PB 198 413

CHARACTERIZATION AND CONTROL OF GASEOUS EMISSIONS FROM COAL-FIRED FLUIDIZED-BED BOILERS

E. B. Robison, et al

Pope, Evans and Robbins Alexandria, Virginia

October 1970

This document has been approved for public release and sale.

INTERIM REPORT

on

CHARACTERIZATION AND CONTROL OF GASEOUS EMISSIONS FROM COAL-FIRED FLUIDIZED-BED BOILERS

to

DIVISION OF PROCESS CONTROL ENGINEERING NATIONAL AIR POLLUTION CONTROL ADMINISTRATION ENVIRONMENTAL HEALTH SERVICE PUBLIC HEALTH, SERVICE DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

October 1970

by

E. B. Robison, A. H. Bagnulo, J. W. Bishop, and S. Ehrlich

POPE, EVANS AND ROBBINS Consulting Engineers A DIVISION OF PERATHON INCORPORATED Alexandria, Virginia 22314

PB 198 413

331

CHARACTERIZATION AND CONTROL OF GASEOUS EMISSIONS FROM COAL-FIRED FLUIDIZED-BED BOILERS

> INTERIM REPORT OCTOBER, 1970

> > FOR

DIVISION OF PROCESS CONTROL ENGINEERING NATIONAL AIR POLLUTION CONTROL ADMINISTRATION ENVIRONMENTAL HEALTH SERVICE PUBLIC HEALTH SERVICE DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

CONSULTING ENGINEERS A DIVISION OF PERATHON INCORPORATED

NATIONAL TECHNICAL

TABLE OF CONTENTS

Page

1.	Summary 1.1 Test Procedures 1.2 Sulfur Dioxide Emission 1.3 Sulfur Trioxide Emission 1.4 Hydrocarbons Emission 1.5 Oxides of Nitrogen Emission 1.6 Particulate Emission	1 2 4 7 7 8 8
2.	Conclusions	9
3.	Recommendations	11
4.	Introduction 4.1 Operating Variables 4.2 Additive (Sorbent) Variables 4.3 Coal Composition	13 17 17 17
5.	Equipment and Procedures 5.1 Pilot Scale Combustor, FBC 5.2 Full-Scale Boiler Module, FBM 5.3 Method of Sorbent Feed 5.4 Instrumentation 5.5 Materials	18 18 24 32 37 44
6.	 Results of Pilot Scale (FBC) Tests - Sintered Ash Bed 6.1 Sulfur Dioxide Emission with Coarse Additives 6.2 Sulfur Dioxide Emission with Finely Divided Sorbents 6.3 Tests for Independent Effects of Bed Temperature, Bed Depth, Sorbent Particle Size, Sorbent Distribution, and Superficial Velocity 6.4 Sulfur Trioxide Emission 6.5 Hydrocarbons Emission 6.7 Particulate Emission 6.8 Operation at Reducing Conditions 6.9 EBC Operation with a Limestone Bed 	46 46 54 64 73 73 77 79 80 81
7.	Results of Boiler Module (FBM) Tests 7.1 Sulfur Dioxide Emission 7.2 Hydrocarbons Emission 7.3 Nitrogen Oxides Emission 7.4 Effects of Fly-Ash Recirculation and Steam Injection 7.5 Particulate Emission	96 100 100 105 105 106

TABLE	OF.	CONTENTS	(Continued)

1

• :

]]

]

E

С

8. Discussion of FBC and FBM Test Results 9. Economic Analysis 9.1 General 9.2 Basis of Performance Estimates 9.3 Performance Data 9.4 Capital Requirements for Equipment 9.5 Annual Operating Costs 9.6 Comparison with Costs for Alternative Methods 9.7 Conclusions ·A APPENDIX A - Enclosures APPENDIX B - FBM and FBC Test Data APPENDIX C - Sulfur Balance Data

ii

POPE EVANS AND ROBBINS

i

LIST OF FIGURES

Figure		Page
1	Schematic of Fluidized-Bed Boiler	14
2	Fluidized-Bed Column (FBC) Construction Detail - Front View	19
3	Fluidized-Bed Column (FBC) Construction Detail - Side View	20
4	Air Distribution Grid Button	21
5	FBC Test System	22
6	FBC. Air and Exhaust Gas Ducting Showing Sampling Points	23
7	FBC Cooling Coil Viewed from Above	25
8	Fluid1zed-Bed Module (FBM) Internal Construction	26
9	Schematic of the FBM Showing the Arrangement of Pneumatic Coal and Additive Feed Tubes	28
10	Schematic Layout of the FBM Test System	29
11	FBM Test System	31
12	Schematic of the No. 1 Sorbent Feed System for the FBC	33
13	FBC Operating with No. 1 Sorbent Feed System	34
14	FBC Operating with No. 2 Sorbent Feed System	35
15	Schematic of the No. 2 Sorbent Feed System for the FBC	36
16	Vertical Cross Section of FBC Showing Sorbent Feeders and Feed Points	38
17	FBM Sorbent Feed System	39
18	Analytical Instrumentation	40
19	Schematic of Gas Transfer System for Continuous Monitoring of Sulfur Dioxide, Nitric Oxide and Hydrocarbons	41
20	Schematic of the FBM Gas Sampling System	43
21	Reduction of Sulfur Dioxide Emission from the FBC Burning a 4.5% S Coal with Coarse 1337 Dolomite Addition	50
22	Reduction of Sulfur Dioxide Emission from the FBC Burning a 4.5% S Coal with Coarse 1359 Limestone Addition	51
23	Interpolation of 10-inch Bed Depth Data for Comparison with 7-inch Bed Depth Data	53

iii

POPE EVANS AND ROBEINS

LIST OF FIGURES (Continued)

Figure		Page
24	Comparison of Sulfur Dioxide Reductions Observed with the Coarse and Fine Sorbent ar ^{,1} a 4.5% Sulfur Coal	56
25	Sulfur Dioxıde Reduction with Fıne Sorbent Addıtion to the FBC Burnıng a 4.5% Sulfur Coal	60
.26	Sulfur Dioxide Reduction with Fine Sorbent Addıtion to the FBC Burnıng a 2.6% Sulfur Coal	63
27	Variation in Sulfur Dioxide Reduction with Sorbent Particle Size, Bed Depth and Bed Temperature	68
28	Emissions from FBC Test No. 73 Burning a Medium Sulfur Coal and Injecting -325 Mesh, 1359 Limestone on 1, 2 and 4 Sides	70
29	Hydrocarbons Variation with Flue Gas Oxygen Concentration in the FBC Operation	74
30	Typical Variation in Nitric Oxide Concentration with Oxygen Content in the Flue Gas from the FBC	76
31	Measured Values of Nitric Oxide Concentration in the Flue Gas at 3% Oxygen and Various Bed Temperatures shown with Theoretical Equilib- rium Values for the Temperature - O ₂ Content Regime	78
32	Emissions Monitored in FBC Test 113 Burning a Medium Sulfur Coal in a Fluidized-Bed of 1359 Limestone	84
33	Variation of Sulfur and Calcium in Bed and Fly Ash During FBC Test 113	86
34	Emissions from the FBC Burning a 3% Sulfur Coal in a Limestone Bed with Mild Reducing Conditions and Regeneration	87
35	Emissions During FBC Test ll4 Burning a Medium Sulfur Coal in a Fluidized-Bed of 1359 Limestone	91
36	Variation in Bed and Fly As ^L Sulfur and Calcium During Test 114	92
37	Sulfur Dioxide Reduction with Sorbent Addition to the FBM Burning a 4.5% Sulfur Coal	99
38	Sulfur Dioxide Reduction with Sorbent Addition to the FBM Burning a 2.6% Sulfur Coal	102

iv

LIST OF FIGURES (Continued)

Figure		Page
39	Variation in Hydrocarbons Concentration with Flue Gas Oxygen Content in the FBM	103
40	FBM - Variation of Nitric Oxide Concentration with Flue Gas Oxygen Content	104
41	FBM Collector Emission. Cumulative Frequency Distribution of Particle Count	108
42	Estimated Reduction in Sulfur Dioxide Emission by Addition of 1359 Limestone at Various Stoichiometric Ratios	117
43	Ratio of Sulfur Emission to Sulfur Input vs Limestone Flow Rate for the 4.5% S Coal	118
44	Ratio of Sulfur Emission to Sulfur Input vs Limestone Feed Rate for the 2.6% S Coal	119
45	Schematic Arrangement of the Sorbent Feed System for a Full Scale Fluidized-Bed Boiler	122
46	Total Fly Ash Rates for Full Load Operation of a 250,000 Lb Per Hr Fluidized-Bed Boiler with Limestone Addition (4.5% S Coal)	124
47	Total Fly Ash Rates for Full Load Operation of a 250,000 Lb Per Hr Fluidized-Bed Boiler with Limestone Addition (2.6% S Coal)	125
48	Estimated Total Cost of Converting a High Sulfur (4.5%) Coal to a Lower Sulfur Coal Equivalent by Limestone Addition to a 250,000 Lb Per Hr Fluidized-Bed Boiler	130
49	Estimated Total Cost of Converting a Medium Sulfur (2.6%) Coal to a Lower Sulfur Coal Equivalent by Limestone Addition to a 250,000 Lb Per Hr Fluidized-Bed Boiler	131

LIST OF TABLES

Table		Page
I	Sulfur Dioxide Reductions Observed with	
	to the FBC Burning a 4.5% Sulfur Coal	47
II	Sulfur Dioxide Reductions Observed with Addition of Coarse (-7 +14 Mesh) 1359 Limestone to the FBC Burning a 4.5% Sulfur Coal	49
III	Sulfur Dioxide Reduction Observed with Fine Sorbent Addition to Combustion of a 4.5% Sulfur Coal in the Fluidized Bed	58
IV	Sulfur Dioxide Reduction Observed with Fine Sorbent Addition to Combustion of a 2.6% Sulfur Coal in the Fluidızed Bed	61
v	Data Summary for SO_2 Reduction vs. 1359 Lime- stone Particle Size, Bed Depth and Temperature	66
VI	Data Summary for the Superficial Velocity Tests	72
VII	Data Summary for Operation at Reducing Conditions	82
VIII	Data Summary for the 1359 Limestone Bed Tests	89
IX	Sulfur Dioxide Reductions with Addition of Coarse (-7 +14 Mesh) 1337 Dolomite to the FBM Burning a 4.5% Sulfur Coal	97
x	Data Summary for Injection of -325 Mesh Sorbents into the FBM Burning a 4.5% Sulfur Coal	98
XI	Data Summary for Injection of -325 Mesh Sorbents into the FBM Burning a 2.6% Sulfur Coal	101
XII	Summary of Capital Cost Components for Limestone Addition Per Boiler. 500,000 Lb/Hr Steam Plant Consisting of Two 250,000 Lb/Hr Coal-Fired,	
	Fluidized-Bed Boilers	121
XIII	Operating Cost Ingredients Summary for Fine Limestone Injection in a 500,000 Lb/Hr Fluidized- Bed Boiler Plant	128
VIX .	Arcual Operating Cost Data for Fine Limestone Injection	129
XV	Cost of Reducing a High Sulfur Coal to Equivalent 0.7% Sulfur Coal in a Fluidized-Bed Boiler, Com- pared with Cost of Purchase of Low Sulfur Coal in the Chicago Area	133

<u>71</u>

POPE EVANS AND ROBBINS

POPE EVANS AND ROBBINS

ν

LIST OF ENCLOSURES

APPENDIX A

Enclosure

nclosure		Page
1	FBC Specifications	A-l
2	FBM Specifications	A-3
3	Derivation of the Bed Depth Relationship from Balance of Heat and Mass	A-5
4	Schematic Cross Section of the #2 Sorbent Feed System	A-7
5	Schematic of Sulfur Trioxide Condenser	A-8
6	Isokinetic Probe for Particulate Emissions Determinations	A-9
7	Schematic Arrangement of FBC Air and Flue Gas Ducting Showing Gas Sampling Points and Thermo- couple Locations	A- 10
8	Schematic Arrangement of the FBM Test System Showing Gas Sampling Points and Thermocouple Locations	A-11
9	Analysis of Hydrocarbons Analyzer Calibration Gas	A-12
10	Sulfur Dioxide Calibration Gas Analysis	A-13
11	Nitric Oxide Calibration Gas Analysis	A-14
12	Calibration Curve for Sulfur Dioxide Infra- red Analyzer	A-15
13	Calibration Curve for Nitric Oxide Infra- red Analyzer	A-16
14	Analyses of "Perfect Eight" Unwashed 4.5% Sulfur Coal	A-17
15	Analyses of "Perfect Eight" Washed 2.6% Sulfur Coal	A-18
16	Analysis of Sorbents After Ignition	A-19
17	Terminal Velocity and Minimum Fluidization Velocity vs. Particle Diameter	A-20
18	Estimation of Elutriating Particle Size for the 1359 Limestone	721
19	Nitric Oxide Equilibrium Concentrations for the Fluidized-Bed Environment	A-22
20	Particle Size Distribution of 1359 Limestone Bed Before and After Fluidized-Bed Combustion	A-23

vii

POPE, EVANS AND ROBBINS

LIST OF ENCLOSURES. (Continued)

Enclosure		Page
21	Integrated Sulfur Balance for Sorption- Desorption of the Limestone Bed During FBC Test 114	<u>\-24</u>
22	Emissions During FBC Test 63 for Sulfur Trioxide Emission Burning a 4.5% Sulfur Coal	A-28
23	Emissions During FBC Test 101 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-29
24	Emissions During FBC Test 102 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-30
25	Emissions During FBC Test 104 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-31
26	Emissions During FBC Test 105 Burning a Medium Sulfur Coal in a 1359 L'mestone Bed	A-32
27	Emissions During FBC Test 106 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A- 33
28	Emissions During FBC Test 107 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-34
29	Emissions During FBC Test 108 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-35
30	Emissions During FBC Test 109 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A- 36
31	Emissions During FBC Test 110 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-37
32	Emissions During FBC Test lll Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-38
33	imissions During FEC Test 112 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-39

viii

LIST OF ENCLOSURES. (Continued)

Enclose	ures	Page
34	Emissions During FBC Test 113 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-40
35	Emissions During FBC Test 114 Burning a Medium Sulfur Coal in a 1359 Limestone Bed	A-41
36	Emissions During FBC Test 115 Burning a Medium Sulfur Coal in a 1359 Limestone Bed with Change in Gas Velocity	A-42
37	Emissions During FBC Test 116 Burning a Medium Sulfur Coal in a 1359 Limestone Bed with Regeneration	A-43
38	Emissions During FBC Test 117 Burning a Medium Sulfur Coal in a 1359 Limestone Bed with Regeneration	A-44
39	Emissions During FBC Test 118 Burning a Medium Sulfur Coal in a Limestone Bed with Bed Reducing	A-45
40	Emissions During FBC Test ll9 Burning a Medium Sulfur Coal in a Limestone Bed with Bed Reducing	A-46
41	Emissions During FBC Test 120 Burning a Medium Sulfur Coal in a 1359 Limestone Bed with Ash Recirculation	A-47
42	Emissions During FBC Test 75 Burning a Medium Sulfur Coal with Injection of -325 Mesh 1359R Limestone Above and at Base of Bed at Constant Ca/S Patio	N-49
43	Emissions During FBC Test 76 Burning a Medium Sulfur Coal with Addition of -325 Mesh 1359R Limestone with Change in Superficial Velocity	A-49
44	Emissions During FBC Test 77 Burning a Medium Sulfur Coal with Injection of -325 Mesh 1359R Limestone with Change in Superficial Velocity	A-50
45	Proposed Design Arrangement for Minimizing Particulate Emission Control Costs	A-51

ļ	SHMMARY	,
1	 JURINAN	

Pope, Evans and Robbins, in a continuing project* sponsored by the National Air Pollution Control Administration, has monitored air pollutant emissions from the combustion of coal in a fluidized bed under a comparatively large number of different conditions. Efforts were made to reduce emissions of oxides of sulfur by the use of limestone-based sorbents and to determine the conditions most favorable for the reduction. The major test variables and ranges are summarized as follows:

- Coal Type: Medium and high sulfur
- Bed Temperature: 1500°F to 1900°F
- Bed Depth: 6 to 20 inches
- Bed Material: Sintered ash and limestone
- Flue Gas Oxygen Content: 0.5 to 5%
- Superficial Gas Velocity: 6 to 14 fps
- Sorbent Type: A dolomite designated 1337 and a limestone designated 1359
 - Sorbent State: Raw, hydrated and precalcined
- Sorbent Particle Size: -7 to -325 mesh
- Fly-Ash Recirculation: Full Range (0% to 80%)
- Method of Sorbent Feed: Pneumatic feed with the coal, pneumatic feed remote from the coal feed and premixed with the coal

The tests were conducted on both pilot-scale and fullscale test units. The pilot scale fluidized-bed combustor, designated the FBC, contained a rectangular bed 12" x 16". The full scale unit, designated the FBM, contained a rectangular bed ~ 20 " x 72" and constituted one half cell of a full-scale multicell boiler concept. Emissions of sulfur dioxide, nitric oxide and hydrocarbons were monitored continuously with periodic samples taken for measurement of particulates and wettest determination of SO_X and NO_X. When conditions most favorable for air pollution control were established on a pilot scale, the conditions were reproduced in tests with the Fluidized-Bed Boiler Module (FEM).

POPE, EVANS AND ROBBINS

1

This report describes the results of experiments carried out between November 1967 and August 1969.

1.1 TEST PROCEDURES

The FBC test program was begun with combustion of the high sulfur coal in a sintered ash bed and addition of sorbents in a particle size approximating the bed particle size (-7 + 14 mesh). The 1337 dolomite and 1359 limestone*, in the raw and precalcined state, were injected at varying rates and operating conditions, i.e., bed temperature and excess air. The superficial velocity was held in the range of 12 - 14 feet per second for all tests except two designed for this parameter.

The program was continued with the use of finely divided sorbents in the sintered ash bed again with the high sulfur coal. The decision to employ a smaller sorbent particle size was based on increasing evidence that the desulfurization reaction was limited by product shell formation. Reducing the particle size increases the surface-to-mass ratio and, in turn, the sorbent reactivity.

The fine sorbents, both the dolomite and limestone, were injected in the raw and calcined states, ground to a -325 mesh particle size. A third state, the hydrate, was studied because of its natural occurrence in a -325 mesh particle size. The test procedures involved, principally, changes in bed temperature, sorbent feed rate, and ash recirculation. The excess air was held constant at a level which effected a 3% oxygen content in the flue gas, a minimum value found necessary to control hydrocarbons emission. The superficial velocity was held in the 12 - 14 fps range.

The effect of varying the method of sorbent feed was investigated. Three injection methods were studied with lime hydrate fed at rates varying over the 1 - 3 stoichiometric range. The methods are distinguished as follows:

- a. Pneumatic injection of the sorbent at a single port with the coal after having been mixed with coal in the coal feed line.
- b. Pneumatic injection into the fluidized bed at two

ports remote from the coal feed port.

c. Premixing the sorbent and coal in the coal hopper.

The tests were conducted at the bed temperatures found to be most favorable (1500°F - 1600°F). The excess air and superficial velocity were restricted as before. The two-port feed system was extended subsequently to four-port feed in a study of sorbent distribution in the bed.

A medium sulfur coal was tested with the dolomite and limestone sorbents in the raw state, ground to -325 mesh, and as the hydrate. Bed temperature and feed rates were varied for comparison of the response to that observed with the high sulfur coal. Excess air and superficial velocity were again held constant.

An investigation was conducted using the medium sulfur coal to determine the independent effects of sorbent particle size, bed depth and bed temperature. A cooling coil inserted in the bed provided a variable heat transfer surface for independent temperature control. Raw 1359 limestone with close cut particle sizes in the range of -325 to -12 mesh was injected into beds 10 and 18 inches deep.

The last FBC investigation involving the use of a sintered ash bed concerned the effect of reducing superficial velocity (to 6 feet/sec) and the comparative effect of sorbent injection above the bed.

The feasibility of burning coal in a fluidized bed of limestone was demonstrated. A medium sulfur coal was burned in the FBC containing a bed of 1359 limestone initially in the raw state. Operating conditions, i.e., bed temperature and excess air, were varied for the effect on emissions, sorption of sulfur in the bed, subsequent desorption, calcination and bed loss. Heat transfer measurements were made in the bed for comparison with values determined in the sintered ash bed.

Tests conducted in the full scale unit, FBM, were devoted to the use of fine sorbents with combustion of the medium and high sulfur coals in a sintered ash bed. Emissions were monitored with injection of 1337 dolomite and 1359 limestone in the raw state, ground to -325 mesh particle size, and as the hydrate. The principal variables were the sorbent feed rate and ash recirculation. The temperature was held generally in the range of 1500°F - 1600°F, and the flue gas oxygen

Designations established by Bituminous Coal Research, Inc., an affiliate of the National Coal Association, as follows: 1337 - 53% calcium carbonate and 46% magnesium carbonate; 1359 - 97% calcium carbonate.

at 3%. The superficial velocity was held in the 12- 14 fps range for all tests. One test was conducted to ascertain a possible correlation between nitrogen content in the coal and nitrogen oxides emission.

1.2 SULFUR DIOXIDE EMISSION

1.2.1 Reduction with Coarse Sorbents

Emission of sulfur, in the form of sulfur dioxide, from the combustion of high sulfur coal in a sintered ash bed was found to vary from 90% to 95% of the input sulfur. When raw sorbents were injected into the bed in a relatively coarse particle size (-7 + 14 mesh), the sulfur dioxide emission was reduced more effectively with the 1337 dolomite than with the 1359 limestone at the same Ca/S molar feed ratios. The dolomite produced a reduction of 54% at a ratio of 1.44, for a utilization of 37.4%, whereas the limestone utilization was limited to 20.7%. The tendency of the dolomite to decrepitate in the bed may have contributed to its higher reactivity. Utilization is defined as the percentage of input calcium which combines with sulfur. The magnesium contained in the dolomite was assumed to be inert.

The reduction in sulfur dioxide emission was found to improve somewhat with increase in oxygen content in the flue gas. Near reducing conditions in the bed were found to result in less effective sulfur capture. The reduction in sulfur oxides was found to be more favorable at bed temperatures of $1500^{\circ}F - 1600^{\circ}F$ than at $1800^{\circ}F$ when using the dolomite. With the coarse limestone addition, the effect of bed temperature was not well defined although the reduction in sulfur oxide emissions improved somewhat with increase in bed temperature. Both sorbents precalcined by the supplier were found to be less effective than the raw stone under similar test conditions.

- 1.2.2 Reduction with Finely Divided Sorbents
 - a) Effect of fine grinding

FBC test results with -325 mesh sorbents indicated an improvement over the coarse sorbent performance in both sulfur dioxide reduction and sorbent utilization. The performance was markedly improved in the case of the 1359 limestone tests with the high sulfur coal; this raw limestone fed at a Ca/S ratio of 1.5 indicated an increase in utilization from 18% to 37% with the reduction in particle size. At the same stoichiometric ratio, the 1337 dolomite utilization increased from 38% to 46% when the particle size was reduced from -7 +14 mesh to -325 mesh. The tests conducted to determine the independent effects of particle size, bed depth, and bed temperature indicated that desulfurization is strongly dependent on sorbent particle size for a medium sulfur coal. Under similar test conditions using the 1359 limestone, a 78% reduction in sulfur dioxide emission observed with a -325 mesh particle size was decreased to a 48% reduction when the particle size was increased to 100 mesh. Reductions were even less with particle sizes larger than 100 mesh.

b) Effect of hydrating and precalcining

Performance of the fine raw sorbents in terms of sulfur dioxide reduction at various Ca/S ratios was found to be about the same as the corresponding hydrate. When the hydrate of the 1337 dolomite was injected at a Ca/S ratio of 2.0 burning the high sulfur coal, the reduction in sulfur oxide emissions was 80% to 85%. The most favorable single reduction was 88%, observed at a stoichiometric ratio of 1.8 with this hydrate. Injection of the 1359 limestone hydrate produced an 80% reduction at a Ca/S ratio of 2.6. These results were found in the FBC with a 10-inch deep bed operating at 1500°F to 1600°F, 3% oxygen in the flue gas, a -325 mesh particle size and a superficial gas velocity of 12-14 fps.

The precalcined, finely divided, sorbents were found to be considerably less reactive than the raw or the hydrated sorbents.

c) Effect of sorbent type

The results indicate the dolomito to be more offective than the limestone when the stoichiometric ratio is based on the calcium fraction of the dolomite only ($51\& CaCO_3$), but was less effective on a total sorbent weight basis. The limestone containing $97\& CaCO_3$ would be the more economical of the two sorbents in terms of sulfur removal per unit weight of sorbent when the cost, per ton of stone, is comparable.

d) Effect of coal S content

Percentage reduction in sulfur dioxide emission, as a function of stoichiometric feed rate, was approximately the same in the FBC for both the high sulfur coal (4.5% S) and the medium sulfur coal (2.6% S). Under the most favorable conditions, burning the 4.5% S coal and injecting the finely divided, raw, 1359 limestone, utilization was found to be 40%, 33% and 20% at Ca/S stoichiometric ratios of 1.0, 2.0 and 3.0 respectively. Comparable utilizations were indicated in tests in the larger FBM.

POPE E ANE AND BORDING.

e) Effect of sorbent feed method

The tests to determine the most advantageous method of sorbent feed failed to point up a significant advantage for any one of the three tested, although in general the best results were observed with a "two point" feeder. This feeder provided pneumatic injection of the sorbent into the bed at two points remote from the coal feed port. Increasing the number of feed ports in the FBC to four did not improve the sulfur capture.

The sorption efficiency was considerably less when a sorbent stream directed into the bed was suddenly diverted to a feed port above the bed. These results might have been anticipated -- a fluidized bed is a good mixer; injection above a fluidized bed is similar to injection into a conventional boiler.

f) Effect of bed temperature

Tests made to determine the effect of bed temperature showed the sorbents to be more effective at the lower end of the operating range (1550°F). Sulfur dioxide reductions of 78% and 24% were observed at respective temperatures of 1550°F and 1800°F.

q) Effect of bed height

At 1500°F a reduction of 73% with a 10-inch deep bed increased to 78% with an 18-inch deep bed.

h) Effect of superficial velocity

Tests conducted with successive lowering of the superficial gas velocity but with injection of fine limestone at a constant Ca/S ratio did not show a significant improvement in sulfur control despite the decrease in velocity.

i) Effect of fly ash recirculation

Recirculation of fly ash with fine sorbent injection improved the sulfur control in some instances but the results were inconsistent.

1.2.3 Reduction with the Use of Limestone Beds

The tests conducted with a medium sulfur coal burning ir a bed composed of 1359 limestone indicated that the emission of sulfur dioxide could be controlled almost completely for a period of 2 to 3 hours with the favorable sorption condition, i.e., $1550^{\circ}F$ temperature and $3\% O_2$ in the flue gas. When the breakthrough of sulfur dioxide becomes significant, most of the sulfur may be driven out of the bed by increasing the bed temperature and lowering the oxygen concentration. The bed thus "regenerated" could be reused for sulfur control by reverting to operation under the sorption conditions. During the regeneration phase, sulfur dioxide concentrations as high as 8.1% were observed, a value some 30 times the untreated gas concentration. A cyclic process for carrying out the sorption and desorption on a continuous basis was devised but remains undeveloped.

The bed remained active after two cycles of sorption and regeneration. Additional work is indicated to establish the reactivity over a number of cycles and for a number of stones. Bed attrition rates were found to be high during calcination (5% to 7% of initial calcium charge lost per hour) but lower during sorption and regeneration (3% and 4% per hour respectively).

Measurement of the overall heat transfer coefficient in the limestone bed indicated the same value (47 $Btu/ft^2hr^{\circ}F$) observed in the sintered ash bed.

1.3 SULFUR TRIOXIDE EMISSION

Average values of sulfur trioxide concentrations observed in the flue gas from the process were found to be 30 to 50 ppm in a field of 3800 ppm sulfur dioxide. The sulfur trioxide invariably disappeared when a sorbent material was injected. None was observed with the limestone bed tests.

1.4 HYDROCARBONS EMISSION

The fluidized-bed combustor can be operated with as little as 5% excess air without evolution of smoke, but hydrocarbons concentration in the flue gas may be as much as 1500 ppm (methane) at this excess air level. The test data show that hydrocarbons emission is sharply dependent on oxygen content in the flue gas determined by the excess air rate. An excess air rate of 17% was necessary to burn up hydrocarbons in the FBC, while 24% was required for the FBM. These values correspond respectively to 3% and 4% oxygen in the flue gas.

The heat loss incurred by increasing the excess air from 5% to 17% is approximately 0.8% of the input energy based on a flue gas exit temperature of 400°F. The heat recovered from complete combustion of the hydrocarbons is about 0.9% of the input energy. These results indicate that operation with less than 17% excess air would not be advantageous in terms of thermal efficiency, whereas operation at 17% excess air has the obvious advantage cf lower hydrocarbons emission.

The 17% excess air rate was considered minimum for the bed operation. During a few tests with reducing conditions in the bed, sufficient air was added overbed to complete hydrocarbons combustion and to result in 3% oxygen in the flue gas.

A measurable concentration of carbon monoxide does not appear in the flue gas at a 3% or higher oxygen concentration.

1.5 OXIDES OF NITROGEN EMISSION

Emission of nitric oxide from the FBC was found to increase with oxygen content in the flue gas. Values of 320 ppm at 1% oxygen increased to 440 ppm at 5% oxygen. A typical value of 380 ppm at 3% oxygen corresponds to ~ 0.30 pounds NO per million Btu (MBtu) input.

The nitric oxide concentrations do not correlate with bed temperature. This would be expected since the measured values are well above those predicted by thermodynamic equilibrium. This result suggests the presence of local temperatures higher than the measured bed temperature or that the nitrogen content in the coal plays a role. Infrequently the emission may rise to 0.38 lb per MBtu with no increase in oxygen concentration.

Comparison of infrared determinations for NO and wet tests for NO_x indicate that nitric oxide (NO) is the dominant oxide of nitrogen. Oxides of nitrogen other than NO, determined by difference, were found to vary in the range of 10 to 30 ppm.

Emission of nitric oxide from the FBM was observed to be less than the level found with the FBC at the same flue gas oxygen content (3%) and temperature. The average emission of NO from the last sixteen FBM tests was 0.22 pounds per \overline{M} Btu, a value equivalent to ~275 ppm concentration. In general, nitric oxide emission was not affected by addition of sulfur control sorbents.

1.6 PARTICULATE EMISSION

Particulates passing the FBC cyclone collector represented about 10% of the fly ash input without fine sorbent addition. When the fine sorbent was added, the particulate emission rate was increased (from ~ 2.0 to ~ 4.0 lb/hr), but the percentage of the total input that was emitted remained the same. Most of the fine sorbent was collected in the cyclone.

Somewhat higher collection efficiencies (95%) were found with the FBM collector. One sample of the fly ash discharged to atmosphere auring fine sorbent injection was analyzed for particle size. The analysis showed that 90% of the particulate emitted was smaller than 5 microns.

2. CONCLUSIONS

The results obtained from the test program thus far and the economic study led to the following conclusions:

- a. Emission of sulfur dioxide from the combustion of coal can be reduced to currently acceptable levels by burning the coal in a fluidized bed and injecting finely divided limestone into the bed. A 4.5% sulfur coal can be converted to an equivalent 1.0% sulfur coal with the injection of -325 mesh 1359 raw limestone at a rate of 27 lb/100 pounds of coal, equivalent to a stoichiometric ratio of 1.9. A 2.6% sulfur coal can be converted to the l% equivalent with addition of 10 lb/100 pounds of coal, equivalent to a stoichiometric ratio of 1.2.
- b. Limestone injection equipment involves a comparatively low capital investment, approximately \$220,000 for a 500,000 lb/hr boiler plant containing two 250,000 lb/hr boilers.
- c. The cost of reducing sulfur dioxide emission to the equivalent 1% sulfur coal is estimated to be \$.54 per ton of coal for the 2.6% sulfur coal and \$1.06 per ton for the 4.5% sulfur coal with the use of -325 mesh 1359 raw limestone at the rates indicated above where limestone is available at \$2.05 per ton. These are incremental costs based on the assumption that the plant is built with air pollution control in mind. Improvement in costs will depend largely on an economical method of increasing the sorbent utilization. Possibility for improvement exists in the use of limestone beds in a cyclic process or in the processing of partially reacted stone to expose the unreacted core.
- d. For a once through process, grinding to a fine particle size (-325 mesh) appears necessary for the 1359 limestone which is very durable in comparison with the dolomite. Fine grinding should be beneficial with other limestones, but perhaps not necessary if the stone tends to decrepitate in the bed. The 1359 lime hydrate, which occurs naturally in a fine size, is as reactive as the finely ground raw stone but at \$15.00 to \$20.00 per ton ic much more costly.
- e. Utilization of the finely ground raw limestone for sulfur control varies in the range of 40% - 33% at stoichiometric ratios of 1 to 2. Slightly higher sorbent utilization is indicated for the 1337

dolomite if utilization is based on the calcium fraction alone. On a total weight basis, however, the dolomite removes less SO, per pound of stone fed than the limestone. Utilization appears to be limited by product shell formation even with the fine sorbent particles.

f. When a medium sulfur coal is burned in a bed made up entirely of -10 + 20 mesh 1359 limestone, 99% of the sulfur dioxide is captured initially. The sulfur dioxide emission rises with time; after 2 to 3 hours, the capture rate may drop to 90%. The emission would be expected to rise steadily in time until the capture rate becomes negligible.

To maintain a high capture rate, the stone must be either replaced or regenerated. By raising the bed temperature and decreasing the oxygen concentration, 90% or more of the sulfur may be driven out of the spent stone and the stone thus regenerated. Makeup of the bed to replace attrition losses was indicated to be ~5% per hour of operation.

During the regeneration phase, sulfur dioxide concentrations as high as 8.1% were observed--some 30 times the untreated gas concentration. The high concentration should facilitate sulfur recovery or scrubbing, if this is desired.

- g. Sulfur trioxide emission is completely eliminated by limestone injection or by combustion of the coal in a limestone bed. This would permit coal-fired boilers to be designed with lower flue gas temperatures than is normally permitted when low temporature corrosion is a problem.
- h. Emission of oxides of nitrogen from the FBM was found to average 0.22 pounds per MBtu input at 17% excess air. Values reported for conventional coal-fired boilers of similar capacity vary from .31 to 2.2 lb/MBtu. NO_v emission is not affected by limestone injection and is higher than predicted by thermodynamic equilibrium at the measured bed conditions. Emissions from the FBC were somewhat higher (.30 lb/\overline{MBtu}). NO_x emission increases with increasing excess air and may be decreased by operating with reducing conditions in the bed.
- i. Emission of hydrocarbons from the fluidized-bed combustion process can be controlled effectivley with ~24% excess air based on FBM test results. This rate is favorable in comparison to values of 40% to 50% excess air commonly employed in conventional boilers. Carbon monoxide was not detected in the flue gas with 24% excess air.

RECOMMENDATIONS

For continued research to improve the air pollution control capability of the fluidized-bed combustion process, the following measures are recommended:

a. Improvement in sulfur emission control without added cost necessarily implies increased sorbent utilization. The present utilization limit of 40% reflects the theoretical potential for improvement. Increasing sorbent utilization would seem to require a method of gaining access to the calcined core of the sorbent or a repeated use of the product shell area of the sorbent particle in a cyclic sorption-regeneration operation.

The spent sorbent particle can probably be broken down by hydration because of the heat generated in the process and the naturally fine state of the product hydrate. This breakdown was observed during the test program when spent sorbent particles were dropped into water or exposed to humid air. The application to the fluidized bed boiler would involve wetting the spent sorbent fly-ash mixture with a minimum amount of water at a point downstream from the dust collector and then reinjecting the mixture into the bed. Another technique which might give access to the core is grinding of the spent sorbent before reinjection.

- b. The investigation of combustion in a limestone bed should be continued as a means of increasing the effective sorbent utilization for possible application in industrial or utility-size boilers. Optimum concentration of sulfur dioxide in the off-gas during the sorbent regeneration phase should be determined for its bearing on sulfur recovery.
- c. While emissions of NO may be somewhat lower than from conventional boilers, they are still present. Therefore, methods for reducing NO emissions should be sought.

The possibility of finding an inexpensive sorbent which acts as effectively on NO as limestone does on sulfur oxides appears remote. Unlike sulfates and sulfides, most nitrates, nitrites and nitrides are not stable at the bed-operating temperature. The systems study by Esso Research provides a valuable checklist of methods that might find application either as an in-situ control process or

on the stack gas. These include catalytic decomposition, catalytic reduction, adsorption, absorption and modification of operating conditions.

Recommended for evaluation are lowering the oxygen gradient between the bottom and the top of the bed by recirculation of flue gas, operation of the bed under slightly reducing conditions, and reduction of the oxygen partial pressure at the base of the bed by combustion of a premixed hydrocarbon fuel, such as natural gas. Reduction of NO emissions of 50% have been obtained under certain operating conditions indicating a potential for NO control via fluidized-bed combustion. 4. INTRODUCTION

Pope, Evans and Robbins in 1965 undertook a program sponsored by the Office of Coal Research, United States Department of the Interior, to develop low cost, high capacity, coal-fired boilers. In comparison with oil and gas-fired units, the conventional coal-fired boiler suffered a competitive disadvantage in higher capital cost for any given steam capacity. The primary aim of the program was to improve the economic position of coal as a boiler fuel. A report on the boiler development program will be published by the Office of Coal Research.

The problem of increasing steam capacity while reducing the capital cost (furnace size) necessitated an increase in combustion intensity, i.e., heat release per unit volume and also an increase in heat transfer rate to reduce heat transfer surface requirements at the high volumetric heat release rates. These requirements demanded a new approach in coal combustion technology. The concept of fluidized-bed combustion provided the most promising area of investigation as the basis for this new approach.

Early test results indicated that fluidized-bed combustion afforded order-of-magnitude increases in both combustion intensity and heat transfer rates. From these results it was predicted that a coal-fired, railroad transportable, multicell boiler capable of producing 250,000 pounds of steam per hour was feasible. Development and testing of a full-scale, single cell of a multicell boiler concept has been in progress since 1967.

The fluidized-bed combustion principle is illustrated in Figure 1. Crushed coal is injected into a bed of granular, inert material which is fluidized by air flowing upward through the bed. The coal particles are dispersed rapidly in the bed because of its turbulent motion and burned with oxygen supplied by the fluidizing air. Most of the ash residue accompanied by a fraction of carbon is blown out of the bed and entrained in the gas stream.

Rapid oxidation of the coal particles gives rise to combustion intensities (heat release rates) as high as 350,000 Btu per hour per cubic foot of bed volume. The high heat transfer rate permits rapid removal of heat through the walls surrounding the bed. This, in turn, permits control of bed temperature to a comparatively low 1600°F despite the rapid heat release.

14

FIGURE 1. SCHEMATIC OF FLUIDIZED BED BOILER

POPE EVANS AND ROBBINS

Measured overall heat transfer coefficients of 45 $Btu/ft^2hr^{\circ}F$ result in an average heat flux of $^{\circ}70,000 Btu/ft^2hr$. This flux is such that a sizable fraction of the heat released in the bed can be converted to steam energy with a relatively small amount of heat transfer surface surrounding the bed. The total heat transfer surface in the boiler can thus be markedly reduced.

The fluidized-bed combustion principle, therefore, makes it possible to decrease the capital cost of coalfired boilers by increasing the steam capacity per unit volume of furnace. Other advantages include the fact that the coal need not be cleaned. Poor quality fuels, having high ash fractions, can be burned in a fluidizedbed combustor. In addition, the coal need not be pulverized but merely crushed. These factors would reduce both coal and coal preparation costs.

The low bed operating temperature (1600°F) should reduce boiler tube corrosion and fireside ash deposition. The uniform temperature distribution throughout the bed should reduce the possibility of tube distortion from local, high thermal stresses. The low -xcess air requirement showed promise of increased thermal efficiency over conventional coal-fired boilers.

Principal disadvantages are the higher fan power required because of the pressure drop across the bed and air distributors, and piping and control requirements that possibly may be more complex than those employed with conventional boilers. Operation with some coals would require makeup of bed material. The present state-of-the-art requires that the coal be singlescreened to preclude buildup of large inert particles in the bed.

It appears impractical to attempt to burn coal completely in one pass through a fluidized-bed combustor. Special methods must therefore be employed to insure high levels of combustion efficiency. One such method, the Carbon-Burnup Cell, is now under intensive study. The potential disadvantage of high dust loadings and subsequent erosion from ash recirculation may also be overcome through the use of the Carbon-Burnup Cell.

The combustion principle and the performance characterlstics pointed up a number of potential advantages for air pollution control. Among these was the fact that the random motion of the bed particles could provide an ideal environment for contacting limestone with sulfur oxides in the flue gas. Sulfur emission control by injection of limestone into boiler flue passes has been demonstrated by others, but effectiveness of the method was limited apparently by formation of a sulfate shell around the injected particles which prevented further reaction. The possibility existed that the fluidized bed could provide not only the gas-solids contacting and the residence time for the desulfurization reaction but could erode a product shell and continuously expose unreacted surface. Bench scale studies of this reaction by others also indicated that the bed operating temperature range would be favorable for sulfur capture.

The low bed operating temperature was felt to be a characteristic favorable for the control of nitrogen oxides emission. Thermodynamic considerations and experience with other combustion processes indicated that nitrogen oxides emission increases with rise in flame temperature. Operating at a temperature of 1600°F, the fluidized-bed boiler was felt to have a clear advantage over conventional boiler systems which burn coal at temperatures of 2500°F and higher.

A further potential advantage, noted earlier, is the fact that the coal could be burned at near stoichiometric air rates without visible smoke in the flue gas discharged to atmosphere. This meant that smoke emission could be eliminated without loss in thermal efficiency which necessarily follows the use of excess air for smoke control.

In November 1967, the National Air Pollution Control Administration (NAPCA) of the United States Department of Health, Education, and Welfare initiated an air pollution test program through an interagency transfer of funds from NAPCA to OCR. The test program was undertaken to characterize the pollutant emissions from the combustion of coal in a fluidized bed and to assess the potential of fluidized-bed combustion for air pollution control.

The test program entailed initially the investigation of the operating variable effects on emissions and the effect of injecting sorbent materials (limestone and dolomite) into the fluidized bed of inert material. Subsequently the investigation was expanded to include the use of sorbent material as the bed material.

The variables are itemized in the discussion below.

4.1 OPERATING VARIABLES

- a. Bed temperature 1500°to 1900°F
- b. Bed depth, static 6 to 20 inches
- c. Bed composition sintered ash and limestone
- d. Air rate superficial velocity 6 to 14 fps
- e. Fuel rate required to match superficial velocity 6 to 14 fps
- f. Ash recirculation full range (0% to 80%)
- 4.2 ADDITIVE (SORBENT) VARIABLES
 - a. Sorbent type limestone, dolomite and a natural mine additive
 - b. Sorbent state raw, calcined and hydrated
 - c. Sorbent feed rate stoichiometric ratio 1 to 3
 - d. Sorbent particle size -7 +14 to -325 mesh
 - e. Method of sorbent injection
 - f. Water (or steam) injection
- 4.3 COAL COMPOSITION
 - a. Ash content 7.2 and 10.7 wt. percent
 - b. Sulfur content 4.5, 3.0, and 2.6 wt. percent

5. EQUIPMENT AND PROCEDURES

5.1 PILOT SCALE COMBUSTOR, FBC

Initial tests were conducted in a pilot scale combustor, designated the FBC. The FBC consisted of a rectangular combustion space, 12" x 16", erclosed by an air distribution grid at the bottom, and waterwalls around the periphery as shown in Figures 2 and 3. Air was passed into a plenum below the grid, through the grid buttons and into the combustion chamber where it fluidized the bed material and provided the combustion oxygen. Coal, crushed to pass through a 1/4" screen, was injected through a port at the base of the bed.

The air distribution grid contained a matrix of grid buttons mounted in a mild steel plate. The buttons were fabricated in stainless steel and designed to direct the air slightly downward toward the grid plate. This downward flow tended to eliminate stagnant areas around the buttons and provided cooling air for the grid plate. A cross section of a button is shown in Figure 4.

The bed material consisted generally of sintered coal ash crushed and screened to a mesh size of -7 + 14. The bed was heated to coal ignition temperatures with a premix gas burner flame directed downward onto the bed as shown in Figure 2. The ignition procedure involved fluidizing the bed material with minimum air flow, raising the bed temperature to 800°F and then injecting coal until the combustion was self sustaining. About 10 minutes is required for ignition. The bed temperature was monitored with a number of thermocouples spaced vertically in the combustor. Kaowool seals were provided to prevent flue gas leakage out of the system. Specifications for the FBC are presented in Appendix A, Enclosure 1. The coal feed rate to the unit was approximately 110 1b/hr for an energy input of 1.35 x 10^6 Btu/hr.

The FBC test system is shown in a photograph, Figure 5, and schematically in Figure 6. Combustion products from the FBC were passed through a heavy gauge welded seam duct, through an induced draft fan, through a dust collector and on to atmosphere. The slanted configuration of the duct between the FBC and the induced draft (I.D.) fan was intended to provide gas cooling without causing wall surface temperatures to fall below the dew point of sulfur trioxide \sim 360°F. This was accomplished since the flue gas temperature declines in this region from \sim 1300°F to \sim 800°F. The control damper provides a variable back pressure on the system to create a slightly

FIGURE 2. FLUIDIZED-RED COLUMN (FBC) CONSTRUCTION DETAIL - FRONT VIEW

FIGURE 3. FLUIDIZED-EFD COLUMEN (FEC) CONSTRUCTION DETAIL - SIDE VIEW

FIGURE 6. FBC AIR AND EXHAUST GAS DUCTING SHOWING SAMPLING POINTS

25

positive pressure on the FBC and thus prevent infiltration of air at the hood connection.

Combustion air was provided from an external fan to reduce the noise level in the test area. The air flow rate was monitored by a pitot tube in the long entrance duct and a gate valve in the line provided air flow control to the unit. The coal feed rate was controlled by a variable speed drive on the coal feed screw. Fly ash collected was discharged into bags or recirculated into the FBC as indicated in Figure 6. Locations of thermocouples are described in Section 5.4-Instrumentation.

The temperature of the bed during operation of the FBC (or FBM) depends for the most part on the bed depth which governs the total transfer surface at the water walls. This dependency created a problem in determining the separate effects of temperature and depth. The problem was solved by insulating the periphery of the bed and installing an internal cooling coil as shown in Figure 7. The bed temperature was then adjusted at various depths by raising or lowering the coil. This mode of temperature control was also used in the limestone bed tests. The temperature vs. depth tests are discussed in Section 6.3 and the limestone tests in section 6.9.

5.2 FULL-SCALE BOILER MODULE, FBM

The full-scale boiler module, designated the FBM, is a boiler unit capable of generating steam under pressure. In this unit the fluidized bed is contained in a rectangular enclosure in which each wall is a row of vertical boiler tubes seal-welded so as to form a gas-tight enclosure. The FBM represents one half cell of the multicell, fluidized-bed packaged boiler concept developed under the OCR project. Two modules placed back to back would comprise one cell. A number of cells placed side by side without intervening insulation would make up the fullscale boiler.

A cutaway sketch of the FEM is provided in Figure 8. The fluidized-bed cross section is v18 x 72 inches, roughly seven times the FBC crors section. The bed is surrounded by vertical water tubes which extend from the grid plate to the overhead drum. No other tubes are placed in the bed. The water tubes are joined together by a steel webbing and are backed by insulation. Flue gas from the bed passes between the tubes at the top of the unit and around the steam drum.

FOFF EVANS AND ROBEINS

FIGURE 7. FBC COOLING COIL AND INSULATING SLEEVE VIEWED FROM ABOVE POPE. EVANS AND ROBBINS NOI REPRODUCIBLE POPE. EVANS AND ROBBINS

The combustion space is accessible through a watercooled panel at the front of the unit. The panel contains a premix gas burner used to fire the bed. The burner directs a flame downward onto the front of the bed. Two pneumatic feed ports are provided below the access panel, one for the coal feed tube and the other for the additive or fly-ash feed tube. The tubes are extended into the bed area to discharge the solids at points shown in Figure 9.

From a plenum at the base of the unit, air is directed upward through a grid and into the bed area. The grid consists of a mild steel plate containing buttoms of the same spacing and design used in the FBC operation. The bed material used in the FBM tests was the same -7 +14 mesh sintered ash. The static bed depth varied from 12 to 20 inches. Thermocouples were mounted throughout the bed as shown in Figure 8. Detailed specifications of the FBM are presented in Appendix A, Enclosure 2.

In operation, the bed is raised to the ignition point of coal by use of the gas burner. Combustion of the coal begins in the vicinity of the burner flame and propagates rapidly throughout the bed. Firing with a coal input of 800 lb/hr, the FBM produces 200 psig steam at the rate of 5000 lb/hr. The energy not absorbed by the waterwalls leaves this test rig as hot products of combustion. In a commercial unit, the energy of these gases would be extracted in a conventional gas-to-surface convection bank.

A schematic drawing of the FBM test system is shown in Figure 10. Air from an external forced-draft fan passes through the air preheater (or bypass) and into the FBM plenum. Coal feed is controlled by the rotation of a star feeder which drops the coal into a pneumatic feed tube at the injection port. A supply of coal is maintained automatically in a small hopper above the feeder by screw feed from a larger hopper. Sorbent materials were screw fed to the injection port at a rate controlled by a variable speed screw drive. Ash recirculation is accomplished by pneumatic transport of fly ash from the dust collector through a star feeder control.

Flue gas from the FBM is mixed with ambient air in the ducting above the unit to reduce temperature before it enters the air preheater. As the flue gas passes through the air preheater, a portion of the fly ash

27

POPE, EVANS AND ROBBINS

FIGURE 10. SCHEMATIC OF THE FBM TEST SYSTEM

FIGURE 9. SCHEMATIC OF THE FEM SHOWING THE ARRANGEMENT OF PNEUMATIC COAL AND ADDITIVE FEED TUBES

31

Preceding page blank

drops out and is collected in the hopper shown. The bulk of the fly ash is retained in a multicone collector downstream. During recirculation, the ash in the first hopper is screw fed into the collector hopper. From the collector the gas flows through a long duct to an induced draft fan and then to atmosphere. A balance damper is provided in the ducting to control pressure in the combustion chamber, A photograph of the system is presented as Figure 11.

The test procedures for both the FBC and FBM operations involved igniting the bed and stabilizing the combustion at the desired bed temperature until steady-state conditions prevailed. Steady state was assumed when the Bailey Meter and the SO₂ IR analyzer indicated constant values of oxygen and sulfur dioxide in the flue gas. At steady state the sorbent feed was initiated or some other operating condition varied and the effect on emission observed. A period of 30 minutes, at least, was allowed for a new steady-state condition after an operating condition change.

The working bed depth was greater in the FBM tests than in the FBC tests because a greater depth was necessary to maintain the same ratio of cooling surface to bed plan area. With a given air rate and luel rate the bed temperature will be approximately the same in systems having different dimensions if this ratio is kept constant. A derivation of the heat balance equation to stant. A derivation of the heat balance equation to stant. A derivation of the seconced in Appendix A, Enclosnow the relationship is presented in Appendix A, Enclosure 3.

Under equivalent conditions the bed depth requirement with change in bed cross section follows the simple relation:

$$\frac{d_2}{d_2} = \frac{1_2 w_2 (1_1 + w_1)}{1_2 w_2 (1_1 + w_1)}$$

where d, l and w are the depth, length and width respectively of the beds l and 2.

This relationship applies fairly well to the FBG and FBM. The the FBC be defined to that $1_{\rm J} = 16^{\rm n}$, $w_{\rm J} = 12^{\rm n}$ and at 1550°F bed temperature, $d_{\rm J} = 12^{\rm n}$. In the FBM, bed 2, $1_{\rm Z} = 72^{\rm n}$, $w_{\rm Z} = 17.5$ (the distance between tube banks). Applying the equation to predict d_2 ,

$$q^{2} = \frac{(10^{\circ} \times 15^{\circ})(15^{\circ} + 17^{\circ})}{(15^{\circ} \times 11^{\circ})(15^{\circ} + 15^{\circ})} = 54^{\circ}.6^{\circ}$$

In the FBM experiments it was found that a 24" deep bed did operate at 1550°F firing the same coal at the same rate, per unit bed plan area, as in the comparable FBC experiment. It is not suggested that the relation would apply to scale-up of very large beds.

Emissions were monitored in the FBM tests with the same procedures used in the FBC tests. Emissions were monitored without sorbent addition, with coarse sorbent addition, and with fine sorbent addition. Most of the tests were performed using fine sorbent addition, low bed temperature and a 3% oxygen concentration in the flue gas, which are the conditions found in the pilot scale to favor sulfur dioxide control. The sorbents used included both the 1337 dolomite and 1359 limestone ground to a -325 mesh particle size and the hydrated forms of these which occur naturally in a -325 mesh size. Precalcined sorbents were not tested in the FBM because of poor performance in the FBC tests. Ohio #8 Pittsburgh Seam coal, washed and unwashed, was used in the tests except for one test involving a low sulfur E. Kentucky coal.

Recirculation of fly ash was employed as a test condition by feeding the fly ash from the collector to the sorbent injection port as shown in Figure 8. The rate determined by the feeder was 80% - 90% of the input ash. In two tests, steam was injected into the inlet air at approximately 400 lb/hr.

5.3 METHOD OF SORBENT FEED

Three methods of sorbent feed were employed on the FBC during the course of the test program. The first involved screw-feeding the sorbent into the pneumatic line used to carry the coal feed into the unit. This method, pictured in Figures 12 and 13, employs a long inclined screw feeder and a variable speed drive. The assembly was designated the #1 feeder system.

A second system, designated the #2 feeder, was fabricated for injecting the sorbent at two points remote from the coal-feed injection port. The feeder system consisted of a lock hopper for the sorbent mounted on a short screw feeder as shown in Figures 14 and 15. The outlet of the feeder was connected to a pneumatic feed system which divided the sorbent flow between two injection tubes. The orientation of injection ports is shown in Appendix A, Enclosure 4.

The lock hopper in this system was necessary to counter the static pressure at the bottom of the bed. In the #1 feeder system and the coal feed system, this pressure differential is borne effectively by the inclined screw.

POPE, EVANS AND ROBBINS

FIGURE 12. SCHEMATIC OF THE NO. 1 SORBENT FEED SYSTEM FOR THE FBC

NOT REPRODUCIBLE

FIGURE

13.

FBC OPERATING WITH NO.

-

SORBENT

FEED

SYSTEM

35

Preceding page blank

POPE, EVANS AND ROBBINS

FIGURE 14. FBC OPERATING WITH NO. 2 SORBENT FEED SYSTEM

Preceding page blank

FIGURE 15. SCHEMATIC OF THE NO. 2 SORBENT FEED SYSTEM FOR THE

POPE. EVANS AND ROBBINS

A third method of sorbent feed involved premixing the sorbent with the coal and feeding the mixture through the coal feed screw. A brief series of tests was conducted to determine the most effective system for sulfur dioxide control.

A combined feeder system was developed in an effort to study the effect of distribution based on the favorable results of the #2 feeder. The system consisted of a four-point injection configuration, shown in Figure 16, with provision for controlling the sorbent flow into one, two or all four sides of the FBC without change in sorbent mass flow.

An attempt to achieve the ultimate in sorbent distribution was made by injecting the fine material into the inlet air duct for distribution through the grid buttons. Although the sorbent particle size is much smaller than the button port diameter, the sorbent agglomerated and plugged the buttons rapidly.

In the FBM test series only one method of sorbent feed was used--that of feeding the sorbent into the bed at two points opposite the two coal feed ports. This feed arrangement is shown in the schematic of Figure 9 and in the photograph of Figure 17.

5.4 INSTRUMENTATION

Emissions of sulfur dioxide, nitric oxide and hydrocarbons were monitored continuously with the instrumentation pictured in Figure 18. Infrared analyzers (Beckman 215) were used to monitor sulfur dioxide and nitric oxide. Hydrocarbons were detected with a flame ionization analyzer (Beckman 109A) using methane as the reference gas. The signal output of each of these units was displayed on strip chart recorders shown at the right side of Figure 18.

The gas transfer system used with these analyzers is sketched in Figure 19. The system permitted rechecking of calibrations on any of the three units at any time during the test by switching from sample gas to reference and zero gases at the rotameter valves. The sample gas was drawn from the flue gas stream through a sintered stainless steel filter and conditioned to remove water. The sample gas was again filtered before entry into the analyzers to prevent possible contamination of the optical cells and the hydrogen burner.

POPE, EVANS AND ROBBINS

NOT REPRODUCIBLE

FIGURE 16. VERTICAL CROSS SECTION OF FRC SHOWING SORBENT PEEDERS AND FEED POINTS

POPE, EVANS AND ROBBINS

38

FIGURE 19. SCHEMATIC OF GAS TRANSFER SYSTEM FOR CONTINUOUS MONITORING OF SULFUR DIOXIDE, FIGURE 19. SCHEMATIC OF GAS TRANSFER SYSTEM FOR CONTINUOUS MONITORING OF SULFUR DIOXIDE,

40

FIGURE 18. ANALYTICAL INSTRUMENTATION

POPE, EVANS AND ROBBINS NOT REPRODUCIBLE

FIGURE

20.

SCHEMATIC

g

THE

FBM

GAS

SAMPLING SYSTEM

The FBC gas sample was drawn into the instrument room from the FBC exhaust duct which extended overhead. In sampling the FBM flue gas, special precautions were necessary because of infiltration of dilution air in the duct above the unit and the poor instrument response which would result from drawing a small sample a long distance (\sim 60 feet) from unit to instrument room. A system was devised to draw a large gas sample from within the FBM (at the gas passage around the steam drum), pass it through a dust collector, and then through a loop above the instrument room. The sample tube was a 3" pipe with sections screw-fitted and welded. The system was driven with an I.D. fan located at the discharge to atmosphere. A schematic drawing of the system is shown in Figure 20.

Periodic samples were taken from the flue gas to determine SO_3 , SO_2 , and NO_X by wet chemical analysis. The sulfur oxides analytical system consisted of a hydrogen peroxide absorption train preceded by a sulfur trioxide condenser shown in Appendix A, Enclosure 5. The sulfuric acid in each part of the system was determined by titration with barium perchlorate using thorin as the indicator. The nitrogen oxides analytical system consisted of the standard phenoldisulfonic acid procedure, using a Beckman Model B spectrophotometer for optical density measurement.

Particulate emissions were monitored with an isokinetic probe system shown in Appendix A, Enclosure 6. The probe design permits equalization of internal and external static pressures to match the sampling velocity with the stream velocity. Locations of sampling points in the FBC and FBM test systems were indicated in Figures 6 and 10 respectively.

A Bailey oxygen analyzer (Type OC1530A) was used as an operating device to indicate the oxygen concentration in the flue gas. During a test period, the air input rate was held constant and the coal rate adjusted to maintain the oxygen concentration at the desired value. The Bailey instrument was calibrated periodically with O_2 , N_2 and CO_2 mixtures and found to be very reliable. The flue gas oxygen was also verified using the standard Orsat technique which determined also carbon dioxide and carbon monoxide.

Temperatures in the bed and at various other points in the system were recorded on a Honeywell Multipoint recorder. A multiple switch panel was used to connect

POPE EVANS AND ROBBINS

43

the recorder input to either the FBC or FBM systems as required. Locations of thermocouples in the systems are indicated in Appendix A, Enclosures 7 and 8.

The infrared analyzers and the hydrocarbon analyzers were calibrated with gas mixtures supplied by vendors. The concentration of the active components in the calibration gases was checked after delivery to the laboratory. The methane mixture was analyzed by the National Bureau of Standards--a report is shown in Appendix A, Enclosure 9. This gas, containing 1265 ppm CH4, was used to calibrate a second methane mixture before it was depleted.

The sulfur dioxide calibration gas was analyzed with a peroxide absorption train. Gas concentrations of 3906 ppm and 2530 ppm were used in the program. Analysis of the first calibration gas supply indicated a value of 2530 ppm as shown in Enclosure 10. Analysis of the nitric oxide calibration gas is shown in Enclosure 11.

The output signal of the infrared sulfur dioxide analyzer varies in a nonlinear manner with SO_2 concentration. The calibration curve provided with the instrument was checked by precision dilution of the known calibration gas. The curve was found to be correct except for a slight deviation at the low end of the range. The calibration curve and check points are shown in Appendix A, Enclosure 12. The calibration curve was used without correction since the deviation is not more than 1% of full scale.

The calibration curve for the nitric oxide I.R. analyzer is shown in Appendix A, Enclosure 13. The contribution of water vapor to the signal output is significant with this analyzer. The water vapor correction determined by the supplier (180 ppm) was checked by testing a dry gas in the analyzer for comparison with a moist sample. A correction of 200 ppm was noted and incorporated in the data reduction. The range of this unit is 0-1000 ppm NO.

5.5 MATERIALS

5.5.1 Coals. Two coals selected for the test program consisted of an unwashed high sulfur coal containing 4.5% sulfur and 10.7% ash, and the same coal after washing. The washed product contained 2.6% sulfur and 7.2% ash. The coal was mined from the #8 Pittsburgh seam at the Georgetown mine, Cadiz, Ohio. Proximate and ultimate analysis of each coal is shown in Appendix A, Enclosures 14 and 15. A comparatively high content of iron oxide in the ash is reported. One other coal, an East Kentucky, Pike County, low sulfur and low nitrogen coal,

POPE EVANS AND ROBBINS

was used in one test to compare the effect of nitrogen content on nitric oxide formation.

- 5.5.2 Sorbent Materials. Two limestone-based SO₂ control additives were studied in the raw, calcined and hydrate forms with a range of particle sizes from -7 +14 to -325 mesh. These additives consisted of a dolomite containing about 53% calcium carbonate and 46% magnesium carbonate (designated 1337) and a limestone containing 97% calcium carbonate (designated 1359). Analyses of these are given in Appendix A, Enclosure 16. The dolomite was supplied by the Dolite Company, Gibsonburg, Ohio, and the limestone by the M.J. Grove Company, Frederick, Maryland.
- 5.5.3 <u>Bed Material</u>. For the most part, the starting bed material consisted of sintered coal ash ground to a -7 +14 mesh. The sintered ash was procured from a local deposit and from the operation of the FBM in previous work. On occasion, the ash was obtained from the Anacostia power plant located nearby. Attempts to fluidize heavier bed materials such as limestone pointed up the need for special consideration.

The particle size range was selected to facilitate fluidization during the light-off procedure and also to preclude the possibility of serious elutriation losses at the operating bed temperature and superficial velocity. The flue gas velocity-particle size range for various material densities is shown in Appendix A, Enclosure 17. The particle density of the sintered ash is v120 lb/cu ft and normal operating superficial velocity 12-14 ft/sec.

The FBC was operated successfully with a bed of the high calcium limestone (1359). Details of this effort are discussed in Section 6.9.

ENCLOSURE 1. FBC SPECIFICATIONS

1. Air Supply

Two centrifugal fans in series for 300 cfm at 30" w.g. connected to a smooth 4" diameter conduit 20' long. Air flow is controlled with a jate valve and monitored with pitot pressure, static pressure and temperature measurements.

2. Plenum

Mild Steel, 1/4" thickness, 21" x 18" x 12" outside dimensions with 8" diameter air inlet.

3. Water Column

Mild Steel, 1/4" thickness, 24" x 20" x 36" outside dimensions with 16" x 12" x 36" inside dimensions.

- A. Wall on inlet air side contains:
 - a) One nominal 3" diameter pipe for lightoff burner
 - b) One nominal 1" diameter instrument port.
- B. Left wall (facing air inlet) contains:
 - a) One nominal 2" diameter pipe with valve for removal of bed material.
 - b) Eight nominal 1" diameter instrument ports at various levels.
 - c) One nominal 1" diameter water outlet.
 - d) One nominal 2" diameter pressure relief port.
- C. Right wall (facing air inlet) contains:
 - a) One rectangular 2" x 1" coal feed port.
 - b) One nominal 3/4" diameter cooling water inlet.
- D. Wall opposite the air inlet contains:

Three nominal 1-1/2" diameter ports.

ENCLOSURE 1. (Continued)

4. Air Distribution Grid

The grid contains 130 stainless steel air distribution buttons spaced on 1-1/4" centers each containing eight drilled ports, .087" diameter. The air is discharged icownward at an angle of 15° to the horizontal.

5. Water-cooled Hood

The hood is a truncated pyramid 24" x 20" at the bottom and 17" x 17" at the top with a height of 24" and a flue opening 12" diameter. Material is #10 gauge mild steel. One 4" diameter observation port is provided with 1" diameter water ports and a 2" diameter pressure relief port.

6. Flue System

From the FBC-1 hood, the flue system is run in 12" diameter #10 gauge steel pipe to the induced draft fan. From the fan the pipe is continued at 6" diameter again #10 gauge steel. All connecting sections are welded.

7. Dust Collector

The collector contains two 8" diameter centrifugal collector units with a dust hopper, rotary feeder and a valve for fly ash removal.

1. Air Supply

One centrifugal fan at 2500 cfm at 50" w.g. connected to 12-inch square duct which expands to full width of plenum at inlet. Air is controlled by means of a damper and monitored by an orifice.

2. Plenum

Mild steel, $\frac{1}{2}$ " thickness, 72" x 20 $\frac{1}{2}$ " x 12" inside dimensions with a 6' x 1' air inlet.

- 3. Boiler Construction
 - a. Single 20" steam drum
 - b. Dual 6" lower headers
 - c. 25" risers on 4" centers for side walls
 - d. 4" downcomers (external)
 - e. 5'4" distance from grid to uninsulated bottom of steam drum
 - f. Combustion space = 53 ft^3
 - g. Projected heating surface = 80 ft^2
 - h. Average direct contact surface = 30 ft^2
 - Boiler capacity = 5000 lbs/hr excluding convection heat transfer; 7000 lbs/hr including convection heat transfer
 - j. 8.75 ft² of bed area
 - k. Heat release rate: 800,000 to 1,200,000 Btu/ft²hr
 - 1. Pressure rating: 300 psi design, 200 psi normal operating

ENCLOSURE 2. (Continued)

4. Air Distribution Grid

The grid contains 815 stainless steel air distribution buttons spaced on 1½" centers, each containing eight drilled ports, .087" diameter. The air is discharged downward at an angle of 15° to the horizontal.

- 5. The flue system is fitted with three air infiltrators for temperature quenching, and a two-pass, 104 tube (l" x 6'), 600° air preheater; this is followed by a dust collector, which exits to a 16" duct. The system is drawn by a 4000 cfm, 5" w.g. static pressure, induced draft fan.
- <u>Dust Collector and Fly Ash Reinjection</u>
 The dust collector contains twelve 10-inch diameter centrifugal collector units with a dust hopper, a
 4" Allen-Sherman-Hoff rotary feeder for fly-ash reinjection and a valve for fly-ash removal.
- 7. Coal Input 700 - 900 lbs per hour

POPE. EVANS AND ROBBINS

Heat balance on the system may be expressed as follows:

(1)
$$K_1G_0 \Delta H = G_0CP_m(T_B - T_0) + hA_s(T_B - T_w)$$

Heat release = flue gas loss + heat removed.

- where G = mass flow of coal and air through the system lbs/hr
 - AH = heat content of fuel BTU/1b
 - K = constant
 - Cp_m = mean heat capacity of the flue gas
 - T_{n} = bed temperature °F
 - T_ = reference temperature °F
 - h = radiant plus convective heat transfer coefficient BTU/hr ft² °F
 - A_{a} = effective bed cooling surface ft²
 - $T_w = cooling surface wall temperature °F$

Equation (1) may be restated as follows:

(2)
$$K_2 u A_C \rho \Delta H = u A_C \rho C p_m (T_B - T_o) + h A_s (T_B - T_w)$$

where u = superficial velocity ft/sec

$$A_{c}$$
 = bed cross section ft²

p = gas density lbs/ft³

by dividing (2) by the 1st term and rearranging

(3)
$$\frac{hA_{s}(T_{B} - T_{w})}{K_{2}uA_{c}\rho\Delta H} = \frac{1}{4} - \frac{Cp_{m}(T_{B} - T_{o})}{K_{2}\Delta H}$$

The first term is the fraction of the total heat which is removed from the bed and is seen to be constant for fuel type and bed temperature.

A-6

ENCLOSURE 3. (Continued)

If u, h and $T_{\rm B}$ are to be constant for two systems of different size, then the ratio of cooling surface to bed cross-sectional area must be constant (A_/A_). The effect on bed depth is seen from the area ratio:

(4)
$$\frac{A_{B}}{A_{C}} = \frac{d(2 + 2w)}{1w} = constant$$

for beds of varying dimension

(5)
$$\frac{d_1}{d_2} = \frac{l_1 w_1 (l_2 + w_2)}{l_2 w_2 (l_1 + w_1)}$$

where d, l, and w are the respective depth, length and width of the two systems

This analysis assumes that the effective bed cooling surface is proportional to the bed depth. This is not strictly true, since radiation losses in a vertical direction from the bed are independent of bed depth. Another source of error is that use of the linear dimensions, 1 and w, does not account for the additional heat transfer surface of the round tubes which actually make up the walls of the FBM. At minimum bed temperature the respective bed depths are 10-12 inches and 20-24 inches.

POPE EVANS AND ROBBINS

7-A

ENCLOSURE 6. ISOKINETIC PROBE FOR PARTICULATE EMISSIONS DETERMINATIONS

POPE EVANS AND ROBBINS

.

A-12

COPY OF LETTER

ENCLOSURE 9. ANALYSIS OF HYDROCARBONS ANALYZER CALIBRATION GAS

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

REPORT OF ANALYSIS

Analysis of Dry Nitrogen for Methane

Requested by

Pope, Evans and Robbins Attn: E. B. Robison 515 Wythe Street Alexandria, Virginia 22314

Cylinder No. 42845T, containing dry nitrogen and methane, was analyzed for methane using a flame ionization detector. The instrument responses from standards containing 3241, 1032, 980, and 196 ppm methane were compared with the response from cyl. no. 42845T in order to determine its methane concentration. The concentration of methane in cyl. no. 42845T was found to be 1265 \pm 16 ppm methane (based on ten comparisons with the standards).

> (Signed) Julian M. Ives, Chemist

(Signed) John K. Taylor, Chief Microchemical Analysis Section Analytical Chemistry Division

October 4, 1968

69-79

Test #196806

ENCLOSURE 11. NITRIC OXIDE CALIBRATION GAS ANALYSIS

INCLOSERE II. MIRIC ONDE CALIBRATION

Analysis of the nitric oxide calibration gas was made with the Phenol-disulfonic acid procedure. Four gas samples were taken in flasks containing a small quantity of H_2O_2 solution and allowed to stand overnight. The solutions were processed as required and the absorbances of the final solution read on a Beckman Model B spectrophotmeter. The concentrations were determined from a calibration curve prepared by similar treatment of KNC₃.

The following data were taken during the tests:

rorrowing	uata wer	e taken u	uring t	ne cestr	•	Volume
Sample	Flask Volume,	Pres mm	sure, Hg	ΔP,	Temp.,	at STP (70°F)
No.	ml	Initial	Final	mmHg	<u>°F</u>	
1	1970	32	763	731	70	1900
2	1972	31	759	728	72	1885
3	1969	35	759	724	75	1860
4	1972	33	758	725	75	1870

Sample No.	Absorbance	Equivalent mg NO ₂	Co 	ppm NO
1	25.0	2.83		780
2	25.0	2.83		786
3	24.7	2.77		780
4	24.7	2.77		776
			Avg	780.5

The concentration of NO was determined from the relation:

ppm NO₂ (or NO) =
$$\frac{(5.24 \times 10^5) (C)}{V_g}$$

where
$$C = concentration of NO_2 mg$$

 V_e = gas sample volume at 70°F and 760 mmHg

The gas was passed slowly thru two absorption columns each containing a solution of 1.5% H_2O_2 freshly prepared. Sample volume was determined by change in pressure in a tank of known volume and corrected for standard condition. The solutions were then boiled to remove peroxide and titrated with 1/10 N sodium hydroxide. Four tests were made with the following results:

Test	Tank Volume,	Pressure, mmHg		ΔP,	Gas Temp.,	Sample Volume corrected to STN	
No.	liters	Initial	Final	mmHg	°F	liters	
1	34.71	113	315	202	70	9.24	
2	34.71	315	535	220	70	10.05	
3	34.71	535	725	190	70	8.69	
4	34.71	130	345	215	70	9.85	

Titration of the solutions with 0.0985N sodium hydroxide yielded the following data and computed results:

Test No.	NaOH Solution Scrubber #1	Volume, ml. Scrubber #2	Blank	50 ₂ (Concentration ppm
1	19.10	0.70	0.0		2530
2	20.70	0.76	0.0		2530
3	17.50	0.65	0.0		2520
4	20.70	0.80	0.0		2540
				Avg	2530

The sodium hydroxide solution was standardized against a potassium acid phthalate solution.

Concentrations were computed from the relation:

$$SO_2 ppm = \frac{12.05 (V)N}{V_s}$$

where V = titer volume ml corrected for blank

N = titer normality (Equivalents/liter)

V_e = sample volume at STP-liters

POPE EVANS AND ROBBINS
BECKMAN INSTRUMENTS, INC. MODEL NO. 215 A

APPLICATION: SULFUR DIOXIDE, RANGE: 0-5000 PPM BY VOLUME AMPLIFIER NO.: 200065, DETECTOR NO.: 1243 A ZERO GAS: NITROGEN, CALIBRATION PRESSURE: ATMOSPHERIC SPAN GAS: ANALYZED CYLINDER ~2650 PPM SO₂ CALIBRATION PRESSURE: ATMOSPHERIC SAMPLE PRESSURE: ATMOSPHERIC BECKMAN INSTRUMENTS, INC. MODEL NO. 215 A

APPLICATION: NITRIC OXIDE, RANGE: 0-1000 PPM BY VOLUME AMPLIFIER NO.: 200066, DETECTOR NO. 1436 A ZERO GAS: NITROGEN, CALIBRATION PRESSURE: ATMOSPHERIC SPAN GAS: ANALYZED CYLINDER ~900 PPM NO CALIBRATION PRESSURE: ATMOSPHERIC SAMPLE PRESSURE: ATMOSPHERIC

POPE, EVANS AND ROBBINS

ENCLOSURE 13. CALIBRATION CURVE FOR NITRIC OXIDE INFRARED ANALYZER

POPE, EVANS AND ROBBINS

ENCLOSURE 14. ANALYSES OF "PERFECT EIGHT" UNWASHED 4.5% SULFUR COAL

Source: Pittsburgh #8 Seam, Georgetown Mine Cadiz. (Harrison City) Ohio

		<pre>% Weig</pre>	ſht
1.	ULTIMATE ANALYSIS	As Rec'd	Dry
	Moisture	6.01	-
	Carbon	66.21	70.45
	Hydrogen	4.57	4.86
	Nitrogen	2.50	2.65
	Chlorine	0.05	0.05
	Sulfur	4.45	4.73
	Ash	10.73	11.42
	Oxygen (diff)	5.48	5.83
		100.00	100.00
2.	PROXIMATE ANALYSIS	As Rec'd	Dry
	<pre>% Moisture</pre>	6.01	-
	% Ash	10.73	11.42
	<pre>% Volatile</pre>	36.49	38.82
	<pre>% Fixed Carbon</pre>	46.77	49.76
		100.00	100.00
	BTU	12157	12934
	% Sulfur	4.45	4.73
3.	SULFUR FORMS		
5.	& Pyritic Sulfur		2 0 2
	& Sulfate Sulfur		2.92
	& Organic Sulfur		1 73
	t Total Sulfur		4 73
	+ Iocal Sullui		4./3
4.	FUSION	REDUCING AT	MOSPHERE
	Initial Def. (ID)	1980°F	
	Softening (H==W)	2125°F	
	Softening (H==1/2W)	2160°F	
	Fluid Temp. (FT)	2270°F	
5.	ASH ANALYSIS		
	Silica (SiO ₂)	43.64%	
	Iron Oxide (Fe ₂ O ₃)	25.68%	
	Titania (TiO ₂)	XXXXX	
	Alumina (Al ₂ O ₃)	25.02%	
	Manganese Oxide (Mn ₃ O ₄)	XXXXX	
	Lime (CaO)	2.06%	
	'Magnesia (MgO)	trace	
	Alkalies (Na $_{2}O / K_{2}O$ by diff.)	2.36%	
	Sulfur Trioxîde (SÓ ₂)	1.24%	
	Phosphorous pentoxide (P ₂ 0 ₅)	xxxxx	
	23	100.00%	

POPE, EVANS AND ROBBINS

ENCLOSURE 15. ANALYSES OF "PERFECT EIGHT" WASHED 2.6% SULFUR COAL

Source: Pittsburgh #8 Seam, Georgetown Mine Cadiz. (Harrison City) Ohio

			Size Co	onsist
	As Received	Dry	_ 1냣" Modifie	d at Mines
Moisture Volatile Fixed Carbor Ash	5.00% 37.30 50.50 <u>7.20</u> 100.00%	39.30% 53.10 7.60 100.00%	15" x 15" 15" x 3/4" 3/4" x 3/6" 3/3" x 1/8" 1/8" x 0	18.759 44.85 21.89 11.19 3.32
BTU	L3,000	13,680		
Sulfur	2.60%	2.80%		
ASH AN	NALYSIS		ULTIMATE	ANALYSIS
Silica (SiO ₂)		43.04%	As Rec	d. Dry
Iron Oxide (F	'e ₂ 03)	25.68		
Titania (TiO	,)	xxxxxx	Moisture 5.	00%
Alumina (Al ₂)	,) ₂)	25.02	Carbon 70.	36 74.06%
Manganese Oxi	de (Mn ₃ O ₄)	XXXXXX	Nitrogen 0.9	9 1.03
Lime (CaO) Magnesia (MgC Alkalies (Nag)))) / K ₂ O by _e	2.06 trace 2.36	Oxygen 8.7 Sulfur 2.5 Ash 7.2	73 9.19 55 2.66 20 <u>7.62</u>
Sulfur Trioxi	de (SO ₂)	1.24	100.0	0% 100.00%
Phosphorous p (pentoxide P ₂ O ₅)	<u>xxxxxx</u> 100.00%		
	FUSION TEM	PERATURE OF	ASH	
		Reducing Atmospher	g Oxidia re Atmosp	zing phere
Initial D Fusion (S Fluid Tem	eformation oftening) perature	2,020°E 2,120°E 2,240°E	2,30 2,44 2,53	55°F 40°F 30°F
Hardgrove	Index	58-61		
Free Swel	ling Index	4-1/2		

Dwelling mach 1 2/2

POPE EVANS AND ROBBINS

ENCLOSURE 16. ANALYSIS OF SORBENTS AFTER IGNITION*

CONSTITUENT	DOLOMITE (1337)	LIMESTONE (1359 8 By Wt.
CaO	55	97
MgO	43	1.2
F320j	0.33	0.22
SiO ₂	0.92	1.07
Al ₂ O ₃	0.15	0.29
LOSS ON CALCINATION	47.4	43.6

Analysis provided by the National Air Pollution Control Administration

POPE. EVANS AND ROBBINS

POPE EVANS AND ROBBINS

ENCLOSURE 18. ESTIMATION OF ELUTRIATING PARTICLE SIZE FOR THE 1359 LIMESTONE

The smallest particle size that would be retained in the bed was estimated from the intermediate law which is applicable for the test conditions, i.e., Reynolds number between 2 and 500. The particle size follows the relation¹

$$D_{P} = \begin{bmatrix} U_{4}, U_{0}^{0,424}, P_{f}^{0,265} \\ g_{c}^{0,714}, (P_{c}^{-}, P_{f}^{-})^{0,714} \end{bmatrix}^{0.875}$$

Where:

 $\mathbf{D}_{\mathbf{p}}$ is the particle diameter in inches

 U_t the superficial gas velocity ft/sec taken as 14.0

 μ the gas viscosity, lb/ft sec taken as 2.9 x 10⁻⁵

 Q_t the gas density, lb/ft³ taken as .020 at 1600°F

q the gravitational constant, 32.2 ft/sec²

{ the particle density, lb/ft³ taken as 162.0
Accordingly:

$$\mathbf{p}_{p} = 62.7 \left[\frac{(11)(2.9 \times 10^{-5})^{0.928} (0.02)^{0.295}}{(322)^{0.714}} (162 - 0.02)^{0.714}} \right] = 0.022 \text{ in.}$$

For this particle size the Reynolds number is:

$$N_{R} = \frac{D_{P} U_{L} \ell_{L}}{\Lambda L} = \frac{(0.022/12)(14)(0.02)}{2.9 \times 10^{-5}} = 17.9$$

which value falls in the applicability range of the law.

POPE, EVANS AND ROBBINS

-ENCLOSURE 19. NITRIC OXIDE EQUILIBRIUM CONCENTRATIONS FOR THE FLUIDIZED-BED ENVIRONMENT

The equilibrium constant, K, defined as

PN0/(PN2 · P02)0.5

is related to the free energy change, $\Delta G\,,$ and is given directly in the JANAF tables

<u>т, °К</u>	<u>T, °F</u>	Log10 K	<u>K</u>
1100	1520	-3.633	0.00023
1200	1700	-3.275	.00053
1300	1880	-2.972	.00107
1400	2060	-2.712	.00194
1500	2240	-2.487	.00319

With air at 1500°K, (2240°F) for example,

$$PPM(NO) = 10^{6} P_{NO} = 10^{6} (P_{N_{2}} \cdot P_{O_{2}})^{0.5} K =$$
$$10^{6} (0.2 \times 0.8)^{0.5} (.0032) = 1276 ppm$$

Similarly,	<u>T, °F</u>	Equi. NO ppm
	1500	92
	1700	222
	1880	429
	2060	775

If $\rho_{o_{\lambda}}$ is reduced to 0.05 corresponding to a possible FBM condition, ρ_{No} is reduced by a factor $(.05/.2)^{o.5}$ or to half the value shown above.

¹ Adapted from Leva, Max: "Fluidization," McGraw Hill Book Company, Inc., New York, 1959

ENCLOSURE 20. PARTICLE SIZE DISTRIBUTION OF 1359 LIMESTONE BED BEFORE AND AFTER FLUIDIZED-BED COMBUSTION

ENCLOSURE 21. INTEGRATED SULFUR BALANCE FOR SORPTION-DESORPTION OF THE LIMESTONE BED DURING FBC TEST 114

For the absorption phase the total sulfur absorbed by the bed is

 $S_B =$ Input sulfur - fly ash loss - emission or $S_B = /G_c S_c dt - /S_F G_F dt - k/MC_{SO_2} G_c dt$

where:
$$S_B = total sulfur in the hed lbs$$

 $G_c = coal rate, lb/hr$
 $S_c = sulfur content in coal, lb/lb$
 $t = time, hours$
 $S_F = sulfur content in fly ash, lb/lb$
 $G_F = fly-ash rate, lb/hr$
 $k = constant = \frac{dry mole flue gas}{lb coal} \times 10^{-6}$
 $C_{SO_2} = concentration of SO_2 in flue gas, ppm$

M = molecular wt. of sulfur = 32

The sulfur retained in the bed during the 4.28 hour absorption period was computed as follows:

(A) Sulfur input =
$$\int_{O}^{t} G_{C}S_{C}dt = 63.0 \times \frac{3.09}{100} \times 4.28 = 8.35$$
 lbs
(B) Fly-ash loss = $\int_{O}^{t} G_{F}S_{F}dt = 16 \times \frac{1.8}{100} \times 4.28 = 1.23$
(C) Emission loss = KMG_C $\int_{O}^{t} SO_{2}dt = \frac{.326 (32)(63)(3200)}{10^{6}} = \frac{.11 \text{ lbs}}{.06}$

POPE EVANS AND ROBBINS

POPE. EVANS AND ROBBINS

The integral C_{SC_2dt} represents the area under the curve during the absorption period.

The sulfur retained in the bed is

$$S_{B} = A - (B + C)$$

(D) =
$$8.35 - (1.23 + 2.11) = 5.01$$
 lbs

$$\frac{1}{8}$$
 retained in bed = $\frac{5.01}{8.35}$ = 60.2%

During the regeneration phase (t = .65 hours), the sulfur loss from the bed is:

Recovered sulfur = emission - (input - fly ash)

$$S_{R} = kMG_{c} \int_{C}^{t} SO_{2}dt - \int_{C}^{t} G_{C}S_{c}dt + \int_{C}^{t} G_{F}S_{F}dt$$

(E) Emission sulfur = $\frac{.326 (32)(63)(7950)}{10^6} = 5.25$ lbs

The value 7950 ppm hours was determined from the area under the concentration curve (Figure 2) during regeneration.

(F) Input = 63 $\left(\frac{3.09}{100}\right)$ (.65) = 1.27 lbs (G) Fly ash = 16 $\left(\frac{1.9}{100}\right)$ (.65) = .21 lbs

(H) Sulfur recovered is E - F + G = 5.25 - 1.27 + 21 = 4.19 lbs

(I) Sulfur retained in bed after regeneration

= bed mass x S_c = 49
$$(\frac{1.0}{100})$$
 = .49 lbs

- (J) Total of H and I
 - Percent of sulfur recovered from bed

$$= \frac{4.19}{4.68} \times 100 = 89.8\%$$

Sulfur unaccounted for = A + F - (B + C + E + G + I)

$$= 8.35 + 1.27 - [1.23 + .21 + 5.25 + 2.11 + .49]$$

= .33 lbs

= 4.68 lbs

 $\frac{33}{9.62} = 3.5$

POPE EVANS AND ROBBINS

POPE, EVANS AND ROBBINS

ENCLOSURE 21. (Continued)

BURNING A 4.5% SULFUR COAL

ENCLOSURE 24. EMISSIONS DURING FBC TEST 102 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

ENCLOSURE 23. EMISSIONS DURING FBC TEST 101 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

ENCLOSURE 25. EMISSIONS DURING FBC TEST 104 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

ENCLOSURE 29. EMISSIONS DURING FBC TEST 108 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

ENCLOSURE 31. EMISSIONS DURING FBC TEST 110 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

A-3)

ENCLOSURE 33. EMISSIONS DURING FBC TEST 112 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED

COAL IN A 1359 LIMESTONE BED WITH REGENERATION

ENCLOSURE 38. EMISSIONS DURING FBC TEST 117 BURNING A MEDIUM SULFUP COAL IN A 1359 LIMESTONE BED WITH REGENERATION

ENCLOSURE 37. EMISSIONS DURING FBC TEST 116 BURNING A MEDIUM SULFUR COAL IN A 1359 LIMESTONE BED WITH REGENERATION

ENCLOSURE 40. EMISSIONS DURING FBC TEST 119 BURNING A MEDIUM . SULFUR COAL IN A LIMESTONE BED WITH BED REDUCING

Inclosure 39. Emissions during FBC test 118 burning a medium sulfur coal in a 1359 limestone bed with change in flue gas $\rm O_2$ content

ENCLOSURE 44. EMISSIONS DURING FBC TEST 77 BURNING A MEDIUM SULFUR COAL WITH INJECTION OF -325 MESH 1359R LIMESTONE WITH CHANGE IN SUPERFICIAL VELOCITY

ENCLOSURE 43. EMISSIONS DURING FEC TEST 76 BURNING A MEDIUM SULFUR COAL WITH ADDITION OF -325 MESH 1359R LIMESTONE WITH CHANGE IN SUPERFICIAL VELOCITY

TEST DATA FBC AND FBM

APPENDIX B

												Ga	# Analysi	TABI	LE 8-1	FIN TES	T CONDITIO	IS AND DA	TA im ind:	ca.ed	_					
Tast No	Coal Type end Composition	Bod Material	Static Bed Depth, inches	Test. Cond No	Coel Rate, lb/hr	Bed Temp,	Air Rate, lb/hr	Flue Gas Oxygen (Control),	Type Sc and Size*	Injection Rate, Ib/hr	Hole Ritio, Ca/S	IB SO2 ppc	Net 502, ppn	50), ppm	1 R NO, PPE	PDS NO ₂ , pp= ^c	Rydro- carbons, ppm		Graat Analys Og	1. <u>2</u> 0	SO2 Reduction (IR),	Sorbent Utiliza- Lion,d	Carbon Content	Recir- cula- tion ^e	Emission, lb/hr	Xemarka
г (рам 1	E Fy Pike County 18 Sulfur 88 Aph	Ash	20	1 2 3 4	800 800 800	1540 1540 1540 1540	7200 7200 7200 7200	0 S 3_0 6 Q 2 Q	bons	0 0 0 0	0 0 0 0	680 600 500 620			200 220 260 240		4600 3250 300 1600	17 5 16 2 13 8 16 5	0 2 2 8 5 8 2.1	0 5 0.0 0.0 0 0	0000	-	66 45			Test of effect of vary_05 cxcess air
Pin 2	Change from Z Xy to Ohio 88 Seam Unwashow	Ash	12 20 20 20	1 2 3 4	830 800 800 800	1800 1650 1600 1500	7400 7400 7400 7400	3 0 3.0 3.5 4 0	13378 -7 -14	0 0 370 0	0 1 75 0	700 3400 1550 800	~		250 300 300 340		450 200 120 90	17 0 15 5 14 9 14 9	1 0 2 9 1 6) 6	0.3 0 0 0 0 0 0	54.5 0	31 2	55,2 59 0 43 6			Coal transition *50 lbs linestoos added as slog
P 124 3	Chio #8 Seam unwashed 4 58 Sulfur 10 75 Ash	Ash	20	1 2	#30 #70	1620 1540	7600 7600) 8 3.0	1337R -7 +14	320	0 1 4	3600 2050			300		50 50	12 6 13 2	;;	00	43 D	30 7	56 5 49 0			Cas sample system leak
г Ди 4	Chic 98 Seam unwashed 4.58 Sulfur 10.78 Ash	Ash	15	1 2 3 4	830 830 830 830	1760 1740 1720 1720	7600 7680 7680 7600 7600	3 2 3.2 3.2 3.2 3.2	1337R -7 •14	0 254 355 480	0 1.15 1.60 2 20	3800 3700 3300 2700	3340	409	360 340 340 300	134	60 60 60 60	13 8 14 2 14 5 14 5	4 0 3 3 3 5 3 2	0 0 0 0 0 0	0 26 132 290	1 7 0.3 13 2	64 8 37 4	Yes		
РЪН 5	Ohio #8 Seam unwashed 4 5% Sulfur 10.7% Ash	Aut	20	1 2 1 4	720 720 720 720	1600 1570 1570 1570	6800 6800 6800	30 30 34 30	13378 -7 +14	220 317 460	0 1.13 1.65 2 40	3800 3000 2400 2000	3500 1850	248 102	280 280 280 280	143	120 80 50 100	14 3 14 7 14.2 14 5	3 2 3 1 3 5 3 0	0.0 0.0 0.0	0 21 0 17 0 48 0	10.6 22.4 20.0	69 2 45 0 43 6 43 4			-
PBN. 6	Lost Ignition -	Discarded																								
7 2M 7	Obio #8 Seam unwashed 4 5% Sulfur 10 7% Ash	Aab	20	1 2 3 4	780 780 780 780	1620 1480 1480 1480	7500 7500 7500 7500	3 0 3.0 7.3 3 0	HOK], 4 -7 +14	0 175 265 175	0 1.11 1 70 1.11	3900 2800 2150 2400	3640 2150	285 125	260 260 220 160	189	208 150 390 180	13.8 14 8 15 2 14 8	3.0 3.2 2.8 3.0	0.0 0.0 0 0 0 0	0 28 2 45 0 39.0	25.4 26.5 35.0	54 7 42 1 43 8			"Naturel mine limestome 71% CaCO, "Steem added to air inlet
70H 17	Ohio #8 Seam unwashed 4.58 Sulfur 10 76 Ash	Ash	20	1 2 3 4	750 820 800 840	1600 1580 1580 1580	7800 7800 7800 7800 7800	3 0 3 0 3 0 3 0	13598*	0 63 84 84	0 .72 98 93	3900 2800 2300 1500	3870 2690 2180 1820	35 0 0	280 240 208 208	205	180 180 180	15 0 15 3 15 5	3.0 3 0 3 2	0.0 0.0 0 0	0 28 2 41 0 54 0	39.2 42.0 58.0	65.2 50 0 66.7 62 0			*1355 Bydrate -125 Heak particle sime *5 51 Steam added to air salet ged banked between Cond. 2 and 3
724 10	Chic ## Beam Vashed 2.6% Sulfur 7 2% Amb	Asb	13	1 2 3 6	830 809	1870 1840 1800 1770	7800 7800 7800 7800	1.0 2.0 3.0 4.0	None	0	0 0 0	2800 2650 2500 2300			280 300 328 340	325	2100 470 180 60	16 5 15.0 15.2 14.6	0,8 2 0 2.9 4.0	0.4 0.0 0.0 0.0	0 0 0	-	62 0 53.7 56.0 48 2			Plue gas 0; variation
РВН 19	Not a limestone	injection t	46 t																							· · · · · · · · · · · · · · · · · · ·
P BM 20	Ohio 18 Seam washed 2 60 Salfur 7 20 Amb	Aeh	13	1 2 3	800 880 900 900	1770 1819 1770 1710	7800 7800 7600 7600	3 0 3 0 3 0 3 0	1337# -325	0 112 144 144	0 1 17 1 46 1.66	2200 1650 1300 900	2130 1590	25 0	340 260 238 230	280	180 180 180 189	15.0 14.9 14.9 15.0	2.8 2.8 2 9 3 0	0.0 0.0 0.0 0.0	0 25.0 40.0 59.0	21.4 27.5 40.4	55 0 47.0 43.5 45.1			.* 450 lb/hr Steen added to air imlet
P2A 21	Ohio #8 Seam vashed 2.60 Bulfur 7 20 Ash	Ash	19	1 2 3.	880 880 880	1680 1680 1600	7800 7800 7800	3.0 3.0 3.0	13378 -325	0 132 132	0 1.37 1.37	2250 1000 850	2200 850	35 0	280 280	305	260	14.9 15 2 15 2	3.0 3 0 3 0	0_0 0 0 0,0	0 56 0 62.0	41.0 44.0	50.7 44.3 46 0	-	12.2	*430 lb/br Steam added to air imlet
7101 22	Chio #8 Seam washed 2 6% Sulfur 7 2% Ash	18h	20	1 2	925 915	1650 1650	7800 7800	3.0 3.0	1337 - 325	0 145	0 1 46	2300 750	7250 680	47 0	280 280	275	250 250	15 2 14.0	2.9	0.0	68.0	45 0	49 8 62.7		11.6' 14.2	
P 1501 23	Chic fl Seam vashed 2.61 fulfur 7 24 Amb	Ash	19	1 2	800 800	1630 1550	7400 7400	3.0 3.0	1337N -325	262	0 2 4	2300 800			300 300	280	240 240	14.9 16 2	3028	0.0 0 0	6 53	27.2	56 1 42 8	Ho Ho	13.9° 15.3	
75M 24	Obio 18 Seam wambed 2 6% Sulfur 7.2% Amb	Ash	22	1 2 3 4	760 800 800 800	1600 1600 1600 1600	7 600 7 600 7 400 7 600	3 0 3 0 3.0 3.0	13378 -325	0 280 260 260	0 2 4 2.2 2.2	2600 650 500 400	2400 560 620	17 0 0	260 260 260 260	285	210 210 210 210 210	15 2 16 5 16 0 15 8	2 ¶ 3 0 3.0 2 \$	0.0 0.0 0.0	0 #1.# 77.4 83 5	36 1 35.0 37 0	54 0 40 3 39 6	Yes	93 13.6	
79N 25	Obio #8 Seam unwashed 4 5% Sulfur 10.7% Asb	Aub	24	1 2 3	820 840 840	1550 1550 1520	7400 7400 7400	3.0 3.0 3.0	13378 -325	0 375 378	0 1 7 1 7	3750 1100 950	3840 1210	32 0	240 240 240	305	230 230 230	15.5 16 9 16 5	2 1 3.0 3.2	0.0 0 0 0.0	0 71 5 74 2	42 0 43 1	59 3 38 4 36 7		7.8	
799A 26	Ohio 18 Beam unweshed 4.5% sulfut 10.7% Ash	Ash	20	1 2 1	800 800 800	1660 1660 1580	7400 7400 7400	3 0 3.0 3.0	1337# -125	8 360 400	0 1 7 1.9	3750 1350 1100	3740 1350 1160	27 0 0	220 220 220		285 285 285	14.9 15 8 16-0	3 0 3 0 3 2	0 0 0 0 0 0	0 64 2 70 9	37 B 37 3	61 0 42.5 37.8		12.4 16 0	
27 27	Ohio 18 Sem unweshed 4.5% Sulfur 10 7% Ash	Ash	20	1	765 765	1630 1570	7400 7400	3 0 3.0	1359R -325	0 220	2 0	3700 950	3610 980	35 0	320 320	320	260 260	14 8 16 1	3.2	0 0 0.0	24 O	37 0	55 4 43.0		10.5	
	Δ																									1)-

8-1

TABLE -1 (Continued)

Gas Analysis, Concentration in volume parcont or ppm as indicated

														1 00104			and Indicates	<u></u>									
Test No	Cowl Type and Compositio.	Bed Haterial	Static Bod Depth, inchos	les. Cond	Chal kate, 15/rr	Ter,,,	1110, 1	(100 (201)	5174-5	nrbert Dati Injection Rate, it/hr	Polio, Ca/S	IR \$0: p;m6	Net SO ₂ , ppm	Tests 50,, pp	л I С, РС,	PD5 1011 P55	hydro- cerbane, 2Pr	es;	Orsat Inal, si		SO; Reduc- tion (1 R),	Sorbint Utiliza- tion,d	F] Carbon Content	Y Ash Dat Recir- cula- Lion*	Emission, 1b/hr	Remarks	
FDM 29	Ohio 48 Seam 	Asb	20	1 2 3	745 745 795	1+00	7420	2 C 2 C 2 D	1359R -325	0 150 150	0 24 22	2650 800 950	2870 810 1030	0	260 260 260		260 260 260	15 5	29	00	0 71 6 64 1	29.B 29.4	51 3 40.9 43 4		8 9 12 4		
29 29	Ohio 18 Sean unwashed 4 54 Sulfur 10 74 Ash	Ash	20	1 2 J 4	720 720 720 720	.608 1603 1623 1629	7.06 740. 7.00	1 7 1 2 3 0 3.0	1259k - 125	0 175 220 220	0 1 7 2 0 2 0	3770 1500 1000 1000	3730 1480 1080	20 0	240 240 240 240 240	300	250 250 250 250 250	14 9	33	00	0 60 0 73 5 73 5	15 2 36.6 36.6	52 0 51 8 45 4	Yas	12 1 14.7		
F.04 30	Ohio 18 Sean Washed 2 61 Swifur 7 21 Ash	Ash	20	1 2 3	7.0 700 760	1620 1620	745C 7433 7490	3 C 3 D 3 O	1359H -325	0 66 86	0 14 10	2570 1290 1020	2540 1340 1030		250 250 250	285	260 260 260	15 2	3.1	D.0	0 50 C 60 4	35 7 33 3	57 2 51 2 49.8		7 7 13.4		
7BN 31	Ohio #8 Seam washed 2 45 %olfor 7 28 Ash	Ash	20	1 2 1	820 770 800	1620 1620 1620	7600 7630 7500	3.0 3.0 3.0	1359H -325	0 63 80	0 1 3 1 4	2600 1200 1000	2630 1250 1980		270 270 210	305	150 150 120	(5.3	29	0.0	0 53 8 63.5	42.4 38.4	62.7 53.2 49 9		11.2 10.9		
7EN 32	Ohio #1 Seam washed 2 6% Sulfur 7 2% Ash	Aab	20	1 2 3 4	700 720 720 720	1610 1610 1610 '610	7400 7400 7400 7400	3.0 3.0 3.0 3.0	1359R - 325	0 97 108 108	0 1.6 1 8] 8	2650 1020 970 780	2690 1050 970		290 290 290 290	310	250 250 250 250	24 8	3 1	0.0	0 61 9 64 9 70 5	38 6 36 0 39 1	50 9 47 2 38 8 42 3	Yes	10 9 13 7		
NOTES	"Type Lineston Bitumine C = cal	ns identifica ous Coal Rese loined by sur	tion and n arch, Inc plier, H =	hydrat.	g system	of oplier, R	- FAN BLOS												_								
	⁵ Size: U.S. St. ⁶ Sorbent Utilian	anderd sieve ation defined a Utiliza	size As tics = \ Sto	ichicas	ction in tric Kat	gas 10. Ca75		_																			
	^c PDS designates ^c Gas analysis b ^e Fly ash not ree	Phenoldisulf y Infrared An circulated un	onic Acid Alyier less indic	Hethod	-Yes-																						

,

A

.

.

												Gas	Analysia	, Conce	ntratio	n in volu	me percent	or pps a	indic	ate <u>d</u>						
Test No	Cos. Type and Composition	Bed Material	Static Bed Depth, inches	Test Cond No	Coal Rate, lb/hr	Ded Temp , *P	Als Rale, 16/tr	"lue Ga* Oxygen (Ccitrol),	T/p0 =:.d 3120	Injection Rate, lb/hr	Polo Ratio, Ca/S	1 R 50:1 PPD	Wet SO2, ppn	SC1, ppm	1 R 17. 1.7	50° 10 10	Rydro- curbons, ppn	, 50:	Orsat Analysi Oy	5' ''	SO; Reduc- tion (I R),	Sorbent Utiliza- Lion, J	Ca, bon Cortent	lj Ash Data Recur- cula- tion®	lb/hr	Results
гвс 1	Ohio 48 Seam Jowashed 4 58 Sulfur 10 78 Amh	Ash -5 +16	6	1	110	1750	990	SRAKE (NHOC																	Shakedowa Tast
F BC 2	Ohio 48 Seam unwashed 4 51 Sulfur 10.71 Arb	Ash -8 +16	7	1	103 103 103 103 103	1750	880	103020	None	0 0 0 0	0 0 0 0	4900* 4500 4900 4500 4000	4 000	254	320 390 310 410 440		1250 150 1500 100	15 6	0.9	n 6	00000	:	50 5			
roc 3	Chic ff Seam unvashed 4 St Sulfur 10 7t Aut	Serpen- tine Roci- -14 +20	7	1 2	60	1550 1550	940	10	1317R -8 -1t	24 0	0 1 15	5000 2300	3550 3400		420		850 €50	16 5	10	00	61 6	sī s	35 6 33 0			·
780	Ohio 48 Seam unwashed 4.51 Sulfur 10 7% Ash	Serpen- tine Bock -14 +20	,	1 2	QC.	1550 1450	940	1030	13]7R -8 +14	26	0 1 23	2650 1800	2630 1600		170 130		650 100	16 2 15 4	0 8 2 6	0 2 0 0	0 32	26 0	47.5 34.0			Continuation of FBC 3 SO ₂ Calibration Gas incorrect, data discarded
PBC 5	Ohio #8 Seam unvashed 4 5% Sultur 10.7% Amh	Ash	7	1 2 3	105 105 105	1\$00 1890 1800	1000 1000 1000	1 0 1 0 3 0	1337R -7 +14	0 12 3 30 7	0 1 16 1 1	4450 3700 3159	3700 3750 3030	420 216 150	220 220 220		1000 500 50	16 0 17 0	1010	002	0 17 0 23 2	15.4 21 0				
7BC 6	Chio #8 Seam unwashed 4.5% Sulfur 10 7% Ash	Ash	7	1 2 3	110 110 110 110	1700 1700 1700 1550	960 960 960 960	1010	1337R -7 +14	0 35 0 35 0 35 0	0 1 2 1.2 1 2 1 2	4650 3809 3600 2600	3850 3850 3250 2450	420 110 50 120	330 330 380 460		500 500 490 50	16 1 17 2 17 5 15 5	1.0 1 0 1 2 3 1	0 0 0 0 0.0 0 0	0 10 5 22 6 39 0	15 4 10 0 36 6	48.2 23 6 32.0 30.0	Yes Yes		
PBC 7	Obio #8 Seam unvashed 4 5% Sulfur 10 7% Ash	Ash	6	1 2	115	1820 1900	1050	1.0	None	0	0	4900 4450	4300	300	320			15 9 15 2	1020	00	0		49 5			
РВС В	E Ky Fike County 18 Sulfur 76 Ash 1 68 M ₂	λsh	6	1 2 3 4	100 100 100 100	1800 1700 1600 1700	1000 1000 1000 1000	105050	None	0	0 0 0	720 540 540 700	620 583 385 369	120 50 130 215	200 370 370 200			16 9 13.0 13.8 17 0	1048	0 0 0 0 0.0 0.0	0	Ē	83 5 73 3 74 1 62 4			Test for effect of coel mitrogen on #0 emission
PBC 1	Ohio #3 Seam unwashed 4 5% Sulfur 10 7% Amb	Ash	6	1 2 3	100 126 148	1800 1800 1800	1100 1130 1200	1 0 1 0 1 0	1337R -7 +14	46 0	0 0 1 17	4350 4550 3850	3900 3950 3650	450 390 205	250 230 210			15 8 16 8 16 0	1 0 0 4 1.0	0.2 0.6 0 0	0 0 15 0	12.8	68.8 60 Q 40.0			Transition to overbed air
PBC 10	Ohio 55 Seam unvashed 4 St Sulfur 10 7t Ash	Ash	7	1 2 3	99 104 107 100	1750 1750 1750 1720	820 940 940 940 880	10 10 10 10	1337R -7 +14	0 0 31.3 32 9	0 0 1.1 1 2	6650 4650 3600 3150	3850 2860 2650	150 80 95	320 240 290 360	200 146 130 342	410 430 430 390	16 D 16.4 16 B 17 D	1 2 1 0 1 2 1 0	0°2 0°2	0 22 5 32.2	20 4 26 8	62 0 55.0 37 0 12 0			Reducing bed Oridising bed
PBC 11	Ohio 19 Seam unvashed 4 51 Sulfar 10 71 Amb	Ash	•	1 1 1	87 92 91 91	1700 1680 1650 1600	940 940 940 940	3 0 3 0 3 0 3 0	1337# -7 +14	0 27 9 49 2 62 0	0 1 14 2 04 2 56	4350 3150 1900 1300	4020 2900 1580 1490	410 290 210 130	280 120 320 310	170 127 85 94	30 30 30	15 2 15 6 16 2 16 2	2 4 2 6 2.6 3 0	0	0 27 6 56 3 65.5	24 2 27.7 25.6	56 D			
PBC 12	Chio #8 Seam unvashed 4 St Sulfur 10 71 Ash	Ash	1	1 2	114 105	1520 1540	1065	2 0 2 0	1337R -7 +14	0 30 5	0 1 D9	450D 2650	4300	170	280 280	48 50	230 250				0 41.0	37 8	65 0			
PBC 13	Chio #8 Seam unvashed 4 5% Sulfur 10 7% Ash	Ash	10	1 2 3	106 106 106	1500 1480 1480	1050 1050 1050	3.0 30 30	1337R -7 +14	0 22.3 40 6	D 79 1 44	4350 3000 2000	4100 0 2050	170 60	285 295 205	390 370 409	90 180 90	14 6 15.3 16.2	3.0 2.9 2 4	0	0 31 0 54 0	39 2 37 4	69 5 39 1 37 3		_	
PBC 14	Chio 48 Seam unvashed 4 54 Sulfur 10 74 Ash	Ash. Sloeve	10	1 2 3 4	110 110 110 110	1900 1980 1860 1800	1050 1050 1050 1050	30 30 30 4.0	1337R -7 +14	0 32 2 50 0 50 0	0 1 1 1 7 1 7	4200 3750 3320 3000	0 0 0	0000	260 260 235 330		Veglig Veglig Veglig Veglig				0 10 7 21 0 28 6	\$ 7 12.2 16				*Siewve installed so as to reduce best loss to watervalls
PBC 15	Obio #8 Seam unwashed 4 54 Sulfur 10.74 Aph	Ash, Sleave	10	1 2	63 63	1720 1700	700 700	2020	1337R -7 +14	16.	0 1 0	4000 3100	0	0 0	190 200		230 120				0 22 5	22 5				
FBC 14	Ohio ## Seam unvashed 4 54 Sulfur 10 74 Aph	Ash, Sleeve	10	1 2 3	66 66 66	1660 1620 1620	720 720 720	2 D 2 O 7 O	1337R -7 +14	0 17 5 28 8	0 1 0 1 6	4200 3450 2900	4000 3250 2700	180 145 120	350 310 290	124 121 119	200 250 150	15 8 16 2 16 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0	0 17 8 31 0	17 1	48 2 31 1 31 5			
FBC 17	Chio HS Seam unvashed 4 51 Sulfur 10.7% Aub	Lost Igniti	ion - D180	arded																						
РВС 18	Ohio #8 Seam unvashed 4 54 Sulfur 10 75 Ash Coal Lumps	Ash, Sleeve	14	1 2 3	86 84 83	1760 1760 1670	800 800 800	2 0 2 0 2 0	1337R -7 +14	0 22 3 38 8	0 1 0 1 75	3600 3150 2500	3440 3050 2370	298 72 85	250 . r0 60	116 115 37	220 80 20	15 2 16.1 16 7	7 0 2 0 2 0	0 0 0	0 12 5 30 5	12 5 17.4	55.5 35 0 33 0			Notable NO decline. Small clinkor formation when sorbent feed began
	Ω																									

TABLE B- 2 PBC TEST CONDITIONS AND DATA

8-4

TABLE B-2 (Continued) Gas Analysis, Concentration in volume percent or pps as indicated

Test No.	Coal Type and Composition	Bed Material	Static Bed Depth, inches	Test Cond No	Coal Rate, 1b/br	Red Texp	Air Cate, 15/hr	Flus Gas Carygen (Control),	Type and Siso	rbent Data Injection Rate, 1b/hr	Hole Ralio, Ce/B	1 B 501 ppm	<u>Het T</u> 50 ₂ , ppm	SO), ppm	I B. PDS MO. NO _M . Pps ppm ^c	fydro- carbons, ppm	20 ,	Dysat halysis, Ø,	BU1 Reduc- tion (IR), CO %	Sorbent Utiliza- tion,4	Carbon Content	y Ash Data Recir- cula- Em Lion ⁴ J	ission, b/br	kessar ka
rac 19	Ohic #8 Seam unweshed 4.3% Bulfur 10 7% Ash	Ash	•	1 2 3 4	115 115 110 110	1540 1540 1510 1480	1120 1120 1200 1100	3 0 3 0 3 0 3 0 3 0	1359R -7 +14	0 1B.2 30 B 30.5	0 1.15 1.93 1.93	3900 3300 2830 2350	3960 2250	37 62	260 123 250 110 250 125 220	85 95 90 90	15 0 15.8 16.6 16 2	2.9 2.8 2.3 2.8	0 0 0.2 15 4 0 27 0 40	13.4 14 0 20.7		Yes		
FBC 20	Ohio 48 Seam unwashed 4.5% Dultur 10.7% Asb	Ash	•	1 2 1 4 5	118 107 112 110 110	1740 1700 1740 1650	1070 1070 1040 1070 1070	3.0 3.0 3.0 3.0 3.0 3.0	1359R -7 •14	0 17.0 24 ~ 32 2 32 2	0 1.15 1.47 5 0 7.9	3800 3350 3750 2500 2100	3870 3160 2820	40 10 40	280 310 250 300 220 280 220 280	70 90 83 90 76	14 8 15.6 15.8 15.8 15.8	2 4 3 2 3 2 3.1 3 0	0 0 0 11 0 0 26 1 0 34 2 0 39 5	10 2 18 1 17.1 19.7	52 3 45 0 51.1	Y.J.B.		
78C 21	Chio #8 Seam unvashed 4 5% Buiter 10 7% Ash	Ash	•	1 2 3 4 5	110 115 112 112	1520 1520 1530 1500	1100 1100 1130 1100 1100	1.0 3 0 3.0 3.0	1359E -7 +14	0 14.8 35.6 35.0	0 9 1.57 7.0 7.0	3800 3300 2320 2900	3750 3200 3900 0	150 70 10 0	225 240 210 200	80 60 60	13 7 15.2 15.9	3.1 2.8 3 2	0 0 0 13.2 C 23.1 23.6 31.5	14 7 14 1 12 0 15 0	60 9 54.0 -1.2	Tes		
7BC 22	Ohio ## Seam unwashed 4.5% Snlfur 10 7% Ash	Asb	7	1 2 3	116 117 113	1650 1650 1540	1100	3 0 3.0 3.0	13598 -7 +14	16.3 31 7	1.0	3900 3300 2725	3560 3108 2510	120 54 21	320 112 320 114 270 135	80 80 20	13 8 15.2 15 6	2 9 2.3 3.0	0 0 0 15 4 0 30.8	15.4	60 1 59 7 45 4			
78C 23	Chio 98 Sem unweshed 4.5% Sulfur 10 7% Ash	AAN	•	12 14	101 107 103 109 105	1620 1600 1580 1580 1580	1080 1080 1080 1080 1080	3.0 3.0 3.0 3.0 3.0 3.0	1337C -7 •14	0 11.8 20 32.6 21	0 1 78 3 17 2 34 2.17*	4180 2850 3766 2050 1720	2550	120 137	330 500 300 260 131 260 260 133	40 40 40 40 140	15 15 2 14 8 15 14.2	2.8 2.8 2.3 2.7 3.0	a 0 0 11.8 0 35.6 0 51 0 59	24.8 16.4 20 27.2	23 23 0 25.7 27.0	Yes Tes Yes Yes Tes		*Mater injected into sas space above bed
FRC 24	Ohio 18 Sem ummahed 4 St Gultur 10.7% Aub	Ash	7	1 2 3 4 5	99 97 97 101 101	1680 1680 1680 1680 1680	1150 1120 1110 1150 1150	3.0 3.6 3.0 3.0 3.0	1337C -7 +14	17.2 26.2 34.0	1.13 1.73 2.24	2500 2910 3410 2250 2400	3580 2850 2260	0 0 0	410 670 320 - 280 583 260 525 260	126 90 45 28 150	15 16 15 8 16 14 4	2.8 2.6 2.8 2.8 3.5	0 0 0 16.3 0 11 2 0 35.6 0 31.4	14.4 18.0 15.7	42 6 33 9 31.4	Tea Yes Tea Tea Tea		"Bater injected into das monos. Sorbant feed data unavailable
FBC 25	Ohio 58 Sema unwashed 4 58 Sulfur 10 78 Ash	λαΈ	•	1 2 3	124 120 125	1750 1720 1729	1080 1050 1050	3.0 3.0 3.0	1337C -7 +14	28.4 29.4	1.15 1.6	3650 3330 3180	3600 3400 3153	100 70 59	200 185	40 49 40	14.8 15.1	2.8	0 0 0 8.2 12,9	7.1 0.1	47 9 27 9 24.3			
FBC 24	Chio 18 Sonn unwashed 4.56 Sulfur 10 79 Seb	Aah	•	1 2 3	123 116 123 119	1710 1700 1700	1100 1100 1090 1120	3 0 3.0 3 0 3 0 3 0	135 0 C -7 +14	0 13 7 23.6 32.2	0 1.5 2.3 3.4	3800 3300 2950 2370			370 330 339 288	40 40 40 40	13 9 15 14 0 16.0	3 2 2.9 3 3.2	0 0 0 13.2 0 22.4 0 37 5	11 4 10.3 11.0	43 7 40 3 39 36.4			
PBC 27	Burthern W. Va Coal 56 Sulfur	Ash		1 2 3	130 125 126	1560 1560 1550	1090 1090 1098	3.0 3.0 3.0	100 1.* -7 +14	0 35.2 14	0 1.3 1.4	4300 3880 2759	4150	145	290 305 310 290	120 90 90	12.6 15 15.5	3.8 2.9 2.6	0 0 1.6 0 36	7.6	44 5 52 5 47 9			"Returning limestone 78 CGCD; -7 +14
71C 21	Horthern W. Va. Coml St Bulfur	206	:	1 1 1	122 114 115 109	1760 1760 1710 1640	1100 1100 1100 1109	3.0 3.0 3.0 3.0	-7 +14	0 15.5 43.2 42.4	0 .8 1.75 1.75	4520 4150 3900 3000	4250	230	288 L65 334 308 280	250 250 120 90	14.2 15.6 16.5 15	3.0 3.0 2.0 2.0	0 0 0 3.3 0 13.7 0 33 6	11.6 7.0 19.2	38,0 33.5 20 2 51 3			"Matural pine limestone 72 CAOG -74 4 Added two-inch Ded Hatarial
70C 25	Injection of B No Data obtain	ydrate into i mG	Plenum - B	uttons Pl	luggad			+														· · · · · · · · · · · · · · · · · · ·		
7BC 30	Premix of 1359 Wo UAta obtain	Bydrate with ed	6 Coel - C	oal Peede	ar Ploggs	nd																		
FBC 31	Franks of 1359 No Data obtain	Bydrate with ad	. Cosl - C	oal Testa	ur Plopp	nd																		
78C 12	Chic 48 Setm unvashed 4.56 Sulfur 10.76 Ash	âa).	•	1 2	115 110	1580 1580	1050 1050	3.0 2.0	13598	u	6 1 1	3700 2200	3650 2200	100 20	246 270 249 265	50 50	14.8 14.8	2.7 2.8	0 0 0 40.5	14.14	48.7 28.4			Ro. 1 Feeder
78C 33	Obic #8 Sem committed 4 56 Sulfar 10.78 Auto	Ash	•	12	111 196	1600 1600	1050 1050	10 10	13378 -325	0 21.4	1.05	1750 2000			340 380	50 50	13 7 14.5	3.3 3 0	0 0 0 46 7	••-3	48 8 19 7			Ro. 1 Peeder
лас 34	Ohio #9 Josh drawnhad 4.58 Balfar 10 76 Aut	Ash	,	12	105	1560 1560	3030 1050	3.0	13598 568 -200	0 12.0	°.01	1550 2550	3500 2530	117	328 328	34 50	13 B 14.3	3.0 3.1	0 20 ⁰ 2	34.4	30 2 31 0			No. 2 Feeder
78C 35	Chio #8 Bern unrashed 4.5% Sulfur 10.7% Rab	Asb	,	1 2 3 4	119 123 114 113	1560 1560 1560 1560	1050 1050 1050 1050	3 0 3.0 3.0 3.0	13598 -325	0 13.6 13.4 25.9	0 1.04 1.1 2.15	3600 2200 1950 1608	3250 0 1790 0	213 0 88 0	360 380 360 370 368 370	100 100 100 100	14 8 15.2 15 2 15.1	2 7 3.0 3.8 3.1	0 0 0 39.0 6 45.0 0 61.2	37.5 42 28.4	46 5 30 0 38.6 38 0			No. 1 Peoder No. 1 Peoder No. 1 aud No. 2 Peoders
Rat 34	Chio (8 Sem unwashed 4.50 Sulfur 10.75 Ash (1/8" = 4)	لاعلا	,	1 2 3 4	115 111 113 115	1540 1540 1580 1580	1080 1080 1080 1080	3.0 3.0 3.0 3.0	13590 -325	0 13.8 16 5 30.4	0 1.16 1.36 2.55	3558 1700 1700 800	3440 1570 0	118 147 0	388 388 380 380	108 100 100 100	13 5 14 6 14 5	3 6 2.6 3.0	0 0 0 52.2 5 51 3 78.0	44.3 37 9 31.4	44.5 72 4 19 2 57.4			NG. 1 Feeder NG. 2 Feeder NG. 1 and NG. 2 Peeders
	0																							7

Ą

B-5

TABLE 8-2 (Continued)

												C4	as Analysis, Co	ncentration 1	n volume p	percent	t or pps as	.șdica	ted NO.					
Test. No.	Cosl Type and Composition	Bed Matorial	Static Bed Depth, inches	Test Cond ¥o.	Coal Rate, 1b/hr	Bed Temp *F	Air Rate, 1b/hr	fine Gas Oxygen (Control),	Type and Size*	rbent Data Injection Rate, Ib/hr	Mole Ratio, Ca/S	1 R SO76 Pp=6	Not Tests 501, 501, ppm ppm	ів Роз но, но _д рра рра	Bydr Carb C PS	bons, pa	0rs Ana 1 CO ₂ 0	ы. 1 <u>тата,</u> 25	Reduc- tion (1 R) CO	Serbont Utiliza , tion,4	- Carbon Content	Tly Ash Data Recir- t cula- Rea tion [®] 11	ission, b/hr	Remote
P BC 17	Chio #8 Seam unwenhed 4.5% Bulfur 10.7% Ash	Ash	•	1 2 3 4	116 104 111 115	1640 1640 1620 1620	1020 1020 1020 1020	3.0 3 0 3 0 4 0	13598 -325	0 14 8 15 8 30.5	0 1 36 1 36 2 66	3400 2000 2250 1500	3230 163 1800 87 2200 66	190 380 383 380 370 320 370		50 50 50	15 2 2. 15.0 3. 14 9 2 15 2 2.	.6 .0 9	0 0 9 41 2 0 34.0 0 56 0	30 8 25 2 21 2	28 7 13 5 6 5 7 0			No 1 Fesdar No. 2 Fesdar No 1 and No 2 Feedars
78C 38	Ohio #8 Seam unwashed 4 5% Sulfur 10 7% Ash	Ash		1 2 3 4 5	66 16 103 110 129	1760 1760 1720 1722 1720	890 690 1020 1170 1350) 0) 0) 0) 0) 0) 0	13598 -325	0 16 0 16 0 16 0 16 0	0 1 75 1 65 1 28 1.16	3500 1470 2780 1830 2030	3330 262 1650 63	375 380 375 375 375 375 375		50 50 50 50			57 9 50 9 50 0 42 0	33 1 15 2 39.7 35 2				No 1 Feeder
7BC 39	Ohio 18 Seam unwashed 4.55 Sulfur 10.74 Ash	Aøb	94	1 2 2 4	120 116 117 118	1540 1540 1580 1560	1080 1080 1080 1080	3.0 3.0 3.0 3.0	1337# - 325	0 30.6 42.0 26.5	0 1 38 1 87 1 17	3400 1600 400 1650	3400 85 288 52 1250 131	360 385 360 364 358		50 50 50	13 5 3. 14 8 3. 14 8 2.	.5	0 0 0 53 0 0 88.5 0 51 5	18 6 47 4 44 0	33.0 24 4 27 0 27 0			No 1 Feeder Bo, 1 Feeder Fremised
FDC 40	Ohio #8 Seam unvashed 4.5% Sulzur 10 7% Ash	Ash	7 to 64	1 2 3 4	111 105 109	1760 1740 1720 1760		3.0 3 0 3 0 3 0	1337µ - 325	0 31 2 43.2 22.5*	0 1 55 2 08 1 17	3550 1250 650 1800	1230 122 1640 139	375 390 375 375 375		50 50 50 50	14 5 2 14.8 3 14.3 2 14 5 2		0 0 8 64 7 0 81.9 D 49 2	41 8 39 4 42 0	22 0 6 3 31 7 6 0			No 1 Faeder No 2 Feeder PPremixed with cosl. 22 5 pounds limestone per 100 pounds cosl
7BC 41	Ohio 88 Seam Unwashed 4.58 Sultur 10.78 Ash	Asb	10 to 94	1 7 3 4	120 111 114	1560 1560 1600 1600	1080 1080 1080 1080	3.0 3.0 3.0 3.0	13598 - 325	0 40 6 27 4 22 5*	0 3.4 2 24 2 10	3450 350 1000 900	3400 100 150 D 620 D 900 D	375 375 375 375 375 375		50 50 50 50	14 9 2 14 9 2 15 0 2 13.2 1	9 .7 .9 0	0 0 90 0 71 0 0 74 0	26.6 31 0 35 5	34 4 20 0 16 0 9 1			No. 1 Feeder No 2 Feeder *Premixed with cosl. 22.5 pounds limestons per 100 pounds coal
7BC (2	Ohio 88 Beam unwashed 4 5% Sulfur 10 7% Ash	Ash	94	1 2 3	116	1600 1660 1600	1080 1080 1080	3.0 3.0 3.0 3.0	13598 -325	0 19.7 30.0**	0 1.65 2 0 **	3350 1150 600	3250 150	175 380 375 375 -		50 50 50		.0	0 63.5 0 82 2	39.6 29.4	35.4 20.5 10.9			"Fed from Port A only. Then fed from Port 5 only. ""Freatuned with cosl 38 pounds limestone per 100 pounds coal
PBC 43	Ohio #8 Sean unwethed 4.5% Sulfur 10.7% Ash	Ash	10 to 104	1 2	116	1580 1580	1080	3.0	13598 650 -200	30.0-	0 2 07	3400 2050	3130	375 110 375 80		50 50	14.1 1. 15 5 1.	:	۶ ۵۱ ۳۶	19.2	24.8 22 4			Frailed with coal 30 pounds limestone per 100 pounds coal
75C 44	Ohio #8 Swam washed 2.69 Sulfur 7.28 Ash	Aab	12	{123 {123	128 118 112 124 116	1620 1590 1630 1780 1730	1080 1080 1080 1080 1080	1 0 2 0 3.0 1.0 2 0	HO Additive			2650 2250 2000 3400 2250	1950 130 1600 200 100 0	340 380 376 380 380 395 305 368	3	00 00 60 50	16.0 1. 15 8 2 14 9 3 16.3 1. 16.0 1.	.2 (c 1 .3	0 0 0 0 0 0	-				
			5	1	118 112 104	1480 1620 1780	1080 1080 1080 1080	1 0 2 0 3.0				2500 2500 2000 2000		280 340 345	1	50 50 50	13.5	0 10 16 17						
78C 45	Ohio #8 #aam Vashed 2 6% Bulfur 7 2% Ash	Ask	10	1 2 3	105 102 106	1630 1600 1670	1050 1050 1050	J.0 J.0 J.0	1359 8 -3 2 5	0 31.8 28.6	0 5.2 4.3	2000 50 300	240 0	388 270 340 140 330 50	5	50 50 50	14 4 3 14.2 3 15 4 3	.2 .1 .0	0 0 0 94.0 0 85 0	33:1	32 8 38.5			No 1 Additive Feeder No 2 Additive Feeder
75C 16	Obio (8 Saan washed 2.66 Sulfur 7.28 Ash	Anb	ц	1 2 1	115 108 105	1580 1600 1610 1630	1050 1050 1050	1.0 3.0 3.0 3.0	1359 8 -325	0 24 0 17 2 13.0*	0 3 6 2.6 2.1	2200 270 550 760	1970 0 480 0	360 140 369 130 360 160 360 80	5	50 50 50	14 \$ 3 15 0 3 14.5 2		e 0 e e5 0 o 75.0 65.5	23 6 20 0 31.2	52 0 26.9 39.4 21.0	1	.•	No. 1 Additive Feeder No. 2 Additive Feeder Premaized with coel. 13.0 pounds limetone par 100 pounds coel
PBC 47	Ohio f8 Sean vashed 2 68 Sulfur 7,28 Ash	Asb	•	1 2 3 4	102 103 106	1780 1780 1830 1800	1050 1050 1050	10 10 10	13598 -325	0 12 8 9 6 16,5*	0 2.0 1.4 2 6	2200 1500 1700 1400	2100 30 1460 0 1610 0 1350 0	340 340 360 360	55	50 50 50	14 8 2 15.0 3 15.0 7 14.6 2	-6	0 0 0 31 0 0 22.7 0 36.3	15.9 16 2 13 9	46.8 21 6 25.8 19.9			No 1 Additive Feeder No 2 Additive Feeder *Fresiwed with coal. 16.5 pounds limestone per 160 pounds coal
7BC 48	Ohio #1 Seam vashed 2 64 Sulfur 7 2% Ash	Asb	12	1 2 3 4	108 104 110	1570 1585 1600 1590	1050 1050 1050) 0 1-0 1-0 3-0	13378 - 325	0 16.0 19.4 12.7•	0 1.6 1.16	2000 800 500 1000	1950 32 780 0	330 330 330	5 5 5	50 50 50	15 0 3 14.5 3 14.5 2 14 7 2	2	0 0 0 60.0 0 75 0 9 50 0	42.8 46.9 43 0	48.2 33 3 29 3 21 6	1	.2	No 1 Additive Feeder No 2 Additive Feeder "Premined with coel. 12 7 pounds limestone per 100 pounds coel.
РВС 49	Obic if Seam washed 2.65 Sulfur 7.25 Ash	Aab	6	1 2 3 4	100 101 112	1780 1760 1770 1790	1050 1050 1050 1050	1.0 3.0 3.0 1.0	1337 - 325	0 17 3 18 0 12 7•	0 1.6 1 46 1 16	2350 1400 1550 1550		380 405 380 380 380	5	50 50 50	15 0 2 14.7 3 14 4 2 14 2 3		0 0 9 40 4 8 38 0 0 36 0	25.2 24 3 29 2	23 9 22 4 39 6 19 5			NO. 1 Additive Peeder NO. 2 Additive Freeder *fremiand with coel. 12 7 pounds limestone per 100 pounds coel
FIC 50	Ohio 48 54am vashed 2 63 Sulfur 7 24 Ash	Ash	13	1 2 3 4	195 191 110	1560 1570 1580 1570	1050 1050 1050 1050	30 30 30 30	13378 -325	0 14 7 13 6 16 0•	0 1.35 1.55 1.46	1900 600 450 930	1880 40 860 0 490 910	370 399 379 376 376	. 5	50 50 50	14.5 3 14.5 2 15.0 3		0 0 57.9 0 76 4 51.0	43 5 49.0 35.0	46.8 53 5 31.6 34 9			No 1 Additive Peeder No 1 Additive Feeder "Premised with coal 160 pounds limestome per 180 pounds coal
PBC 51	Chio ## Seam washed 2.6% Sulfur 7 2% Ash	A ah	12	1 2 3 4	109 102 109	1560 1580 1600 1600	1050 1050 1050 1050	3 0 3.0 3.0	13378 - 325	0 15.6 19 0 16.0*	0 1 4 1.6 1.46	2100 1100 700 1110	2080 31 1050 6 630 1100	380 345 380 380 380		50 50 50	14 8 3 15-2 3 15 2 3 15 5 3	. 4	0 0 a 47 5 0 66.7 0 47 5	34 0 41 7 32 8				No 1 Additive Feedar No 2 Additive Feedar "Fremized viki coel 16 pounds Limentaue per 100 pounds coel
PBC 52	Chio ## Seam washed 2 6% Sulfur 7 2% Ash	Asb	12	1 2 3	111 105 111	1540 1570 1600 1690	1050 1050 1050 1050	30 30 3.0 3.0	13378 -325	0 21 8 19.6 10.1*	0 1.9 1.6 1.65	2000 700 600 900	1890 45 690 0 660 830	375 390 375 375 375 375		50 50 50 50	15.0 7 14.8 3 14.8 2 15.0 3		6 0 6 65 0 8 70 0 0 55 0	34.2 43.5 33.1				BO. I Additive Feeder BO. 2 Additive Feeder Presimed with coal. 10 pounds limestone par 100 pounds coal.
PBC 53	Chio ## Fem washed 2 66 Sulfur 7.28 Ash	Asth	11	1 2 3	110 107 105	1560 1595 1570	1050 1050 1050	3.0 3.0 3.0	13378 -325	0 31.5 10.7	0 2.0 1 2	2050 550 1050	2060 15 660 0	376 391 376 7	1	88			73.5 48.0	36 7 40.0				Ko. 2 Feeder
																								-

Δ

Ň

												G	a Anelys:	I. Conc	contration in vo	lume percent	01 000 AS	indicat	-					
Test No	Coal Type and Composition	Bed Material	Static Bad Depth, inches	Test Cond No	Coal Rate, 15/hr	Ded Temp., *F	Air Rate, lb/hr	Flue Gas Oxygen (Control),	Type and Size	Thent Data Injection Rate, 1b/hr	Yola Ballo, Ca/S	IR SOZE	Mat 502, ppm	SO1, Ppm	1 R. PDS 180, MO _X , pps pps ^c	Eydro- carboss, ppm	00 40.	reat ilysia, Oz	BO2 Reduc- tion 1 (I R 1 CO	Sorbent Utiliza- tion.d	Carbon Content	y Ash Dat Recir- cula- tion	Emission, lb/br	Romark a
716C 54	Ohio #8 Seam unshed 2 66 Sulfur 7 29 Ash	As h	11	1 2 3	110	1570 1565 1565	1050 1050 1050	3 a 3 o 3. o	1359R 658 -200	0 27 7 16 8*	0 3 0 2 0	2150 1100 1300	2000 980 1320	95	160 360 360	50 50 50	14 6 2 14.2 7 15.2 2	ł	0 .0 0 48 9 0 35 5	16.3 19.7			1629	au 2 Yowdar. *Fromized with coal. 16.8 pounds linestone per 100 pounds coal
PDC 55	Chio 18 Seam vashed 2.6% Sulfur 7 2% Ash	Ash	10	12	110 112 116 118	1580 1620 1580 1530	1050 1050 1050 1050	1 0 2 0 3.0 7 0	Tone	0 0 0 0	0 0 0	2000 2400 7130 2050	2400 2320 2290 2180	0 0 41 52	325 390 390 429	1530 200 50 0	16.5 15 9 2 15.1 2 14 0 4	9 1 9 0	4 D 0 0 0 0 0 0				3.4	
78C 56	Ohio fi Sean unvashed 6 st Bulfur 10 78 Ash	Ash	10	1 2	118	1580 1560	1050 1050	3 U 3.0	13378 -325	35 0	ů 12	3550 1750	1700	175 G	380 384	30 50	14 1 - 3	2 0	6 4 9 0	43 6			2.0 5.4	
PBC 57	Ohio (8 Seem unwashed 4.54 Sulfur 10 74 Ash	Ash	10	12	116	1590 1570	1050 1050	30	1337R -325	37.6	0 25	3550 1400	3560	32	380 340 380	50 50	15. 3	.1	ε <u>ε</u> ο ⁷ 7	43.5			2.5 C.0	
7BC 50	Ohio 18 Seam unwashed 4.5% Sulfur 10.7% Ash	Asb	10	1 2 3	111 111 112	1570 1570 1370	1050 1050 1050	3.0 3 0 3 0	1337# -325	0 46 G 46 0	0 1 57 1 57	3600 1600 1300	3620	37 0	370 395 370 378	50 50 50	14.0 2 15.7 3 15.5 3	., 1 1	0 0 0 77 2 0 72 2	45 4 45.4		Tes	1.9 7.6 6 9	
78C 59	Chic ## Seam washed 2 50 Sulfur 7 25 Ash	Asb	10	1 2 3	109 109	1590 1590 1590	1080 1082 1080	3.0 30 30	135 7 - 325	0 37 7 37 7	0 2.33 2 33	2330 650 650	630	20 0	343 185 380 382 395	50 50 50	15 2 3		0 0 72 4 72 4	30.7 30.7		Tes	2.1 6.2 5.0	
P9C 60	Ohio #8 Seam washed 2 55 Sulfur 7.25 Ash	Ash	10	1 2 3	110 110 110	1580 1550 1550	1080 1080 1080	3 \$ 3.0 3.0	13598 ~325	0 18.5 12.0	0 2.0 1 3	2300 900 1250	2500	25 0	340 293 340 349	50 30 50	14.5 15.2 14 1	0	0 0 0 60.0 0 66 0	30 4 15 0	52.0 43.0		1.3 4.2	
78C 61	Ohio 88 Seam unwashed 4.5% Bulfur 10 7% Amb	Ash	10	1 2 3	120 116 118	1590 1540 1520	1080 1080 1080	1.0 3.0 3.0	1359P -325	0 21.4 21.4	0 1 25 1 25	3550 1900 1900	1900	52 0 0	100 105 100 300	50 50 59	14 4 1 15 4 2 15.7 2	1	0 45.4 0 45.4	37.3	35 0 33 0	Yes	1.5 3 9 4.3	
78C 62	Chio 48 Seam unweshed 4 35 Sulfur 10.75 Ash	Anb	12	1 3 3 4	119 120 120 110	1580 1550 1520 1520	1080 1080 1080	3.0 3.6 3.9 3.8	1359 R -325	28 0 28 0 41.3	0 16 16 26	3550 1500 1509 830	3500 1600 1550	62 0	150 376 350 370 350 370 350 3	50 50 50 50			57.8 57.8 57.0 77.0	36 Q 36.0 29.0		Tea	2.4 4.9 4.7	
78C 63	Chio 48 Seam unwashed 4.36 Sulfur 10 76 Ash	Ast	12	;	115 117 119 113 119 119	1540 1550 1560 1360 1360 1560	1080 1080 1080 1080 1080	3.0 3.0 3.0 3.0 3.0 3.0	1359R -325	0 0 27,0	0	2800 3800 3800 3800 3800 3800	3800 3780 3690 3740 1610	5 15 5 39	460 475 460 460 460	40 40 40 40 40	15.5 2 15.7 2 15.4 7 15.4 2 15.5 2 16.0 2	-5 -3 6 7 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 0	35.6	46.0 45.0 41.0 47.0 41.0 23.0		1.4	80, Toot
78C 64	Ohio 48 Seam unvashed 4.58 Sulfar 10.7% Ash	Aab	12	1 2 3	121 120 117	1350 1550 1550	1080 1080 1080	3.0 3.0 3.0	1359C -325	9 25.0 14.2	0 2 6 1.5	3750 2200 2560	3700 2280 2620	28 0 0	100 150 100 108	40 40 40	15 2 2	,	0 41.2 30 8	15 21 1			1.9 3.2 2.5	
- TRC 65	Chio fi fean unweshed 3.05 Sulfur 10.75 Ash	Ash	10	1 2 3 4	119 113 116 116	1540° 1540 1540 1540	1080 1080 1080	3.0 3.0 3.0 3.0	1359h -12 +14 -14 +16 -16 +18	0 28 0 28,0 29.0	0 2 6** 2.6 2.6	2500 1870 1870 1700	2390 1870	•	340 340 340 340	50 50 50			0 28.0 28.0 34.0	10.0 16.0 13.1	70 0 70.0 65 0			"Temperature was varied during best. ""See Test for description of tests.
РВС 66	Ohio () indi unwached 3 0% Bulfur 10.7% Ash	Asb	20	123	113 113 116 117	1350* 1550 1550 1550	1080 1080 1080 1080	3.1 3.1 J 1 J.1 J.1	13598 -20 +30 -40 +50 -325	26.9 24.2 28 2	2 4 2 6 2 6	2500 1700 1940 760	2600 1680 1700 650		400 - 400 - 400 - 600 320	50 50 50			32.0 26.0 72 0	13 2 9 3 27 7	63.5 48.0 48.6 42.6			"Texparature vis varied during test ""See Text for description of tests.
47 47	Ohio 18 Seam unwashed 2 9% Sulfur 10 7% Ash	Anb	18	1 2 3 4	63 69 63 65	1520* 1520 1520 1520	620 620 620	2.9 2.9 2.9 3.0	1359R -20 +10 -40 +50 -325	0 16.0 16.7	2.5** 2.5 2 6	2450 1250 1400 550	2430		100 380 160	50 50 58 50			6 49.0 34 6 77 0	19 6 13.8 30 8	63.7 43 0 50 8			"Toxperature was varied during test. ""See Text for description of tests.
78C 13	Ohio ## Beam Unwashed 2.958 Balfur 10.78 Amb	Ant:	10	1 2 3	62 63 - 63 62	1790" 1730 1800 1780	620 620 620 620	3.0 3.0 3.0 3.0	13598 -325 -40 +50 -20 +30	0 15.5 16.8 16.2	2 4	2350 1790 2230 2150			340 380 380 390	30 50 50 50			11 0 12 5 15 5	11 9 4 5 5.7	56.2 57 8 62 6 52 5			"Temperature was varied charlog test. ""gee Text for description of tests.
гж ()	Chio (1 Seam urmashed 2 014 Sulfur 10.76 Ash	Aab	10	1 2 3 4 5	65 63 63 63	1700* 1760 1760 1700 1730	620 620 620 620 620 620	3.0 3.0 3.0 3.0 3.0	13592 -20 +30 -40 +50 -100 +200 -325	0 17 0 16.4 17.0 15 8	2 7 ** 2 6 2.7 2 5	2500 2150 2230 1700 1700			480 480 449-490 490	50 50 50 50 50 50			0 15.1 11.0 32 0 32 0	5.6 4 2 11.9 12 0	66.8 53.9 46.0 47.2 56 2			"Temperature was varied during Lest. "See Test for description of tests.
FBC 70	Obio 48 Seam unwashed 3 028 Sulfur 10 76 Ash	Aab	10 10 18 18	1 2 3 4 5	65 62 65 63 69	1620 • 1550 1820 1550 1800	620 620 620 620 620	3 0 3 0 3.0 3.0 3.0	1359R -100 +200	0 16.8 17.6 17.6 10 1	0 2 2 ** 2,8 2 8 2 8	2530 1750 2100 1250 1900			480 450 450 445 460	50 50 50 50 50 50			0 30 0 13.7 50.0 23.3	10.7 4.8 17.9 8.3	50.0 58 1 58.0			"Temperature was varied during tast. ""Soe Test for description of tasts.
7 BC 71	Ohio 68 Seam Unwashed 3 08 Sulfur 10 78 Amh	Alch	10	1 2 3 4 5	66 65 65 65	1650 1650 1630 1670 1670	620 620 620 620	2.9 2 9 2 9 3.0 3 0	13598 -20 +30 -40 +50 -100 +200 -325	0 16.3 16.7 16.3 16.3	2 6 ** 2 8 2 7 2 6	2500 1950 2100 2000 1350	1400		370 380 380 370 375	50 50 50 50	·		0 22 0 18 6 22 5 69.0	6 5 7.2 8.7 18 8	56.3 48.5 37.0 42.0 49.0			"Temperature was varied during tast. ""See Text for description of tasts.

TABLE 8-2. (Continued)

Ŋ

B-7

TABLE 3-2 (Continued)

Gas Analysis, Concentration in volume percent or pps as indicated

Test No.	Coal Type and Composition	Red Material	Static Bed Depth, inches	Test Cond No.	Coal Rate, 15/hr	Dod Tenp.,	Air Rate, 15/br	Viue Gas Oxygen (Control)	Type and Size*	Injection Rate, lb/hr	Mole Ratio Ce/5	1 N , SO ₂ , pp=	Not Test SO2, SO ppm pp	<u>ts</u> I D ₁ , NO pas pp	R. POS , NO _X , a ppe ^c	Bydro- carbons ppm	·. co,	Ormat Analys G	is, 1 CO	S0; Reduc- tion (I R.),	Sorbent Utiliza- tion,d	Carbon Conteni	Tly Ash Date Recir- t cula- Paission, tion ⁴ lb/hr	Remarks
¥ВС 72	Ohio #8 Seam washed 3.048 Bulfur 10 78 Ach	Ash	10	1 2 3	71.5 80 5 78 0 71.0	1700 ⁻ 1600 1640 1640 1660	620 620 620 620 620	3.0 3.0 3.0 3.0	1359R -20 +30 -40 +50 -100 +200 -325	6 18 2 21.2 19 8 19.5	2 6**	2000 1500 1000 1600 1100	1100	410 400 460 430 460	460	20 20 20 20 20	15.0	3 õ	0.0	6 46 4 35.7 42 8 60 7	17 8 13 2 16 5 21 9	42 0 46 5 44 0 45 0		"Temperature was varied during Leet ""See Tast for description of tasts.
73	Ohio #3 Seam Mashad 2 9% Sulfur 10 7% Ash	Ash	10	1 2 3 4 5 5 5	103 116 107 109	1570 1550 1550 1550 1550 1550	1050 1050 1050 1050 1050 1050 1050	3 0 3 0 3 0 3 0 3 0	1335a - 325	0 19.2 21.7 20.0 20.2 31.9 1	0 2	2500 1050 1100 1100 1100 1100	1050 1100	(60 450 450 450	430	20 20 20 20 20 20	15 4 15 4	30	0.0	58 0 56 0 56 0 56 0 74 0	29 0 28 0 28.0 28.7	30 3 26 8 26.5 78 4		Additive Feed 1 side (Cond. 2) Additive Feed 4 sides (Cond. 3) Additive Feed 4 sides (Cond. 3) Additive Feed 4 sides (Cond. 4) Additive Feed 4 sides (Cond. 5) Additive Feed 4 sides (Cond. 5) 1.0 matto 2 sides, 25 Matto 2 sides, Opposite (3 total)
FBC 74	Ohio #8 Seam we shed 3 01 Sulfur 10 75 Ash	Ash	10	1 2 3	115 117 150*	1550 1570 1550	1050 1050 1050	2 9 2 9 3 0	1359R -325	0 22 6 24.5	D 2 0 2 0-	2400 1050 1580	1580	420	450	20 20 20	14_8	2 0	0.0	0 56 3 34 7	28 3 17 1	58 0 25 6 38 0		*Additive premimed with coal (coal weight includes linestone) Dual Additive Feed
75C 75	Ohid #8 Seam Mashed 3.0% Sulfur 10.7% Ash	Ash	10	1 2 3	110 116 116	1560 1580 1570	1050 1050 1050	3 0 3.0 3 0	13598 -325	0 11.2* 11.2	0 1 75 1 75	2680 1900 1040	1030 0	380 380 380	412	20 20 20	15 2 14.8	3 0	0 0 • 0	0 32.8 61.2	18 75 35 0			*Point of injection variad Alows bed (sed listo sas space) during Cond 2 pase of bed (sed during Cond.)
PBC 76	Ohio #8 Sease washed 1 05% Sulfur 10 7% Ash	Ash	10	1 2 1	115 115 92 72 52	1559 1550 1560 1580 2000	1050 1050 840 630 480	2,9 20 30 30	1359R -325	0 25 0 23.0 18 0 14.0	0 2 67 2 69 2 76 2.00	2590 530 590 650 710		380 380 380 380 380		24 24 24 24 24	14.9	3 1	• • - -	0 79 5 77 5 75 0 72 8	29.0 28 7 27 2 25 9			Superficial Velocity Change
FBC 77	Ohio ## Seam washed 3 05% Sulfur 10.7% Amb	λaλ	10	1 2 3 4 5	110 110 92 70 54	1520 1510 1530 1550 1550	1050 1050 840 630 480	3.0 3.0 3.0 3.0 3.0	1359R -325	0 21 4 17.2 14 0 10 6	0 2.0 1.95 2.10 2.05	2650 768 710 710 650		360 380 390 390		24 24 24 24 24	15 0	1 1 1 	•	0 71 4 73.2 73 2 75 4	15.7 37 6 34.0 36.8			Superficiel Velocity Change
101	Chio #8 Seam washed 3% Sulfur -1/4 x 0	13 398 -10 +20	10	1	107	1400 - 1700	1100	3.0	••	••	••	For Tests 502 Data point	101-130 ertain to a bt in time	120		50 50 50	14 0 17.0 15.7 15 5	2.0 2.0 3 0	0 0 0 0 0 0	••	••	55.2 48 1 56 0		"See Appendix A, Enclowers 23. "Fluidized Bed of Limestone. Bo sorbent cross flow. Tests were transient in nature and results are presented in graphical form.
78C 102	Ohio 88 Seam washed 38 Sulfur -1/4 x D	1359R -10 +20	10	1	107	1420 - 1480	1100	3 0	••	••	••	•		100		50 50 50 50	15 8 16 4 14.6 14.4	2 9	0 0 0 0 0.0 0.0		••	61 2 50 9 50.0		"See Appendix A, Enclosure 24. "Fluidised Bed of Limestone. Ho sorbent cross flow Tests were transient is nature and results are presented in graphical form.
PBC 103	Ohio ## Seam washed 3% Bulfur -1/4 ± 0	1)59R -10 +20	10	1	105	1480 - 1810	1100	3 0		••	••			340		50 50 50 58	14.3 17.2 10 0 15 8	3.0 2 6 2 5 2.2	0 0 0.0 0.0	••	••			"This test was for information purposes only; it should not be used for comparison
PBC 104	Ohio fi sean washed 39 Sulfur -1/4 x 0	13598 -10 +20	10	1	107	1620 - 1470	1100	30	••	••	••	•		34	0	50 50 50	14 7 16 0 16-5	31262.3	0000	:	:	54 3 55 1 49.6		"See Appendix A. Enclowure 37. ""Fluidized Bad of Limmetone. Bo earbant cross flow Tests ware transient in mature and results are prevented in graphical form.
PBC 105	Chip 16 Seam Vashed 38 Salfur -1/4 z 0	1359R -10 +20	8	1	105	1480 - 1820	1100	3 0		••	••	•		34	0	50 50	11 9	2 1	0	:	::	::;		"See Appendix A, Encloware 26. "Fluidised Bed of Limestone. No earbant cross flow Tests were transiant in mature and results are presented in graphical form.
106	Ohio 98 Seen washed 2 958 Bulfur -1/6 x 0	1)592 -10 +20		1 2 3	105 105 105	1500 - 1790 1520 - 1600 1600 -	1100 1100	4 0 4.0 4 0	••	**		•	•	-	-	50 50 50	19.8 20 1 18 7	3.8 6 3 6 1	0	:		45 5* 43 8 33 6	•	"See Appendix A. Enclowers 37. "Fluidised Bed of Limestons. Ho sorbant cross flow Tests were transient in nature and results are presented in graphical form.
7 BC 107	Ohio 68 Seam weshed 3 0% Bulfur -1/4 x 0	1359k -10 420		1 2	105	1500 1800	1100	3.0 3.0		••		•	- 0 1200 -	39 42	0 - 0 420	50 50	18.0	3.0 3 2	0 0 1	•	••	54.0 44 D 35 0 33 0 31 2 47.0		"See Appendix A. Zoclowere 28. ""Fluidited Bed of Lizestown. No sorbent cross flow Tests ware translant in nature and results are presented in graphical form
108	Ohio #8 Seent washed 3.05% Balfur -1/4 x 0	13598 +10 +20	•	1 2 3	115 115 115	1500 - 1550 1720 1720	1100 1100 1100	3.0 3 0 3.0	••	••		•	2500 0	34 39 37	0 - 0 390 0 -	50 50	17 9 16 9 17.1	2 9 2 8 3.2	0 0	:	 ::	59.2 55 5 47 6		"See Appondix A. Enclosure 39 ""Pluidised Bed of Limestone. No morbent cross flow. Tests were transient in nature and rewrite are presented in graphical form
75C 109	Obio 98 Soam washad 2.95% Bolfar -1/4 x 0	1359R -10 +20	•	1 2 3	108 108 108	1470 - 1620 1620 - 1680 1600 -	1100	3.0 3.0 3.0		••	••	•	900 -	35 33 36	0 - 0 - 0 410	50 50 50	29 1 18 7 18 3	33	0 0 0	•	 	57.0* 52.4* 53 8	•	"See Appendix A, Brolowurs 30. "Fluided Sed of Linescone. Ho exchent cross flow Tests ware transient in active and yearits are presented in graphical form. "" B he 13578 added at end of condition
78C 110	Obio 18 Seem washed 3,028 Sulfur -1/4 x 0	1]59R -10 +20	•	2 2 3	204 95 95	1520 - 1560 1600 1600	1100 1100 1100	3 0 3.0 3.0		••		•	1100 0	43 44 41	450 -	50 50 50	19 9 17 6 17 2	3 0 3.1 2 5	0	:		58.2 54 9 46 1		"See Appandix A. Enclosure ll. "'Fluidisch hed of Limertone. Ho sorbent cross flow. Tepts were transing in neture and results are presented in graphical form
PRC 111	Ohio f8 Seam washed 3 64% Sulfur -1/4 x 0	1359R -10 +20	10	1 2 3	110 105 105	1 380 1 4 20 1 4 20	1100 1100 1100	3.0 3.0 3.0		••		•		291 291 291	305 -	50 50 50	15 5 15 7 14 7	2 0 2.3 2.4	a 2 6.1	:		56 0 69.1 76 2	Yes	"See Appendix A, Enclorure 37. "Fluidited Bad of Limestone Bo sorbent cross flow Tests ware transient is nature and results are presented in graphical form. Added 60 lbs fly sph
PBC 112	Ohio 00 Soam washod 3.084 Solfur -1/4 x O	1359% -10 +20	10	1 2 3	90 93 93	1430 - 1450 - 1450 - 1540 - 1540 -	1100	3_0 3 0 3 0		••	••	•		33: 33: 37(5 350 350 350		19.1 17.5 17.8	3.0 3.1 3.1	0	:	::	54 0 47 6 50 1		"See Appendix A, Enclosure 3). "Floidised Bad of Lisestone, No sorbent cross flow. Tests ware transient is nature and results are presented in graphical form. Removed 30 lbs of bad in 5-1b increments

A

12

TABLE 8-2 (Continued)

												<u>6</u>	s Analys	is, Com		ion in *	olume percent	or ppm	As indi	ated						
Test No.	Coal Type god Composition	Ded Natarial	Static Bed Depth, inches	Test Cond No.	Coal Rate, lb/hr	Bed Temp.,	Air BALE, Jb/hr	flue Gas Daygen (Control),	Size*	Injection Rate, Ib/hr	Nole Ratio Ca/S	1.R. 502/ ppm ⁵	Net. 502, ppm	SOJ, Ppm	ΪR MO, ppos	PDS NO _R , PPB ^C	Bydro- carbons, ppa	00,	Orsat Analysi Oz	. %	so; Reduc- tion (I.R.),	Sorbent Utiliza- tion,d	F): Carbon Content 1	Y Ash Da Recir- Cula- tion®	Enission, lb/L:	Ignarta
7 BC 5 113	Chio 13 Seam washed 3.05% Solfur	13598 -10 +20	10	1 2 3	84 53 60	1450 - 1600	630 630 650	3 0 3 0 3.0	••	••		•	400	0				18.3 18.2 17.2	3.1 2 9 3.0	0	::	::	53.5 42.1 49 0			"See Appendix S. Enclowers 14. "Fluidied had of Linestone, No extremt cross flow Tests were transities in outre and repulse are presented in graphical form. 62 Lbs 13598 edded
7BC 114	Ohio 43 Bean washed 3.09% Sulfur	13598 -10 +20	10	1 2 3	52 67 75	1490 - 1900	650 720 720	3.0 3.0 3.0		••	••	•	0 -	0 -	285	260		18.8 17.0 17.0	2 6 2.9 3 0	D	::	::	48 7 44.2 62 3 64.9 51.5			49 lbs 1359% added "See Appendix A, Encloserw 35. "Flaidised bed of Limestome. Ro softwart cross flow Tasts wars transient in mature and results are presented in graphical form
PBC 115	Ohio 98 Seam wanhed 2.958 Sulfur	1359± -10 +20	10	2	47_4 47_4 47_4	1790 1580 1580	500 500	3.0 3.0 3.0				•	175	0	270	250		18 0 14.0 16.0	3.0 3 1 3.4	0	Ë	,. 	42 7 60-4 62-1 63 5			67 lbs 13558 added Gas relocity decreased from 12 to 8 fps "Ses Appendix A, Enclosure 36. "Fluid.ied het of Limeston. An arthent artes flow. Tests were trianismi. in mature and results are presented in graphical form.
PBC 114	Ohio ## Seam washed 3,02% Sulfur	13598 -10 +20	10	1 2 3	61 61 61	1550 1920 1610	650 650	3 ¢ 1.0 3 0	••			•	230	:	220 350 250	240		19.2 14 1 17 2	30 1,3 31	;	:	::	55 1 56 9 52 6			*See Appendix A, Decimere 37. **Findisate deal of Limentone. No exoftent cross flow. Twets ware transiant is neture and rewolts are premanted in graphical form 60 los bed metarial added
70C 117	Ohio ## Seam washed 3 074 Bulfur	1359R -10 +20	10	1 2 3 4	57 56 82 62	1600 2000 1600 1600	650 650 650 650	3 0 .2 3 0 .4			••	•	-	:	280 280 440 310	260 430		18.7 15.2 17 8 15 0	2 9 .2 2 9 1	0 4 0 2	::	::	44 6 44 6 58 2 57.6			"See Appendix A. Enclowere 18. 40 De bed material admd "Fluidisch da of Limetone. No mothent cross flow Tests were transient in neture and results are presented in graphical form.
78C 118	Chio ## Seam wash0d 2 968 Sulfur	13598 -10 +20	10	1 2 3 4	60 47 58 79	1540 1930 1550 1930	650 650 650 650	1 0 .2 3.0 .2	••	••	••	•	5 31	-	350	360 360 410 310	50 420 420	14 9 14.2 10 7 13.1	2,9 D 4.0	0 .1 .7	::	;;	55 7 49.1 65.0 30.9			*See Appendix A, Enclosure J9. **Piuldised Red of Limetons. No sorbent cross flow. Testd ware transist is nature and results are presented in graphical form.
7BC 129	Ohio ## Seam wambed 3 0#% Fulfur	13598 -10 +20	10	1 2 3		2060 1580 2000 1510	650 650 650	3.0 3 0 1 0 3.0				•			380 380 380		~50	18 8 17 2 14 9 15 6	3.1 J 2 9 2 4	0.2	::	÷	39 2 41 2 43.9 52 6			"See Appendix A, Enclower 40. "Fluidised and of Limestone. We anthent cross flow. Tests were transfer in nature and remains are presented in graphical form, 40 lbs 11558 added
PBC 120	Ohio #8 Seam washed 3 088 Sulfur	13592 -10 +20	10	1 2	60 36	1700	650 650	4.0 3 0	••		••				310 310		~100	20.5 15 2 14 5	2 9 3 2 3 2	0	:	:	54 7 54 3 59 7 61-8 54.7	Tes Yes Yes Yes		"See Appendix A. Enclowery 41. 40 Do 1358 addad "Fluidlend and of Limestone. We anthent cross flow. Tests were transient in nature and results are presented in graphical form.
NOTES	ALIMESTONE ident Bituminous Coal C = calcined b	Mesearch, In Research, In W supplier, 1	d numberië nC. E = hydrat	g eyeter	a of applier,	A - rav si	:05e	*Sire *Sorbest	0 9 Stands Dilligatio	nd sieve ai m defined a 8 Otilisati	an stol	, Reductio	n in gas Ratio,	Ca/8			^d PDS den ^d Gas an ^e Ply as	alysie 1 h pot re	Phenold y Infra: circulat	ad Anal	ic Acid Lyzer Se intic	Hathod	ron*			

TABLE C-1. SULFUR BALANCE DATA

40	39	(512) 7 7	ತಕಂಕ್ಟ್	NA 2VA	∿ತ್ _ಎ ತ 4	ಕರರಿತ ಕಿಂಗಾ	32	FBC Test No.
やらって	4 U N H	4327	4 4 4 4	よくらる	27	27	2	Cond. No.
2.90 1.05 1.50	2.70 1.30 1.38	2.80 1.75 1.30	3.00 1.50 1.50 .75	3.0¢ 1.90 1.25	3.05	3.20 1.75	3.15 1.90	SO2 Sulfur Entission Lbs/M Btu
18.8 37.8 41.5 32.4	18.5 30.5 2.0	19.1 30.1 30.1 41.2	18.2 28.8 30.4 5	17.6 26.2 27.6 35.4	18.5 28.6	18.0 35.0	19.0 29.1	Fly ash Rate Lbs/M Btu
.023 .053 .023 .023	.021 .056 .039 .058	.017 .051 .055	.024 .063 .069	.018 .053 .039	•025 •04	.014 .057	.012	Fly ash Sulfur Fraction
.43 .95 1.95	.39 2.00 1.19 1.85	.32 1.89 1.54 2.27	1.81 2.37	.32 1.38 1.44 1.45	.46 1.17	0.25 1.99	0.23 1.94	Fly ash Sulfur Lbs/M Btu
ພມ ພະວິບ ພະວິບ ພະວິບ ພະວິບ	3.09 3.30 3.29 3.23	3.12 3.64 3.59	3.44 3.31 3.59 3.12	3.32 3.133 3.14 3.70	3.51 3.37	3.45 3.74	3.38 3.84	Total Emission and Fly ash Sulfur Lbs/M Btu
333 1777	3.7 3.7 .7	3.77 3.77	ωωωω 1777	333 3.777 3.777	3.7 3.7	3.7	3.7 3.7	Sulfur Input ((4.5% S) Lbs/M Btu
0.37 0.65 2.15 0.25	0.69 0.40 1.21 0.47	0.58 0.26 0.23	.26 .39 .11		.19 .33	.25	.32 14	Inaccounte Sulfur Lbs/M Btu

APPENDIX C

SULFUR BALANCE DATA FBC AND FBM

POPE EVANS AND ROBBINS

ODE' EVANS	т. А	Tes		TABLE	C-2. F.	BC SULFUR B	ALANCE DA	та	
10	P	0 # ŭ			FBC D	ata: Rates	in pound	s per hour	
ч с с	4 <i>α</i> ω4	ond. No.		TEST NO. 46				Additive_	1359 н
		L B B SO					Coa	al Sulfur Co	ontent 2.50
 				Test Condition	_1	_2	_3	_4	
000	0000	BUL		Additive St. Ratio	0.0	3.6	2.6	2.1	
				Sulfur input	2.72	2.57	2.77	2.75	
				Sulfur emission	2.27	0.44	0.65	0.84	
		if "		Sulfur in fly ash	0.38	1.30	1.62	1.34	
ເມ ເ ມ µ-	ωωμ	Ly R		Sulfur retained in bed	-	0.80	0.40	0.40	
0.8	5.7 5.7 4.5	ash Ate M Btu		Input less output	0.07	0.03	0.10	0.17	
		Fly Suli Frac	тавј	TEST NO. 47				Additive	1359 н
072	021 071 67	t ur	E			-	Coa	l Sulfur Co	ntent 2.60
		C F	С Г	Test Condition	<u> </u>	2	3	4	
			•	Additive St. Ratio	2.0	2.0	1.4	2.6	
NN	NNN	LUST	â	Sulfur input	2.05	2.70	2.75	2.78	
133 140 140	ល្លាយ សូលសូល		Con	Sulfur emission	2.40	1.64	1.91	1.52	
		Buras	ti	Sulfur in fly ash	0.24	0.57	0.76	1.04	
			Jue	Sulfur retained in bed	-	0.35	- 0 09	.1/	
			d)	Input less output	0.01	0.14	- 0.09	0.05	
		Tota and Sulfi							
	0 4 4 0			TEST NO. 48				Additive_	1337 н
000	NWAG	L Y L					Co	al Sulfur C	ontent 2.50
		as)		Test Condition	1	2	3	4	
		вt Гол		Additive St. Ratio	0.0	1.4	1.6	1,16	
				Sulfur input	2.70	2.58	2.75	2.62	
ເມເມ	ພພພ	(4. Lbs	1	Sulfur emission	2.23	0.84	0.67	1.16	
	トトト	M SPU	n	Sulfur in fly ash	.32	1.08	1.55	1,18	
		Bt S, L		Sulfur retained in bed	-	0.70	0.35	0.35	
	0000			Input less output	0.15	- 0.04	0.13	-0.02	
		Inaccounto Sulfur Jos/M Btu		PCP:	e evai	NS AND RO	Debins		

SNIEBOY GNA

C-4

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour

TEST NO. 49				Additive	1337 H
			Coal	. Sulfur Co	ontent 2.60 %
Test Condition	1	2	3	4	
Additive St. Ratio	0	1.6	1.4	1.16	
Sulfur input	2.62	2.73	2.73	2.80	
Sulfur emission	2.52	1.54	1.53	1.53	
Sulfur in fly ash	.22	.73	.95	1.05	
Sulfur retained in bo	ed -	. 35	.20	.14	
Input less output	-0.12	0.13	.05	.08	

TEST NO. <u>50</u>			Additive 1337 H					
Test Condition	<u>1</u>	2	Coal	Sulfur Content 2.50	8			
Additive St. Ratio	0	1.3	1.5	1.46				
Sulfur input	2.56	2.62	2.58	2.67				
Sulfur emission	2.10	.92	.61	1.11				
Sulfur in fly ash	0.32	1.15	1.41	1.14				
Sulfur retained in bed	-	.70	.40	.30				
Input less output	0.14	-0.15	04	0.13				

TEST NO. 51			Additive 1337 H					
			Coa	l Sulfur Con	ntent 2.60 %			
Test Condition	1	_2	3	4				
Additive St. Ratio	-	1.4	1.6	1.46				
Sulfur input	2.52	2.46	2.72	2.62				
Sulfur emission	2.19	1.25	.88	1.27				
Sulfur in fly ash	.22	.80	1.40	1.14				

.30

0.14

.15

0.06

POPE EVANS AND ROBBINS

.40

0.01

-

0.11

Test

Sulfur retained in bed

Input less output.

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour

_3

1.51

0.70

0.40

0.11

TEST NO. 52			A	ditive_	1337 н
			Coal S	Sulfur Cont	ent_2
Test Condition	_1		3	_4	
Additive St. Ratio	0	1.9	1.6	1.65	
Sulfur input	2.58	2.67	2.70	2.68	
Sulfur emission	2.15	0.71	0.68	0.98	
S ulfur in fly ash	0.38	1.20	1.55	1.30	
Sulfur retained in bed	-	0.70	0.40	0.30	
Input less output	0.05	0.06	0.17	0.10	

TEST NO. 53

_1	2
0	1.6
2.68	2.60
2.35	1.53
. 36	.57
bed -	.60
-0.03	-0.10
	1 0 2.68 2.35 .36 bed - -0.03

Additive St. Ratio	0	1.6
Sulfur input	2.68	2.63
Sulfur emission	2.35	1.53
Sulfur in fly ash	. 36	.57
Sulfur retained in	bed -	.60
Input less output	-0.03	-0.10

TES

Test Condition

Sulfur input

Sulfur emission

Sulfur in fly ash

Input less output

Sulfur retained in bed

Additive St. Ratio

T NO. 54	Т	NO.	54	
----------	---	-----	----	--

1____

0

2.72

2.39

0.28

0.05

-

Additive	1328 R
----------	--------

....

Additive 1337 H

Coal Sulfur Content 2

4 -

Coal Sulfur Content_ 2.5 _ 3 2.0 2.80 2.72

· 프라먼의 '의'~~	D ROSSING
--------------	-----------

_2___

3.0

1.28

0.78

0.60

0.14

TABLE C-2. (Continued)

____2

1.12

4.53

1.93

1.80

0.70

0.10

1

0

4.72

3.96

.59

--

0.17

TEST NO. 56

Test Condition

Sulfur input

Sulfur emission

Sulfur in fly ash

Input less output

Sulfur retained in bed

Additive St. Ratio

FBC Data: Rates in pounds per hour

Additive 1337 R

Coal Sulfur Content 4.40 %

TABLE C-2. (Continued)

2

1.30

4.80

1,68

2.36

0.60

0.16

1

0.00

4.80

4.15

_

0.25

.40

FBC Data: Rates in pounds per hour

Additive 1337 R

Coal	Sulfur	Content_	4.3	8

Additive 1337 R

Coal Sulfur Content 4.3 %

TEST NO. 58

TEST NO. 57

Test Condition

Sulfur emission

Sulfur in fly ash

Input less output

Sulfur retained in bed

Sulfur input

Additive St. Ratio

Test Condition	<u> </u>	_2
Additive St. Ratio	0.0	1.60
Sulfur input	4.75	4.75
Sulfur emission	4.22	1.20
Sulfur in fly ash	.45	2.55
Sulfur retained in bed	-	0.70
Input less output	0.08	0.30

TEST NO. 59

Test Condition	1	2
Additive St. Ratio	0.0	2.3
Sulfur input	2.83	2.83
Sulfur emission	2.82	0.83
Sulfur in fly ash	.15	1.44
Sulfur retained in bed	-	0.40
Input less output	14	0.16

Additive 1337 R

Coal Sulfur Content 2.6 %

POPE, EVANS AND ROBBINS

POPE EVANS AND ROBBINS

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour

TEST NO. 60			Additive 1359 R	TEST NO. 63			Additive_1359
			Coal Sulfur Content 2.6 %				Coal Sulfur Content_4_3_8
Test Condition	1	2		Test Condition	_1	2	
Additive St. Ratio	0.0	2.0		Additive St. Ratio	0.0	1.6	
Sulfur input	2.85	2.85		Sulfur input	4.90	4-90	
Sulfur emission	2.65	1.11		Sulfur emission	4.50	2.03	
Sulfur in fly ash	.1	1.35		Su lfur in fly ash	.30	2.20	
Sulfur retained in b	ed -	.35		Sulfur retained in be	ed -	.55	
Input less output	0.10	0.04		Input less output	0.10	0.12	

TEST NO. 61			Additive 1359 R	TEST NO. 64			Additive 1359 R
Test Condition	_1	_2	Coal Sulfur Content 4.3 %	Test Condition	1	2	Coal Sulfur Content 4.4 %
Additive St. Ratio	0.0	1.25		Additive St. Ratio	0.0	2.6	1.5
Sulfur input	5.35	5.10		Sulfur input	5.30	5.30	5.30
Sulfur emission	4.75	2.39		Sulfur emission	4.60	2.70	3.14
Sulfur in fly ash	.38	1.93		Sulfur in fly ash	.30	2.00	1.60
Sulfur retained in bed	-	.70		Sulfur retained in bed	-	.50	.30
Input less output	0.22	0.08		Input less output	0.40	0.10	0.2Ĝ

TEST NO. 62		Additive 1359 R			
:			Coal Sulfur (Content 4.2	8
Test Condition	_1	2			-
Additive St. Ratio	0.0	1.6			
Sulfur input	5.00	5.00			
Sulfur emission	4.42	1.90			
Sulfur in fly ash	.42	2.40			
Sulfur retained in bed Input less output	0.16	.55 0.15			

POPE EVANS AND ROBBINS

TABLE C-2. (Continued	C-2. (Continue	d)
-----------------------	----------------	----

	FBC	Data:	Rates	in pounds	per	hour*
FBC Test No. 106						
Test Condition	1		2	3		
Flue gas cutput	1.70		.27	1.25		
Fly ash output	.41		.37	.33		
Bed retention	.95		2.4	1.6		
Total output	3.06		3.04	3.18		
Input	3.12		3.12	3.12		
Input-output	.06		.08	06		
FBC Test No. 107						
Test Condition			2			
Flue gas output	.60		3.75			
Fly ash output	.35		.39			
Bed retention	2.20		90			
Total output	3.15		3.24			
Input	3.16		3.16			
Input-output	.01		08			
FBC Test No. 108						
Test Condition			2	3		
Flue gas output	1.45		2.5	2.7		
Fly ash output	.42		.28	.32		
Bed retention	1.1		.28	.08		
Total output	2.97		3.06	3.10		
Input	3.13		3.16	3.13		
Input-output	.16		.10	.03		

*Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour*

FBC Test No. 109			
Test Condition	1	2	3
Flue gas output	.9	.9	.82
Fly ash output	.25	.19	.23
Bed retention	1.9	2.0	2.2
Total output	3.05	3.09	3.25
Input	3.18	3.18	3.18
Input-output	.13	.09	07
FBC Test No. 110			
Test Condition		2	3
Flue gas output	1.02	1.28	.81
Fly ash output	.32	.25	. 29
Bed retention	1.7	1.6	2.0
Total output	3.04	3.13	3.00
Input	3.18	3.18	3.18
Input-output	.14	.05	.18
FBC Test No. 111			
Test Condition	1	2	3
Flue gas output	2.52	2.52	2.52
fly ash output	.02	-45	:39
Bed retention	.50	-02	.02
Total output	3.04	2.99	2.93
Input	3.17	3.17	3.17
Input-output	.13	.18	.24

*Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

POPE, EVANS AND ROBBINS

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour*

FBC Test No. 112

Test Condition			
Flue gas output	2.74	2.1	1.8
Fly ash output	.17	.36	.32
Bed retention	.2	.5	.8
Total output	3.11	2.96	2.92
Input	3.00	3.00	3.00
Input-output	11	.04	.08

*Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

TABLE C-2. (Continued)

	FBC	Data:	Rates	in pound	ls per l	hour*
FBC Test 113						
Test time hrs	_1	_2	3	4		
Flue gas output	0.0	0.08	.6	.7		
Fly ash output	0.35	0.28	.32	.38		
Bed retention	1.56	1.64	.90	.80		
Total output	1.91	2.00	1.82	1.88		
Input	1.98	1.98	1.98	1.98		
Input - Output	.07	02	.16	.10		
FBC Test 114						
Test time hrs	1	2	3	4	4.3*	
Flue gas output	0.0	. 39	0.85	1.15	10.4	
Fly ash output	0.27	.25	0.35	.27	.30	
Bed retention	1.75	1.47	7_	.5_	-8.8	
Total output	2.02	2.11	1.90	1.92	1.8	
Input	1.95	1.95	1.95	1.95	1.95	
Input - Output	07	16	.05	.03	.15	

*Regeneration

FBC Test 115

Test time hrs	<u> </u>	2	3	4	5_	6
Flue gas output	.08	.16	.63	.45	-	.8
Fly ash output	.26	.40	.34	.14	-	.25
Bed retention	1.65	1.33	.84	.99		.44
Total output	1.99	1.89	1.81	1.58	-	1.49
Input	1.95	1.95	1.95	1.38		1.38
Input - Output	04	.06	.14	.20		.11

*Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

POPE EVANS AND ROBERS

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour*

FBC Test 116

Test Time hrs	1	2	3	4.2**	5	_6
Flue gas output	0.00	.08	.42	17.5	-	.16
Fly ash output	.45	.37	.30	. 27	-	.26
Bed retention	1.48	1.41	1.20	- <u>16.0</u>	-	1.57
Total output	1.83	1.86	1.82	1.77		1.99
Input	1.96	1.96	1.96	1.96		1.96
Input-Output	.13	.10	.04	.19		03

FBC Test 117

				**		
Test Time hrs	1	_2	_3	4.4	_5	6
Flue gas output	0.00	0.00	.16	25.5	.41	-
Fly ash output	.42	.54	.40	.6	.24	~
Bed retention	1.47	1.40	1.40	-24.4	1.18	-
Total output	1.89	1.94	1.96	1.7	1.83	
Input	1.85	1.85	1.85	1.85	1.85	
Input-Output	04	09	11	.15	.02	

FBC Test 118

Test Time hrs	1**	2	3	4	4.8**	6
Flue gas output	20.5	.16	.47	.37	21.5	-
Fly ash output	.2	.25	.22	.15	.15	-
Bed retention	-19.0	1.34	1.05	1.30	-19.8	-
Total output	1.7	1.75	1.74	1.82	1.85	
Input	1.8	1.80	1.80	1.80	1.80	
Input-Output	.1	.05	.06	02	05	

* Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

** Regeneration

POPE, EVANS AND ROBBINS

TABLE C-2. (Continued)

FBC Data: Rates in pounds per hour*

FBC Test 119

Test Time hrs	_1	_2	3	4	_5	6
Flue gas output	.19	.65	. 20	-	.25	.62
Fly ash output	.30	.26	.14	-	.20	.18
Bed retention	1.41	.90	1.44	-	1.30	.96
Total ou+put	1.90	1.81	1.78		1.75	1.76
Input	1.88	1.88	1.88		1.85	1.88
Input-Output	02	.09	.10		.10	.12

FBC Test 120

Test Time hrs	1	_2		
Flue gas output	.00	.05	.50	
Fly ash output	.36	.25	.02	(Recirculation)
Bed retention	1.56	1.60	1.52	
Total output	1.92	1.90	2.04	
Input	2.02	2.02	2.02	
Input-Output	.10	.12	02	

*Tests 106-120 run with bed of 1359 limestone calcined in place. Rates are in pounds of sulfur per hour.

TABLE C-3. (Continued)

FBM Data: Rates in pounds per hour

TEST NO. 17			Additive 1359 H	TEST NO22			Additive 1337 H
Test Condition	_1	2	Coal Sulfur Content 4.3 8	Test Condition	1	2	
Additive St. Ratio	0.0	.72	.84	Additive St. Ratio	23.1	22.9	
Sulfur input	32.2 28.3	32.2	34.2	Sulfur emission	22.4	7.0	
Sulfur in fly ash	1.6	9.3	10.5	Sulfur in fly ash	.3	11.8	
Sulfur retained in be	ed —	2.8	2.2	Sulfur retained in bed		2.8	
Input less output	2.3	4	2.5	Input less output	0.4	1.3	

TEST NO. 20				Additive_ 1337 H	TEST NO. 23			Additive 1337 R
Test Condition	_1	2	Coal 3	Sulfur Content 2.6 %	Test Condition	_1	_2	Coal Sulfur Content 2.5 %
Additive St. Ratio	0.0	1.17	1.46		Additive St. Ratio	0.0	2.4	
Sulfur input	19.0	23.0	23.4		Sulfur input	20.8	20.8	
Sulfur emission	17.4	15.1	12.6		Sulf ur emission	20.3	6.8	
Sulfur in fly ash	1.0	7.0	8.7		Sulfur in fly ash	.8	11.9	
Sulfur retained in bed	_	1.2	.6		Sulfur retained in be	ed —	1.8	
Input less output	0.6	-0.3	1.5		Input less output	-0.3	0.3	

TEST NO. 21			Additive 1337 H	TEST NO. 24			1	dditive 1337 F	<u> </u>
			Coal Sulfur Content 2.5 %				Coal	Sulfur Content	4.3%
Test Condition	1	2		Test Condition	1	2			
Additive St. Ratio	0.0	1.37		Additive St. Ratio	0.0	2.4	2.2		
Sulfur input	22.3	24.0		Sulfur input	18.9	19.9	19.9		
Sulfur emission	19.7	9.1		Sulfur emission	18.2	4.0	4.4		
Sulfur in fly ash	.8	10.4		S ulfur in fly ash	. 8	13.6	13.5		
Sulfur retained in bed		2.5		Sulfur retained in be	ed —	1.8	.9		
Input less output	1.8	2.0		Input less output	-0.1	0.5	1.1		

POPE, EVANS AND ROBBINS

POPE EVANS AND ROBBINS

C-16

TABLE C-3. FBM SULFUR BALANCE DATA

FBM Data: Rates in pounds per hour
TABLE C-3. (Continued)

FBM Data: Rates in pounds per hour

C-19

TABLE C-3. (Continued)

FBM Data: Rates in pounds per hour

TEST NO. 25			Additive 1337 R	TEST NO. 28				Additive 1359 R
			Coal Sulfur Content 4.3 %				Coa	1 Sulfur Content_2.
Test Condition	1	2	oour burrar content no	Test Condition	_1	_2	3	
Addition (* Datia	_ <u>_</u>			Additive St. Ratio	0.0	2.4	2.2	
Additive St. Ratio	0.0	1.8		Sulfur input	20.6	20.3	20.3	
Sulfur input	35.0	35.2		Sulfur emission	20.9	6.8	7.7	
Sulfur emission	30.5	9.7		Sulfur in fly ash	0.8	11.0	11 1	
Sulfur in fly ash	1.8	21.6		Sulfur retained in h	- 3	11.0	11.1	
Sulfur retained in be	d —,	2.8		Toput loss sutsut	ea	1.8	.9	
Input less output	2.7	1.1		input less output	-1.1	0.7	0.6	

TEST NO. 26				Additive 1337 R	TEST NO. 29				Additive 1359 R
Test Condition	1	2	Coal 3	Sulfur Content 4.4 %	Test Condition	_1	2	Coa 3	1 Sulfur Content 4.
Additive St. Batio	0.0	1.7	1.9		Additive St. Ratio	0.0	1.7	2.0	
Sulfur input	39.6	39.6	39.6		Sulfur input	30.9	31.0	31.0	
Sulfur emission	34.5	12.6	10.4		Sulfur emission	27.2	11.0	7.7	
Sulfur in fly ash	1.7	21.0	24.0		Sulfur in fly ash	2.4	14.2	17.6	
Sulfur retained in he		4.5	2.7		Sulfur retained in be	E	4.5	3.6	
Input less output	3.4	1.5	2.5		Input less output	1.3	1.3	2.1	

TEST NO. 27			Additive 1359 R	TEST NO. 30				Additive 1359 H
galitin dinaman ga			Coal Sulfur Content 4.3 %		_	_	Coa	1 Sulfur Content 2.6
Most Condition	1	2		Test Condition		2	_3	
lest condition				Additive St. Ratio	0.0	۵ ۱	18	
Additive St. Ratio	0.0	2.0		a ic	0.0	1.4	1.0	
Culfur immut	33.2	33.2		Sulfur input	22.4	22.6	22.6	
Suffut Input	33.2	55.2		Sulfur emission	22.0	11.0	8.9	
Sulfur emission	28.3	7.9				1110	0.15	
Sulfur in flueach	2.1	17.8		Sulfur in fly ash	.6	9.0	11.5	
Sufful In Hy ash	_	5 6		Sulfur retained in be	ed —	2.0	1.2	
Sulfur retained in bed		5.0		Input less output	-0.2	0 6	1 0	
Input less output	2.8	1.9		input iess output	-0.2	0.8	1.0	

POPE EVANS AND ROBBINS

				1			PRIGG 1112
		C-20			BIBLIOGRAPHIC DATA SHEET 1. Report No. APTD-0655	2.	3. Recipient's Accession No.
	ייד מאחת	C-3 (Com	للمعدماته		4. Title and Subtitle	ions From Coal-	5. Report Date
	INDLE	C-3. (COI	cinued)		Fired Fluidized-Bed Boilers	Ions From Cour-	6.
	FBM	Data: Rate	s in pound	ls per hour	T Awher(a)		8. Performing Organization B.
					E. B. Robison, A. H. Bagnulo, J. W. Bishop, an	nd S. Ehrlich	No.
TEST NO. <u>3</u>				Additive 1359 H	9. Performing Organization Name and Address Pope, Evans and Robbins Consulting Engineers		10. Project/Task/Work Unit 1
			Co	oal Sulfur Content 2.6 %	A Division of Perathon Incorporated Alexandria, Virginia 22314		
Test Condition	_1	2	_3		12. Sponsoring Organization Name and Address Division of Process Control Engineering		13. Type of Report & Period Covered
Additive St. Ratio	0.0	1.3	1.6		National Air Follution Control Administration	locutoo.	Interim
Sulfur input	20.8	20.8	20.8		Department of Health, Education, and Welfare)er Arce	14.
Sulfur emission	20.0	10.3	8.8		15. Sapplementary Notes		· · · · ·
Sulfur in fly ash	0.2	8.2	9.5				
Sulfur retained in bed	-	1.6	0.8		16. Abstracts	herectorize the	air pollution
Input less output	0.6	0.7	1.7		emissions from the combustion of coal in a flu the potential of fluidized-bed combustion for emissions were monitored under a comparatively	air pollution co large number of	estion and to assess ontrol. These different condition
TEST NO. <u>32</u>				Additive_1359 R	Efforts were made to reduce emissions of oxide based sorbents and to determine the conditions Emissions of sulfur dioxide, nitric oxide and	es of sulfur by t most favorable hydrocarbon were	the use of limestone- for the reduction. monitored continuou
			Co	al Sulfur Content 2.6 %	mination of SQ, and NOx. When conditions mos	t favorable for	air pollution control
Test Condition	1	2	_3		were established on a pilot scale, the conditi	lons vere reprodu	iced in tests with th
Additive St. Ratio	0.0	1.6	1.8				
Sulfur input	18.7	19.0	19.0				
Sulfur emission	18.5	7.5	6.6		Fluidized bed processors		
Sulfur in fly ash	0.2	9.3	10.5		coal		
Sulfur retained in bed	-	1.6	0.8		Limestone		
Input less output	0.0	0.6	1.1		Sulfur Dioxide		
					Hydrocarbons		
					17 Identifier (Open Ended Tame		
					17c. COSATI Field/Group 13/B		
					Unlimited	19. Security Cla Report) UNCLASS 20. Security Cla	ss (This 21. No. of Page SIFIED 80 ss (This 22. Price
					FORM NYTEN DO 101	Page UNCLASS	SIFIED
POPE	EVAN	S AND R	DBBINS				USCOMM-DC 4082

TABLE

H

SULFUR DIOXIDE REDUCTIONS OBSERVED 1337 DOLOMITE TO THE FBC BURNING A

WITH ADDITION OF 4.5% SULFUR COAL

COARSE

(-7

+14 MESH)

6, RESULTS OF PILOT SCALE (FBC) TESTS - SINTERED ASH BED

6,1 SULFUR DIOXIDE EMISSION WITH COARSE ADDITIVES

Initial tests to investigate the SO2 control potential of the fluidized-bed combustor were carried out with the 1359 limestone and 1337 dolomite sorbent materials ground and screened to a -7 +14 mesh, a size roughly that of the bed material. This size was selected in an attempt to increase the residence time of the particle in the bed and thus increase the sulfur capture. The sorbents were used in the raw state and as calcined by the supplier. The effects of bed temperature, bed depth, sorbent feed rate and excess air (as determined by the oxygen content in the flue gas) were investigated initially in order to determine the optimum operating conditions for sulfur retention. Three tests were conducted with reducing conditions in the bed. 90% to 95% of the input sulfur is emitted as sulfur dioxide without sorbent addition.

The reductions in SO2 emissions observed in the FBC with the coarse 1337 dolomite are shown in Table I and the corresponding data for the 1359 limestone in Table II. Sulfur dioxide reductions observed in the FBC tests are plotted as a function of stoichiometric ratio in Figures 21 and 22 respectively. Sorbent utilization percentages are given in Tables I and II; these are obtained by calculating the average portion of calcium in the sorbent feed which reacts with sulfur. Stoichiometric ratios were computed on the basis of 4.5% sulfur in the coal and the calcium content of the sorbent. The magnesium fraction in the dolomite was assumed to be chemically inert. The stoichiometric ratio, designated the Ca/S ratio in the tables, is the ratio of moles of calcium in the sorbent fed to moles of sulfur in the coal.

Comparison of results, presented in Tables I and II, indicates that the dolomite is more effective in sulfur capture than the high calcium limestone, based on the calcium alone, and ignoring the magnesium fraction. Sorbent utilization values of up to 35 to 40% were observed with the dolomite whereas the limestone utilization was limited to a maximum of about 20%. One contributing factor may have been the friability of the dolomite. The dolomite tended to decrepitate during calcination in the bed and was elutriated. The limestone, on the other hand, tended to build up in the bed. The dolomite, in breaking up, could have exposed more surface per unit mass for the sulfur reaction and combined with sulfur before leaving the bed. The limestone, in retaining its particle size, would expose less reactive surface per unit mass.

POPE, EVANS AND ROBBINS

Hest	Dolomite	Bed	Bed Temp	Flue Gas	Ca/e	SO,Conce	n. ppm	5 SO,	
No.	State	In.	°F	028	Ratio	Initial	Final	Reduction	Utilization
FBC 5	Raw	7	1800	1.0	1.10	4450	3700	17.0	15,4
	Raw	7	1800	3.0	1.10	4100	3150	23.2	21.0
FBC 6	Raw	7	1700	1.0	1.201	4650	3600	22.6	18.8
			1550	3.0	1.20	4250	2600	39.0	32.5
FBC 9	Raw	7	1800	1.0	1.171.	4550	3850	15.0	12.8
FBC 10	Raw	7	1750	1.0	1.103	4650	3600	22.5	20.4
	Raw	7	1750	1.0	1.20		3150	32.2	26.8
FBC 11	Raw	5	1680	3.0	1.14	4350	3150	27.6	24.2
	Raw	5	1650	3.0	2.04		1900	56.3	27.7
	Raw	6	1600	3.0	2.56		1500	65.5	25.6
FBC 12	Raw	9	1540	2.0	1.09	4500	2150	52.2	47.8
FBC 13	Raw	10	1500	3.0	0.79	4350	3000	31.0	39.2
	Raw	10	1480	3.0	1.44		2000	54.0	37.4
FBC 14	Raw	10	1880	3.0	1.10	4200	3750	10.7	9.7
	Raw	10	1860	3.0	1.70		3320	21.0	12.2
	Raw	10	1800	4.0	1.70		3000	28.6	16.8
FBC 15	Raw	10	1700	2.0	1.00	4000	3100	22.5	22.5
FBC 16	Raw Raw	10	1620 1620	2.0	1.00	4200	3450 2900	17.8	17.8 19.4

'Reducing conditions

in

bed

4 ک

Test	Limestone	Bed Depth	Bed Temp.	Flue Gas	Ca/S	SO ₂ Conc	en. ppm	\$ SO2	<pre>% Limestone</pre>
NO.	State	_In	<u>°F</u>	02 %	Ratio	Initial	Final	Reduction	Utilization
FBC 19	Raw	8	1540	3.0	1.15	3900	3300	15.4	13 4
	Raw	8	1540	3.0	1.93		2850	27.0	14.0
	Raw	8	1540	3.0	1.931		2350	40.0	20.7
FBC 20	Raw	8	1700	3.0	1.15	3800	3350	11.8	10.2
	Raw	8	1740	3.0	1.47		2750	27.6	18.8
	Raw	8	1650	3.0	2.00		2500	34.2	17.1
	Raw	8	1650	3.0	2.00		2300	39.5	19.7
FBC 21	Raw	8	1520	3.0	0.90	3800	3300	13.2	14 7
	Raw	8	1530	3.0	1.57		2920	23.1	14.7
	Raw	8	1500	2.0	2.00		2900	23.6	11.8
	Raw	8	1520	3.0	2.00		2600	31.5	15.8
FBC 22	Raw	8	1650	3.0	1.00	3900	3300	15.4	15.4
	Raw	8	1540	3.0	1.90		2720	30.8	16.2
FBC 26	Calcined	8	1700	3.0	1.50	3800	3300	13.2	8.8
	Calcined	8	1700	3.0	2.30		2950	22.4	9.7
	Calcined	8	1700	3.0	3.40		2370	37.5	11.0

TABLE II. SULFUR DIOXIDE REDUCTIONS OBSERVED WITH ADDITION OF COARSE (-7 +14 MESH) 1359 LIMESTONE TO THE FBC BURNING A 4.5% SULFUR COAL

1_Ash Recirculation

48

TABLE I. (Continued)

Test No.	Dolomite State	Bed Depth In.	Bed Temp. °F	Flue Gas	CA/S Ratio	<u>SO₂Conce</u> Initial	n. ppm Final	<pre>% SO2 Reduction</pre>	<pre>% Sorbent Utilization</pre>
FBC 23	Calcined Calcined Calcined Calcined	8 8 8 8	1600 1580 1580 1580	3.0 3.0 3.0 3.0	1.28 ² 2.17 ² 2.54 ² 2.17 ² ; ³	4180	2850 2700 2050 1720	31.8 35.6 51.0 59.0	24.8 16.4 20.0 27.2
FBC 24	Calcined Calcined Calcined	7 7 7	1680 1680 1680	3.0 3.0 3.0	1.13 ² 1.73 ² 2.26 ²	3500	2930 2410 2250	16.3 31.2 35.6	14.4 18.0 15.7
FBC 25	Calcined Calcined	6 6	1720 1720	3.0 3.0	1.15 1.60	3650	3350 3150	8.5 12.9	7.4 8.1
							$^2 = Ash$ $^3 = Wit$	Recirculat h water inj	ion ection

50

FIGURE 22. REDUCTION OF SULFUR DIOXIDE EMISSION FROM THE FBC BURNING A 4.5% S COAL WITH COARSE 1359 LIMESTONE ADDITION

FIGURE 21. REDUCTION OF SULFUR DIOXIDE EMISSION FROM THE FBC BURNING A 4.5% S COAL WITH COARSE 1337 DOLOMITE ADDITION

Sulfur retention and sorbent utilization are seen to increase slightly with flue gas oxygen content. An increase was observed in FBC Test 5, 10 and 14 in which other factors were held fairly constant. In Test No. 5, conducted at a bed temperature of 1800°F and a Ca/S ratio of 1.1 the sorbent utilization was increased from 15.4% to 21.0%, when the oxygen content was increased from 1% to 3%. Test No. 10 was initiated with reducing conditions in the bed, i.e., with less than stoichiometric air passing through the bed. The balance to make up the 1% oxygen concentration in the flue gas was supplied by overbed air. The sorbent utilization increased from 20.4 to 26.8% when the bed condition was changed from reducing to oxidizing. The results of Test No. 14 indicated an increase in sorbent utilization from 12.2 to 16.8% with increase in oxygen although the improvement may have been partly due to 60°F drop in bed temperature. This result is reasonable inasmuch as oxygen is required to retain sulfur in a more stable form according to the relation:

$$CaO + SO_2 + \frac{1}{5}O_2 + CaSO_4$$

In all subsequent FBC tests the oxygen concentration in the flue gas was maintained at 3% to improve sulfur capture but more importantly to limit hydrocarbons emission, as discussed in Section 6.5.

Sulfur retention and sorbent utilization increase with decrease in bed operating temperature to the lower end of the operating range. This effect is evident from the results of FBC Tests 5, 6 and 11 for the 1337 dolomite. Under otherwise similar conditions the sorbent utilization changed from 21.0 to 24.2 to 32.5 for respective temperatures of 1800°F, 1680°F and 1550°F. A similar effect is noted in Table II for the 1359 limestone.

The effect of bed depth is less well defined because of variation in other parameters. Interpolation of reductions and Ca/S ratios for Test No. 13 as shown in Figure 23 indicates a reduction of 45% at a ratio of 1.2 with a 10-inch bed. Also shown is a reduction of 39% observed in Test No. 6 conducted at this ratio and a 7-inch bed depth. The effects of bed depth and temperature were similar with injection of fine sorbents as indicated in Section 6.3.

FIGURE 23. INTERPOLATION OF 10-INCH BED DEPTH DATA FOR COMPARISON WITH 7-INCH BED DEPTH DATA

The calcined 1337 dolomite was less effective than the raw stone as recorded in Table I for FBC Tests No. 23, 24, and 25. The performance of the 1359 limestone in the -7 +14 particle size was likewise poor as shown in Table II. A deep mined limestone from Northern West Virginia was tested with a 5% sulfur coal from the same mining area. The limestone, containing 72% CaCO₃, and screened to the -7 +14 mesh size, effected an SO₂ reduction of 36% at a Ca/S ratio of 1.4 (25.4% utilization). The test conditions were 1550°F bed temperature and 3.0% O₂ in the flue gas. Data for this test (FBC 27) and others are summarized in Appendix B. Sulfur balances are shown in Appendix C.

6.2 SULFUR DIOXIDE EMISSION WITH FINELY DIVIDED SORBENTS

The investigation of sulfur dioxide emission control by sorbent injection was redirected to the use of fine sorbents in an effort to increase the reactive surface of the sorbent for greater desulfurization.

The tests were conducted in the FBC with the following considerations with respect to variables:

Sorbent Type: Two sorbents were tested, the 1337 dolomite and the 1359 limestone.

Sorbent State: The raw stone of each of the two sorbents was ground to a 325 mosh particle size for the test series. Both sorbents were also tested in the hydrated form which is commercially available in a -325 mesh particle size. Both the calcium and magnesium fractions of the dolomites were hydrated. The sorbents are designated 1337R, 1359R, 1337H and 1359H to distinguish the raw and hydrated forms respectively. One test was run with precalcined limestone designated 1359C.

Sorbent Particle Size: The effect of variation in particle size from -12 to -325 mesh was tested with the 1359R limestone. Except for these tests, reported in Section 6.3, the sorbent particle size was -325 mesh.

Sorbent Feed Rate: The sorbent feed rate was varied in the range of 1 to 3 stoichiometric ratio based on the calcium content of the sorbent and the sulfur content in the coal. Sorbent Feed System: Three methods of sorbent feed were employed as discussed in some detail in Section 5.3. These were (1) addition of sorbent at the coal feed port [#1 Feeder], (2) injection of sorbent at two points away from the coal feed port [#2 Feeder] and (3) premixing the sorbent and coal in the hopper. The #2 Feeder system was modified for four-point feed in a test of sorbent distribution. One test was conducted with sorbent injection above the bed for comparison.

Coal Sulfur Content: The tests were conducted with Ohio #8 Pittsburgh seam coal, unwashed and washed containing respectively 4.5% and 2.6% sulfur.

Flue Gas Oxygen Content: The oxygen content in the flue gas was held constant at 3% since previous results, noted in Section 6.5, indicated this value to be minimum for control of hydrocarbons emission. Higher values contribute to loss in thermal efficiency.

Bed Temperature and Depth: The bed temperature was varied in the range of 1500°F to 1800°F to investigate the temperature effect with fine sorbent particles. The bed depth was adjusted to the greatest value consistent with bed temperature. A test series was conducted to investigate the independent effects of bed temperature depth and particle size. The series is discussed in Section 6.3.

Ash Recirculation: Fly ash was recirculated on a number of tests as a final test condition. The rate was 80% of the collected ash.

<u>Superficial Gas Velocity</u>: The tests were conducted with the superficial gas velocity held constant within the range of 12 to 14 fps in most tests. The effect of superficial velocity was investigated as discussed in Section 6.3.

The test results indicated a marked improvement in sulfur dioxide reduction and surbent utilization with the fine sorbent as compared to the coarse sorbents under similar conditions. The improvement was most pronounced with the use of the 1359 limestone. A comparison is presented in Figure 24 showing the effect of particle size change with both sorbents in the raw state. Test conditions included a 1500°F - 1600°F temperature

POPE EVANS AND ROBBINS

POPE EVANS AND ROBBINS

range, 3% oxygen in the flue gas, a 14 fps superficial velocity and a 4.5% sulfur coal in each case.

The reductions observed with the fine sorbents, both raw and hydrated, while burning the 4.5% sulfur coal are shown in Table III. One test of precalcined 1359 limestone is included. The reductions are plotted as a function of Ca/S ratio in Figure 25 for bed temperature in the range of 1500°F - 1600°F. The trends show the 1337 dolomite, again, to be more reactive than the 1359 limestone when the magnesium fraction of the dolomite is considered inert. The trend indicates further that the hydrated form of the sorbents is as reactive as the corresponding fine raw sorbent. The most favorable single observation was made with the dolomite hydrate, designated 1337H. The reduction was 88% at a Ca/S ratio of 1.8, the corresponding utilization being 47.2%. The average dolomite utilization based on the trend line containing both the hydrate and raw form data is indicated to be ~45%.

The data trend in Figure 25 for the 1359 fine limestone indicates a similar reactivity for both the hydrate and raw forms, a lesser reduction th... observed with the dolomite (65% at a Ca/S ratio of 1.8) and utilization decreasing with increasing Ca/S ratio. The utilization varies from 40% at a ratio of 1.0 to 28% at a ratio of 3.0. By comparison, the coarse stone utilization (Table II) did not exceed 20%.

The precalcined form of the 1359 limestone, designated 1359C in Table III and Figure 25, was less effective than the same stone in the raw or hydrated forms. This result may have been due to the possibility that the supplier's conditions for calcination may not have produced as "soft" a calcine as the 1500°F fluidized-bed environment. The limestone was calcined by the supplier to optimize hydration, but the conditions were reported to be proprietary and were not released.

Sulfur dioxide reductions observed with injection of sorbents during combustion of a 2.6% sulfur coal are summarized in Table IV. The percent reductions, as a function of the Ca/S, ratio, were approximately the same for this medium sulfur coal as for the 4.5% sulfur coal. The points, taken at bed temperatures in the range of 1500° F - 1600° F, are plotted in Figure 26.

	Test No.	Bed Depth <u>In.</u>	Bed Temp. °F	Flue Gas O2 g	Sorbent	Ca/S <u>Ratio</u>	Feed System	SO ₂ Conc Initial	en. ppm Final	Reduction	Utilization
71	FBC										
ŏ	41	10	1560	3.0	1359H	3.40	#1	3450	350	90.0	26.5
IJ		10	1600	3.0	1359н	2.24	#2		1000	71.0	31.7
łī,	FRC	10	1500	3.0	1359H	2.10	PREMIX		900	74.0	35.2
<u>[]</u>	42	9	1640	3 0	13500	1 65	# 2	2250	1150	<i></i>	
5		9	1600	3.0	1359H	2 80	#Z	3350	1120	00.5	39.6
ź	FBC		2000	5.0	199711	2.00	FRENTA		600	82.0	29.3
S	56	10	1580	3.0	1337R	1.12	#2	3550	1750	49.0	43.6
2	FBC										
ä	57	10	1570	3.0	1337R	1.25	#2	3550	1400	60.7	43.5
U 	58	10	1570	3 0	13370	1 57	" "	2400			
1	FBC	20	10/0	5.0	133/K	1.5/	₩Z	3600	1000	/2.2	46.0
1) 16	61	10	1540	3.0	1359R	1.25	#2	3550	1900	46 5	37 3
π	FBC						5 -				J/ • J
ź	62	10	1550	3.0	1359R	1.6	#2	3550	1500	57.8	36.0
(i)	5 S C	10	1550	2 0	11500	.					
	04	12	1000	3.0	13230	2.0	# 2	3750	2200	41.2	15.8
		12	1550	3.0	1359C	1.5	#2	3750	2560	30.8	21.1

TABLE III. SULFUR DIOXIDE REDUCTION OBSERVED WITH FINE SORBENT ADDITION TO COMBUSTION OF A 4.5% SULFUR COAL IN THE FLUIDIZED BED

	Bed	Bed	Flue							
Test	Depth	Temp.	Gas		Ca/S	Feed	SO ₂ Conc	en. ppm	ቼ SO2	% Sorbent
NO.	In.	۴F	02 %	Sorbent	<u>Ratio</u>	System	Initial	Final	Reduction	Utilization
FBC										
32	8	1580	3.0	1359H	1.10	#1	3650	2200	40.5	36.8
23	9	1600	3.0	13 37 H	1.05	£ 1	3750	2000	46.7	44.5
FBC	-	1000	5.0	20071	2.000	" -	5,50	2000		
39	9	1540	3.0	1337H	1.38	#1	3400	1600	53.0	38.4
	9	1580	3.0	1337H	1.87	#2		400	88.2	47.2
	9	1540	3.0	1337H	1.17	PREMIX		1650	51.2	43.6
FBC										
40	7	1740	3.0	1337H	1.55	#1	3550	1250	64.7	41.8
	7	1720	3.0	1337H	2.08	#2		650	81.9	39.2
	7	1760	3.0	133 7 H	1.17	PREMIX		1800	49.2	41.1
FBC	_			1050-	1 10		2744		40 5	26.0
32	8	1580	3.0	T328H	1.10	# 1	3700	2200	40.5	30.0
FBC	•			12500	1 04		2000	2200	20.0	27 5
35	9	1560	3.0	13598	1.04	4 L 1 H	3600	2200	39.0	37.5
	9	1560	3.0	1323H	1.10	#2		1950	40.0	42.V 20 5
	9	1560	3.0	T328H	2.15	#L + #Z		1400	01.2	20.5
FBC	n	1540	2 0	12504	1 16	щ л	3550	1700	52 2	45 0
20	9	1540	2.0	13590	1 36	# 4 2	3330	1700	52.2	38.4
	9	1580	3.0	13290	2.50	#4 #1 ± #3		1700	77 5	30 4
FRC	9	1280	3.0	13234	2.55	#1 7 #6		200	77.5	50.4
37	8	1640	3.0	1359H	1.34	#1	3400	2000	41.2	30.8
5,	Ř	1620	3.0	13598	1.34	#2		2250	34.0	25.2
FBC	-	2020	•••							
38	8	1760	3.0	1359H	1.75	#1	3500	1470	57.9	33.1
	8	1720	3.0	1359H	1.45	#1		1780	49.2	33.9
	8	1720	3.0	1359H	1.28	#1		1800	48.8	38.0
	8	176C	3.0	1359H	1.16	#1		2030	42.0	36.2

TABLE IV.	SULFUR DIOXIDE	REDUCTION	OBSERVED WITH	FINE SORBENT A	DDITION
	TC COMBUSTION (OF A 2.6% S	SULFUR COAL IN	THE FLUIDIZED	BED

	Test No.	Bed Depth In.	Bed Temp. °F	Flue Gas O ₂ %	Sorbent	Ca/S Ratio	Feed System	SO2 Conc Initial	. ppm Final	<pre>% SO₂ Reduction</pre>	<pre>% Sorbent Utilization</pre>
ח י											
ŏ	46	11	1600	3.0	1359н	3.60	#1	2200	270	87.7	24.4
Ö		וו	1640	3.0	1359H	2.60	#2		550	75.0	28.3
17		11	1650	3.0	1359H	2.10	PREMIX		760	65.5	31.2
11	FBC										
11	47	G	1780	3.0	1359H	2.00	#1	2200	1500	31.8	15.9
Þ.		6	1800	3.0	1359H	٩.40	#2		1700	22.7	16.2
Ż		6	1800	3.0	1359H	2.60	PREMIX		1400	36.3	13.9
ស	ГЗC										
2	48	12	1585	3.0	1337H	1.40	#1	2000	800	60.0	42.8
ż		12	1600	3.0	1337H	1.60	#2		500	75.0	46.9
Ū		12	1590	3.0	1337H	1.16	PREMIX		1000	50.0	43.0
ч	FBC										
2	49	6	1780	3.0	1337H	1.60	#1	2350	1400	40.4	25.2
U m		6	1770	3.0	1337H	1.46	#2		1550	34.0	23.3
ω m		6	1790	3.0	13 37 H	1.16	PREMIX		1550	34.0	29.2
19	EBC										
Z	50	12	1570	3.0	1337H	1.35	#1	1880	860	54.2	40.1
01		12	1580	3.0	1337H	1.55	#2		490	73.9	47.7
		12	1570	3.0	1337H	1.46	PREMIX		910	51.6	35.4
	FBC										
	51	12	1580	3.0	1337H	1.40	#1	2100	1100	47.5	34.0
		12	1600	3.0	1337H	1.60	#2		700	66.7	41.7
		12	1600	3.0	1337H	1.46	PREMIX		1110	47.5	32.5

FIGURE 26. SULFUR DIOXIDE REDUCTION WITH FINE SORBENT ADDITION TO THE FBC BURNING A 2.6% SULFUR COAL

Test No.	Bed Depth In.	Bed Temp. °F	Flue Gas O ₂ %	<u>Sorbent</u>	Ca/S <u>Ratio</u>	Feed System	<u>SO2 Con</u> Initial	c. ppm Final	<pre>% SO₂ Reduction</pre>	<pre>% Sorbent Utilization</pre>
FBC										
53	11	1560	3.0	1337R	2.00	#2	2050	550	73.5	36.7
	11	1560	3.0	1337R	1.20	#2	2050	1060	48.0	40.0
FBC										
59	10	1590	3.0	1359R	2.33	#2	2350	650	72.4	31.0
FBC										
50	10	1550	3.0	1359R	2.33	#2	2300	900	60.8	30.4
	10	1550	3.0	1359R	1.20	#2	2300	1250	46.0	35.0

POPE EVANS AND ROBBINS

POPE EVANS AND ROBBINS

63

							·····
FBC Test No.	Bed Depth Inches	Bed Temp. °F	Particle Size Microns	Stoich. Ratio	SO ₂ Conc. Initial	ppm Final	<pre>% SO2 Reduction</pre>
65	10	1540 1530 1530	1680 1410 1000	2.6 2.6 2.6	2500 2500 2500	1870 1870 1700	28.0 28.0 34.0
66	10	1530 1530 1550	840 420 44	2.4 2.6 2.6	2500 2500 2500	1700 1940 760	34.0 24.0 72.0
67	18	1520 1580 1550	840 420 44	2.5 2.5 2.6	2450 2450 2400	1250 1600 550	49.0 34.6 77.0
68	10	1770 1810 1770	840 420 44	2.6 2.8 2.7	2550 2500 2500	2150 2230 1700	15.5 12.5 31.0
69	18	1770 1750 1700 1750	840 420 149 44	2.7 2.6 2.7 2.5	2500 2500 2500 2500	2150 2230 1700 1700	15.1 11.0 32.0 32.0
70	10 10 18 18	1520 1850 1550 1830	149 149 149 149	2.8 2.8 2.8 2.8 2.8	2500 2500 2500 2500	1750 2100 1250 1900	30.0 13.7 50.0 23.3
71	10	1600 1620 1650	840 840 840	2.6 2.6 2.6	2500	1750 1800 1950	30.6 28.2 22.0
	10	1670	420	2.8	2580	2100	18.6
	10	1630 1620	149 149 149	2.7	2580	2000 1900 2100	22.5 26.2 18.6
	10	1660 1670	44 44	2.6	2620	1350 1450	49.0 45.0

TABLE V.	DATA SUMMARY F	OR SO2	REDUCTIO	N VS.	1359 LIMESTONE
	PARTICLE SIZE,	BED DE	PTH AND	TEMPER	ATURE

TABLE V. (Continued)

C st o.	Bed Depth Inches	Bed Temp. °F	Particle Size Microns	Stoich. Ratio	SO ₂ Conc. Initial	ppm Final	% SO ₂ Reduction
72	18	1700	840	2.6	2530	1800	29.0
		1640	840	2.6		1650	34./
	10	1610	420	2.0	2530	2000	21.0
	10	1650	420	2.7	2200	1900	25.0
		1640	420	2.7		1850	26.9
	18	1700	149	2.6	2530	1900	25.0
		1640	149	2.6		1700	33.0
		1610	149	2.6		1600	36.7
	18	1660	44	2.8	2530	1200	52.5
		1650	44	2.8		1100	56.5

The data trends indicate that the fine dolomite (1337) is again more reactive than the fine limestone (1359). The dolomite hydrate proved to be somewhat more reactive than the fine, raw stone. Utilization of the fine raw dolomite is 42% and 37% at respective Ca/S ratios of 1.0 and 2.0.

The 1359 limestone hydrate appears to be as reactive as the fine raw stone when used with the 2.6% sulfur coal. Utilization of the fine raw stone indicated by the trend is 39%, 32% and 27% for respective Ca/S ratios of 1.0, 2.0, and 3.0.

A comparison of the method of sorbent feed into the FBC failed to point up a clear advantage for any particular method of sorbent feed although, in general, the most favorable observations were made with the #2 feed system.

Test data for the series are summarized in Appendix B. Sulfur balances are presented in Appendix C.

6.3 TESTS FOR INDEPENDENT EFFECTS OF BED TEMPERATURE, BED DEPTH, SORBENT PARTICLE SIZE, SORBENT DISTRIBUTION, AND SUPERFICIAL VELOCITY

A statistical experiment was conducted to establish the separate effects of bed temperature, bed depth and sorbent particle size on the desulfurization reaction in the fluidized bed. The information provided by the experiment was intended to form a basis on which to estimate the necessity for fine grinding and to establish the relative advantage of more massive beds which must be supported by added fan power.

The experiment was conducted in the FBC after modification to permit control of bed temperature with a movable internal cooling surface. The modification is described in Section 5.1. A sintered ash bed, sized -7 + 14 mesh, was fired with Ohio #8 seam washed coal which, in this case, contained 3% sulfur. The 1359 limestone was selected as the sorbent because of its apparent durability observed in previous tests. The sorbent was injected with the #2 Feeder system described in Section 5.3. The sorbent feed rate was controlled as closely as possible to a stoichiometric ratio of 2.6, a ratio estimated to yield an 80% SO₂ reduction with the -325 mesh particle size.

The 1359 limestone was prepared in seven sizes ranging from 12 mesh to -325 mesh. These size groups were -12 + 14, -14 + 16, -18 + 20, -20 + 30, -40 + 50, -100 + 200 and -325 U.S. Standard Mesh. The particle sizes represented by the largest screen size in these ranges

POPE. EVANS AND ROBBINS

correspond to 1680, 1410, 1000, 840, 420, 149 and 44 microns respectively. The first three were tested at a single test condition for reference, while the last four were tested over the range of temperature and bed depth. The elutriation particle size, i.e., the smallest particle size that remains in the bed at the 14 fps superficial gas velocity was 30 mesh. This size was estimated from the intermediate law as shown in Appendix A, Enclosure 18.

The bed depth was varied at two levels--10 inches and 18 inches. The bed temperature was varied in three levels, one value at the extreme ends of the operating range 1500°F - 1800°F and one intermediate temperature.

The results of the test, indicating the reduction in SO_2 with sorbent particle size, bed temperature and depth are summarized in Table V and plotted in Figure 27.

The data trends suggest the following conclusions:

- a. A sorbent ground to pass through a 200 mesh screen can be expected to be much less effective than sorbent ground finer so as to pass through a 325 mesh screen.
- b. The reduction-particle size curve appears to pass through a minimum reduction in the particle size range of -40 +50 mesh (420 microns). Such a minimum might occur from loss in bed residence time without a compensating increase in reactive surface.
- c. Increase in bed depth (and residence time) is less effective with the -325 mesh particle than with larger sizes. In every case the advantage of increased residence time declines as the bed temperature is raised from 1550°F to 1800°F.
- d. All particle sizes are more effective in sulfur capture at bed temperatures of 1550°F than at 1800°F. This result is consistent with thermodynamic equilibrium data reported by others¹ and with performance observed in the regeneration of limestone beds (Section 6.9).

¹Battelle Memorial Institute, "Fundamental Study of Sulfur Fixation by Lime and Magnesia," June 30, 1966

Other data are summarized in Appendix B. Emissions of nitric oxide and hydrocarbons were the same as observed in previous tests (Sections 6.5 and 6.6).

SORBENT DISTRIBUTION TEST

A test procedure was carried out to investigate the possibility of improving the desulfurization efficiency by better distribution of the sorbent around the periphery of the FBC. For the test procedure a second twopoint feeder was placed on the side of the FBC opposite to the first as shown in Figure 16. The two feeders were then connected to the FBC by pneumatic tubes which would permit injection of sorbent on one, two and all four sides. The feeders were calibrated precisely and the feed rates adjusted to maintain a constant sorbent feed into the bed as the number of injection points was increased. The 1359 limestone, in a -325 mesh size, was injected into the FBC at first one, then two, and then four sides with a constant rate of 2.0 stoichiometric ratio.

Emissions monitored during the test are shown in Figure 28. The results failed to show $_{c.1}$ improvement with increase in the number of injection ports. At the end of the test the Ca/S ratio was increased to 3 to check for a possible defect in the instrumentation which might have prevented a variation. The decline in SO₂ emission at the higher ratio indicates normal functioning of the instrument.

The results indicate that single-point injection in the FBC is adequate to effect the optimum SO_2 reductions for the bed volume. For the larger bed volume in the FBM, the results suggest that distribution may not be a problem. The two-point injection appeared to be adequate in the FBM but a similar distribution test was not made.

In a subsequent test the -325 mesh limestone was injected above the bed for a comparison of the SO_2 control effectiveness with the inbed injection. Test conditions were otherwise the same as employed in the distribution tests. The coal and sorbent feed rates were held constant as the sorbent feed was diverted from above the bed to the base of the bed.

The results showed a marked loss in effectiveness of capture when feeding the sorbent above the bed as compared to the usual in or below the bed feeding.

The results are summarized as follows:

Test Condition	Ca/S <u>Ratio</u>	SO ₂ Conc., _ppm	Reduc.,	Limestone Utilization,
No sorbent input		2600		
Sorbent, above bed	1.75	1750	29	16.6
Sorbent, base of bed	1.75	1000	62	35.4

Emission curves for this test (FBC 75) are presented in Appendix A, and other data are summarized in Appendix B.

SUPERFICIAL GAS VELOCITY TESTS

Superficial gas velocity is defined as the flue gas velocity which would exist in the combustion unit at the operating temperature without the fluidized-bed material. This parameter is directly related to heat release ratc, a factor which marks a principal advantage of the fluidized-bed combustion process over other methods of firing. Operation of the fluidized-bed boiler at less than maximum heat release rate (and maximum gas velocity) would not be beneficial unless an advantage with respect to sulfur emission control could be demonstrated. This control should improve with increased sorbent residence time afforded by a reduction in gas velocity.

Tests were conducted in the FBC to investigate the effect on sulfur dioxide emission when the superficial gas velocity was reduced from 13 to 6 feet per second without change in the stoichiometric sorbent feed rate. The finely divided limestone was injected into the bod through the #2 feeder at a Ca/S ratio of 2.7. As the coal and air rates were reduced to effect the lower superficial velocities, the sorbent feed was reduced in proportion to maintain the Ca/S ratio. A sintered ash bed, 10 inches deep, was operated at 1550°F with 3% oxygen in the flue gas. The test was repeated at a Ca/S ratio of 2.0, a position on the curve where the sorbent utilization is greater. The test results, summarized in Table VI, indicate little or no improvement in SO₂ reduction or limestone utilization when the superficial velocity was decreased. Emission curves for these tests (FBC 76 and 77) are included in Appendix A.

POPE. EVANS AND ROBBINS

0*L*

SNIERON	CINY	SNAVE	DODE

თ	4	í	N	н Ч	77	ഗ	4	ω	2	ч	76	Test No.
54	70	92	110	110		52	89	68	109	109		Coal Rate lb/hr
6.3	8.1	10.6	12.8	12.8		6.0	8.0	10.3	12.7	12.7		Super- ficial Velocity Íps
10.6	14.0	17.2	21.4	ł		14.0	18.0	23.0	29.0	:		1359R Limestone Rate 1b/hr
2.05	2.10	1.95	2.00	ł		2.80	2.76	2.69	2.67	ł		Stoich. Ratio
700	700	740	780	2600		600	500	600	550	2550		SO ₂ Conc. ppm
73	73	72	70	1		76	80	76	78	ł		SO2 Reduction
35.6	34.8	37.0	35.0	3		27.1	29.0	28.2	29.2	ł		Calculated Limestone Utilization %
1.6	1.8	1.9	2.1	1.1		2.0	2.0	2.4	3.1	1.0		Particulate Emission lb/hr

TABLE VI. DATA SUMMARY FOR THE SUPERFICIAL VELOCITY TESTS

73

6.4 SULFUR TRIOXIDE EMISSION

Sulfur trioxide formation is favored by the low operating temperature of the fluidized-bed combustor according to thermodynamic equilibrium theory, but its formation is slow in the absence of a catalyst because of the high activation energy of the dioxide. Gas samples taken from the stack at 600°F and cooled in a condenser at 140°F indicated small concentrations of 30 to 50 ppm in a field of 3800 ppm sulfur dioxide. The sulfur trioxide disappeared completely with sorbent injection.

A six-hour test was conducted in the FBC without sorbent injection to determine if the low concentrations resulted from residual sorbent in the test system from a previous test. The test indicated a value of 39 ppm sulfur trioxide after six hours of operation and the concentration was not increasing. Emission curves for the test (FBC 63) are shown in Appendix A, Enclosure 22. Tests for sulfur trioxide emission during the limestone bed tests failed to show any sulfur trioxide in the flue gas.

6.5 HYDROCARBONS EMISSION

The FBC test results showed that emission of hydrocarbons is primarily controlled by oxygen concentration in the flue gas and in turn by the excess air supplied to the combustion. Although the fluidized-bad combustion process can be operated at 1% oxygen in the flue gas (5% excess air) without evolution of visible smoke, concentrations of hydrocarbons were found to be high.

Typical variation in hydrocarbons concentration with flue gas oxygen concentration is shown in Figure 29. Four curves are plotted to show the variation with bed depth. Point temperatures are indicated. The percentage excess air corresponding to the oxygen content of the flue gas is also shown in the figure.

The data show that at 1% oxygen concentration in the flue gas the hydrocarbons concentration, measured as methane, may vary from 400 to 1500 ppm. When the oxygen concentration is increased, the hydrocarbons concentration is reduced to \sim 50 ppm at 3% and to 0 ppm at 4% oxygen.

The variation of hydrocarbons concentration with bed depth and temperature appears to indicate that low emission is favored more by high bed temperature than by deep beds. These results are not consistent, however. The results of many subsequent FBC tests, conducted at 3% O_2 in the flue gas, indicate that bed temperature and

POPE EVANS AND ROBBINS

bed depth have a negligible effect in comparison with the oxygen concentration, and that hydrocarbons can be limited to ~50 ppm at this value.

A flue gas oxygen content of 3% corresponds to an excess air rate of approximately 17% above the stoichiometric requirement. Any air in excess of the stoichiometric reguirement will result in a thermal loss chargeable to the boiler since heat transfer surface cannot be economically provided to recover heat by cooling flue gas below about 250°F. In addition, excess air removes heat from the bed which must be recovered, in part, by convective heat transfer surface which is less effective than in-bed heat transfer surface. For this, as well as other reasons, e.g. larger fans, increasing the excess air requirement increases the capital cost of the boiler system.

The thermal loss due to excess air is partially compensated for by the energy released by burning the hydrocarbons to the 50 ppm level. So, for example, where the excess air is increased from 5% to 17% and the flue gas exits at 400°F, an efficiency loss of about 0.8% is incurred due to excess air while the hydrocarbons, assumed to be methane, drop from 800 ppm to 50 ppm. The combustion of the hydrocarbons releases an additional 110 Btu per pound of coal fed for an efficiency gain of v0.9%. In this example the optimum operating point might be around 10-12% excess air, if maximum thermal efficiency were the only goal. Most of the tests in the program were made at 17% excess air, primarily because of the hydrocarbon emission. Concentrations of 50 ppm at this level correspond to v.02 lbs of methane per MBtu input. This emission would appear to be favorable in comparison with conventional boilers, but data on the latter operating at the same excess air level are lacking. Further work on coal feeding systems may provide a basis for lower excess air operation without an increase in hydrocarbons.

Injection of sorbent materials into the bed does not increase hydrocarbons emissions in steady-state operation. Sorbent injection at rates as high as 60 lbs per 100 lbs of coal failed to show a significant increase in hydrocarbons emission.

Hydroca_bons generated by low excess air or reducing conditions in the bed can be burned effectively by injection of air above the bed in sufficient quantity to make up the 3% oxygen content in the flue gas. This result is discussed further in Sections 6.8 and 6.9.

Carbon monoxide concentrations in the flue gas from the FBC may be as much as 0.5% at 1% oxygen content but are negligible at the 3.0% oxygen level.

FIGURE 30. TYPICAL VARIATION IN NITRIC OXIDE CONCENTRATION WITH OXYGEN CONTENT IN THE FLUE GAS FROM THE FBC

POPE, EVANS AND ROBBINS

77

6.6 OXIDES OF NITROGEN EMISSION

Emission of nitric oxide from the FBC was found to vary with the oxygen concentration in the flue gas as determined by the excess air rate. Nitric oxide in the flue gas was found to increase from 320 ppm at 1.0% oxygen content to 440 ppm at a 5.0% oxygen content. This variation is shown in Figure 30 together with the emission in terms of pounds of NO per MBtu input. The emission at 3% oxygen content is 0.30 lbs per MBtu input.

In a number of tests conducted at 3% oxygen content in the flue gas the nitric oxide concentration varied from 220 ppm to 470 ppm with no apparent correlation with bed temperature. Data points observed when burning a 4.5% S, 2.5% N₂ coal with 3% O₂ in the flue gas are shown in Figure 31. Theoretical curves are also presented in the figure to show the thermodynamic equilibbrium concentrations of nitric oxide that should exist for the oxygen concentrations that exist across the bed, i.e., 20% O₂ in the inlet air and 3.0% O₂ in the flue gas, and for the range of temperatures investigated. The shaded area in the figure is the area in which the data would theoretically be expected to fall. For the method used to produce the theoretical curves see Appendix A, Enclosure 19.

The figure shows that NO concentration should not exceed 100 ppm at a bed temperature of 1550°F. The fact that concentrations of 300 to 400 ppm were observed suggests the presence of local temperatures around the coal higher than those observed by the bed thermocouples. Another possibility is that nitrogen in the coal may play a role in the reaction. One test conducted with two coals of different nitrogen contents is discussed in the FBM test results (Section 7.3).

Nitric oxide emissions from the FBC appeared to be unrelated to bed depth at the 3% oxygen concentration level. Variation in bed depth during FBC Test 44 produced the following results:

Bed Depth		<u> </u>			8 in.			12 in.		
0 ₂ Conc., %	1	2	3	1	2	3	1	2	3	
NO Conc., ppm	280	340	380	305	360	400	360	370	380	

As a rule, the use of sorbent materials was observed to have little or no effect on nitric oxide emission. Steady state concentration values were found to decrease and increase with sorbent injection. In two instances, however, a definite reduction was observed.

FIGURE 31. MEASURED VALUES OF NITRIC OXIDE CONCENTRATION IN THE FLUE GAS AT 3% OXYGEN AND VARIOUS BED TEMPERATURES SHOWN WITH THEORETICAL EQUILIBRIUM VALUES FOR THE TEMPERATURE $- O_2$ CONTENT REGIME During FBC Test 18 conducted with the unwashed coal, a sintered ash bed 14 inches deep and operating at 1760°F with 2% O₂ in the flue gas, the NO concentration was reduced from 250 ppm to 60 ppm when 1337 raw dolomite in a -7 +14 mesh size was injected through the #1 feeder at a Ca/S ratio of 1.75. A careful examination of the instrumentation failed to reveal a defect which might have caused the reduction. The reduction was real but its cause undetermined. A similar effect was observed in FBC Test 25.

Although the discussion has been directed to the emicsion of nitric oxide, NO, the results are applicable to total oxides emission, NC_X . Tests to determine all the exides by the phenoldiculfonic acid procedure indicated approximately the same concentrations as the infrared absorption unit which is consitive to NO only. Concentrations of the oxides of nitrogen higher than nitric oxide are estimated by difference to vary in the range of 10 to 30 ppm.

On the average, the nitrio oxido omission from the FBC is approximately 0.30 lbs/MBtu input at the 3% oxygen content in the flue gas. The corresponding concentration is 375 ppm.

6.7 PARTICULATE EMISSION

Most of the ash from the coal burned in the FBC was elutriated as fly ash from the bed and collected in a cyclone. The location of the cyclone in the test assembly is shown in Figure 6. Isokinetic samples taken downstream of the cyclone indicated that up to 10% of the fly ash was discharged from the system. This high particulate loss reflects principally the poor collection efficiency of the tott cyclone with the fine ash.

When the finally divided sorbants were added to the system, the particulate emission was increased. Typical emission data with and without sorbent addition are summarized as follows:

	1359		
Computed	Limestone	Fly ash	Fly ash
Ash Input	Input	Collected,	Discharged
1b/hr	lb/hr	lb/hr	lb/hr
12.8	٥	22.0	1.5
12.9	0	23.2	2.4
12.6	21.4	41.0	3.9
12.9	28.0	43.4	4.9

POPE EVANS AND ROBEINS

Although the particulate emission is increased by sorbent addition, the results show that the bulk of the sorbent is retained in the collector despite the -325 mesh particle size.

The particulate emission from the FBM cyclone during a similar sorbent test was counted by microscope for particle size distribution. The results are discussed in Section 7.5.

The fact that the total fly-ash rate is larger than the computed ash input, without sorbent addition, is due to the presence of unburned carbon in the fly ash. The fly-ash carbon content may vary from 45% to 60%. When sorbent is added to the system, the fly-ash carbon content is reduced to about 30% apparently from dilution with the spent sorbent.

The energy lost from unburned carbon in the fly ash amounts to about 10% of the input energy. Recovery of this energy through the use of the Carbon-Burnup Cell concept is now under investigation. The energy can be recovered to some extent with recirculation of the fly ash through the combustor. Recirculation of the fly ash containing spent sorbent improved sulfur capture in some instances but the results were inconsistent.

6.8 OPERATION AT REDUCING CONDITIONS

Three tests were made in the FBC with the bed at slightly reducing condition. The reducing conditions were produced by stabilizing the combustion at 1% oxygen content in the flue gas and then decreasing the air rate by 10% with constant coal feed. Since the 1% flue gas oxygen content corresponds to 5% excess air (From Figure 29), an air rate reduction of 5% would effect stoichiometric conditions. A reduction of an additional 5% in the air rate produces a 5% deficiency of oxygen in the bed. After the 10% air reduction, air was supplied above the bed to reestablish the oxygen concentration in the flue gas at 1%.

For the effect on sulfur control, 1337R dolomite was added at a Ca/S ratio of 1.1 during the reducing condition. When the sulfur dioxide concentration dropped to a lower steady-state level, the operation was reverted to the oxidizing condition without change in the coal or sorbent feed rates. Nitric oxide and hydrocarbons were monitored continuously. The results of the tests are summarized in Table VII. Sulfur dioxide reduction is shown to improve with the oxidizing bed (31.2% vs 21.4%) whereas NO reduction is favored by reducing conditions in the bed (240 ppm vs 320 ppm concentrations). Hydrocarbons concentrations appear to be greater with reducing conditions, but the difference observed may have been due to very small changes in the oxygen content. The rapid variation of hydrocarbons emission with flue gas oxygen at the 1% level was discussed in Section 6.5.

Subsequent tests conducted at $3\$ O_2$ in the flue gas indicated a more effective reduction in NO emission with reducing conditions. At this oxygen level, hydrocarbons can be consumed with overbed air. These points are discussed in Section 6.9.

6.9 FBC OPERATION WITH A LIMESTONE BED

6.9.1 General

The FBC was operated with a bed consisting entirely of 1359 limestone instead of inert ash. Emissions were monitored from the comt stion of a washed #8 Pittsburgh Seam coal in the bed, and the parameters affecting sulfur retention were investigated. Removal of sulfur retained in the bed was also studied. The overall heat transfer coefficient was determined for comparison with the value observed with the sintered ash beds.

Initial attempts to fire a bed of limestone in the FBC led to problems in bed temperature control. The weight loss and endothermic heat requirement of calcination and the rapid heat removal combined to create an unstable situation. When the bed became calcined, the bed temperature increased causing attrition losses. The loss of bed in turn reduced the heat removal rate and further increased the temperature. The operation could probably have been stabilized by trial-and-error addition of limestone. It was decided, however, that an independent means of temperature control would solve the problem and provide a desirable control capability during the investigation. The independent temperature control was effected with a sleeve installed in the FBC to retard the heat transfer through the walls and a musable coil installed in the bed. This modification was discussed in Section 5.1 and the coil and sleeve arrangement shown in Figure 7. The bed temperature was controlled by adjusting the vertical position of the coil in the bed.

TABLE VII. DATA SUMMARY FOR OPERATION AT REDUCING CONDITIONS*

FBC Test No.	6	9	10
Bed Temp. °F	1800	1800	1750
SO ₂ Reduction, % ¹			
Reducing Bed	17.8	16.9	21.4
Oxidizing Bed	22.6	NA	31.2
NO Concentration, ppm			
Reducing Bed	280	220	240
Oxidizing Bed	330	NA	320
HC Concentration, ppm			
Reducing Bed	Erratic	NA	560
Oxidizing Bed	500	NA	435

¹Addition of 1337R dolomite -7 + 14 mesh at 1.1 ratio with 4.5% Sulfur coal

* Flue gas oxygen content 1.0% for all conditions

See text for further description of test conditions.

The sleeve and coil arrangement permitted the use of deeper beds, i.e., 20" as compared to 10" in the open unit. It was found convenient to ignite the bed with a 10" depth and then add an additional quantity, even though the whole of the bed could have been ignited and stabilized. Positioning the coil provided the fine adjustment of temperature.

The 1359 limestone was selected because of its apparent durability and screened to a -10 + 20 mesh particle size. This particle size selection is somewhat smaller than the sintered ash bed size (-7 +14 mesh) because of the greater density of the raw limestone (2.6 vs 1.8 specific gravity). The particle size distribution is shown in Appendix A, Enclosure 20. Typically 75 lbs of the limestone made up the original charge with an additional 60 lbs added for an initial raw bed weight of 135 lbs and a depth of 16 to 17 inches.

6.9.2 Sorption of Sulfur

The tests were made with Ohio \$8 (Pittsburgh) Seam washed coal containing about 3% sulfur. The coal was fired at a rate of ~ 65 lbs per hour into a bed having an initial weight of ~ 135 lbs. No sorbents were added other than the bed limestone. The superficial velocity was maintained at the same level employed in the sintered bed operation, i.e., 12-14 fps. Concentrations of sulfur dioxide, nitric oxide and hydrocarbons in the flue gas were monitored continuously and spot samples were taken for sulfur trioxide and oxides of nitrogen. All sorption tests were conducted at 3% oxygen in the flue gas unless otherwise noted.

The bed operating temperature was found to be important with respect to sulfur retention. At 1400°F the limestone did not calcine and consequently did not retain sulfur. At 1900°F the retention was minimal as expected from previous work (Section 6.3, Figure 27). The temperature range of 1500°F - 1600°F appeared to be most favorable for sulfur sorption.

The results of sorption tests indicated that sulfur in the coal could be sorbed almost completely for a period of two to three hours after which time sulfur dioxide began to appear in quantity in the flue gas. This behavior is illustrated in Figure 32 which shows the emissions monitored during FBC Test 113, one of the best of the program. The figure also shows the sulfur input in equivalent sulfur dioxide emission. The bed

temperature curve shows a variation in the range of 1500 F to 1600 F. The oxygen content was fixed at 3%. The initial bed weight was 136 lbs and the depth 17 inches. Emission curves for other tests are presented in Appendix A.

The variation in sulfur and calcium contents of the bed for Test 113 is shown in Figure 33 together with the sulfur and calcium contents of the fly ash. The sulfur content of the bed had increased to 7.4 wt. % at end of the test. This value indicates that 16% of the bed limestone had been utilized in sulfur capture. The increase in calcium content of the bed is due to the weight lost in calcination.

The sulfur contents of the fly ash indicate that a small part of the sulfur is retained in the fly ash. The rate of sulfur flow in the system was indicated to be the following:

SULFUR RATE, LBS/HR

Test Time, Hours	<u>1</u>	2	3	_4
Flue gas output	0.00	C.08	0.60	0.70
Fly-ash output	0.35	0.28	0.32	0.38
Bed retention	1.56	1.64	0.90	0.80
Total output	1.91	2.00	1.82	1.88
Input	1.98	1.98	1.98	1.98
Input less				
- output	0.07	02	0.16	0.10

The fact that sulfur in the fly ash remained relatively constant suggests that this sulfur is contained in the fly-ash particle core and is not affected by the bed reaction.

Attrition loss of the bed material was found to be high during the calcination phase but comparatively low afterward. During calcination, 5% to 7% of the calcium in the bed was lost per hour. The calcium loss during subsequent sorption was reduced to a rate of 2% to 4% of the initial calcium charge. These values approximate the loss during regeneration to be discussed in Section 6.9.3.

Loss of unburned carbon in the fly ash during the limestone bed tests indicated substantially the same loss observed with the sintered ash bed, i.e., 9% to l2% of the input energy. Typical variation in flyash carbon loss is shown in Figure 34. Heat transfer measurements in the limestone bed indicated a coefficient of 47.0 Btu/ft²hr°F, about the same coefficient observed in the sintered ash bed operation.

FIGURE 33. VARIATION OF SULFUR AND CALCIUM IN BED AND FLY ASH DURING FBC TEST 113

	-	3	117	-	-	116	115	•	114	113	111	FBC Test No.
* Symbol I	4.9	4.9	4.9	4.8	4.8	4.8	4.8 3.2	4.9	4.9	4.8	4.8	SO ₂ Input Equiv. * 1bs/MBTU
_ MBTU indı	ł	ł	134	;	ł	134	141	!	119	136	100	Bed b Initial 1bs
cates M	1	ļ	59	1	ł	55	64 	;	49	60	97	final lbs
illion B	ł	1	19.2	ł	ł	19.2	20.0	1	17.0	19.5	14.0	Init. Bed Depth in.
itu.	0.3	0.2	3.0	3.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	Flue Gas O ₂ %
	1600	1980	1580	1610	1920	1550	1580 1580	1920	1490 to 1530	1500 tc 1600	1420	Bed Temp. °F
	ł	1	4.1	2.6	1	3.7	Est 3.7 4.3	;	2.5	9 4.5	0.25	Time for 20% SO ₂ Break- through hrs.
	0.18	0.24	0.24	0.21	0.28	0.18	24	0.52	0.21	0.15 to 0.28	0.38	NO Emision lbs/MBTU
	2.5	1.7	0.05	N.A.	N.A.	N.A.		0.0	0.0 0.12	.04	.02	HC Emis <u>s</u> ıor 1bs/MBTU
1	Desorption at low temp.	Desorption 6.0% Peak SO ₂	Sorption lst cycle	Sorption 2nd cycle	Desorption 2.5% Peak SO ₂	Sorption lst cycle	Sorption-20% breakthrough delayed .6 hrs by lower veloc- ity (8 fps)	Desorption 1.5% Peak SO ₂ conc.	Sorption	Sorption	Sorption - bed did not calcıne	Test 1 Condition J Remarks
							68					

Symbol MBTU indicates Million

6.9.3 Desorption of the Sulfated Bed

The difference in sulfur retention in the bed with variation in temperature and oxygen level suggested the possibility that sulfur retained at the favorable conditions could be released by changing either temperature or oxygen level or both. Desorption of sulfur might effectively "regenerate" the bed for further sorption.

The "regeneration" procedure was first carried out in FBC Test 114 with increase in temperature only and no change in the oxygen content of the flue gas. The procedure involved sorption in a bed weighing 119 lbs for four hours at a temperature of 1520°F. The temperature was then increased to 1920°F.

A plot of emissions monitored during the test is shown in Figure 35. Variation of calcium and sulfur contents in the bed is shown in Figure 36. The results show that during regeneration sulfur was released from the bed at a rate sufficient to produce an SO₂ concentration of 1.5% (15,000 ppm) above the bed. At the same time, the sulfur content in the bed decreased from 6% to 0.8%. A rigorous sulfur balance employing integration of the sorption, input and desorption curves indicated that about 90% of the sulfur sorbed in the bed was released during the period of higher temperature.

The details of the sulfur balance are presented in Appendix A, Enclosure 21.

88

Results of the stable limestone bed tests are summarized in Table VIII showing the time observed for 208

breakthrough of sulfur dioxide above the bed and other

data. The sorption of sulfur is shown, by the comparison to be favored by increase in the bed mass (and

depth), increase in the oxygen content of the flue gas and by a low bed temperature in the range of 1500°F to

1600°F. At lower temperatures, sorption may be limited

by failure of the bed to calcine. Reduced sorption at the higher temperature is consistent with results of

and reducing conditions in the bed seriously lowered the sorption efficiency of the bed. Lowering the superficial velocity from 12 to 8 fps delayed the 20% break-

through as might be expected, since the input sulfur is

previous tests (Section 6.3). Recirculation of fly ash did not appear to improve the sorption rate.

proportional to the superficial velocity.

POPE, EVANS AND ROBBINS

FBC Test <u>No.</u>	SO ₂ Input Equív. <u>lbs/MBTU</u>	Bed M Initial lbs	ass Final lbs	Init. Bed Depth in.	Flue Gas O2_%	Bed Temp. °f	Time for 20% SO ₂ Break- through <u>hrs.</u>	NO Emission Lbs/MBTU	HC Emission lbs/MBTU	Test Condition Remarks
118	4.7	59 ¹		11	3.0	1600	0.9	0.28	0.02	Sorption
(contin	of ^{4.7}				0.1	1920		0.29	0.16	Desorption Peak SO ₂ 5.5%
","	4.7	86 ²		14	3.0	1550	1.3	0.29	0.02	Sorption
-	4.7				5.0	1550	2.5	0.33	0.00	Sorption 20% breakthrough delayed 1.2 hrs.
"	4.7				0.2	1930		0.25	0.15	Desorption Peak SO ₂ 6.0%
119	4.8	114	55	17	3.0 ³	1570	0.14	0.16	0.02	Reducing condi- tion in bed after 1 hr sorption
n	4.8		~-		3.0	1570	3.4	0.30	0.02	Sorption lst cycle
a	4.8				1.0	2000		0.38	0.05	Desorption Peak SO ₂ 8.1%
11	4.8				3.0	1520	1.5	0.30	0.02	Sorption 2nd cycle
120	4.8	114	51	17	3.0	1550	2.9	0.24	0.04	Sorption with 80% ash recirculation
Notes:	¹ Final	bed from 1	.17		3	Made up	with overbed	air		
	² Added	27 lbs lim	estone		4	Time fr	om start of re	educing cor	ditions	

TABLE VIII. (Continued)

16

This result appears to contradict thermodynamic data which show calcium sulfate to be stable at $1900^\circ F$ under oxidizing conditions. When chemical analysis of the bed showed only small quantities of the more unstable sulfite in the bed before regeneration, it was concluded that local reducing conditions break down the sulfate according to the following relation:

Ca
$$SO_4$$
 + CO(or H₂) + Ca O + SO₂ + CO₂ (or H₂O)

From the sulfur and calcium analyses, the flow of sulfur was estimated as follows:

SU	LFUR RA	TE, LBS,	/HR		
Test Time,hours Flue gas output Fly-ash output Bed retention	1 0.00 0.27 1.75	2 0.39 0.25 1.47	<u>3</u> 0.85 0.35 0.70	<u>4</u> 1.15 0.27 0.50	<u>5</u> 10.4 0.3 -8.8
Total output Input Input less	2.02 1.95	2.11 1.95	1.90 1.95	1.92 1.95	1.90 1.95
output	07	-0.16	0.05	0.03	0.05

This and sulfur balance data for other tests are included in Appendix C.

Before leaving Test 114 it should be noted that the initial weight of limestone in the bed was less than used previously so as to reduce the sorption time and to study the effect of bed mass (or depth). The results in Table VIII show that decreasing bed depth significantly decreases the time for 20% breakthrough of sulfur dioxide.

Subsequent tests, with simultaneous reduction of oxygen content and bed temperature increase, showed that sulfur could be desorbed from the bed more rapidly than with simple change in bed temperature. A concentration of 8.1% SO_2 was observed in regeneration during Test 119 when the oxygen level was reduced from 3% to 1% as the temperature was increased to 2000°F. This variation is shown in Figure 34.

The figure also shows the trend of emissions when reducing conditions were effected in the bed for a short period, i.e., with ~ 80 % of the combustion air passing through the bed and the remainder of the air supplied above the bed to hold constant the 3% oxygen content.

POPE, EVANS AND ROBBINS

The test showed that the bed could be desorbed with reducing conditions alone and without an increase in bed temperature. The notable effects on nitric oxide and hydrocarbons emissions are discussed in the next section.

The reactivity of the limestone bed throughout a number of sorption regeneration cycles could not be studied in detail, but it was apparent from a second cycle operation that the 20% breakthrough time is shortened on the second cycle. It was also apparent that the rate of increase in sulfur disside content in the flue gas, once some appears, is approximately the same as the first cycle rate.

Attrition loss of the bed material during regeneration appears to vary in the range of 2% to 4% (calcium) of the original charge per hour.

6.9.4 Other Emissions

The data summary in Table VIII shows the variation in nitric oxide and hydrocarbons emissions during the limestone bed test series. The nitric oxide emission at low bed temperature varied approximately in the same range observed with the sintered ash bed operation, i.e., .20 to .30 lb/MBtu but appeared to be more responsive to change in bed temperature. During the desorption phase of Test 114, the NO emission increased from 0.21 to 0.52 lb/MBtu with temperature increase from 1530°F to 1920°F at constant (3%) O₂ in the flue gas. The NO emission did not increase with temperature during Test 117. apparently because the O₂ content was reduced to 0.2%. The characteristic reduction in NO emission with lower O₂ content was discussed in Section 6.6.

When reducing conditions were created in the limestone bed during the low temperature sorption phase of Test 119, the NO emission showed a decrease from 0.30 to 0.16 lb/MBtu despite the 3% O_2 in the flue gas (supplied by overbed air). This result indicates that NO emission can be limited by a simple form of twostage combustion. Unfortunately, this particular mode of operation did not favor sulfur sorption in the bed as indicated in Section 6.9.3.

The reducing conditions phase of Test 119 also pointed up the fact that hydrocarbons can be consumed with overbed air at the 3% oxygen level. At this value the hydrocarbon emission remained constant at 0.02 lb/MBtu in the change from oxidizing to reducing conditions. The emission varied in the range of 0.02 to 0.05 lb/MBtu at low temperature operations. The

POPE, EVANS AND ROBBINS

0.12 value observed during Test 114 is thought to be an instrument error. When the temperature is increased during desorption, the hydrocarbons disappear except when the oxygen content is lowered simultaneously. At the lower oxygen levels, the hydrocarbons emission is sharply increased at any temperature.

Sulfur trioxide emission during the limestone bed operation was zero.

Particulate emission during the sorption phase of the limestone bed tests and the energy lost in unburned carbon are summarized as follows:

FBC	Fly ash	Carbon	Discharge	Coal	Energy Loss in
Test	Collected	Content	to Atmos.	Input	Unburned Carbon
No.	lbs/hr		lbs/hr	<u>lbs/hr</u>	<u> % of input</u>
113	14.0	46	1.6	64	11.7
114	15.0	43	1.4	65	12.0
115	15.6	42	1.5	65	11.6
116	14,9	42	1.2	64	11.2
117	16.6	39	1.7	64	11.5
118	14.4	43	1.2	62	12.4
119	14.8	38	1.5	65	10.7
120	12.8	47	1.3	61	11.9

The particulate emission was about the same as observed with the sintered ash bed operation and was less than that observed with a sintered ash bed and fine sorbent injection. The latter was discussed in Section 6.7. The energy lost in unburned carbon is about the same loss observed with the sintered ash bed operation.

7. RESULTS OF BOILER MODULE (FBM) TESTS

Procedures employed in the FBM tests involving both coarse and fine limestone injection are discussed in Section 5.2. In general, the test conditions selected were those observed to favor sulfur emission control during the FBC tests. Tests for sulfur trioxide emission from the FBM are not discussed separately in this section since results are comparable to low values observed in the FBC tests (Section 6.4). The method of gas sampling is discussed in 5.4 and the sampling system is shown in Figure 20. Variations in emissions during the course of the tests are shown in Appendix A. Complete data summaries are presented in Appendix B and sulfur balances in Appendix C.

7.1 SULFUR DIOXIDE EMISSION

Emission of sulfur dioxide from the FBM without sorbent addition indicates that 90% to 95% of the sulfur in the coal appears as sulfur dioxide in the flue gas. The remainder of the sulfur is held in the fly ash. This distribution of sulfur is shown in sulfur balances in Appendix C.

When coarse, raw 1337 dolomite was injected into the FBM while burning the 4.5% sulfur coal, the most favorable calcium utilization observed was 31.2%. The SO₂ reduction was 54.5%, the bed temperature 1600° F, the oxygen content 3.5%, the stoichiometric feed ratio 1.75, and the sorbent particle size -7 +14 mesh. These data and others pertaining to the coarse dolomite addition are summarized in Table IX. The results are comparable to values reported in Table I for the FBC under similar test conditions. The coarse 1359 limestone was not tested in the FBM because of its poor performance in the FBC, as indicated in Figure 22.

When the finely divided sorbents (-325 mesh) were added to the combustion of the 4.5% sulfur coal in the FBM, the sulfur dioxide reductions and calcium utilizations were found to equal those observed in the FBC. The results of the tests are summarized in Table X, and a comparison with FBC data trends is shown in Figure 37. The FBC Trend lines were reproduced from Figure 25.

The FBM results indicate a reduction of 74% at a Ca/S ratio of 1.7 with the 1337 raw dolomite. This reduction is exactly comparable to the FBC results as indicated in Figure 37. A reduction of 74% observed in the OF COARSE (-7 +14 MESH) SULFUR COAL SULFUR DIOXIDE REDUCTIONS WITH ADDITION 1337 DOLOMITE TO THE FBM BURNING A 4.5% Х TABLE

<pre>% Sorbent Utilization</pre>	31.2	30.7	8.3	18.6	22.6	20.0	
<pre>% SO2 Reduction</pre>	54.5	43.0	13.2	21.0	37.0	48.0	
c. ppm Final	1550	2050	3300	3000	2400	2000	
SO2 Con Initial	3400	3600	3800	3800	=	-	
Ca/S Ratio	1.75	1.40	1.60	1.13	1.65	2.40	
Flue Gas O2 &	3.5	3.8	3.2	3.0	3.4	3.0	
Bed Temp.	1600	1540	1720	1570	1570	T570	
Bed Depth 1n.	20	20	15	20	20	20	
Dolomite State	Raw	=	=	=	=	Ξ	
FBM Tcst No.	7	m	4	ŝ			

FIGURE 37. SULFUR DIOXIDE REDUCTION WITH SORBENT ADDITION TO THE FBM BURNING A 4.5% SULFUR COAL

TABLE X. DATA SUMMARY FOR INJECTION OF -325 MESH SORBENTS INTO THE FBM BURNING A 4.5% SULFUR COAL

FBM Test No.	Sorbent Type	Bed Depth 	Bed Temp. °F	Flue Gas O ₂ %	Ca/S Ratio	SO ₂ Con Initial	C. ppm Final	<pre>% SO₂ Reduction</pre>	<pre>% Sorbent Utilization</pre>
25	1337R	24	1550	3.0	1.70	3750	1100	71.5	42.0
	н		1520	3.0	1.70		950	74.2	43.8
26	1337R	20	1660	3.0	1.70	3750	1350	64.2	37.8
	"			n	1.90	н	1100	70.9	37.3
27	1359R	20	1570	3.0	2.00	3700	950	74.0	37.0
29	1359R	• 20	1600	3.0	1.70	3730	1500	73.5	35.2
	н	0		"	2.00	0	1000	73.5	36.6

TABLE

XI.

DATA SUMMARY FOR INJECTION BURNING A 2.6% SULFUR COAL

မ္မ

-325 MESH SORBENTS

INTO

THE

FBM

FBM with the 1359 limestone at a ratio of 2.0 is indicated to be somewhat more favorable than the 70% reduction indicated in the FBC at this ratio.

Reductions in sulfur dioxide emission observed with the medium sulfur coal are summarized in Table XI and are compared with the FBC data trends in Figure 38. The comparison indicates that the -325 mesh 1359 raw limestone is as reactive in the FBM as in the FRC. The hydrated forms of both sorbents indicated a reactivity comparable to the raw stone.

7.2 HYDROCARBONS EMISSION

Emission of hydrocarbons from the FBM was observed to vary sharply with flue gas oxygen content in the same manner as noted in the FBC tests, but the general level of emission was somewhat higher. Concentrations varied as shown in Figure 39 from \sim 4600 ppm at 0.5% O₂ to 50 ppm at 4.0% O₂. At the 3% O₂ level maintained during the FBM tests, the concentration varied from 210 to 260 ppm. During the FBC tests, the concentration varied from 50 to 100 ppm (Section 6.5). An average concentration of 230 ppm for the FBM test operation corresponds to 0.10 lbs CH₄/MBtu input.

These results indicate that a 4% oxygen content in the flue gas would be necessary to limit hydrocarbon concentrations to 50 ppm (.02 lb CH /MBtu emission). The excess air requirement would be approximately 24% unless improvements in coal feeding methods are made.

Injection of sulfur control sorbents did not affect hydrocarbons emission.

Carbon monoxide emission, determined by Orsat analysis, was found to be nil at oxygen concentrations of 2% and higher. CO concentrations of 0.4% appeared in the flue gas when the oxygen content was reduced to 1%.

7.3 NITRIC OXIDE EMISSION

The concentration of nitric oxide in the flue gas from the FBM was observed to increase from 280 ppm to 340 ppm with increase in oxygen content from 1% to 4%. This variation, shown in Figure 40, is characteristic of the variation observed in the FBC but the concentrations are somewhat less (cf Figure 30). An average value of 275 ppm for the FBM tests compares favorably with an approximate average of 380 ppm for the FBC operation. These concentrations correspond to emission values of 0.22 and 0.30 lbs NO/MBtu respectively.

		32	7 2	15		30	•	82	6 1		24	23	22	21	FBM Test
:	: 1	TICK		нксгт	-	1359H	=	1.59R	=	: :	1337R	1337R	1337E	1337H	Sorbent Type
-	: 2	20)) =	20	-	20	-	20	-		22	19	20	19	Bed Depth in.
-	-	1610		1620	=	1620	-	1600	-	-	1600	1550	1650	1625	Bed Temp. °F
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0	3,0	3.0	3.0	3.0	3.0	3.0	Flue Gas O2 %
1.8	1.8	1.6	1.8	1.4	1.8	1.4	2.2	2.4	2.2	2.2	2.4	2.4	1.46	1.37	Ca/S Ratio
2	=	2650	=	2600	:	2570	=	2850	=	-	2400	2300	2250	2200	SO2 Cor Initial
780	920	1020	1000	1200	1020	1290	950	800	400	500	450	800	680	850	ic.ppm Final
70.5	64.9	61.9	61.5	53.8	60.4	50.0	64.7	71.6	83.5	77.4	81.8	65.0	68.0	60.0	% SO ₂ Reduction
39.1	36.0	38.6	38,4	41.4	33.3	35.7	29.4	29.8	37.0	35.0	36.1	27.2	45.0	44.0	<pre>% Sorbent Utilization</pre>

FIGURE 38. SULFUR DIOXIDE REDUCTION WITH SORBENT ADDITION TO THE FEM BURNING A 2.6% SULFUR COAL

EVANS AND ROBBINS

POPE.

TEST CONDITIONS:	
REACTOR: FBH 20" x 72"	
SUPERFICIAL VELOCITY: 12-14 FPS	
BED TEMPERATURE: 1770-1840°F	
BED: SINTERED ASH, STATIC DEPTH 1.	3"
COAL: OHIO #8 PITTSBURGH SEAM,	
WASHED, 2.6% S	

FIGURE 40. FBM - VARIATION OF NITRIC OXIDE CONCENTRATION WITH FLUE GAS OXYGEN CONTENT

POPE, EVANS AND ROBBINS

Two tests conducted at a bed temperature of 1800° F indicate NO emissions as high as 0.28 lbs/MBtu but values observed at 1600° F varied from 0.18 to .24 lbs NO/MBtu. These results suggest a correlation with bed temperature, but scatter of additional data points at the higher temperature might prove otherwise.

Injection of sulfur control sorbents reduced the nitric oxide emission by about 30% in one test, but the results were not reproduced in subsequent tests with the same sorbents. In general, the nitric oxide emission was not affected by sorbent injection.

A small increase in NO emissions (5% - 10%) was noted during the transition from a low nitrogen coal $(1.6\% N_2)$ to one of higher nitrogen content $(2.5\% N_2)$. The increase was less than the data scatter, however, and the test was felt to be inconclusive. Nitrogen oxides concentrations, determined by the phenoldisulfonic acid procedure generally agreed with values of nitric oxide determined by infrared absorption. These are shown on the emission curves in Appendix A.

7.4 EFFECTS OF FLY ASH RECIRCULATION AND STEAM INJECTION

Recirculation of fly ash from the collector hopper to the base of the fluidized bed was tested as a means of improving sulfur capture. The procedure was discussed in Section 5.2 and the system shown in Figure 10. Recirculation was initiated during a steady-state reduction of sulfur dioxide with sorbent injection, and continued for one hour. The results are indicated as follows:

FBM Test	Coal Feed	Sulfur Cont.	1359R Sorbent Feed	Fly Ash Recir.	SO ₂ Emission	SO ₂ Reduc.	Sorbent
NO.	1bs/nr		1bs/hr	Rate	IDS/MBtu		<u></u>
29	720	4.5	220	0.0	1.7	73.5	36.6
-		н	"	80%	1.7	73.5	36.6
32	720	2.6	108	0.0	1.8	65.0	36.0
			11	80%	1.8	70.5	39.1

These results indicate little or no improvement in sulfur capture with 80% ash reinjection during a one-hour period. However, a one-hour period is not sufficient to achieve steady state in a recirculating mode and some improvement in utilization might have been found at steady state. Although 25 to 30 hours would be required to approach steady state, the marginal improvement in

the first hour, which would show the largest increment of improvement, suggests that the once-through material is essentially inert.

Continuous recirculation, with limestone injection, would cause infeasible dust loadings and would require sending some of the collected dust to waste so as to avoid "chocking" the system.

Nitric oxide and hydrocarbons emission were not affected by recirculation.

Injection of steam into the inlet air during sorbent addition improved the sulfur capture but the improvement was probably due to a simultaneous decrease in bed temperature. The observations are summarized as follows:

	Coal	Inlet Air	r				
FBM	Sulfur	Water	Bed		SO2	SO ₂	
Test	Content	Content	Temp.	Ca/S	Emission	Reduc.	Sorb.
No.	8	% Vol.	°F	Ratio	lbs/MBtu	÷	Util.
20	2.6	0.5	1780	1.46	2.20	40	27
н		8.8	1700	1.46	1.50	58	40
21	2.6	0.5	1680	1.37	1.50	56	41
		8.8	1600	1.37	1.25	62	44

The reduction in Test 20 appears to show a significant effect from water injection except for the fact that the bed temperature was also reduced. Test 21 shows that virtually the same reduction can be produced at the lower temperature without water injection. Nitric oxide and hydrocarbons emissions were unaffected by the water injection.

Since bed temperature can be adjusted readily with bed depth, there appears to be no advantage to water injection. A disadvantage would be a slight reduction in the boiler thermal efficiency.

7.5 PARTICULATE EMISSION

Isokinetic samples of particulate matter were drawn from the Jong duct above the FBM at a point just upstream of the induced draft fan as shown in Figure 10. The sample point is downstream of the FBM cyclones and the samples taken were proportional to the rate of particulate discharge to atmosphere. When fine sorbents were injected, the particulate emission increased as expected. Typical data are summarized as follows:

Test No.	Туре	Rate lbs/hr	Туре	Rate lbs/hr	Collected lbs/hr	Emission lbs/hr	Effi- ciency
27	Unwasled	760	No Addi	itive	156	10.5	94
	Unwashed	760	1359R	220	332	16.5	94
28	Washed	745	No Add	itive	102	8.9	91
	Washed	745	1359r	150	230	12.4	94
29	Unwashed	720	No Add	itive	135	12.1	92
	Unwashed	720	1359R	175	295	14.7	95
31	Washed	800	No Add	itive	108	7.7	93
	Washed	800	1359H	65	200	11.4	94
32	Washed	720	No Add	itive	115	10.9	91

1359R 97

Additive Fly Ash

Collec-

tor

93

Fly-ash

13.7

107

One fly-ash sample taken from the cyclone discharge during the addition of sorbent in FEM Test 24 was analyzed for particle size distribution by microscopic count. The size distribution, shown in Figure 41, indicates that 90% (by number) of the material was smaller than 5 microns. Assuming spherical particles of equal density, only about 52% (by weight) of the particles were smaller than 5 microns. The sorbent was 1337R, -325 mesh fed at a rate of 260 lbs/hr with the washed coal at 800 lbs/hr. The particle size distribution of fly ash collected in the cyclone was not determined.

180

FOFE.

FBM

Washed

720

8. DISCUSSION OF FBC AND FBM TEST RESULTS

On the basis of performance observed during the test program, the fluidized-bed boiler appears to offer pollution control advantages with respect to all three of the chemical pollutants studied, i.e., sulfur oxides, nitrogen oxides and hydrocarbons. On the other hand, control of particulate emission may be somewhat more difficult with injection of fine sorbents for sulfur emission control. Factors which relate to possible advantages in boiler maintenance are apparent. These considerations and the effects of dominant variables are discussed in the following paragraphs.

Emission of sulfur dioxide from combustion of coal in a fluidized bed contains 90% to 95% of the input sulfur. The balance is retained in the fly ash probably as a pyrite form. A very small amount of sulfur appears as sulfur trioxide in the flue gas.

In the control of sulfur dioxide emission, effectiveness of sorbent materials was seen to depend primarily on sorbent type, feed rate, particle size, bed operating temperature, oxygen content in the flue gas and, to a lesser extent, on bed depth. The effect of sorbent was shown in the comparison of reductions with the 1337 dolomite and the 1359 limestone. The dolomite proved to be superior on a Ca/S basis, i.e., when the magnesium fraction was discounted as a sorbent. On a weight basis, however, the 1359 limestone was more effective particularly when ground to a -325 mesh particle size.

The improvement in desulfurization, observed with increased stoichiometric feed ratio of the limestone, is accompanied by a decline in the sorbent utilization. Utilization of the finely divided, raw 1359 limestone, under the most favorable conditions was found to vary from 40% at a Ca/S ratio of 1.0 to 33% at a ratio of 2.0 and 28% at a ratio of 3.0. This result is consistent with decline in the driving force in the reaction, i.e., the sulfur dioxide concentration in the system. In terms of SO₂ emission reduction, the performance indicates that 80% of the sulfur emitted from a 4.5% sulfur coal could be captured with a Ca/S ratio of 2.7.

Grinding the sorbents to a fine particle size (-325 mesh) markealy improved sulfur capture (and the sorbent-utilization) despite the expectation that the residence time of fine particles in the fluidized bed would limit desulfurization. The improved utilization is apparently the result of greater reactive surface per unit mass of sorbent, and the ease of calcining the small particle

as the initial step in the desulfurization reaction. The attempt to find a particle size which would provide an optimum between residence time and reactive surface failed to show such an optimum. The small particle size (325 mesh) was more reactive than any larger size at constant bed depth.

Increase in hed residence time by increasing the bed depth from 10 to 18 incress indicated a small improvement in sulfur capture at the low bed temperature. This result and the failure to observe an optimum suggests that product shell diffusion is controlling even with small sorbent particles. This conclusion is further supported by the fact that increasing particle residence time by reducing superficial gas velocity did not show an improvement in sulfur capture.

The rapid improvement in desulfurization with reduction in particle size suggests that fine grinding may be necessary for effective utilization of the 1350 limostone. The corresponding lime hydrate, which occurs naturally in the fine state, was equally as effective as the fine raw stone but is considerably more expensive. Other, less durable limestones, may tend to decrepitate in the bed and mitigate the grinding requirement.

The reactivity of sorbents in the fluidized bed was found to be greater in every instance at a bcd temporature of 1550°F than at 1800°F. This behavior is consistent with thermodynamic predictions for the reaction but equilibrium in the bed is improbable. It is inconsistent with kinetic considerations. A possible explanation is that the lower bed temperature produces a soft, highly porous calcine with minimum crystal growth. At temperatures below 1500°F the reactivity may be reduced by failure of the sorbent to calcine.

Operation of a fluidized-bed boiler at 1550°F instead of 1800°F does not mean that less heat is transferred out of the bed. The bed temperature is reduced from 1800°F to 1550°F by increasing the bed depth and hence the bed cooling contact surface. The fact that the gases leave the bed at a lower temperature means a lower heat loss in the gas and hence an even greater heat removal from the bed. The input energy is fixed by the superficial velocity range.

The low bed operating temperature should reduce boiler tube slagging.

Heat required to calcine the sorbent does not create a demand on the system since it is supplied, for the most part, by heat release from the desulfurization reaction. Standard reaction energies indicate that one pound of CaCO₃ would absorb 775 Btu in calcination but would release 1300 Btu if fully converted to sulfate. The energies balance, if the utilization is 378-roughly the utilization observed in the test program. The sensible heat loss with sorbent feed will be small by comparison. However, the use of a sorbent must be considered in the design of the boiler since heating of the sorbent and calcination both take energy and hence tend to reduce bod temperature. This energy, removed from the bed in the form of a hot solid and hot CO_2 , is recovered, in part, in the convection zones.

The fact that sulfur capture is favored by increase in excess air is readily apparent from the limestone bed investigation. This study clearly demonstrated that sulfur can be captured offectively for a period of time in a bed of limestone and then discharged from the bed by reducing excess air and increasing bed temperature. The sulfur release apparently follows the reaction:

 $C(or H_2) + CaSO_4 + CaO + SO_2 + CO_2$ (or H₂O)

It was shown that culfur release may occur with oxygen in the flue gas probably because of local roducing conditions in the bed. Mildly reducing conditions in the bed accelerate the sulfur release and effect higher culfur concontrations in the flue gas.

Most significant is the fact that concentrations of sulfur dioxide in the off-gas from the bed during the regoncration period may be thirty times the untreated flue gas concentration. Concentration as high as 8.1% observed during regeneration markedly increases the feasibility of sulfur recovery. Concentrations in excess of 8.1% might be achieved by designing the regeneration region go as to minimize heat loss. This, in turn, would reduce the fuel and air requirement and so reduce dilution of SO_2 by CO_2 and N_2 .

Recycle of the limestone through absorption and regeneration phase might provide the means for improving the effective limestone utilization beyond the present limit. This will depend on how well the reactivity is retained and the long-term attrition rates. Additional work in this area is indicated. Utilization per cycle might be increased by larger percentages of excess air.

The method of sorbent feed into the bed appears to be optional in the FBC with no clear advantage for any of the methods under study. The test of optimum sorbent distribution by injection on all four sides of the FBC unit showed the same sulfur control as single side injection. These results speak well of the mass transfer within the FBC bed. The two-point feed system used in the FEN appears to be as effective as any of the systems used in the FBC.

Failure to observe a consistent, beneficial effect from recirculation of spent sorbent in the fly ash suggests again the product shall limitation. Wetting the fly ash before recycle may improve the sorbent utilization by breaking down the particle as the core becomes hydrated. This procedure has not been tested.

Sulfur trioxide elimination with sorbent use is consistent with the active nature of the compound. Its absence could make electrostatic precipitation of fly ash more difficult unless the design of the system exploits the high carbon content of the primary fly ash.* On the other hand, boiler tube corrosion should be reduced.

Emission of hydrocarbons from the fluidized-bed boiler clearly precludes its operation at very low values of excess air (5%) but the advantage is noted that hydrocarbons can be eliminated with only moderate rates of excess air. The test results suggest that a 4% oxygen content in the flue gas will be necessary to prevent hydrocarbons emissions from the FBM operation. This oxygen content corresponds to an excess air rate of 24%-a value which compares favorably with values of 40 - 50% commonly used in coal fired industrial boilers.

The loss in energy from hydrocarbon emission would probably be as great as the heat saved by lower excess air operation, as estimated in Section 6.5

The lower excess air requirement for the FBC operation (17%) suggests a better distribution of volatile matter in the smaller bed. The potential seems to exist for decreasing the excess air requirement about 10% while still burning essentially all hydrocarbons and CO if the fuel distribution system is substantially improved. A fuel saving on the order of 1/2% would then be realized.

Nitrogen oxides emission from the FBM were found to be less than the emission from the FBC (0.22 vs 0.30 lbs/MBtu). This result may be related to the higher hydrocarbons emission from the FBM, possibly by the reaction:

$$(CH_x) + 2NO + N_2 + CO_2 + (H_2O)$$

The flue gas oxygen concentrations were 3.0% for both the FBM and FDC tests. This suggests that a hydrocarbon gas properly dispersed at the grid might reduce the NO emission without affecting the sulfur control functions.

The moderate sensitivity of nitric oxide emission to flue gas oxygen content suggests that the level can be reduced by lowering the average oxygen concentration in the bed, i.e., by reducing conditions. A NO reduction of 50% was observed in Test No. 119 with reducing conditions in the bed and overbed air to make up the 3% oxygen content (cf. Figure 36). Unfortunately, this mode of operation is not conducive to sulfur capture in the sulfate form. Hydrocarbons from the bed were effectively consumed by overbed air.

These results would indicate that nitric oxide emission can be reduced in a limestone bed without aggravating the hydrocarbons emission by two-stage combustion, i.e., by reducing conditions in the bed and an oxidizing environment above. It may be possible to capture sulfur as the sulfide in a cyclic operation under these conditions.

The nitric oxide emission from the FBM is favorable in comparison with emissions from other combustion units of equal size. The average value of 0.22 pounds/MBtu is less than reported values for most conventional boilers. A full scale boiler made up of modules according to the present concept may not be subject to the increase in NO_x emissions generally observed with increase in unit capacity.

Most of the fine sorbent added to the bed is collected in a single stage mechanical cyclone operating at 95% efficiency. Controlling emission of the remaining 5% may present a problem if subsequent tests show that 90% of the particulate is smaller than 5 microns when fine sorbents are used. The microscopic count showing this distribution applied to one sample. Additional data are needed for a firm conclusion regarding particulate emission control.

See Appendix A, Enclosure 45.
9. ECONOMIC ANALYSIS

9.1 GENERAL

9.1.1 Economic Evaluations in Industry. Investment decisions in the selection of steam and power generating equipment are made in a number of ways. The factors which are utilized vary from industry to industry and from company to company within an industry. Typically, however, a central steam supply is viewed as a long-term investment not subject to the same rapid pay-out demands as a process investment might be.

Whatever factors are applied, a rational technique of structuring the decision-making process is required. It is possible, for example, to apply the presentworth method. By this technique all capital and operating expenses are reduced to a single dollar figure, the "present worth" of all present and future expenses. A number of other investment appraisal techniques exist but present worth appears to be the most popular.

Making application of the present-worth method in a sophisticated manner requires that predictions be made as to the future cost of labor, the future cost of fuel, etc.; and, when certain investments may be deferred, the future cost of money. Fortunately, in the field of steam power generation an extensive statistical base exists on which reasonable projections of future costs may be made. The various alternatives are then evaluated on the present-worth basis. The best apparent choice is that alternative which has the lowest present worth. Computerized evaluations make possible sensitivity checks, i.e., the effect of an incremental change in each cost ingredient may be evaluated so as to determine which are the most significant.

Unfortunately, when air pollution control is added to the list of plant requirements and this requirement also includes control of gaseous emissions, the statistical base becomes very limited. In addition, even current capital and operating costs involved in pollution control techniques, other than the selection of a low sulfur fuel, are based on a limited number of "paper" evaluations. This section of the report is not a complete investment appraisal; instead it is intended to indicate how limestone addition to a fluidized-bed boiler may affect costs. These data might then be utilized in a complete investment appraisal.

9.1.2 Treatment of Incremental Costs. The costs which are included in the evaluation are those which are directly attributable to limestone injection. It must be assumed that in the selection of a fluidizedbed boiler, limestone injection is not treated as an afterthought. The boilers, the plant, the auxiliaries and the pollution control systems are designed with maximum degree of integration. Examples of such integration include: a single receiving point for coal and limestone; a single bulk conveyor system: a single, but properly, partitioned storage silo; the use of the preheated combustion air or possibly flue gas to dry the limestone before pulverizing; and the use of the boiler's induced draft fan to provide any suction required on the limestone system. The boiler itself receives all dust vented from the limestone handling and storage system, etc.

> When a single system serves two functions, it is reasonable to attribute only an incremental cost to the function being evaluated. Therefore, limestone addition to a new, properly designed fluidized-bed boiler plant is far less costly than limestone addition to an existing plant or to a new plant in which pollution control is an afterthought.

> The cost estimates were based on the assumption that if a new plant were being built it would include two boilers. Costs were therefore estimated for the 500,000 lb/hr plant and then divided by two to indicate costs attributable to a single boiler. This approach was taken in order that this report be consistent with earlier analyses. For readers who wish to determine capital costs for a single boiler installation or for more than two boilers, the wellknown six-tenths factor has been found to apply to equipment and construction of this type.

9.2 BASIS OF PERFORMANCE ESTIMATES

The analysis of limestone use has been based on the experimental performance data obtained with the single full-scale fluidized-bed module. This module has many features in common, especially dimensions, with a 250,000 lb/hr shop-assembled boiler. The key dimensions which are similar are bed height and cell width.

- 9.2.1 Limestone vs Dolomite. Performance data were obtained for both dolomite and high calcium limestone. These data indicated that dolomite (53% CaCO₃) was superior in controlling emissions when the measure of superiority was stoichiometric addition rate based on the calcium content only. However, limestone and dolomite are both sold on a weight basis with little regard to chemical composition. So, although the calcium in limestone is less effective than that in dolomite, a much lesser total weight of limestone is required for a given SO₂ reduction. For this reason the economic analysis is based on the data obtained with the high calcium limestone (97% CaCO₃).
- 9.2.2 Raw Stone vs Hydrate. Hydrates of limestone and dolomite were also evaluated as an additive and these were found to be slightly more effective than the raw stones. However, as in the case of dolomite vs limestone noted above, the cost of a ton of calcium delivered as the hydrate is higher than the calcium delivered in the raw stone. Since the slightly higher utilization of the hydrate does not compensate for its much greater cost, only the raw stone has been considered in the evaluation.
- 9.2.3 <u>Particle Size</u>. Increased utilization of the raw stone is found with decreasing particle size. This is illustrated in Figure 27 where SO_2 reduction is plotted against particle size for constant additive rate. Since the smallest particle size used, -325 mesh, gave the best results, this size has been assumed for the economic evaluation.

9.3 PERFORMANCE DATA

The reduction of sulfur dioxide emission from the full scale module using 1359 limestone at a bed temperature of 1600°F was noted earlier to be about the same as that achieved in the pilot scale unit. It was also noted that if percent reduction is plotted against stoichiometric ratio similar values are found for both the 2.6% and 4.5% sulfur coals. This plot is given as Figure 42, and is an average of the 1359 lines in Figures 25 and 26.

When the stoichiometric ratio is converted to a weight basis, pounds of limestone per 100 pounds of coal, separate curves are generated for each coal. These are given in Figures 43 and 44. For additional clarity, the ordinate in these figures was converted to the ratio--sulfur in emissions/sulfur input. SULFUR DIOXIDE REDUCTION, 8

POPE EVANS AND ROBBINS

FIGURE 44. RATIO OF SULFUR EMISSION TO SULFUR INPUT VS LIMESTONE FEED RATE FOR THE 2.6% S COAL

FIGURE 43. RATIO OF SULFUR EMISSION TO SULFUR INPUT VS LIMESTONE FLOW RATE FOR THE 4.5% S COAL

SNIBBOR ONY SUAND SODE

.118

It was found that even without add_1tive not all the sulfur would appear as SO_2 in the flue gas. Typically, 10% of the input sulfur was found in the ash. Therefore, Figures 43 and 44 show the ordinate at 90% with a zero additive rate. These curves then form the basis for the operating cost analysis in that they relate sulfur emissions to the required weight of additive.

9.4 CAPITAL REQUIREMENTS FOR EQUIPMENT

9.4.1 Description of Raw Stone Feed System. Limestone must be received, stored, prepared and injected, captured and disposed of. As noted earlier, the major portion of the system has been integrated with the coal handling system, and therefore the size of the system is relatively independent of the sulfur content of the fuel. The limestone injection system is charged with a storage silo increment, dust collector increment, etc. (See Table XII). In some instances, pneumatic ash conveyors for example, the smallest system commercially available would be used with or without limestone addition.

A block outline of the combined coal/limestone/ash handling system is given as Figure 45. The system shown and the costs tabulated below are assumed constant regardless of the sulfur content of the coal and the degree of emission control required. Although some capital cost reduction would be achieved for a precisely sized system, it would be poor judgment for the plant designers not to provide for use of high sulfur coal even though use of a lower sulfur coal is planned, and for maximum emission control since doing so would not affect the capital significantly.

9.4.2 Description of Dust Collector System. The reacted limestone is carried out of the boiler, along with the carbon rich fly ash in the flue gas. Collected in a cyclone, the spent stone and fly ash are pneumatically injected into the Carbon-Burnup Cell*. Here the carbon content of the fly ash is burned in an oxygen rich, high temperature environment. Carried out once again by flue gas, the spent limestone and fly ash are collected in the secondary mechanical collector for disposal. Depending on local regulations regarding

TABLE XII. SUMMARY OF CAPITAL COST COMPONENTS FOR LIMESTONE ADDITION PER BOILER. 500,000 LB STEAM/HR PLANT CONSISTING OF TWO 250,000 LB/HR COAL-FIRED, FLUIDIZED-BED BOILERS

<u>Lire</u>

1	Incremental site improvements	\$	1,000
2	Incremental unloading hopper, storage silos, transfer belt and bucket elevator		7,000
3	Surge hopper		2,000
4	Dryer, pulverizer and classifier		38,000
5	Storage hopper		2,000
6	Incremental mechanical handling and injection systems		10,000
7	Incremental dust collector costs		8,000
8	Incremental ash handling and storage		5,000
9	Controls and instruments		10,000
10	Miscellaneous steel		5,000
11	Incremental electrical, mechanical, utilities, etc. Subtotal (Lines l through ll)	\$	<u>10,000</u> 98,000
13 14	Contingency @ 10% of Line 12 Total (Line 12 + Line 13)	\$1	9,800 07,800

POPE. EVANS AND ROBBINS

The Carbon Burnup Cell is an integral component of a fluidized-bed boiler in which the relatively unreactive carbon remaining in fly ash can be burned so as to improve the boiler's efficiency. It is fully described in U.S. Patent 3,508,506.

POPE, EVANS AND ROBBINS

particulate emissions, an electrostatic precipitator* or wet scrubber may also be required. It should be assumed that near urban areas regulations will require particulate emissions on the order of 0.2 lbs per 10⁶ Btu input.

The ash content of the coal is assumed to be 10% and 7% for the 4.5% S and 2.6% S coals respectively. The total particulate matter emanating from the combustion of each coal is snown in Figures 46 and 47 as a function of additive feed ratio. Curves which show the probable variation in precipitator load were added. The curves assume all ash goes overhead, 40% utilization of CaO, 85% efficiency on the mechanical collector and 10% carbon in the fly ash. Omitted is bed material attrition which may add to the particulate load.

Discussions with precipitator manufacturers failed to provide a basis on which to estimate the costs of additional capacity requirements due to limestone addition. It appears that the resistivity of fly ash increases when SO_3 is not present. However, carbon in the fly ash may compensate so that precipitator efficiency will not be seriously impaired.*

The preferred method of defining precipitator requirements is to use one of the portable or pilot precipitators owned by precipitator manufacturers.

Cyclone collector costs are relatively independent of dust loading except that an increment has been provided for heavy duty construction, increased hopper capacities and increased unloading capacities.

The size distribution and composition of the fly ash emanating from a fluidized-bed boiler is now under study. Some preliminary work has indicated that about 95% of the particles leaving the combustor are collectable in a low efficiency mechanical collector. Of the particles bypassing the collector, 99.9% were under 20 microns.

Ash is moved to the ash section of the common silo via a pneumatic conveyor. Except for the increased silo capacity requirement due to the added limestone essentially no capital cost increase is required for ash disposal.

POPE, EVANS AND ROBBINS

See Appendix A, Enclosure 45 for proposed design arrangement for minimizing electrostatic precipitator costs.

FIGURE 46. TOTAL FLY ASH RATES FOR FULL LOAD OPERATION OF A 250,000 LB PER HR. FLUIDIZED-BED BOILER WITH LIMESTONE ADDITION (4.5% S COAL)

- 9.4.3 <u>Summary of Capital Costs</u>. The cost data which appears in Table XII was based on manufacturer's information where applicable and on published estimates for components and systems. Outdated information was adjusted using the well-known Marshall and Stevens Equipment Cost Index. As noted earlier, these costs represent one-half the incremental cost of including limestone addition in the design and construction of a new plant containing two 250,000 lb/hr fluidized-bed boilers.
- 9.5 ANNUAL OPERATING COSTS

The major element of operating cost is the delivered cost of the raw limestone. Other components of operating costs are incremental labor costs, incremental maintenance costs, increased disposal costs, power costs for pulverizing, recovery of capital, taxes and insurance and a small cost for the thermal effect of limestone additions.

9.5.1 Delivered Cost of Limestone. Delivered costs of limestone are variable, as are the costs of coal, and dependent on plant location, rate of consumption, mode of transportation, and market conditions. The most definitive evaluation of limestone economics, by TVA, assumed a cost of \$2.05 per ton for crushed limestone. Studies by Esso Research and Engineering and A. M. Kinney, Inc. also used this limestone cost. This cost, as in the TVA study, is a \$1.35 per ton vendor's cost and a \$0.70 per ton shipping cost.

The same value, based on \$2.05 per ton, will be assumed in this evaluation, although costs above or below this value may be found to be more appropriate in an actual investment analysis.

9.5.2 Incremental Labor Cost (Plant Handling). Two men are employed in the 500,000 lb/hr steam plant as coal and ash handlers. They both work during the day shift, five days per week. During other periods, materials are drawn from live storage. No increase in staffing requirements is anticipated as a result of the decision to use limestone injection. To account for occasional overtime, however, a cost of \$0.15 per ton of limestone has been allocated for plant handling. A watch supervisor and a watch fireman monitor the operation of the plant's two boilers and auxiliaries. No extra watch positions are required due to the addition of limestone.

- 9.5.3 Incremental Power Costs (Pulverizing). The only significant power requirement because of limestone addition is that due to the pulverizer. An evaluation of limestone grinding by A.M. Kinney, Inc. indicated less than 35 kwn per ton of stone, while TVA's evaluation indicates that ~43 kwh per ton of limestone is required to grind to 99%, -325 mesh. At a conservative \$0.009/kwh the power cost would be on the order of \$0.32 to \$0.39 per ton of stone. A cost of \$0.40 per ton will be used in this analysis.
- 9.5.4 Thermal Effect. When limestone utilization approaches about 40%, it is possible to realize a net thermal gain from limestone injection. Depending on the cost of coal, the method of drying, the exit gas temperature and the precise degree of utilization, costs of from 1¢ to 5¢ per ton of raw stone might be used for this factor. This analysis will use 5¢ per ton of raw limestone for thermal effect.
- 9.5.5 Incremental Maintenance Costs. In many economic analyses, annual maintenance is simply assumed at 2 - 5% of capital. In this study, the incremental maintenance costs are assumed to be made up of a fixed portion, and a value dependent upon throughput. For the fixed portion, 2½% of the incremental investment will be used. For the tonnage dependent portion, a value of \$0.20 per ton will be used to account for pulverizer wear. The sum of these two factors will exceed 5% of capital for several of the cases analyzed below.
- 9.5.6 <u>Disposal Costs</u>. Fly-ash disposal costs are the most variable ingredient in any industrial coal-fired boiler cost analysis. Costs may vary between \$0.00 per ton to \$1.00 per ton depending on local market conditions for fly ash or the distance to a landfill.

Ash disposal is often by sluice to a fill area. In this case, ash disposal costs are more properly expressed as a capital cost (see TVA's treatment, for example). For this evaluation, a cost of \$0.25 per ton of raw stone will be assumed to be borne by the steam plant.

- 9.5.7 Summary of Annual Operating Cost Ingredients. Shown below is a summary of the cost ingredients for the annual operating cost analysis. The costs are divided into two categories--fixed costs, independent of the degree of emission control, and variable costs which are proportional to the degree of control.
 - TABLE XIIJ. CPERATING COST INGREDIENTS CUMMARY FOR FINE LIMESTONE INJECTION IN A 500,000 LB/HR FLUIDIZED-BED BOILER PLANT*
 - A. Fixed Costs
 - 1. Interest, depreciation, taxes and insurance @ 14% of \$107,800 = \$15,100/annum 2. Maintenance
 - @ 2-1/2% of \$107,800 = <u>2,700</u> Total \$17,800/annum

Fixed cost per ton of coal,

13 tph x 6,000 hrs/yr.
$$\rightarrow$$
 \$17,800/(13 x 6,000) == \$0.23/ton of coal

B. Variable Costs

	\$/Ton of Limestone
 Limestone, 1/4" x 0, vender's price 	1.35
2. Shipping	.70
3. Power for pulverizing	.40
4. Thermal effect	.05
5. Incremental maintenance	.20
6. Disposal	.25
Total	2.95

*Made up of two 250,000 1b/hr boilers

9.5.8	Annu	ual (pera	iting (Cost	<u>s</u> . 1	Appl	ying	the	cost	data	of	
	the	prev	lious	s sect	ion	and 1	the	limes	tone	requ	ireme	nts	
	for	the	two	coals	(4.	5% S	and	2.6%	S)	from	Figur	'es 4	3
	anđ	44,	the	annua	l op	erat	ìng	costs	are	show	n bel	ow.	

The two measures of performance (emission equivalent, % S, and SO₂ removed, %) are two ways of expressing the same thing. Emission equivalent, % S, is related to % SO₂ removed by the equation:

Emission equivalent, % S

=

(100 - SO₂ removed, %) x (Actual % S in coal)

TABLE XIV. ANNUAL OPERATING COST DATA FOR FINE LIMESTONE INJECTION

Case	1. For the 4.5% Sulfur Coal					
1.	Emission equivalent, % S	3.5	2.5	1.5	1.0	0.6
2.	SO ₂ removed, %	22	45	67	78	87
3.	Additive rate, Tons of limcstone/ton to coal	.037	.12	.21	.28	. 37
4.	Fixed cost, \$/ton of coal	.23	.23	.23	.23	.23
5.	Variable cost, \$/ton of coal	.11	35	.62	.83	<u>1.09</u>
6.	Total Cost*, \$/ton of coal (4 + 5)	.34	.58	.85	1.06	1.32
Case	2. For the 2.6% Sulfur Coal	. <u>, —</u>				
1.	Emission equivalent, % S		2.0	1.5	1.0	0.6
2.	SO ₂ removed, %		23	42	62	77
3.	Additive rate, Tons of limestone/ton to coal		.028	.065	.105	.155
4.	Fixed cost, \$/ton of coal		.23	.23	.23	.23
5.	Variable cost, \$/ton of coal		.08	.19	.31	.46
6.	Total Cost*, \$/ton of coal (4 + 5)		.31	.42	.54	.69

^{*}These results are plotted in Figures 48 and 49.

POPE EVANS AND ROBBINS

POPE, EVANS AND ROBEINS

1.00

TOTAL EMISSION EQUIVALENT, % SULFUR

FIGURE 48. ESTIMATED TOTAL COST OF CONVERTING A HIGH SULFUR (4.5%) COAL TO A LOWER SULFUR COAL EQUIVALENT BY LUMESTONE ADDI-TION TO A 250,000 LB/HR FLUIDIZED-BED BOILER FIGURE 49. ESTIMATED TOTAL COST OF CONVERTING A MEDIUM SULFUR (2.6%) COAL TO A LOWER SULFUR COAL EQUIVALENT BY LIMESTONE ADDI-TION TO A 250,000 LB/HR FLUIDIZED-BED BOILER

POPE, EVANS AND ROBBINS

coal

ğ

. imestone

injection

low

sulfur

TABLE

ž

COST OF REDUCING A IN A FLUIDIZED-BED LOW SULFUR COAL IN

A HIGH SULFUR COAL D BOILER, COMPARED N THE CHICAGO AREA

TO EQUIVALENT 0.7% SULFUR COAL WITH COST OF PURCHASE OF

The results of one additional case is also plotted on these figures. A lower curve shows the costs for a utilization rate twice as good as that actually found experimentally in the fluidized-bed boiler. This indicates a hypothetical lower limit to costs in a fluidized-bed boiler if additional research reveals methods of achieving a utilization on the order of 80%. Results on this order have been reported by British experimenters.

- 9.6 COMPARISON WITH COSTS FOR ALTERNATIVE METHODS
- 9.6.1 Use of Low Sulfur Coal. The use of low sulfur coal may be an economical alternative to limestone addition where low sulfur coal is locally available.

Where this coal is not available locally, it must be shipped and this may markedly increase its cost. This is the case for Chicago, as an example, where the low sulfur coal might come from West Virginia.* Table XV presents the costs for burning three "local" coals in a fluidized-bed boiler with limestone addition and costs for burning an "imported" low sulfur coal in the same boiler without limestone. The costs for limestone addition are derived from the test program performance curves.

It is clear from this comparison that, for the case estimated, the cost of energy is less with limestone injection than with the low sulfur coal.

- 9.6.2 Limestone Injection into Conventional Boilers. Dry limestone injection into conventional boilers may be somewhat less effective than injection into a fluidizedbed boiler. Until test results from operation, fullscale units of both designs are available, no economic comparisons are meaningful.
- 9.6.3 Other Flue Gas Control Processes. A number of survey articles have been published reviewing the costs of the alternative stack gas cleaning processes.

Almost all of this work pertains to large utility boilers, not industrial boilers, and is therefore not truly comparable to the data presented above. In every case, the capital costs are significantly higher than for limestone injection and would be more unfavorable when reduced in scale. Some process developers claim a profit on operations when markets exist for the sulfur form produced and other factors are favorable.

POPE EVANS AND ROBBINS

л. Э. Г.	*]	μŢ	1 1	1.2	w.	St	
otal c		•	• •	Ку.	Va.	ate	Coal
ost to prod		Sullivan	Franklin	Hopkins	Mingo	County	Source
uce emissi		11,700	12,300	12,500	13,800	Btu/1b	Heating
lons equiv		3.1	2.0	3.2	0.7	69	Sulfur
alent to		7.87	8.20	8.45	11.32	\$/ton	Coal
o the 0.7		33.63	33.33	33.88	41.02	¢/MBtu	Cost,
8 sulfur coal by		77	65	78	Base	Requirements, %	Sulfur
use of low s		4.40	3.76	4.40	Base	Cost ¢∕MBtu	Limestone Injection
ulfur		37.03	37.09	38.28	41.02	total* ¢/MBtu	

733

Low sulfur coal from Wyoming is presently being brought into Chicago by Commonwealth Edison and with shipping costs alone exceeding \$8.00 per ton.

This could never be the case for pulyerized limestone injection. Continuing research on flue-gas cleaning processes may provide a process applicable to industrial boilers of either the conventional or fluidizedbed design.

9.7 CONCLUSIONS

Review of the results outlined above lead to the following observations:

- Limestone injection to a fluidized-bed boiler could be used at a reasonably low capital cost (\$3/kw) when the limestone system is treated as an integral part of the steam supply system.
- Operating costs for limestone injection to a fluidizedbed boiler will be a small multiple of the raw stone cost (~1.5) when the plant design is such that increased labor requirements are avoided.
- 3. In those areas where coal enjoys a natural cost advantage over natural gas, a fluidized-bed boiler with limestone injection may provide the plant owner with an economically feasible method of providing steam and complying with local air quality regulations. Conventional boilers may not, in many cases, be able to provide such a feasible alternative.
- 4. One final conclusion is warranted, in part by the results discussed above and in part by information recently published by the Federal Power Commission on declining gas reserves: when the investment appraisal techniques utilized by a potential boiler plant owner provide for a sophisticated treatment of cost trends, coal-fired, fluidized-bed boilers utilizing limestone injection may appear favorable even when coal does not currently enjoy a natural cost advantage.

APPENDIX A

ENCLOSURES