hose mask with blower. Combination air-line respirator with auxiliary self-contained air supply.
Gas and vapor contaminants immedi- ately dangerous to life and health.	Self-contained breathing apparatus (pressure- demand-type, open-circuit, or positive-pressure closed circuit). Powered air-purifying, full facepiece respirator with chemical cannister (if escape provisions are provided). Self-rescue mouthpiece respira- tor (for escape only). Combination air-line respirator with auxiliary self-contained air supply.
Gas and vapor contaminants <u>not</u> immediately dangerous to life and health.	Air-line respirator. Hose mask with or without blower. Air-purifying respirator with chemical car- tridge.
Particulate contaminants immediately dangerous to life and health.	 Self-contained breathing apparatus (pressure- demand-type open-circuit, or positive-pressure, closed-circuit). Air-purifying, full facepiece respirator with appropriate filter (if escape provisions are provided). Combination air-line respirator with auxiliary self-contained air supply.
Particulate contaminants <u>not</u> im- mediately dangerous to life and health.	Air-purifying, respirator with particulate filter pad or cartridge. Air-line respirator. Air-line, continuous flow helmet, hood or suit. Hose mask with or without blower.
Combination gas, vapor, and par- ticulate contaminants immediately dangerous to life and health.	 Self-contained breathing apparatus (pressure- demand-type open-circuit, or positive-pressure, closed-circuit). Air-purifying, full-facepiece respirator with chemical cannister and appropriate filter (if escape provisions are provided). Combination air-line respirator with auxiliary self-contained air supply.
Combination gas, vapor, and particulate contaminants <u>not</u> immediately dangerous to life and health.	Air-line respirator. Hose mask with or without blower. Air-purifying respirator with chemical cartridge and appropriate filter.

Note: For the purpose of this table, "immediately dangerous to life and health" is defined as any atmosphere that poses an immediate hazard to life, or produces immediate, irreversible debilitating effects on health. Consult ANSI Z88.2-1980 for further definition and clarification of respirator selection criteria.

Source: 29 CFR 1926.103 and ANSI Z88.2 - 1980.

		Type Respirator	Protection Factor
I.	Air	purifying:	
	Α.	Particulate removing	
		Single-use, dust	5
		Quarter mask, dust	5
		Half mask, dust	10
		Half or quarter mask, high efficiency	10
		Half or quarter mask, fume	10
		Full facepiece, high efficiency	50
		Powered, high efficiency, all enclosures Powered, dust or fume, all enclosures	1,000
	2	For and vector removing	10
	0.	Walf mack	50
		Full facepiece	
II.	Atm	osphere supplying:	
	Α.	Supplied air	
		Demand, half mask	10
		Demand, full facepiece	50
		Hose mask without blower, full facepiece	50
		Pressure demand, half mask	1,000
		Pressure demand, full facepiece	2,000
		Hose mask with blower, full facepiece	50
		Continuous flow, half mask	1,000
		Continuous flow, full facepiece	2,000
		Continuous flow, hood, helmet, or suit	2,000
	в.	Self contained breathing apparatus (SCBA)	
		Open circuit, demand, full facepiece	50
		Open circuit, pressure demand full facepiece	10,000
		Closed circuit, oxygen tank-type, full facepiece	. 50

Table 6-3

OPTIMAL RESPIRATORY PROTECTION FACTORS

Source: Clayton and Clayton, 1978.

Although the program should be directed by a physician, it should be administered on a daily basis by the Facility Safety Coordinator. This person should:

- Maintain on-going first aid and safety training;
- Provide technical expertise in health and safety matters;
- Oversee compliance with health and safety standards; and
- Prepare and review all job-related safety plans.

Facility safety plans should be developed for major and routine maintenance procedures. The plans should include:

- First aid procedures for the expected hazards;
- Addresses and directions to emergency facilities;
- Medical limitations of personnel performing the work; and
- Identification of personnel duties and responsibilities, especially in an emergency.

SUGGESTED EXERCISES

- 1. Identify three methods to control health and safety hazards.
- 2. Name four organizations which promote standards for occupational health and safety.
- 3. Hazardous materials facility workers require protection primarily against what two types of exposures?
- 4. Identify protective clothing materials which may be effective against exposure to:
 - Acetone,
 - Sulfuric acid,
 - Methyl ethyl ketone,
 - Kerosene, and
 - Benzene.

1

- 5. Name seven factors which must be considered in selecting respiratory protection.
- 6. What types of respiratory protection are suitable for the following atmospheres:
 - Oxygen-deficient, immediately dangerous to life and health; or
 - Combination gas, vapor, and particulate contaminants, <u>not</u> immediately dangerous to life and health.
- 7. Rank the following types of respirators in order of respiratory protection provided (most to least):
 - Powered air-purifying device,
 - Quarter-face dust mask,
 - Full facepiece air-purifying mask,
 - Open-circuit, pressure-demand, full facepiece SCBA, and
 - Continuous-flow helmet respirator.
- 8. Identify five precautions which must be taken for work in hazardous areas.
- 9. Discuss the necessary elements of facility safety plans.

SECTION 7

SPILL CONTROL AND PREVENTION

To maximize a response team's effectiveness, and to minimize spill consequences, contingency plans for emergencies should be developed and available prior to occurrence of an emergency. Plans should be developed to address spills on land, water, or releases into the air. In conjunction with contingency planning, the team should be thoroughly trained in response procedures applicable to the specific facility. Ideally, a training manual such as this should be developed for the facility, and it should be read and understood by each team member as part of the emergency response training program.

7.1 LAND SPILLS

Land spills require prompt action to prevent migration of product to surface or groundwater. Containment measures may include:

- Sorbent materials:
- Anti-wetting agents;
- Gelling agents;
- Imbiber beads;
- Containment dikes; or
- Interceptor trenches.

Figures 7-1 and 7-2 illustrate methods for removing contaminants from groundwater.

Removal techniques will vary with the types material spilled and the type of surface. These techniques include:

- Vacuum collection;
- Excavation;
- In-situ neutralization;
- Microbiological agents: or
- On-site treatment.

Materials from hazardous materials spills must be disposed of in accordance with applicable hazardous waste regulations.

7.2 SURFACE WATER SPILLS

Containment of surface water spills can be achieved through proper selection and deployment of the following types of containment equipment:

Figure 7–1 CROSS-SECTION OF INTERCEPTOR TRENCH CONTAINMENT AND COLLECTION SYSTEM FOR FLOATING CONTAMINANTS

Figure 7–2 SCHEMATIC OF DEEP GROUNDWATER RECOVERY WELL FOR FLOATING CONTAMINANTS

- Dams;
- Natural debris;
- Filter fences;
- Sorbent materials;
- Skirted booms;
- Sorbent booms; or
- Aeration techniques.

Figures 7-3-through 7-5 illustrate methods of spill containment. Removal of spilled product should be begun as quickly as possible. Removal techniques include:

- Gravity skimmers;
- Suction skimmers;
- Vacuum collection;
- Adhesion equipment;
- Advancing weirs;
- Sorbents;
- Dredges; and
- Filter fences.

Figures 7-6 through 7-11 illustrate various spill removal techniques. Properties of various sorbent materials are summarized in Table 7-1.

Chemical and biological agents (burning agents, sinking agents, dispersants, collecting agents, and biological cultures) are available for spill control, although physical removal methods are usually preferable. Authorization for use of chemical and biological agents must be obtained from the appropriate regulatory agency prior to application. Appropriate countermeasures for spills of more than 200 chemicals on land or water are summarized in Appendix D.

7.3 ATMOSPHERIC RELEASES

Initial response to a gas or vapor discharge should be directed toward eliminating the source of the discharge. Personnel should wear appropriate protective equipment, and should have available a variety of plugs and patches of various sizes to stop the leaks. Depending upon wind conditions, atmospheric stability, and the nature of the chemical released, the area may have to be evacuated until the discharge is under control.

If the source cannot be stopped, measures must be taken to control the release. These include:

- Water sprays;
- Firefighting foams;
- Diversion vents;
- Trench vents; or
- Emergency encapsulation (containment structures).

Normal atmospheric dispersion must be relied upon for returning air to safe levels. Blower fans may be used to assist dispersion. Where possible, vapors can be routed to treatment systems of such types as carbon adsorbtion or thermal oxidation.

Figure 7-4 SCHEMATIC OF TYPICAL BOOM ANCHORING SYSTEM

Figure 7–5 SCHEMATIC OF TYPICAL UNDERFLOW DAM


```
SOURCE: Texas A&M, 1978
```


Figure 7–9 SCHEMATIC OF INCLINED PLANE BELT SKIMMER

Figure 7–10 SCHEMATIC OF OLEOPHILIC BELT SKIMMER.

Table 7-1

Туре	Advant ages	Di sadvant ages	Example	Capaci ty
Natural Sorbents	Non-toxic, biodegradeable	Soak up both organics and water; will sink when saturated Recovery of large amounts of sorbent is a labor-intensive operation	Peat moss Straw Milled corn cobs	In general, absorb 3 to 6 times their weight
		Trapped product may drain off sorbent material	Wood cellulose fiber Milled cottonseed fiber	
Inorganic or Mineral-Based	Relatively inexpensive	Very light materials; difficult to distribute when windy	Perlite	In general, absorb 4 to 8 times their weight
Sordents		Non-biodegradable	Vermiculite	ч.
		Dust may cause respiratory irritations	Volcanic ash	
		Can be abrasive to recovery equipment		
Synthet ic	c Exceptionally high recov- ery efficiences	Expensive	Polyurethane	Variable, but higher than non- synthetic solvents, typically about 20 to 25 times their own weight
SOLDEULS		Non-biodegradeable	Urea formaldehyde	
	Some materials can be re- used after oil removal		Polyethy lene	
	Easily spread		Polypropylene	

PROPERTIES OF SORBENT MATERIAL
Table 7-1 (Cont.)

Туре	Advant ages	Disadvantages	Example	Capaci ty
	Easily recovered			
	Available in many forms (e.g., rolls, sheets, booms)			
Synthetic Foam	Most efficient sorbents available	Saturated slabs may tear during recovery	Polyurethane foam	Variable, but higher than non- synthetic solvents, typically
Sorbents	Efficiency independent of viscosity			about 20 to 25 times their own weight
	Can be produced on-site by mixing two liquids			

Source: Handbook for Oil Spill Protection Cleanup Priorities, 1981, Versor, Inc.

7.4 SPILL PREVENTION AND CONTINGENCY PLANNING

All facilities should develop a Spill Prevention Control and Countermeasure (SPCC) Plan. These plans should include description of secondary containment, drainage, storage tanks, transfer operations, maintenance and inspection procedures, security, and personnel training. The plan should be reviewed and updated at least every three years.

In conjunction with the SPCC, the facility should also develop an Emergency Contingency Plan delineating procedures to be taken and outlining resources and responsibilities in the event of an uncontrolled spill or emergency. The plan should contain a written inventory of emergency equipment, sources of assistance, and descriptions of emergency procedures, and should be regularly reviewed and amended. General emergency procedures which should be outlined and followed include:

- 1. Activate alarms or other communication system to alert facility personnel;
- Organize the in-house response team or notify the local spill contractor;
- Notify appropriate state and local agencies, (which should already have copies of the contingency plan);
- 4. Characterize the emergency with respect to the source, the amount of released material, and the hazards created;
- If evacuation is warranted, initiate evacuation procedures. (outside authorities may be needed to assist in evacuation if it involves surrounding areas);
- 6. If areas outside the facility are affected, the appropriate response or enforcement agencies must be notified. These may include the National Response Center or the local On-Scene Coordinator;
- Take all reasonable measures to keep the spill or fire from spreading;
- 8. Provide for treating, storing, or disposing of contaminated soil, water, or other material;
- 9. As the cleanup nears completion, the appropriate state and local officials should be notified (if they are not already on-scene), so that they may determine when normal facility operation may be resumed.

Formats for emergency plan data are found in Figures 7-12 and 7-13.

	EMERGENCY PHONE NUMBERS
1.	In-house Emergency Response Coordinator and Alternates
	A. Name: Telephone:
	8. Name: Telephone:
	C. Name:Telephone:
2.	U.S. Coast Guard: Local Phone:
3.	National Response Center: (800) 424-8802
4.	EPA On-scene Coordinator:
5.	State Emergency Government:
6.	Local Emergency Government:
7.	Hospital/Health Treatment: A.
	в С
8.	Police: A
	B
9.	Sheriff:
.0.	Fire Department:
1.	Spill Clean-up Contractors:
	A B
2.	Other:

Figure 7–12 EMERGENCY PHONE NUMBERS FORM

	EMERGENCY DATA SHEET
Fac	ility Telephone
Add	ress
1.	Tank Identification
	A. Tank Number
	8. Location
2.	Chemical Identification
	A. Name
	Synonyms
	B. Molecular Formula
	C. Molecular Weight
	D. Boiling Point
	E. Density
	F. US DOT Classification
	G. US DOT I.D. Number
	CAS I.D. Number
Ref	егелсез:
	NIOSH Registry of Toxic Effects p
	CRC Handbook of Chemistry p
	49 CFR 100-199
	Hazardous Materials Emergency Response Guidebook, US DOT
3.	Health Effects
	A. Acute
	0 Churanda
	8. Unronic

Figure 7-13 EMERGENCY DATA SHEET FORM

~	Tauladau
с. п	Pouto of Exposure
	Eve Indection
	Lung Skin
Ε.	. First Aid
F	. Medical Monitoring
Defe	
neter:	ences.
P1 A1	CCIL TLV Handback Dansonaus Proportion of Industrial Materials
S	ax.
4. F	ire Protection
۰A	• Prevention Technique
В	. Extinguishing Agents
C	. Combustion Products
Refer	ences:
۶	ire Protection Guide on Hazardous Materials, NFPA
H	azardous Materials, US DOT
5. н	azardous Properties
A	. Major Chemical Incompatibilities
Refer	ences:
C	HRIS, Condensed Guide to Chemical Hazards, USCG
М	erck Index

Figure 7–13 EMERGENCY DATA SHEET FORM (Cont.)

6.	Methods of Storage
	A. Primary
	B. Second Containment
	C. Storage Hazards
Ref	ferences:
	Fire Protection Guide on Hazardous Materials, NFPA
7.	Environmental Protection
	A. For Material in Fire:
	B. For Material not in Fire:
Ref	ferences :
	CHRIS, Condensed Guide to Chemical Hazards, USCG
	Hazardous Materials, Emergency Response Guidebook
	Fire Protection Guide on Hazardous Materials, NFPA
	Chemtrec, (800) 424-9300
8	Personal Protection
0.	

Figure 7-13 EMERGENCY DATA SHEET FORM (Cont.)

References:

Fire Protection Guide on Hazardous Materials, NFPA CHRIS, Condensed Guide to Chemical Hazards, USCG Hazardous Materials Emergency Response Guidebook, US DOT Bests' Safety Directory

9. Other Information

SOURCE: Ecology and Environment, Inc., 1983.

Figure 7-13 EMERGENCY DATA SHEET FORM (Cont.)

SUGGESTED EXERCISES

- 1. Identify four methods to contain releases of spilled materials on land, surface water, and air, respectively.
- 2. How must materials used in spill cleanup be disposed?
- 3. Identify appropriate spill countermeasures for the following chemicals:
 - Arsenic trioxide,
 - Pentachlorophenol,
 - Vinyl acetate,
 - Parathion,
 - Calcium hydroxide, and
 - Hydrochloric acid.
- 4. What factor may influence evacuation due to an atmospheric release?
- 5. Describe the elements of an SPCC plan.
- 6. Describe emergency procedures which should be incorporated into a facility Emergency Contingency Plan.
- 7. Complete Figure 7-12 (emergency phone numbers) for this facility.
- 8. Complete Figure 7-13 (emergency data sheet) for each of three materials stored at this facility.

APPENDIX A

LIST OF CHEMICAL REPRESENTATIVES BY CLASS

Class 1 Acids, Mineral, Non-Oxidizing

Boric acid* Chlorosulfonic acid* Difluorophosphoric acid Disulfuric acid Fluoroboric acid Fluorosulfonic acid Fluosilicic acid Hexafluorophosphoric acid Hydriodic acid* Hydrobromic acid* Hydrochloric acid* Hydrocyanic acid* Hydrofluoric acid* Monofluorophosphoric acid Permonosulfuric acid Phosphoric acid* Selenous acid

Class 2 Acids, Mineral, Oxidizing

Bromic acid Chloric acid* Chromic acid* Hypochlorous acid Nitric acid* Nitrohydrochloric acid Oleum* Perbromic acid Perchloric acid* Perchlorous acid Periodic acid Sulfuric acid* Sulfur trioxide*

Class 3 Acids, Organic (All Isomers)

Acetic acid* Acrylic acid Adipic acid Benzoic acid* Butyric acid Capric acid Caproic acid Caprylic acid Chloromethylphenoxyacetic acid Cyanoacetic acid Dichlorophenoxyacetic acid Endothal Fluoracetic acid Formic acid* Fumaric acid Glycolic acid Hydroxydibromobenzoic acid

Lactic acid* Maleic acid* Monochloroacetic acid Oleic acid* Oxalic acid Peracetic acid Phenoxyacetic acid* Phthalic acid* Propionic acid Salycilic acid* Succinic acid Trichlorophenoxyacetic acid Trinitrobenzoic acid Toluic acid Valeric acid

Class 4 Alcohols and Glycols (All Isomers)

Acetone cyanohydrin Allyl alcohol* Aminoethanol Amyl alcohol Benzyl alcohol Butanediol Butyl alcohol Butyl cellosolve* Chloroethanol* Crotyl alcohol Cyclohexanol* Cyclopentanol Decanol Diacetone alcohol Dichloropropanol Diethanol amine Diisopropanolamine Ethanol* Ethoxyethanol Ethylene chlorohydrin* Ethylene cyanohydrin Ethylene glycol* Ethylene glycol monomethyl ether* Glycerin* Heptanol Hexanol Isobutanol Isopropanol Mercaptoethanol Methanol* Monoethanol amine* Monoisopropanol amine Nonanol Octanol Propanol Propylene glycol

*Representative chemical found in compatibility matrices.

Propylene glycol monomethyl ether Triethanolamine

Class 5 Aldehydes (All Isomers)

Acetaldehyde* Acrolein* Benzaldehyde Butyraldehyde Chloral hydrate Chloracetaldehyde Crotonaldehyde Formaldehyde* Furfural* Glutaraldehyde Heptanal Hexanal Nonanal Octanal Propionaldehyde Tolualdehyde Urea formaldehyde Valeraldehyde

Class 6 Amides (All Isomers)

Acetamide* **Benzadox** Bromobenzoyl acetanilide Butyramide Carbetamide Diethylamide* Diethyltoluamide Dimethylformamide* Dimefox Diphenamide Fluroacetanilide Formamide Propionamide Schradan Tris-(1-aziridinyl) phosphine oxide Wepsyn* 155 Valeramide

Class 7 Amines, Aliphatic and Aromatic (All Isomers)

Aminodiphenyl Aminoethanol* Aminoethanolamine Aminophenol Aminopropionitrile Amylamine Aminothiazole

Aniline* Benzidine Benzylamine Butylamine Chlorotoluidine Crimidine Cupriethylenediamine Cyclohexylamine Diamine* Dichlorobenzidine Diethanolamine Diethylamine* Diethylenetriamine Diisopropanolamine Dimethylamine Dimethylaminoazobenzene Diphenylamine Diphenylamine chloroarsine Dipicrylamine Dipropylamine Ethylamine Ethylenendiamine* Entyleneimine Hexamethylenediamine Hexamethylenetetraamine Hexylamine Isopropylamine Methylamine* N-Methyl aniline 4,4-Methylene bis(2-chloroaniline) Methyl ethyl pyridine Monoethanolamine* Monoisopropanolamine Morpholine Naphthylamine Nitroaniline* Nitrogen mustard Nitrosodimethylamine Pentylamine Phenylene diamine Picramide Picridine Piperidine Propylamine Propyleneimine Pyridine* Tetramethylenediamine Toluidine Triethanolamine Triethylamine Triethylenetetraamine Trimethylamine Tripropylamine

Class 8 Azo Compounds, Diazo Compounds, and Hydrazines (All Isomers)

Aluminum tetraazidoborate Aminothiazole Azidocarbonyl guanidine Azido-s-triazole a.á-Azodiisobutyronitrile Benzene diazonium chloride Benzotriazole t-Butyl azidoformate Chloroszodin Chlorobenzotriazole Diazodinitrophenol Diazidoethane Dimethylamino azobenzene Dimethyl hydrazine* Dinitrophenvl hydrazine Guanyl nitrosoaminoguanylidine hydrazine Hydrazine* Hydrazine azide Methyl hydrazine Mercaptobenzothiazole Phenyl hydrazine hydrochloride Tetrazene

Class 9 Carbamates

Aldicarb Bassa* Baygon* Butacarb Bux* Carbaryl Carbanolate Dioxacarb Dowco* 139 Formetanate hydrochloride Furadan* Hopcide* N-Isopropylmethylcarbamate Landrin* Matacil* Meobal Mesurol* Methomyl Mipcin* Mobam* Oxamvl Pirimicarb Promecarb Tranid* Tsumacide* Class 10 Caustics

Ammonia*

Ammonium hydroxide* Barium hydroxide Barium oxide Beryllium hydroxide Cadmium amide Calcium hydroxide* Calcium oxide* Lithium amide Lithium hydroxide Potassium aluminate Potassium butoxide Potassium hydroxide Sodium aluminate Sodium amide Sodium carbonate* Sodium hydroxide* Sodium hypochlorite Sodium methylate Sodium oxide

Class 11 Cyanides

Cadmium cyanide Copper cyanide Cyanogen bromide Hydrocyanic acid* Lead cyanide Mercuric cyanide Mercuric oxycyanide Nickel cyanide Potassium cyanide* Silver cyanide Sodium cyanide* Zinc cyanide

Class 12 Dithiocarbamates

CDEC Dithane* M-45 Ferbam Maneb Metham Nabam Niacide* Polyram-cobi* Selenium diethyl dithiocarbamate Thiram Zinc salts of dimethyl dithiocarbamic acid Zineb Ziram

Group 13 Esters (All Isomers)

Allyl chlorocarbonate Amyl acetate Butyl acetate* Butyl acrylate Butyl benzyl phthalate Butyl formate Dibutyl phthalate Diethylene glycol monobutyl ether acetate Ethyl acetate* Ethyl butyrate Ethyl chloroformate Ethyl formate 2-Ethyl hexylacrylate Ethyl propionate Glycol diacetate Isobutyl acetate Isobutyl acrylate Isodecyl acrylate Isopropyl acetate Medinoterb acetate Methyl acetate Methyl acrylate Methyl amyl acetate Methyl butyrate Methyl chloroformate Methyl formate* Methyl methacrylate Methyl proprionate Methyl valerate Propiolactone* Propyl acetate Propyl formate Vinyl acetate Dimethyl phthalate*

Class 14 Ethers (All Isomers)

Anisole Butyl cellosolve* Bromodimethoxyaniline Dibutyl ether Dichloroethyl ether* Diethyl ether* Dimethyl ether Dimethyl formal Dioxane* Diphenyl oxide Ethoxyethanol Ethylene glycol monomethyl ether* Furan* Glycol ether Isopropyl ether Methyl butyl ether Methyl chloromethyl ether Methyl ethyl ether Polyglycol ether

Propyl ether Propylene glycol monomethyl ether TCDD Tetrachloropropyl ether Tetrahydrofuran* Trinitroanisole Vinyl ethyl ether Vinyl isopropyl ether

Class 15 Fluorides, Inorganic

Aluminum fluoride* Ammonium bifluoride Ammonium fluoride* Barium fluoride Beryllium fluoride Cadmium fluoride Calcium fluoride Cesium fluoride Chromic fluoride Fluoroboric acid Flucsilicic acid* Fluorosilicic acid* Hexafluorophosphoric acid Hydrofluoric acid* Hydrofluorosilicic acid* Magnesium fluoride Potassium fluoride Selenium fluoride Silicon tetrafluoride Sodium Fluoride Sulfur pentafluoride Tellurium hexafluoride Zinc fluoroborate

<u>Class 16 Hydrocarbons, Aromatic (All</u> Isomers)

Acenaphthene Anthracene Benz-a-pyrene Benzene* n-Butyl benzene Chrysene Cumene* Cymene Decyl benzene Diethyl benzene Diphenyl Diphenyl acetylene Diphenyl ethane Diphenyl ethylene Diphenyl methane Dodecyl benzene Dowtherm Durene Ethyl benzene* Fluoranthrene Fluorene Hemimellitene Hexamethyl benzene Indene Isodurene Mesitylene Methyl naphthalene Naphthalene* Pentamethvl benzene Phenanthrene Phenyl acetylene Propyl benzene Pseudocumene Styrene* Tetraphenyl ethylene Toluene# Stilbene Triphenylethylene Triphenylmethane Xylene* Class 17 Halogenated Organics (All Isomers) Acetyl bromide Acetyl chloride Aldrin* Allyl bromide Allyl chloride Allyl chlorocarbonate Amyl chloride Benzal bromide Benzal chloride Benzotribromide Benzotrichloride Benzyl bromide Benzyl chloride* Benzyl chlorocarbonate Bromoacetylene Bromobenzyl trifluoride Bromoform 8romophenol Bromopropyne Bromotrichloromethane Bromotrifluoromethane Bromoxynil Butyl fluoride

Carbon tetrachloride* Carbon tetrafluoride Carbon tetraiodide Chloral hydrate Chlordane Chloracetaldehyde Chloroacetic acid Chloroacetone* Chloroacetophenone Chloroacrylonitrile Chloranil (tetrachloroquinone) Chloroazodin Chlorobenzene* Chlorobenzotriazole Chlorobenzovl peroxide Chlorobenzylidene malononitrile Chlorobutyronitrile Chlorocresol* Chlorodinitrotoluene Chloroethanol* Chloroethylenimime Chloroform* Chlorohydrin Chloromethyl methyl ether Chloromethyl phenoxyacetic acid Chloronitroaniline Chlorophenol Chlorophenyl isocyanate Chloropicrin* Chlorothion Chlorotoluidine CMME Crotyl bromide Crotyl chloride (1-chloro-2-butene) DDD DDT DOVP Dibromochloropropane Dichloroacetone* Dichlorobenzene Dichlorobenzidine Dichloroethane Dichloroethylene Dichloroethyl ether* Dichloromethane (methylene dichloride)* Dichlorophenol Dichlorophenoxy acetic acid Dichloropropane Dichloropropanol Dichloropropylene Dieldrin Diethyl chloro vinyl phosphate Dichlorophene Dinitrochlorobenzene

Endosulfan Endrin Epichlorohydrin* Ethyl chloroformate Ethylene chlorohydrin* Ethylene dibromide Ethylene dichloride* Fluoroacetanilide Freons* Heotachlor Hexachlorobenzene Hydroxydibromobenzoic acid Isopropyl chloride a-Isopropyl methyl phosphoryl fluoride Lindane Methyl bromide Methylchloride* Methyl chloroform Methyl chloroformate Methyl ethyl chloride Methyl iodide Monochloroacetone Nitrochlorobenzene Nitrogen mustard Pentachlorophenol* Perchloroethylene Perchloromethylmercaptan Picryl chloride Polybrominated biphenyls Polychlorinated biphenyls Polychlorinated triphenyls Propargyl bromide Propargyl chloride TCDD Tetrachloroethane* Tetrachlorophenol Tetrachloropropyl ether Trichloroethane Trichloroethylene* Trichlorophenoxyacetic acid Trichloropropane Trifluoroethane Vinyl chloride Vinylidene chloride (1,1-dichloroethylene)

Class 18 Isocyanates (All Isomers)

Chlorophenyl isocyanate Diphenylmethane diisocyanate Methyl isocyanate Methylene diisocyanate Polyphenyl polymethylisocyanate Toluene diisocyanate*

Class 19 Ketones (All Isomers)

Acetone* Acetophenone* Acetyl acetone* Benzoohenone Bromobenzoyl acetanilide Chloroacetophenone Coumafuryl Coumatetralyl Cyclohexanone* Diacetone alcohol Diacetyl Dichloroacetone* Diethyl ketone Dimethyl ketone* Diisobutyl ketone Heotanone Hydroxyacetophenone Isophorone Mesityl oxide Methyl t-butyl ketone Methyl ethyl ketone* Methyl isobutyl ketone* Methyl isopropenyl ketone Methyl n-propyl ketone Methyl vinyl ketone Monochloroacetone Nonanone Octanone Pentanone Quinone (Benzoquinone)*

Class 20 Mercaptans and Other Organic Sulfides (All Isomers)

Aldicarb Amyl mercaptan Butyl mercaptan Carbon disulfide* Dimethyl sulfide Endosulfan Ethyl mercaptan* Mercaptobenzothiazole Mercaptoethanol Methomyl Methyl mercaptan Naphthyl mercaptan Perchloromethyl mercaptan Phospholan Polysulfide polymer Propyl mercaptan Sulfur mustard Tetrasul Thionazin

Class 21 Metal Compounds, Inorganic

Aluminum fluoride* Aluminum sulfate* Ammonium arsenate Ammonium dichromate Ammonium hexanitrocobaltate Ammonium molybdate Ammonium nitridoosmate Ammonium permanganate Ammonium tetrachromate Ammonium tetraperoxychromate Ammonium trichromate Antimony Antimony nitride Antimony oxychloride Antimony pentachloride Antimony pentafluoride Antimony pentasulfide Antimony perchlorate Antimony potassium tartrate Antimony sulfate Antimony tribromide Antimony trichloride Antimony triiodide Antimony trifluoride Antimony trioxide Antimony trisulfide Antimony trivinyl Arsenic Arsenic pentaselenide Arsenic pentoxide Arsenic pentasulfide Arsenic sulfide Arsenic tribromide Arsenic trichloride Arsenic trifluoride Arsenic triiodide Arsenic trisulfide Arsines Barium Barium azide Barium carbide

Barium chlorate Barium chloride Barium chromate Barium fluoride Barium Fluosilicate Barium hydride Barium hydroxide Barium hypophosphide Barium iodate Barium iodide Barium nitrate Barium oxide Barium perchlorate Barium permanganate Barium peroxide Barium phosphate Barium stearate Barium sulfide Barium sulfite Beryllium Beryllium-copper alloy Beryllium fluoride Beryllium hydride Beryllium hydroxide Beryllium oxide Beryllium tetradhydroborate Bismuth Bismuth chromate Bismuthic acid Bismuth nitride Bismuth pentafluoride Bismuth pentoxide Bismuth sulfide Bismuth tribromide Bismuth trichloride Bismuth triiodide Bismuth trioxide Borane Bordeaux arsenites Boron arsenotribromide Boron bromodiodide Boron dibromoiodide Boron nitride Boron phosphide Boron triazide Boron tribromide Boron triiodide Born trisulfide Boron trichloride Boron trifluoride Cacodylic acid Cadmium Cadmium acetylide

Cadmium amide Cadmium azide Cadmium bromide Cadmium chlorate Cadmium chloride Cadmium cyanide Cadmium fluoride Cadmium hexamine chlorate Cadmium hexamine perchlorate Cadmium iodide Cadmium nitrate Cadmium nitride Cadmium oxide Cadmium phosphate Cadmium sulfide Cadmium trihydrazine chlorate Cadmium trihydrazine perchlorate Calcium arsenate Calcium arsenite Chromic acid* Chromic chloride Chromic fluoride Chromic oxide Chromic sulfate Chromium Chromium sulfide Chromium trioxide Chromyl chloride Cobalt Cobaltous bromide Cobaltous chloride Cobaltous nitrate Cobaltous sulfate Cobaltous resinate Cooper Copper acetoarsenite Copper acetylide Copper arsenate Copper arsenite Copper chloride Copper chlorotetrazole Copper cyanide Copper nitrate Copper nitride Copper sulfate Copper sulfide Cupriethylene diamine Cyanochloropentane Diethyl zinc Diisopropyl beryllium Diphenylamine chloroarsine Ethyl dichloroarsine

Ethylene chromic oxide Ferric arsenate Ferrous arsenate Hydrogen selenide Indium Lead Lead acetate Lead arsenate Lead arsenite Lead azide Lead carbonate Lead chlorite Lead cvanide Lead dinitroresordinate Lead monoinitroresorcinate Lead nitrate Lead oxide Lead styphnate Lead sulfide Lewisite London purple Magnesium arsenate Magnesium arsenite Manganese Manganese acetate Manganese arsenate Manganese bromide Manganese chloride Manganese methylcyclopentadienyl tricarbonyl Manganese nitrate Manganese sulfide Mercuric acetate Mercuric ammonium chloride Mercuric benzoate Mercuric bromide Mercuric chloride Mercuric cyanide Mercuric iodide Mercuric nitrate Mercuric oleate Mercuric oxide Mercuric oxycyanide Mercuric potassium iodide Mercuric salicylate Mercuric subsulfate Mercuric sulfate Mercuric sulfide Mercuric thiocyanide Mercurol Mercurous bromide Mercurous gluconate Mercurous iodide

Mercurous nitrate Mercurous oxide Mercurous sulfate Mercury Mercury fulminate Methoxyethylmercuric chloride Methyl dichloroarsine Molybdenum Molybdenum .sulfide Molybdenum trioxide Molybdic acid Nickel Nickel acetate Nickel antimonide Nickel arsenate Nickel arsenite Nickel carbonyl Nickel chloride Nickel cyanide Nickel nitrate Nickel selenide Nickel subsulfide Nickel sulfate Osmium Osmium amine nitrate Osmium amine perchlorate Phenyl dichloroarsine Potassium arsenate Potassium arsenite Potassium dichromate Potassium permanganate Selenium Selenium fluoride Selenium diethyl dithiocarbamate Selenous acid Silver acetylide Silver azide Silver cyanide Silver nitrate* Silver nitride Silver styphnate Silver sulfide Silver tetrazene Sodium arsenate Sodium arsenite Sodium cacodylate Sodium chromate Sodium dichromate Sodium molybdate Sodium permanganate Sodium selenate

Stannic chloride Stannic sulfide Strontium arsenate Strontium monosulfide Strontium nitrate Strontium peroxide Strontium tetrasulfide Tellurium hexafluoride Tetraethyl lead* Tetramethyl lead Tetraselenium tetranitride Thallium Thallium nitride Thallium sulfide Thallous sulfate Thorium Titanium Titanium sulfate Titanium sesquisulfide Titanium tetrachloride Titanium sulfide Tricadmium dinitride Tricesium nitride Triethyl arsine Triethyl bismuthine Triethyl stibine Trilead dinitride Trimercury dinitride Trimethyl arsine Trimethyl bismuthine Trimethyl stibine Tripropyl stibine Trisilyl arsine Trithorium tetranitride Trivinyl stibine Tungstic acid Uranium sulfide Uranvl nitrate Vanadic acid anhydride Vanadium oxytrichloride Vanadium tetroxide Vanadium trichloride Vanadyl sulfate Zinc Zinc acetylide Zinc ammonium nitrate Zinc arsenate Zinc arsenite Zinc chloride* Zinc cyanide Zinc fluoborate

Zinc nitrate Zinc permanganate Zinc peroxide Zinc phosphide Zinc salts of dimethyldithio carbamic acid Zinc sulfate Zinc sulfide Zirconium Zirconium chloride Zirconium picramate

Class 22 Nitrides

Antimony nitride Bismuth nitride Boron nitride Copper nitride Disulfur dinitride Lithium nitride Potassium nitride Silver nitride Sodium nitride Tetraselenium tetranitride Tetrasulfur tetranitride Thallium nitride Tricadmium dinitride Tricalcium dinitride Tricesium nitride Trilead dinitride Trimercury dinitride Trithorium tetranitride

Class 23 Nitriles (All Isomers)

Acetone cyanohydrin Acetonitrile* Acrylonitrile* Adiponitrile Aminopropionitrile Amyl cyanide a,á-Azodiisobutyronitrile Benzonitrile Bromoxynil Butyronitrile Chloroacrylonitrile Chlorobenzylidene malononitrile Chlorobutyronitrile Cyanoacetic acid Cyanochloropentane Cyanogen Ethylene cyanohydrin Glycolonitrile

Phenyl acetonitrile Phenyl valerylnitrile Propionitrile Surecide* Tetramethyl succinonitrile Tranid* Vinyl cyanide

Class 24 Nitro Compounds (All Isomers)

Acetyl nitrate Chlorodinitroluene Chloronitroaniline Chloropicrin Collodion Diazodinitrophenol Diethylene glycol dinitrate Dinitrobenzene Dinitrochlorobenzene Dinitrocresol Dinitrophenol Dinitrophenyl hydrazine Dinitrotoluene Dinoseb Dipentaerythritol hexanitrate Dipicryl amine Ethyl nitrate Ethyl nitrite Glycol dinitrate Glycol monolactate trinitrate Guanidine nitrate Lead dinitroresorcinate Lead mononitroresorcinate Lead styphnate Mannitol hexanitrate Medinoterb acetate Nitroaniline* Nitrobenzene* Nitrobiphenyl Nitrocellulose Nitrochlorobenzene Nitroglycerin Nitrophenol* Nitropropane* N-Nitrosodimethylamine Nitrosoquanidine Nitrostarch Nitrotoluene* Nitroxylene Pentaerythritol tetranitrate Picramide Picric acid* Picryl chloride

Polyvinyl nitrate Potassium dinitrobenzfuroxan RDX Silver styphnate Sodium picramate Tetranitromethane Trinitroanisole Trinitrobenzene Trinitrobenzoic acid Trinitrobenzoic acid Trinitroresorcinol Trinitrotoluene Urea nitrate

Class 25 Hydrocarbons, Aliphatic, Unsaturated (All Isomers)

Acetylene Allene Amvlene But adiene* Butene Cyclopent ene Decene Dicyclopent adiene Diisobutylene Dimethyl acetylene Dimethyl butyne **Dipentene** Dodecene Ethyl acetylene Ethylene Heptene Hexene Hexyne Isobut ylene Isooctene Isoprene* Isopropyl acetylene Methyl acetylene Methyl butene Methyl butyne Methyl styrene Nonene Octadecyne Oct ene Pentene Pentyne Polybutene Polypropylene Propylene Styrene* Tet radecene

Tridecene Undecene

Vinyl toluene

Class 26 Hydrocarbons, Aliphatic, Saturated

But ane* Cyclohept ane Cyclohexane* Cyclopentane Cyclopropane Decalin Decane Ethane Hept ane Hexane Isobut ane Isohexane Isooct ane Isopentane Methane Methyl cyclohexane Neohexane Nonane Oct ane Pent ane Propane

<u>Class 27</u> Peroxides and Hydroperoxides, <u>Organic (All Isomers)</u>

Acetyl benzoyl peroxide Acetyl peroxide Benzoyl peroxide* Butyl hydroperoxide Butyl peroxide Butyl peroxyacetate Butyl peroxybenzoate Butyl peroxypivalate Caprylyl peroxide Chlorobenzoyl peroxide Cumene hydroperoxide Cyclohexanone peroxide Dicumyl peroxide Diisopropylbenzene hydroperoxide Diisopropyl peroxydicarbonate Dimethylhexane dihydroperoxide Hydrogen peroxide* Isopropyl percarbonate Lauroyl peroxide Methyl ethyl ketone peroxide Peracetic acid Succinic acid peroxide

Class 28 Phenols, Cresols (All Isomers)

Amino phenol Bromophenol Bromoxynil Carbacrol Carbolic oil Catecol Chlorocresol* Chlorophenol Coal tar* Cresol* Creosote* Cyclohexyl phenol Dichlorophenol Dinitrocresol Dinitrophenol Dinoseb Eugenol Guaiacol Hydroquinone* Hydroxyacetophenone Hydroxydiphenol Hydroxyhydroquinone Isoeugenol Naphthol Nitrophenol* Nonyl phenol Pentachlorophenol Phenol* o-Phenyl phenol Phloroglucinol Picric acid* Pyrogallol Resorcinol* Saligenin Sodium pentachlorophenate Sodium phenolsulfonate Tetrachlorophenol Thymo1* Trichlorophenol Trinitroresorcinol

Class 29 Organophosphates, Phosphothioates, and Phosphodithioates

Abate* Azinphos ethyl Azodrin* Bidrin* Bomyl* Chlorfenvinphos Chlorothion* Coroxon*

DDVP

Demeton Demeton-s-methyl sulfoxid Diazinon* Diethyl chlorovinyl phosphate Dimethyldithiophosphoric acid Dimefox Dioxathion Disulfoton Dyfonate* Endothion FPN Ethion* Fensulfothion Guthion* Hexaethyl tetraphosphate Malathion* Mecarbam Methyl parathion Mevinphos Mocap* a-Isopropyl methylphosphoryl fluoride Paraoxon Parathion* Phorate Phosphamidon Phospholan Potasan Prothoate Shradan Sulfotepp Supracide* Shradan Sulfotepp Supracide* Surecide* Tetraethyl dithionopyrophosphate Tetraethyl pyrophosphate Thionazin Tris-(1-aziridinyl) phosphine oxide VX Wepsyn* 155

Class 30 Sulfides, Inorganic

Ammonium sulfide Antimony pentasulfide Antimony trisulfide Arsenic pentasulfide Arsenic sulfide Barium sulfide Beryllium sulfide Bismuth sulfide

Bismuth trisulfide Soron trisulfide Cadmium sulfide Calcium sulfide Cerium trisulfide Cesium sulfide Chromium sulfide Copper sulfide Ferric sulfide Ferrous sulfide Germanium sulfide Gold sulfide Hydrogen sulfide Lead sulfide Lithium sulfide Magnesium sulfide Manganese sulfide Mercuric sulfide Molybdenum sulfide Nickel subsulfide Phosphorous heptasulfide Phosphorous pentasulfide Phosphorous sesquisulfide Phosphorous trisulfide Potassium sulfide Silver sulfide Sodium sulfide Stannic sulfide Strontium monosulfide Strontium tetrasulfide Thallium sulfide Titanium sesquisulfide Titanium sulfide Uranium sulfide Zinc sulfide

Class 31 Epoxides

Butyl glycidyl ether t-Butyl-3-phenyl oxazirane Cresol glycidyl ether Diglycidyl ether Epichlorohydrin* Epoxybutane Epoxybutane Epoxyethylbenzene Ethylene oxide Glycidol Phenyl glycidyl ether Propylene oxide

Class 32 Combustible and Flammable Materials, Miscellaneous

Alkyl resins Asohalt Bakelite* Buna-N* Bunker fule oil Camphor oil Carbon, activated, spent Cellulose Coal oil Diesel oil* Dynes thinner Gas oil, cracked Gasoline* Grease Isotactic propylene J-100 Jet oil Kerosene* Lacquer thinner Methyl acetone Mineral spirits Naphtha* Oil of bergamot Orris root Paper Petroleum nachtha Petroleum oil* Polyamide resin Polyester resin Polyethylene Polymeric oil Polypropylene Polystyrene Polysulfide polymer Polyurethane Polyvinyl acetate Polyvinyl chloride Refuse Resins Sodium polysulfide Stoddard solvent Sulfur (elemental) Synthetic rubber Tall oil Tallow Tar Turpentine* Unisolve Waxes Wood

Class 33 Explosives

Acetyl azide Acetyl nitrate Ammonium azide Ammonium chlorate Ammonium hexanitrocobaltate Ammonium nitrate Ammonium nitrite Ammonium periodate Ammonium permanganate Ammonium picrate Ammonium tetraperoxychromate Azidocarbonyl quanidine Barium azide Benzene diazonium chloride Benzotriazole Benzoyl peroxide* **Bismuth** nitride Boron triazide Bromine azide Butanetriol trinitrate t-Butyl hypochlorite Cadmium azide Cadmium haxamine chlorate Cadmium hexamine perchlorate Cadmium nitrate Cadmium nitride Cadmium trihydrazine chlorate Calcium nitrate Cesium azide Chlorine azide Chlorine dioxide Chlorine fluoroxide Chlorine trioxide Chloroacetylene Chloropicrin Copper acetylide Cyanuric triazide Diazidoethane Diazodinitrophenol Diethylene glycol dinitrate Dipentaerithritol hexanitrate Dipicryl amine Disulfur dinitride Ethyl nitrate Ethyl nitrite Fluorine azide Glycol dinitrate Glycol monolactate trinitrate Gold fulminate Guanyl nitrosaminoguanylidene hydrazine HMX Hydrazine azide Hydrazoic acid Lead azide

Lead dinitroresorcinate Lead mononitroresorcinate Lead styphnate Mannitol hexanitrate Mercuric oxycyanide Mercury fulminate Nitrocarbonitrate Nitrocellulose Nitroglycerin Nitrosoquanidine Nitrostarch Pentaerythritol tetranitrate Picramide Picric acid* Picryl chloride Polyvinyl nitrate Potassium dinitrobenzfuroxan Potassium nitrate RUX Silver acetylide Silver azide Silver nitride Silver styphnate Silver tetrazene Smokeless powder Sodium azide Sodium picramate Tetranitromethane Tetraselenium tetranitride Tetrasulfur tetranitride Tetrazene Thallium nitride Trilead dinitride Trimercury dinitride Trinitrobenzene Trinitrobenzoic acid Trinitronaphthalene Trinitroresorcinol Trinitrotoluene Urea nitrate Vinyl azide Zinc peroxide

Class 34 Polymerizable Compounds

Acrolein Acrylic acid Acrylonitrile* Butadiene* n-Butyl acrylate Ethyl acrylate Ethylene oxide Ethylenimine 2-Ethylhexyl acrylate Isobutyl acrylate Isoprene Methyl acrylate* Methyl methacrylate 2-Methyl styrene Propylene oxide Styrene* Vinyl acetate Vinyl chloride Viyl cyanide Viyl cyanide Vinylidene chloride Vinyl toluene

Class 35 Oxidizing Agents, Strong

Ammonium chlorate Ammonium dichromate Ammonium nitridoosmate Ammonium perchlorate Ammonium periodate Ammonium permanganate Ammonium persulfate Ammonium tetrachromate Ammonium tetraperoxychromate Ammonium trichromate Antimony perchlorate Barium bromate Barium chlorate Barium iodate Barium nitrate Barium perchlorate Barium permanganate Barium peroxide Bromic acid Bromine Bromine monofluoride Bromine pentafluoride Bromine trifluoride t-Butyl hypochlorite Cadmium chlorate Cadmium nitrate Calcium bromate Calcium chlorate Calcium chlorite Calcium hypochlorite Calcium iodate Calcium nitrate Calcium perchromate Calcium permanganate Calcium peroxide Chloric acid* Chlorine Chlorine dioxide Chlorine_fluoroxide Chlorine monofluoride Chlorine monoxide Chlorine pentafluoride

Chlorine trifluoride Chlorine trioxide Chromic acid* Chromyl chloride Cobaltous nitrate Copper nitrate Dichloroamine Dichloroisocyanuric acid Ethylene chromic oxide Fluorine Fluorine monoxide Guanidine nitrate Hydrogen peroxide Iodine pentoxide Lead chlorite Lead nitrate Lithium hypochlorite Lithium peroxide Magnesium chlorate Magnesium nitrate Magnesium perchlorate Magnesium peroxide Manganese nitrate Mercuric nitrate Mercurous nitrate Nickel nitrate Nitrogen dioxide Osmium amine nitrate Osmium amine perchlorate Oxygen difluoride Perchloryl fluoride Phosphorus oxybromide Phosphorus oxychloride Potassium bromate Potassium dichloroisocyanurate Potassium dichromate Potassium nitrate Potassium perchlorate Potassium permanganate Potassium peroxide Silver nitrate* Sodium bromate Sodium carbonate peroxide Sodium chlorate Sodium chlorite Sodium dichloroisocyanurate Sodium dichromate Sodium hypochlorite* Sodium nitrate Sodium nitrite Sodium perchlorate Sodium permanganate Sodium peroxide Strontium nitrate Strontium peroxide Sulfur trioxide*

Trichloroisocyanuric acid Uranyl nitrate Urea nitrate Zinc ammonium nitrate Zinc nitrate Zinc permanganate Zinc peroxide Zinconium picramate

Class 36 Reducing Agents, Strong

Aluminum borohydride Aluminum carbide Aluminum hvdride Aluminum hypophosphide Ammonium hypophosphide Ammonium sulfide Antimony pentasulfide Antimony trisulfide Arsenic sulfide Arsenic trisulfide Arsine Barium carbide Barium hydride Barium hypophosphide Barium sulfide Benzyl silane Benzyl sodium Beryllium hydride Beryllium sulfide Beryllium tetrahydroborate Bismuth sulfide Soron arsenotribromide Boron trisulfide Bromodiborane Bromosilane Butyl dichloroborane n-Butyl lithium Cadmium acetylide Cadmium sulfide Calcium Calcium carbide Calcium hexammoniate Calcium hydride Calcium hypophosphide Calcium sulfide Cerium hydride Cerium trisulfide Cerous phosphide Cesium carbide Cesium hexahydroaluminate Cesium hydride Cesium sulfide Chlorodiborane Chlorodiisobutyl aluminum Chlorodimethylamie diborane Chlorodipropyl borane Chlorosilane Chromium sulfide Copper acetylide Copper sulfide Diamine* Diborane Diethyl aluminum chloride Diethyl zinc Diisopropyl beryllium Dimethyl magnesium Ferrous sulfide Germanium sulfide Gold acetvlide Gold sulfide Hexaborane Hydrazine* Hydrogen selenide Hydrogen sulfide Hydroxyl amine Lead sulfide Lithium aluminum hydride Lithium hydride Lithium sulfide Magnesium sulfide Manganese sulfide Mercuric sulfide Methyl aluminum sesquibromide Methyl aluminum sesquichloride Methyl magnesium bromide Methyl magnesium chloride Methyl magnesium iodide Molybdenum sulfide Nickel subsulfide Pentaborane Phosphine Phosphonium iodide Phosphorus (red amorphous) Phosphorus (white or yellow) Phosphorus heptasulfide Phosphorus pentasulfide Phosphorus sesquisulfide Phosphorus trisulfide Potassium hydride Potassium sulfide Silver acetylide Silver sulfide Sodium Sodium aluminate Sodium aluminum hydride Sodium hydride Sodium hyposulfite Sodium sulfide Stannic sulfide Strontium monosulfide Strontium tetrasulfide

Tetraborane Thallium sulfide Titanium sesquisulfide Titanium sulfide Triethyl aluminum Triethyl stibine Triisobutyl aluminum Trimethyl aluminum Trimethyl atibine Tri-n-butyl borane Trioctyl aluminum Uranium sulfide Zinc acetylide Zinc sulfide

Class 37 Water and Mixtures Containing Water

Aqueous solutions and mixtures Water

Class 38 Water Reactive Substances

Acetic anhydride* Acetyl bromide Acetyl chloride Alkyl aluminum chloride Allyl tirchlorosilane Aluminum aminoborohydride Aluminum borohydride Aluminum bromide Aluminum chloride Aluminum fluoride Aluminum hydophosphide Aluminum phosphide Aluminum tetrahydroborate Amyl trichlorosilane Anisoyl chloride Antimony tribromide Antimony trichloride Antimony trifluoride Antimony triiodide Antimony trivinyl Arsenic tribromide Arsenic trichloride Arsenic triiodide Barium Barium carbide Barium oxide Barium sulfide Benzene phosphorus dichloride Benzoyl chloride Benzyl silane Benzyl sodium Beryllium hydride Beryllium tetrahydroborate

Bismuth pentafluoride Borane Boron bromodiiodide Boron dibromoiodide Boron phosphide Boron tribromide Boron trichloride Boron trifluoride Boron triiodide Bromine monofluoride Bromine pentafluoride Bromine trifluoride Bromo diethvlaluminum n-Butyl lithium n-Butyl trichlorosilane Cadmium acetylide Cadmium amide Calcium Calcium carbide Caldium hydride Calcium oxide Calcium phosphide Cesium amide Cesium hydride Cesium phosphide Chlorine dioxide Chlorine monofluoride Chlorine pentafluoride Chlorine trifluoride Chloroacetyl chloride Chlorodiisobutyl aluminum Chlorophenyl isocyanate Chromyl chloride Copper acetylide Cyclohexenyl trichlorosilane Cyclohexyl trichlorosilane Decaborane Diborane Diethyl aluminum chloride Diethyl dichlorosilane Diethyl zinc Diisopropyl beryllium Dimethyl dichlorosilane Dimethyl magnesium Diphenyl dichlorosilane Diphenylmethane diisocyanate Disulfuryl chloride Dodecyl trichlorosilane Ethyl dichloroarsine Ethyl dichlorosilane Ethyl trichlorosilane Fluorine Fluorine monoxide

Fluorosulfonic acid Gold acetvlide Hexadecyl trichlorosilane Hexyl trichlorosilane Hydrobromic acid* Iodine monochloride Lithium Lithium aluminum hydride Lithium amide Lithium ferrosilicon Lithium hydride Lithium peroxide Lithium silicon Methyl aluminum sesquibromide Methyl aluminum sesquichloride Methyl dichlorosilane Methylene diisocyanate Methyl isocyanate Methyl trichlorosilane Methyl magnesium bromide Methyl magnesium chloride Methyl magnesium iodide Nickel antimonide Nonvl tirchlorosilane Octadecyl trichlorosilane Octyl trichlorosilane Phenyl trichlorosilane Phosphonium iodide Phosphoric anhydride Phosphorus oxychloride Phosphorus pentasulfide Phosphorus trisulfide Phosphorus (amorphous red) Phosphorus oxybromide Phosphorus oxychloride Phosphorus pentachloride Phosphorus sesquisulfide Phosphorus tribromide Phosphorus trichloride Polyphenyl polymethyl isocyanate Potassium Potassium hydride Potassium oxide Potassium peroxide

Propyl trichlorosilane Pyrosulfuryl chloride Silicon tetrachloride Silver acetylide Sodium Sodium aluminum hydride Sodium amide Sodium hydride Sodium methylate Sodium oxide Sodium peroxide Sodium-potassium alloy Stannic chloride Sulfonyl fluoride Sulfuric acid (70%)* Sulfur chloride Sulfur pentafluoride Sulfur trioxide* Sulfuryl chloride. Thiocarbonyl chloride Thionyl chloride Thiophosphoryl chloride Titanium tetrachloride Toluene diisocvanate Trichlorosilane Triethyl aluminum Triisobutyl aluminum Trimethyl aluminum Tri-n-butyl aluminum Tri-n-butyl borane Trioctyl aluminum Trichloroborane Triethyl arsine Triethyl stibine Trimethyl arsine Trimethyl stibine Tripropyl stibine Trisilyl arsine Trivinyl stibine Vanadium trichloride Vinyl trichlorosilane Zinc acetylide Zinc phosphide Zinc peroxide

APPENDIX B

.

CHEMICAL CLASS COMPATIBILITY MATRIX

APPENDIX 8 CIRINICAL CLASS COMPATIBILITY MATRIX

Class Number	Chemical Class																																							
The second se	Acids, Himmal, Non-axidizing	1																				•																		
2	Acids, Ninural, Duidizing	<u></u>	12	3																																				
	Acids, Ornanic	1-	6,	5	1																																			
4	Alcohols and Glycols	H	H _c	110	•	7																																		
1.5	Aldeliydes	Hp	14	Hp	-	•	9																									, 	L E	GEN	ID -					
6	Anides	H		1	1	1																					R	oact	vity	Cod					Ca	nseau	encor		·	
5	Aminus, Aliphutic and Aromatic	H	H _{GT}	11	-	H		7	1																			•			•							;		
8	Azo Cumponents, Diazo Cumpounds, and Hydrozines	H _G	HGI	HG	1 _G	н			8]																					н	bet ç 	jener	ation	'					
9	Carbamat as	HG	hei		Τ		—		G ^H	•]																		F		F	ire								
10	Caust ics	11	H	H		н	Τ			HG	10]																	6			AUDCA	40448	and a	ion-fi) aanai	ole o	jaa ga	morati	10
1	Cyanidos	61 05	- CI (GIG	r I		Τ		G			11]																GT		T	oxic	gas	gener	ation	n				
12	Dithiocarbamates	Hor,	HCF	Her.		GF G		U	HG				12															•	qr		F	10000	sble	ges g	pner	st ion				
13	Estor	H.	- -					<u> </u>	HG		H		تمشد	n	}														£		£	xploe	Man							
14	L'hors	H	He	1		1		1	1				1	1	14														P		V	lolen	nt po) i ynor i	izat	lan				
15	fluorides, Inorgenic	GÌ	GT	GT	-1	1-		1		1-	1		1	-	14. <u>11</u>	15													S		S	olubi	ilizə	ition (of te	pric /	aubat	ancer	1	
16	Nydrocarbons, Aronat ic	1	HE	1	\uparrow		1				1		1	1			16												U		H	iay ba	> hez	:ecdow	a but	t unka	лона			
17	Halogenated Organics	HGT	- +	-			"GT	HG	1	HCF	n				<u> </u>			17																						
18	lucyanetes	14	14	1	1.		1	14	14		140	14	U	1				19.252	18																					
19	Ketones	H	H _F	1	+-	1	1		HG	[11	tu -	[1					****:	12																				
20	Hurcuptons and Other Organic Sulfies	GTOF	116				1		HG	1		1		1				H	H	H	20																			
- 21	Hital Coopuunda, Inorganic	5	5	s	-	-	s	5	1	1	5	1		1							200. 2	81																		
22	Nitrides	or H	HEE	HGF	GF H	GF			u	"6	U	CT H	CF H	OF H				сг _и	U	CF _H	CF _H	- 100 - F.	22																	
23	Nitrilos	HGT	14	н			1				U											S	CF _H	87																
24	Nitro Compounda, Organic		14 C	1	1	11				1	14												HCEF	100.80	24															
25	Hydrocarbons, Aliphatic, Unsaturated	11	HE		1	H	1-		-	1		1	1													35														
26	Hydrocarlons, Aliphatic, Saturated		4	-	-	1	1	1	1-		_ ``															50.95	26	•												
. 27	Peruxidea and Hydroperaxides, Organic	16	1	1	4	"6	-	HGI	4.	4		112.01	۴.		F			HE	H	E	4.	Hc	Here	Hp.		4p		87	1											
28	Phenote and Cresols	H	HF				-		Hg	1		 "	[Hp				сг _н					H	20]										
29	Brysnuphasphates, Phasphathioutes, Phasphodithioates	HGI	^H G1			1			U		HE																	u		29	<u> </u>									
XX .	Sulfidee, Inorganic	GT OF	Pr GI	GI		H			ε			 	-						H									HGT			13	. .								
31	Epoxides	Hp	μþ	1%	14	U	-	14	14	—	Hp	14	U	1-		1					Hp -	Hp	Hp					Hp	Hp	u	14	1	T							
. 27	Control title and Flammuble Materials, Miscellaneous	"6	14 c	,		-											-						Here					H.			1		1	27						
33	Explosives	HE	HE	HE	1	1			IIE.		HE			Η _E								E	٤					HE	HE	1	下	HE	H	£ 3	11					
. *	Polymerizable Compounds	PH	Pii	P _H		1			PH		PH	PH	U	†					-			PH	P _H	-				PH	PH		Pn	+	+	He		34			•	
35	Oxidizing Agents, Strong	H _{GI}		H _{G1}	16	HF.	14F.c.1	HF	HE	HFCT	1	HE	HEAT	Hę	14		H _F	HGT	الح	14	HFOT		HFE	HFCI	HE I	HF	14	HG	HF	14		HF.	, H	Fo HE	E H	4	35			
×	Reducing Agents, Strong	"ur	14	Her	Par.	ar _{II.}	GFH	HCF	14	-w	1	1	HGT	4				HE	Gr _H	œ _H	CF _H			Har	ᡰᢧ			HE	G.	CT G	; ⁻		" a	r" H	e hi	با لم	F.T	X]		
37	Water and Mixtures Containing Water	"	- ⁰⁰	1	1-1	1-4	1	1	G	1		-		1	t				11 _G	-		\$	or _H		\neg					1	Ē,	<u>_</u>	+	-+	+	-	4	¥ 61	37	
<u>بر</u>	Water Reactive Substances								•	•	- 6	IRENE	LY RE	ACTIV	ĒI	00 N	IN TON	IX WIT	II ANY	CHEN	ICAL	DR W	STE	ATERI	ALI	-	XTREM	ELY	REAC	IVEI										30
•		1	8	1	•	1.5	6	17	a	9	10	11	12	11	14	15	16	17	10	19	20	21	22	23	24	R	36	11	28	29	ा×	5	N (1)	27	<u></u>	X	25	*	77	36
		1	28.252C	-	<u></u> .	1 . <u>.</u>		1738. A.		∎ <u>2,259</u> €	<u>a > 357 -</u>	<u>n: 2498</u>	1.2.02	1 <i>12 23 2</i>	142018	N 224872	msz.	9 (9X) 1	19385	projec	1.199	Ref. COM	8923	A2*8(%)	1.3554	(2237)	ur seite f	antel i	. 999	1000	<u> </u>		- in the second s	2012	مالئذ	خالضته	ئىلنىخ	573. - 1	ئىلېخىك	<u> </u>

Sources Hatayama, et al., A Hothad for Determining the Compatibility of Hazardous Moste, U.S EPA, 1980.

APPENDIX C CHEMICAL/MATERIALS COMPATIBILITY MATRIX

Sources:

- Mellan, I., <u>Corrosion Resistant Materials Handbook</u>, Noyes Data Corporation, 1976.
- Perry, R. and C. Chilton, <u>Chemical Engineer's Handbook</u>, McGraw-Hill, 1973.
- Rabald, E., <u>Corrosion Guide</u>, Elsevier Scientific Publishing Company, 1968.
- Shreir, L., <u>Corrosion</u>, Volumes 1 and 2, Newnes Publishing Company, 1976.

Staniar, W., Plant Engineering Handbook, McGraw-Hill, 1959.

APPENDIX C CHENICAL/HATERIAL COMPATIBILITY MATRIX

.

													M	uteria	1											
Chemical Name	Onesical Class	Mild Steel	Type 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cest Iron	Aluminum and Alloys	Nickel	Monel (65 Ni; 30 Cu)	Inconel (80 Ni; 14 Cr; 7 Fe)	Hestelloy B	Mastelloy C	Mastelloy D	Epory Resins	Furnace Resins	C) 286	Phenolic Resins	Sva	Butyl Rubber	Neopreixe	Ceramic	Seran	Polyethylene	Cemerut	Waad
Acet a) dehyde	5	•	•	٠	•	٠	•	+	•	+	•	N	N	H	+	•	٠	•		•		•	N			
Acetanide	6	N	N		N		N	N	N	N	N	N	N	N	•	N	N		N	N	+	N	N	•	N	N
105	3		+	٠	+		+	C	·		•	+	•	+	+	C	+	***	C	+	+	+	•	+		+
ACELIE BOID	3			٠	•		•	C				+	+	•	•	•	•	٠	+	N		+				+
Acetic annydride	38		+	+	+	+	+	C	•	•	•	•	•	٠	•		+	•				+		••		
Acetuse	19	+	+	*	+	+	+	+	٠	+	+	+	+	+	+	+	+	+		٠		+			N	N
Acetophenane	19	+	+	+	+	+	N	•	+	+	+	N	N	N	N	N	+	N		+		+	N		N	N
Acrylonitrile	23, 34	N	N	N	N	N	N	N	N	N	N	N	N	N		N	N		N			N	N	N	N	N
Aldrin	17	N	+	+	N	N	N	N	N	N	N	N	N	N	+	•	N	N	N	N	N	N	N	N	N	N
Ally alcohol	4	N	N	N	N	N	N	•	N	N	N	N	N	N	N	N .	N	*	C	N	N	. N	N		N	N

LEGEND

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

C-2

												•	H	ateria	d											
Chemical Name	Chemical Class	Mild Steel	Type 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cest lron	Aluminum sud Alloys	Nickel	Monel (65 Ni; 30 Cu)	lincole1 (80 Mi; 14 Cr; 7 Fe)	Mastelloy 8	Hastelloy C	Hestelloy D	Epoxy Resins	furnace Resins		Phenolic Resins	PVC	Butyl Rubber	Neoprene .	Ceramic	Saran	Polysthyl ene	Cement .	Mood
Aluminum fluorida	21	С	N	N	N	С	N	+	+	N	N	N	N	N	+	+	N	+	•	+	+	+	+	+	+	+
Aluminum sulfate	21			C	+		+		C	C	С	+	+	•	•	•	+	•	+	+	•	+	•	+		•
Aaino ethanoi	4, 7	•	+	+	N	N	N	+	N	N	N	N	N	N	+	+	+	N	N	+	+	N	N	N	+	N
Ammunia, aq.	10	+	+	+	+	+	+	+				+	+	+	+	+	+	+			•	+		+	N	N
Ammonium fluoride	15			N	•				N	N		N	N	N	•	+		N	+	+	•		+			N
Ammunium hydraxide	10	•	+	+	+	N	N				ب .	N	N	N	+	+	C	+	+	+	+	•		+	N	N
Aniline	7	C	+	•	٠	•	+	+	+	+	+	•	+	+	+	C	+					+	N	+	N	N
Beer			N	+	+	•	N	+	N	+	N	N	N	N		•-	+	+	+	٠	+	N	N	+	N	N
Benzene	16	+	•	+	+	+	+	+	+	+	+	+	+	+		C	.+	+		·		+				N
Benzoic acid	s		+	+	+		+	+	+	•	+	+	+	•	+	٠	•		+	+	+	+	٠	•		N
Benzaly peroxide	27, 33	N	N	+	N		N	N	N	N	N	N	N	N		•••	+		N	N	+	+	N	N	N	N
(lenzy) chtoride	17		N	+			+		+	+	N	+	+	N		C	•	С				•	N	N		·
Borie acid	1		+	•	+		•	+	£	+	• .	+	•	•	+	•	•	· +	+	•	+	•	+	•		N

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

													н	ateria	1											
Chempical Name	Chemical Class	Mild Steel	1 ype 304 Stainless	Type 316 Stainless	Stainless 20 Alloys	Cest Iron	Silicon Cast lron	Alumírium erid Alloys	Nickel	Monel (65 Ni; 30 Cu)	Incomel (BO Ni; 14 Cr; 7 Fe)	Hastelloy B	Hastelloy C	Hestelloy D	Epoxy Resins	Furnace Resins	C) #8#	Phenolic Resins	PVC	Butyl Rubber	Neopreixe	Ceramic	Sarati	Polyethyle ue	Cement	Mood
																	•									
But adžene	25, 34	+	+	+	N	N	N	+ '	N	N	N	N	N	N	N	N	N	N	N	N		N	N		Ν.	N
But ane	26	+	•	+	N	N	N	+	N	N	N	N	N	N	N	N	N		N			N	N	+	N	N
Butyl acetate	13	•	+	+	+	+	+	•	+	+	•	•	•	+	C		٠					٠				N
Calcium hydroxide	10	+	+	•	+	+		C	+	+	+	•	+	+	+	+	C		+	+	•	+	+	+	N	N
Carbanide		N	N	+	N	N	N	+	N	N	N	N	N	N	+	+	+	N	N	•	+	N	N	N	N	N
Curbon disulfide	20	•	N	C	+	+	+	+	+	+	N	N	+	N		+	C	+				+			H	N
Carbon Letrachloride	17			C	+	+	+	C	+	+	+	+	+	+	+	+	+	+	+			+	•		N	N
Carbonic acid		м	+	+	+	N	+	С		N	+	+	+	N	+	•	. +	+	+	•	+	+	+	+		N
Chloric acid	2, 35				+	N	N				N	N	N	N	N	N	+	N	N	N	N	N	N	+	N	N
ChloroaceLoue	17, 19		N	N	N	N	N	~~	N	N	. N	N	N	N	N	N	+					N	N	N		N
LEGENI	L D	L															······	· · ·							•	

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

.

										•			H	ateria	1											
Chemical Name	Chemical Cluss	Mild Steel	1ype 304 Stainless	Type 316 Stainless	Stainless 20 Alloys	Cast Iron	Sálácon Cast Iron	Aluminum and Alloys	Nàcke l	Monel (65 Ni; 30 Cu)	Incomel (80 Ni; 14 Cr; 7 Fe)	Hastelloy 8	Mastelloy C	Hastelloy D	Epoxy Resins	Furnace Resins	C) ass	Phenolic Resime	DVC	Buryl Rubber	Neoptene	Ceranic	Saran	Polyethylene	Cement	hood
Chlocobenzene	17	+	•	•	*	+	•	+	+	•	*	N	N	N	С	+	•					+				N
Chlorocresol	17, 28	С	+	•	•	C	•	*	+	•	+	N	N	N			•		+			+				•
Ch]oroethano]	4, 17	+	+	+	N	N	N	+	N	N	N	N	N	N	+	•	•	N		•		N	. N	N	. N	N
Chtoroform (dry)	17	+	+	+	+	+	+	•	•	+	+	+	•	+	+	C	•	+				+			N	N
Chlorosulfonic acid	1		N	С	٠		+	C	+	+	+	+	+	+			+		٠			N	N	N	N	N
25%	2, 21, 35		•-		C		+				N	N	+	N			•		•	+		+	•	C		N
throate acid 80%	2, 21, 35	+			٠		+				N	N	+	N			•		+			+	+	C		N
Creasul e	28	+	•	٠	C	N	N	C	N	C	N	N	N	N	N	N	+		N			N	- N	N	` 	N
Cresol	28	+	+	•	+	•	+	•	٠	+	N	N	N	N	N	+	•					Ņ	N			N
Савене	16	N	N	٠	N	N	+	+	N	N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N
Cyclohexane	26	C	N	N	•	+	N	+	N	+	N	N	N	N	N	N	٠		•			N	N		N	N
Cyclatexanone	19		N	N	N	N	N	N	N	N	N	N	N	N	N	N	+	^{bv} N				N	N		N .	N
LEGENO)																									

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

<u>.</u>-2

																• •										
													Ma	torial	6				-						-	
Chemical Name	Oremicul Cluss	Mild Steel	Type 304 Stainless	1ype 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cast Iron	Aluminum sud Alloys	Nickel	Monel (65 Ni; 30 Cu)	Incorel (80 Ni; 14 Cr; 7 fe)	Hestelloy 8	Hastelloy C	Hestelloy D	Epoxy Resins	Furnace Resins	C) aB\$	Phenolic Resins	PV.C	Butyl Rubber	Neoprene	Ceranic	Saren	Polyethylene	Cement	Wood
Cyclohexauol	4	N	N	+	N	N	N		N	N	N	N	N	N	•	N	٠	N				N	N	٠	N	N
Diamine	8, 36		+	N	N	N	N	+	N	N	N	N	N	N	N	N	+	. N	N	+		N	N	N	N	N
Dichloroacetone	17, 19	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	'N
Dichloraethyl ether	14, 17	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Dichloromethane	17	+	N	C	N	N	N	٠	N	N	N	N	N	N	N	N	+	N				N	N	N	N	N
Diesel oil	32	+	+	+	٠	+	+	+	· N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N
Diethylamide	6	N	N	N	N	N	N	N	N	Ń	N	N	N	N	N	N	N	N	N	N,	N	N	N	N	N	N
Diethylamine	7	C	+	+	•	N	+	C	+	+	+	N	N	N	N	N	+	N		+	+	+	N	N	N	N
Dimethylformamide	6	N	N	N	N	N	N	+	N	N	N	N	N	N			N	N		+		N	N	N	N	N
Dimethyl hydrazine	8	N	N	N	N	N	N	+	N	N	N	N	N	N	Ň	N	N	N		N	N	N	N	N	N	N
Dimethyl ketone	19	+	+	+	N	N	N	+ '	N	N	N	N	N	N	+	+	+	N		* *		N	N	N	N	N
Dimethyl phthalate	13	N	N	N	N	N	N	+	N	N	N	N	N	N	N	N	N	N	N	+		N	N		N	N
Dioxane	14	•	+	N	N	N	N	C	N	N	N	N	N	N	N	N	+	, N				N	N	N		
Epichlurahydrin	17, 31	+	+	+	N	N	N	+	N	N	N	N	N	N	+	+	+	N				N	N	N	N	N
Ethanul (water free)	4	+	+	+	*	+	*	+	÷	+	+	* *	+	N	+	N	+	+	+	+	+	+	+	N	N	N

+ = Generally suitable C = Conditionally suitable --- = Generally unsuitable N = Insufficient data

C-6

						/							He	ateria	1											
Chemical Name	Chemicul Elusa	Mild Steel	lype 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cest lron	Aluminum and Alloys	Nickel	Monel (65 Ni; 30 Cu)	Incorel (80 Ni; 14 Cr; 7 Fe)	Hestelloy B	Hastelloy C	Hastelloy D	Epoxy Resins	furnace Resina	Glass	Phenolic Resins	PVC	Butyl Rubber	Neoprene	Ceremic	Seten	Polyethylene	Cement	Poor
Ethyl acetate	IJ	+	+	•	+	+	•	+	٠	•	•	•	•	+	•	•	٠	٠		c		+				+
Ethyl benzene	16	N	N	+	N	N	N	+	N	N	N	N	N	N	•	+	•	N		 '		N	N		N	N
Ethylene chlorohydrin	4, 17	+	•	+	+	• .	•	+	+	+	•	•	•	+	+	+	+	N		+		+		·	N	• .
Ethylene diamine	7	N	N	+	N	N	N	C	N	N	N	N	N	N	N	N	+	N	N	+	+	N	N	N	N	N
Ethylene dichloride	17	+	+	+	+	N	+	C	•	+	C	+	N	N	+	C	+	+				•			N	N
Ethylene glycul	4	С	+	+	•	C	+	+	+	+	+	+	+	•	+	. +	.+	+	+	+	+	· +	+	C	N	+
fthylene glycal manabutyl ether	4, 14, 17	N	•	•	N	N	•	•	N	N	N	N	N	N	+	+	•	N	+	*		N	N	N .	N	N
Ethyl ether	14	C	N	C	N	N	N	C	N	N	N	N	N	N			+	N				N	· N		N	·N
Ethyl mercaptum	20		N	•	N	N	N	+	N	N	N	N	N	N			+	N	N			N	N	N	N	N
Fatty acids			•	+	+		·•	•	•	•	+	•	•	. •	• ,	+	+	C	+	•		+	٠	C	,	٠
Fluositicie ucid	1, 15				•				N	C	N	N	N	N	•	+		N	C	•	+	N	N	c	N	N

.

.

LEGÍND

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data
| | | | | | | | | <u></u> | | | | | M | nteria | 1 | • | | | | | | | • | | | |
|--------------------------------------|-------------------|------------|----------------------|--------------------|---------------------|-----------|-------------------|---------------------|--------|----------------------|---------------------------------|-------------|-------------|-------------|--------------|----------------|--------|------------------------------|------------|--------------|-----------|---------|---------------------------------|--------------------------|----------|------|
| Chemical Name | Oreaica)
Claas | Mild Steel | Type JO4 Stainless - | lype 316 Stainless | Stainless 20 Alloys | Cast Iron | Silicon Cast Iron | Alumirum and Alloys | Nickel | Monel (65 Ni; 30 Cu) | Incorel
(80 Ni; 14 Cr; 7 Fe) | Hestelloy B | Hastelloy C | Hestelloy D | Epoxy Resins | Furnace Resins | G] 285 | Ph e nolic Resins | PVC | Butyl Rubber | Neopraine | Ceranic | 141
140
140
140
140 | Polyethyl ene | Centerit | Mood |
| Formal dehyde | 5 | | N | C | ٠ | C | • | C | • | • | • | + | • | • | ٠ | + | • | • | • | • | • | • | • | • | N | N |
| formic acid | 3 | | • | + | • | | + | С | + | + | | • | + | • | • | • | + | С | • | + | + | ٠ | + | • | N | N · |
| Freans | 17 | N | N | + | N | N | N | ε | N | N | N | N | N | N | N | N | N | N | | | | N | N | N | N | N |
| Furan | 14 | • | + | + | N | N | N | + | N | N | N | N | N | N | N | | N | + | N | | | N | N | N | N | N |
| Furforal | 5 | • | • | • | • | • | + | • | • | • | N | N | N | N | | C | • | | | • | | N | N | | N | N |
| Gasol ine | 32 | + | + | + | + | + | + | + | + | ÷ | + | ٠. | * | + | + | + | + | ٠ | C | . | | + | ٠ | · | N | N |
| Gtycerine | 4 | + | + | ٠ | + | + | + | + | + | + | + | C | • | + | N | N | + | + | + | . • | C | + | + | + | | N |
| Hydraz ine | 8, 36 | | + | • | + | | N | + | | | | | | | + | • | · | + | + | C | | N | N | N | N | |
| Hydriodic acid | 1 | N | N | N | N | N | N | | N | N | Ņ | N | N | N | N | | N | | N | N | N | N | N | N | N | N |
| Hydrobromic ucid | 1, 38 | | | | | | • | | N | | N | + | N | N | + | C | • | C | + | + | | ٠ | + | + | | N |
| Hydrochloric acid | 1 | | | | | | + | | | | N | + | N | N | + | C | + | + | + | C | C | + | + | + | N | N |
| 285 | 1 | | | | | | ٠ | | | | N | . • | N | N | + | C | + | | + - | | | + | + | + | N | N |
| Hydrocyanic acid
(concent rut ed) | 1, 11 | C. | + | + | + | C | * | + | + | + | + | + | • | + | + | + | + | C | + | • | | * | * | • | N | N |
| liverafiumria word | 1, 15 | | | | + | | | | | + | N | + | + | + | + | + | | + | + | + | | | | + | | N |
| 75% | 1, 15 | | | | + | | | | | • | N | + | + | + | | | | | C | + | | | | * | | N |
| Hydrofluorosiiicic acid | 15 | | N | C | • | N | N | | N | N | N | N | N | N | + | + | | N | • | + | * | N | N | N | N | N |

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

										•			He	at er i a	1											
Chemical Name	Chemical Class	Mild Steel	1 ype 304 Stainless	1ype 316 Stainless	Stainless 20 Alloys	Cest Iron	Silicon Cast Iron	Alumirum and Alloys	Nickel	Morel (65 N1; 30 Cu)	Incorel (BD Nig 14 Cr; 7 Fe)	Hastelloy B	Hantelloy C	Mestelloy D	Epoxy Resins	furnace Resina	C] #8#	Phenolic Resins	PVC	Butyl Rubber	Neoprere	Ceremic	Sarah	Polyethylene	te st	Poor M
Nydrugen peroxide	27		C	C	C		C	+	С	C	•	N	•	N	N		С	С	•	•	+	•	N	•	С	
Hydroquinune	28	C	+	C	N		N	C	•	•	+	N	N	N	+	•	+	+	+	C	C	•	N	+	N	N
Kerosene	32	•	+	+	•	+	•	•	+	+	<u>+</u> -	+	•	· •	+	•	+	٠	•			+	+		Ņ	N
tactic acid	3		C	C	+		+	C	C	C	+	+	+	+	+	+	+	C	+	+	+	+	+	+	+	N
Matathion	29		N	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Maleic acid	3		•	+	+		+	C	N	N	N	•	N	N	+	+	+	N	+			+	N	+	N	N
Methanol	4	+	+	+	• ,	° +	•	+	+	+	+	+	+	N	+	+	+	+	•	+	•	•	+	•	+	+
Hethyl acrylate	13, 34	+	+	+	N	N	N	+	N	N	N	N	N	N	N	N	+	N	C	C	e	N	N	N	N	N
Hethyl amine	7	+	+	+	N	+	N	C	C	C	+	N	N	N	N	+	• +	+		+	•	•	N	+	+	N
Methyl chloride	17	C	C	C	+	+	+		+	+	+	N	N	N	N	N	•	٠		C		N			N	N
Hethyl ethyl ketone	19	+	+	+	N	N	N	+	N	N	N	N	N	N			•	•		+		N	N		•	N
Hethyl formate	13	•	•	+	N	N	N	+	N	N	- N	N	N	N	N	N	N	N	C	+	+	N	N	N	N	N
Nethyl isobutyl ketone	19	•	+	+	N	N	N	+	N	N	N	N	N	N	C	C	•	+		•		N	N		N	N

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insuffictent data

C-9

														H	ateria	1											
	Chemical Name	(hesical Class	Mild Steel	Type 304 Stainless	Type 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cest lron	Aluminum and Alloys	Nickel	Monel (65 Ni; 30 Cu)	Incowel (80 Ní; 14 Cr; 7 Fe)	Mastelloy B	Hastelloy C	Mastelloy D	Epoxy Resins	Furnece Restris	Class Class	Phenolic Resins	JAd	Butyl Rubber	Neoprene	Ceromic	Satan	Polyethylene	Cenerit	Nood
	Mungethang) anine	4, 7	•	•	•	N	N	N	N	N	N	N	N	N	N	+	•	•	N	N	•	•	N	N	N	N	N
	Naphtha (coal tar)	32	•	+	+	+	•	+	•	•	•	+	+	+	+	•	•	•	•	C			+	N	•	N	N
	Naphthalene	16	N	N	N	+	+	N	+	N	N	N	N	N	N	N	N	N	+				N	•		N	. N
	(105	2		+	+	•	. 	+						+			N	•	Ċ	+	+		•	+	+		
0	Nitrie acid 1005	2		C	C	•		+	C					C				•					+				
	Nitrobenzene	24	•	+	•	+	•	+	+	+	•	+	+	4	•	C	C	•	C		•		٠			N	N
	Nitrophenut	24, 28	С	+	•	N	C	N	+	+	•	+	N	N	N	•	+	+	•		Ņ	N	N	N	N	C	+
	Nitropropene	24	+	N	+	N	N	N	+	N	H	N	N	N	N	N	N	-N	N	+	•		N	N	N	N	N
	Nitratoluenæ	24	+	+	+	+	+	+	+	•	+	+	N	N	N	N	N	+	N	N			+	N	N	•	•
•	Oleic acid	3	С	+	+	+	C	+	•	+	+	•	+	•	+	+	•	•	•	+			•	+			+
	Oleum	2	C	C	C	+	C	N	+			N	N	+	- N			+	N			+	N	N			
	Oxalle acid	3		C	C	•		+	C	+	•	*	+	+	•	•	+	+		+	+	•	+	•	•	•	N
	Parat h ion	29	N	+	+	N	N	N	+	N	N	N	N	N	N	+	•	N	N	N	·N	N	N	N	N	N	N
	Pentachtoropheno1	17, 28	•	•	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insufficient data

-

C-10

		i i											Ha	teria	1											
Dnemical Nume	Chemical Class	Mild Steel	lype 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cest Iron	Silicon Cast Iron	Alumirum and Alloys	Nickel	Moriel (65 Ni; 30 Cu)	Inconel (80 Ni; 14 Cr; 7 Fe)	Mastelloy B	Mastelloy C	Hestelloy D	Epoxy Resins	Furnace' Resint	G1 ass	Phenolic Resine	PVC	Butyl Rubber	Neoprese	Coramic	Saran	Polyethylene	Cement	hoad
Perchloric acid	2						•					N.	N	N	+	•	с	N	C	N		N	N	C		
Phenol	28	+	+	+	•	+	+	+	+	+	+	+	+	+	•	+	•			+		+			+	+
50%	1		+	•	•		+		C	+	C	N	•	N	+	+	•	C	+	+	+		+	+		N
Phosphoric acid 106%	1		C	•	+		•		C	<u> </u>	N	Ņ	+	N	+	+	+	• •••	+	+	N		N	N		N
Phthalic acid	3	. C	+	+	+	C	+	+	+	•	•	+	+	N	+	N	•	N	N	+	N	+	. •	N	N	N
Phthalic anhydride		C	+	+	+	С	+	•	+	+	+	+	+	N	+	N	+	N	N	+	N	+	+	N	N	+
Pierie weid	24, 28, 33		٠	+	+		+				·	+	+	+	N	N	•			N		+		+	N	N
Potassium cyanide	11	+	+	+	+	C	+		+	+	+	+	+	+ '	+	+	C		+	+ `	+	٠	+	+	+	N
Propiolactone	13	N	+	+	N	N	N	N	N	N	N	N	' N	N	N	N	N	N	N	N	N	N	N	N	N	N
Pyridine	7	+	•	+	+	+	+	+	N	N	N	N	N	N	N	N	+	+				•	N	+	+	+
Quinone	19	+	+	+	+	+	+	+	+	+	+	N	N	N	N	N	+	N	N	N	N	+	N	+	+	+
Resorcinot	28	N	N	N	N	N	N	+	N	N	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N

.

+ = Generally suitable C = Conditionally suitable -- = Cenerally unsuitable N = Insufficient data

C-11

													H	uteria	1	· · · ·										
Cremicul Nume	Chemical Class	Mild Steel	1ype 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cest Iron	Silicon Cast lron	Aluminum and Alloys	Nickel	Monel (65 Ni; 30 Cu)	Incomel (80 Ni; 14 Cr; 7 Fe)	Mestelloy B	Hastelloy C	Mastelloy D	Epoxy Resins	furme Resins	Gl eess	Phenulic Resins	PVC	Butyl Rubber	Neoprene	Ceremic .	Saran	Polyethylene	Cemerit	Pagy
Sulycilic acid	3	C	+	+	+	C	+	C	+	•	+	N	N	N	+	+	٠	٠		٠	. C	٠	٠	•	N	•
Silver nitrate	21, 35		٠	•	•	+	+				+	+	٠	+	•	•	+	+	+	+	+	+	+	+	N	N
Soup solutions		C	C	C	+	C	+	C	+	C	+	+	•	+	+	+	+	+	+	+	٠	+	N	+	N	N
Sodium carbonate	10	+	+	+	+	•	+		+	٠	٠	٠	٠	•	+	+	+	+	+	•	٠	+	+	+	C	N
Sodium chloride		+	C	C	+	C	+	C	+	•	C	•	+	+	٠	+	•	•	+	•	•	٠	+	+	+	+
Sodium cyanide	\mathbf{n}^{+}	+	+	+	•	+	+					N	N	N	+	+	C	+	+	+	•	٠		+	+	+
Sudium hydraxide	10	+	+	+	+	•			+	+	+	•	N	•	*	+	C	••	` +	+	+			+	+	N
Sodium hypochiorite	10, 35				C		+		C	C	C		+		C		+	•••	+	٠		•	٠	+	N	N
St yrene	16, 25, 34	N	N	C	N	N	N	+	N	N	N	N	N	N	N	н	•					N	N		N	N
Sulfuric acid (O to 30%)	2, 38			C	+		C			•		•	+	+	+	•	+		•	٠	+	+	.+	+	N	N
Sulfuric acid (50%)	2, 38				+		+			+		+	•	+	+	+	+		+	•	+	+		+	N	• N
Sulfuric acid (95%)	2, 38	С		C	+	+	•			C		•	•	+			+					+			N	N
Sulfur trioxide (dry)	35, 38	+	+	` +	•	+		•				N	N	N	+	N	· •	N	•	+		+	+	+	N	N
letrachloraethane	17	N	N	+	N	N	N.		'N	N	N	N	N	N	+	+	+	N				N	N	N	N	N
letraethyl lead	21	N	N	+	N	N	N	N	N	N	N	N	. N	N	N	N	N	N .	+		N	N	N	+	N	N .

+ = Generally suitable C = Countitionally suitable -- = Generally unsuitable N = Insufficient data

								-					He	steria	1											
Chemical Nume	Chemical Class	Mild Steel	Type 304 Stainless	lype 316 Stainless	Stainless 20 Alloys	Cast Iron	Silicon Cest Iron	Alumirum and Alloys	Nickel	Monel (65 Ni; 30 Cu)	Inconel (BO Ni; 14 Cr; 7 Fe)	Hastelloy B	Mestelloy C	Hastelloy D	Epoxy Resins	Furnace Resins	G] asta	Phenolic Resins	PVC	Butyl Rubber	Neoprene	Ceremic	Saran	Pol yethy l tne	Cement	Neod
Tet rahydrofurau	14	N	N	•	•	N	N	N	N	N	N	N	+	N		N	N	N		N		٠	N		N	N
lotuene	16	•	•	•	•	•	•	+	•	+	+	+	+	•	+	+	+	+				•	•		С	С
lransformer uil		N	N	+	N	N	N	+	N	N	N	N	N	N	•	•	•	•			÷	N	N	N	N	N .
Irichloroethylene	17			•	•	•	+	•	•	•	+	+	•	•	•	. N	• •	+		с		•			N	N
Iurpent ine	32	N	N	•	N	N	N	+	N	N	N	N	N	N	•	+	•	N	N			N	N	•	N	N
lirea		N	N	+	N	N	N	+	N	N	N	N	N	N	+	+	+	N	+	+	•	N	N	+	N	N
Xylene	16	+	•	N	N	N	N	•	N	N	N	N	N	N			+	+	N			N	N			N
Zine chloride	21		C	C	+		+	C	+	+	+	+	+	N	+	+	+	+	+	•	+	+	+	+	N	C
																		•								

+ = Generally suitable C = Conditionally suitable -- = Generally unsuitable N = Insuffictent data

APPENDIX D

COUNTERMEASURES FOR HAZARDOUS SUBSTANCE SPILLS ON LAND AND WATER

Source: Pilie, R.J., R.E. Baier, R.C. Zeigler, R.P. Leonard, J.C. Michalovic, S.L. Pek, and D.H. Bock; 1975. Methods to Treat, Control and Monitor Spilled Hazardous Materials, EPA-670/ 2-75-042, National Environmental Research Center, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio. Appendix D consists of matrix of countermeasures recommended for treating hazardous substance spills. Chemicals are listed in alphabetical order in the first column. The second column identifies each compound's EPA Toxicity Classification, based on LC50 toxic concentrations, as follows:

Category	Toxicity Range
A	LC50 < 1 ppm
B	1 ppm < LC50 < 10 ppm
C	10 ppm < LC50 < 100 ppm
D	100 ppm < LC50 < 500 ppm

The third and fourth columns list, respectively, the density and physical form (solid or liquid) of the pure hazardous substance. The physical/chemical properties of a chemical discharge (solubility, density, volatility, and ability to disperse in water) must be considered in estimating its potential to harm the environment. Column five identifies the P/C/D category, which takes into account physical/ chemical properties. The P/C/D categories are as follows:

IVF - Insoluble Volatile Floater
INF - Insoluble Non-volatile Floater
IS - Insoluble Sinker
SM - Soluble Mixer
P - Precipitator
SF - Soluble Floater

- M Miscible
- SS Soluble Sinker

The remaining columns of the matrix indicate which categories of countermeasures are effective for controlling hazardous substances discharged on the ground or into water.

	1	<u> </u>	ľ	1	MAS	S TRANSFER N	IÊDIA	NEUTR	ALIZING	T T		1		1	
MATERIAL	EPA CATE- GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GDRY	ACTIVA- TEO CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
ACETALDENYDE	C	0.783	L	м	٠				•			•	•		
ACETIC ACID	C	1.049	L	м	٠				•		•	•	•		
ACE TIC ANHYDRIDE	C	1.083	L	SF	•				•		•	•	•		•
ACE TONE CYANOHYDRIN	С	0.90	L	SF	•							•	٠		•
ACETYL BROMIDE	D	1.62	L	SS	•		٠					٠	•		
ACETYL CHLORIDE	٥	1.11	L	\$\$	•				•			٠	•		
ACROLEIN	A	0.839	L	SF	•						•	•	•		•
ACRYLONITRILE	C	0 807	L	SF	•					[•	•		•
ADIPONITRILE	Ø	0.95	L	SF	•							•	•		٠
ALDRIN	A	1.65	\$	15	•										
ALLYL ALCOHOL	8	0.854	L	м	•						•	•	٠	'	
ALLYL CHLORIDE	C	0.9	L	IVF	•						•	•	•		•
ALUMINUM FLUORIDE	D	2.68	\$	P	٠	٠	٠			•					
ALUMINUM SULFATE	D	1.69	s	P	٠					•					
AMMONIA	C	0.60	L	SF	٠	٠		٠				•			٠
AMMONIUM ACETATE	٥	1.073	s	\$M	٠	٠									
AMMONIUM BENZOATE	0	1.25	s	55	٠	•	•								
AMMONIUM BICARBONATE	٥	1.58	s	85	٠	٠									
AMMONIUM BICHROMATE	٥	2.16	s	\$\$	٠	٠	•			•					
AMMONIUM BIFLUORIDE	Ð	1.21	s	55	•	•	•			•					
AMMONIUM BISULFITE	a	-	8	55	•	•								•	
AMMONIUM BROMIDE	Ð	2.43	S	<u>55</u>	•	٠	•								
AMMONIUM CAHBAMATE	a	-	S	85	•	•	•						,		
AMMONIUM CARBONATE	\$	' -	5	5M	•	٠									
AMMONIUM CHLORIDE	Ð	1.63	\$	\$\$ <u>.</u>	•	•									
AMMONIUM CHROMATE	D	1.91	S	55	•	٠	٠								
AMMONIUM CITRATE	D .	-	8	S S	•	•									
AMMONIUM FLUOBORATE	a	1.85	S	S S	•	•	٠								
AMMONIUM FLUOHIDE	D	1.31	8	5M	•	٠	٠			۲					
AMMONIUM HYDROXIDE	C	0.9	\$/L	M	٠	٠		٠							
AMMONIUM HYPOPHOSPHITE	D	-	S	\$ \$	•	٠									
AMMONIUM IODIDE	D	2.56	S	SM	•	٠	٠								
AMMONIUM NITRATE	D	1.66	6	SM	•	•	•								
AMMONIUM OXALATE	. D	1.50	6	55	•	•	•								
AMMONIUM PENTABORATE	ą	-	S	55	•	•	•			·					
AMMONIUM PERSUL FATE	D	1.98	8	55	٠	•									
AMMONIUM SILICOFLUORIDE	C	2.01	\$	SS		٠	٠								

					MAS	S TRANSFER N	IEDIA	NEUTR	ALIZING						
MATERIAL	EPA CATE GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA- TED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACIĐ	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
AMMONIUM SUL FAMATE	۵	-	s	SM	•	٠	•								
AMMONIUM SUL FIDE	Q	1.02	5	SS	•	٠	٠							٠	
AMMONIUM SUL FITE	D	1.41	5	55	•	٠	٠							•	
AMMONIUM TARTRATE	D	1.61	s	55	•	٠	•								
AMMONIUM THIOCYANATE	Ð	1.31	\$	SM	•	٠	•								
AMMONIUM THIOSULFATE	Ø	-	S	SM	•	٠	٠								
AMYL ACETATE	C	0.88	L ·	INF	•						•	•	•		•
ANILINE	C	1.022	L	S S	•						•	•	•		•
ANTIMONY PENTACHLORIDE	С	2.34	S	P	•	٠				•					
ANTIMONY PENTAFLUORIDE	С	2.99	8	P	•	٠	٠			٠					
ANTIMONY POTASSIUM TARTRATE	C	2.6	S	P	•	•	•			•					
ANTIMONY TRIBROMIDE	C	4.14	S	P	•		۲			٠					
ANTIMONY FRICHLORIDE	C	3.14	S	P	•	٠				•					
ANTIMONY TRIFLUORIDE	C	4.38	S	P	•	•	۲			•					
ANTIMONY TRIOXIDE	C	6.2	S	\$	•	•				•					
ARSENIC ACID	C	2 · 2 6	5	P	٠		٠		•	•		•	٠		
ARSENIC DISUL FIDE	С	3.4	S	15	•	•	•			٠		•	•		
ARSENIC PENTOXIDE	8	4.09	s	P	٠	٠				•					
ARSENIC TRICHLORIDE	C	2.16	S	P	•	٠		_		•					
ARSENIC TRIOXIDE	8	3.89	8	P	•	•	•			٠					
ARSENIC TRISUL FIDE	8	3.43	S	IS	٠	٠	٠			•					
BARIUM CYANIDE	A	-	S	55	٠	•	•			•				٠	
BENZENE	C	0.879	L	INF	٠							•	•		•
BENZOIC ACID	Ð	1.266	8	\$\$	•				•			•	•		
BENZONTAILE	C	1.01	L	SS	•							٠	٠		
BENZOYI CHLORIDE	D	1.20	4	S 5	٠							•	•		
BENZYL CHI ORIDE	Ð	1.09	L	15	•							•	•		
BERYLLIUM CHLORIDE	Ð	1.90	\$	P	•	٠				•					
BERYLLIUM FLUORIDE	C	1.99	8	P	•	•	•			•					
BERYLI IUM NITRATE	C	1 56	5	P	•	•		ļ		٠					
BUTYL ACETATE	C	0.89	Ł	SF	•	·					•	•	•		•
BUTYLAMINE	C	0.74	L	м	•						l 	•	•		
BUTYRIC ACID	D	1.00	L	M	•		•		•		•	•	•		•
CADMILIM ACETATE	•	2.01	S	SS	•	•				•					
CADMIUM BHOMIDE	•	5.19	5	•	•	•	•			•					
CADMIUM CHLORIDE	•	4.05	8	P	•	•				•					
CALCIUM ARSENATE	C	3.0	s	15	•		•	L		•.					

[<u> </u>	MAS	S TRANSFER	AEDIA	NEUTE	ALIZING						
MATERIAL	EPA CATE- GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA TED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSOABING AGENT	OXIDIZING AGENT	DISPERSING AGENT
GALCIUM ARSENITE	C	-	5	55	•										
CALCIUM CARBIDE	Ð	2.2	8	P	•										
CALCIUM CHROMATE	D	2.89	S	55	•		•								
CALCIUM CYANIDE	•	-	\$	SS	•		. •							٠	
CALCIUM DODECYLBENZENE SULFONATE	8	-	8	55	•		٠								
CALCIUM HYDROXIDE	Ð	2.604	5	S S				٠							
CALCIUM HYPOCHLORITE	A	2.35	\$	SM	•				•						
CALCIUM OXIDE	a	3.40	s	SM	•										
CAPTAN	•	1.5	S	65	•								•		
CARBARYL	ß	-	S	S S	•								•		
CARBON DISULFIDE	C	1.26	L	<i>5</i> 5	•							•	•	· .	
CHLORDANE	A	1.59	L	IS	•							•	٠		
CHLORINE	A	3.2	L	SF	٠								٠		
CHLOROBENZENE	8	1.1	L	15	•							•	•		
CHLOROFORM	a	1.5	L/G	15	•							•	. •		
CHLOROSULFONIC ACID	C	1.8	L	55	•		•		•			•	•		
CHROMIC ACETATE	a	-	S	55	•	٠				•					
CHROMIC ACID	û	2.7	L	SM	٠	٠			٠	•		•	•		
CHROMIC SULFATE	D	1.7	\$	55	٠	•				•					
CHROMOUS CHLORIDE	a	2.87	\$	IS	•	•				•					
CHROMYL CHLORIDE	D	1.91	5	55	•	• .				•					
COBALTOUS BROMIDE	C	2.47	\$	P	. •	٠	•			٠					
COBALTOUS FLUORIDE	С	4.46	S	P	•	٠	٠	•		•					
COBALTOUS FORMATE	С	2.13	\$. P	•	•				•					
COBAL TOUS SUL FAMATE	C	-	S	P	•	٠				•					
COUMAPIIOS	•	-	s	SS	•								٠		
CRESOL	8	1.0	s	S S	•						٠	٠	•		•
CUPRIC ACETATE	8	1.9	s		•	•				•					
CUPRIC ACE TOARSENITE	a	-	\$	15	•	•	٠			•					
CUPAIC CHLORIDE	a	3.39	S	P	•	•			_	•					
CUPRIC FORMATE	6	1.83	s	P	•	٠				٠					
CUPRIC GLYCINATE	8	. –	S	P	•	•				۲					
CUPRIC LACTATE	8	-	S	P	•	•				•					
CUPRICNITRATE	8	2.32	s	P	•	•				•					
CUPRIC OXALATE	6	-	\$	15	•	•	٠			٠					
CUPHIC SUBACETATE	8	1.9	S	P	a. •	•				٠					·

	•				a				•						
	1				MAS	S TRANSFER	AEDIA	NEUTR	ALIZING						
MATERIAL	EPA CATE- GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA TED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
CUPRIC SULFATE	8	2.28	5	P	•	•				٠					
CUPRIC SULFATE AMMONIATED	8	~	S	P	•	٠				ť					
CUPHIC TANTRATE	в	-	6	iS	•	٠				•					
CUPROUS BROMIDE	ß	4.72	6	15	•	٠	•			٠					
CYANOGEN CHLORIDE	•	1.186	G	55	•	٠									
CYCLOHEXANE	C	0.779	L	INF	•						•	•	٠		•
2, 4 D ACID	B	0.82	-	15									•		
2, 4 D ESTERS	a	-	-	IS									٠		
DALAPON	a	1.38	L	55	•							•	•		
TQQ	A	- 1	5	IS	•			•				•	٠		
DIAZINON	•	1.116	L	18	•							•	•		
DICAMBA	C	-	5		•								٠		
DICHI OBENIL	c	-	8	55	•								٠		
DICHLONE	•	-	s	55	•							•	•		
DICHLORVOS	A	-	L	55	•								٠		
DIELDHIN	•	1.76	5	SS	•								•		
DIETHYLAMINE	c	0.71	L	SF	•						•	•	•		٠
DIMETHYLAMINE	C	0.68	L	SF	•						•	•	٠		•
DINITROBENZENE	C	1.54	L	SS	•						•	•	•		•
DINITROPHENOL	a	1.68	L	SS	•						•	٠	•		•
DIQUAT	c	-	s	55	•								٠		
DISUL FOTON	A	1.14	L	SS	•								٠		
DIURON	8	-	5	55								•	•		
DODECYLBENZENESULFONIC ACID	8	-	L	SS	•		•				•	•	•		•
DURSBAN	8.	-	-	\$ 5	•							·	٠		
ENDOSULFAN	•	-	S	\$ 5	•								•		
ENDRIN	A	-	5	IS	•										
ETHION	A	1 22	L	\$ \$	•							•	•		
E THYLUENZENE	С	0.958	L	INF	•						•	•	•		٠
ETHYLENEDIAMINE	c	0.96	L	SF	٠						•	•	•		٠
EDTA	D	-	s	IS	•						•		•		•
FERRIC AMMONIUM CITRATE	C	-	6	P	•	٠	•			٠					
FERRIC AMMONIUM OXALATE	c	-	6	P	•	٠				٠					
FERRIC CHLORIDE	C	2.89	6	P	•	٠				e. •					······································
FERRIC FLUORIDE	C	3.52	s	P	•	•	•			•					
FEARIC NITRATE	C	1.68	s	P	•	٠				•					
FERHIC SULFATE	c	2.0	s	P		•									

ſ	[[MASE	TRANSFER N	IEDIA	NEUTA	ALIZING					[
MATERIAL	EPA CATE- GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA JED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	A BSORBIN G AGENY	OXIDIZING AGENT	DISPERSING AGENT
FERROUS AMMONIUM SULFATE	C	1.87	s	P	•	•	•			•					
FERROUS CHLORIDE	С	1.93	s	P	•	٠				. •					
FERROUS SULFATE	C	1.899	8	۴	٠	•				•					
FORMALDENYDE	C	0.815	٤	·M	•		٠		·		•	•	•		•
FORMIC ACID	C	1.22	L	M	•				•		٠	•	٠		•
FUMARIC ACID	D	1.635	Ł	55	•				•		•	•	٠		•
FURFURAL	C	1.15	L	55	•						•	•	•		•
GUTHION	A	1.44	L	iS	•							•	•		
HEPTACHLOR	•	1.58	5	IS	٠								•		
HYDROCHLORIC ACID	D	1.00	L	55	•		•		•			•	٠		
HYDROFLUORIC ACID	٥	1.15	Ł	м	•		•		٠				•		
HYDROGEN CYANIDE	A	0.70	L/G	м	•		•		٠			•	•	•	
HYDROXYLAMINE	D	1.23	\$	S S	•								•		
ISOPRENE	C	0 68 1	L	IVF	•						•	•	•		•
ISOPROPANOLAMINE DODECYL- BENZENESULFONATE	8	0.90	L	85	•						•	•	•		•
KELTHANE	С		-	IS	•								•		
LEAD ACETATE	D	2.25	S	8	•	•	٠			•					
LEAD ARSENATE	Ð	7.8	8	IS		•	•			٠					
LEAD CIILORIDE	D	5.85	S	P	•	٠				٠				·	
LEAD FLUBORATE	D	-	8	P	٠	•	•	-		•					
LEAD FLUORIDE	С	8.2	8	15	•	•	•			•					
LEAD IODIDE	D	6.16	S	15	•	٠	•			٠					
LEAD NITRATE	Ð	4.63	S	P	•	٠	•			٠					
LEADSTERATE	a	1.4	S	P	٠	٠				•					
LEAD SULFATE	٥	6.2	s	is	•	٠				•					
LEAD SULFIDE	C	7.1	8	is	٠	•	٠			•				•	
LEAD TETHAACETATE	D	2.23	S	P	٠	•				•				•	
LEAD THIOCYANATE	D	3.8	8	(S	•	. •				•					,
LEAD THIOSULFATE	Ð	5.18	S	, IS	•	٠				•					
LEAD TUNGSTATE	0	8.24	s	IS	•		٠			•					
LINDANE	A	1.87	8	55	. •								•		
LITHUM BICHHOMATE	Q	2.34	8	SM		٠	•			•					
LITHIUM CHROMATE	Q	-	8	SM	•	٠	٠			٠					
MALATHION	<u>A</u>	1.23	L	SS								•	•		
MALEIC ACID	٥	1.69	S	55	•				٠		•		•		٠
MALEIC ANHYDRIDE	Q	0.934	5	SF	•				٠		•		•		٠

ſ					MASS TRANSFER MEDIA		NEUTRALIZING				1				
	EPA		mayereas	P/C/D	ACTIVA			A	GENT	PRECIPI	BIOLOGICAL	GELLING	ARCORAING	00007002	0.696.05.00.0
MATERIAL	GORY	DENSITY	FORM	GORY	CARBON	RESIN	RESIN	ACID	BASE	AGENT	AGENT	AGENT	AGENT	AGENT	AGENT
MERCURIC ACETATE	•	3.25	S	P	•	•				•			•		
MERCURIC CYANIDE		4.09	S	P	•	•	•			•			•	•	
MERCUHIC NITRATE	A	4.3	8	P	•	٠				•			•		
MERCURIC SULFATE	•	6.47	\$	P	٠	٠				۲			٠		
MERCURIC THIOCYANATE	•	-	5	15	•	٠	•			٠			٠		
MERCUROUS NITRATE	•	4.79	S	P	•	٠				•			٠		
METHOXYCHLOR	A	1.41	S	IS	٠								٠		
METHYL MERCAPTAN	8	0 87	L/Q	INF	•							•	٠		٠
METHYL METHACRYLATE	D	0.936	L	INF	•				. •			٠	٠		•
METHYL PARATION	B	1.358	L	IS	•							•	•		
MEVINPHOS	۸	-	L	M	•							•	•		•
MONDETHYLAMINE	С	101	-	M	•								•		•
MONOMETHYLAMINE	C	-	-	SF	•								•		٠
NALED	A	-	\$/L	15	•							•	•		
NAPTHALENE	8	1.162	S	15	•										
NAPTHENIC ACID	A	1.4	s	\$\$	٠							٠	•		
NICKEL AMMONIUM SULFATE	Ð	1.92	8	P	•	•				•					
NICKEL CHLORIDE	D	3.65	s	P	•	٠				•					
NICKEL FORMATE	C	2.15	8	P	•	•				•					
NICKEL HYDROXIDE	С	4.36	8	15	•	٠				•					
NICKEL NITRATE	Ð	2.05	's	P	• .	. •				•					
NICKEL SUFLATE	۵	1.948	s	P	•	٠	-			٠					
NITRIC ACID	c	1.602	L	*	•				•			•			
NITHOBENZENE	Ð	1.19	L	SS	•							٠	٠		
NITROGEN DIOXIDE	с	1.448	L/G	M	•										
NITAOPHENOL	8	1.4	L	SS	•						•	٠	•		٠
PARAFORMALDEHYDE	C	1.46	s	S S	•						•		•		•
PARATHION	•	1.26	L	4S	•							•	•		·
PENTACHLOROPHENOL	A	1.978	8	15	٠							٠	٠		
PHENOL	B	1.071	\$	S 5	•		•				•	٠	٠		
PHOSGENE	Q	1.392	G/L	55	•								•		•
PHOSPHORIC ACID	Q	1.834	L	M	•				٠			٠	٠		
PHOSPHOROUS	A	1.8 + 2.7	\$	15											
PHOSPHOROUS OXYCHLORIDE	Q	1.67	L	SS	•	٠						•			
PHOSPHOROUS PENTASULFIDE	C	2.03	\$	\$ \$	•										
PHOSPHOROUS THICHLORIDE	Ø	1.574	8	55	•	٠	٠								
POLYCIILORINATED BIPHENYLS	A	-	8	1 5									۲		

	1	[[[MASS TRANSFER MEDIA		NEUTRALIZING					1			
MATERIAL	EPA CATE- GORY	DENSITY	PHVSICAL FORM	P/C/D CATE- GORY	ACTIVA- TED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
POTASSIUM ARSENATE	С	2.87	8	P	•		•								
POTASSHIM ARSENI FE	c	-	s	P	•		•								
POTASSIUM BICHROMATE	D	2.68	\$	SS	•		•								
POTASSIUM CHROMATE	D	2.73	S	SS	•		•						<u> </u>		
POTASSIUM CYANIDE	•	1.62	s	SS	•		٠							•	
POTASSIUM HYDHOXIDE	C	2.04	s	SM	•			•							
POTASSIUM PERMANGANATE	8	2.7	s	55	•		•								
PROPRIONIC ACID	0	0.993	Ł	M	•				•		•	•	•		٠
PROPRIONIC ANHYDRIDE	D	1.013	L	M	•				•		• .	•	•		•
PROPYL ALCOHOL	D	0.8	L	M	•						•	•	•		•
PYRETHRINS	С	-	L	\$5							•	•	•		· · · · · · · · · · · · · · · · · · ·
QUINQLINE	A	1.09	L	5\$	•							•	•		•
AESORCINOL	8	1.27	5	55	•						•		•		
SELENIUM OXIDE	C	3.954	\$	SS	•	•				٠					
SODIUM	C	0.971	s	SS											
SODIUM ARSENATE	C	1.76	s	5\$	•		•								
SODIUM ARSENITE	c	1.87	s	S S	•		•								
SODIUM BICHROMATE	0	2.52	\$	SM	•	٠									
SODIUM BIFLUORIDE	0	2.08	\$	SS	•		•			•					
SODIUM BISULFITE	D	1.48	\$	S S	•		•							٠	
SODIUM CHROMATE	D	1.483	\$	55	•		•								
SODIUM CYANIDE	A	1.48	8	55	•	•	٠							•	
SODIUM DODECYLBENZENE SULFONATE	8	-	8	55	•		٠				•		•		•
SODIUM FLUGRIDE	D.	2.78	\$	S S	•		٠			•					
SODIUM HYDROSULFIDE	D'		S	S S	•		•						•		
SODIUM HYDROXIDE	C	2.13	L	S \$	•			•				٠			
SODIUM HYPOCHLORITE	•	-	\$	SM	•		•								
SODIUM METHYLATE	c	2.4	s	\$\$	•		•				٠		•		•
SODIUM NITRITE	8	2.17	\$	\$\$	•								•		
SODIUM PHOSPHATE MONOBASIC	D	2.04	8	55	•						·				
SODIUM PHOSPHATE DIBASIC	Ø	2.06	s	SM	•										
SODIUM PHOSPHATE TRIBASIC	۵	1.5	\$	S S											
SODIUM SELENITE	C	1.63	s	55			•								
SODIUM SULFIDE	c	1.856	s	SS	•		۲			٠				•	
STANNOUS FLUORIDE	D	2.79	8	85		۲	•			۲					
STRONTIUM CHHOMATE	Ð	-	S	1 5	•	٠	٠			•					

.

1

[MASS TRANSFER MEDIA			NEUTR	ALIZING		· · · · · · · ·			<u> </u>	
MATERIAL	EPA CATE GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA TED CARBON	CATIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
STRYCHNINE	C	1.36	\$	\$ 5	•								•		•
STYRENE	C	0.909	Ł	INF	•							•	•		•
SULFURIC ACID	c	1.834	L	M	•				٠			•	٠		
SULFUR MONOCHLORIDE	D	1.69	5	S S	•				۲						
2, 4, 5 T ACID	•	-	s	IS									•		
2, 4, 5 T ESTEAS	A	-	s	IS									٠		
TDE	A	-	s	IS	•								•		1
TETRAETHYL LEAD	•	1.659	L	1\$	•							•	•		
TETRAETHYL PYROPHOSPHATE	8	1.2	L	м	•							•			
TOLUENE	С	0 86	L	INF	•						•	٠	٠		•
TOXAPHENE	A	1.66	L	IS	•							٠	•		
TRICHLOHFON	8	1.73	S	SS	•								•	· · · · · · · · · · · · · · · · · · ·	
TRICHLOROPHENOL	•	1.1	L	IS	•						-	•	٠		1
THIE THANOLAMINE DODECYL- BENZENESULFONATE	8	-	L	55	•							•	٠		
TRIETHYLAMINE	c	1.13	L	SF	•						•	•	٠		•
TRIMETHYLAMINE	C	0.66	L	SF	•						٠	•	٠		•
URANIUM PEROXIDE	D	2.5	\$	15	•	•				٠					
URANYL ACETATE	a	2.89	S	P	•	٠				•					
URANYL NITRATE	D	2.80	s	P	•	•				•					
URANYL SULFATE	D	3.28	S	P	•					•					
VANADIUM PENTOXIDE	C	3.36	S	P	•	٠				•					
VANADYL SUFATE	C	-	S	P	•	•				٠					
VINYL ACETATE	С	0.94	S	SF	•						•	٠	٠		•
XYLENE	C	0.86	L	INF	•							٠	٠		•
XYLENOL	c	1.02	L	65	•							1 •	•		
ZECTRAN	C	-	-	55	•								•		
ZINC ACETATE	С	1.735	S	P	•	•				•					
ZINC AMMONIUM CHLORIDE	C	1.80	S	P	•	•	•			•			· · · · · · · ·		
ZINC BICHROMATE	C	-	S	P	•	•	٠			•					
ZINC BORATE	C	3.64	S	P	•	•	•								
ZINC BROMIDE	C	4.22	S	8	٠		٠			•					
ZINC CARBONATE	C	4.42	S	IS	٠	•				•					
ZING CHLORIDE	С	2.907	S	P	•	٠				٠					
ZINC CYANIDE	•	1.85	s	15	•	٠	•			•				•	
ZINC FLURODIE	С	4.84	S	P	•	•	٠			•					
ZINC FORMATE	С	2.21	s	P	•	•				•					

					MAS	MASS TRANSFER MEDIA		NEUTRALIZING AGENT							
MA TERIAL	EPA CATE- GORY	DENSITY	PHYSICAL FORM	P/C/D CATE- GORY	ACTIVA- TED CARBON	CA TIONIC RESIN	ANIONIC RESIN	ACID	BASE	PRECIPI- TATING AGENT	BIOLOGICAL TREATMENT AGENT	GELLING AGENT	ABSORBING AGENT	OXIDIZING AGENT	DISPERSING AGENT
ZINC HYDROSUL FITE	C	-	S	P	•	•	•			•				•	
ZINC NITHATE	C	2.07	S	P	•	۲				٠					
ZINC PHENOLSULFONATE	C	-	s	P	•	٠	•			٠					
ZINC PHOSPHIDE	C	4.55	S	IS	•	٠	•			•					
ZINC POTASSIUM CHROMATE	C	-	S	IS	•	•	•			•					
ZINC SULICOFLUORIDE	C	2.1	s	P	•	•	•			٠					
ZINC SULFATE	C	3.54	s	P	•	٠				•					
ZINC SULFATE MONOHYDRATE	C	3.28	s	P	٠	٠				•					
ZIRCONIUM ACETATE	Ð	-	s	P	•	•				•					
ZINCONIUM NITRATE	D	-	S	٣	•	۲				•					
ZIRCONILIM OXYCHLORIDE	Ð	-	S	P	•	٠				•					
ZIRCONIUM POTASSIUM FLUORIDE	Û	-	S	P	•	•				•					
ZINCONIUM SUL FATE	Q	3.22	5	P	•	•				•					
ZINCONIUM TETRACHLORIDE	D	2.8	8	P	•	•				٠					