Date:

.

April 1995

To:

Kim Lanterman Remedial Project Manager US EPA, Region IV Waste Division, SFRB

From:

Bobbi L. Carter 1980 US EPA, Region IV

Ecological Support Branch

Document Title/Description:

Report on Additional Ecological Assessment of Streams in the Vicinity of Interstate Lead Company (ILCO) Superfund Site, Leeds, Alabama. Comain Facility Superfund Site Account # TFA04D9J4

904-R-94-041

REPORT ON THE ADDITIONAL ECOLOGICAL ASSESSMENT OF STREAMS IN THE VICINITY OF INTERSTATE LEAD COMPANY SUPERFUND SITE MAIN FACILITY

LEEDS, ALABAMA

JULY 1994

PREPARED BY:

U.S. ENVIRONMENTAL PROTECTION AGENCY ENVIRONMENTAL SERVICES DIVISION, ECOLOGICAL SUPPORT BRANCH AND ESAT, BIOLOGICAL ASSISTANCE TEAM

INTRODUCTION

A preliminary ecological assessment of streams near the Interstate Lead Company (ILCO) Superfund Site Main Facility, conducted during the first two weeks of March 1994, involved the evaluation of surface water and sediments (analyzed for metals, volatile and extractable organics, pesticides, PCB's, total organic carbon, and toxicity) and forage fish tissue (analyzed for metals, extractable organics, pesticides, PCB's, and percent lipids). Rapid Bioassessments Protocol I (RBP I) were also performed at each station for the purpose of detecting aquatic life impairments. The RBP I included habitat assessments, physicochemical measurements, and qualitative benthic macroinvertebrate surveys.

Results of the March study (USEPA 1994a) revealed elevated levels of lead in sediment, water, and fish tissue samples collected from the unnamed tributary that drains the ILCO Main Facility and from Dry Creek downstream of the site.

This preliminary screening (USEPA 1994a) provided evidence that site-derived lead contamination had been transported off-site. Additional sampling at downstream locations was needed to evaluate the extent and magnitude of site-derived lead contamination and to evaluate lead accumulation in fish tissue. Consequently, additional sampling of streams draining the ILCO Main Facility was conducted by ESB in July 1994. Since lead was determined to be the primary chemical of concern at the ILCO site, and also to provide a more complete view of site conditions, results of lead chemistry from both sampling events (March and July 1994) are presented in this report.

OBJECTIVES

Objectives of this study were to better determine the extent and magnitude of site-derived lead contamination in streams draining the ILCO Main Facility and to evaluate the bioaccumulation of lead in fish tissue downstream of the site.

METHODS

To accomplish these objectives, biologists collected water, sediment, and fish at a series of sampling stations along Dry Creek and the Little Cahaba River (Figure 1) for lead analysis.

Since a number of ILCO subsites exist, control stations (representing in-stream conditions upstream of and exclusive of contributions from the ILCO Main Facility) were selected for Dry Creek (station #3) and the Little Cahaba River (Station #9).

The lack of sample stations located between stations 6 and 7 (Figure 1) resulted from denial of access (based on safety concerns) by property owners. Time required to gain access 3

through proper channels would have delayed sample collection activities to a less suitable time.

Water and Sediment

Surface water and sediment samples were collected at each sample station and analyzed for total lead concentration. Samples were collected and preserved in accordance with the practices and procedures described in Environmental Compliance Branch Standard Operating Procedures (USEPA 1991) and Laboratory Operations and Quality Control Manual (USEPA 1990). Samples were packed on ice and shipped to the appropriate laboratory for metals analysis.

<u>Fish</u>

Fish samples (forage and sport fish) were collected at each station (where present) by electroshocking with a Smith-Root back-pack electrofishing unit. Collection and preservation techniques followed guidelines described in Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters (Klemm et al. 1993). Samples were packed in ice and shipped to U.S. EPA Region IV Ecological Support Branch Laboratory in Athens, Georgia for processing. Fish were identified to species (where possible), weighed, and measured. Fish were then pulverized (using a waring blender and dry ice) and maintained frozen until chemically analyzed for metals concentration by U.S. EPA Analytical Support Branch Laboratory. A bound field log book was used to record sampling activities. Chain-of-Custody was maintained throughout sample collection and testing.

RESULTS

The results of specified chemical analyses of water, sediment, and fish tissue samples collected at 13 stream stations near the ILCO Main Facility are presented below.

Surface Water

Lead concentrations in surface water at stream sampling locations are shown in Figure 2. Table 1 provides lead concentrations in surface water, station descriptions, and the chronic and acute screening criteria used by US EPA Region IV Waste Management Division and by the State of Alabama.

<u>Sediment</u>

Sediment lead concentrations for stations along the stream reach are presented in Figure 3. Table 2 shows concentrations of metals found in sediments collected from the streams of interest and the shaded cells represent values that exceed the US EPA Region IV Waste Management Division sediment screening criteria (USEPA 1994b). The US EPA (1994b) sediment screening values and the National Oceanic and Atmospheric Administration (NOAA) Expected Range-Low (ER-L) sediment screening values (Long and Morgan 1991, Long et al 1994) are also presented in Table 2. Results of fish tissue chemistry are shown in Table 3. The shaded values denote levels of whole body lead burden in fish tissue that are considered elevated compared to nationwide values reported by the United States Fish and Wildlife Service (USFWS) (Eisler 1988). Figures 4 (forage fish) and 5 (fish filet) show fish tissue lead levels along the study reach. The number and type of fish collected at each station are presented in table 4.

DISCUSSION

Transport, deposition and accumulation of site-derived lead is most clearly seen in sediment and fish tissue (Figures 3, 4, and 5) and to a lesser extent reflected in surface water analyses of the July 1994 sampling (Table 1 and Figure 2).

Sediment lead concentrations exceeded the US EPA (1994b) screening value (21 mg/kg) at all sampling locations except station 9 (Little Cahaba River Control). But stations 2, 5, and 6 had extremely elevated lead levels (1100, 2400, and 5400 mg/kg, respectively). These stations, located just downstream of the ILCO site, had sediment lead concentrations as much as 100 times greater than those found at the Unnamed Stream Background (47 mg/kg), the Reference Stream (46 mg/kg), Dry Creek Control (41 and 48 mg/kg), and Little Cahaba River Control (19 mg/kg) stations.

<u>Fish</u>

Considerable differences in sediment lead concentrations at station 5 for March (870 mg/kg) and July (2500 mg/kg) samplings may be due in part to the highly variable nature of stream sediments which are continually altered by overlying surface water conditions. However, it is also possible that contaminants migrating from the Main Facility and Parking Lot could have caused the increased concentration of lead.

Arsenic concentrations exceeded the US EPA screening value of 8 mg/kg at several stations along the stream reach including the control (station #3) on Dry Creek. This suggests that arsenic may have come from sources other than the ILCO Main Facility. Based on available information, arsenic was not considered a contaminant of concern for this portion of the site.

Nickel exceeded the EPA sediment screening value of 20.9 mg/kg at several stations including controls (station 1 and 4) which suggests sources other than the ILCO Main Facility. Nickel concentrations were within screening limits at all stations in the Little Cahaba River.

Antimony was detected at stations 5 and 6 in Dry Creek, but because quantities measured at these stations are similar to the minimum quantitation limits found at background and control stations, it is not possible to determine from this data set if antimony is being contributed by the ILCO Main Facility. The wide range of minimum quantitation limit values for antimony may be due to the fact that the sediment matrix is very complex and interferences can limit attainment of lower values. Because antimony was not considered a contaminant of concern for the ILCO Main Facility, only routine analytical services were requested for this parameter, resulting in the higher detection limits.

Zinc and mercury concentrations in sediment exceeded the EPA screening values, however, estimated values (zinc) and inadequate detection limits (mercury) suggest these compounds may also have been present at background locations.

Analogous to sediment results, whole body lead burden in forage fish tissue was highest in samples collected at stations 2, 5, and 6 (11.0, 6.0, and 8.3 mg/kg, respectively). Lead concentrations reported for whole body fish nationwide in 1978-1979 averaged 0.2 mg/kg fresh weight with a range of 0.1 - 6.7 mg/kg. The 1980-1981 average was also 0.2 mg/kg fresh weight, but with a range of 0.1 - 1.9 mg/kg (Eisler 1988).

Schmitt et al (1984) reported greatly elevated whole body lead burdens of 9 to 18 mg/kg in fish collected from Big River, Missouri, near a ruptured mine tailings pond dam. Similar concentrations were detected in forage fish immediately downstream of the ILCO site at station 2 (11.0 mg/kg), station 5 (6.0 mg/kg), and station 6 (8.3 mg/kg), whereas control stations

8

revealed <1.0 mg/kg of lead in forage fish tissue. Although elevated lead concentrations detected, no criteria have been established for lead in fish tissues connoting dangerous levels to the organism, nor has an action level been established by the Food and Drug Administration for lead in edible fish tissue.

CONCLUSION

Based on results of the March and July 1994 studies, transport, deposition and accumulation of site-derived lead is apparent in streams draining the ILCO Main Facility. Certain "hot spots" located immediately downstream of the ILCO site have greatly elevated lead concentrations in sediment, water, and fish tissue as compared to control stations. However, results of toxicity testing, macroinvertebrate surveys (March 1994 sampling), and the number and species of fish collected indicate that site-derived contaminants, even though present, appear to be having no measurable deleterious effect on aquatic communities.

Since the ecological evaluations reported here sought to measure the extent and magnitude of site-derived contamination and the bioaccumulation of lead in fish tissue, no attempt was made to predict potential ecological or health risks, especially in the case of continuing contributions of contaminants from the site. The potential ecological and health risks will be evaluated in the baseline risk assessment which has not yet been performed for this portion of the site.

9

LITERATURE CITED

- Eisler, R. 1988. Lead hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85 (1.14). 134 pp.
- Long, Edward R., and Lee G. Morgan. 1991. The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program. National Oceanic and Atmospheric Administration, United States Department of Commerce, Seattle, Washington.
- Klemm, Donald J., Quentin J. Stober, and James M. Lazorchak. 1993. Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH.
- Schmitt, C.J., F.J. Dwyer, and S.E. Finger. 1984. Bioavailability of Pb and Zn from mine tailings as indicated by erythrocyte δ-aminolevulinic acid dehydratase (ALA-D) activity in suckers (Pisces: Catostomidae). Can. J. Fish. Aquat. Sci. 41: 1030-1040.
- USEPA. 1994a. Final Report on the Biological Assessment of Streams in the Vicinity of ILCO Inc., Leeds, Alabama. June 1994. U.S. Environmental Protection Agency, Region IV, Environmental Services Division, Ecological Support Branch. Athens, GA.
- USEPA. 1994b. Draft Region IV Waste Management Division Sediment Screening Values for Hazardous Waste Sites 2/16/94 Version. US EPA Region IV Waste Management Division, Atlanta, GA.
- USEPA. 1993. Region IV Ecological Support Branch Standard Operating Procedures for Hazardous Waste Site Investigations. Prepared for U.S. Environmental Protection Agency, Region IV Environmental Services Division, Athens, GA, prepared by ManTech Environmental Technology, Inc., Environmental Services Assistance Team, Athens, GA.
- USEPA. 1992. 304(a) Criteria and Related Information for Toxic Pollutants. U.S. Environmental Protection Agency Region IV - Water Management Division, Atlanta, GA.
- USEPA. 1991. Environmental Compliance Branch Standard Operating Procedures and Quality Assurance Manual. U.S. Environmental

Protection Agency, Region IV, Environmental Services Division, Athens, GA.

USEPA. 1990. Lab Operations and Quality Control Manual. U.S. Environmental Protection Agency, Region IV, Environmental Services Division, Analytical Support Branch, Athens, GA.

Table 1.Lead concentrations in surface water. Interstate Lead Company Superfund Site,
Leeds, Alabama. March and July, 1994.

Samples Collected March 199	94
Station Number & Description	Total Lead (ug/L)
0 Reference Stream	25*
1 Unnamed tributary background	75*
2 Unnamed tributary downstream of ILCO	140*
3 Dry Creek control	15*
4 Dry Creek above confluence w/ Unnamed Trib.	4
5 Dry Creek below confluence w/ Unnamed Trib.	4
Samples Collected July 199	4
3 Dry Creek control	2.5U
5 Dry Creek below confluence w/ Unnamed Trib.	23
6 Dry Creek upstream of LeHigh Cement	65
7 Dry Creek downstream of LeHigh Cement	6.3
8 Dry Creek adjacent to Leeds WWTP	8.5
9 Leeds Memorial Park	27
10 Little Cahaba River control	2.5U
11 Little Cahaba River below confluence w/ Dry Cr.	7.3
12 Little Cahaba River at Elliot Rd.	7.0
US EPA Region IV WMD Chronic Screening Value	1.32**
US EPA Region IV WMD Acute Screening Value	33.78**

U - Material was analyzed for but not detected. The value reported is the minimum quantitation limit.

* - samples collected during rain event.

** - dependent on hardness.

		Sample	es Collecte	d March 1	994									
			Pa	rameter (1	ng/kg)									
Station #	Lead	Arsenic	Copper	Nickel	Antimony	Zinc	Mercury							
0	46	4.7	3.8	12	20UJ	41J	0.15U							
1	47	5	13	26	20UJ	140J	0.17U							
2	1100	5.7	13	11	20UJ	62J	0.16U							
3	48	17	7	14	20UJ	62J	0.17U							
4	65	6.4	9.4	35	20UJ	120J	0.15U							
5	870	10	13	17	20UJ	94J	0.17U							
	5 870 10 13 17 20UJ 94J 0.17U Samples Collected July 1994													
3	Samples Collected July 1994 3 41 10 7.8 14 6.09U 62 0.05U													
5	2400	16	28	29	20	110	0.095							
6	5400	26	44	26	26	190	0.25							
7	260	17	18	24	15U	78	0.13							
8	46	10	17	21	9.0U	64	0.14							
9	19	6.1	9.1	6.0	3.0U	49	0.050							
10	35	16	19	15	9.0U	82	0.085							
11	230	12	13	19	15U	81	0.050							
12	93	17	8.4	18	15U	60	0.05U							
USEPA 1994	21	8	28	20.9	12	68	0.1							
NOAA ER-L (1991)	35	33	70	30	2	120	0.15							
NOAA ER-L (1994)	46.7	8.2	34	20.9		150	0.15							

Table 2.Metals concentrations in sediments of Dry Creek and the Little Cahaba River,
Interstate Lead Company OU-3, Leeds, Alabama.

U - Material was analyzed for but not detected. The value reported is the minimum quantitation limit. J - Estimated value.

shaded value - exceeds the US EPA Region IV Waste Management Division sediment screening values for Hazardous Waste Sites (USEPA 1994B).

ER-L (Expected Range Low) Values - sediment quality screening guidelines established by the National Oceanic and Atmospheric Administration (Long and Morgan 1991, Long et al 1994).

	Total Lea	d (mg/kg)
Station Number & Description	Forage Fish	Fish Filet
0 Reference Stream	NA	NA
1 Unnamed tributary background	NA	NA
2 Unnamed tributary downstream of ILCO	11.0	NA
3 Dry Creek control	1.0 / 0.94	0.2U
4 Dry Creek above confluence w/ Unnamed Trib.	0.61	NA
5 Dry Creek below confluence w/ Unnamed Trib.	3.4 / 6.0	1.4
6 Dry Creek upstream of LeHigh Cement	8.3	0.65
7 Dry Creek downstream of LeHigh Cement	0.9	0.2
8 Dry Creek adjacent to Leeds WWTP	1.3	NA
9 Leeds Memorial Park	NA	NA
10 Little Cahaba River control	0.4	0.2U
11 Little Cahaba River below confluence w/ Dry Cr.	0.6	0.21
12 Little Cahaba River at Elliot Rd.	1.9	0.2U
Values reported for whole body fish nationwide for 1978-1979 (Eisler 1988)	0.2 (0.1-6.7)	
Values reported for whole body fish nationwide for 1980-1981 (Eisler 1988)	0.2 (0.2-1.9)	

Table 3.Lead concentrations in fish tissue. Interstate Lead Company Superfund Site,
Leeds, Alabama. March and July, 1994.

U - Material was analyzed for but not detected. The value reported is the minimum quantitation limit. NA - Not analyzed.

shaded value - elevated whole body lead concentration; comparison based on nationwide values reported by the U.S. Fish and Wildlife (Eisler 1988).

					Stream	Samplii	ng Stati	ons		_	
Fish Taxa (common name & family)	2 # coll.	#	3 coll.	4 # coll.	5 # coll.	6 # coll.	7 # coll.	8 # coll.	10 # coll.	11 # coll.	12 # coll.
minnows (Cyprinidae)	29	9	22	1	2		2				1
longear sunfish (Centrarchidae)			5	!	3		1			2	7
green sunfish (Centrarchidae)			4		9	2	3	8	4	9	3
bluegill (Centrarchidae)	1	16	1	20	14	10	3	2	11	15	20
largemouth bass (Centrarchidae)			2	1	3	1	1		1		
spotted bass (Centrarchidae)											2
juvenile sunfish (Centrarchidae)					18	14					
northern hogsucker (Catastomidae)								1	1	1	3
bullhead catfish (Ictaluridae)					8	8					
gambusia (Poeciliidae)							3				
darter (Percidae)											1
sculpin (Cottidae)											2
Total	30	25	34	22	57	35	13	11	17	27	39

Table 4. Fish collected from streams near the ILCO Superfund Site, Leeds, Alabama. March and July 1994.

APPENDIX A

RESULTS OF CHEMICAL ANALYSES

FOR

INTERSTATE LEAD COMPANY SUPERFUND SITE

JULY 1994

MET	AIS DA		FPORT							E G			200	, , , , , , , , , , , , , , , , , , , ,	,	••						00,0	.,
### ## ## ## ##	PROJ SOUP	ECT CE: ION	NO. 9 ILCO ID: 1	4-057(66 DRY	CREEK	IPLE I BACI	NO. 881 KGROUNE	182), UP	SAMPLE STREAM	TYPE	* * : S	URFWATE	* * .R	PROG CITY: COLLE	ELEM: LEEDS CTION	SSF	COLLECTEI : 07/26/94	* * * * D BY: B. ST: A 4 1040	CARTER L STOP:	00/00	/00	* * *	*** ** ** **
* * *	₿ UG/L		* *	* * *	ANALYT	ICAL	RESULT	r * * rs	* * 1	* * * :	* *	* * *	* *	* * * MG/L	* * *		ANALYTI	CAL RESU	LTS	* * * *		* * *	* * *
	5.000 15A 22.550 22.550 22.5555 2.1500 2.2555 2.1500 2.555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555	SAROARRDBRPPLCATLINRLTANTNR BBACCCHONILASTITANTNR VYINRLIN AMAMAN	VER ENIC CON IUM VILIUM ALT OMIUM PER VBDEN VBDEN VBDEN VBDEN IMONY ENIUM CONIUM CONIUM CONIUM CONIUM GANES	M UM M VI E										27 4.7 0.42 5.2 1.2	CALCI MAGNE IRON SODIU POTAS	IUM ISIUM IM ISIUM							

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS DA	ATA REPO	DRT															
*** ** ** ** **	PRO SOUF STAT	ECT NO. CE: ILC ION ID	94-057 0 88 7 DRY	O SAMP	LE NO. DOWNSTR	88183 REAM GA	SAMPLE	TYPE: . RR	* * * * SURFWATE	R PROG CITY COLL	ELEM: LEEDS ECTION	SSF START:	COLLECTED : 07/26/94	BY: B. ST: AL 1020	CARTER STOP:	00/00/00	* * 1	* * *** ** ** **
***	* * * * UG/L	* * *		ANALYTI	CAL RES	SULTS		* * *	* * * *	* * * * MG/L	* * * *	* * *	ANALYTIC	AL RESUL	* * * .TS	* * * * *	* * 1	* * ***
	5 000 N250 22555 000 22555 000 22555 000 2500 000 2500 000 2500 000 2500 000 2500 000 2500 000 2500 000 2500 2000 2500 2000 2500 200 2000 2	SILVEF ARSENJ BORON BARIUM CADMIL COBALT COPPEF MOLYBE NICKEL LEAD ANTIMO SELENI TIN STRONT TILANI THALLI VANADI YTTRIU ZIRCON MERCUR ALUMIN MANGAN	C C IUM M UM ENUM IUM UM UM UM UM UM UM UM UM UM UM UM UM U							31 5.0 0.72 7.7 1.6	CALCII MAGNES IRON SODIUI POTAS	UM SIUM SIUM						

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

META	LS DA	TA REPORT				LIA NI		JU, AIII2	MJ, GA.				06/31	/94
* * * * * * * * * * * * *	PROJ SOUR STAT	ECT NO. 94-057 CE: ILCO ION ID: DRY	CREEK, UPST	NO. 88184 TREAM LEHI RESULTS	* * * * SAMPLE GH * * * *	* * * TYPE:	* * * * * * SURFWATER	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED	BY: B. CAR ST: AL 1010 ST	TER DP: 00/00/00	* * * *	* * * * * * * * * * * * *
	5.000 15A2 2.550000005000 2.550000000000000000000	SILVER ARSENIC BORON BARIUM CADMIUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TILURIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE						40 5.0 0.89 7.0 1.0U	CALCJUM MAGNESIUM IRON SODIUM POTASSJUM					

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METAL	S DA	TA REPO	ORT				-			· · · · · · · ·	NO, UA.							00,01	,
***	PROJ SOUR STAT	ECT NO. CE: ILC ION ID:	94-057 4, DRY	O SAMP	88185 STREAM L	SAMPL EHIGH	* * * * E TYPE:	SURFWA	* * * TER * * *	PROG CITY: COLLE	ELEM: S LEEDS CTION S	* * * SSF START: * * *	COLLECTED 07/26/94	BY: B, ST: AL 0826	CARTER STOP:	00/00/	/00 	• • •	*** ** ** ** **
	5.00 1504 5.50 5.50 5.000 5.50 5.000 6.150 1220 1220 1220 1220 5.000 5.	SILVEF ARSENJ BORON BARIUM COBALT COPPEF MOLYBC NICKEL LEAD ANTIMC SELENI TIN STRONT TELLUR TITANI VANADI YTTRIU ZIRCON MERCUR ALUMIN	C IUM UM ENUM IUM IUM UM UM UM UM UM UM UM UM UM UM UM UM U							54 6.4 0.95 6.9 35	CALCIU MAGNES IRON SODIUM POTASS	IM IUM IUM							

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS DA	TA R	EPORT							644		GIUN	IV ES	50, 1	ATHE	ND, UM	۱.									08/	31/5	94
*** ** ** **	PROJ SOUR STAT	IECT ICE: ION	NO 94 ILCO ID: 5	-0570 DRY	SAMP	LË N	NO. 88	186 WWTP	SAMPLI	E TYF	PE :	SURFW	ATER	* * P C C	ROG I ITY: DLLE(ELEM: LEEDS CTION	SSF START	COLI	ECTED 25/94	BY: ST 1 15	8. 10 148	CARTER STOP:	2 [*] * 00/	* *	• •	• •	* * *	**
**	51A1 * * * UG/L 5.00 150 2.50 5.00 2.50 2.50 5.00 120 120 120 120 120 120 5.00 120 120 120 120 120 120 120 1	SILL SILL SILL SARS BORR BORR BORR BOR COB COB COB COB COB COB COB COB COB COB	VER ENIC ON IUM YLLIUM MIUM ALT OMIUM YBDENUM YBDENUM KEL D YBDENUM KEL D UNTIUM LURIUM ANIUM ANIUM CONTUM CONTUM CONTUM	У М	UKEEK. * * * * ANALYTI	* • CAL	RESUL	* * * TS			* *	* * *		C (* * MG, 0 (56 59 97 5.1 26	CALCI MAGNE IRON SODIU POTAS	UM SIUM M SIUM	: 07, * * : AN/	25/94 * * *	* * : CAL RI	48 * * '	510P: * * * TS	* *	* * :) • * .	* *	* **	
	28	MAN	JANESE																									

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

META	LS DA	TA REPORT						50, And					00/01/34
*** ** ** ** ** ** ** **	PROJ SOUR STAT	ECT NO. 94-057 CE: ILCO ION ID: 6 LIT	O SAMPLE	* * * * * * NO. 88187 R., UPSTR	SAMPLE EAM DRY C	TYPE: CRK.	SURFWATER	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED : 07/25/94	BY: B. CARTE ST: AL 1605 STOP	R 2: 00/00/00	* * * * * *** ** ** **
ţ	5.00 5.00	SILVER ARSENIC BORON BARJUM BERYLLJUM CADMIUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM THALLIUM YTTRIUM YTTRIUM ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYIICAL	KESULIS				MG/L 64 7.0 0.14 6.2 1.00	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTIC	AL KESULIS		

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS DA	TA R	EPORT						EPA-	REGIO	N 1V C3	50, MIF	LNS, U	A .						08/3	1/94
*** ** ** **	PROJ SOUR STAT	ECT CE: ION	NO. 9 ILCO ID: X	4-0570	D SAMPL	E NO.	. 88188 VER, DO	SAMPLE	TYPE	SUR : SUR	FWATER	PROG CITY COLL	ELEM: LEED ECTION	SSF SSF	COLLECTER	BY: B. ST: A 1535	CARTER STOP:	00/00/	/00	* * *	*** ** ** **
***	ŪG/L	* *	+ +	• •	ANALYTIC	AL RE	ESULTS	* * * *	* *	* * *	* * *	MG/L	• • •		ANALYTI	AL RESU	LTS		•••	• • •	•••
	5 0U 15U 70 2 5U 5 0U 2 5U 5 0U 7 3 15U 2 50 10U 7 3 15U 2 50 10U 7 3 15U 2 50 10U 12U 96U 5 0U 15U 10U 15U 15U 15U 15U 15U 15U 15U 15	SILS ABORARR BEAD BEAD CCOBR NILANTLIN STITANTIN VYII RELUN	VER ENIC ON IUM YLLIUM MIUM ALT OMIUM YBDEN VBDEN VBDEN IMONY ENIUM ANIUM ANIUM CONIUM CONIUM CONIUM GANES	M UM M M								57 6.1 0.74 6.0 20	CALC MAGN IRON SODI POTA	IUM ESIUM UM SSIUM							

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI~INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

			EPA-F	REGION IV E	SD, ATHE	NS, GA.				08/31/94
METALS DATA RI										
** PROJECT I	0. 94-0570 SA	MPLE NO. 88189	SAMPLE TYPE:	SURFWATER	PROG	ELEM: SSF	COLLECTED	BY: B. CART	ER	**
** STATION	ID: & LITTLE CA	HABA RIVER, AT	ELLIOT RD.		COLLE	CTION START	: 07/25/94	1402 STO	P: 00/00/00	**
*** * * * * * * UG/L	ANALY	TICAL RESULTS	* * * * * * *		MG/L	* * * * * *	ANALYTICA	RESULTS	* * * * * *	* * * * ***
5.00 SILV 150 ARSE NA BORG 56 BARJ 2.50 BERV 2.50 CADA 5.00 COPF 5.00 CHRG 5.00 MOLV 100 NICK 7.0 LEAD 150 ANTI 200 SELE 120 TIN 5.00 VANA 5.00 VANA 5.00 VANA 5.00 VITE 5.00 VANA 5.00 VITE 5.00 VANA 5.00 VITE 5.00 VANA 5.00 VITE 5.00 VANA 5.00 VITE 5.00 VANA 5.00 VANA	VER INIC DN (UM (LLIUM ALT MIUM ER BOENUM EEL DONIUM URIUM URIUM LIUM DIUM LIUM DIUM URY URY URY URY UNUM ANESE				61 6.3 0.39 5.3 9.9	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM				

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS DATA REPORT	
PROJECT NO. 94-0570 SAMPLE NO. 88190 SAMPLE TYPE: SURFWATER PROG ELEM: SSF COLLECTED BY: B. CARTER SOURCE: ILCO K SOURCE: ILCO K STATION ID: 9, LITTLE CAHABA RIVER, LEEDS MEMORIAL PARK COLLECTION START: 07/26/94 0745 STOP: 00/(00/00
UG/L ANALYTICAL RESULTS MG/L ANALYTICAL RESULTS 5.0U SILVER 67 CALCIUM 15U ARSENIC 66 MAGNESIUM 0.23 IRON 47 BARIUM 2.5U BERVLLIUM 4.3 SODIUM 2.5U CADMIUM 1.0U POTASSJUM 5.0U COPPER 5.0U CHROMIUM 5.0U COPPER 5.0U CHROMIUM 100 NICKEL 27 LEAD 15U ANTIMONY 20U SELENIUM 12U TIN 55 STRONTIUM 25U TELLURIUM 5.0U VANADIUM 5.0U VANADIUM	* * * * * * * * *

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT												
*** PRO ** SOU ** STA **	JECT NO. 94-0570 RCE: ILCO TION ID: J DRY	SAMPLE N	IO. 88173	SAMPLE TYP	E: SEDIMENT	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START:	COLLECTED 1 07/26/94	8Y: B.L. ST: AL 1040 S	CARTER	/00/00	* * *	* ***
*** * *** MG/K(2 OU 10 NA 40 1.0U 6.2 22 7.8 2.0U /14 6.090 8.0U 5.8 15 10U 49 20U 16 49 20U 16 0.05U 6300 200	SILVER ARSENIC BORON BARIUM CADMIUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM TITANIUM THALLIUM VANADIUM YITRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL	RESULTS	* * * * * *	* * * * * *	MG/KG 5700 1700 19000 200U 550 22	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM PERCENT MOI	* * * * * * * ANALYTICA	RESULTS	* * * *	* * *	* * *	* ***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT				LFAN		CJU, AIII	LND, UA.					00,	01734
*** * * ** PRO ** SOU ** STA **	JECT NO. 94-057 RCE: ILCO TION ID: DRY	D SAMPLE	NO. 88174 RM GA CEN	SAMPLE	TYPE:	* * * * SEDIMENT	PROG CITY: COLLE	ELEM: SSF LEEDS ECTION START	COLLECTE	* * * * BY: B.L ST: AL 4 1022	CARTE	* * * * * R 00/00/00	* * *	* *** ** ** **
*** * MG/K 2.0U .16 NA 46 1.1 8.2 9.0 .28 29 2400 8.0U 11 9.6 10U 234 20U 8.2 110 NA 0.095 7600 160	G SILVER ARSENIC BORON BARIUM BERYLLIUM COBALT CHROMIUM COBALT CHROMIUM COPER MOLYBDENUM NICKEI LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL	* * * * * * RESULTS	* * * *	* * *	* * * *	* * * * * * 6 6200 3100 26000 2000 690 25	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM PERCENT MC	ANALYTI	CAL RESUL	* * * * TS	* * * *	* * *	* ***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METAI	LS DA	TA REPORT												-	•
*** : ** **	PROJ	ECT NO. 94-057 CE: ILCO	D SAMPLE	NO. 88175	SAMPLE	TYPE: S	SEDIMENT	PROG CITY:	ELEM: SSF	COLLECTED	* * * * * BY: B.L. ST: AL	CARTER	* * * *	* * *	* *** ** **
**	STAT	ION ID: ORY	CREEK UPST	REAM LEHIG	;H 			COLLE	CTION START:	: 07/26/94	1010	STOP: 0	0/00/00		** **
	* * G MG/KU 20A 50U 1.551 3440 260 220 120 120 120 120 120 120 120 120 12	SILVER ARSENIC BORON BARIUM CADMJUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM	ANALYTICAL	* RESULTS				* * * * MG/KG 4300 20000 300U 760 44	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM PERCENT MOI	ANALYTICA	L RESULT	* * * S			* ***
	150 36 300 27	TELLURIUM TITANIUM THALLIUM VANADIUM													
0 11	9.6 190 NA .25 000	YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM													
	280	MANGANESE													

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT		Ere Region in Edd, Amend, GR.	0070	1734
*** PRO ** SOU ** STA **	JECT NO. 94- RCE: ILCO TION ID A.	-0570 SAMPLE NO. 88176 SAMPLE DRY CRK, DOWNSTREAM LEHIGH	TYPE: SEDIMENT PROG ELEM: SSF COLLECTED BY: B. CARTER CITY: LEEDS ST: AL COLLECTION START: 07/26/94 0826 STOP: 00/00/00	* * *	*** ** ** ** **
*** * MG/K 5.0U 17 NA 1300 2.5U 2.5U 2.5U 435 18 5.0U 225U 12U 12U 20U 12U 4260 12U 12U 435 26U 12U 12U 435 26U 12U 12U 12U 1100 501 117 1200 217 117 1200 1100 1000 1	SILVER ARSENIC BORON BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COPER MOLYBDENUN NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TILLURIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL RESULTS	MG/KG ANALYTICAL RESULTS 48000 CALCIUM 2600 MAGNESIUM 27000 IRON 500U SODIUM 1200 POTASSIUM 28 PERCENT MOISTURE	* * *	

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT					EFA-REGION IV ESD, ATHENS, GA.									
*** * * ** PRO ** SOU ** STA	JECT NO. 94 RCE: ILCO TION ID: E	DRY CRK	SAMPLE N	NO. 88177 DS WWTP	SAMPLE	TYPE:	SEDIMENT	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED	BY: B. CA ST: AL 1548 S	RTER 10P: 00,	* * *	* * *	* ***
*** * * MG/K 3.0U .10 NA 80 1.5U 23 .17 3.0U 12U 7.5U 32 15U .75 30U 42 15U .75 .30U 42 18 64 NA 0.14 13000 1500	G SILVER ARSENIC BORON BARIUM BERYLLIUM COBALT CHROMIUM COPPER MOLYBDENU NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	* * * * ANA	LYTICAL	RESULTS	* * * *	* * *	* * * * *	MG/KG 37000 1600 35000 300U 1000 37	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM PERCENT MO	ANALYTICA	AL RESULTS		* * *	* * *	* ***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	IETALS DATA REPORT												
*** PRO ** SOU ** STA	JECT NO. 94-057 RCE: ILCO TION ID: 5 LIT	O SAMPLE N TLE CAHABA R	NO. 88178 SAMPL R., UPSTREM DRY	* * * * * * * * * * * E TYPE: SEDIMENT CRK	PROG ELEM: SSF COLLECTED CITY: LEEDS COLLECTION START: 07/25/94	8Y: B. CARTER ST: AL 1605 STOP: 00/00/00	***						
MG/K 3.0U 16 NA 49 1.5U 9.8 50 9.0U 15U 7.5U 5.9 15U 87 30U 46 10 82 NA 0.085 9000 510	G SILVER ARSENIC BORON BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TILLURIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL	RESULTS	* * * * * * * * * *	MG/KG ANALYTICA 4400 CALCIUM 1200 MAGNESIUM 31000 IRON 300U SODIUM 600U POTASSIUM 32 PERCENT MOISTURE	* * * * * * * * * * * * * * * * * * *	***						

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	DATA REPORT			
*** PRC ** SOL ** STA	DJECT NO. 94-0570 SAMPLE NO. 88179 SAU URCE: ILCO ATION ID: X_LITTLE CAHABA R., DOWNSTREAU	APLE TYPE: SEDIMENT PROG E CITY: A DRY CRK. COLLEC	LEM: SSF COLLECTED BY: B. CARTER LEEDS ST: AL TION START: 07/25/94 1535 STOP:	00/00/00
*** * * MG/KU 5.012 NA 652 2.502 122 79 130 2000 1200 1	ANALYTICAL RESULTS ANALYTICAL RESULTS CAPARIAN COMPERING COPPER ANALYTICAL RESULTS CAPARIAN COPPER ANALYTICAL RESULTS COPPER	MG/KG 62000 2300 28000 5000 10000 19	ANALYTICAL RESULTS CALCIUM MAGNESIUM IRON SODIUM POTASSIUM PERCENT MOISTURE	

FOOTNOTES

*A-ACTUAL VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET				r						EPAT	CEGION IV	E 30	, AIHE	NS, GA.							08,	31/94
*** ** ** ** **	PRO SOUF STAT	JECT RCE: TION	NO. 9 ILCO ID:	94-0570 5 1 1 T	D SAMP	LE BA	* * NO. R.,	88180 AT ELI	SAMPLI	E TYPE:	SEDIMENT	* *	PROG CITY: COLLE	ELEM: SSF LEEDS CTION STAF	CC RT: (OLLECTED 07/25/94	BY: B. ST: A 1405	CARTER STOP	R	0/00		* *** ** ** **
0	MG/K0 5.017 NA 22.50U 1104 5.017 NA 22.50U 1104 5.017 NA 22.50U 1104 5.017 NA 22.50U 1104 5.017 NA 22.50U 1104 5.017 NA 20.50U 1104 5.00U 120U 120U 120U 120U 120U 120U 120U 1	SI SI BO BAL BE CAI CO CO CO CO CO CO CO CO CO CO CO CO CO	* * * LVER SENIC RON RIUM RYLLIM BALT ROMIUM PPER CKEL AD LYBDEN CKEL AD IMONY NONTIUM ALLIUM ICANIUM ALLIUM ICONIU RCONIU RCONIU RCONIU MINUM		ANALYTI	¢	* * RES	* * * SULTS		• • • •	* * * * *	* * M	6/KG 6500 690 43000 500U 1000U 22	CALCIUM MAGNESIUN IRON SODIUM POTASSIUN PERCENT N	A A A0151	ANALYTICA	AL RESU	LTS				• •••

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT		,,,
** PRO ** SOU ** STA	JECT NO. 94- RCE: ILCO of TION ID: 9	0570 SAMPLE NO. 88181 SAMPLE TYPE: SEDIMENT PROG ELEM: SSF COLLECTED BY: B. CARTER CITY: LEEDS ST: AL LITTLE CAHABA RIVER LEEDS MEMORIAL PARK COLLECTION START: 07/26/94 0745 STOP: 00/00/00	: * *** ** ** ** **
*** * MG/K 1.0U 6.1 NA 31 0.50U 4.4 31 9.50U 4.0U 5.1 5.0U 88 10U 236 6.6 49 NA 0.050 5000 250	G SILVER ARSENIC BORON BARIUM CADMIUM COBALT CHROMIUM COBALT CHROMIUM COPPER MOLYBDENUN NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TIALLUM VANADIUM THALLIUM VANADIUM THALLIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL RESULTS 1000 CALCIUM 1100 MAGNESIUM 14000 IRON 200U POTASSIUM 23 PERCENT MOISTURE	: \$ * **

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METAL	.S DA	TA RE	PORT																		
*** 1 ** ** **	PROJ SOUR STAT	ECT N CE: I ION I	0.94 LCO D: /F	-0614 R (3	sampl) For	E NO. E	88550 Fis	sample	TYPE:	FISH	* *	PROG CITY: COLLE	ELEM: S LEEDS CTION S	SSF START:	COLLECTED 07/26/94	BY: B C ST: AL 1055	ARTER STOP:	00/0	• •	* * *	* ***
1 0. 0. 1 1 1 1 2 0 4 5 3 6 6 1 1 0.	* * G G/KU 500A 6900 6900 6900 6900 6900 6900 6900 6	SILV ARSE BORO BARJY COBA CORO MOLK COPA MOLK COPA NICAD ANTIC STELE STELE STELE THAL VATAC ZIRCC ALUM MANG	ER NIC N UM LLIUM EL BDENUE ER BDENUE EL MONY NIUM NIUM NIUM NIUM NIUM NIUM NIUM NIUM	M	NĂLŸTĪC.	AL RESU	ULTS		* * *			MG/KG 16000 490 38 1100 2800	CALCIL MAGNES IRON SODIUN POTASS	UM 51 UM 9 51 UM	ĂNĂL ŸTÎCĂ	L RĚSUL	TS				

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT									
*** PRO ** SOUI ** STA **	JECT NO. 94-00 RCE: ILCO FION ID: ZFR	514 SAMPLE	NO. 88551 SAMI Lge Fish	* * * * * * * PLE TYPE: FIS	н така 19 10 СС	ROG ELEM: SSI TY: LEEDS DLLECTION ST	COLLECTED	BY: B CARTER ST: AL 1135 STOP:	00/00/00	* *** ** ** ** **
*** *** MG/K(0.99U 0.50U 0.50U 0.50U 0.50U 0.99U 0.99U 0.99U 2.0U 6.0 3.0U 4.0U 2.5U 7.6 5.0U 0.99U 0.90U 1.6 9.9U 0.99U 0.99U 0.99U 0.50U 0.50U 0.50U 0.50U 0.50U 0.50U 0.50U 0.50U 0.50U 0.99U 0.99U 0.50U 0.50U 0.50U 0.99U 0.99U 0.99U 0.99U 0.50U 0.50U 0.50U 0.50U 0.50U 0.50U 0.99U 0.99U 0.99U 0.50U 0.50U 0.00 0.99U 0.50U 0.0U 0.50U	SILVER ARSENIC BORON BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COBALT CHROMIUM COPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL	RESULTS		MG/K 110 2 27	G OO CALCIUM OO MAGNESIU 65 IRON OO SODIUM OO POTASSIU	ANALYTICA M	AL RESULTS		* ***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM

METALS I	ATA	REPORT				EPA-REC	SION IV E	09/20/94						
** PR(** SOL ** ST/	JECT JRCE: TION	NO. 94-0614 ILCO ID: 3FR	6 FO(a)	NO. 88552 12 Fish	SAMPLE	* * * * TYPE: f	ISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED	BY: B CARTER ST: AL 1155 STOP	• • • • • •	* * * *	* * * * * * * * *
MG/K 1 OL 0.50U 0.50U 1.0U 1.0U 1.0U 1.0U 1.0U 2.0U 8.3 3.0U 4.0U 2.5U 7.8 5.0U 1.8 1.0U 3.10U 1.0U 3.4 0.50U 4.3 8.4	G SI SG AR BOI BAR BOI BAR BOI COI COI COI COI COI COI COI COI COI C	LVER SENIC RON RIUM RYLLIUM DMIUM BALT ROMIUM PPER YBDENUM CKEL AD IIMONY LENIUM CONTIUM ALUM ALUM RIUM CCONIUM CCONIUM CCURY MINUM GANESE	ANALYTICAL	* * * * * * RESULTS	* * * *	* * * *		MG/KG 13000 430 47 890 2600	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	* * * * * * * ANALYTICA	L RESULTS	* * * * *		***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS [DATA REPORT				,,
*** * * ** PR(** SOI ** ST/ **	OJECT NO. 94-0 URCE: ILCO ATION ID: 4FR	614 SAMPLE NO. 88553 (7) Forage Fish	SAMPLE TYPE: FISH	PROG ELEM: SSF COLLECTED BY: B CARTER CITY: LEEDS ST: AL COLLECTION START. 07/26/94 0848 STOP	* * * * * * * * * * * * * * * * * * *
*** * * MG/H 0.801 0.501 0.401 0.401 0.801 0.801 0.801 1.61 0.5 2.41 3.21 2.01 4.01 1.4 8.01 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.5 2.41 1.4 5.0	* * * * * * * * * * KG U SILVER U ARSENIC A BORON D BARIUM U CADMIUM U CADMIUM U CADMIUM U COBALT J CHROMIUM S COPPER J MOLYBDENUM J NICKEL D LEAD J ANTIMONY J SELENIUM J SIRONTIUM J TIN STRONTIUM J TIANIUM J THALLIUM J VANADIUM J VANADIUM J VANADIUM J VANADIUM J VANADIUM J VANADIUM J XIRCONIUM MERCURY B ALUMINUM MANGANESE	ANALYTICAL RESULTS		MG/KG ANALYTICAL RESULTS 11000 CALCIUM 390 MAGNESIUM 41 IRON 830 SODIUM 2800 POTASSIUM	* * * * * * * * * * * *

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT				00,20,01
*** * * ** PRO ** SOU ** STA **	JECT NO. 94-061 RCE: ILCO TION ID: \$FR	4 SAMPLE NO. 88554 DForage Fish	SAMPLE TYPE: FISH	PROG ELEM: SSF COLLECTED BY: B C CITY: LEEDS ST: AL COLLECTION START: 07/25/94 1722	* * * * * * * * * * * * * * * * * * *
MG/Ki 1.2U 0.50U NA 1.6 C.60U 0.60U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2	SILVER ARSENIC BORON BARIUM BERYLLIUM CODMIUM COBALT CHROMIUM COPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TLANIUM THALLIUM VANADIUM YTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL RESULTS		MG/KG ANALYTICAL RESUL 14000 CALCIUM 430 MAGNESIUM 16 IRON 1000 SODIUM 2600 POTASSIUM	* * * * * * * * * * * * * * * * * * *

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT									
*** * * ** PRO ** SOU ** STA	JECT NO. 94-06 RCE: ILCO TION ID: ØFR	14 SAMPLE NO. 8	8555 SAMPLE TYP Fish	* * * * * * * *E: FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START:	COLLECTED E 07/25/94	BY: B CARTER ST: AL 1705 STOP:	00/00/00	* * * *** ** ** **
MG/Ki 1.2U 0.50U 0.60U 1.2U 0.60U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 1.2U 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	SILVER ARSENIC BORON BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COPER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM TIANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL RESU			MG/KG 15000 460 38 1000 2700	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICAL	. RESULTS		

REMARKS

REMARKS

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	DATA REPORT	LPA-REGION IV ESU, AMENS, GA.	09/20/94
*** * * ** PRO ** SOU ** STA **	DJECT NO. 94-0614 SAMPLE NO. 88556 SAM RECE: ILCO RTION ID: ZFR II) Forage Fish	PLE TYPE: FISH PROG ELEM: SSF COLLECTED BY: B CARTER CITY: LEEDS ST: AL COLLECTION START: 07/25/94 1640 STOP: 6	* * * * * * * * * * * * * * * * * * *
*** * * MG/K 1.0U 0 50U 0 50U 0 50U 0 50U 0 50U 1.0U 1.0U 1.0U 1.0U 2.0U 0.6 3.0U 4.0U 2.5U 4.0U 1.4 5.0U 1.4 5.0U 1.4 5.0U 1.4 5.0U 1.4 5.0U 1.4 5.2	ANALYTICAL RESULTS SILVER ARSENIC BORON BARIUM BERYLLIUM COBALT CHROMIUM COPPER MOLYBDENUM NICKEL LEAD ANIIMONY SELENIUM TIN STRONTIUM TELLURIUM TITANIUM THALLIUM VANADIUM YTTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	MG/KG ANALYTICAL RESULTS 13000 CALCIUM 410 MAGNESIUM 17 IRON 960 SODIUM 2600 POTASSIUM	* * * * * * * * * * *

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	DATA REPO	DRT								··-·					,-	-,
*** * * ** PRC ** SOL ** STA **	JRCE: ILC	94-06 8FR	14 S	AMPLE N Forag	0. 8855 E Fi	7 SAMPLE	TYPE:	* * * * FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION STAR	COLLECTED	BY: BC: ST: AL 1448	ARTER STOP:	00/00/00	* * * *	*** ** ** **
*** * * MG/K 0.50U 0.50U 0.50U 0.50U 0.99U 0.90U 0	SG SILVER ARSENI ARSENI ABORON BARIUN BARIUN CADMIN CADMIN COBALT COPPER MOLYBE ANTIMO STRONT TINN STRONT TINN STRONT TIANI THALLI VANADI	* * * CC IUM WM ENUM UM UM UM UM UM UM UM UM UM UM UM UM U	* * * ANAL	YTICAL	RESULTS	* * * * *	* * * *	* * * *	* * * * * * MG/KG 11000 400 140 950 2500	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTIC	* * * * AL RESUL	* * * TS	* * * * *	* * * *	***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI~INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS DA	TA REPO	RT												
***	PROJ SOUR STAT	ECT NO. CE: ILC ION ID:	94-061- 0 7FL (a sampl Fis Fil	E NO. 88 h let	3543 SA	MPLE TY	* * * * >E: FISH	* * *	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED : 07/26/94	BY: B CARTER ST: AL 1055 STOP	: 00/00/00	* * * * *** ** ** **
***	* * * * MG/KG 0.30U 0.20U 0.50U 0.20U 0.55	* * * SILVER ARSENI BORON BARIUM BERYLL CADMIU COPPER MOLYBDI NICKEL LEAD ANTIMON SELENI TIN SIRONT TELLUR TIN SIRONT TELLUR TIANIU VANADIU YINC ZIRCONJ MERCURY ALUMINU MANGANE	* * * * * C IUM ENUM ENUM IUM IUM JM JM JM JM JM JM JM JM JM JM JM JM JM	ANALYTIC	* * * * AL RESUL	* * * * TS	* * * :	* * *	* * *	MG/KG 1200 260 3.9 640 3500	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICA	AL RESULTS	* * * * *	* * * * ***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPORT									
*** PRO ** SOU ** STA **	JECT NO. 94-06 RCE: ILCO TION ID: JFR	14 SAMPLE NO. 6 FOrage	88552 SAMPLE Fish	TYPE: FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START:	COLLECTED E	BY: B CARTER ST: AL 1155 STOP:	00/00/00	* * *** ** ** **
*** * * MG/K 1.0U 0.50U NA 1.1 0.50U 0.50U 1.0U 1.0U 1.0U 1.0U 2.0U 8.3 3.0U 4.0U 2.5U 7.8 5.0U 1.8 1.0U 1.0U 1.0U 2.5U 4.0U 2.5U 7.8 5.0U 1.8 5.0U 1.8 1.0U 1.0U 1.0U 1.0U 4.0U 1.0U 1.0U 1.0U 4.0U 1.0U 1.0U 1.0U 4.0U 1.0U	G SILVER ARSENIC BORON BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COPFER MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM TIN STRONTIUM TELLURIUM TIANIUM THALLIUM VANADIUM YTRIUM ZINC ZIRCONIUM MERCURY ALUMINUM MANGANESE	ANALYTICAL RE	SULTS		MG/KG 13000 430 47 890 2600	CALCIUM MAGNESIUM IRON SODIUM PCTASSIUM	ANALYTICAL	RESULTS	* * * * * * *	* * ***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS DA	TA R	EPORT						LFM-	REGION		SU, AINE	NS, GA.					09	9/20/94
*** ** ** **	PROJ SOUF STAT	ECT CE: ION	NO. 94- ILCO ID: AFR	-0614	sample Fora	no. ge	88553 Fish	SAMPLE	TYPE	: FISH	* * *	PROG CITY: COLLE	ELEM: SSF LEEDS CTION STAR	COLLECTED	BY: B C ST: AL 0848	ARTER STOP:	00/00/00	* * *	* * * * * * * * * * * * * * * * * * * *
	* * * * * * * * * * * * * * * * * * *	SIL SARS BARR COB CCOR COOL COB CCOR COOL COB CCOR COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO COOL CO CO CO CO CO CO CO CO CO CO CO CO CO	VER ENIC DN IUM YLLIUM MIUM ALT DMIUM PER YBDENUM YBDENUM YBDENUM YBDENUM SIUM DNTIUM LURIUM NIUM SIUM SONIUM URY HINUM ANESE	* * * Al	JAL YT ICA		SULTS					MG/KG 11000 390 41 830 2800	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTIC.	AL RESUL	* * * TS			

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

META	LS DA	TA REP	ORT				LTA N	LUICA I		, , , , , , , , ,								,	• ·
***	PROJ SOUR STAT	ECT NO CE: IL ION ID	. 94-0614 CO \$FR (S	sample) Forage	NO. 88554 Fish	* * * * SAMPLE	TYPE:	FISH		PROG CITY: COLLE	ELEM: S LEEDS CTION S	SSF START.	COLLECTED 07/25/94	BY: B C ST: AL 1722	ARTER STOP:	00/00/	• • • 00		3 X 7 X 7 X 7 X 7 X 7 X
	* * KG MG / KU 1.50VA 1.60VU 1.20VA 1.60VU 1.20V 1.	* * * SILVE ARSEN BORON BARIU BERYL CADMI COBAL CHROM COPPE MOLYB NICKE LEAD MOLYB NICKE LEAD MOLYB NICKE LEAD ANTIM SELEN TIN STELLU TITANL VANAD YTTRII ZINC ZIRCOI MERCUI ALUMI MANGAI	R IC IC IUM UM T UM T UM DENUM L DENUM L UM T IUM IUM IUM IUM IUM IUM IUM IUM S IUM S IUM S IUM S S S S S S S S S S S S S S S S S S S	ANALYTICAL	RESULTS		* * *		• • • N	40/KG 14000 430 16 1000 2500	CALCIU MAGNES IRON SODIUN POTASS	* * * JM 51UM 6 UM	ANALYTICA	RESUL	* * * TS	* * * *	* * 3		**

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

EPA-REGION IV ESD, ATHENS, GA.													
METALS DATA REPORT													
PROJECT NO. 94-0614 SAMPLE NO. 88555 SAMPLE SOURCE: ILCO STATION ID: BFR D Forage Fish	TYPE: FISH PROG ELEM: SSF COLLECTED BY: B CARTE CITY: LEEDS ST: AL COLLECTION START: 07/25/94 1705 STO	R *** P: 00/00/00 **											
MG/KG ANALYTICAL RESULTS 1.2U SILVER 0.50U ARSENIC NA BORON 1.2U BARIUM 0.60U BERYLLIUM 0.60U CADMIUM 1.2U COBALT 2.5U CHROMIUM 1.2U COPPER 1.2U MOLYBDENUM 2.4U NICKEL 0.4 LEAD 3.6U ANTIMONY 4.8U SELENIUM 3.0U TIN 5.1 STRONTIUM 6.0U TELLURIUM 1.7 TITANIUM 1.2U VANADIUM 1.2U YTRIUM 26 ZINC NA ZIRCONIUM 0.06U MERCURY 32 ALUMINUM 9.4 MANGANESE	MG/KG ANALYTICAL RESULTS 15000 CALCIUM 460 MAGNESIUM 38 IRON 1000 SODIUM 2700 POTASSIUM												

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REPO	RT													
*** * * ** PRO ** SOU ** STA	JECT NO. RCE: ILC TION ID:	94-0614 0 2FR	SAMPLE	NO. 88556 2 Fish	SAMPLE	TYPE:	* * * * * * FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED : 07/25/94	BY: B CA ST: AL 1640	RTER STOP: 0	* * * * *	* * *	* *** ** ** **
MG/K 1.0U 0.50U 0.50U 0.50U 0.50U 1.0U 1.0U 1.0U 1.0U 2.0U 0.6 3.0U 4.0U 2.5U 4.4 5.0U 1.4 0.60 2.5U 4.4 5.0U 1.0U 1.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 2.5U 0.6 3.0U 1.0U 0.6 3.0U 2.5U 0.6 3.0U 1.0U 0.6 3.0U 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	G SILVER ARSENI BORON BARIUM BERYLL CADMIU COBALT CHROMI COPPER MOLYBD NICKEL LEAD ANTIMO SELENI TIN STRONT TELLUR TITANI VANADI YTTRIU ZIRCON MERCUR ALUMINI MANGAN	C IUM M ENUM ENUM IUM IUM UM UM UM UM UM UM UM UM UM UM UM UM U	ANALYTICAL	RESULTS		* * * *	* * * * *	* * * * MG/KG 13000 410 17 960 2600	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICA	L RESULT	* * * S		* * *	* ***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUF *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA REP	ORT															-	
*** * * ** PRO ** SOU ** STA **	JECT NO RCE: IL TION ID	94-06 CO : ØFR	514 S	SAMPLE I	NO. 8855 Ge Fi	57 SAMPLE	* * * TYPE:	* * * * FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION STAR	COLLECTED 1: 07/25/94	BY: B C ST: AL 1448	ARTER STOP:	00/0	* * 0/00	* *	* *	* * * * * * * * * * *
MG/K 0.99U 0.50U 0.50U 0.50U 0.50U 0.99U 0.99U 0.99U 0.99U 0.99U 2.0U 1.9 3.0U 2.5U 10 5.0U 2.5U 10 5.0U 0.99U 0.99U 0.99U 0.99U 0.99U 0.99U 10 5.0U 10 10 10 10 10 10 10 10 10 10	SILVE ARSEN BORON BARIU BERYLI CADMI COBAL COPPEI MOLYBI LEAD ANTIM SELEN TIN STRON TELLUI TIAN STRON TELLUI TIAN STRON TELLUI ANTAL ZIRCO MERCUI ALUMIN	R IC M LIUM IUM R DENUM R DNY IUM IUM IUM IUM IUM IUM IUM IUM IUM IUM	ANAI	YTICAL	RESULTS	* * * * *	* * *	* * * *	* * * * * MG/KG 11000 400 140 950 2500	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	* * * * * * ANALYTICA	L RESUL	* * * TS	* * *	• •	* * :	8 8 :	

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS DATA F	REPORT									,,	
** PROJECT ** SOURCE: ** STATION	NO. 94-0614 ILCO ID: /FL 3	SAMPLE NO. 88543 Fish Fillet	SAMPLE TYPE:	* * * * * FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START:	COLLECTED BY	: B CARTER 5T: AL 055 STOP:	00/00/00	* * * * *** ** ** **	
MG/KG 0.30U SIL 0.50U ARS NA BOR 0.20U BAR 0.10U CAR 0.10U CAR 0.20U CHR 0.20U CHR 0.20U CHR 0.20U CAR 0.20U MOL 0.20U MOL 0.20U MOL 0.20U LEA 0.60U ANT 1.0U TEL 0.20U TIT 2.0U THA 0.20U VAN 0.20U VAN 0.20U VAN 0.20U VAN 0.20U VAN 0.20U VAN 0.20U ALU 0.56 MAN	ANA VER SENIC RON RUM RUM RYLLIUM SALT ROMIUM SALT ROMIUM CALLIUM IMONY ENIUM IMONY ENIUM IMONY CONIUM RUM IC CONIUM	ALYTICAL RESULTS		* * * * * *	MG/KG 1200 260 3.9 640 3500	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICAL	RESULTS			

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

MET	ALS D	ΑΤΑ Ι	REPOR	t T																						-	
* * * * * * * * * * *	PRO SOUI STA	JECT RCE: TION	NO. ILCC ID:	94-0 ZFL	5	SAMPI Fish	LE N	10. 88544 ilet	SAM	PLE	TYPE:	* * FISH	* *	* 1	PROG CITY: COLLE	ELEM: LEED CTION	SSF SSF START	COLLEC	TED 5/94	BY: B ST: 1 1135	CARTE	* * * ?: 00	* * /00/	* * 700	* *	* *	*** ** ** ** **
	* * * * * * * * * * * * * * * * * * *	SIL SIL BOP BAR BOP CAL BAR COE COE COE COE COE COE COE COE COE COE	LVER SENIC RON RIUM RYLLI DMIUM BALT COMIU SPER LENIU LENIU LENIU IMON LURIU ALLIU RONTILUNI RONTILUNI CONI RECURY IMINU IGANE	UM W M NUM M UM M M M M M M M M M S E	4A 4	JAL YTIC	CAL	RESULTS	•••			••		* 3 N	4 * * * 2900 280 1.8 680 3100	CALC MAGN IRON SODI POTA	IUM ESIUM UM SSIUM	ANALY	TICA	LRES	JLTS		••				

REMARKS

REMARKS

FOOTNOTES

*A-ACTUAL VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

EPA-REGION IV ESD, ATHENS, GA.													
METALS DATA REPORT *** * * * * * * * * * * * * * * * * *													
** PROJECT NO 94-0614 SAMPLE NO 88545 SAMPLE	TYPE: FISH	PROG ELEM: SSF COLLECTED BY: B CARTER	**										
** SOURCE: ILCO		CITY: LEEDS ST: AL	**										
** STATION ID: SFL (16) Fich Filet		COLLECTION START: 07/26/94 1155 STOP: 00/00/0	0 **										
** / (6) 113* * 101			**										
	* * * * * * *		* * * * * * ***										
MG/KG ANALYTICAL KESULTS													
O SOU ARSENIC		280 MAGNESIUM											
NA BORON		5.2 IRON											
O.20U BARIUM		640 SODIUM											
O. 10U BERYLLIUM		3400 POTASSIUM											
O. TOU LAUMIUM													
O 2011 CHROMIUM													
0.20U COPPER													
Ö. 200 MOLYBDENUM													
0.400 NICKEL													
O BOU SELENTIM													
0.50U TIN													
1.2 STRONTIUM													
1.OU TELLURIUM													
O 20U VANADIUM													
0.200 YTTRIUM													
18 ZINC -													
NA ZIKCONIUM													
0 91 MANGANESE													

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS I	DATA R	EPORT				EPA-REGION IV ESD, ATHENS, GA.											09/20/94					
*** PR(** SO(** ST/ **	DJECT URCE: ATION	NO. 94-00 ILCO ID: 4FL	514	SAMPLE Fish	NO. 8854 Filet	* * * * * 16 SAMPLE	TYPE:	FISH	* * *	PROG CITY: COLLE	ELEM: LEEDS CTION	SSF START	COLLECTED 07/26/94	BY: B (ST: AL 0848	ARTER STOP:		•••	* *	* ***			
MG/H MG/H 0.301 0.504 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.200 0.20	* * * (G J SIL' J ARSI J BARSI J BARSI J BARSI J BARSI J BARSI J CHARSI J C	VER ENIC DN IUM YLLIUM AIUM ALT MIUM ER (BDENUM ER (BDENUM ER (BDENUM ER (BDENUM ER (BDENUM ER (BDENUM NIUM NIUM INUM INUM ANESE	ANJ	ALYTICAL	. RESULTS	* * * * *			* * * M	1500 280 10 580 3600	CALCI MAGNE IRON SODIU POTAS	UM SIUM M SIUM	ANALYTICA	AL RESUL	* * * TS	* * *		* *				

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS D	ATA RI	EPORT													
*** PRC ** SOL ** STA **	JECT N IRCE:	NO. 94-06 ILCO ID: ØFL	514 (10	sample n) Fish	0. 88547 Filet	SAMPLE	TYPE:	* * * * FISH	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED : 07/25/94	BY: B CAI ST: AL 1705	RTER STOP: 00	* * *	 ***
*** ** MG/K 0 30L 0.50L 0.20U 0.10U 0.20U 0.30U 0.20U 0.30U 0.20U 0.30U 0.20U 0.30U 0.20U 0.30U 0.20U	* * * G SILL ARSE BORC BERN BERN CADM COBA COBA COBA COBA COBA COBA COBA COBA	VER ENIC DN UM VLLIUM ALUM ALUM ALUM MUM DER VBDENUM VBDENUM VBDENUM NIUM NIUM NIUM NIUM NIUM VRIUM VIUM VIUM VIUM VIUM VIUM VIUM VIUM	* • • •	LYTICAL	RESULTS				MG/KG 1300 270 2.1 640 3500	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICA	L RESULT	* * * *		 k ** *

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS	DATA	REPOR1	r															•	-
*** PRi ** SOI ** STi	URCE:	NO. 9 ILCO ID: 7	94-0614 KFL (sampl Fis	E NO. 8854 h Filet	18 SAMPL	E TYPE:	FISH	* * '	PROG CITY: COLLE	ELEM: SSF LEEDS CTION START	COLLECTED : 07/25/94	BY: B C ST: AL 1640	ARTER STOP:	00/0	• •	* *	* *	*** ** ** ** ** **
MG/I 0.300 0.500 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.400 0.590 0.490 0.590 0.490 0.201 0.2	* *	* * * LVER SENIC RON RIUM RULIUM BALT ROMIUM PPEE LYBDEN CKEL AD TIMONY LENIUM NC RONTIU NC RCONIU RCONIU RCONIU RCONIU RCONIU RCONIU RCONIU RCONIU RCONIU		ANALYTIC	AL RESULTS	* * * *	* * * *		* * ·	MG/KG 2100 260 2.6 630 3100	CALCIUM MAGNESIUM IRON SODIUM POTASSIUM	ANALYTICA	AL RESUL	* * * TS	* * *	* *	* *		***

REMARKS

REMARKS

.

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

METALS DATA REPORT	EFARTEDION IN ESD, AITENS, GA.	09/20/94
PROJECT NO. 94-0614 SAMPLE NO. 88549 SAMPL SOURCE: ILCO STATION ID: 8FL D Fish Filet	E TYPE: FISH PROG ELEM: SSF COLLECTED BY: B CARTER CITY: LEEDS ST: AL COLLECTION START: 07/25/94 1448 STOP: 00/00/00	* * * ***
MG/KG ANALYTICAL RESULTS 0.30U SILVER 0.50U ARSENIC NA BORON 0.20U BARIUM 0.10U CADMIUM 0.10U CADMIUM 0.20U COBALT 0.20U MOLYBDENUM 0.50U NICKEL 0.20U NICKEL 0.20U SELENIUM 0.50U SELENIUM 0.20U TIN 0.20U THALLIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U VANADIUM 0.20U TITRUM 16 ZINC NA ZIRCONIUM 0.13 MERCURY 2.1 ALUMINUM 0.67 MANGANESE	MG/KG 1800 CALCIUM 240 MAGNESIUM 3.4 IRON 780 SODIUM 3200 POTASSIUM	* * * ***

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI~INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

00/00/04