PREIMPOUNDMENT STUDY OF WEST POINT LAKE, GEORGIA

TECHNICAL STUDY TS03-71-208-001.2

ENVIRONMENTAL PROTECTION AGENCY REGION IV SOUTHEAST WATER LAB SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA JANUARY 1972 OF

WEST POINT LAKE, GEORGIA

Robert F. Schneider David W. Hill M. Ronald Weldon Ralph E. Gentry

> U.S. Environmental Protection Agency Sam Nunn Atlanta Federal Center Region 4 Library 61 Forsyth Street S.W. nuana, Georgia 30303

Technical Study TS 03-71-208-001.2

Environmental Protection Agency Region IV Southeast Water Laboratory Surveillance and Analysis Division Athens, Georgia

January 1972

Page

INTRODUCTION	1
SUMMARY	3
CONCLUSIONS	3
RECOMMENDATIONS	9
DESCRIPTION OF THE STUDY AREA	Э
CHATTAHOOCHEE WATERSHED	C
WEST POINT DAM AND LAKE	3
THE STUDY AREA	2
STUDY METHODS	3
SAMPLING STATIONS	3
SAMPLING SCHEDULE	3
PHYSICAL AND CHEMICAL ANALYSES	9
BIOLOGICAL ANALYSES	9
BACTERIOLOGICAL ANALYSES	2
STUDY FINDINGS	
PREVIOUS STUDIES	5
1970-1971 STUDIES	0
RAINFALL AND RIVERFLOW	D
CORRELATIONS OF FLOW WITH WATER QUALITY PARAMETERS 40)
TEMPERATURE	ł
COLOR AND TURBIDITY	ł
pH, CONDUCTIVITY AND SOLIDS	5
DISSOLVED OXYGEN AND BIOCHEMICAL OXYGEN DEMAND 47	7

Page 49 49 NITROGEN AND PHOSPHORUS 49 50 51 53 53 53 62 65 73 ENVIRONMENTAL CHANGES FOLLOWING IMPOUNDMENT. 83 83 83 84 85 87 . . .

APPENDICES

- A Correspondence Requesting the Study
- **B** Location of Sampling Stations
- C USPHS Water Quality Data for the Chattahoochee River Basin 1964, 1965, and 1966
- D A Brief Biological Survey of the Chattahoochee River and Selected Tributary Streams by William M. Beck, Jr., June 1965.

Table of Contents cont'd

APPENDICES cont'd

- E Statistical Summary of Water Quality Data, Chattahoochee River Basin, August and September 1970
- F Statistical Summary of Water Quality Data, Chattahoochee River Basin, February 1971
- G Statistical Summary of Water Quality Data for a Diurnal Study at Stations 5, 6, 10 and 12, Chattahoochee River Basin, September 1970
- H Phytoplankton Data for West Point Preimpoundment Surveys, September 1970 and February 1971
- I Seasonal Distribution of Invertebrates Collected from Artificial Substrates in the Chattahoochee River and Major Tributaries Within the West Point Lake (Preimpoundment Study)
- J Georgia Water Quality Standards and Chattachoochee River Classification

PARTICIPATING STAFF

FIGURES

			Page
Figure	1.	The West Point Gravity-type Dam Being Constructed in the Chattahoochee River, Georgia	11
Figure	2.	The Chattahoochee River Downstream from the West Point Dam	11
Figure	з.	Sampling Stations - Location Map Rear	of Report
Figure	4.	The Shallow Chattahoochee River Near Georgia Highway 109 Bridge Crossing	13
Figure	5.	The Deering Milliken Industrial Water Intake	14
Figure	6.	The "Old" City of LaGrange Municipal Water Intake on the Shoreline of the Chattahoochee River, Ga	14
Figure	7.	The Newly Constructed City of LaGrange Municipal Water Intake Designed for the Expected Reservoir Depths	14
Figure	8.	City of LaGrange, Hogansville Road Sewage Treat- ment Plant	16
Figure	9.	City of LaGrange, Yellowjacket Creek Sewage Treat- ment Plant	16
Figure	10.	U. S. Rubber Company Textile Plant at Hogansville, Georgia	17
Figure	11.	The Franklin Aluminum Company on the Chattahoochee River Near Franklin, Georgia	18
Figure	12.	The City of Franklin, Georgia, Sewage Treatment Plant	18
Figure	13.	The Southeast Water Laboratoary Mobile Unit at LaGrange, Georgia	30
Figure	14.	Artificial Substrate Used to Collect Periphyton .	33
Figure	15.	Artificial Substrate Used to Collect Macroinver- tebrates	33
Figure	16.	Dissolved Oxygen Profiles Upstream From West Point Site (From Georgia Water Quality Board)	37

Page

Figure	17.	Fecal Coliform - Geometric Means - Upstream From West Point Site	38
Figure	18.	Stream flow During the Survey Periods	41
Figure	18A	.Coliform Counts Averages (Left and Right Banks) of Station 12 at Franklin	42
Figure	19.	Average Water Temperature During Survey Periods	45
Figure	20.	Average Hourly Quality Varations at Stations 5, 6, 10 and 12, September 17, 1970	54
Figure	21.	Comparison of Average Total Phytoplankton Populations (Summer and Winter Survey Period)	55
Figure	22.	Relative Density of Certain Invertebrates at Each Station During the Summer Survey	63
Figure	22A	Relative Density of Certain Investebrates at Each Station During the Winter Survey	64
Figure	23.	Geometric Mean Total Coliform Densities at the Chattahoochee River Stations	67
Figure	24.	Geometric Mean Fecal Coliform Densities at the Chattahoochee River Stations	68
Figure	25.	Geometric Mean Total and Fecal Coliform Densities at the Tributary Stations	69
Figure	26.	Coliform Dieoff Pattern Within Chattahoochee River Study Area Expressed in Percent of Initial Density Entering the Study Area	71
Figure	27.	Comparison of the Geometric Mean Total Colliform Densities at the River Stations in Wet and Dry Periods	74
Figure	28.	Comparison of the Geometric Mean Fecal Coliform Densities at the River Stations in Wet and Dry Periods	75
Figure	29.	Comparison of the Geometric Mean Total Coliform Densities at the Tributary Stations in Wet Period and Dry Period	76
Figure	30.	Comparison of the Geometric Mean Fecal Coliform Densities at Tributary Stations in Wet Period and Dry Period	77

LIST OF TABLES

Table I. Sources of Municipal Pollution to the	
Chattahoochee River	21
Table II. Sources of Industrial Pollution	27
Table III. Physical and Chemical Analyses	31
Table IV. Identification Scheme for <u>Salmonella</u> Suspects	35
Table V. Rainfall Data	43
Table VI. Comparison of Average Biomass and Relative Abundance of Periphyton Summer 1970 and Winter 1971	56
Table VII. Periphyton Population at Sampling Stations in the Chattahoochee River and Tributaries (August 1970)	58
Table VIII. Periphyton Population at Sampling Stations in the Chattahoochee River and Tributaries (February 1971)	60
Table IX. Bacteriological Data Summary	66
Table X.Coliform Densities-Rainfall Periods Versus DryPeriods	78 .
Table XI. Fecal Coliform Densities and Salmonella SerotypesRecovered at Selected Stations During Summer Study	80
Table XII. Fecal Coliform Densities and <u>Salmonella</u> Serotypes Recovered at Selected Stations During Winter Study	81

PREIMPOUNDMENT STUDY OF WEST POINT LAKE, GEORGIA

INTRODUCTION

The Southeast Region, Environmental Protection Agency, Office of Water Programs was requested by letter of 6 February 1970 from the U. S. Army Engineer District, Savannah, Georgia, to conduct a preimpoundment water quality study for the West Point Project. Authorization for such a study may be found in Section 5c of the Federal Water Pollution Control Act (PL 84-660) as amended by PL 87-80, PL 89-234, PL 89-753, and PL 91-224. Correspondence concerning the study request is contained in Appendix A.

The Environmental Protection Agency extends its gratitude to the following agencies and individuals for their cooperation with Southeast Water Laboratory (SEWL) personnel during the survey:

- The U. S. Corps of Engineers and Mr. O. B. Stewart, Jr. Resident Engineer, for providing maps and pertinent impoundment information.
- U. S. Geological Survey for providing streamflow data.
- Messrs. Hughes, Sherrer, White, Norsworth and Levens of the City of LaGrange, Georgia, for arranging mobile laboratory space.
- Mr. Roy Relihan and the National Climatic Center Office in LaGrange, Georgia, for providing temperature and rainfall data.

Personnel from the Southeast Water Laboratory conducted field studies during August and September 1970 and February 1971 to determine annual seasonal varations in important physical, chemical and biological water quality parameters within and immediately downstream from the future reservoir. Data from these seasonal studies in conjunction with earlier study data (1)(2)(3) provided sufficient information to describe preimpoundment water quality conditions.

SUMMARY

The West Point Lake is to be located in west-central Georgia in a 3,380 square-mile watershed. Seventy percent of the watershed is farmland and 30 percent is industrial and residential (largely the Metropolitan Atlanta area). The reservoir will cover 25,900 acres at maximum power pool of 635 feet above mean sea level. It is designed to provide hydroelectric power, flood control, navigation, water supply and recreation. Preimpoundment water quality was determined from U. S. Public Health Service studies in 1964, 1965 and 1966; from Georgia Water Quality Control Board studies in 1968 and 1969; and from EPA, SEWL studies in 1970 and 1971

1. The studies showed the following physical characteristics:

- a. Maximum water temperatures ranged from $25^{o}-29^{o}C$ during the hot, dry summer periods.
- Water color values did not exceed 65 cobalt color units and generally averaged from 15 to 25.
- c. During heavy runoff periods, the river, and to a lesser degree, its tributaries became reddish in color due to suspended clay sediment. Turbidity values reached highs of 250 Jackson candle units, with average values of 23 to 55 in the summer and 46 to 96 in the winter.
- d. Mineral content of the waters was low. Specific conductance ranged from 33 to 84 µmhos/cm. Alkalinities seldom exceeded 20 mg/l as CaCO₃ while total dissolved solids rarely exceeded 150 mg/l.

2. Chemical Characteristics (EPA 1970-71 summer and winter studies combined):

- a. The pH of the waters in the Chattahoochee and tributary streams varied 0.7 unit or less from pH 7.
- b. At the station closest to Atlanta (Station 12 at Franklin -the station farthest upstream) the dissolved oxygen content was less than 5 mg/l several times during the low flow periods of August and September 1970 with a low of 3.4 mg/l. Downstream and tributary stations usually had values above 6 mg/l even during the summer low-flow conditions.
- c. At the same station (No. 12) the BOD₅ value reached a maximum of 2.8 mg/l during stable summertime flows. Although this value is low, it is nearly twice the next highest value (1.5 mg/l) recorded at any other station studied in the summer. Following winter rainstorms, BOD₅ values reached highs of 5.7 mg/l in Wehadkee Creek (Station 13) and 5.2 mg/l in the Chattahoochee at Station 10 (15 miles downstream from Franklin) reflecting the unstable wintertime streamflows and associated flushing action.
- d. Total organic carbon (TOC) reached a maximum of 14.0 mg/1 during the 1970 and 1971 surveys at Station 10 following a very heavy winter rain. Generally TOC averaged 3.5 to 6.5 mg/1.
- e. Organic nitrogen (total kjeldahl nitrogen less ammonia nitrogen) seldom exceeded 0.7 mg/l except during high, winter flows when it reached 1.4 mg/l at several stations. Inorganic nitrogen (sum of ammonia, nitrite and nitrate forms) ranged from 0.5 to 1.0 mg/l.

- f. Total phosphorus consistently ranged from 0.2 to 0.4 mg/l as P, one-half or less of which was the soluble form.
- g. Total iron content in the Chattahoochee water ranged from 0.2 to 73.0 mg/1. (Both extremes were from the Chattahoochee; the high was about 5 times the mean - Sta. 10B in February 1970.) The dissolved iron concentration often exceeded 0.3 mg/1, reaching a maximum value in August 1970 of 0.8 mg/1 at Station 2, just downstream from the proposed dam site.
- h. Total manganese station averages throughout the study area ranged from 0.13 to 0.43 mg/1, and the average dissolved manganese concentration ranged from 0.04 to 0.17 mg/1. The highest single value for dissolved manganese (0.44 mg/1) was recorded from Wehadkee Creek (Station 4). Six other stations had dissolved manganese maximums ranging from 0.20 mg/1 to 0.25 mg/1.
- 3. Bacteriological Characteristics (for both summer and winter EPA studies):
 - a. The arithmetic mean fecal colliform densities upstream from Station 3 (just upstream from the proposed dam site) were in violation of the present Georgia recommended recreation standard of 1000 fecal colliforms per 100 ml.*
 - b. Station 12 (the farthest upstream station) yielded the highest geometric mean total coliform density (66,000/100 ml) and the highest geometric mean fecal coliform density (5,100/100 ml) recorded during the study. These high

* Number currently under review. See discussion in text on page 67.

densities, reflected upstream sanitary waste discharges principally from the greater Atlanta area.

- c. A 70 to 80 percent decrease in indicator densities occurred in the river reach from Franklin, Georgia, to West Pont, Georgia.
- d. Fecal pollution was evident in Yellowjacket Creek as a result of treated discharges from the City of LaGrange's Yellowjacket Waste Treatment Plant and the Hogansville, Georgia, Sewage Treatment Plant. Upstream from the Yellowjacket plant (Station 9) the geometric mean fecal coliform density was 600/100 ml. Downstream (Station 8) densities increased to a geometric mean of 1800/100 ml.
- e. Minor fecal contamination appeared to be contributed by wildlife and livestock, primarily in the tributaries studies. Geometric mean fecal coliform densities were generally less than 600/100 ml.
- f. Rainstorms during both the 1970-71 seasonal studies caused an expected rise in bacterial indicator densities. Additional fecal contamination and nonfecal soil related coliform strains were introduced into the streams by land runoff.
- g. Serotypes of <u>Salmonella</u> were isolated at seven stations during the summer study and at all 13 stations during the winter study. The summer isolation came from five of the seven main-stem Chattahoochee stations and from the tributary stations downstream from wastewater treatment plants.

- 4. Biological Characteristics (1970-71 EPA studies):
 - a. In Yellowjacket and Wehadkee Creeks, over 90 percent (by number) of the attached periphyton were filamentous bluegreen algae. Similar algal growth was found in the Chattachoochee River during the summer study. At Station 6 (about the mid-point of the proposed reservoir) over 70 percent of the algae (by number) were attached filamentous blue-greens.
 - b. Phytoplankton densities did not exceed 600 algal cells per milliliter during the 1970 and 1971 surveys.
 - c. During the August-September 1970 low water study, the Chattahoochee River benthos (bottom) from Franklin, Georgia, to Station 10 (15 miles downstream) was biologically degraded. A profuse benthic population of leeches, worms and snails reflected an organically polluted environment. Farther downstream and in the major tributaries, a healthy benthic faunal community occurred.

CONCLUSIONS

- The potential for accelerated eutrophication and its associated nuisance problems are increased greatly by both past and current municipal and industrial development in the West Point Lake watershed.
- 2. Thermal stratification is expected to occur following impoundment. Associated hypolimnetic problems of low dissolved oxygen, sulfide odors, and high levels of dissolved iron and manganese (which interfere with water supply uses) may also occur unless corrective measures are taken.
- 3. Numerous isolations of <u>Salmonella</u> serotypes from the study area indicate that several areas are hazardous for primary contact recreation at the present time. Fecal coliform densities at many stations violate recreational water quality criteria.
- 4. After closure of the dam, the increased residence time in the lake will tend to dampen water quality variations now present in the free-flowing streams and partially reduce bacterial densities and water turbidity from preimpoundment levels to levels acceptable for a variety of water uses.
- 5. Water quality should improve following completion of secondary biological treatment and chlorination at Atlanta's R.M. Clayton wastewater treatment plant (scheduled for May 1973). Most other wastewater treatment plants in the Atlanta area that discharge to the Chattahoochee River will also provide secondary treatment and disinfection by that time. However, combined sewer discharges from Atlanta during rains will probably cause problems for years to come.

RECOMMENDATIONS

- Postimpoundment studies should be conducted as soon as stable conditions are reached within the lake and downstream from the dam in order to determine water quality changes. If adverse conditions exist, implementation of remedial measures should begin as soon as possible.
- 2. Water suppliers should be kept advised by the Corps of Engineers in cooperation with state agencies of the postimpoundment concentrations of dissolved iron, manganese and sulfides. The water suppliers may need selective water level withdrawal techniques, water treatment modification, or other water quality control techniques.
- 3. To preclude water quality problems associated with thermal stratification of the reservoir, preventative measures must be taken -- primarily to avoid anaerobic conditions in the hypolimnetic zone. Preventative measures include, but are not limited to, artificial destratification or direct oxygenation of the hypolimnion without destratification (The former has proven effective for large impoundments). The reservoir area near the dam would require principal attention to avoid release of poor quality water, but other areas may need treatment to protect water supplies withdrawn from the reservoir.
- 4. Primary contact recreation should be restricted in upper reaches of the proposed reservoir until bacterial quality is determined at the time and immediately after filling (in consultation with the Georgia Water Quality Control Board). Restrictive zoning may be necessary in the future.

DESCRIPTION OF THE STUDY AREA

CHATTAHOOCHEE WATERSHED

The Chattahoochee River rises in the Blue Ridge Mountains in northeast Georgia form the confluence of several headstreams. It flows 235 miles southwestward across northern Georgia to West Point, then turns southward forming the Georgia-Alabama and Georgia-Florida boundaries until it joins the Flint River at Chattahoochee, Florida. The combined waters of these two streams form the Apalachicola River in Florida.

WEST POINT DAM AND LAKE

West Point, Georgia, is the northern-most of five textile towns in the central Chattahoochee Valley; the others are the Alabama towns of Lanett, Shawmut, Langdale and Fairfax. Less than three miles north of West Point (at River Mile 308.7*), the Corps of Engineers is constructing the 5,978-foot-long, 95-foot-high, gravity-type West Point Dam across the Chattahoochee River (Figures 1 and 2). When completed, the dam will create the fourth largest impoundment on the Chattahoochee River and will impound approximately 35 miles of the River, extending from West Point upstream to Franklin, Georgia. The reservoir will serve the multiple purpose of power, flood control, navigation, water supply and recreation (4). The 28,400-acre lake (normal pool) will have more than 500 miles of waterfront shoreline. Principal streams flowing into the

^{*} River mileage given in this paper is an upstream measurement beginning at the mouth of the Apalachicola River in Florida.

Figure 1. The West Point Gravity-type Dam being constructed in the Chattahoochee River, Georgia (mile 308.7-September 1970)

Figure 2. The Chattahoochee River downstream from the West Point Dam (mile 308.6 - February 1971)

reservoir will include the New River and Yellowjacket and Wehadkee Creeks.

THE STUDY AREA

The preimpoundment study area of the Chattahoochee was from the City of Franklin to West Point, Georgia (see Figure 3: Location Map at rear of report). The river is very shallow in the study area (Figure 4). The riverbed is composed of various combination of silt, clay, sand and rock, and has an average gradient of 2.1 feet/mile in this reach. In many place rock riffles cross it completely. The banks of the main river and its tributaries have a dense cover of foliage making river access difficult.

WATER SUPPLY

From Franklin, Georgia, downstream to the dam site, the river has been classified for recreation (5). Within this area, there are two water intakes. Deering Milliken of LaGrange has an industrial intake in the main channel of the Chattahoochee River (Figure 5) and the City of LaGrange a 2 mgd million gallon per day municipal water intake (Figures 6 and 7).

SOURCES OF WASTES

Within the reservoir drainage basin the chief industries are agriculture and textile manufacturing. An inventory of industrial and domestic waste sources showed that three streams will carry major amounts of wastewater into the proposed reservoir: Yellowjacket Creek, New River and the Chattahoochee River.

Yellowjacket Creek will enter the impoundment 12.5 miles upstream from the dam. This creek receives partially treated

Figure 4. The shallow Chattahoochee River near Georgia Highway 109 Bridge Crossing (mile 316.2 - September 1970).

Figure 5. The Deering Milliken Industrial Water Intake. (mile 321.9 - February 1971)

Figure 6. The "old" City of LaGrange Municipal Water Intake on the Shoreline of the Chattahoochee River, Georgia (mile 323.0 -February 1971). Figure 7. The newly constructed City of LaGrange Municipal Water Intake Designed for the Expected Reservoir Depths (mile 323.0 -February 1971). municipal wastes from Grantville, Hogansville, and LaGrange (Figures 8 and 9), Georgia, with an estimated biochemical oxygen demand (BOD) waste load of 650 population equivalents (PE) after treatment (Table I). The municipal waste at Hogansville includes small quantities of industrial wastes including that from the U. S. Rubber Company textile plant (Figure 10).

The New River will enter the impoundment 24.7 miles upstream from the dam. It receives treated domestic wastewater from Grantville and Newnan with an estimated BOD load of 1,450 PE after treatment (Table I). The William L. Bennell Company, an aluminum anodizing industry, discharges inadequately treated wastewater into a tributary of the New River.

The Chattahoochee River is expected to be impounded by the West Point Dam upstream to mile 343.0 in the vicinity of Franklin, Georgia. The Franklin Aluminum Company, located in this area, discharges inadequately treated process wastes to the Chattahoochee River (Figure 11). The City of Franklin will discharge its treated waste directly into the impoundment (mile 342.4) about 34 miles upstream from the dam (Figure 12). Principal waste sources upstream from Franklin are concentrated in the Atlanta metropolitan area.

Between Buford Dam and the City of Atlanta's Clayton Treatment Plant, some 50 wastewater treatment facilities with a combined design capacity of about 8.43 MGD discharge their effluents either directly to the river or to one of its tributaries (2). Most of these facilities

Figure 8. Hogansville Road Sewage Treatment Plant, City of LaGrange.

Figure 9. City of LaGrange, Yellowjacket Creek Sewage Treatment Plant.

Figure 10. U. S. Rubber Company Textile Plant at Hogansville, Georgia

Figure 11. The Franklin Aluminum Company on the Chattahoochee River near Franklin, Georgia (mile 342.9 - September 1970).

Figure 12. The City of Franklin Sewage Treatment Plant. (mile 342.4 - February 1971).

are small package plants or stabilization ponds serving subdivisions or apartment complexes. About 90 percent of the wastewater is domestic, with the remainder being tannery, metal plating and poultry processing wastes. The two largest domestic facilities are Marietta's 1.5 mgd trickling filter plant on Sope Creek and the 2.0 mgd trickling filter plant on Rottenwood Creek.

An additional 0.2 mgd of treated domestic wastes and an undetermined amount of industrial wastes, mostly metals and oils, are discharged to Peachtree Creek, which joins the Chattahoochee River just downstream from Atlanta's water intake structure and just upstream from the R. M. Clayton Treatment Plant.

All of these wastewater sources contribute to the conditions of the Chattahoochee River at mile 408.2. Between river mile 408.2 and 389.4, the City of Atlanta presently operates three wastewater treatment facilities which provide primary treatment without disinfection of effluents. These primary plants discharge 280,000 PE of biochemical oxygen demanding materials (see Table I).

By May 1973 these wastes should be reduced to about 60,000 PE (plus some allowance for municipal growth) through secondary activated sludge treatment and disinfection. The R. M. Clayton Plant is under construction for upgrading to secondary treatment; the Sandy Creek Plant will be abandoned and its influent will be diverted to the Clayton Plant; and the Utoy Creek Plant will be upgraded, with construction beginning November 1971.

Fulton County's treatment plants discharging to the Chattahoochee

will also be consolidated and upgraded to secondary treatment with disinfection. The Big Creek Plant will be expanded from 0.7 to 10 mgd capacity. Construction for this plant will begin November 1971 for completion by January 1973. The presently overloaded March Creek and Fulco plants will be abandoned. The Camp Creek Plant in south Fulton County will be upgraded from primary to secondary treatment.

Cobb County's plants on the Chattahoochee will also be consolidated and upgraded to secondary treatment with disinfection. By May 1973 Cobb County will operate only the new Chattahoochee Plant (presently overdue on starting construction) and the South Cobb Plant.

By the time Atlanta's Clayton Plant is finished in May 1973, the most significant pollution to the Chattahoochee from the greater Atlanta area will be urban surface runoff and combined sewer overflow (by-pass of treatment plants) during rains.

The importance of pastureland draingage as a waste source was not overlooked; however, it was omitted from the sanitary inventory presented in Table I and II because of the difficulty in pinpointing or defining the impact of this source.

° 20

TABLE I

Sewered Design Miles Upstream Population Flow County, City, PE Dis-From West or Subdivision Equivalent (mgd) Treatment charged Receiving Stream Point, Georgia Cumming 6.000 0.6 Oxidation Lagoon 1,800 120 Big Creek Buford 5.000 0.5 Primary 3,500 Suwanee Creek 132 Marietta (Old East) 10,000 1.0 $TF + C1_2$ 1,500 Sope Creek 114.5 Marietta (South) 10,000 1.0 $TF + Cl_2$ 1,500 98 **Olley Creek** Marietta (Southeast) 20,000 2.0 TF + C123,000 Rottenwood Creek 111 Marietta (West) 10,000 1.0 1,500 $TF + Cl_2$ Sope Creek 108 $TF + Cl_2$ Marietta (New East) 15,000 1.5 2,250 Sope Creek 108 Marietta (Sope Creek Activated Sludge Farms) 660 109 0.066 $+ C1_{2}$ Sope Creek 108 Air Force Plant 6 -Lockheed Ba. Corp. (Industrial) 30,500 3.5 Chem. Treatment Nickajack Creek 106 Dobbins AFB (Domestic) 25,000 2.5 3,750 Nickajack Creek 106 $TF + C1_2$ $TF + Cl_2$ Church Road 20,000 2.0 3,000 Nickajack Creek 106 Smyrna 600 Bohannon Creek 4,000 0.4 $TF + Cl_2$ 106 Fulton County (Big Activated Sludge Creek) 700 Willeo Creek 7,000 0.7 $+ C1_{2}$ Camp Creek Plant 95.1 25,000 2.5 Primary $+ Cl_2$ 17,500 Camp Creek Cater Creek Cater Creek Oxidation Lagoon Fulco Plant 10,000 1.0 7,000 Chattahoochee 102 Primary *Data based on Inventory of Water Pollution Control Facilities, Vol. I, Cities and Counties, Georgia

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER *

Notes: TF - Trickling filter Cl₂ - Chlorination

Water Quality Control Board, March 1971.

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER*

County, City, or Subdivision	Sewered Population Equivalent	Design Flow (mgd)	Treatment	PE Dis- charged	Receiving Stream	Miles Upstream From West Point, Georgia
Marsh Creek	7,500	0.75	$TF + Cl_2$	1,225	Chattahoochee	116
Stubbs Road	80	0.008	Activated Sludge + Cla	8	Deep Creek	
Austell	5,000	0.5	Primary	3,500	Sweetwater Creek	98.2
Allyson Park S/D	3,200	0.32	Oxidation Lagoon		Noses Creek	98.2
Atlanta Country Club	60	0.06	Activated Sludge + Cl ₂	6	Chattahoochee	
Blue Springs Mobile Home Park	276	0.0207	Activated Sludge + Cl ₂	28	Acworth Lake	
Bordeaux Apartments	1,500	0.150	Activated Sludge + Cl ₂	150	Rottenwood Creek	111
Calloway Acres	470	0.047	Oxidation Lagoon		011ey Creek	101
Church Road Plant	20,000	2.00	$TF + C1_2$	3,000	Nickajack Creek	106
Civitania Woods S/D	220	0.022	Oxidation Lagoon		Nickajack Creek	106
Clarkdale	500	0.050	Primary	350	Sweetwater Creek	98.2
Cobb Gen. Hospital	1,500	0.150	Activated Sludge + Cl ₂	150	Olley Creek	101
Cochise S/D	500	0.050	Activated Sludge + Cl ₂	50	Chattahoochee	
Cumberland Apartments	2,977	0.231	Activated Sludge + Cl ₂	297	Chattahoochee	

* Data based on <u>Inventory of Water Pollution Control Facilities</u>, Vol. I, Cities and Counties, Georgia Water Quality Control Board, March 1971.

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER *

County, City, or Subdivision	Sewered Population Equivalent	Design Flow (mgd)	Treatment		PE Dis- charged	Receiving Stream	Miles Upstream From West Point, Georgia
Farmington S/D	260	0.026	Activated + Cl ₂	Sludge	26	Chattahoochee	
Forest Acres S/D			Oxidation	Lagoon		Chattahoochee	
Frontier Trails S/D	260	0.026	Oxidation	Lagoon		Nickajack Creek	106
Golden Acres	150	0.015	Activated + Cl ₂	Sludge	15	Sweetwater	98.2
Haven Hill (Mobile Home Park)	560	0.042	Activated + Cl ₂	Sludge	56	Acworth Lake	
Heritage Hills	640	0.064	Oxidation	Lagoon		Buttermilk Creek	
Interstate North Dev. Co.	1,850	0.140	Activated	Sludge	185	Rottenwood Creek	111
Kenwood S/D	700	0.07	Activated + Cl ₂	Sludge		Nickajack Creek	106
Maple Valley S/D	400	0.040	Oxidation	Lagoon		Nickajack Creek	106
Regency Apartments	580	0.058	Activated + Cl ₂	Sludge	58	Rottenwood Creek	111
Riverbend Apartments	3,000	0.300	Activated + Cl ₂	Sludge	300	Chattahoochee	
Rustic Village S/D	240	0.024	Oxidation	Lagoon		Olley Creek	101
Seven Springs S/D	500	0.050	Activated	Sludge	50	Sope Creek	114.5
* Data based on Invento	ory of Water	Polluti	on Control	Facilitie	s, Vol. I,	Cities and Counties,	, Georgia

Water Quality Control Board, March 1971.

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER *

County, City, or Subdivision	Sewered Population Equivalent	Design Flow (mgd)	Treatment	PE Dis- charged	Receiving Stream	Miles Upstream From West Point, Georgia
Shadow Bluff Apts.			Activated Sludge + Cl ₂		Chattahoochee	
South Cobb Plant	20,000	2.00	Activated Sludge + Cl ₂	2,000	Chattahoochee	95
Terrell Mill S/D	720	0.072	Aerate Lagoon		Sope Creek	114.5
Tree Top Apartments	1,400	0.140	Activated Sludge + Cl ₂	140	Chattahoochee	
Wallace Mobile Home Park	222	0.017	Activated Sludge + Cl ₂	22	Chattahoochee	
Waverlv Woods	200	0.020	Activated Sludge + Cl ₂	20	Sewell Mill Creek	
Westgate S/D and Country Farm			Oxidation Lagoon		Olley Creek	101
Windy Hill Village	3,500	0.350	Activated Sludge + Cl ₂	350	Rottenwood Creek	111
Woodland Brook Farms	S/D 160	0.016	Activated Sludge	16	Chattahoochee	
Vinings Height S/D					Chattahoochee	
Douglasville	900	0.090	Primary	630	Unnamed Stream	93
	2,400	0.240	Primary	1,680	Unnamed Stream	93
Atlanta (Clayton)	420,000	42.000	Aeration + Cl_2	210,000	Chattahoochee	107
* Data based on <u>Inve</u> Water Quality Cont	ntory of Water rol Board, Mar	Pollutio ch 1971.	on Control Faciliti	es, Vol. I,	Cities and Counties,	Georgia

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER *

County, City, or Subdivision	Sewered Population Equivalent	Design Flow (mgd)	Treatment	PE Dis- charged	Receiving Stream	Miles Upstream From West Point, Georgia
Atlanta (Sandy Creek)	10,000	1.00	Primary	7,000	Chattahoochee	105
Atlanta (Utoy Creek)	90,000	9.00	Primary	63,000	Utoy Creek	101
Fairburn (Line Creek)	2,200	0.220	Activated Sludge + Cl ₂	220	Line Creek	95
Fairburn (Spence Branch) 400	0.040	TF	60	Spence Branch	95
Union City	2,450	0.245	Activated Sludge + Cl ₂	245	Deep Creek	95
Palmetto	6,000	0.600	Activated Sludge + Cl ₂	600	Town Branch	86
Arnco Mills	7,000	0.700	Primary	4,900	Wahoo Creek	62
Newnan	7,500	0.750	Activated Sludge + Cl ₂	750	Mineral Springs	51 - 70
Newnan	3,500	0.350	Secondary	525	Cotton Mill Branch	
Newnan	4,000	0.400	Secondary + Cl ₂	600	Snake Creek	
Newnan	400	0.040	Activated Sludge + Cl ₂	40	Sandy Creek	
Sargent	600	0.060	Primary	420	Wahoo Creek	62
Grantville			Septic Tank		Yellowjacket Creek	35 - 44
Grantville			Septic Tank		Walnut Creek	

* Data based on <u>Inventory of Water Pollution Control Facilities</u>, Vol. I, Cities and Counties, Georgia Water Quality Control Board, March 1971.

SOURCES OF MUNICIPAL POLLUTION TO THE CHATTAHOOCHEE RIVER *

County, City, or Subdivision	Sewered Population Equivalent	Design Flow (mgd)	Treatment	PE Dis- charged	Receiving Stream	Miles Upstream From West Point, Georgia
Franklin	850	0.085	Activated Sludge	85	Chattahoochee	34
Hogansville	5,000	0.50	Activated Sludge + Cl ₂	500	Yellowjacket Creek	32
LaGrange (Shoal Ck.)	2,500	0.250	$TF + Cl_2$	375	Shoal Creek	19 - 26
LaGrange Blue John (Sewage)	2,500	3.500	TF + Cl ₂	×375	Blue John Creek	(Below Dam)
LaGrange Yellowjacket	10,000	1.00	$TF + C1_2$	150	Yellowjacket Creek	32
LaGrange Blue John (Industrial)	51,000	2.5	Aeration	1,530 (70%)	Blue John Creek	(Below Dam)

* Data based on <u>Inventory of Water Pollution Control Facilities</u>, Vol. I, <u>Cities and Counties</u>, Georgia Water Quality Control Board, March 1971.

TABLE II

SOURCES OF INDUSTRIAL POLLUTION*

Location	Name	Type of <u>Industry</u>	Type of Waste	Remarks
Atlanta	Sonoco Products	Paper Repulping	Process Waste	Has fiber recovery. Will discharge to the expanded R. M. Clayton secondary treatment plant when it becomes operational.
Atlanta	Municipal Incinerator	Waste Incineration	Non-combustible Residues	Discharges to two large settling basins, cleaned alternately. Elemental analysis showed (mg/l of total suspended plus dissolved fractions): Zinc 2.3, Lead 2.0, Manganese 2.2, Aluminum 31.2, Iron >6.2.
Newnan	Wm. L. Bennell Co.	Aluminum Anodizing	Acid, Cr, Al	Waste treatment is inadequate. Has an equalization pond, but acid dis- charges still occur. Effect on receiving creek is severe but effect on Chattahoochee is difficult to measure.
Newnan	Ga. Power Co. (Yates Plant)	Electrical Generators	Hot Water	Has no cooling towers, will be in violation if Ga. water quality standards are changed to allow a 5°F maximum temperature rise.
Franklin	Franklin Aluminum Co.	Aluminum Anodizing	Acid, Cr, Al	Waste treatment is inadequate. Not in compliance with Ga. Water Quality Control Board.

* Information supplied by Georgia Water Quality Control Board

STUDY METHODS

SAMPLING STATIONS

Thirteen sampling stations were established for the study on the Chattahoochee River and its principal tributaries between Franklin and West Point, Georgia. Eight stations were established in the main river channel; the remaining five were in the tributaries along this 35-mile stretch of the Chattahoochee.

Chemical, biological and bacteriological sampling sites coincided as closely as was physically possible. Cross-section samples at third points were collected at all the Chattahoochee River sites except Station 7. In the tributaries and at Station 7 mid-channel samples were taken. During the summer reconnaissance it was determined that sufficient mixing precluded the need for more than one sample. All water samples were collected at a depth of one foot. The location of these sampling stations is shown in Figure 3 (end of report). A description of the locations is presented in Appendix B.

SAMPLING SCHEDULE

Originally, two sampling periods were selected for this study. Based on previous weather records, a late summer period (August 10-21, 1970) was established to determine conditions of low-flow, warm temperature, and a winter period (February 17-25, 1971) to determine conditions of high-flow, cold temperature. Because of unseasonable
rainfall it was necessary to collect samples at three summer intervals (August 11-14; September 3-4; and September 14-18, 1970) to obtain adequate seasonal data.

Water samples for physical, chemical and bacteriological analyses were collected daily. A diurnal study at selected stations was conducted on September 17, 1970. Grab sampling techniques (one sample per day per station) were used for daily collections and hourly sampling was done for the diurnal study. Time of the daily sampling was staggered in order to complement the diurnal study. Samples for biological analyses were limited to an investigation per station per seasonal study.

PHYSICAL AND CHEMICAL ANALYSES

Measurements and analyses were performed either immediately upon collection at the sampling site, within a few hours of collection at the mobile laboratory in LaGrange, Georgia (Figure 13), or at the Southeast Water Laboratory in Athens, Georgia. The parameter studied, frequency of measurement and location where analysis was performed are presented in Table III.

The U. S. Geological Survey supplied flow measurements from their Chattahoochee River gage (mile 306.7).

BIOLOGICAL ANALYSES

For plankton analysis, surficial grab samples of water were collected twice at each station in the summer and once per station

Figure 13. The Southeast Water Laboratory Mobile Unit at LaGrange, Georgia

PHYSICAL AN	ID CHEMICAL ANALYSES	
	Frequency Of	Where
Parameter	Measurement	Determined
<u>Physical</u>		
Temperature	Daily & Diurnal	Field
Color	Daily	Mobile Lab
Turbidity	Daily	Mobile Lab
рН	Daily & Diurnal	Field & Mobile Lab
Conductivity	Daily	Mobile Lab
<u>Chemical</u>		
Total Dissolved Solids	Daily	Athens, Georgia
Suspended Solids	Daily	Athens, Georgia
Dissolved Oxygen	Daily & Diurnal	Mobile Lab
Biochemical Oxygen Demand	Selected Times	Mobile Lab
Alkalinity	Daily & Diurnal	Mobile Lab
Chloride	Daily	Mobile Lab
Nitrogen	Daily	Athens, Georgia
Phosphorus	Daily	Athens, Georgia
Total Organic Carbon	Daily	Athens, Georgia
Manganese	Daily	Athens, Georgia
Iron	Daily	Athens, Georgia

TABLE ĮII HYSICAL AND CHEMICAL ANALYSE

in the winter. Total phytoplankton counts (number/ml) were determined in the Southeast Water Laboratory.

Artificial substrate samplers were used to collect periphyton (Figure 14) and macroinvertebrates (Figure 15). Dipnet collections were made at each station for additional qualitative information. Analysis was done at the Southeast Water Laboratory.

BACTERIOLOGICAL ANALYSES

All bacteriological samples were collected at a depth of approximately one foot using a grab technique. Samples were placed in ice and analyses were initiated within six hours after collection.

Total coliform densities were determined using the membrane filter technique as outlined in <u>Standard Methods for the Examination</u> of <u>Water and Wastewater 13th Edition</u> (7). The fecal coliform densities were determined using the membrane filter procedure of Geldreich <u>et al</u> (8) (which employs M-FC broth and an incubation temperature of 44.5° C).

Qualitative determinations for the presence of <u>Salmonella</u> were made at selected stations using the modified swab technique of Moore. (9) The swabs were suspended just beneath the water surface for a 3-5 day period, retrieved, placed in sterile plastic bags and returned to the laboratory for analysis. Swabs were placed into wide-mouth jars containing approximately 200 ml of 1 1/2 strength Tetrathionate Broth with brilliant green added (1:100,000 w/v). The inoculated enrichment was incubated for 18 to 24 hours at 41.5° C according to the procedure of Spino.(10)

Figure 15. Artificial Substrate Used to Collect Macroinvertebrates.

After primary enrichment, an inoculum was streaked onto Bismuth Sulfite Agar (BS), XLD Agar, Taylor (XLD), and Hektoen Enteric Agar (HE) plates and incubated at 35°C for 18-24 hours. Suspected <u>Salmonella</u> colonies were picked from the respective plates and subjected to the identification scheme outlined in Table IV.

The methods and media outlined in Table IV are described by Ewing, (11) with the exception of the cytochrome oxidase and lysine decarboxylase methods. Oxidase and decarboxylase activity was determined using Patho-Tec-CO and Patho-Tec-LD* reagent impregnated paper strips respectively.

Definitive serological identification of <u>Salmonella</u> isolates was made at the Southeast Water Laboratory. The methodology used was the standard serological procedures described by Edwards and Ewing.(12) Verification of these identifications was made by the Enteric Bacteriology Unit of the National Center for Disease Control, Atlanta.

* Does not imply endorsement of this product.

TABLE IV

IDENTIFICATION SCHEME FOR SALMONELLA SUSPECTS

STUDY FINDINGS

PREVIOUS STUDIES

In 1964, 1965 and 1966 some water quality data were collected by the U.S. Public Health Service in the Chattahoochee River Basin. Ten sampling sites were included in the area to be impounded by the West Point Dam. Data are in the form of "STORET" printouts depicting bacteriological, physical and chemical measurements (Appendix C). The bacteriological data are adequate for the periods and locations studied; however, data on most of the physical and chemical parameters are insufficient for comparison with postimpoundment conditions.

In January 1970, the Georgia Water Quality Control Board published data from their Chattahoochee River monitoring program for the calendar years of 1968 and 1969.(2) These chemical, physical and bacteriological data are based on monthly grab samples from eight sites in the Chattahoochee between Atlanta and Franklin, Georgia. Dissolved oxygen and fecal coliform profiles from that program are reproduced here as Figures 16 and 17.

In 1965, a U.S. Public Health Service investigation briefly described the biological quality of the river and selected tributaries.(3) The report included two stations in this preimpoundment study area: Station 9 and 12. Excerpts can be found in Appendix D.

FIGURE 16

1970-1971 STUDIES

Survey data from the summer and winter preimpoundment studies are discussed together in this section to facilitate comparisons. A tabulation of certain statistical values for the water quality parameters measured is presented in Appendices E and F.

RAINFALL AND RIVERFLOW

Annual precipitation in the study area is 55.61 inches. Distribution is relatively even throughout the winter, spring and summer months. Records show 28 to 29 percent of the rain falls during each of these seasons. The dry period is autumn when about 15 percent of the total rainfall occurs.

During the August survey, rainstorms slightly elevated the riverflow. Turbidity fluctuations and other problems associated with rainfall and runoff resulted in the postponement of the second week of the summer, low-water level, study until September. Minor showers occurred during the other survey periods but they caused no major problems. Daily rainfall data for the summer and winter survey periods are presented in Table V.

River discharge was measured by a Corps of Engineers gage on Highway 27 near Franklin, and a USGS gage at Highway 29 near West Point, Georgia. Figure 18 shows that streamflows in August and September were very close to the annual average flow of 4000 cfs, in spite of the unseasonable rainfall. Flows during the winter survey were far above the average flow. Large weekly fluctuations during the low water study were closely correlated with dam releases from upstream reservoirs.

CORRELATIONS OF FLOW WITH WATER QUALITY PARAMETERS

Fluctuations in several parameter concentrations appear to correlate closely to streamflow fluctuations. The mechanism involved is presumably suspension of sediment or flushing of land surface and isolated bodies of water. Parameters that matched flow variations fairly closely include: turbidity, total iron, total solids, dissolved solids, total phosphates, total manganese, total organic carbon and -to a slight extent -- chlorides (Appendices E and F).

Both total and fecal coliforms (as shown for Station 12 in Figure 18a) and total Kjeldahl nitrogen (Appendices E and F) matched flow to some extent, yet showed independent variations also. Ammonia concentrations increased with initial rises in stream flow and then dropped quicker, or to a greater extent, than did streamflow. This could be contributed to the scrubbing effect of the atmosphere by heavy rains. Dilution had apparently become significant after initial flushing.

In terms of total quantities of pollutants discharged, those whose concentrations increased with flow were even more significant. Or, illustrating this point in a different way: Figure 18a shows concentration of fecal coliform on February 23 and 25 of 21,000 and 33,500 per 100 ml, respectively. However, in terms of total quantities (the products of flow and concentrations); the February 23 data represents a 25 percent greater amount than does February 25.

FIGURE 18 A

TABLE V

RAINFALL DATA* (Inches)

Day			
of Month	August 1970	September 1970	February 1971
<u>IIIIII</u>	Magabe 1970		
1	0	0	0
2	0.09	0	0
3	0	0.60	0
4	0.13	0	0.35
5	0.43	0.04	0.85
6	0	0.25	0
7	0.17	0.11	1.03
8	0	0.80	0.80
9	0.05	0	0
10	0.95	0	0
11	0.48	0	0
12	Т	0	0
13	0.20	0	0.52
14	0	0	1.63
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0.09	0	0
20	0.48	0	0.74
21	0.28	Т	0.34
22	Т	0	1.25
23	0	0	0.05
24	0.47	0	0
25	0	0	0
26	0	0	0
27	0	0	0.83
28	0.10	0	0
29	0.05	0	-
30	0	0	-
31	0	-	-

* From the National Climatic Center, LaGrange, Georgia.

T represents a trace measurement for rainfall.

TEMPERATURE

The study area is located in a temperate climate characterized by short, mild winters and long, warm summers. Extremes include temperatures approaching zero in winter and summer heat waves approaching 100°F.

Water temperatures reflected the seasonal air temperature changes and to a lesser degree the summer shading effect of overhanging shoreline vegetation. Water temperature in the main Chattahoochee channel had the most variation. Measured temperatures ranged from 21 to 28° C in summer and from 10 to 15.5° C in winter. Shallow tributaries that were heavily shaded during the summer had slightly lower water temperatures, measurements ranged from 21.5 to 26° C. In the winter the water temperature in the shallow tributaries was closely correlated with changing air temperatures. Measured temperatures ranged from 8 to 15.5° C (Figure 19).

COLOR AND TURBIDITY

The Chattahoochee River and its tributaries, the New River, Yellowjacket Creek and Wehadkee Creek, from mile 343.1 to 306.7 were low in color. Values ranged from 10 to 50 units* at all stations during both warm and cold weather phases of the study. Water color was caused by both organic and inorganic sources. This judgement was based upon the fact that humic materials were observed in abun-

^{*} One exception - a value of 65 color units was recorded in Yellowjacket Creek at Station 8 on February 23, 1971.

ance in the river and tributaries and inorganic sources such as iron and manganese compounds were present in excessive amounts also.

Suspended silt, clay, and finely divided organic matter made the river generally turbid. The phytoplankton population was sparse and contributed little to the turbidity values observed. The amount of turbidity fluctuated depending on stream flow and meteorological conditions. Rainstorms that delayed the summer sampling reflected themselves in maximum turbidity values of 125 Jackson Candle units. In the winter, during high-flows, turbidity values reached maximums of 250 Jackson Candle units. Normally, values were less than 50 Jackson units in the summer but were nearly doubled in the winter.

pH, CONDUCTIVITY AND SOLIDS

The pH values never varied more than 0.7 of a pH unit from neutrality. In highly productive waters, high pH values often occur as the photosynthetic process of aquatic plants converts carbonate to carbon dioxide thus increasing the hydoxide content. The lack of a diurnal pH elevation in the Chattahoochee River and its tributaries suggests that photosynthetic activity was insufficient to cause such an equilibrium shift.

Low conductivity values were recorded at all stations during both survey period. Wehadkee Creek (Station 4) had the lowest dissolved mineral content as reflected by its conductivity measurements (summer 44 to 69; winter 26 to 42 µmhos/cm). Elsewhere, average warm weather measurements ranged from 57 to 84 µmhos/cm while average

cold weather results were lower, 33 to 59 µmhos. The slightly lower values in Wehadkee Creek indicated that it was the only stream under study that was not receiving an industrial or domestic waste load.

Total dissolved solids were low but variable. In August and early September 1970, intermittent rainstorms and upstream reservoir releases caused unstable streamflow. These conditions were reflected in the wide range of dissolved solid values, from 9 to 172 mg/l. The third warm weather study, September 14-18, 1970, was conducted while more stable streamflow conditions prevailed, and dissolved solids ranged from 8 to 81 mg/l. These data were more characteristic of the solids content to be expected during a warm, dry period. In February 1971, streamflows fluctuated widely, and the dissolved solids ranged from 27 to 128 mg/l which was a smaller range than during the first summer-study period.

Suspended solids somewhat paralleled the dissolved solids. During the summer rainy period, suspended solids ranged from 19 to 90 mg/1. Cold weather samples reflected unstable streamflow conditions with range values of 2 to 874 mg/1.

DISSOLVED OXYGEN AND BIOCHEMICAL OXYGEN DEMAND

In view of the considerable amounts of waste entering the Chattahoochee River (Tables I and II), the dissolved oxygen (DO) and five-day biochemical oxygen demand (BOD₅) were significant parameters. The DO and BOD₅ values obtained in the August and the early September study were not representative of low-water, warm weather conditions. Heavy rainfall and frequent water level fluctuations because of the upstream reservoir releases caused as much as a 1.0 mg/l increase in the DO and caused a modification in the BOD₅ results. The data show a slight DO depression at Station 12 (4.5 mg/l) when compared to samples collected downstream (range: 5.0-8.0 mg/l). The mid-September study was done during a representative period of relatively warm weather with stable low-water conditions.

Dissolved oxygen values as low as 3.4 mg/l were recorded at Station 12 in mid-September (43 percent saturation). Downstream measurements showed the riverwater was being reaerated. Summer DO content of samples from Station 10 and downstream ranged from 5.0 to 8.8 mg/l; no values less than 62 percent of saturation was recorded. The September studies also showed that the BOD₅ was being diluted and/or assimilated with downstream water travel. Average BOD₅ values of 1.5 and 2.0 mg/l at Stations 12A and 12B, respectively, were reduced to 0.7 and 0.4 mg/ at Stations 10A and 10B, respectively. Values continued at these concentrations (or slightly less) downstream.

The cold weather survey was done at approximately the annual peak flow period. High streamflow and the increased solubility of oxygen in cold water resulted in DO concentrations at all stations ranging from 4.6 to 11.5 mg/1. The BOD_5 values increased during the unstable, high-water conditions to a high of 5.7 mg/1.

ALKALINITY

Total alkalinity concentrations did not exceed 36 mg/l as CaCO₃ and the average value for most stations was about 15 mg/l as CaCO₃. This low buffering capacity existed during both seasonal studies. Hardness was not measured, but previous records of the Georgia Water Quality Control Board showed that a close correlation between alkalinity and hardness existed in the Chattahoochee River(13). Thus suggested that most water hardness in the basin is carbonate hardness.

CHLORIDE

Chloride values were far below concentrations likely to cause a problem in the proposed reservoir. Measurements ranged from 2 to 10 mg/1.

NITROGEN AND PHOSPHORUS

Much research has been directed at the importance of major nutrients such as nitrogen and phosphorus (or their components) in promoting vegetative production. Nitrogen analyses made in this study included the measurement of ammonia, (NH_3) , nitrite + nitrate (NO_2+NO_3) and total Kjeldahl nitrogen (TKN). Results showed organic nitrogen (TKN minus NH_3) and inorganic (NH_3 plus NO_2 and NO_3) nitrogen levels were appreciably lower in the summer than in the winter. Summer concentrations of organic and inorganic nitorgen ranged from 0.118 to 0.240 mg/l and from 0.341 to 1.206 mg/l, respectively. The summer data reflected utilization by plant growth; none of the values are abnormal for surface waters in this section of the United States. Phosphorus analyses included a measurement of total and soluble phosphorus. Results indicated a slight seasonal variation in total phosphorus levels. Summer results, in the main river channle, ranged from 0.17 to 0.76 mg/l while winter results ranged from 0.15 to 0.98 mg/l. Tributaries generally had lower concentrations (e.g., 0.01 to 0.08 mg/l in Wehadkee Creek). The upper limit of the ranges recorded for the river were in excess of suggested allowable limits (0.1 mg/l in flowing streams and 0.05 mg/l P where waters enter a lake) (14). Although nuisance phytoplankton growths were absent in 1970 and 1971, there is a possibility that they may occur in the impoundment. Of course, nutrients are necessary for high fish production and this benefit must be balanced against other disadvantages.

TOTAL ORGANIC CARBON

The importance of organic compounds in plant nutrition is not well known. Certain plants and animals are thought to utilize simple organic compounds such as dissolved carbon, while bacteria are capable of utilizing the more complex forms. In spite of incomplete knowledge about the nutritional role of carbonaceous materials, excessive amounts have been associated with nuisance growths and other water pollution problems.

Water samples from the proposed impoundment watershed were tested for total organic carbon content (TOC). The highest summertime TOC value, 13.0 mg/l, was recorded in August at Station 6 in the Chattahoochee River at the mouth of Yellowjacket Creek. In the past,

Yellowjacket Creek had received a substantial amount of untreated or partly treated domestic and textile industry wastes. At present most of these wastes are treated, and TOC values reflect the improved water quality conditions. Other summertime TOC values ranged from 2 to 11 mg/1. The winter survey results were similar. Ranges in TOC were 1 to 14 mg/1. Presently, these values seem to be causing some problems. At Station 6 and in Yellowjacket Creek, August data showed that 71 to 92 percent of the attached algae (by number) were filamentous blue-greens. A similar, but unexplained condition existed in Wehadkee Creek where maximum TOC values reached 10.0 mg/1. If upstream wasteloading is continued, an imbalance in nutrients will occur and nuisance blue-green algae growths can be expected.

IRON AND MANGANESE

Trace metals such as iron, manganese, molybdenum, cobalt, zinc, etc. are present in all natural waters and are required in small amounts in the metabolic process of plants. Iron and manganese are of special concern in impoundment waters because of their potential increase in solubility under reducing (anaerobic) conditions, resulting in a build-up of dissolved forms. The dissolved forms, if excessive, produce an objectionable taste, stain laundry, support undesirable bacterial growths (i.e., from iron bacteria), and generally deteriorate water quality.

The multiple water uses planned for the Chattahoochee River within and downstream from the West Point Lake include municipal

potable water supply and process water supply for the textile industry. It is desirable for municipal supplies that both iron and manganese levels, in the dissolved form, remain at very low concentrations (<0.3 mg/l for iron and <0.05 mg/l for manganese in finished water) so as not to interfere with consumer use.

In the summer, particulate iron values averaged from 1.453 to 5.530 mg/l and particulate manganese averaged from 0.117 to 0.232 mg/l. Winter values were generally higher and averaged from 1.200 to 14.290 mg/l for iron and from 0.030 to 0.430 mg/l for manganese. The highest value for particulate iron (73.0 mg/l) was found in near flood conditions in February, and probably represents suspended sediment. Much of this may become soluablized during and after impoundment.

Dissolved fractions of these metals generally followed a similar trend, that is, cold weather averages were generally higher. However, the highest single sample concentrations for dissolved iron (0.8 mg/l) and dissolved manganese (0.440 mg/l) were recorded in September at Station 2 -- below the dam site -- and Station 4 in Wehadkee Creek, respectively. These values exceeded concentrations levels suggested as maximums for potable and textile-process water use. It is essential that the Corps of Engineers in cooperation with appropriate state agencies maintain surveillance of these parameters as the reservoir is filled and after impoundment, because the preimpoundment levels indicate water quality problems are probable in the proposed lake.

DIURNAL STUDIES

An intensive sampling schedule was established for one day during the summer study. Four stations (5, 6, 10, 12) were sampled hourly from 7:00 a.m. to 7:00 p.m. Samples were analysed for pH, alkalinity, DO and temperature. In conjunction with other grab sample data, these hourly analyses were useful in developing a representative record of quality. Diurnal variations for each parameter are graphically shown in Figure 20. More detailed data are given in Appendix B.

PHYTOPLANKTON

Nutrients in the Chattahoochee River were obviously being assimilated by plant forms other than phytoplankton. The total population of the free-floating algae did not exceed 600 cells/ml. In the late summer study, the population values ranged from 33 to 495 cell per milliliter. Winter study ranges from 80 to 583 cells per milliliter. With such low densities, seasonal variations were not clear. The summer and winter plankton data are graphically compared in Figure 21. More detailed phytoplankton data are presented in Appendix H.

PERIPHYTON

Study of the periphyton community revealed that the river's greenish discoloration was due to masses of attached algae often referred to as periphyton. The algal coating of submerged rocks generally decreased from station-to-station downstream. Table VI shows the relative abundance and biomass of periphyton in the study area.

Comparison of summer and winter data clearly showed seasonal variation. In late summer, the nuisance-producing blue-green algae

TABLE VI

Comparison of Average Biomass and Relative Abundance of Periphyton in the Summer 1970 and Winter 1971 (West Point Preimpoundment Survey)

	2	Biomass	Abundance					
Station *	(gm/m ² ash	free dry weight)	(number	of cells/mm ²)				
	Summer	winter	Summer	Winter	_			
IL	24.88615	0.00261	2,041	1,132				
IR	4.48000	0.01248	965	1,061				
2L	no sample	0.00931	no sample	5,599				
2R	12.81846	0.00199	22	3,447				
3L	0.84293	0.00144	312	673				
3R	32.62153	0.00052	531	288				
4	5.97230	no sample	676	no sample				
5L	23.26769	0.00253	1,064	2,784				
5R	87.58769	0.00143	411	2,605				
6L	13.07384	0.00088	543	43				
6R	25.33230	0.00590	224	7,073				
7	1.99692	no sample	408	no sample				
8	no sample	no sample	no sample	no sample				
9	13.22153	0.00155	335	325				
10L	8.96923	0.00629	no sample	463				
10R	1.55384	0.00743	648	309				
11	2,55076	0.00618	14	1,114				
12L	8,70153	0.00476	263	535				
12R	127.12000	0.01868	89	1,627				
13	6,32307	0.06925	353	540				

* L represents left shore facing upstream. * R represents right shore facing upstream.

dominated certain stations (Table VII). Winter samples showed diatoms were dominate (Table VIII). This cyclic trend is normal, but the amount of periphyton build-up reflected very nutrient rich waters.

Table VII									
Periphyton Population at Sampling Stations									
in the Chattahoochee River and Tributaries									
(Anoust 1970)									

		ALGAE (number per mm ²)										
SAMPLI	e ION	TOTAL ALGAE	BLUE, GI	REEN	GRE	EN	FLACEI (pigme	LATES ented)	DIAT	COMS	INER SHEL	T DIATOM LS
Station No.	Depth		Coccofd	Filamentous	Coccoid	Filamentous	Green	Other	Centric	Pennate	Centric	Pennate
IR	Surf	965	0	0	3	7	0	0	13	942	4	125
1L	11	2,041	0	0	24	3	0	0	23	1,991	6	188
2R	11	22	0	0	0	0	1	0	9	12	1	6
2 L	11	no sample	-	-	-	-	-	-	-	-	-	-
3r	**	531	2	0	0	0	0	0	69	460	17	153
3L	11	312	14	49	2	6	0	0	8	233	5	75
4	"	676	0	657	0	0	0	0	1	18	0	7
5R	"	411	0	114	4	130	о	o	15	148	7	98
5L	"	1,064	0	58	7	35	0	0	14	950	3	631
6R	"	224	0	158	0	37	о	0	10	19	1	18
6L	11	543	0	75	4	0	0	0	9	455	2	129
7	"	408	о	77	4	0	0	0	2	325	0	113
8	11	no sample	-	-	-	-	-		-	-	-	-

Table	VII	-	Con	't
-------	-----	---	-----	----

		ALGAE (number per mm ²)									<u> </u>	
SAMPLI LOCAT	B EON	TOTAL ALGAE	BLUE G	REEN	GRE	EN	FLACEI (pigme	LATES ented)	DIAT	COMS	INER SHEL	T DIATOM LS
Station No.	Depth		Coccoid	Filamentous	Coccoid	Filamentous	Green	Other	Centric	Pennate	Centric	Pennate
9	Surf	14	0	0	0	4	0	0	0	10	0	7
10R	"	648	0	0	5	0	0	o	30	613	5	202
10L	17	no sample		~	-	-	-	-	-	-	_	
11	"	14	0	o	0	4	0	0	0	10	0	6
12R	"	89	0	22	1	0	0	0	2	64		3
12L	13	263	0	0	0	0	0	0	13	250	2	2
13	**	353	0	o	6	0	0	0	0	347	0	54
					Į					• • •		74
					Į							
					{							i i
			L	L	I							

TABLE VIII PERIPHYTON POPULATION AT SAMPLING STATIONS IN THE CHATTAHOOCHEE RIVER AND TRIBUTARIES (February 1971)

	ALGAE (number per mm ²)										
SAMPLE LOCATION	TOTAL ALGAE	BLUE. GI	REEN	GREEN		FLAGEI (pigme	FLAGELLATES (pigmented)		roms	INERT DIATOM SHELLS	
Station No. Depth		Coccold	Filamentous	Coccoid	Filamentous	Green	Other	Centric	Pennate	Centric	Pennate
1R	1,061	0	0	3	6	9	0	0	1,043	0	31
1L	1,132	0	0	6	62	3	о	25	1,036	0	68
2R	3,447	0	25	6	37	6	о	0	3,373	0	80
2L	5,600	0	37	12	217	12	о	0	5,322	0	1 248
3R	288	0	2	6	6	1	0	7	266	0	20
3L	673	0	1	1	9	1	0	0	661	0	46
5R	2,605	0	19	0	62	25	0	130	2,339	0	340
5L	2,784	0	0	3	2,156	6	0	31	588	0	46
6R	7,073	0	31	37	99	12	0	111	6,781	0	223
6L	43	0	0	1	2	3	0	1	36	0	4
9	325	0	1	1	1	1	0	1	320	1	30
10R	309	0	1	1	2	2	0	1	302	0	6

TABLE	VIII	~	Cont
-------	------	---	------

		ALGAE (number per mm ²)										
SAMPLE LOCATIO	N	TOTAL ALGAE	BLUE GE	REEN	GRE	EN	FLACEL (pigme	LATES inted)	DIAT	COMS	INER SHEL	t diatom Ls
Station No.	Depth		Coccoid	Filamentous	Coccoid	Filamentous	Green	Other	Centríc	Pennate	Centric	Pennate
10L		463	0	1	1	19	2	0	5	435	1	42
11		1,114	0	0	0	0	3	0	0	1,111		42
12R		1,627	O	D	19	322	6	0	0	1,280	0	130
12L		535	0	0	2	47	1	0	15	470	0	26
13		540	0	Q	Q	14	Q	Q	Q	526	0	6

MACROINVERTEBRATES

Seasonal succession, water velocity and pollution were found to be three major factors that caused differences in the Chattahoochee River invertebrate community.

Seasonal distribution studies (15)(16)(17) have shown that there is no growing season common to all invertebrates, but generally populations are more diverse in the winter. Summer and winter populations are recorded in Appendix I.

The importance of water velocity on the invertebrate community was demonstrated by placing artificial substrates in pools and near riffles. Invertebrates collected in the pooled areas consisted almost entirely of midges and worms. In swift current areas, a diverse fauna of insects, crustaceans, molluscs, and worms were found in the substrate samplers. It was thought this information would be useful in predicting population changes when the river becomes impounded. Further discussion on this topic follows in the section titled, "Environmental Changes Following Impoundment."

Pollution from Atlanta's waters formed sludge beds downstream that covered portions of the Chattahoochee River's natural bottom. Profuse numbers of sludge worms were found in this deposit. Near the Highway 92 between Fairburn and Douglasville bridge, the sludge worm population was so dense that it gives a reddish-color to the river's shoreline.(18) Predatory leeches that feed on the worms abounded in the river near this bridge. The food web was simple -- organic materials were consumed by worms and the worms were eaten by leeches. As the food supply diminished, the leech population decreased. Comparison of the summer study biotic data from Station 12 with downstream stations showed this pattern of a decreasing leech population (Figure 22). During these

summer studies, a substrate sampler at Station 12 contained 143 organisms. Of these, 122 or 85 percent were leeches. This and other biotic data indicated Station 12 was a pollutional recovery area. About 10 miles downstream, another sampler (Station 10) contained 105 organisms and only 13 percent were leeches which indicated a relatively clean water zone.

Pollution is rarely reflected by the presence of absence of a single species or group. Yet in this study, the summer leech population clearly delineated the pollutional effect from Atlanta's industrial and municipal wastes. Winter time scouring and the dilution of wastes by the high water altered invertebrate populations making the pollution pattern indefinite.

COLIFORM BACTERIA

A total of 320 bacteriological samples were collected and analyzed for total and fecal coliform bacteria densities. These results are summarized in Table IX and graphically presented in Figures 23, 24 and 25.

The bacteriological quality of the Chattahoochee River within the study area was adversely affected by wastes being charged from the greater Atlanta area. The uppermost river station (Station 12, mile 343.1) had the highest mean total and fecal coliform densities throughout the studies. (Table IX and Figures 23 and 24.)

Additional waste from land runoff and treated domestic wastes from the City of LaGrange's Yellowjacket Waste Treatment Plant entered the river at mile 321.9. The steady decrease in the total and fecal coliform levels continued at the stations downstream of Franklin, Georgia (Station 12). (Figures 23 and 24.)

TABLE IX

BACTERIOLOGICAL DATA SUMMARY

<u>Station</u>	Total <u>Coliforms/100_ml¹</u> /	Fecal <u>Coliforms/100 ml^{1/}</u>	Number of <u>Determinations</u>
1A*	17,000	820	16
1B*	18,000	1,000	17
2A	10,000	620	12
2B	10,000	820	12
3A	12,000	710	12
3B	9,800	560	11
4	2,000	200	17
5A	24,000	1,700	17
5B	25,000	1,600	16
6A	35,000	3,000	16
6B	35,000	2,400	16
7	44,000	2,900	16
8	17,000	1,800	16
9	4,200	600	16
10A	46,000	2,700	16
10B	38,000	3,100	16
11	3,800	540	16
12A	60,000	5,100	16
12B	66,000	5,100	16
13	1,500	220	16

1/ Geometric Mean \star A - right bank looking upstream; B - left bank looking upstream.

FIGURE 23 GEOMETRIC MEAN TOTAL COLIFORM DENSITIES AT THE CHATTAHOOCHEE RIVER STATIONS 12 R.M. 343.1 10 R.M. 328.0 New River S.2 CHATTAHOOCHEE RIVER Yellowjacket Creek Wehadkee Creeka West Point Dama R.M. 316.2 NOTE: STATION LOCATIONS NOT TO SCALE 2 RM 309.2 SCALE SOUTHEAST WATER LABORATORY 2,000-ATHENS GEORGIA 1.000-WEST POINT PREIMPOUNDMENT STUDY R.M. 306.7 ENVIRONMENTAL PROTECTION AGENCY FECAL COLIFORMS / 100 ml. WATER QUALITY OFFICE SOUTHEAST REGION ATLANTA, GEORGIA

Using the geometric mean total and fecal coliform densities at Station 12 to represent a theoretical 100 percent of the indicator organisms entering the study area, a 70 percent reduction in total coliform density and 80 percent reduction in fecal coliform density occurred between this station and Station 1 (mile 306.7) at West Point (Figure 26). The reduction in indicator densities should be much greater after impoundment because of the cumulative effect of dilution, settling and increased time of flow from the upper reaches of the impoundment to the dam site.

That portion of the river within the study area is classified by the State of Georgia for recreational use. The present bacteriological standard for recreational waters adopted by the State of Georgia is a monthly arithmetic mean of 1000 fecal coliforms per 100 ml. This standard is presently under review by the Environmental Protection Agency as being too permissive. The National Technical Advisory Committee has recommended a bacteriological criterion for primary contact recreational waters not to exceed a log mean of 200 fecal coliforms per 100 ml.

The mean fecal coliform densities at every river station above Station 3(mile 309.2) were in violation of the present recommended recreational standard 100 fecal coliforms per 100 ml (Table IX). After impoundment, assuming the proposed treatment facilities in Atlanta are completed, the bacteriological quality of the water should be improved and no difficulty encountered in meeting the present recommended bacteriological standard or a more restrictive standard in the lower portions of the impoundment. However, there may be problems in the upper reaches of the impoundment in meeting a more restrictive bacteriological standard (e.g. 300/100 ml).

* The means expressed in the report are geometric means.

The tributaries within the study area were generally free of any major point sources of fecal pollution, with one exception. Yellowjacket Creek was influenced by treated waste discharged from the City of LaGrange's Yellowjacket Waste Treatment Plant and Hogansville, Georgia, Sewage Treatment Plant. The effect of these wastes is seen at Station 8 which had a mean fecal coliform density of 1800/100 ml. This station was located approximately one-half mile downstream from the Yellowjacket Waste Treatment Plant outfall. Station 9, located on Yellowjacket Creek, upstream from LaGrange, had a mean fecal coliform density of 600/100 ml.

New River (Station 11) had a mean fecal coliform density of 540/100 ml which indicated no major fecal contamination. A sanitary survey in the area indicated that livestock could account for some fecal contamination along this tributary.

Wehadkee Creek appeared to be free from any major sources of fecal contamination, as indicated by mean fecal coliform densities of 200/100 ml and 220/100 ml at Stations 4 and 13 respectively. Wildlife and livestock within the area possibly contributed small amounts of fecal waste to Wehadkee Creek.

The bacteriological data collected during the summer and winter studies were separated into rainfall periods (high flow conditions) and dry periods (stable flow conditions). The rainfall data used in reporting the data were obtained from the National Climatic Center, LaGrange, Georgia (Table V). The data were separated in this manner to delineate the effect of land runoff upon the bacterial quality of the streams. The rainfall period included the first week of the summer study and the second week of the winter study. The remainder of the summer and winter studies constituted the dry period or stable flow period.

As seen in Table X there were no appreciable differences in mean total and fecal coliform densities between left and right bank stations at each point in the river. These densities were averaged to give one total and one fecal coliform mean at each point in the river and are graphically presented in Figures 27 and 28. The mean total and fecal coliform densities were higher during the rainfall period than during the dry period at nearly every station. This is expected because of the additional fecal contamination and nonfecal soil related coliforms introduced into the streams by land runoff.

Stations 2 and 3 were not sampled during the last week of the rainfall period because of exceptionally high waters. The failure to obtain these samples is reflected by lower total and fecal coliform densities at Stations 2 and 3 during the rainfall period (Figures 27 and 28). Had sampling been possible during the heavy runoff period, a pattern of elevated indicator levels similar to that presented at Stations 1 and 5 would have been produced.

Generally, the smaller the stream the more noticeable the effect is from land runoff. Examples of this pattern are seen at the tributary stations (Figures 29 and 30).

ISOLATION OF SALMONELLA

In addition to the indicator determinations, special qualitative examinations were made at selected stations for the genus Salmonella.

TABLE X

COLIFORM DENSITIES RAINFALL PERIODS VERSUS DRY PERIODS

	Rainfall 1	Period	Dry Period		
Station	Total Coliforms 100 ml <u>1</u> /	Fecal Coliforms 100 ml <u>1</u> /	Total Coliforms 100 ml <u>l</u> /	Fecal Coliforms 100 ml <u>1</u> /	
1A*	44,000	2,000	6,600	300	
1B*	38,000	2,100	7,700	400	
<u>2A</u> **	13,000	820	8,500	510	
2B **	16,000	1,100	7,600	470	
3A **	18,000	1,200	9,400	500	
3B **	9,400	920	10,000	390	
4	3,500	400	900	71	
5 A .	35,000	2,500	1 6, 000	1,100	
5B	43,000	2,200	14,000	1,100	
6A	59,000	4,600	21,000	1,900	
6B	69,000	3,800	18,000	1,400	
7	82,000	4,100	23,000	2,100	
8	23,000	3,500	13,000	820	
9	9,100	1,700	1,600	150	
10 A	91,000	3,500	23,000	2,100	
10B	63,000	4,500	23,000	2,100	
11	10,000	1,200	1,100	190	
12A	110,000	6,400	34,000	4,000	
12B	130,000	7,200	33,000	3,400	
13	2,200	570	3,400	63	

 $\frac{1}{4}$ Geometric Mean * A - right bank looking upstream; B - left bank looking upstream.

****** Stations were not sampled during a one week rainfall period due to exceptionally high waters.

A total of 25 samples were analyzed for <u>Salmonella</u> during the summer and winter studies. During the summer study seven serotypes were isolated at seven stations, and during the winter study 16 serotypes were isolated at 12 stations.

<u>Salmonella</u> is a large serologically related genus comprised of some 1300 serotypes. <u>Salmonella</u> is probably the easiest enteric pathogen to isolate from environmental waters. All <u>Salmonella</u> are considered pathogenic for man, animals, or both. The presence of <u>Salmonella</u> is proof of fecal contamination and establishes the potential of disease contraction resulting from water ingestion or contact.

The relative density of an indicator is generally viewed to indicate the relative magnitude of wastes being discharged. Moreover, as the indicator level increases, so does the probability of pathogen presence increase. Tables XI and XII show the fecal coliform densities and <u>Salmonella</u> serotypes recovered during the summer and winter studies. As shown, Salmonella were isolated at stations when the mean fecal coliform densities were as low as 76, 79 and 86/100 ml and not isolated when the mean fecal coliform density was as high as 1800/100 ml. The failure to isolate Salmonella at this high FC level does not infer the insignificance of the fecal coliform group as indicators of fecal contamination. Rather, the failure to isolate Salmonella at higher fecal coliform levels possibly results from analytical inadequacies (swab technique), sporatic discharge of these pathogens, availability of host animals, or a combination of these factors. The recovery of Salmonella at fecal coliform densities of less than 100/100 ml simply underscores the fact that low indicator levels alone do not negate the possibility of pathogen presence.

TABLE XI

FECAL COLIFORM DENSITIES AND <u>SALMONELLA</u> SEROTYPES RECOVERED AT SELECTED STATIONS DURING SUMMER STUDY

Stream		<u>Sta</u> .	Mean FC/100 ml*	FC/100 m1**	Salmonella Serotypes Recovered
Chattahoochee	R.	1	240	1,400	None isolated
11	11	2	300	1,000	<u>S. typhimurium</u>
11	11	5	1,200	3,000	S. thompson
	11	6	1,800	3,300	None isolated
11	"	7	1,800	5,600	<u>S</u> . <u>rubislaw</u>
	11	10	1,600	4,900	<u>S. havana</u>
11	11	12	3,300	23,000	S. muenchen
Wehadkee Creel	c	4	100	100	<u>S</u> . montevideo
Wehadkee Creel	c	13	110	100	None isolated
Yellowjacket (Cr.	8	5,400	8,200	<u>S</u> . <u>derby</u>
Yellowjacket (Cr.	9	520	8,900	None isolated
New River		11	510	3,600	None isolated

* Geometric mean fecal coliform density during period of swab suspension. ** Fecal coliform density on day of swab retrieval.

TABLE XII

FECAL	COLIFORM	DENSIT	ES	AND	SALMONELL	A SEROI	TYPES	RECOVERED
	AT SE	LECTED	STA	TION	S DURING W	VINTER	STUDY	Z

		Mean		
Stream	<u>Sta.</u>	<u>FC/100 ml*</u>	FC/100 m1**	Salmonella Serotypes Isolated
Chattahoochee F	. 1A	640	1,500	<u>S. cubana</u>
11 1	2B	560	600	<u>S. heidelberg, S. rubislaw,</u> <u>S. infantis</u>
11 TI	3A	630	1,100	<u>S. orion, S. infantis</u>
., .,	5A	990	950	<u>S. cubana, S. san diego,</u> <u>S. heidelberg</u>
11 11	6B	1,500	900	<u>S. newington, S. heidelberg</u>
","	7	2,300	2,100	<u>S. heidelberg, S. infantis,</u> <u>S. thompson</u>
11 11	10A	2,500	2,200	<u>S. anatum, S. amager, S. blockley</u>
11 H	12A	4,700	6,000	<u>S. give, S. rubislaw, S. infantis</u>
Wehadkee Creek	. 4	86	610	<u>S.</u> <u>derby</u>
Wehadkee Creek	13	79	970	<u>S. give</u> , B, b
Yellowjacket Cr.	8	130	200	<u>S. typhimurium, S. rubislaw</u>
Yellowjacket Cr.	9	76	1,200	S. <u>newington</u>
New River 11	. 11	170	6,800	S. give

* Geometric mean fecal coliform density during period of swab suspension. ** FC density at station on day of swab retrieval (heavy rainfall previous night)

.

<u>Salmonella</u> were isolated at five of the seven river stations where recovery was attempted during the summer study and were isolated from every river station during the winter study. These numerous isolations indicate that the entire reach of the Chattahoochee River within the study area was potentially hazardous for water contact activities at the time of the study.

The isolation of <u>S. rubislan</u> during the summer study and <u>S. heidelberg</u>, <u>S. infantis</u> and <u>S. thompson</u> during the winter study at the LaGrange water intake (Station 7) emphasizes the need for adequate waste and water treatment to remove these pathogenic bacteria.

ENVIRONMENTAL CHANGES FOLLOWING IMPOUNDMENT

GENERAL

There are many well-defined water quality/enviornmental changes which result from impoundment. Classical limnology references provide much insight into results of impoundment. For the West Point project, it is appropriate that some of the changes following impoundment be discussed in this preimpoundment report -- many of these changes are beneficial but others may require that measures be taken to prevent or mitigate undesirable conditions.

PHYSICAL CHANGES

Impoundment of the Chattahoochee River by the West Point Dam will reduce water velocities and allow precipitation of suspended silt. A delta is expected to develop at the reservoir's headwaters near Franklin, Georgia. Downstream, the intermittently muddy waters of the Chattahoochee should become clear.

The water temperature regime will be modified in the reservoir. Spring temperature rises will be delayed and autumn temperatures prolonged by impoundment. Summertime thermal stratification and allied quality problems may be alleviated because the Corps of Engineers is considering methods of artificial destratification. Without such facilities, the formation of density currents and thermal stratification can be expected to change normal temperature patterns downstream. The amount of change would also depend on the withdrawal elevation for reservoir discharges.

CHEMICAL CHANGES

Predictions of future chemical changes usually includes considerable uncertainty. In the West Point Reservoir these predictions are more indefinite than usual because of pending projects that may enhance water quality. The projects include: improved treatment of wastes entering the river from the Atlanta area and an extensive artificial destratification system for the proposed reservoir.

Presently, the West Point Dam site is well downstream from the dissolved oxygen sag point caused by Atlanta's wastes. Occasionally, during the summer, the dissolved oxygen level near Franklin, Georgia, has fallen below 4 mg/1. However, the duration of low DO is so short that no adverse effects have been directly associated with this fluctuation. If thermal stratification is not extensive or prolonged, there should be no oxygen deficiency problems in the new lake.

Leaching of materials from the newly in undated bottom should be restricted largely to the early impoundment period. Although the huge volume of water stored in the reservoir after impoundment should provide sufficient dilution to prevent major problems, impoundment will cause a short term build-up of dissolved constituents.

By the time impoundment is began, most waste discharges in the watershed will be receiving secondary treatment. However, the residual nutrients in these wastes, together with raw waste discharges during rains from Atlanta's combined sewer system and surface runoff from both urban and rural areas may be of sufficient quantity to produce luxuriant algal growth. The possibility of this growth, which could interfere with recreation and could increase water treatment cost, cannot be ruled out on the basis of this study.

Another possible deleterious effect of impoundment is build-up of iron and manganese compounds in hypolimnetic waters. The soluble form of these metals in the +2 valence state produce problems in water supplies by causing obnoxious tastes, odors, and stains. Since direct lake water use includes potable and textile processing water supply, it is desirable that iron and manganese concentrations be kept low. If the Corps of Engineers installs a destratification facility in the reservoir, soluble iron in the zone of influence will be reduced but manganous forms may still be high unless the zone of destratification influence extends over most of the impounded area (19). Possible solutions to manganese problems for water supply purposes would be oxidation treatment of raw water and/or selective withdrawal of low manganese (usually epilimnetic) waters.

BIOLOGICAL CHANGES

Silt removal (decreased turbidity) and reduced water velocity are two major environmental changes caused by impoundment that drastically affect biotic conditions. (20)(21) While bacterial levels should be reduced to acceptable recreational levels, the increased sunlight penetration and the reduced velocity with adequate nutrients available will probably increase plant productivity. In open water, plankton productivity may greatly increase. Newly inundated reservoir arms and coves will likely develop lentic rooted plants. These rooted plants are basic food web elements and their biotic modifications are essential to developing a productive, well-balanced lake environment.

Bottom fauna changes will be marked by the disappearance of stream organisms and an increase in lake species. Certainly the stream-

dwelling stoneflies, caddisflies, and mayflies will not tolerate such reservoir conditions as reduced currents, deep water, or perhaps the absence of oxygen near the lake bottom. In the relatively stationary reservoir water, these flowing-water species will be replaced with other organisms. One mud-burrowing mayfly, <u>Hexagenia</u>, common to the Chattahoochee River should survive and perhaps thrive under the new conditions brought about by the impoundment. However, the principal benthic components will probably be various members of the Diptera and aquatic worm groups found in all southeastern United States lakes.

Greater fish production and better fishing are expected in the new lake because upstream pollution will be minimized by lake dilution and more fish habitat will be provided. However, a reservoir is not the solution to the Chattahoochee River pollution problem. Even with the impoundment, the headwaters of the reservoir, near Franklin, Georgia, may still be affected unfavorably by upstream pollution. The amount of river used by reservoir fish will depend on the effectiveness of pollution control program being implemented along the Chattahoochee River.

REFERENCES

- SE Comprehensive Data "STORET" printouts for Chattahoochee River Basin 1964, 1965, and 1966 (Franklin to West Point, Georgia - 10 stations).
- Georgia Water Quality Control Board, 1970. Water Quality Data -Atlanta Area - Chattahoochee, Flint, and South Rivers - 1968 and 1969 Data, pp 1-66 (mimeo).
- 3. Beck, William, Jr., 1965. A Brief Biological Survey of the Chattahoochee River and Selected Tributary Streams. USPHS, SE Comprehensive Water Pollution Control Project. pp 1-4 (mimeo).
- 4. Corps 1961 Survey Report of Chattahoochee River-West Point.
- 5. Classification for Interstate Waters in Georgia.
- 6. Proceedings of the Conference in the Matter of Pollution of the Interstate Waters of the Chattahoochee River and Its Tributaries, July 1966.
- 7. American Public Health Association, 1965. <u>Standard Methods for</u> the Examination of Water and Wastewater, Twelfth Edition.
- Geldreich, E. E., H. F. Clark, C. B. Huff, and L. C. Best, 1965. "Fecal Coliform Organism Medium for Membrane Filter Techniques," <u>Journal AWWA</u>, <u>57</u>, No. 2.
- 9. Moore, B., 1949. "The Detection of Parotyphoid Carriers in Towns by Means of Sewage Examination," <u>Bull. Hyg.</u>, <u>24</u>, 187.
- Spino, D. F., 1966. "Elevated Temperature Technique for the Isolation of <u>Salmonella</u> from Streams," <u>Applied Microbiology</u>, <u>14</u>, pp. 591-596.
- 11. Ewing, W. H., 1962. <u>Enterobacteriaceae Biochemical Methods for</u> <u>Group Differentiation</u>, Public Health Service Publication No. 734.
- Edwards, P. R., 1962, W. H. Ewing. <u>Isolation and Grouping of</u> <u>Salmonella and Shigella Cultures</u>, U. S. Dept. of Health, Education, and Welfare, Public Health Service.
- Hall, Edward T., Water Quality Data Chattahoochee River, Georgia. (Georgia Water Quality Control Board, Atlanta - unpublished data.)
- 14. Federal Water Pollution Control Administration, 1968. Water Quality Criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior, Washington, DC, p 234.

- Schneider, R. F., 1962. "Seasonal Succession of Certain Invertebrates in a Northwestern Florida Lake." <u>Quart. Journ. Fla. Acad.</u> <u>Sci.</u> 25(2):127-141.
- Neel, J. K., 1968. "Seasonal Succession of Benthic Algae and Their Macroinvertebrate Residents in a Head-water Limestone Stream." Journ. Poll. Cont. Fed. Part 2:10-30.
- Egglishaw, H. J. and D. W. Mackay, 1967. A Survey of the Bottom Fauna of Streams in the Scottish Highlands. Part III Seasonal Changes in the Fauna of Three Streams, Hydrobiologic 30:305-334.
- Tebo, L., Jr. Biological Surveillance Chattahoochee River, Georgia (Environmental Protection Agency, Southeast Water Laboratory, Athens, Georgia - unpublished data).
- Little, J. A., R. F. Schneider, B. J. Carroll. "Artificial Destratification Project at Allatoona Reservoir, Georgia." Report from Southeast Water Laboratory to U. S. Corps of Engineers (mimeo).
- 20. Jackson, H. O. and W. C. Starrett, 1959. "Turbidity and Sedimentation of Lake Chautauqua, Illinois." Journ. Wildlife Man. 23(2):157-168
- Jaag, O. and H. Ambuhl, 1962. "The Effect of the Current on the Composition of Biocoenoses in Flowing Water Streams." International Conf. Water Poll. Res., London, England. 31-49.

Correspondence Requesting the Study

.

A-2

DEPARTMENT OF THE ARMY SAVANNAH DISTRICT, CORPS OF ENGINEERS P. O. BOX 889 SAVANNAH, GEORGIA 31402

IN REPLY REFER TO SASNE

25 February 1970

Mr. John A. Little Chief, Impoundment Studies Department of Interior, FWPCA Southeast Water Laboratory College Station Road Athens, Georgia 30601

Dear Mr. Little:

Inclosed are the original and three copies of DA Form 2544, Order for Reimbursable Services, covering preimpoundment water quality surveys at the West Point Project. Please sign and return two copies to the Savannah District.

Additional funds will be obligated in FY 1971 as outlined in our letter of 6 February 1970 to Mr. Thoman. A copy of your Regional Director's letter of 11 February 1970 is also inclosed.

Sincerely yours,

2 Incl As stated

MOORE

Chief, Engineering Division

	T. RECEIVING OF	FICE CONTROL NUMBER	2.	ORDER
INTRA-ARMY ORDER FOR	1		A NUMBER	5 DATE
REIMBURSABLE SERVICES			PU /U-6	17 Feb 70
For use of this form, see AR 37-108 and			3. CH	ANGE ORDER
AR 37-110; the proponent agency is Office of the Comptroller of the Army.	FUNDED	AUTOMATIC		DATE
4. ORDERED BY (Command, Installation or Act (Include ZIP Code)	tivity, and address)	5. TO BE PERFORME	D BY (Command, Insta P Code)	allation or Activity, and
U.S. ATTRY Engineer District	t. Savannah	Dent of Inf	terior. FUPCA	
Corps of Engineers, P.O. Re	ox 889	Southeast Wa	ter laborator	w
Savannah, Georgia 31402		College Stat	tion Road	3
		Athens, Geor	raia 30601	
A DESCRIPTION OF SERVICES TO BE PERF	ORMED			
It is requested that FWPCA West Point Project. FY 197 sance and preliminary surve 6 February 1970 and Departs Additional funds to be rese PD	make preimpo 70 funds in t ays in accord ment of Inter erved as requ 70-6-9260921	undment water qua he amount of \$5,0 ance with referen ior acceptance la ired. Please ida -003046-05	111y surveys 000 reserved f nce SASNE lett etter dated ll entify all bil	at the for reconnais- er dated February 1970. is as follows:
74 NAME AND TITLE OF ORDERING OFFICE	R Ó SIGN	IATURE		G DATE
7. NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec	r b sick tion TM	ank H. Po	suy fr.	G DATE 17 Feb 70
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT	tion The finance and	ATURE ACCOUNTING OFFICE AP	PROVAL	G DATE 17 Feb 70
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT B. ACCOUNTING CLASSIFICATION	TING FINANCE AND	ATURE ACCOUNTING OFFICE AP	PROVAL	C DATE 37 Feb 70 b. AMOUNT c. 000
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT M. ACCOUNTING CLASSIFICATION 96X3122 Construction, Gener	tion The finance and al, CE, Civil	ATURE ACCOUNTING OFFICE AP	PROVAL	C DATE 37 Feb 70 5. AMOUNT \$5,000
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT ACCOUNTING CLASSIFICATION 96X3122 Construction, Generation CHANGE	TING FINANCE AND a1, CE, Civii DECREASE AND	ATURE MAR H. PO ACCOUNTING OFFICE AP	PROVAL REVISED AMO	G DATE 17 Feb 70 b. AMOUNT \$5,000 HUNT
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT March Accounting classification 96X3122 Construction, Generation CHANGE INCREASE AMOUNT Services to be performed ations or other accounts	tion tion TING FINANCE AND al, CE, Civin DECREASE AN d pursuant to this indicated above	ACCOUNTING OFFICE AP	PROVAL REVISED AMO rgeable to the appi- the expira	G DATE 17 Feb 70 b. AMOUNT \$5,000 HUNT ropri- ation
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT M. ACCOUNTING CLASSIFICATION 96X3122 Construction, Generations INCREASE AMOUNT . Services to be performed ations or other accounts date of this order.	tion The finance and al, CE, Civin pursuant to this indicated above	ACCOUNTING OFFICE AP	REVISED AMO rgeable to the appr the expire	C DATE 17 Feb 70 b. AMOUNT \$5,000 OUNT ropri- ation C. DATE
 74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT Accounting classification 96X3122 Construction, Generation 96X3122 Construction, Generations or other accounts date of this order. 94. TYPED NAME AND TITLE OF APPROVING 	TING FINANCE AND a1, CE, Civin pursuant to this indicated above OFFICER 6. SIGN	ACCOUNTING OFFICE AP	PROVAL PROVAL REVISED AMO rgeable to the apping the expiration	c DATE 37 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation c. DATE
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT M. ACCOUNTING CLASSIFICATION 96X3122 Construction, Generation 96X3122 Construction, Generation 96X3122 Construction, Generation 9. Services to be performed ations or other accounts date of this order. 04. TYPED NAME AND TITLE OF APPROVING JAMES A. MACDONALD, JR. Finance and Accounting Office	TING FINANCE AND al, CE, Civil DECREASE AN d pursuant to this indicated above OFFICER b. SIGN CET	ACCOUNTING OFFICE AP ACCOUNTING OFFICE AP MOUNT Order are properly chan until (Day - Month - 1 ATURE Jameo X.	PROVAL PROVAL 	c DATE 17 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation c. DATE 20 / c.b. '70
 74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT Accounting classification 96X3122 Construction, Generation 96X3122 Construction, Generations or other accounts date of this order. 9. Services to be performed ations or other accounts date of this order. 94. TYPED NAME AND TITLE OF APPROVING JAMES A. MACDONALD, JR. Finance and Accounting Officients 	TING FINANCE AND a1, CE, Civin d pursuant to this indicated above OFFICER b. SIGN Cer	ACCOUNTING OFFICE AP ACCOUNTING OFFICE AP MOUNT order are properly chan until (Day - Month - 1) ATURE Jameo X. ING OFFICER	PROVAL REVISED AMO rgeable to the appir Treap Year Lynn	c DATE 17 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation c. DATE 20 / c.b. 70
 74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT Accounting classification 96X3122 Construction, Generation 96X3122 Construction, Generations or other accounts ations or other accounts date of this order. 94. TYPED NAME AND TITLE OF APPROVING JAMES A. MACDONALD, JR. Finance and Accounting Officients THE ABOVE TERM 	TING FINANCE AND al, CE, Civil DECREASE AN d pursuant to this indicated above Cer ACCEPT S AND CONDITIONS	ACCOUNTING OFFICE AP MOUNT order are properly chai until Day - Month - 1 ATURE Jameo X. ING OFFICER ARE SATISFACTORY AND	PROVAL REVISED AMO rgeable to the appr the expiration From ARE ACCEPTED.	C DATE 37 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation C. DATE 20 / 66. 70
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT A. ACCOUNTING CLASSIFICATION 96X3122 Construction, Gener CHANGE INCREASE AMOUNT C CHANGE INCREASE AMOUNT Services to be performed ations or other accounts date of this order. I. Services to be performed ations or other accounts date of this order. JAMES A. MACDONALD, JR. Finance and Accounting Office THE ABOVE TERM. THE ABOVE TERM.	tion 7/20 tion 7/20 TING FINANCE AND al, CE, Civil DECREASE AN d pursuant to this indicated above FOFFICER 5. SIGN CEP ACCEPT S AND CONDITIONS DEFFICER 5. SIGN	ACCOUNTING OFFICE AP MOUNT Order are properly chai until Day - Month - 1 ATURE Jameo X. ING OFFICER ARE SATISFACTORY AND ATURE	PROVAL REVISED AMO rgeable to the appira Year) Legnm ARE ACCEPTED. 1	C DATE 37 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation C. DATE 20 / 66. 70 C. DATE ACCEPTED
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT B. ACCOUNTING CLASSIFICATION 96X3122 Construction, Gener C CHANGE INCREASE AMOUNT 9. Services to be performed ations or other accounts date of this order. 10a. TYPED NAME AND TITLE OF APPROVING JAMES A. MACDONALD, JR. Finance and Accounting Office 11. THE ABOVE TERM. 8. TYPED NAME AND TITLE OF ACCEPTING OF JOHN A. LITTLE	TING FINANCE AND TING FINANCE AND al, CE, Civil DECREASE AN d pursuant to this indicated above OFFICER b. SIGN CEP ACCEPT S AND CONDITIONS DFFICER b. SIGN	ACCOUNTING OFFICE AP ACCOUNTING OFFICE AP MOUNT Order are properly chai until (Day - Month - 1 ATURE Jameo X. ING OFFICER ARE SATISFACTORY AND ATURE ATURE ATURE ATURE ARE SATISFACTORY AND ATURE ATUR	PROVAL REVISED AMO rgeable to the appiration the expiration From ARE ACCEPTED.	C DATE 17 Feb 70 b. AMOUNT \$5,000 UNT ropri- ation C. DATE 20 / 66. 70 C. DATE ACCEPTED Maria I. 10-2.
74 NAME AND TITLE OF ORDERING OFFICE FRANK H. POSEY, JR. Chief, Special Programs Sec ORIGINAT B. ACCOUNTING CLASSIFICATION 96X3122 Construction, Gener C CHANGE INCREASE AMOUNT S. Services to be performed ations or other accounts date of this order. IDAMES A. MACDONALD, JR. Finance and Accounting Office II. THE ABOVE TERM. TYPED NAME AND TITLE OF ACCEPTING C JOHN A. LITTLE Chief. Impoundment Studies	TING FINANCE AND TING FINANCE AND al, CE, Civil DECREASE AN d pursuant to this indicated above CEP ACCEPT S AND CONDITIONS DFFICER b. SIGN ACCEPT	ACCOUNTING OFFICE AP ACCOUNTING OFFICE AP MOUNT order are properly chai until (Day - Month - 1 ATURE James X. ING OFFICER ARE SATISFACTORY AND ATURE MARY A. MARY MARY A. MARY MARY MARY A. MARY MARY A. MARY MARY MARY A. MARY MARY A. MARY MARY MARY A. MARY MARY A.	PROVAL PROVAL REVISED AMO rgeable to the app the expiration From ARE ACCEPTED. ARE ACCEPTED.	C DATE 17 Feb 70 b. AMOUNT \$5,000 UNT ROPTI- ation C. DATE 20 /-66. '70 C. DATE ACCEPTED March 6, 1976

U.S. GOVERNMENT PRINTING OFFICE : 1965 0-778-747

UNITED STATES DEPARTMENT OF THE INTERIOR FEDERAL WATER POLLUTION CONTROL ADMINISTRATION

DIRECTOR Southeast region Suite 300 1421 Peachtree Street, N.E. Atlanta, georgia 30309

> Col. John S. Egbert, District Engineer Savannah District, Corps of Engineers P. O. Box 889 Savannah, Georgia 31402

Dear Col. Egbert:

Thank you for your letter of 6 February 1970, requesting a preimpoundment water quality survey at the West Point Project. We are in essential agreement with the features of the study outlined in your letter and in the Technical Studies Work Plan (revised as of September 1969). Preliminary aspects of the work will begin this fiscal year, and a request for reimbursement for \$5,000 will be sent during 4th quarter FY 70. The study will be completed during FY 71 with quarterly billing for the remaining \$20,000.

During reconnaissance of the study area, the need for additional sampling stations may be established. We feel that limited additional sampling can be incurred within the cost frame which you have outlined.

May I also express pleasure with the working relationships established between our respective staffs. Studies such as this one at West Point, and also at Allatoona Reservoir, will only improve our capability for providing water quality control.

Sincerely yours,

John R. Thoman Director

DEPARTMENT OF THE ARMY SAVANNAH DISTRICT, CORPS OF ENGINEERS P. O. BOX 889 SAVANNAH. GEORGIA 31402

IN REPLY REFER TO

6 February 1970

Mr. John R. Thoman Regional Director, Southeast Region Federal Water Pollution Control Administration Suite 300 1421 Peachtree Street, N.E. Atlanta, Georgia 30309

Dear Mr. Thoman:

Reference is made to discussions with Mr. J. A. Little of your Southeast Water Laboratory and Mr. F. H. Posey of our Special Programs Section on 28 January 1970, in Athens, Georgia, concerning the Water Quality Pre-Impoundment Survey for the West Point Project.

It was agreed that FWPCA personnel from the impoundment studies group would perform the pre-impoundment survey outlined in the inclosed Technical Studies Work Plan, dated February 1969, as revised through September 1969. This work will be performed at the twelve sampling stations shown on page 4, analyzing the parameters listed on pages 5, 6, and 7, and using the methods and procedures agreed upon. It was further agreed that this work could be performed within the estimated cost summarized on page 8.

The Savannah District will reimburse the Southeast Water Laboratory for the cost incurred up to \$25,000, which will include payment for all field sampling, bacteriological and chemical analyses, data processing, report preparation and reproduction, per diem and transportation, and contingencies.

It was further agreed that the Southeast Water Laboratory would bill Savannah District on a quarterly basis for services performed as follows:

a. Fiscal Year 1970: \$5,000 for reconnaissance and preliminary survey, locate and establish sampling stations, and compile and research existing data.

b. Fiscal Year 1971: \$20,000 for field investigations primarily in August 1970 and January 1971 (and at other periods if required to establish low flow, warm weather, and high flow, cold weather conditions), and for all other work necessary to complete the final report by 1 July 1971.

6 February 1970

SASNE Mr. John R. Thoman

Upon receipt of notification from the Federal Water Pollution Control Administration of your acceptance of the above described work, the Department of the Army, Savannah District, Corps of Engineers, will obligate the necessary funds.

To assist in your planning of this pre-impoundment survey, the following West Point Project schedule is furnished:

Initiate Phase I -	Reservoir Clearing	1 Jul 1971
Initiate Phase II -	Reservoir Clearing	1 Dec 1971
River Closure	. –	Jun 1972
Begin Filling		Nov 1972
Project Completion		Sep 1973

You will be notified immediately of any significant change in the above schedule; and, likewise, we would require that you notify us of any significant departure from this letter of agreement and the inclosed Technical Studies Work Plan.

It is indeed a pleasure to continue our cooperative endeavors in the interest of maintaining a high quality environment.

Sincerely yours,

1 Incl As stated

JOHN S. EGBERT ' Colonel, Corps of Engineers District Engineer

Copy Furnished w/incl Mr. John A Little Chief, Impoundment Studies FWPCA, Southeast Water Laboratory College Station Road Athens, Georgia 30601 OPTIONAL FORM NO. 10 MAY 1942 EDITION 984 FPMR (41 CFR) 101-11.4 UNITED STATES GOVERNMENT

Memorandum

TO : Files

DATE: February 3, 1970

FROM : John A. Little

SUBJECT: West Point Preimpoundment Study, Georgia & Alabama

Bob Schneider, Bobby Carroll, and I met in Athens on January 28 with Frank Posey and Herb Darigo of the Savannah District, Corps of Engineers, to discuss the subject study. The Corps had estimated that two 2-week long seasonal surveys would cost approximately \$24,900, for which we would be reimbursed if we agree to perform the work. Our reaction to the Corps was favorable, and tentative dates for field studies were set for August, 1970, and during the winter of 1970-71.

Some concern was expressed that clearing operations at the reservoir would interfere with water quality investigations. A check with the district office revealed no problem:

July 1, 1971 -Clearing near dam to beginDecember 1, 1971 -Clearing upper reservoir to beginJune 1, 1972 -Dam closureNovember 1, 1972 -Start filling

A fter exchanging necessary correspondence to initiate studies, we agreed to bill up to \$5,000 during FY-70 in order to "get the study on the books". For this initial sum and before this fiscal year ends, a reconnaissance will be made to determine final sampling points (among other things). Data available from past state and FWPCA studies in the area will also be collected and analyzed. Mr. Olinger began the assemblage and analysis of past data some time back.

We agreed to a quarterly billing procedure with a final report completion date set for spring, 1971.

/John A. Little

cc: Paul J. Traina Robert Schneider Bobby J. Carroll

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

offional form no. 10 May 1962 Edition OSA Frank (11 CFR) 101-11.6 UNITED STATES GOVERNMENT Memorandum

TO : Files

DATE: July 11, 1969

FROM : J. A. Little

SUBJECT: West Point Reservoir pre-impoundment study

Mr. Herb Rogers called today to inform me that a request for the subject studies will not be made until next year (calendar year 1970). Clearing operations will not begin at the reservoir site until 1971, therefore, if we conduct our major effort next year there should be no major interference from construction activities.

cc: P. Traina

Doc

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

-

UNITED STATES DEPARTMENT OF THE INTERIOR FEDERAL WATER POLLUTION CONTROL ADMINISTRATION

JTHEAST WATER LABORATORY ATHENS, GEORGIA 30601

May 20, 1969

Mr. Frank H. Posey, Jr. Chief, Special Programs Section U. S. Army Engineer District, COE P. O. Box 889 Savannah, Georgia 31402

Dear Mr. Posey:

In our phone conversation last week you mentioned that there might be a delay in your request for preimpoundment studies on the West Point Reservoir project. I mentioned at the time, and I would like to go on record now by saying, such a delay would create problems with our studies. In the past we have found that construction activities interfere with water quality investigations, and we would like to complete these investigations before construction has advanced too far.

Sincerely yours,

John A. Little Chief, Impoundment Studies

APPENDIX B

Location of Sampling Stations

TABLE 1

LOCATION OF SAMPLING STATIONS

Station	River	
No.	Mile	Location
1	306.7	Chattahoochee River - West Point, Georgia, above U.S. 29. Troup County, Georgia.
2	308.5	Chattahoochee River - Approximately 0.5 mile downstream from the damsite. Troup County, Georgia.
3	309.2	Chattahoochee River - Approximately 1,000 ft. upstream from damsite. Troup County, Georgia.
4	314.4 7.3	Wehadkee Creek - Relocated State Route 244, just east of State Line Road. Troup County, Georgia.
5	316.2	Chattahoochee River - Georgia Hwy. 238, west of LaGrange, Georgia. Troup County, Georgia.
6	321.5	Chattahoochee River - Georgia Hwy. 109, west of LaGrange, Georgia. Troup County, Georgia.
7	323.0	Chattahoochee River - LaGrange water supply intake station. Troup County, Georgia.
8	321.9 1.3	Yellowjacket Creek - Cameron Mill Road on County Road S 2098, west of LaGrange, Georgia. Troup County, Georgia.
9	321.9 13.2	Yellowjacket Creek - Youngs Mill Road, north- east of LaGrange, Georgia. Troup County, Georgia.
10	328.0	Chattahoochee River - Georgia Hwy. 219, north- west of LaGrange, Georgia. Troup County, Georgia.
11	335.2 3.3	New River - U.S. Hwy. 27, south of Franklin, Georgia. Heard County, Georgia.
12	343.1	Chattahoochee River - U.S. Hwy. 27, Franklin, Georgia. Heard County, Georgia.
13	314.4 0.8	Wehadkee Creek - Georgia Hwy. 60, west of LaGrange, Georgia. Troup County, Georgia.

APPENDIX C

USPHS Water Quality Data for the Chattahoochee River Basin 1964, 1965, and 1966
WEST POINT STUDY Southeast Region Chattahoochfe+ River 151810 CH-01

CHATTAHOOCHEE R WESTPT ABOV US29 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

******		**********	*******								
		00002	00007	00010	00020	00060	00070	00095	00300	00301	00304
DATE	PARAMETER	HSAMPLOC	DISTANCE	WATER	ATR	STREAM	TURA	CNDUCTVY	00	no	800
FROM		9 FROM	FR Y	TEMP	TEMP	FLOW	JKSN	AT 25C		SATUR	2 DAY
TO		RT BANK	MILES	CENT	CENT	CUFT/SEC	JU	MICROMHO	MG/L	PERCENT	MG/L
64./1A./1	•										
0471071	MIMAFD		2	52	18	20		14	37	34	
	MAYTMIM		5.	30.0	24 0	7000		76.	9,4	100.0	
	MINIM		3.	2.4	12.0	1970.		42.	3.7	46.0	
	MEAN		4.	17.1	17.0	3806.		54.	8.1	98.0	
	LOG MEAN		4.	14.6	16.5	3591.		53.	8.0	87.3	
66/ 2/	4				• • • •						
******	***********	*******	********	******	*********		******	********		********	*********
		00305	00310	00400	00403	00410	00500	00515	00530	00610	00625
DATE	PARAMETER	ROD	900	РН	LAB	T ALK	PESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL
FROM		3 DAY	5 0AY		PH	CAC03	TOTAL	0155-105	TOT NELT	NH3-N	N
10		MG/L	4071	50	50	MGZL	MGZL	C MG7L	MG/L	MG/L	MG/L
64/10/1	9										
2 47 I U/ I	NUMBER		24	38		31					
	MAXIMUM		5.8	7.30		20-					
	MINIMUM		0.5	6.60		14.					
	MEAN		1.7	6.92		16.					
	LOG MEAN		1.4	6.91		16.					
66/ 2/	6										
******	*********	************	*********	*********	*******		********	******	*********	*******	*******
		00530	00450	00653	00580	00940	01000	01005	01010	01020	01025
DATE	DANAMELEN	NUZANUS	1 904	502004-1	TORGC	CHEOKIDE	ARSENIC	BARIUM	RERYLIUM	BORON	CADMIUM
FROM		MGZI	964	P134	C HC H	MGZI	A3+0155	HANDISS	HE+0155	4+0155	000155
10					M137 L	(1)/ L	00/1	0076	00/2	0072	00/6
64/10/1	9										
	NUMBER					19	2	2	2	2	2
	MAXIMUM					6.	30.	16.	0.02	21.	5.
	MINIMUM					3.	30.	14.	0.02	19.	5.
	MEAN					4.	30.	15.	0.02	20.	5.
	LOG MEAN					4.	30.	15.	0.02	50.	5.
667 27	6										
******		01030	01035	**********	444444444		A1A40	**********	000090999999 01054		**********
0.4TE	DADAMETED	CHRONTUM	COBALT	01040	01045	01040 1904	01049	UIUDD MANGNESE	MANGNESE	01060	01065
FROM	PARAMETER	CH+D155	0.0155	CUPPER	TOTAL	EE-DISS	PHADISS	MN N	MN.DISS	MOLDISS	NILDISS
10		11671	UGZI	11671	UGA	16/1	167	HG (I	HGA	1167	116/1
10			0072	00/2	00/0	0076	0072	0072	00/2	011/2	0072
64/10/1	19										
	NUMBER	5	2	2	5	٦	5	4	5	2	2
	MAXIMUM	29.	2.	255.	1175.	1.	13.	153.0	0.1	13.	17.
	MINIMUM	3.	1.	2.	1.	0.	3.	0.4	0.0	5.	2.
	MEAN	16.	Ś.	129.	274.	0.	8.	39.6	0.1	9.	10.
	LOG MEAN	9.	1.	21.	14.	0.	6.	4.2	0.1	8.	6.
66/ 2/	6										
******		01070	01075	01080	A1085	01000000	01105	31501	31505	31615	31616
DATE	PADAMETER	PHOS-T	STLVER	STRONTUM	VANADTUM	71NC			TOT COLT	FFC COLT	FEC COLT
FROM	Panancic .	P-SPEC	AG.DISS	SR.DISS	V-DISS	7N-0155	AL . TOT	METMENDO	MPN CONF	MPNECHED	MEM-ECRR
TO		UGZL	JG/L	UG/L	UG/L	UG/L	UGZL	Z100ML	/100ML	/100ML	/100ML
						14					
54/10/	19		-								
	NUMBER	1	2	S	5	>	2		49	24	
	MAXIMUM	65.	0•2	14.	2.	90.	141.		11000000.	8000.	
	MINIMUM	65.	0.2	13.	2.	5.	11.		3100.	200.	
	MEAN	55.	5.0	14.	2.	48.	76.		281696.	1768.	
	LOG MEAN	65.	0.7	13.	Ζ.	21.	39.		30256.	464.	
DD/ 2/	n		****		********						
~~~~~~							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

WEST POINT STUDY Southeast Region Chattahoochee. River

121920

CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

#### S111504

CH-05

******	**********	*********	*********	*******	*********	*********					
		00002	00007	00010	86626	00040	**********	*********	*********	********	
DATE	PARAMETER	HSAMPLOC	DISTANCE	WATER	ATD	00060	00070	01095	00300	00301	
FROM		S FROM	FR Y	TEMP	TENO	SINEAM	TURA	CNDUCTVY	00	40301	00.304
TA		DT DANK	NTIFE	CENT.	1200	FLOW	JKSN	AT 25C		CATUO	ROD
10		NT DARK	MICES	CENT	CENT	CUFT/SEC	JU	MICROMHO	MGZI	BEDOR	S DAY
	•									PERCENT	MGZL
64/10/1	Y										
	NUMMER		2	47	19			14			
	MAXIMUM		3.	31.0	Se*0			72		44	
	MINIMUM		3.	2.5	7.0			17	11.1	113.0	
	MEAN		3.	17.3	15.7			574	2.8	73.0	
	LOG MEAN		3.	14.3	14.7			73.	8.6	88.0	
66/ 2/	6							76.	8.5	87.6	
******	**********	*********	*********	*********	********	********	*********	*******			
		00305	00310	00400	00403	00410	00500			********	***********
DATE	PARAMETER	800	ROD	PH	LAB	TAIK	DESTONE	00515	00530	00610	00625
FROM		3 DAY	5 DAY		PH	6600	TATAL	RESIDUE	RESIDUE	AMMONIA	TOT KUFL
ŤŎ		MG/L	MG/L	SU	SIL	MGZI	I UTAL	DISS-105	TOT NELT	NH3-N	N
							M07L	C MG∕L	MG/L	MGZĽ	MGZL
64/10/1	9										
• • • • •	NUMBER		25	38							
	MAX THUM		3.3	7.30		31					
	MINIM		7+J	4 24		13+					
			0.7	0.00		13.					
	MEAN		1.0	0.00		16.					
	LOG MEAN		1.4	0.02		16.					
66/ 2/	6										
******	**********	**********		*********	*********	*******	*********	********	********	********	
		00630	00650	09653	00680	00940	01000	01005	01010	01020	A1036
DATE	PARAMETER	NO2ENO3	T P04	50LP04-T	T ORG C	CHLORIDE	ARSENTC	RAPTIM	DERVI TIM	BOBON	01025
FROM		N	P04	P04	С	CL	AS-DISS	BA-DISS	BE-DISS	D-DICC	CADWION
TO		MG/L	MG/L	MG/L	MG/L	MGZL	11671	106/1	106/1	0411122	CONDISS
				. –			00/2	00/L	0076	0671	UG/L
64/10/1	9										
	NUMBER					10	•	•	•	-	
	MAXTMIM					4	^c	^		²	2
	M TALT MILIN						30.	15+	0.05	15.	5.
	MEAN					د.	30.	14.	20.0	15.	5.
							30 •	15.	0.05	15.	5.
441 31	LUU MERN					J.	30.	14.	0.02	15.	5.
30/ 2/	0										
		*****			A1645	********	*********	********	********	********	***********
		01030	01035	01040	111043	01045	01049	01055	01056	01060	01065
DATE	PARAMETER	CHROWIOW	COGALT	CUPPER	THOM	INON	LEAD	MANGNESE	MANGNESE	MOLY	NICKEL
FHOM		CR+DISS	CO+0155	CU-0155	TOTAL	FE+DISS	P8+0155	MN	MN+DISS	MO+DISS	NI+DISS
то		UG/L	JG/L	UG/L	067L	UGZL	UG/L	UG/L	UG/L	UG/L	UG/L
64/10/1	9	_	-	-	_						
	NUMBER	5	2	2	5	3	2	4	2	5	5
	MAXIMUM	37.	2.	43.	765.	0.	20.	105.0	0.1	3.	20.
	MINIMUM	1.	1.	2.	1.	0.	3.	0.2	0.0	2.	2.
	MEAN	19.	2.	23.	170.	0.	12.	26.7	0.1	3.	11.
	LOG MEAN	6.	1.	9.	11.	0.	Â.	1.8	0.0	2.	· · · ·
66/ 2/	6							•••			••
		*********	*********	**********	*********	*******	*********	*********	*********		***********
		01070	01075	01090	01085	01090	01105	31501	31505	31615	31616
DATE	PARAMETER	PHOS-T	SILVER	STRONTUN	VANADIUM	ZINC	ALIMINUM	TOTICOUT	TOT COLT	FEC COLT	FEC COLT
FROM		P-SPEC	AG+DISS	SR.DISS	V.DISS	2N.0155	AL .TOT	METMENDO	MPN CONF	MPNECHED	HFM-FCBP
TO		116.41	UGZL	UG/L	UG/L	UG/I	116-71	/100	/1004	/100ML	/100ML
		0076					0076	100mc			
64/10/1	•										
	NUMBER	1	2	2	2	2	-	5	10	26	A
			n.>	15	2.	775	, ²	43044	240000	8000-	2800.
		330	A. 9	14.	2	14	144.	82000.	2400000	400	1100.
	MEAN	33.	v•2	16.		10.	17.	56000.	40134	2417.	1812.
		33.	v.c	134	<u> </u>	47.	81.	64000.	001304	27378	1713
	LUG MEAN	33.	0.2	14.	<i>c</i> •	35.	49.	68132.	242101	10070	1(130
15 100	6										
*******		**********				*********		**********	*********		

	WEST POINT	STUDY				_ 12	1938	CH-06			
	CHATTAHOOCH	EE+ RIVER				CHA 13 SOU CHA	IT R GA HW GEORGIA THEAST TTAHOOCHEE 35050	Y 109 W OF	LAGRANGE GDPH 1	6	
						111	33030	21	11204		
								********		*********	
DATE FROM TO	PARAMETER	00002 HSAMPLOC S FROM RT BANK	00007 DISTANCE FR Y MILES	00010 WATER TEMP CENT	00020 AIR TEMP CENT	00060 STREAN FLOW CUFT/SEC	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C HICROMHO	00300 DO HG/L	00301 DO SATUR PERCENT	00304 ROD 2 DAY HG/L
	-							•			
65/ 9/	2 NUMBER MAXIMUM MINIMUM MEAN LOG MEAN			17 31.0 2.3 24.3 20.3					17 9+1 5+5 6+8 6+8	17 117.0 70.0 84.2 83.5	
******	· · · · · · · · · · · · · · · · · · ·	*********	********	*********	********	*********	********	********	*********	********	***********
DATE FROM TO	PARAMETER	00305 ROD 3 Day Mg/L	00310 900 5 Day 46/L	00400 Рн Su	00403 LAB PH SU	T ALK CACO3 Mg/L	RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	RESIDUE TOT NFLT MG/L	00610 Ammonia NH3-N Mg/L	TOT KJEL N MG/L
657 871	2										
• • • •	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN		17 3.3 0.5 1.5 1.4	17 7.20 6.50 6.75 6.74		17 28. 13. 16. 16.					
65/ 9/	3		********		*********		********	********	********	********	
DATE FROM TO	PARAMETER	00630 N026N03 N NG/L	00650 T PO4 PO4 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C Mg/L	00940 CHLORIDE CL NG/L	01000 ARSENIC AS+DISS UG/L	01005 BARIUM BA+DISS UG/L	01010 BERYLIUM BE+DISS UG/L	01020 BORON B+DISS UG/L	01025 CADMJUM CD+D155 UG/L
	-						. –				
97 97 1	P NUMBER MAXIMUM MINIMUM MEAN LOG MEAN					17 5. 2. 4. 4.					
65/ 9/ ° #########	;   <b></b>		********	*********	*********	*********	********	********	********	********	*********
DATE FROM TO	PARAMETER	01070 PHOS-T P-SPEC UG/L	01075 SILVER Ag+DISS Ug/L	01080 Strontum Sr+DISS UG/L	01085 VANADIUM V+DISS UG/L	01090 ZINC ZN+DISS UG/L	01105 ALUMINUM AL,TOT UG/L	31501 TOT COLI MFIMENDO /100ML	31505 TOT COLI MPN CONF /100ML	31615 FEC COLI MPNECMED /100ML	31616 FEC COLI MFM-FCBR /100ML
65/ 8/12 65/ 9/ 3	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 3								17 24000. 3100. 8635. 7374.	17 4900. 200. 1247. 706.	

121940 CH-08

SOUTHEAST REGION CHATTAHOOCHEE, RIVER

WEST POINT STUDY

YELLOW JACKET CR S2098 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00007 DISTANCE FR Y Miles	00010 WATER TEMP CENT	00020 AIR TEMP CENT	00060 STREAM FLOW CUFT/SEC	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 MG/L	.00301 DO SATUR PERCENT	00304 ROD 2 DAY MG/L
54/ R/2	3										
	NUMBER			29	13	. 30		12	30	29	
	MAXIMUM			30.0	24.0	293.		73.	10.0	97.0	
	MFAN			20.0	17.0	127.		59.	5.5 A.0	85.0	
	LOG MEAN			19.3	16.1	102.		57.	7.8	84.4	
5/ 9/	3										
	**********	A4444444444444444444444444444444444444	00310	**********	*********	00430	********	**************************************	049444444 00530	**********	1######### 70400
DATE		800	BOD	00400 PH	1 48	T ALK	RESTRUE	PESTONE	PESTOLE	AMMONTA	TOT KUPCS
FROM		3 DAY	5 DAY	• • •	PH	CACO3	TOTAL	DISS-105	TOT NELT	NH3-N	N
то		MG/L	MG/L	SU	SU	MG/L	MG/L	C MG/L	MG/L	MG/L	MG/L
4/ 8/2	2										
,	NUMBER		23	29		30					
	MAXIMUM		13.2	7.20		32.					
	MINIMUM		0.5	6.60		22.					
	MEAN		5.0	6.90		26.					
5/ 0/	LOG MEAN		1.4	6.99		26.					
*****	 *********	*********		********	********	******	*********	******	*******	********	******
		00630	00650	00653	00680	00940	01000	01005	01010	01020	01025
DATE	PARAMETER	N02&N03	T P04	SOLP04-T	T ORG C	CHLORIDE	ARSENIC	BARIUM	BERYLIUM	BORON	CADMIUM
FROM		N MG (I	PO4	PO4	C MG (1	CL	AS+DISS	BA+DISS	BE+DISS	B+DISS	CD+DIS
10		MU/L	467L	40/L	HOVE	MOVE	0072	0072	0071		0072
4/ 8/2	3										
	NUMBER					20					
	MAXIMUM					5.					
	MEAN					1.					
	LOG MEAN					3.					
5/ 9/	3										
*****	**********	*********	*********	********	*********	*********	*********	*********	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*********	********
DATE	DADAMETER	01070	01075 STUVE9	01080	VANADTUM	01090		31501	31505	31015	31010
FROM	PARAMETER	P-SPFC	AGADISS	SR-DISS	VADISS	ZNeDISS	AL .TOT	METMENDO	MPN CONF	MPNECMED	MEM-FCB
TO		UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	/100ML	/100ML
04/ 0//	73 MIMDED								20	18	
	MAXTMUM								490000-	130000-	
	MINIMUM								23000.	4600	
	MEAN								143483.	32411.	
	LOG MEAN								94833.	22338.	
65/ 9/	3										

121945 CH=09

YELLOW JACKET CR NE LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

******	*********		********	*********	*********	*********	********	********	*********		**********
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00007 DISTANCE FR y Miles	00010 WATER TEMP CENT	00020 AIR TEMP CENT	00060 Stream Flow Cuft/sec	00070 TURA JKSN JU	00095 CNDUCTVY At 25C MICROMHO	00300 DO MG/L	00301 DO SATUR PERCENT	00304 ROD 2 DAY MG/L
65/ 8/1	2										
	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN			17 32.0 2.6 21.8					17 6.4 5.3 5.9	17 84.0 60.0 70.1	
65/ 9/	3			1000					2.7	77.1	
******	*********	*********	*********	*********	*********	*********	*********	*********	*******	*******	*********
DATE FROM TO	PARAMETER	00305 ROD 3° Day Mg/L	00310 BOD 5 Day Mg/L	00400 PH SU	00403 LAB PH SU	00410 T ALK Caco3 Mg/L	00500 RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 AMMONIA NH3-N MG/L	00625 TOT KJEL N MG/L
45/ 9/1											
65/ 9/	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 3		17 3.2 0.7 1.5 1.3	17 6.90 6.50 6.72 6.72		16 32. 23. 27. 26.					
******	*********		*******	*********	*********	********	*********	********	*****	********	**********
DATE FROM TO	PARAMETER	00630 N026N03 N MG/L	00650 T PO4 PO4 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C MG/L	00940 CHLORIDE CL MG/L	01000 ARSENIC AS,DISS UG/L	01005 BARIUM BA+DISS UG/L	01010 BERYLIUM BE+DISS UG/L	01020 Roron 8+0155 UG/L	01025 CADMIUM CD+DISS UG/L
45/ 2/1	2										
	L NUMRER MAXIMUM MINIMUM MEAN LOG MEAN					17 3. 2. 2.				c.	
65/ 9/	3										
******	**********	*********	*********	*********	********	*******	*******	********	*********	*********	*********
DATE FROM TO	PARAMETER	01070 PHOS-T P-SPEC UG/L	01075 SILVER AG+DISS UG/L	01080 STRONTUM SR+DISS UG/L	VANADIUM V+DISS UG/L	ZINC ZN+DISS UG/L	OTIOS ALUMINUM AL,TOT UG/L	31501 TOT COLI MFIMENDO /100ML	TOT COLI MPN CONF /100ML	31615 FEC COLI MPNECMED /100ML	31616 FEC COLI MFM-FCBR /100ML
65/ 8/1	2										
	NUMBER MAXIMUM MININUM MEAN LOG MEAN								17 240000+ 24000+ 106706+ 85719+	17 79000. 1700. 19529. 12766.	
- 77 4/ 3	3 			*********				*********			

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE, RIVER

CHATT R GA HWY 219 N W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

	*********	********	*********	*********	*******	*********	********	*********		********	**********
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00007 DISTANCE Fr y Miles	00010 WATER TEMP CENT	00020 AIR TEMP CENT	00060 STREAM FLOW CUFT/SEC	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00301 DO SATUR PERCENT	00304 ROD 2 DAY MG/L
657 B/1	2										
	NUMBER MAXIMUM MINIMUM			17 32.0 2.9					17 9.5 4.7	17 122.0 60.0	
	MEAN			25+2					6.6	81.4	
65/ 9/	LOG MEAN 3	********	*********	23.3	*********	********	******	*******	6.5 ******	80.2	********
		00305	00310	00400	00403	00410	00500	00515	00530	00610	00625
DATE	PARAMETER	800	800	PH	LAB	T ALK	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL
FROM		3 DAY	5 DAY		PH	CAC03	TOTAL	DISS-105	TOT NELT	NH3-N	N
TO		MG/L	MG/L	SU	SU	MG/L	MG/L	C MG/L	MG/L	MG/L	MG/L
45/ 9/1	12										
077 07	NUMBER		17	17		17					
	MAXIMUM		3.4	8.10		26.					
	MINIMUM		0.7	6.50		13.					
	MEAN		1.6	6.77		17.					
	LOG MEAN		1.4	6.76		17.					
65/ 9/	3										
*****		00630	00450		00680	00040	01000	01005	01010	01020	A1A25
DATE	PARAMETER	N026N03	T POA	SOL POA-T	TORGC	CHLORIDE	ARSENIC	BARTUM	RERYL TUM	BORON	CAONTUN
FROM	T ANALLETEN	N	P04	P04	C	CL	AS, DISS	BA+DISS	8E+DISS	8.DISS	CD+DISS
TO		MG/L	MG/L	MG/L	MG/L	MG/L	UG/L	UG/L	UG/L	UG/L	UG/L
65/ 8/	15										
	NUMBER					17					
	MAXIMUH					5.					
	MINIMUM					<b>C</b> •					
	MEAN LOG MEAN					4.					
65/ 9/	3										
*****	**********	*********	*********	*********	*******	*********	*********	*********	*********	********	*********
		01070	01075	01080	01085	01090	01105	31501	31505	31615	31616
DATE	PARAMETER	PHOS-T	SILVER	STRONTUM	VANADIUM	ZINC	ALUMINUM	TOT COLI	TOT COLI	FEC COLI	FEC COLI
FROM		P-SPEC	AGIDISS	SROISS	V.DISS	ZN+DIS5	AL,TOT	MFIMENDO	MPN CONF	MPNECMED	MFM-FCBR
то	3	UG/L	UG/L	UG/L	UG/L	067L	UG/L	/100ML	7100ML	/100ML	/100ML
45/ 8/1	12										
J 77 JF	NUMBER								17	17	
	MAXIMUM								130000.	4900.	
	MINIMUM								3300.	200.	
	HEAN								30171.	2076.	
•	LOG MEAN								18696.	1302.	
65/ 9/	3										
******			**********								

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER

NEW R US 27 S OF FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00007 DISTANCE FR Y MILES	00010 WATER TEMP CENT	00020 AIR T <b>EMP</b> CENT	00060 STREAM FLOW CUFT/SEC	00070 Turb Jksn Ju	00095 CNDUCTVY At 25C Micromho	00300 D0 MG/L	00301 DO SATUR PERCENT	00304 800 2 Day Mg/L
65/ 9/	7										
••••	NUMBER			15					15	15	
	MAXIMUM			24.0					8.3	94.0	
	MINIMUM			14.0					6.8	75.0	
	HEAN			20.5					7.7	54.1 84.0	
65/ 9/2											
	*********	**********	*********	*********	*********	*********	********	*********	********	*********	*********
		00305	00310	00400	00403	00410	00500	00515	00530	00610	00625
DATE	PARAMETER	900	800	PH	LAB	TALK	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL
FROM		3 DAT	5 UAY	511	PH SU	CACU3	MGZ	DISS+105	FUT NFLT	NH3-N MGZI	N MGZI
10		HOVE	-076	30	30	HUL			HUFL	HOPE	HOVE
65/ 9/	7										
	NUMBER		15	15		15					
	MAXIMUM		1.8	7-40		43.					
			0.4	6./U 7.08		29.					
4	I OG MEAN		1.2	7.08		36.					
65/ 9/2	9					500					
*******	*********	*********	********	********	*********	********	********	********	********	********	*********
· · · · ·		00630	00650	00653	00680	00940	01000	01005	01010	01020	01025
DATE	PARAMETER	NOZENOJ	T P04	SOLP04-1	TORGC	CHLORIDE	ARSENIC	BARIUM DA-DICC	BERYLIUM	BORON	CADMIUM
TO		N MG/L	467L	46/L	HG/L	HG/L	UG/L	UG/L	UG/L	UG/L	UG/L
65/ 9/ 1	7										
	NUMBER					15					
	MAXINUM					5.					
	MINIMUM					5.					
	MEAN					3.					
45/ 0/20	LUG MEAN					3.					
977 7761 999999999	, 	*********			*********	********	********	********	********	********	********
		01070	01075	01050	01085	01090	01105	31501	31505	31615	31616
DATE	PARAMETER	PHOS-T	SILVER	STRONTUM	VANADIUM	ZINC	ALUMINUM	TOT COLL	TOT COLI	FEC COLI	FEC COLI
FROM		P-SPEC	AG+DISS	SR.DISS	V.DISS	ZN.DISS	AL.TOT	HFIMENDO	MPN CONF	MPNECHED	MFM-FCBR
TO		UG/L	967L	UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	/100ML	/100ML
	-										
07/ ¥/	T. MININED								15	15	
	MAXIMUM								7900.	1700.	
	MINIMUM								1100.	200.	
									3647	473	
	HEAN								34010	4/3.	
	HEAN LOG HEAN								2629.	348.	

VEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER

	VEST POINT S Southeast Re	STUDY GION				1516	992	CH-15			
Ì	CHATTAHOOCHE	E. RIVER				CHATI 13 GE SOUTE CHATI 11135	FRATUS EORGIA HEAST TAHOOCHEE 5050	27 FRNKLN C-1 611	GDPH 19 1204	5	
						,					
******	*********	**************************************	00007	00010	**************************************	00060	00070	**********	00300	*********** 00301	********** 00304
DATE	PARAMETER	HSAMPLOC S FROM	DISTANCE	WATER	AIR TEMP	STREAM	TURB	CNDUCTVY	DO	DO	DOR YAC S
TO		RT BANK	MILES	CENT	CENT	CUFT/SEC	JU	MICROMHO	MG/L	PERCENT	MG/L
5/ 9/ 7	7										
	NUMBER			15					15	15	
	MAXIMUM			27.0					8.1	88.0	
	MFAN			23.1					4.0	57+U 73.7	
	LOG MEAN			22.9					6.4	73.2	
5/ 9/?	9									*********	
		00305	00310	00400	00403	00410	00500	00515	00530	00610	00625
DATE	PARAMETER	ROD	900	PH	LAB	TALK	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJE
FROM		3 DAY	S DAY		PH	CAC03	TOTAL	D155-105	TOT NELT	NH3-N	N
10		MG/L	MG/L	50	SU	MG/L	MG/L	C MG/L	MG/L	MG/L	MG/L
65/ 9/	7										
	NUMBER		15	15		15					
	MAXIMUM		3.6	5.80		19.					
	MINIMUM		8.0	6.20		11.					
	LOG MEAN		2.0	6-50		14.					
65/ 9/2	9			***-							
******	********	*******	*********	***********	**********		*******	***********	*********	********	********
DATE		NO2LNO3	T PO4	50LP04-T	T ORG C	CHLORIDE	ARSENTC	PARTIM	DEBAI IIM	01020 BORON	CADMIIIM 01025
FROM		N	P04	P04	C	CL	AS.DISS	BA.DISS	BE+DISS	B.DISS	CD+DIS
TO		MG/L	MG/L	MG/L	MG/L	MG/L	UG/L	UG/L	UG/L	UG/L	UG/L
46/ 0/	7										
07/ <b>4/</b>	NUMBER					15					
	MAXIMUM					6.					
	MINIHUM					3.					
	MEAN					5.					
65/ 9/2	9					~*•					
******	*********	*********	*********	********	********	********	*******	*********	********	********	*******
	0.00 Min 7-5	01070	01075	01080	01085	01090	01105	31501	31505	31615	31616
DATE	PARAMETER	PHUS-T PacDEA	AGADIGE SILVER	21KOWIOW	POIDAWAY 2210.V	21NC 7N=0155		MEIMENDO	MPN CONF	MPNECHEN	*20 COL MFM-FCP
10		UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	/100ML	/100ML
	_		_								
65/ 9/	7								16	15	
									540000-	15	
	MINIMUM								2300.	200.	
	MEAN								81840.	10813.	
	I OC MEAN	•							17474	1948	

WEST POINT STUDY Southeast region Chattahoochee, river

~ 121983

NEW R COUNTY S2015 CORINTH 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

	**********	********	*********	*********	********	********	*********	*********	*********	*********	*********
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00007 DISTANCE FR Y Miles	00010 WATER TEMP CENT	00020 AIR TENP CENT	00060 STREAN FLOW CUFT/SEC	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00301 DO Satur Percent	00304 ROD 2 DAY Mg/L
45/ 0/	-										
¥7 ¥60	NUMBER MAXIMUM MINIMUM MEAN			15 24.0 1.8 19.3					15 7.7 6.0 7.1	15 86.0 68.0 77.2	
45/ 0/2	LOG MEAN			17.3					7.0	77.1	
- 737 - 772	_7 }**********	*********		*********			*********	********	********		*********
DATE FROM TO	PARAMETER	00305 BOD 3 Day Mg/L	00310 BOD 5 DAY MG/L	00400 <del>PH</del> SU	00403 LAB Ph Su	00410 T ALK CACO3 Mg/L	00500 RESIDUE Total Mg/L	00515 RESIDUE DISS-105 C MG/L	00530 Residue Tot NFLT Mg/L	00610 Ammonia NH3-N Mg/L	00625 Tot kjel N Mg/L
65/ 9/	7 NUMBER MAXIMUM MINIMUM MEAN LOG MEAN		14 2.2 0.4 1.4 1.2	15 7.40 6.80 7.06 7.06		14 55. 33. 45. 44.					
65/ 9/2	9										
******	**********	**********	*********	*********	*******	*********	*********	*********	*********	*********	*********
DATE FROM TO	PARAMETER	00630 NO26NO3 N MG/L	00650 T PO4 PO4 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C MG/L	00940 CHLORIDE CL HG/L	ARSENIC AS+DISS UG/L	BARIUM BARIUM BADISS UG/L	BERYLIUM BE+DISS UG/L	BORON BORON BORON UG/L	CADMIUM CD.DISS UG/L
65/ 9/ 1	7										
						14					
	MINIMUM MEAN					3. 4.					
45/ 0/2	LUG MEAN					4.					
*******	*********	*********	********	********	*********		*********	********	********	*********	*********
DATE FROM TO	PARAMETER	01070 PHOS-T P-SPEC UG/L	01075 SILVER AG+DISS UG/L	01080 STRONTUM SR+DISS UG/L	01085 VANADIUM V.DISS UG/L	01090 ZINC ZN+DISS UG/L	01105 Aluminum Al•Tot UG/L	31501 TOT COLI MFIMENDO /100ML	31505 TOT COLI MPN CONF /100ML	31615 FEC COLI MPNECMED /100ML	31616 FEC COLI MFM-FCBR /100ML
65/ 9/ 65/ 9/2	7 NUMBER MAXIHUM MINIMUM MEAN LOG MEAN								14 130000. 700. 17014. 7801.	14 1700. 200. 450. 340.	

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER 121990

CHATTAHOOCHEE AT US HWY 27 FRNKL 13 GEORGIA SOUTHEAST CHATTAHOOCHEE C-1 11135050 2111204

JMBER AXIMUM EAN DG MEAN ARAMETER ARAMETER AXIMUM ATNIMUM MEAN LOG MEAN COG MEAN	00305 ROD 3 DAY MG/L 00630 NO28N03	00310 HOD 5 DAY MG/L 7 4.2 1.8 2.7 2.6	27 20.0 2.8 13.2 11.4 00400 PH SU 21 7.00 6.50 6.84 6.84	13 25.0 8.0 17.8 16.8 00403 LAB PH SU	29 7150. 1860. 3666. 3257. 00410 T ALK CACO3 MG/L 14 18. 10. 15. 15.	00500 Pesidue Total Ng/L	14 70. 39. 57. 56. 00515 RESIDUE DISS-105 C MG/L	22 10.6 7.0 8.8 8.8 00530 RESIDUE TOT NFLT MG/L	21 100.0 74.0 82.1 81.8 ********* 00610 AMMONIA NH3-N MG/L	00625 TOT KJEL N MG/L
JMBER AXIMUM INIHUM EAN DG MEAN ARAMETER ARAMETER AXIMUM ATINIMUM ATINIMUM AEAN LOG MEAN ARAMETER	• J****** 00305 ROD 3 DAY MG/L 00630	00310 HOD 5 DAY MG/L 7 4.2 1.8 2.7 2.6	27 20.0 2.8 13.2 11.4 00400 PH SU 21 7.00 6.50 6.84 6.84	13 25.0 8.0 17.8 16.8 00403 LAB PH SU	29 7150. 1860. 3666. 3257. 00410 T ALK CACO3 MG/L 14 18. 10. 15. 15.	00500 Pesidue Total Ng/L	14 70. 39. 57. 56. 00515 RESIDUE DISS-105 C MG/L	22 10.6 7.0 8.8 8.8 00530 RESIDUE TOT NFLT MG/L	21 100.0 74.0 82.1 81.8 ********************************	00625 TOT KJEL N MG/L
ARAMETER IAXIMUM IINIMUM IEAN OG MEAN	00305 ROD 3 DAY MG/L 00630	00310 BOD 5 DAY MG/L 7 4.2 1.8 2.7 2.6	11.4 00400 PH SU 21 7.00 6.50 6.84 6.84	10.0 00403 LAB PH SU	00410 T ALK CACO3 MG/L 14 18. 10. 15. 15.	00500 Pesidue Total Hg/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 AMMONIA NH3-N MG/L	00625 Tot kjel N Mg/L
ARAMETER NUMBER NAXIMUM NINIMUM HEAN LOG MEAN PARAMETER	00305 ROD 3 DAY MG/L 00630 NO28N03	00310 BOD 5 DAY MG/L 7 4.2 1.8 2.7 2.6	00400 PH SU 21 7.00 6.50 6.84 6.84	00403 LAB PH SU	00410 T ALK CACO3 MG/L 14 18. 10. 15. 15.	00500 Pesidue Total Mg/L	00515 RESIDUE DISS-105 C HG/L	00530 RESIDUE Tot NFLT NG/L	00610 Ammonia NH3-N Hg/L	00625 TOT KJEL N MG/L
ARAMETER NUMBER NAXIMUM NINIMUM LOG MEAN NOB MEAN NOB MEAN	00305 ROD 3 DAY MG/L 00630 NO28N03	00310 BOD 5 DAY MG/L 7 4.2 1.8 2.7 2.6	00400 PH SU 21 7.00 6.50 6.84 6.84	00403 LAB PH SU	00410 T ALK CACO3 MG/L 14 18. 10. 15. 15.	00500 PESIDUE Total Hg/L	00515 RESIDUE DISS-105 C HG/L	00530 RESIDUE Tot NFLT HG/L	00610 Ammonia NH3-N Hg/L	00625 Tot Kjel N Mg/L
NUMBER IAXIMUM IINIMUM IEAN OG MEAN OG MEAN	00630 NO26N03	7 4.2 1.8 2.7 2.6	21 7.00 6.50 6.84 6.84		14 18. 10. 15. 15.					
INIMUM IEAN .OG MEAN	00630	4.2 1.8 2.7 2.6	6.50 6.84 6.84		10. 10. 15. 15.					
PARAMETER	00630 NO26NO3	00650	00653	********	**********	********				
ARAMETER	00630 NO26NO3	00650	*********** 00653	******	**********	*********				
	N HG/L	T PO4 PO4 MG/L	SOLPO4-T PO4 NG/L	00680 T ORG C C Mg/L	00940 Chloride Cl Mg/L	01000 ARSENIC AS+DISS UG/L	01005 BARIUM BA+DISS UG/L	01010 OERYLIUM BE+DISS UG/L	01020 BORON B.DISS UG/L	01025 CADMIUM CD+DISS UG/L
NUMBER 1AXIMUM 1INIMUM 4EAN 10G MEAN					2 4. 3. 3. 3.					
PARAMETER	01070 PHOS-T P-SPEC UG/L	01075 SILVER AG.DISS UG/L	01080 STRONTUM SR+DISS UG/L	01085 VANADIUM V+DISS UG/L	01090 ZINC ZN+DISS UG/L	01105 ALUMINUM AL,TOT UG/L	31501 TOT COLI MFIMENDO /100ML	31505 TOT COLI MPN CONF /100ML	31615 FEC COLI MPNECMED /100ML	31616 FEC COLI MFM-FCBR /100ML
; IAXIMUM INIMUM IEAN G. MEAN							7 285000. 155000. 234286. 226971.	44 1600000. 15000. 328568. 175250.	7 23000. 5000. 14714. 13478.	7 6600. 1400. 4238. 3623.
	INTHUM EAN DG MEAN ARAMETER 7 UMBER AXIMUM INTHUM EAN DG MEAN	ENIMUM EAN DG MEAN ARAMETER PHOS-T P-SPEC 1 UMBER AXIMUM INIMUM EAN DG MEAN	INIMUM EAN DG HEAN ARAMETER PHOS-T SILVER P-SPEC AG-DISS UG/L UG/L UMBER AXIMUM INIMUM EAN DG HEAN	INIMUM EAN DG MEAN ARAMETER PHOS-T SILVER STRONTUM P-SPEC AG-DISS SR-DISS UG/L UG/L UG/L UMBER AXIMUM INIMUM EAN DG MEAN	INIMUM EAN DG HEAN ARAMETER PHOS-T SILVER STRONTUM VANADIUM P-SPEC AG-DISS SR-DISS V-DISS JUG/L UG/L UG/L UG/L J UMBER AXIMUM INIMUM EAN DG HEAN	INITUM 3.   EAN 3.   DG MEAN 3.   ARAMETER PHOS-T   STRONTUM VANADIUM   P-SPEC AG.DISS   UG/L UG/L   UG/L UG/L	ARAIDUR 3.   EAN 3.   DG HEAN 3.   ARAMETER PHOS-T   STRUM VANADIUM   P-SPEC AG.DISS   VINDER UG/L   UG/L UG/L   UG/L UG/L   UG/L UG/L   UG UG/L	INITUUM 3.   EAN 3.   DG MEAN 3.   ARAMETER PHOS-T   SILVER STRONTUM   VANADIUM ZINC   ALMINUM TOT   P-SPEC AG.DISS   UG/L UG/L   UG/L UG/L   UG/L UG/L   UMBER 7   AXIMUM 285000.   INIMUM 155000.   EAN 234286.   DG MEAN 22671.	INITION 3.   EAN 3.   DG MEAN 3.   Olo70 01075 01080 01085 01090 01105 31501 31505   ARAMETER PHOS-T SILVER STRONTUM VANADIUM ZINC ALUMINUM TOT COLI TOT	INITUM 3.   EAN 3.   DG MEAN 3.   ARAMETER 01070 01075 01080 01085 01090 01105 31501 31505 31615   ARAMETER PHOS-T SILVER STRONTUM VANADIUM ZINC ALUMINUM TOT COLI TOT COLI FEC COLI   P-SPEC AG.DISS SR.DISS V.DISS ZN.0ISS AL.TOT MFIMENDO MPN CONF MPNECMED   J UG/L UG/L UG/L UG/L UG/L /100ML /100ML /100ML   J INIMUM 285000. 1600000. 23000. 15000. 5000.   INIMUM 285000. 1600000. 23000. 100. 5000. 5000.   INIMUM 234286. 328568. 14714. 234286. 328568. 14714.   DG MEAN 226971. 175250. 13478.

#### APPENDIX D

# A Brief Biological Survey of the Chattahoochee River and Selected Tributary Streams

Ъy

William M. Beck, Jr.

June 1965

During June 1965 a brief biological survey was made of the Chattahoochee River and selected tributary streams for the purpose of determining the biological quality of the waters in question. This survey was requested by the Atlanta office of the Public Health Service

The period selected for this survey was predictably ideal in light of weather records for past years but, unfortunately, proved to be a time of unseasonably high rainfall, at least for the early part of the survey. This resulted in many of the proposed areas of the Chattahoochee River, especially in the middle and lower sections, proving to be either inaccessible or unworkable.

Results are presented in Table I which gives station numbers, locations, and condition. It was felt that use of any scheme for reporting (the Biotic Index, for example) was hardly worth while in view of the fact that the Chattahoochee River within the area of this survey has reaches that are typical trout streams as well as areas under impoundment with no flow at all. In this report condition will be given as fine, satisfactory, questionable, poor, and grossly polluted. In addition, certain conditional terms will be marked with an asterisk. This designates the fact that these particular evaluations need further discussion.

TABLE I

Stat	ion	Stream	County	State	Condition
C-1	6-18	Chattahoochee R.	White	Ga.	Fine
C-2	6-18	Chattahoochee R.	White	Ga.	Fine
Č-3	6-19	Chattahoochee R.	Gwinnett	Ga.	Satisfactory*
C-4	6-20	Chattahoochee R.	Fulton	Ga.	Fine
ዮ-5	6-20	Chattahoochee R.	Сођр	Ga.	Grossly polluted sewage
C-6	6-20	Sweetwater Creek	Douglas	Ga.	Fine

D-2

TABLE I (cont'd)

Station	Stream	County	State	Condition
C-7**6-21	Chattahoochee R.	Heard	Ga.	Questionable
<b>C-8**6-2</b> 1	Yellowjacket Cr.	Troup	Ga.	Fine
<b>C-9</b> 6-21	Long Cane Creek	Troup	Ga.	Questionable*
<b>C-10 6-22</b>	Flat Shoals Cr.	Harris	Ga.	Fine
C-11 6-22	Sand Creek	Harris	Ga.	Fine
C-12 6-22	Mulberry Creek	Harris	Ga.	Satisfactory
C-13 6-23	Chattahoochee R.	Chattahoochee	Ga.	Question <b>a</b> ble*
C-14 6-23	Chattahoochee R.	Chattahoochee	Ga.	Questionable*
C-15 6-23	Upatoie Creek	Chattahoochee	Ga.	Satisfactory
C-16 6-24	Uchee Creek	Russell	Ala.	Fine
C-17 6-24	S. Fork Cowikee Creek	Barbour	Ala.	Satisfactory
C-18 6-25	Pataula Creek	Quitman	Ga.	Satisfactory
C-19 6-25	Small Creek	Quitman	Ga.	Fine
C-20 6-25	Chattahoochee R.	Henry	Ala.	Questionable*
C-21 6-25	Abbie Creek	Henry	Ala.	Fine
C-22 6-25	Chattahoochee R.	Houston	Ala.	Poor
C-23 6-25	Chattahoochee R.	Houston	Ala.	Grossly polluted
C-24 6-25	Chattahoochee R.	Jackson	Fla.	Satisfactory

** Correspond to Stations 12 and 8, respectively, in 1971 EPA report.

. . . To summarize briefly, the Chattahoochee River was found to be grossly polluted at stations C-5 and C-23, evidence of lesser pollution was found at stations C-7, C-13, and C-14, the remaining stations in this river proving to be in satisfactory condition. . . .

D-3

Location of Stations for Report by William M. Beck, Jr., June, 1965. "A Brief Biological Survey of the Chattahoochee River and Selected Tributary Streams." by Wilburn F. Holsomback

Station & STORET No.	Stream	Location
C-7	Chattahoochee River	Inside City of Franklin, Georgia, at bridge on Ga. Hwy. l in Heard County.
C-8	Yellowjacket Creek	County Rd. (Mill Wares Rd.) approx. 4 miles N.W. of LaGrange, Ga. 1 mile W. of water works in Troup County.

## RAW DATA

Chattahoochee River, Station C-7, Heard County, Georgia:

- Class I: --
- Class II: Amphipoda
- Class III: Physa, Sphaeriidae, 2 Oligochaeta
- Class IV: bettle ad., Veliidae
- Class V: Hirudinea, mayfly n.

Yellowjacket Creek, Station C-8, Troup County, Georgia:

- Class I: Stenonema, Simuliidae, Psectrocladius
- Class II: Gomphus, Cheumatopsyche, Hyalella azteca, Procladius
- Class III: Oligochaeta, Ceratopogonidae
- Class IV: Veliidae, Corixidae, Gerridae, bettle larvae, Elmid ad.
- Class V: Hexagenia, Hirudinea, 4 mayfly n., Atherix, Crypotochironomus, Polypedilum, Tanytarsus

#### APPENDIX E

## Statistical Summary of Water Quality Data Chattahoochee River Basin August and September 1970

121910-A CH-014

WEST POINT STUDY SouthEast region Chattahoochee, river

CHATTA R WEST	POINT	ABOVE US29	
GEORGIA			
SOUTHEAST			
CHATTAHOOCHEE			
11135050		2111204	

****	****	*****	********	********	*********	******	*********	******	******	****	********
DATE	PARAMETER	00002 HSAMPLOC	00010 WATER TEMP	00300 D0	00410 T ALK CACO2	00403 LAB	00095 CNDUCTVY	00070 TURR	70515 COLOR	00310 ROD	00304 ROD
TO		RT PANK	CENT	MG/L	MG/L	SU	MICROMHO	JU	PT-CO-U	MG/L	MG/L
70/ 8/	'11										
	NUMBER	10	10	10	10	10	10	10	10	3	1
	MAXIMUM	33.	28.0	7.4	18.	7.1	78.	78.	30.	0.6	0.4
	MINIMUM	33.	23.0	5.2	13.	6.8	41.	12.	10.	0.4	0.4
	MEAN	33.	24.3	6.6	15.	6.9	58.	42.	16.*	0.5	0.4
	LOG MEAN	33.	24.3	6.6	15.	6.9	57.	36.	14.	0.5	0.4
70/ 9/	18				• •						
*****	*****	*****	*****	*******	******	*****	*******	******	*****	*****	******
		00650	00653	00625	00610	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLPO4-T	TOT KJEL	AMMONIA	N028N03	CHLORIDE	T ORG C	RESIDUE	RESIDUE	RESIDUE
FROM		P04	P04	N	NH3-N	N	CL	С	TOTAL	DISS-105	TOT NELT
TO		MG/L	MGZL	MG/L	MG/L	MG/L	MG/L	MG/L	MGZL	C MG/L	MG/L
70/ 8/	11										
	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXIMUM	0.41	0.25	0.670	0.480	0.6	4.	6.0	163.	99.	68.
	MINIMUM	0.23	0.10	0.220	0.020	0.5	3.	3.0	45.	14.	19.
	MEAN	0.30	0.16	0.432	0.233	0.6	4.	4.5	100.	53.	46.
	LOG MEAN	0.30	0.15	0.402	0.186	0.6	4.	4.4	93.	47.	44.
70/ 9/1	18										
*****	*****	********	****	*****	********	********	*******	****	********	*******	***
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM		TOTAL	FE+DISS	MN	MN,DISS	IMEDENDO	MF-C44.5				
то		UG/L	UG/L	UGZL	UG/L	MF/100ML	MF/100ML				
70/ 8/11	L										
	NUMBER	10	10	10	10	8	9				
	MAXIMUM	6300.	200.	340.0	70.0	21000.	1300.				
	MINIMUM	600.	100.	60.0	20.0	500.	10.				
	MEAN	3190.	157.	182.0	39.0	9825.	634.				
	LOG MEAN	2475.	152.	165.9	35.6	6412.	359.				
0/ 9/18	-				/						
*******	***********	*******	*****	*********	*********	******	*****	****	*******		**********

	WEST POINT S	TUDY				1219	910-8	CH-018			
	CHATTAHOOCHE	E. RIVER				CHAT1 13 GE SOUTH CHAT1 11135	TA R WEST P Eorgia Heast Tahoochee 5050	OINT AROV	E US29		
						1113			1207		
******	****	*******	********	*****	*****	*******	********	******	*********	*******	*****
DATE	PARAMETER	S0000	90010 WATER	00300	99410 T ALK	00403 - LAB	00095 CNDUCTVY	00070 TURD	70515 COLOR	00310 800	00304 800
FROM		% FROM	TEMP		CACO3	PH	AT 25C	JKSN	COLOR	5 DAY	2 041
TO		RT BANK	CENT	MGZL	MG/L	SU	MICROMHO	JU	PT-CO-U	MGZL	MG/L
70/ 8/1	1										
	NUMBER	10	]0	10	10	10	10	10	10	3	2
	MAXIMUM	66.	28.0	7.5	19.	7.1	82.	71.	30.	0.8	0.2
	MINIMUM	66.	23.0	5.6	14.	6.6	51.	-15-	10.	0.5	0.2
	MEAN	66.	24.3	6.7	15.	6.9	61.	37.	18.	0.5	0.2
	LOG MEAN	65.	24.3	6.6	15.	6.9	61.	31.	16.	0+4	0+5
70/ 9/1	8										•
*******	*********	***********	***********		**********	***********	***********	*********	***********	**********	***********
5. Ŧ=	DAGAMETED	10050	00053	00025	00010	UUD30	00940	00500 T 000 0	00500	00515	005 10
	PARAMETER	1 PU4	502204-1			NUZGNU S			TOTAL	MESIDUE	RESIDUE
TO		467L	467L	MGZL	MG/L	MGZL	MG/L	MGZL	MG/L	C MG/L	MG/L
704 943	,										
107 271	NUMBED	10	10	10.5	10	10	10	10	10	10	10
	MAXTMUM	0.42	0.26	0.630	0.330	0.6	4.	5.0	154.	86.	68.
	MINIM	0.20	0.08	0.270	0.110	0.5	3.	2.0	45.	10.	26.
	MEAN	0.29	0.15	0.371	0.219	0.6	4.	3.4	96.	51.	45.
	LOG MEAN	0.28	0.15	0.357	0.206	0.6	3.	3.2	90.	43.	44.
70/ 9/1	8										
******		******	****	*******	********	*******	*******	******	******	****	********
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	TRON	IRON.	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM		TOTAL	FE+DISS	MN	MN.DISS	IMEDENDO	MF-C44.5				
TO		UG/L	UG/L	UG/L	UGZE	MF/100ML	MF/100ML				
70/ 8/	11										
	NUMBER	10	10	10	10	9	9				
	MAXIMUM	6000.	250.	310.0	80.0	50000.	2000.				
	MINIMUM	700.	100.	80.0	20.0	1200.	130.				
	MEAN	3450.	174.	189.0	48.0	11544.	897.				
	LOG MEAN	2654.	166.	173.8	42.5	9240.	617.				
70/ 9/	la 👘							*****		**********	
******		*******	****	0000000000000	****	******	************	*********	**********	**********	* = = = = = = = = = = = = = = = = = = =

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER

151011-V CH-05V

CHATTAHOOCHEE R AT HARDLEY CR MO GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

*** ************************************ 00410 00005 00010 00300 00070 70515 00310 00304 00403 00095 DATE PARAMETER HSAMPLOC WATER Ŋ0 T ALK LAR CNDUCTVY TURE COLOR ROD ROD FROM % FROM TEMP CAC03 PH JKSN 5 DAY 2 DAY AT 25C TO RT BANK MG/L SU CENT PT-CO-U MGZI MICROMHO JU MG/L MG/L 70/ 8/11 NUMBER 9 8 B Q 9 9 9 9 1 1 MAXIMUM 33. 28.0 7.4 7.0 17. 78. 63. 30. 0.6 n.3 MINIMUM 33. 23.0 5.6 13. 6.8 47. 16. 10. 0.6 0.3 MEAN 33. 24.1 6.5 14. 6.9 58. 37. 17. 0.6 0.3 LOG MEAN 33. 24.1 6.9 58. 33. 0.6 6.6 14. 15. 0.3 70/ 9/18 **** *** ***** ****** ***************** **** ***** ***** **** ********* 00650 00653 00625 00610 00630 00940 00680 00500 00515 00530 DATE PARAMETER T P04 SOLPO4-T TOT KJEL AMMONIA N026N03 CHLORIDE T ORG C RESIDUE RESTOUE RESIDUE FROM P04 P04 N NH3-N N CL С TOTAL DISS-105 TOT NELT TO MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L C MG/L MG/L 70/ 8/11 NUMBER 7 8 7 7 7 7 7 я 8 8 9.26 0.390 0.330 87. MAXIMUM 0.40 0.5 7.0 166. 79. 4. 0.22 0.09 22. MINIMUM 0.210 0.010 0.5 3. 5.0 54. 24. MFAN 0.31 0.16 0.307 0.186 0.6 4.0 51. 4. 100. 44. LOG MFAN 0.30 0.16 0.302 0.133 0.6 4. 3.7 94. 48. 45. 70/ 9/18 ******* **** 01045 01046 01055 01056 31501 31616 IRON IRON MANGNESE DATE PARAMETER MANGNESE COLIFORM FEC COLI FROM MN -TOTAL FE+DISS MN+DISS IMEDENDO MF-C44.5 T0 UG/L MF/100ML UG/L UG/L UG/L MF/100ML 70/ 3/11 7 7 8 NUMBER 8 R 8 6800. 280.0 80.0 27000. 1600. MAXIMUM 300. MINIMUM 700. 90.0 100. 100. 30.0 2400. MEAN 178. 726. 3114. 161.4 43.8 12113. LOG MEAN 2478. 165. 151.9 41.4 8997. 503. 70/ 9/18 ****** *****

						13 GE	ORGIA				
						SOUTH	IFAST				
						CHATI	AHOOCHEE				
						11135	5050	211	1204		
******	*********	**********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	************	***********	**********	~~~~~	**********	************* ***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
DATE	DADAMETED		00010 WATED	00	T ALK	- 1114113 I AD	00045 CNDUCTVY	00070 THPP		60.210	00.304
FROM	- HO MOR 1 5 0	S FROM	TEMD		CAC03		AT 250	IKSN	CULUR	5 DAY	2 DAY
TO		RT RANK	CENT	MGZL	MG/L	รบ	MICROMHO	JU	PT-CO-U		MGZL
707 871	1										
		9	8	a	9	9	9	9	9	2	1
	MAXIMUM	56.	24.0	7.4	17.	7.0	77.	78.	35.	0.5	1.6
	MINIMIM	66.	23.0	5.6	14.	6.9	47.	12.	10.	0.4	1.6
	MEAN	66.	24.1	6.6	15.	7.0	58.	40.	18.	0.4	1.6
	LOG MEAN	66.	24+1	6.6	15.	7.0	57.	34.	16.	0.4	1.6
71/ 9/]	rs										
***	*******	********	*****	********	*****	****	*******	*****	*****	****	***
		00650	00653	11625	00610	00630	00940	00680	<u> </u>	00515	00530
DATE	PARAMETER	T P04	50LP04-T	TOT KUFL	AMMONIA	N02&N03	CHLORIDE	T ORG C	RESIDUE	RESTOUE	RESIDUE
FROM		P04	P04	N	NH3-N	N	CL	C	TOTAL	DISS-105	TOT NELT
10		MGZL	MGZL	MGZI_	MGZL	MGZL	MG/L	MGZL	MGZL	C MG/L	MG/L
71/ 8/1	1										
	NIMHER	7	7	7	7	7	7	7	8	8	н
	MAXIMUM	0.41	0.25	0.560	0.290	0.7	4.	5.0	159.	93.	69.
	W [ N, ] MUM	0.55	0.09	0.260	0.130	0.5	٦.	3.0	54.	18.	28.
	MEAN	0.32	0.14	0.349	0.204	0.5	4.	4.0	97.	50.	49.
	1.03 MEAN	0.31	0.16	0.335	1.199	0.6	4.	3.9	93.	45.	46.
70/ 9/]	4										
******	*********	********	*********	***********		*********	*********	********	*********	*********	********
		01045	01946	01055	01056	31501	31616				
JATE	PARAMETER	[PON	TRON	MANGNESE	MANGNESE	COLIFORM	FEC COLL				
FROM		TOTAL	FE+DISS	MN	MN+DISS	TMEDENDO	MF -C44.5				
10		UGZE	967L	0676	0.676	ME ↓ ] U Û wi[	MENTOOME				
71/ 2/1	1										
	VE BURNER	7	н	7	7	4	8				
	™ΩX ŢMIJM	7400.	800.	310.0	90.0	40000.	2200.				
	HIN I MHM	750.	100.	70.0	10.0	2000.	90.				
	MEAN	3107.	258.	172.9	51.4	15550.	979.				
	LOG MEAN	2402.	200.	156.0	43.3	9742.	747.				
70/ 9/1	14										
*****	**********	*****	****	**********	*****	*********	******	******	****	********	******

VFST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER 151411-в Сн-05в

CHATTAHOOCHEE R AT HARDLEY CR MO

121913-A CH-03A

CHATTAHOOCHEE R AT MAPLE CR. MO. 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

*****	******	****	*****	*****	********	***	*****	****	*****	********	****
DATE	PAPAMETER	00002 HSAMPLOC	00010 WATER	00300 D0	00410 T 4LK	00403 LAR	00095 CNDUCTVY	00070 Turr	70515 COLOR	04310 800	იი 304 ფიი
FROM		& FROM	TEMP		CAC03	РН	AT 250	JKSN		5 NAY	2 NAY
TO		RT BANK	CENT	MG/L	MG/L	50	WICKOWHU	JU	P1-00-0	MG/L	MG/L
70/ H/	11										
	NUMBER	9	9	9	9	9	9	9	9	2	2
	MAXIMIM	33.	58°U	7.6	16.	7.0	77.	73.	30+	0.7	0.4
	WINIW	33.	23.0	5.5	13.	6.8	49.	12.	10.	۰.4	0.1
	MEAN	33.	24.2	6.7 -	14.	6+9	57.	41.	17.	0.5	0.2
	LOG MEAN	33.	24.2	6.7	14.	5.9	57.	35.	15.	0.5	0.2
70/ 4/	8										
******	***********	*******	**********	***********		*********	**********	********	**********	*********	******
		00550	00653	00525	01000	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLPO4-1	TOT KUEL	AMMONIA	NU2KNU3	CHEORIDE	LOKEC	RESIDUE	RESTOUE	RESIDUE
FROM		P04	P04		NH 5-N		CL			0122-102	INT NELI
£ ()			MOZL	M13/L	MGZL	M(7/L	MOZE	M(7/L	MIN	(, MI371_	MG/L
707 471	1										
	MUMAEN	5	• 9	8	R	A.	8	8	9	9	<b>G</b>
	MOX I MUM	0.43	0.26	0.600	0.370	0.5	4.	6.0	166.	98.	68.
	MINIMUM	0.22	0.00	0.200	0.100	8.5	3.	3.0	72+	24.	34.
	MFAN	0.32	0.15	0.334	0.216	0.6	4.	4.5	105.	55.	50.
	LOG MEAN	0.32	0.11	0.317	0.205	ñ.6	4.	4.4	102.	51.	49.
70/ 9/1	А										
****	*****	0104F	**********	010EC	**************************************	22222222222222222222222222222222222222	**********	******	*****	********	*****
	1. A	11/45	11040	71777	01055	31791					
- ) A [ +	PARAMETER	TOTAL		MANDARDE	MANDAF SE						
			FE+0155	MIC 13	MN+0122	THEORNOO					
10		0076	J177 L	0.976	9676	WE > 100MC	MENTOOME				
70/ 5/1	1										
	NUMBER	A	9	8	9	8	8				
	MAXIMUM	7900.	270.	300.0	90.0	33000.	5500.				
	MINIMUM	1500*	130.	90.0	30.0	2800.	140.				
	MEAN	3963.	201.	183.8	56.7	14888.	1056.				
	LOG MEAN	3287.	197.	171.5	52.8	11429.	760.				
70/ 9/1	<del>8</del>										
*******	**********	*****	*********	********	*******	*****	******	****	****	****	***

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEEN PIVER

	SOUTHEAST PE	GION F. RIVER				CHAT	TAHOOCHEE S		Γ.Ψ. ΜΟ.		
							EORGIA HEAST IAHOOCHEE				
						1113	5050	211	1204		
*****	****	*****	***	****	*****	****	******	***	*****	******	******
DATE FROM TO	PARAMETER	00002 HSAMPLOC & FROM RT BANK	00010 WATER TEMP CENT	00300 00 MG/L	00410 T ALK CACO3 MG/L	00403 LAR PH SU	00095 CNDUCTVY AT 250 MICROMHO	00070 TURB JKSN JU	70515 COLOR PT-CO-H	00310 800 5 084 MG/L	ባሰ304 ዓሰክ 2 ከልሃ MG/L
70/ 2/1											
, ., , ,, ,	NUMBER	9	9	9	9	4	4	9	9	2	2
	MAXIMUM	56.	28.0	7.6	17.	7.0	75.	78.	30.	0.5	0.7
	MINIM	66.	53°U	5.6	13.	6.8	51.	14.	10.	0.3	ሳ • 5
	MEAN	66.	24.2	5.4	15.	7.0	54.	41.	17.	0.4	0.6
	LOG MEAN	66.	24.2	6.7	15.	7.0	58.	34.	15.	0.4	0.6
70/ 9/]					والمعادية بالاعد المعادية						
*****	**********	004C0	00423	004 7E	00610	006 20	00040	444999999999 00290	************	**************************************	00530
DATE	DADAMETED		500000 T=400000		AMMONIA	0.025003	CHL 00105	T 040 0	9551005		NESTOLE
FROM	PORAMEICA	P04	P04-1		NH3-N	NUZANUS	CHEUKIDE		TOTAL	0155+105	TOT NELT
ΤŐ		MGZL	MG/L	MGZL	MGZL	MG/L	MGZL	MĞZL	MG/L	C MGZL	MG/L
707 871	ı										
107 .071	NUMPER	н	9	н	8	R	8	н	Q	9	9
	MAXIMIJM	0.42	0.25	0.400	0.220	0.6	4.	6.0	157.	94.	69.
	MINIMUM	0.25	0.09	0.230	0 <b>.</b> 050	0.5	З.	2.0	63.	17.	27.
	MFAN	0.32	0.15	0.310	0.155	0.6	3.	4.1	101.	54.	47.
	LUG MEAN	0.31	0.15	0.305	0.142	0.6	3.	3.9	97.	48.	45.
70/ 9/]	A										
***	*****	*******	*********	***********	***********	**********	********	*******	*****	*****	*****
		01045	01045	01055	01055	51501 COL 15004	31515				
DATE	PARAMETER		IRUN	MANGVESE	MANGNESE		ME-CAA E				
T()		UGZL	UG/L	UGAL	UG/L	MEZ100ML	MEZ100ML				
70/ 8/1	1										
	NIJARER	я	9	8	9	7	8				
	MAXIMIM	7600.	380.	320.0	100.0	24000.	1900.				
	MINIMUM	1000.	130.	80.0	30.0	3800.	110.				
	MEAN	3613.	510.	178.8	62.2	10014.	929.				
	LOG MEAN	2799.	210.	162+8	58.5	8481.	584.				

CH-034

121913-8

70/ 9/18

WEST POINT STUDY

*****

CHATTAHOOCHEE, RIVER WEHADKEE CR HWY 244 W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEF 11135050 2111204 **** ****** ****** 00310 00304 10002 00010 00300 00410 00403 00095 00070 70515 DATE PAHAMETER HSAMPLOC WATER no T ALK CNDUCTVY TURA COLOR **B00** 900 LAR FROM 5 DAY 2 DAY 9 FROM TEMP JKSN CACOR PH AT 25C MG/L TO. RT RANK CENT MG/L MG/L SU MICROMHO JU PT-CO-U MG/L 70/ 9/11 2 NUMBER 10 10 10 10 10 2 10 10 0.3 MAXIMUM 27.0 8.5 70. 0.4 23. 7.2 59. 40. MINIMUM 22.5 7.3 18. 7.0 44. 20. 10. 0.4 0.1 MEAN 29. 22. 0.4 0.2 23.9 7.8 21. 7.1 55. LOG MEAN 7.8 0.4 0.2 23.9 21. 7.1 55. 26. 20. 71/ 9/14 **** *** ******* **** ***** ********* ***** ***** ****** **** 00525 00680 00515 00530 00650 00653 00510 00630 00940 00500 DATE PARAMETER T P04 SOLPO4-T TOT KJEL AMMONIA FONASON CHLORIDE T ORG C RESIDUE RESIDUE RESTOUE P04 FR04 P04 NJ . NH3-N N CL С TOTAL DISS-105 TOT NELT TO. MG/L MG/L MG/L MG/L MG/L MG/L C MG/L MG/L HG/L MG/L 70/ 9/11 NUMBER 10 10 10 10 10 10 10 10 10 10 MAXIMUM 0.08 0.12 0.630 0.300 0.2 10.0 105. 51. 67. з. 0.010 38. MINIMUM 0.01 0.00 0.149 0.2 2. 2.0 55. 5. MFAN 1.03 0.01 0.275 0.141 0.2 2. 4.1 74. 22. 53. LOG MEAN 0.235 0.105 2. 3.7 19. 52. 0.03 0.01 0.2 73. 70/ 4/18 **************** ****** ********************************** ************************** ***** 01045 01046 01055 01056 31501 31616 DATE PARAMETER IRON TRON MANGNESE MANGNESE COLIFORM FFC COLL FROM TOTAL FE+DISS MN MN+DTS5 IMEDENDO MF-C44.5 TO UG/L UG/L UG/L ME/100ML JG/L MF/100ML 70/ 8/11 NUMBER 10 10 10 10 9 9 440.0 MAXTMUM 7700. 500. 560.0 21000. 500. MINIMUM 800. 140. 100.0 10.0 1600. 95. MFAN 3090. 375.0 195. 250. 199.0 6144. LOG MEAN 346.2 2660. 235. 127.6 4315. 164. 1 70/ 9/18 ****************** *****

121919

CH-04

WEST POINT STUDY

SOUTHEAST REGION

						11135	050	S11	1204		
****	**********	******	********	*****	******	*****	*****	***	****	*****	*****
DATE	DADAMETED	HSAMPLOC	00010 WATER	00300 00	00410 T ALK	10403 LAR	NN195 CNDUCTVY	00070 TURB	70515 COLOR	00310 80D	00304 ROD
FROM TO		KT RANK	CENT	MGZI	CACOB MGZI	рн Su	AT 25C	JKSN JU	PT-CO-U	5 DAY MG/1	2 DAY MGZI
								•••			
707 471					•••		••	10		-	•
		1''	27.0	10	10		10	10			2
		13.	27.0		10+	7.1	67.	1/0.	37.	1	0./
	w Fut Foat tim	11.	~~~~		14.	7.1	47.	15.	10.	0.7	n•4
	4F (10	54.	24.1	<b>5.5</b>	15.	7.1	59.	44.	15.	n.9	0.5
	1-116 MEAN	11.	24.11	n.e.13	17.	/ • 9	24.	18.	14.	ŋ•4	0.5
79/ 9/3	M 50336883849988		**********		*********		******	********	**********		***
		00650	00653	00625	00510	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T PO4	SOLP04-T	TOT KJEL	AMMONTA	NO26NO3	CHLORIDE	T ORG C	RESTONE	RESTOUE	RESTONE
5-04		P04	204	N	NH3-N	N	CL	C	TOTAL	DISS-105	TOT NELT
TO		MAZL	MG/L	MGZL	MG/L	MG/L	MĠŹL	MG/L	MGZL	C MG/L	MG/L
70/ 4/	1										
	Tytyssia Eliw	10	10	10	10	30	10	10	10	10	10
	MAXIMIM	0.45	0.20	0.460	0.300	0.7	4.	11.0	224.	166.	58.
	MINIMUM	0.22	0.01	0.210	0.010	0.0	3.	2.0	46.	11.	31.
	MF AN	0.32	0.13	0.327	0.169	0.5	3.	5.7	118.	73.	44.
	I DE MEAN	0.31	0.10	0.317	0.109	0.4	3.	5.2	106.	56.	44.
79/ 4/	14	• • •				-				_	-
*******	*****	*****	*****	*********	*********	********	*******	*****	*****	****	******
		11145	01046	01055	01056	31501	31616				
DATE	HAHAAFTER	IRON	TRON	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
ະດຸບາ		TOTAL	FE+DISS	MN	MN+DISS	IMEDENDO	MF-C44.5				
1 C		0671	JG/L	USZL	UGAL	MF/]00ML	ME/100ML				
77/ 4/	11										
	*arastePie	10	10	10	10	.9	9				
	5 A K T MI JM	16000.	260.	540.0	240.0	50000.	5100.				
	и тытмым	200.	100.	30.0	10.0	1900.	680.				
	FAN	5700.	170.	209.0	73.0	15856.	2052.				
	I THE MEAN	1226.	161.	163.9	49.4	10425.	1500.				
77/ 4/	1.4										· .
000000	630668888888		*****	****	******	****	****	****	****	*******	****

#FST POINT STUDY SouthFast Region Chattahoochee. Piver 121920-A CH+05A

SOUTHEAST CHATTAHOOCHEE

CHATTAHOUCHFE R GA 238 W OF LAGR 13 GEORGIA

SOUTHFAST REGION CHATTAHOOCHEE. RIVER CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 77777777 ************* **** 00002 00010 00300 00410 00403 00095 00070 70515 00310 00304 DATE PARAMETER HSAMPLOC WATER DO T ALK TURR COLOR ROD 800 LAR CNDUCTVY FROM % FROM TEMP CAC03 PH AT 25C **JKSN** 5 DAY 2 DAY TO RT BANK CENT MG/L MG/L MG/L SU MICROMHO JU PT-CO-U MG/L 70/ 8/11 NUMBER 10 10 10 10 10 10 10 10 3 2 MAXIMUM 27.0 8.2 0.5 66. 15. 7.1 67. 125. 35. 1.5 MINIMUM 22.0 0.5 66. 6.1 14. 7.0 15. 10. 0.7 44. MEAN 66. 24.0 6.9 15. 7.1 59. 48. 0.5 16. 1.0 LOG MEAN 15. 66. 24.0 6.9 7.1 59. 37. 0.9 0.5 14. 70/ 9/18 ****** ********* ***** ***** *********************** ***** ****** **** **** 00650 00653 00625 00610 00630 00940 00680 00500 00515 00530 DATE PARAMETER T P04 SOLP04-T TOT KJEL AMMONTA N026N03 CHLORIDE T ORG C RESIDUE RESTOUE RESIDUE FROM P04 P04 N NH3-N TOT NELT N CL С TOTAL DISS-105 MG/L MG/I TO MG/L MG/L MG/L MG/I MG/L MG/L C MG/L MG/L 70/ 8/11 NUMBER 10 10 . 10 10 10 10 10 10 10 10 59. MAXIMUM 0.19 0.600 0.410 0.7 7.0 202. 159. 0.41 4. MINIMUM 0.21 0.01 0.230 0.130 0.4 3. 3.0 52. 16. 27. MFAN 0.32 0.13 0.410 0.263 0.6 3. 4.8 109. 66. 43. LOG MEAN 0.31 0.10 0.392 0.250 0.6 3. 4.5 100. 53. 47. 70/ 9/18 ....... ****** ****** *************** ****** ***** 01045 01046 01055 01056 31501 31616 TRON DATE PARAMETER TRON MANGNESE MANGNESE COLIFORM FEC COLI FROM TOTAL FE+DISS MN MN.DTSS IMEDEN00 MF-C44.5 TO UG/L UG/L UG/L UG/L ME/100ML MF/100ML 70/ 4/11 NUMBER A 9 10 10 10 10 MAXIMUM 15000. 280. 380.0 70.0 42000. 5200. MINIMUM 1000. 100. 70.0 10.0 2500. 440. 5180. 193.0 MEAN 167. 47.0 15150. 1768. 164.1 LOG MEAN 348R. 155. 41.7 10711. 1271. 70/ 9/18

****

CH-059

121920-8

WEST POINT STUDY

**********

4 5	EST POINT S	TUDY GION				1519	38-A	CH-064			
c	HATTAHOOCHE	E+ RIVER				CHATT 13 GE South Chatt 1113S	R GA HWY : Orgia East Ahoochee 050	109 W OF 1 7777	AGRANGE		
******	********	***************************************	*********** 00010	**********	14444444444 00410	00403	*********** 00095	********** 00070	************ 70515	************ 00310	****
DATE	PARAMETER	HSAMPLOC	WATER	DO	TALK	LAH	CNDUCTVY	TURA	COLOR	BOD	
FROM		% FROM	TEMP		CAC03	PH	AT 250	JKSN		5 DAY	2 0
TO		RT BANK	CENT	MG/L	MG/L	SU	MICROMHO	JU	PT-CO-U	MG/L	MO
70/ 8/11											
-	NUMBER	10	10	10	10	10	10	10	10	3	
	MAXIMUM	33.	25.5	8.4	<b>20</b> •	7.2	74.	100.	40.	1.1	
	MINIMUM	33.	22.0	5.3	12.	7.1	46.	15.	10.	0.7	
	MFAN	33.	23.9	7.1	17.	7.1	58.	46.	16.	0.9	
	LOG MEAN	33.	23.9	7.0	16.	7.1	57.	38.	14.	0.9	
70/ 9/1	9										
9994499	**********	*****	*********	**********	**********	********	********	****	*****	*********	****
		00650	00653	00625	00610	00630	00940	00680	00500	00515	
DATE	PARAMETER	1 P04	SULP04-1	TOT KJEL	AMMONIA	NUZENUS	CHLORIDE	IURGU	RESIDUE	RESIDUE	RE S
F RUM		P04 MG /I	F04 MG /I	MG		in MG (1		HG /I	IUTAL MG /I	0122-102	101
10		MOVE	407 L	MOVE	(4) / L	M(1/ L	MOZL		MOL		r
70/ 8/1	1										
-	NUMBER	10	9	10	10	10	10	10	10	10	
	MAXIMUM	0.40	0.53	0.500	0.440	0.8	4.	10.0	189.	135.	
	MINIMUM	0.17	0.06	0.550	0.010	0.J	2.	5+0	54.	16.	
	MEAN	0.30	0.15	0.359	0.227	0.5	3.	5.6	113.	69.	
	LOG MEAN	0.29	0.14	0.347	0.174	0.5	3.	5.1	105.	60.	
70/ 9/1	18										
******	**********	*******	*****	***********	ነቸዥዥጵጵጵዮዮዮዮ > ግልር 4	******	************	*********	<b>ዣዦ፼፼፼፼፼፼</b> ፼፟	**********	*****
		01045	01046	01055	01056	31501	31616				
DATE	PAHAMELEK	IRUN	IKUN	MANGNESE	MANUNESE	LULIFURM	ME-CAA E				
FROM		IUTAL UCA	UG /I			ME / LOOMI	ME (100ML				
10		0076	0076	0.972	0072	MF7100ML	Mr / 100 ML				
70/ 8/	11										
	NUMBER	10	10	10	9	8	9				
	MAXIMUM	12800.	750.	570.0	230.0	36000.	4400.				
	MINIMUM	1400.	110.	140.0	10.0	12000.	1300.				
	MFAN	5540.	263.	293.0	76.7	20500.	2778.				
	LOG MEAN	4240.	231.	261.8	58.8	18741.	2590.				
301 01	10										

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER 121938-B CH-06B

CHATT R GA HWY 109 W OF LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 77777777

*****	********	****	******	********	******	****	*****	****	****	********	*******
		00002	00010	00300	00410	00403	00095	00070	70515	00310	00304
DATE	PARAMETER	HSAMPLOC	WATER	DO	TALK	LAR	CNDUCTVY	TURB	COLOR	BUD	ROD
FROM		% FROM	TEMP		CACO3	PH	AT 25C	JKSN	• • -	5 DAY	2 DAY
TO		RT BANK	CENT	MG/L	MG/L	SU	MICROMHO	JU	PT-CO-U	MG/L	MG/L
70/ 8/1	1										
	NUMBER	10	10	9	10	10	10	10	10	2	2
	MAXIMUM	66.	25.5	8.5	18.	7.1	71.	125.	45.	1.0	1.3
	MINIMUM	66.	22.0	6.2	12.	6.9	46.	15.	10.	0.8	0.7
	MEAN	66.	23.9	7.0	14.	7.1	57.	53.	16.	0.9	1.0
	LOG MEAN	66.	23.9	7.0	14.	7.1	57.	41.	14.	0.9	1.0
70/ 9/3	8										
*****	*********	*******	*****	*******	********	***	****	****	****	******	******
		00650	00653	00625	00610	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLP04-T	TOT KJEL	AMMONIA	N02&N03	CHLORIDE	T ORG C	RESIDUE	RESIDUE	RESIDUE
FROM		P04	P04	N	NH3-N	N	CL	Ç	TOTAL	DISS-105	TOT NELT
TO		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	C MG/L	MG/L
70/ 8/1	1										
	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXIMUM	0.46	0.24	0.600	0.580	0.8	5.	13.0	215.	171.	68.
	MINIMUM	0.22	0.09	0.260	0.110	0.4	3.	3.0	52.	16.	21.
	MEAN	0.35	0.17	0.428	0.280	0.6	3.	6.5	120.	77.	43.
	LOG MEAN	0.34	0.16	0.415	0.255	0.6	3.	5.7	110.	64.	40.
70/ 9/1	8			•							
******	*********	******	****	****	******	********	****	****	***	********	****
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	IRON	IRÓN	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM		TOTAL	FE+DISS	MN	MN+DISS	IMEDEND0	MF-C44.5				
TO		UG/L	UG/L	UG/L	UG/L	MF/100ML	MF/100ML				
70/ 8/1	1										
	NUMBER	10	10	10	10	8	9				
	MAXIMUM	15500.	260.	360.0	100.0	40000.	3700.				
	MINIMUM	1000.	100.	100.0	50.0	4400.	460.				
	MEAN	4950.	165+	205.0	53.0	19550.	2159.				
	LOG MEAN	3587.	156.	192.3	48.9	15595.	1779.				
70/ 9/1	8										
******	*********	*********	*******	*********	*********	*********	****	********	*****	*******	********

	FST POINT	STUDY				121	939	CH-07			
	SOUTHEAST RI CHATTAHOOCHI	EGION EE+ RIVER				CHAT 13 Gi Souti Chat 1113	TAHOOCHEE R Eorgia Heast Tahoochee Soco	AT LAG W	ATER INT		
						1113	2020	211	1204		
******	*****	****	******	****	*****	****	*****	*****	********	*********	****
DATE	DADAMETED	2000	00010	00300	00410	00403	00095	00070	70515	00310	00304
5904	PARAMETER	HSAMPLUC		00	I ALK		CNDUCTVY	IURH	COLOR		
TO		RT RANK	CENT	MG/L	MG/L	SU	MICROMHO	UL	PT-CO-U	MG/L	MGZL
70/ 8/1	1										
• • • •	NUMBER	10	10	9	10	10	10	10	10	3	2
	MAXIMUM	5.	25.0	8.0	16.	7.3	70.	130.	40.	1.0	1.1
	MINIMUM	5.	21.0	6.0	11.	6.9	44.	53.	10.	0.6	0.8
	MEAN	5.	23.4	7.0	14.	7.1	57.	54.	17.	0.8	0.9
	LOG MEAN	5.	23.4	6.9	13.	7.1	56.	47.	15.	0.8	0.9
70/ 9/]	8					•					
******	*****	*****	********	****	********	**********	*********	****	*****	*******	********
		00650	00653	00625	00610	00630	00940	00680	00500	00515	00530
DATE	PAHAMETER	T_P04	SOLP04-T	TOT KJEL	AMMONIA	N026N03	CHLORIDE	T ORG C	RESIDUE	RESIDUE	RESIDUE
FROM		P04	P04	N	NH3-N	N	CL	С	TOTAL	DIS5-105	TOT NELT
TO		MG/L	MG/L	MG/L	MGZL	MG7L	MG/L	MG/L	MG/L	C MG/L	MG/L
707 8/1	1										
•	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXTMUM	0.45	0.18	1.030	0.720	0.8	5.	9.0	223.	174.	64.
	MINIMUM	0.25	0.07	0.380	0.170	0.4	3.	4.0	62.	30.	14.
	MEAN	0.35	0.14	0.630	0.400	0.5	4.	5.5	117.	76.	42.
	LOG MEAN	0.34	0.14	0.595	0,364	0.6	4.	5.4	107.	67.	38.
70/ 9/1	8										-
	******	*******	*********	********	*****	********	*****	*****	*******	*******	********
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM	-	TOTAL	FE+DISS	MN	MN+DISS	IMEDENDO	ME-C44.5				
TO		UG/L	UG/L	UG/L	UG/L	MF/100ML	MF/100ML				
70/ R/1	1										
	NUMPER	10	10	10	10	9	9				
	MAXIMUM	15800.	260.	300.0	100.0	72000.	5700.				
	MINIMUM	1200.	50.	130.0	20.0	9400.	1000.				
	MEAN	4790.	168.	550.0	49.0	33767.	2867.				
	LOG MEAN	3691.	153.	212.0	43.7	25999.	2321.				
70/ 9/1	8										
	*********	********	********	*******	********	*****	***	*****	********	****	****

SUUTHEAST REGION CHATTAHOOCHEE. RIVER YELLOW JACKET CR S2098 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204 ............ ********* ***** 00002 00010 00300 00410 00403 00095 00070 70515 00310 00304 DATE PAHAMETER HSAMPLOC ROD WATER 00 T ALK TURB COLOR 800 LAR CNDUCTVY ENUN % FROM TEMP CACÓ3 PH AT 25C JKSN 5 DAY 2 DAY 10 MG/L RT RANK MICROMHO PT-CO-II MG/L CENT MG/L MG/L SU JU 70/ 9/11 NUMBER 2 3 10 10 10 10 10 10 10 MAXIMIM 26.0 8.8 7.3 93. 0.8 1.0 32. 110. 40. MINIMUM 21.5 6.9 22. 6.8 54. 18. 10. 0.4 0.4 MFAN 28. 21. 0.6 0.7 23.4 7.6 7.2 71. 44. LOG MEAN 27. 20. 0.6 23.4 7.6 7.2 70. 36. 0.6 70/ 9/1H ********** ****** **** 00530 00650 00653 01625 00610 00630 00940 00680 00500 00515 DATE PARAMETER T P04 TOT KJEL AMMONIA N026N03 CHLORIDE T ORG C RESIDUE RESTOUE RESTOUE SOLP04-T FHOM P04 204 N NH3-N N CL С TOTAL DISS-105 TOT NELT TO MG/L MG/L MG/L C MG/L MG/L MG/L MG/L MG/L MG/L MG/L 70/ 3/11 NIMBER 10 10 10 10 10 10 10 -10 10 10 152. 87. 71. MUMTYAN 0.32 0.23 1.810 1.120 0.5 6. 7.0 MINIMIM 60.0 0.02 0.200 0.120 0.2 2. 4.0 66. 15. 43. 59. MFAN 0.14 0.09 0.660 0.425 0.3 3. 5.1 101. 42. 5A. LOG MEAN 0.17 0.499 0.314 5.0 98. 36. 0.06 0.3 3. 70/ 9/1H ******** ***** ************ ***** ***** **** **** 01045 01046 01055 01056 31501 31616 TRON MANGNESE DATE PARAMETER IRON MANGNESE COLIFORM FEC COLI FROM TOTAL FE+DISS MN MN+DISS IMEDFN00 MF-C44.5 TO UG/L JG/L UG/L UG/L MF/100ML MF/100ML 70/ 9/11 NUMBER 10 10 10 10 8 9 20.0 . 70000. MAXIMUM A201. 8600. 500. 600.0 MINIMUM 1600. 120. 270.0 60.0 7000. 2600. VF AN 3850. 280. 352.0 150.0 33250. 4627. LOG MEAN 1207. 248. 339.9 107.2 27710. 4292. 707 971A -----

121940

CH-08

WEST POINT STUDY

50 CH	PARAMETER	GIUN E. RIVER 00002 HSAMPLOC & FROM RT BANK	*********** 00010 WATER TEMP CENT	*********** 00300 DO	************* 01410	YELLO 13 GE SOUTH CHATI 11135	0W JACKET C ORGIA HEAST AHOOCHEE 6050	R NE LAGR ?11	ANGE 1204	***	55356688888
	PARAMETER	00002 HSAMPLOC & FROM RT BANK	*********** 00010 WATER TEMP CENT	********** 00.300 DO	********** 00410	********	****	*****	***	****	выланана
********	PARAMETER	00002 HSAMPLOC & FROM RT BANK	00010 WATER TEMP CENT	++++++++++++++++++++++++++++++++++++++	*********** 00410	*********	******	******	***	********	*****
DATE P	PARAMETER	00002 HSAMPLOC & FROM RT BANK	00010 WATER TEMP CENT	00.300 DO	00410	00/02					
FROM		RISANK		MC /1	T ALK CACO3	LAR PH	00095 CNDUCTVY AT 25C	00070 TURB JKSN	70515 COLOR	00310 900 5 04Y	00304 ROD 2 DAY
10			CENT	MG/L	MOZE	50	MICROMMO	30	F1=C0=0	m157 L	MOV L
70/ 8/11					• •		• •	••		-	-
	NUMHER MAXIMUM MINIMUM MEAN		10 26+0 21+5 23+6	10 8.2 6.1 7.3	10 29. 20. 25.	10 7.4 6.9 7.2	10 82• 46• 68•	10 78. 16. 33.	10 40. 10. 19.	3 1-5 0-5	2 1•1 0•7 0•9
70/9/18	LUG MEAN	-	2.5+0	1.0	<u> </u>	1.2	0/+	20.	17.	0.6	9.9
*****	*******	*********	******	********	******	****	***	****	****	*****	****
DATE F FROM TO	PARAMETER	00650 T PO4 PO4 MG/L	00653 SOLPO4-T PO4 MG/L	00625 TOT KJEL N MG/L	00610 AMMONIA NH3-N MG/L	00630 N02&N03 N MG/L	00940 CHLORIDE CL MG/L	00680 T ORG C C MG/L	00500 RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NELT MG/L
70/ 8/11											
	NUMRER MAXIMUM MINIMUM MEAN "OG MEAN	10 0.21 0.07 0.13 0.12	9 0.08 0.02 0.05 0.05	10 1.320 0.150 0.512 0.408	10 0.750 0.060 0.324 0.250	10 0.4 0.1 0.2 0.2	10 5. 2. 3. 3.	10 6.0 3.0 4.5 4.4	10 123+ 64+ 84+ 82+	10 75+ 13+ 29+ 25+	10 64. 44. 54. 54.
70/ 9/14					*******				*****	******	*****
DATE I FROM TO	PARAMETER	01045 IRON TOTAL UG/L	01046 IRON FE+DISS UG/L	03055 MANGNESE MN UG/L	01056 MANGNESE MN+DISS UG/L	31501 COLIFORM IMEDENDO MEZ100ML	31616 FEC COLI MF-C44.5 MF/100ML				
70/ 9/11											
70/ 9/18	NUMRER MAXIMUM MINIMUM MEAN LOG MEAN	10 7800. 1300. 3050. 2479.	10 4200.* 50. 633. 255.	10 500.0 220.0 300.0 290.7	9 160.0 70.0 117.5 113.1	8 24000 1500 13813 9569	8 10000. 150. 2883. 1037.				

121960-A CH-10A

CHATT R GA HWY 219 N W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 7777777

*****	******	****	******	*****	******	*****	*****	******	*****	*****	*****
DATE FROM TO	PARAMETER	00002 HSAMPLOC & FROM RT BANK	00010 WATER TEMP CENT	00300 DO MG/L	00410 T ALK CACO3 MG/L	00403 LAR PH SU	00095 CNDUCTVY AT 25C MICROMHO	00070 TURB JKSN JU	70515 COLOR PT-CO-U	00310 ROD 5 DAY MG/L	00304 ROD 2 DAY MG/L
70/ 8/1	,										
		10	1.0	10	10	10	10	10	1.0	2	2
	MAXTMUM	33.	26.0	8.0	10	10	10	10	01		
	MINIMUM	33.	21.0	5.2	17.	7.0	03e 46	16	47+	0.6	0.8
	MEAN	33.	23.7	6.8	13.	7.0	50.	*55	10.	0.7	0.9
	LOG MEAN	33.	23.6	6.8	14.	7.0	58.	45.	10.	0.7	0.9
70/ 9/1	8				•		, , , , , , , , , , , , , , , , , , ,	4 <b>J</b> •	1		
*****	*****	*****	****	****	********	******	*********	******	****	******	****
		00650	00653	00525	00510	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLPO4-T	TOT KJEL	AMMONIA	N026N03	CHLORIDE	T ORG C	RESIDUE	RESTRUE	RESIDUE
FROM		P04	P04	N	NH3-N	N 1	CL	C	TOTAL	DISS-105	TOT NELT
TO		MG/L	MGZL	MGZL	MG/L	MG/L	MG/L	MG/L	MG/L	C MG/L	MG/L
70/ 8/1	1										
_	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXIMIM	0.58	0.21	1.400	1.040	1.6	5.	10.0	195.	142.	64.
	MINIMUM	0.23	0.09	0.350	0.170	0.4	3.	4.0	52.	50.	20.
	MEAN	0.39	0.15	0.746	0.506	0.7	4.	6.4	115.	72.	44.
	LOG MEAN	0.37	0.14	0.665	0.431	0.6	4.	6+1	105.	60.	41.
70/ 9/1	8										
******	*****	******	*******	*********	*********	*********	********	********	*******	*********	**********
		01045	01046	01055	01056	31501	31616		•		
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	COLIFORM	FEC COLL				
F R ()M		TUTAL	PE+0155		MN+0155	I ME CLOOM					
		0076	0070	0076	0076	WE VIOUME	Mr / 100ML				
70/ 8/1	1										
	NUMBER	10	10	10	10	9	9				
	MAXIMUM	10400.	250+	380.0	70.0	54000.	5900.				
	MINIMUM	1000.	40.	110.0	10.0	8000.	900.				
	MEAN	4620.	137.	550.0	39.0	26750.	2978.		,		
	LOG MEAN	3632.	120.	201.0	33.5	20747.	2310.				
71/ 9/]	8								****	******	***********
~~~~~~~		***********	*********	**********	**********	**********	· * * * * * * * * * * * *	**********	**********	जन <b>नन्त्रम्बद्वभ</b> ा	

WEST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER

	WEST POINT STUDY Southeast region					1219	KN-8				
(CHATTAHOOCHEE . RIVE					CHATT 13 GE South Chatt	R GA HWY 2 Drgia East Ahoocher	19 N W L4	AGRANGE		
						11135	050	77777	7777		
******	*********	*********		*******	******	********	*****	******	*******	********	*******
SATE	PARAMETER	RANADOC	00010 WATER TEMD	00300 70	09410 T'ALK CACO3	00403 LAR	00095 CNDUCTVY	00070 TURB	70515 COLOR	00310 ROD	00304 ROD
TO		RT RANK	CENT	MG/L	MG/L	SU	MICROMHO	JU	PT-CO-U	MG/L	MG/L
70/ 4/1	1										
	NI JMAFR	10	10	10	10	10	10	10	10	5	5
	MAXIMUM	66. 44	26.5	7+3	14.	7.2	86.	120.	45.	0.5	1.0
	· ME. 971		27.9	7.0	14.	7 0	40.	55.	10.	0.4	0.0
	LOG MEAN	66.	23.7	5-4	14.	7.0	59.	45.	14.	0.4	0.9
70/ 9/1	A				•						
******	**********	*******	********	********	*******	********	******	********	****	********	*******
		00450	00653	00625	00610	99630	00940	00680	00500	00515	00530
74TF	PAPAMETER	1 P04	SULP04-1	HOT KUFL		NO2KNU S	CHEURIDE	IORGC	RESIDUE	RESIDUE	RESIDUE
TO		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	C MG/L	MG/L
70/ 8/)	1										
	NIMOFH	10	10	10	. 10	10	10	10	10	10	10
	MAXTMUM	0.55	0.24	1.100	0.790	0.8	5.	10.0	196.	149.	60.
	MENIMIN	0.22	0.12	0.730	0.170	0.4	3.	4.0	57.	23.	25.
	MFAN	0.37	0.15	0.645	0.472	0.5	4.	5.8	116.	72.	44.
744 044	LOG MEAN	0+35	0.15	164.28	0+475	(Fe ማ	4.	. D +C	107.	50 e	4 5 e
		*****	***	*****	*****		******	****	*******	***	***
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	THON	IRON	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM		TOTAL	FE+DISS	MN	MN+DISS	TMEDENDO	MF-C44.5				
TO		UGZE	JG/L	UG/L	UG/L	MF/100ML	MF/100ML				
70/ 4/1	1	-				-	-				
	NI MAFR	10	10	10	10	9	9				
	MAXIMUM	10900.	220.	360.0	50.0	NZ000.	5000.				
	MINIMUM	1500.	חל. הכי	198.0	10.0	0100+	7.30+				
	MEAN	4460.	138.	100 0	54.U 25 2	27,170 + 20050	2100				
70/ 0/	L'JG 77 AN	3.1411.	1690	14404		~CUU77*	C106.0				
							*********	*******	******	*****	******

WFST POINT STUDY SGUTHEAST REGION CHATTAHOOCHEE+ RIVER

151980 CH-11

NEW R US 27 S OF FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

******	******	********	*******	*******	*****	*****	*****	****	*****	****	*******
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT RANK	00010 WATER TEMP CENT	00300 DO MG/L	00410 T ALK CACO3 MG/L	00403 LAR PH SU	00095 CNDUCTVY AT 25C MICROMHO	00070 TURR JKSN JU	70515 COLOR PT-CO-U	00310 800 5 044 MG/L	00304 RON 2 DAY MG/L
70/ B/1	11										
	NUMBER		10	10	10	10	10	10	10	5	2
	MAXIMUM		25.0	8.3	33.	7.3	110.	57.	45.	0.5	1.0
	MINIMUM		21.5	5.6	18.	7.0	59.	10.	10.	0+5	0.9
	MEAN		23.3	7.2	28.	7.2	84.	23.	19.	0.3	0.9
70/ 0/	LOG MEAN		23.2	1.2	~ ~ ~	1.2	04.	20.	1/•	0+3	0.9
******	 	*******	****	******	*****	****	*****	*******	****	*****	*****
		00650	00653	00625	00610	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLP04-T	TOT KJEL	AMMONIA	N026N03	CHLORIDE	T ORG C	RESIDUE	RESIDUE	RESIDUE
FROM		P04	P04	N	NH3-N	N	CL	C	TOTAL	DISS-105	TOT NELT
TÓ		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	C MG/L	MG/L
70/ 8/1	,										
107 771	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXTMUM	0.35	0.29	0.950	0.540	2.0	4.	11.0	101.	56.	90.
	MINIMUM	0.24	0.12	0.150	0.040	0.1	2.	4.0	69.	8.	39.
	MEAN	0.30	0.19	0.474	0.254	0.1	3.	5.8	85.	22.	63.
	LOG MEAN	0.29	0.18	0.404	0.201	0.1	3.	5.5	84.	18.	61.
70/ 9/1	8										
******	*********	01045	01046	01055	01056	31501	31616	********	**********	********	
DATE	PARAMETER	TRON	IRON	MANGNESE	MANGNESE	COLIFORM	FEC COLI				
FROM		TOTAL	FE.DISS	MN	MN+DTSS	IMEDENDO	MF-C44.5				
TO		UGZL	UG/L	UG/L	UG/L	ME/100ML	MF/100ML				
707 8/1	1										
	NUMBER	10	10	10	10	8	8				
	MAXIMIM	3000.	420.	470.0	140.0	30000.	3600.				
	MINIMUM	850.	150.	160.0	40.0	1200.	130.				
	MEAN	1725.	272.	253.0	92.0	10438.	1086.				
	LOG MFAN	1577.	257.	241.4	85.5	6964 •	477.				
70/ 9/1	A										
	**********	**********	**********	**********	**********		**********	**********	,	*********	***********

1	WEST POINT STUDY SOUTHEAST REGION						121992-A CH-12A					
	CHATTAHOOCHE	E. RIVER	CHATT R AT US 27 FRANKLIN 13 GEORGIA Southeast Chattahoochee									
						11135	050	דדדד	7777			
DATF FROM TO	PARAMETER	NONN? HSAMPLOC 9 FROM RT BANK	00910 WATER TEMP CENT	00300 DO 467L	00410 7 ALK CACO3 MG/L	********* 00403 LAR PH SU	00095 CNDUCTVY AT 25C MICROMHO	44444444 00070 TURB JKSN JU	70515 COLOR PT-CO-U	00310 800 5 DAY MG/L	00304 800 2 DAY MG/L	
70/ 8/1	1											
	NUMAFR MAXIMUM MINIMUM MFAN	10 33. 33. 33.	10 27.0 21.0 23.9	10 8•4 3•4	10 23. 12.	10 7.2 6.9 7.0	10 92. 46.	10 72. 15. 37.	10 30. 10.	3 2•1 0•5 1•5	2 1•4 0•7 1•0	
	LOG MEAN	33.	23.9	5.9	15.	7.0	63.	33.	14.	1.3	1.0	
70/ 9/1	1 2	******		******		******	*****	*****	*********			
0ATE FH0M T0	PAHAMETER	00650 T PO4 PO4 MG/L	00553 SOLP04-T P04 MG/L	00625 TOT KJEL N MG/L	00610 AMMONIA NH3-N MG/L	00630 NO2&NO3 N MG/L	00940 CHLORIDE CL MG/L	00680 T ORG C C MG/L	00500 RESIDUE Total Mg/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NELT MG/L	
70/ 8/1)											
	NUMRER MAXIMUM MINIMUM MEAN	10 0.76 0.23 0.39 0.36	10 0.38 0.13 0.18 0.17	10 1+720 0+300 0+823 0-710	10 1.700 0.200 9.631 0.511	10 -0.8 0.4 0.5 0.5	10 6. 3. 4.	10 11.0 3.0 5.5	10 172. 53. 100. 95.	10 130. 16. 55. 47.	10 55. 26. 45. 44.	
70/ 9/1	A CONTRACTOR											
9444999 94TF FR0M T0	040404040444 040406750	01045 1045 TRON TOTAL UG/L	01046 IRON FE+DISS UG/L	01055 MANGNESE MN UG/L	MANGNESE MN.DISS UG/L	31501 COLIFORM IMEDENDO ME/100ML	31616 FEC COLI MF-C44.5 MF/100ML	****	*****	****	*******	
707 871	1											
	NIMAFR MAXTMUM MINIMIM MFAN LOG MFAN	10 8000. 1000. 2560. 2135.	10 220. 80. 142. 132.	10 380+0 70+0 184+0 163+2	10 60.0 10.0 39.0 35.8	A 130000+ 5700+ 38338+ 24020+	8 23000. 900. 6225. 2918.					
70/ 9/1	# #	******	**********	******	****	******	-	****	******	*******	*********	

WFST POINT STUDY SOUTHEAST REGION CHATTAHOOCHEE+ RIVER

121992-B CH-128

CHATT R AT US 27 FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 77777777

******	****	****	******	*****	*********	*********	*********	****	*****	*****	****
		2000	00010	00300	00410	00403	00095	00070	70515	00310	00304
DATE	PARAMETEP	HSAMPLOC	WATER	00	T ALK	LAR	CNDUCTVY	TURB	COLOR	ROD	BOD
FROM		% FROM	TEMP		CAC03	PH	AT 25C	JKSN		5 DAY	2 DAY
TO		RT RANK	CENT	MGZL	MG/L	SU	MICROMHO	JU	PT-CO-U	MG/L	MG/L
70/ 8/1	1										
	NUMBER	10	10	10	10	10	10	10	10	3	2
	MAXIMUM	66.	27.0	8.3	22•	7.1	82.	80.	30.	2.8	1.4
	MINIMUM	66+	21.0	3.7	13.	6.9	50.	15.	10.	1.0	0.1
	MEAN	66.	23.8	6.2	16.	7.0	60.	36.	15.	5.0	0.7
	LOG MFAN	66.	23.8	6.0	16+	7.0	60.	31.	13.	1.8	0.4
70/ 9/1	8										
******	****	****	****	*******	********	********	********	*****	*******	****	****
		00650	00653	00625	00510	00630	00940	00680	00500	00515	00530
DATE	PARAMETER	T P04	SOLP04-T	TOT KJEL	AMMONIA	NOZENO3	CHLORIDE	I ORG C	RESIDUE	RESIDUE	RESIDUE
FROM		P04	P04	N	NH 3-N	N		C MC (I	IUTAL	0155-105	TOT NELT
TO		MGZL	MGZL	MG/L	MGZL	MG/L	M97L	MG/L	M(3/L	C MGZL	MGZL
70/ 4/1	1										
	NUMBER	10	10	10	10	10	10	10	10	10	10
	MAXIMIJM	0.69	0.38	1.860	1.500	0.8	6.	8.0	167.	117.	61.
	MINIMUM	0.23	0+13	0.260	9.010	0.4	3.	3.0	47.	16.	31.
	MEAN	0.36	0.19	0.669	0.460	0.5	4.	4.9	97.	50.	47.
	LOG MEAN	0.34	0.17	0.571	0.290	0.5	4.	4.6	91.	43.	46.
70/ 9/1	18										
******	*****	*********		**********				******	*********	********	**********
		01045	01046	01055	01056	31501	31616				
DATE	PARAMETER	JRON	IRON	MANGNESE	MANGNESE	CULIFURM	FEC COLI				
FROM		TOTAL	FE+DISS	MIN	MN+0155	IMEDENOU	MF -644+5				
TO		0676	967L	0076	0076	MF / 100ML	MEN TOOME				
70/ 8/))										
	NUMBER	10	10	10	10	8	9				
	MAXIMUM	7100.	200.	370.0	60.0	140000.	23000.				
	MINIMUM	1109.	60.	70.0	10.0	5300.	850.				
	MEAN	2700.	138.	181.0	38.0	42650.	6439.				
	LOG MEAN	2285.	128.	161.6	32.7	24438.	3482.				
71/ 9/	18										
******	*********	*********	********	********	********	********	********	******	*********	**********	***********

	WEST POINT STUDY						915	CH-13			
I	SOUTHEAST REGION CHATTAHOOCHEE+ RIVER			WEHADKEE CR HWY 238 SE LAGRAM 13 GEORGIA SOUTHEAST CHATTAHOOCHEF							
						1113	5050	211	1204		
*******	*****	****	***	*****	***	*****	****	***	****	*****	****
DATE FROM TO	PARAMETER	NONOZ HSAMPLOC & FROM RT BANK	00010 WATER TEMP CENT	00300 DO MG/L	00410 T ALK CACO3 MG/L	00403 LAR PH SU	00095 CNDUCTVY AT 25C MICROMHO	00070 TURR JKSN JU	70515 COLOR PT-CO-U	00310 80D 5 DAY MG/L	00304 ROD 2 DAY MG/L
70/ 8/1	1.										
	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN		10 25.0 22.0 23.4 23.4	10 8.3 7.4 7.8 7.8	10 36. 18. 23. 23.	10 7.3 6.8 7.1 7.1	10 71. 46. 58. 57.	10 57. 18. 29. 27.	10 40. 10. 24. 22.	3 0.6 0.4 0.5 0.5	2 1.4 0.2 0.8 0.5
70/ 9/1	A										
******	****	*******	********	****	********	*********	*****	*******	*****	*****	*****
DATE FROM TO	PARAMETER	00550 T P04 P04 MG/L	00553 SOLP04-T P04 MG/L	NO625 TOT KJEL N MG/L	AMMONIA NH3-N MG/L	00530 N025N03 N MG/L	CHLORIDE CL MG/L	00580 T ORG C C MG/L	RESIDUE TOTAL MG/L	RESIDUE DISS-105 C MG/L	00530 RESIDUF TOT NELT MG/L
70/ 8/1	1										
	NUMRER MAXIMUM MINIMUM MEAN LOG MEAN	10 0.04 0.01 0.02 0.02	9 0.20 0.00 0.03 0.03	10 1.040 0.120 0.289 0.225	10 0•540 0•040 0•210 0•151	2+0 2+0 2+0 2+0	10 3. 2. 2. 2.	10 6+0 3+0 3+9 3+8	10 96. 56. 71. 71.	10 44. 6. 20. 17.	10 65. 35. 52. 51.
70/ 9/1	8			******					******	*******	
DATF FROM TO	PARAMETER	01045 IRON Total UG/L	01046 IRON FE+DISS UG/L	01055 MANGNESF MN UG/L	01056 MANGNESE MN.DISS UG/L	31501 COLIFURM IMEDENDO MF/100ML	31616 FEC COLI MF-C44.5 MF/100ML				
70/ H/1	1										
70/ 9/1	NUMHER MAXIMUM MINIMUM MEAN LOG MEAN R	10 5300• 1900• 2730• 2579•	9 550. 100. 346. 314.	10 420.0 270.0 324.0 320.4	9 300+0 50+0 178+9 157+0	8 5000. 1500. 3313. 3074.	8 920. 85. 253. 180.	******	******	*****	

APPENDIX F

Statistical Summary of Water Quality Data Chattahoochee River Basin February 1971
121910-A CH-01A

CHATTA R WEST POINT ABOVE US29 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

*****	*********	*********	****	*********	*********	********	**********	******	**********	*********	*********
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER TEMP CENT	00070 Turð Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00304 BOD 2 DAy Mg/L	00305 BOD 3 DAY MG/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 Mg/L
71/ 2/	17										
	NUMBER	8	8	8	8	7	2.		3	8	8
	MAXIMUM	33.0	15.0	210.	67.	10.1	3.0		1.9	7.2	17.
	MINIMUM	33.0	10.0	18.	35.	7.5	1+3		1.3	6.4	12.
	MEAN	33.0	12.3	90.	53.	8.7	2.1		1.6	6.8	15.
71/ 2/2	LUG MEAN	33.0	12+2	57.	52.	0+0	2.0		1+0	0.0	12+
******		********	********	********	********	*******	********	*******	*******	********	**********
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T P04	SOLP04-T	T ORG C	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
10		MG/L	C MG/L	MG/L	MG/L	MGZL	MGZL	MG/L	MG/L	MG/L	MG/L
71/ 2/1	7										
	NUMBER	8	8	. 8	- 8	8	8	8	8	8	8
	MAXIMUM	480.	441.	77.	0.540	1.920	0.57	0.70	0.11	11.0	8.
	MINIMUM	72.	15.	39.	0.120	0.520	0.33	0.17	0.05	1.0	4.
	MEAN	211.	155.	56.	0.299	0.819	0.43	0.36	0.08	5.3	6.
714 240	LOG MEAN	159.	69.	55.	0.275	0.740	0.42	0.32	0+07	3.6	6 .
*******] ###############	*********	********	********	*********	********	*********	*********	*********	********	**********
		01045	01046	01055	01056	31501	31616	70515	00020	00060	00301
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	TOT COLI	FEC COLI	COLOR	AIR	STREAM	00
FROM		TOTAL	FE,DISS	MN	MN,DISS	MFIMENDO	MFM-FCBR		TEMP	FLOW	SATUR
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	53000.	300.	600.0	100.0	350000.	11000.	50.			
	MINIMUM	1300.	150.	70.0	20.0	5400.	150.	10.			
	MEAN	12550.	235.	271.3	61.3	113525.	4110.	26.			
	LOG MEAN	5108.	229.	191.1	54.4	45911.	2073.	23.			
71/ 2/2	5			****							

WEST PO	INT STUDY					121	910- 8	СН-01В			
PERIOD (SCHNEID)	OF RECORD ER					CHAT 13 G Sout Chat	TA R WEST EORGIA HEAST TAHOOCHEE	POINT ABOV	E US29		
						1113	S050	211	1204		
******	**********	********	*******	*****	*******	*******	******	****	******	****	*******
DATE FROM TO	PARAMETER	HSAMPLOC % FROM RT BANK	WATER TEMP CENT	TURB JKSN JU	CNDUCTVY AT 25C MICROMHO	00300 D0 MG/L	00304 BOD 2 Day Mg/L	00305 BOD 3 Day Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 MG/L
71/ 2/1	7										
	NUMBER MAXIMUM	8 66.0	8 15.0	8 180.	8 69.	8 10.5	3 3.3		4 2.0	8 7.2	8 16.
	MINIMUM MEAN	66.0 66.0	10.0 12.1	20. 84.	34. 51.	7.3 9.1	2.0 2.5		1.4 1.8	6.6 6.8	12.
71/ 2/2	LOG MEAN 5	66.0	12.0	55.	49.	9.0	2.5		1.8	6.8	14.
******	*********	************ 00500	***************************************	***************************************	*********** 00610	***********	************	**************************************	*********** ^^^~?	*** ** *******************************	100000
DATE FROM TO	PARAMETER	RESIDUE TOTAL MG/L	RESIDUE DISS-105 C MG/L	RESIDUE TOT NFLT MG/L	AMMONIA NH3-N MG/L	TOT KJEL N MG/L	N026N03 N MG/L	T P04 P04 MG/L	SOLP04-T P04 MG/L	T ORG C C MG/L	CHLORIDE CL MG/L
73/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	427.	363.	64.	0.500	0.940	0.53	0.63	0.10	12.0	8.
	MINIMUM	.61.	13.	33.	0.100	0.610	0.27	0.15	0.04	1.0	5.
	MEAN	121.	1324	54.	0.246	0.747	0.38	0.27	0.07	3.6	0.
71/ 2/2	5	7-54	00*	554	00240	00141			0.07	5.0	0.
******	**********	********	*******	******	***	******	********	******	********	*****	********
DATE	PARAMETER	01045 Iron Total	01046 IRON FF.DISS	01055 MANGNESE MN	01056 MANGNESE MN.DISS	31501 TOT COLI MEIMENDO	31616 FEC COLI MFM-FC8R	70515 COLOR	00020 AIR Temp	00060 STREAM FLOW	00301 D0 Satur
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO - U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7				_		_				
•	NUMBER	8	8	8	8	8	8	. 8			
	MAXIMUM	27000.	280.	500.0	1/0+0	320000.	13000.	45.			
	MEAN	· 8725.	230-	263.8	77.5	94100-	4160-	26-			
	LOG MEAN	4519-	237-	203.7	70.3	37548	2044.	23.			
71/ 2/2	5		2011								

121911-A CH-02A

CHATTAHOOCHEE R AT HARDLEY CR MO GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

*****	********	*********	*******	*****	***	********	*******	****	*****	******	*****
DATE From To	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER TEMP CENT	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C Micromho	00300 Do Mg/L	00304 BOD 2 DAY Mg/L	00305 BOD 3 DAY MG/L	00310 BOD 5 DAY MG/L	00403 LAB PH SU	00410 T ALK CACO3 MG/L
71/ 2/	17										
	NUMBER	4	4	4	4	4			4	4	4
	MAXIMUM	33.0	13.0	23.	60.	11.2			2.7	7.2	18.
	MINIMUM	33.0	11.0	15.	58.	9+1			1.6	6.7	16.
	MEAN	33.0	12.0	20.	59.	10.3			2.2	6.9	17.
	LOG MEAN	33.0	12.0	19•	59.	10.3			2.2	6.9	16.
71/ 2/2	20										
******	**********	**********		00530	**********	77777777777777777777777777777777777777	***********	*********	**********	***********	********
0.475		PECTORE	PECTOUE	PECTONE	ANNONTA	TOT KIEL	00030	T POA		U0600	
500M	PARAMETER	TOTAL	0155-105	TOT NELT	NH3-N	N	NUZENUS	P04	P04		CI
TO		MGZL	C MG/L	MG/L	MG/L	MGZL	MGZL	MG/L	MGZL	MGZL	MGZL
			•								
71/ 2/1	7										
	NUMBER	4	4	4	4	4	4	4	4	4	4
	MAXIMUM	74.	22.	62.	0.230	0.530	0+54	0.24	0.10	3.0	5.
	MINIMUM	65.	9.	49.	0.140	0.390	0.48	0.19	0.08	1.0	4.
	MEAN	70.	15.	56.	0.202	0.460	0.52	0.21	0.09	2.0	5.
	LOG MEAN	70.	14.	56.	0.199	0.456	0.52	0.21	0.09	1.9	4.
71/ 2/2	20										
******	*********	*********	**********	*********	**********	**********	***********		***********	*********	***********
		01045	01046	01055	01056	31501	31616	70515	00020		00301
DATE	PARAMETER	IRON	IKUN	MANGNESE	MANUNESE	TOT CULI	FEC CULI	CULUR	AIK TEMD	SIREAM	
FROM		IUTAL	PEOUISS		MIN+0122	AL TURENOO		PT-CO-U	CENT	CHETZSEC	DERCENT
10		0676	0076	UG/L	0072	/ LOOME	A TOOME	F1-C0-0	CENT	CUPTIBLE	FENGENI
71/ 2/1	17										
117 271	NUMBER	4	4	4	4	4	4	4			
	MAXIMUM	1500-	270.	80.0	50.0	35000.	6700.	20.			
	MINIMUM	1400-	220.	70.0	30.0	4200.	230.	15.			
	MEAN	1450.	248.	77.5	42.5	17050.	2115.	16.			
	LOG MEAN	1449.	247.	77.4	41.6	13255.	963.	16.			
71/ 2/2	20										
******	*********	*******	*********	****	***	*********	*********	*********	***	****	**********

WEST POINT STUDY CHATTAHOOCHEE RIVER PERIOD OF RECORD					121911-B CH-02B						
PERIOD	DF RECORD ER	CHATTAHOOCHEE R AT HARDLEY CR MO 13 GEORGIA Southeast Chattahoochee 11135050 2111204									
******	**********	*********	*********	********	********	********	********	******	****	*****	*******
DATE		00002	00010	00070	00095	00300	00304	00305	00310	00403	00410
FROM	FARAMETER	SARPLUC	TEMP	IURB	AT 250	00	2 047	3 047	S DAY		I ALK
TO	•	RT BANK	CENT	JU	MICROMHO	MG/L	MG/L	MG/L	MG/L	SU	MG/L
71/ 2/1	7										
	NUMBER	4	4	4	4	4			4	4	4
	MAXIHUM	66.0	13.0	24.	59.	11.1			2.6	7.1	17.
	MINIMUM	66.0	11.0	12.	54.	9.2			1.6	6.7	16.
	MEAN LOC MEAN	00.0 66 0	12.0	19.	5/+	10.3			2.1	6.9	17.
71/ 2/2	LUG MEAN	00.0	12.0	10+	51.	10+3			2.0	0.9	10+
******	· **********	****	****	****	***	****	***	****	****	******	****
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T P04	SOLP04-T	T ORG C	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
71/ 2/1	7										
	NUMBER	4	4	4	4	4	4	4	4	4	4
	MAXIMUM	73.	15.	62.	0.320	0.440	0.53	0.22	0.13	3.0	5.
	MINIMUM	64.	11.	51.	0.120	0.320	0.47	0.16	0.07	1.0	4.
	MEAN	70.	13.	57.	0.222	0.402	0.51	0.19	0.10	1.8	5.
	LOG MEAN	70.	13.	57.	0.210	0.399	0.51	0.19	0.10	1.6	4.
11/ 2/2	0	********	**********	*********	*********	******	********	******		********	********
-		01045	01046	01055	01056	31501	31616	70515	00020	00060	00301
DATE	PARAMETER	TRON	IRON	MANGNESE	MANGNESE	TOT COLI	FEC COLI	COLOR	AIR	STREAM	DO
FROM		TOTAL	FE.DISS	MN	MN.DISS	MFIMENDO	MFM-FCBR		TEMP	FLOW	SATUR
TO	4	UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7										
	NUMBER	4	4	4	4	· 4	4	4			
	MAXIMUM	1500.	300.	90.0	60.0	30000.	970.	20.			
	MINIMUM	1500.	230.	70.0	30.0	3600.	240.	10.			
. `	MEAN	1500.	275.	80.0	47.5	14900.	623.	15.			
	LOG MEAN	1500.	274.	79.7	40.1	11405.	222+	12+			
117 2/2		******	**********	*********	**********		********	********	********	********	*********

121913-A CH-03A

CHATTAHOOCHEE R AT MAPLE CR. MO. 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

********	********	********	******	*********	***	****	***	***	***	*****
PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER TEMP CENT	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 DAY Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 MG/L
17										
NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	4 33•0 33•0 33•0 33•0	4 13.0 11.0 12.0 12.0	4 23. 14. 19. 19.	4 60. 56. 58. 57.	4 10.6 9.0 9.9 9.9			4 2.3 1.7 2.0 2.0	4 7.0 6.7 6.9 6.9	4 18. 15. 17. 17.
20				-						
*******	******	***	******	*********	*******	*********	**********	********	********	*****
PARAMETER	00500 RESIDUE Total Mg/L	00515 RESIDVE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 Ammonia NH3-N Mg/L	00625 TOT KJEL N Mg/L	00630 N02&N03 N MG/L	00650 T PO4 PO4 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C MG/L	00940 CHLORIDE CL MG/L
7										
NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	4 74. 66. 70. 70.	4 17. 11. 14. 13.	4 63° 50• 56• 56•	4 0.240 0.130 0.210 0.204	4 0.500 0.380 0.445 0.443	4 0.57 0.49 0.53 0.53	4 0.24 0.19 0.21 0.21	4 0.13 0.07 0.10 0.10	4 3.0 1.0 1.8 1.6	4 5. 4. 5. 4.
0	*********		*******	******	*****		*********	******	********	******
PARAMETER	01045 Iron Total Ug/L	01046 IRON FE•DISS UG/L	01055 MANGNESE MN UG/L	01056 MANGNESE MN.DISS UG/L	31501 TOT COLI MFIMENDO /100ML	31616 FEC COLI MFM-FCBR /100ML	70515 COLOR PT-CO-U	00020 AIR TEMP CENT	00060 STREAM FLOW CUFT/SEC	00301 DO SATUR PERCENT
7										
NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 0	4 1700. 1600. 1625. 1624.	4 300. 200. 258. 255.	4 80•0 70•0 75•0 74•8	4 70.0 50.0 60.0 59.2	4 32000. 5600. 16900. 14107.	4 1100. 280. 703. 626.	4 20. 15. 16. 16.			
	PARAMETER PARAMETER NUMBER MAXIMUM MINIMUM MEAN LOG MEAN PARAMETER 7 NUMBER MAXIMUM MEAN LOG MEAN 0 PARAMETER 7 NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 0 MINIMUM MEAN LOG MEAN 0 MINIMUM	PARAMETER 00002 PARAMETER HSAMPLOC % FROM RT BANK 17 NUMBER 4 MAXIMUM 33.0 MINIMUM 33.0 LOG MEAN 33.0 LOG MEAN 33.0 PARAMETER RESIDUE TOTAL MG/L 7 NUMBER 4 MAXIMUM 74. MINIMUM 66. MEAN 70. LOG MEAN 70. QO MEAN 70. QO MEAN 70. QO MEAN 70. NUMBER 4 MAXIMUM 74. MINIMUM 66. MEAN 70. D 01045 PARAMETER IRON TOTAL UG/L 7 NUMBER MAXIMUM 1700. MINIMUM 1600. MEAN 1625. LOG MEAN 1624.	PARAMETER 00002 HSAMPLOC % FROM RT BANK 00010 WATER TEMP RT BANK 17 NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 4 33.0 4 13.0 17 NUMBER MEAN LOG MEAN 4 33.0 4 12.0 20 00500 MG/L 00515 RESIDUE TOTAL DISS-105 MG/L 00515 C 7 NUMBER MAXIMUM MEAN LOG MEAN 74.17. MG/L 11.0 C 7 NUMBER MAXIMUM MEAN LOG MEAN 4 4 4 4 4 4 4 MAXIMUM TOTAL TOTAL TOTAL FE,DISS UG/L 13.0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PARAMETER 00002 HSAMPLOC % FROM RT BANK 00010 WATER TEMP JKSN RT BANK 00070 VATER TURB TEMP JKSN TEMP JKSN TEMP JKSN RT BANK 17 NUMBER MAXIMUM MEAN LOG MEAN 4 33.0 4 3.0 23. 13.0 MINIMUM MEAN LOG MEAN 33.0 13.0 23. 14.0 PARAMETER 60500 00515 00530 PARAMETER RESIDUE RESIDUE TOTAL MG/L 005015 00530 PARAMETER RESIDUE RESIDUE TOTAL MG/L C MG/L MG/L 7 NUMBER MAXIMUM MAXIMUM MAXIMUM MAXIMUM MEAN 74. 17. 63. MG/L 66. 7 NUMBER MEAN 70. 13. 56. 00 9 PARAMETER 01045 01046 01055 01045 01046 01055 MANGNESE 01041 1700. <td>PARAMETER 00002 HSAMPLOC MATER 00010 WATER TURB RT BANK 00070 CNDUCTVY MICROMHO 00095 CNDUCTVY MICROMHO 17 NUMBER 4 4 4 4 MAXIMUM 33.0 13.0 23. 60. MINIMUM 33.0 13.0 23. 60. MINIMUM 33.0 12.0 19. 58. LOG MEAN 33.0 12.0 19. 57. 20 00500 00515 00530 00610 PARAMETER RESIDUE RESIDUE MG/L RESIDUE C MG/L MMONIA MG/L 7 NUMBER MAXIMUM 74. 17. 63. 0.240 MG/L 7 MG/L C MG/L MG/L MG/L 7 01045 01046 01055 01056 MEAN 70. 13. 56. 0.204 0 01045 01046 01055 01056 PARAMETER IRON IRON MANGNESE MANGNESE 0 01045 01</td> <td>PARAMETER 00002 HSAMPLOC 00010 WATER 00070 TURB TURB TURB AT 25C 00300 DO 17 NUMBER 4 4 4 4 4 4 18 MAXIMUM 33.0 13.0 23. 60. 10.6 MAXIMUM 33.0 12.0 19. 58. 9.9 LOG MEAN 33.0 12.0 19. 57. 9.9 20 00500 00515 00530 00610 00625 PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KJEL NUMBER 4 4 4 4 4 MAXIMUM 70. 14. 56. 0.210 0.445 LOG MEAN 70. 13. 56. 0.204 0.445 <td>PARAMETER 00002 HSAMPLOC 00010 WATER TURE TURE JU 00095 MT EMP JKSN 00095 AT 25C 00300 DD BDD 2 00304 BDD 2 17 NUMBER 4 4 4 4 4 4 MAXIMUM 33.0 13.0 23. 60. 10.6 MG/L MINIMUM 33.0 13.0 23. 60. 10.6 10.6 MEAN 33.0 12.0 19. 58. 9.9 20 20 00500 00515 00530 00610 00625 00630 PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KLEL NOZENO3 PARAMETER RESIDUE RESIDUE AMG/L MG/L MG/L MG/L C MG/L MG/L MG/L MG/L MG/L NUMBER 4 4 4 4 4 4 4 MAXIMUM 70. 13. 56. 0.210 0.445 0.533 LOG MEAN 70.</td><td>PARAMETER 00002 HSAMPLOC % FROM RT BANK 00010 TEMP CENT 00070 TURB TURB TURB CNDUCTVY 00 DO DO DO DO DO DO DO DO DO DO DO DO DO</td><td>PARAMETER 00002 00010 00070 00095 00300 00304 00305 00316 B0D B0D<td>PARAMETER HSAMPLOC HSAMPLOC 00010 WATER 000070 TURB TURB RT BANK 000070 CENT 000095 TURB TURB MICROMHO 00300 BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00310 BOD MG/L 00305 BOD MG/L 00310 MG/L 00403 SC SC SC SC SC SC SC SC SC SC SC SC SC</td></td></td>	PARAMETER 00002 HSAMPLOC MATER 00010 WATER TURB RT BANK 00070 CNDUCTVY MICROMHO 00095 CNDUCTVY MICROMHO 17 NUMBER 4 4 4 4 MAXIMUM 33.0 13.0 23. 60. MINIMUM 33.0 13.0 23. 60. MINIMUM 33.0 12.0 19. 58. LOG MEAN 33.0 12.0 19. 57. 20 00500 00515 00530 00610 PARAMETER RESIDUE RESIDUE MG/L RESIDUE C MG/L MMONIA MG/L 7 NUMBER MAXIMUM 74. 17. 63. 0.240 MG/L 7 MG/L C MG/L MG/L MG/L 7 01045 01046 01055 01056 MEAN 70. 13. 56. 0.204 0 01045 01046 01055 01056 PARAMETER IRON IRON MANGNESE MANGNESE 0 01045 01	PARAMETER 00002 HSAMPLOC 00010 WATER 00070 TURB TURB TURB AT 25C 00300 DO 17 NUMBER 4 4 4 4 4 4 18 MAXIMUM 33.0 13.0 23. 60. 10.6 MAXIMUM 33.0 12.0 19. 58. 9.9 LOG MEAN 33.0 12.0 19. 57. 9.9 20 00500 00515 00530 00610 00625 PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KJEL NUMBER 4 4 4 4 4 MAXIMUM 70. 14. 56. 0.210 0.445 LOG MEAN 70. 13. 56. 0.204 0.445 <td>PARAMETER 00002 HSAMPLOC 00010 WATER TURE TURE JU 00095 MT EMP JKSN 00095 AT 25C 00300 DD BDD 2 00304 BDD 2 17 NUMBER 4 4 4 4 4 4 MAXIMUM 33.0 13.0 23. 60. 10.6 MG/L MINIMUM 33.0 13.0 23. 60. 10.6 10.6 MEAN 33.0 12.0 19. 58. 9.9 20 20 00500 00515 00530 00610 00625 00630 PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KLEL NOZENO3 PARAMETER RESIDUE RESIDUE AMG/L MG/L MG/L MG/L C MG/L MG/L MG/L MG/L MG/L NUMBER 4 4 4 4 4 4 4 MAXIMUM 70. 13. 56. 0.210 0.445 0.533 LOG MEAN 70.</td> <td>PARAMETER 00002 HSAMPLOC % FROM RT BANK 00010 TEMP CENT 00070 TURB TURB TURB CNDUCTVY 00 DO DO DO DO DO DO DO DO DO DO DO DO DO</td> <td>PARAMETER 00002 00010 00070 00095 00300 00304 00305 00316 B0D B0D<td>PARAMETER HSAMPLOC HSAMPLOC 00010 WATER 000070 TURB TURB RT BANK 000070 CENT 000095 TURB TURB MICROMHO 00300 BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00310 BOD MG/L 00305 BOD MG/L 00310 MG/L 00403 SC SC SC SC SC SC SC SC SC SC SC SC SC</td></td>	PARAMETER 00002 HSAMPLOC 00010 WATER TURE TURE JU 00095 MT EMP JKSN 00095 AT 25C 00300 DD BDD 2 00304 BDD 2 17 NUMBER 4 4 4 4 4 4 MAXIMUM 33.0 13.0 23. 60. 10.6 MG/L MINIMUM 33.0 13.0 23. 60. 10.6 10.6 MEAN 33.0 12.0 19. 58. 9.9 20 20 00500 00515 00530 00610 00625 00630 PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KLEL NOZENO3 PARAMETER RESIDUE RESIDUE AMG/L MG/L MG/L MG/L C MG/L MG/L MG/L MG/L MG/L NUMBER 4 4 4 4 4 4 4 MAXIMUM 70. 13. 56. 0.210 0.445 0.533 LOG MEAN 70.	PARAMETER 00002 HSAMPLOC % FROM RT BANK 00010 TEMP CENT 00070 TURB TURB TURB CNDUCTVY 00 DO DO DO DO DO DO DO DO DO DO DO DO DO	PARAMETER 00002 00010 00070 00095 00300 00304 00305 00316 B0D B0D <td>PARAMETER HSAMPLOC HSAMPLOC 00010 WATER 000070 TURB TURB RT BANK 000070 CENT 000095 TURB TURB MICROMHO 00300 BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00310 BOD MG/L 00305 BOD MG/L 00310 MG/L 00403 SC SC SC SC SC SC SC SC SC SC SC SC SC</td>	PARAMETER HSAMPLOC HSAMPLOC 00010 WATER 000070 TURB TURB RT BANK 000070 CENT 000095 TURB TURB MICROMHO 00300 BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00305 BOD MG/L 00310 BOD MG/L 00305 BOD MG/L 00310 MG/L 00403 SC SC SC SC SC SC SC SC SC SC SC SC SC

DATE PARAMETER 00002 00010 00070 000070 000070 000070 000000 00000 00010 000000 000000 000000 000000 000000 000000 000000 000000 000000 00000000000 0000000 00000000 <th>WEST PO</th> <th>INT STUDY</th> <th></th> <th></th> <th></th> <th></th> <th>121</th> <th>913-B</th> <th>CH-038</th> <th></th> <th></th> <th></th>	WEST PO	INT STUDY					121	913 - B	CH-038			
11135050 2111204 DATE PARAMETER HSAMPLOC 000010 00070 00095 00300 00304 00305 00310 00403 00413 FROM % FROM % FROM TEMP JKSN AT 25C 2 DAY 3 DAY 5 DAY PH CAC03 71/ 2/17 MUMBER 4 </th <th>PERIOD SCHNEID</th> <th>OF RECORD ER</th> <th></th> <th></th> <th></th> <th></th> <th>CHAT 13 G SOUT CHAT</th> <th>TAHOOCHEE EORGIA HEAST TAHOOCHEE</th> <th>R AT MAPLE</th> <th>CR. MO.</th> <th></th> <th></th>	PERIOD SCHNEID	OF RECORD ER					CHAT 13 G SOUT CHAT	TAHOOCHEE EORGIA HEAST TAHOOCHEE	R AT MAPLE	CR. MO.		
DATE PROM TO PARAMETER HSAMPLOC S FROM TO 00010 S S FROM RT BANK 00010 TURE CENT 00095 URR URE JUN MICROMHO 00300 MG/L 00305 BOD BOD MG/L 00310 BOD MG/L 00403 S DAT S DAT S DAT 00403 S DAT S DAT 00403 S DAT 00403							1113	\$050	211	1204		
DATE FROM TO PARAMETER MSAPLOC 00002 WATER SFROM RT BANK 000010 VATER SFROM RT BANK 000070 TURB CNUUCTVY DU 00300 DD 00305 BOD BOD MG/L 00305 BOD SD ZDAY 00305 BOD SDAY 00310 SDAY 00403 SDAY	******	**********	****	****	***	****	***	***	***	****	***	***
71/ 2/17 NUMBER 4 <	DATE From To	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER TEMP CENT	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 MG/L	00304 800 2 Day Mg/L	00305 800 3 Day Mg/L	00310 BOD 5 DAY MG/L	00403 LAB PH SU	00410 T ALK CACO3 Mg/L
NUMBER MAXIMUM 4	71/ 2/1	7										
71/ 2/20 00500 00515 00530 00610 00625 00630 00650 00653 006830 00944 DATE PARAMETER RESIDUE RESIDUE RESIDUE RESIDUE AMMONIA TOT KJEL NO26003 T PO4 S0LP04-T T ORG C CHLORIC FROM TOTAL DISS-105 TOT NFLT NH3-N N N PO4 PO4 C CL 71/ 2/17 NUMBER 4		NUMBER MAXIMUM MINIMUM MEAN LOG MFAN	4 66.0 66.0 66.0 66.0	4 13.0 11.0 12.0 12.0	4 23. 18. 20. 20.	4 57. 52. 56. 55.	4 10.6 9.3 10.2 10.2			4 2.3 1.9 2.0 2.0	4 7.1 6.8 6.9	4 17. 13. 16.
DATE FROM PARAMETER TO TO 00500 RESIDUE TOTAL 00515 RESIDUE DISS-105 00530 RESIDUE TOT NFLT 00610 NMANNA NH3-N 00625 TOT KJEL 00630 NO650 00653 SOLP04-T 00680 T PO4 PO4 00940 PO4 71/ 2/17 NUMBER MAXIMUM 69. 17. 57. 0.230 0.440 0.56 0.23 0.11 2.0 5. MINIMUM 61. 10. 47. 0.120 0.300 0.440 0.56 0.23 0.11 2.0 5. MINIMUM 61. 10. 47. 0.120 0.300 0.448 0.15 0.07 1.0 4. LOG MEAN 66. 13. 53. 0.185 0.362 0.52 0.20 0.09 1.5 5. DATE PARAMETER IRON IRON MANNESE MANGNESE TOT COLI FEC COLI COLOR AIR STREAM DO DATE PARAMETER IRON IRON MANGNESE TOT COLI FEC COLI COLOR AIR STREAM <t< td=""><td>71/ 2/2</td><td>0</td><td></td><td></td><td></td><td></td><td>****</td><td></td><td>******</td><td></td><td></td><td></td></t<>	71/ 2/2	0					****		******			
71/2/17 NUMBER 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DATE FROM TO	PARAMETER	00500 Residue Total Mg/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 Ammonia NH3-N Mg/L	00625 TOT KJEL N Mg/L	00630 N02&N03 N MG/L	00650 T PO4 PO4 MG/L	00653 SOLPO4-T PO4 MG/L	00680 T ORG C C MG/L	00940 CHLORIDE CL MG/L
NUMBER 4 <td>71/ 2/1</td> <td>7</td> <td></td>	71/ 2/1	7										
71/ 2/20 DATE PARAMETER IRON IRON MANGNESE MANGNESE TOT COLI FEC COLI COLOR AIR STREAM DO FROM TOTAL FE,DISS MN MN,DISS MFIMENDO MFM-FCBR TEMP FLOW SATUR TO UG/L UG/L UG/L UG/L /100ML /100ML PT-CO-U CENT CUFT/SEC PERCENT 71/ 2/17	,	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	4 69. 61. 66.	4 17. 10. 13. 13.	4 57. 47. 53. 53.	4 0.230 0.120 0.190 0.185	4 0.440 0.300 0.365 0.362	4 0•56 0•48 0•52 0•52	4 0.23 0.15 0.20 0.20	4 0.11 0.07 0.09 0.09	4 2.0 1.0 1.5 1.4	4 5. 4. 5.
01045 01046 01055 01056 31501 31616 70515 00020 00060 00301 DATE PARAMETER IRON IRON MANGNESE MANGNESE TOT COLI FEC COLI COLOR AIR STREAM DO FROM TOTAL FE,DISS MN MN,DISS MFIMENDO MFM-FCBR TEMP FLOW SATUR TO UG/L UG/L UG/L UG/L /100ML /100ML PT-CO-U CENT CUFT/SEC PERCENT	71/ 2/2	0			-				*****			-
7]/ 2/17	DATE FROM TO	PARAMETER	01045 IRON Total Ug/L	01046 IRON FE,DISS UG/L	01055 MANGNESE MN UG/L	01056 MANGNESE MN,DISS UG/L	31501 TOT COLI MFIMENDO /100ML	31616 FEC COLI MFM-FCBR /100ML	70515 COLOR PT-CO-U	00020 AIR TEMP CENT	00060 STREAM FLOW CUFT/SEC	00301 DO SATUR PERCENT
	71/ 2/1	7										
NUMBER 4 4 4 4 5 5 4 MAXIMUM 1700. 300. 90.0 60.0 41000. 740. 20. MINIMUM 1300. 230. 70.0 20.0 3600. 240. 10. MEAN' 1475. 255. 80.0 40.0 16920. 570. 15. LOG MEAN 1468. 254. 79.7 36.6 12826. 533. 15. 71/ 2/20	71/ 2/2	NUMBER MAXIMUM MINIMUM MEAN ¹ LOG MEAN 0	4 1700. 1300. 1475. 1468.	4 300. 230. 255. 254.	4 90•0 70•0 80•0 79•7	4 60.0 20.0 40.0 36.6	5 41000• 3600• 16920• 12826•	5 740. 240. 570. 533.	4 20. 10. 15. 15.			
	******	**********	*****	****	****	*****	*****	****	*****	*******	*******	****

- 121918 *** ***** * CH-04**

WEHADKEE CR HWY 244 W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

*****	*********	********	*******	*******	****	********	*********	*****	****	*****	********
DATE From To	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 Water Temp Cent	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 MG/L	00304 BOD 2 Day Mg/L	00305 BOD 3 DAY MG/L	00310 BOD 5 DAY Mg/L	00403 LAB Ph SU	00410 T ALK Caco3 Mg/L
71/ 2/	17										
	NUMBER		8	8	8	7	3		3	8	8
	MAXIMUM		15.0	80.	42.	10.8	0.9		1.6	7.2	17.
	MINIMUM		8.0	13.	26.	·9.0	0.3		0.4	6.6	9.
	MEAN		11.9	37.	33.	10.1	0.6		r.1	6.9	13.
	LOG MEAN		11.7	29.	33.	10.1	0.6		0.9	6.9	13.
1/ 2/	25	********	********	*****			********		*******		******
		00500	00515	00530	00610	00625	00630	00650	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00680	0.0940
DAŤE	PARAMETER	RESIDUE	RESTOUE	RESTOLE	AMMONTA	TOT KUEL	NO26NO3	T P04	SOL P04-T		CHIORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MGZL	MG/L	MG/L	MG/L
71/2/	17										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	136.	81.	5 5.	0.340	0.700	0.20	0.10	0.05	8.0	7.
	MINIMUM	43.	2.	31.	0.040	0.110	0.11	0.02	0.01	1.0	3.
	MEAN	76.	30.	46.	0+161	0.440	0.16	0.05	0.02	3.0	4.
_	LOG MEAN	70.	17.	46.	0.134	0.378	0.16	0.04	20.0	2•2	4.
71/ 2/2	25			********							
******	**********		01046	A1055	A] A E 4	21501	21414	70515	***********	~~~~~	**************************************
DATE		U1040 TRAN	U1040 TDOM	MANGNESE	MANGNESE	J1501	21010	10212		STDEAM	00301
500M	FANANCIEN	TOTAL	FFADISS	MN	MNADISS	METMENDO	MEM-FCRD	COLON	TEMP	FLOW	SATUR
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7										
<u>.</u>	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	6100.	400.	300.0	170.0	4800.	2600.	50.			
	MINIMUM	1000.	180.	150.0	80.0	170.	40.	10.			
	MEAN	2688.	264.	221.3	131.3	1726.	764.	26.			
	LOG MEAN	2166.	257.	215.0	126.3	826.	239.	23.			
71/ 2/2	5										
*****	**********	*********	********	*******	*********	*********	*********	*****	*********	*********	**********

WEST PO	INT STUDY					121	920-A	CH-05A			
PERIOD (SCHNEIDE	OF RECORD	CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204									
*******	*****	*****	******	****	****	****		*****	***		
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00010 Water Temp Cent	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 DAY Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 Mg/L
71/ 2/1	7										
	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 33.0 33.0 33.0 33.0 33.0	8 15.0 10.0 12.2 12.1	8 180. 21. 84. 59.	8 90. 35. 59. 57.	8 10.4 6.6 8.8 8.7	3 3.5 1.7 2.6 2.5		4 2.5 1.8 2.1 2.1	8 7•1 6•4 6•7 6•7	8 18. 13. 16. 16.
71/ 2/2	5			**********	********	******	*****	*******	*****		
DATE FROM TO	PARAMETER	00500 RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 Ammonia NH3-N Mg/L	00625 TOT KJEL N MG/L	00630 N02&N03 N MG/L	00650 T PO4 PO4 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C MG/L	00940 CHLORIDE CL Mg/L
71/ 2/1	7										
	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 407. 82. 199. 163.	8 345. 18. 137. 70.	8 71. 43. 63. 62.	8 0.730 0.020 0.416 0.279	8 1.530 0.470 0.985 0.897	8 1.07 0.29 0.52 0.48	8 0.68 0.19 0.34 0.31	8 0.12 0.05 0.08 0.08	8 10.0 1.0 4.9 3.6	8 10. 5. 8. 7.
71/ 2/2	5						*****	*******		******	
DATE FROM TO	PARAMETER	01045 IRON Total Ug/L	01046 IRON FE,DISS UG/L	01055 MANGNESE MN UG/L	01056 MANGNESE MN,DISS UG/L	31501 TOT_COLI MFIMENDO /100ML	31616 FEC COLI MFM-FCBR /100ML	70515 COLOR PT-CO-U	00020 AIR Temp Cent	00060 STREAM FLOW CUFT/SEC	00301 DO SATUR PERCENT
71/ 2/1	7										
71/ 2/2	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 26000. 1200. 8788. 4812.	8 310. 170. 224. 220.	8 500•0 100•0 301•3 253•7	8 150+0 30+0 83+8 75+9	8 280000 8400 100050 59010	8 9300. 650. 3000. 1931.	8 45. 10. 26. 23.			

121920-B CH-05B

CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 7777777

*****	****	*******	*****	******	********	*****	********	****	****	********	****
DATE FROM	PARAMETER	00002 HSAMPLOC % FROM	00010 WATER TEMP CENT	00070 Turb Jksn	00095 CNDUCTVY AT 25C	00300 D0	00304 BOD 2 Day	00305 BOD 3 DAY	00310 BOD 5 Day	00403 LAB Ph	00410 T ALK CACO3
10		NT DAIN	CENT	50	MICKOMHU	MOZ	MO/L	MOZL	MG/L	50	MG/L
71/ 2/	17										
	NUMBER	8	8	8	7	8	. 3		4	8	8
	MAXIMUM	66.0	15.0	180.	77.	10.3	3.1		2.6	7.1	18.
	MINIMUM	66.0	10.0	21.	35.	6.4	1.8		2.0	6.4	12.
	MEAN	66 0	12.2	84.	54.	8.8	2.5		2.3	6.7	15.
71/ 2/2	DE LUG MEAN	00+0	1201	57+	72+	0.1	2.4		2.3	0.1	10.
***		******	****	*****	*****	***	****	****	*****	***	****
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T P04	SOLP04-T	T ORG C	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	Ň	N	P04	P04	С	ÇL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MGZL
71/ 2/1	1 7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	451.	398.	68.	0.540	1.200	0.97	0.65	0.12	9.0	8.
	MINIMUM	74.	12.	42.	0.020	0.500	0.30	0.20	0.05	1.0	5.
	MEAN	210.	152.	57.	0.341	0.841	0.51	0.37	0.08	4.4	6.
	LOG MEAN	163.	67.	57.	0.248	0.816	0.48	0.34	0.08	3•5	6.
71/ 2/2	5	**********	**********		********	*********					
******	*******	01045	01046	A1055	01056	31501	21414	70515	00020		00201
DATE		TRON	TRON	MANGNESE	MANGNESE		FFC COLT	C01.08	ATR	STREAM	00301
FROM	ANANCIEN	TOTAL	FF+DISS	MN	MN.DISS	MEIMENDO	MEM-ECBR	COLON	TEMP	FLOW	SATUR
TO	· · ·	UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7										
1, 7,1	NUMBER	А	8	8	8	8	8	8			
	MAXIMUM	29000.	350.	530.0	140.0	420000	11000-	40.			
	MINIMUM	1300.	160.	90.0	30.0	7200.	520.	10.			
	MEAN	10063.	228.	278.8	81.3	117025.	3378.	26.			
	LOG MEAN	4942.	221.	210.4	73.4	56641.	2036.	23.			
71/ 2/2	5										
******	**********	****	*********	*******	*******	********	*********		********	********	**********

SCHNEID	ER	13 GEORGIA SOUTHEAST CHATTAHOOCHEE										
						11139	6050	7777	7777			
******	**********	********	*****	*******	******	*******	******	*****	****	****	********	
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER Temp Cent	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 Day Mg/L	00310 BOD 5 Day Mg/L	00403 LAB PH SU	00410 T ALK CACO3 Mg/L	
71/ 2/1	7											
	NUMBER MAXIMUM MINIMUM MEAN	8 33.0 33.0 33.0	8 15.0 10.5 12.8	8 200• 20• 90•	8 70. 39. 52.	7 11.0 6.1 8.7	3 2.7 1.2 1.7		3 4.1 1.9 2.8	8 7.4 6.5 6.8	8 18. 11. 16.	
71/ 2/2	LUG MEAN	33.0	12.7	60.	50.	8.6	1.6		2.7	6.8	15.	
DATE FROM TO	PARAMETER	00500 RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE TOT NFLT MG/L	00610 Ammonia NH3-N Mg/L	00625 TOT KJEL N Mg/L	00630 NO2&NO3 N MG/L	00650 T P04 P04 MG/L	00653 SOLP04-T P04 MG/L	00680 T ORG C C Mg/L	00940 CHLORIDE CL MG/L	
71/ 2/1	7											
	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 570. 60. 209. 153.	8 500. 9. 154. 69.	8 70. 40. 54. 54.	8 0.440 0.120 0.296 0.275	8 0.980 0.460 0.717 0.693	8 0.52 0.30 0.39 0.38	8 0.67 0.22 0.35 0.32	8 0.12 0.04 0.08 0.08	8 10.0 1.0 4.0 2.7	8 7. 4. 6. 6.	
71/ 2/2	5							*******				
DATE FROM TO	PARAMETER	01045 IRON Total Ug/L	01046 IRON FE,DISS UG/L	01055 MANGNESE MN UG/L	01056 MANGNESE MN:DISS UG/L	31501 TOT COLI MFIMENDO /100ML	31616 FEC COLI MFM-FCBR /100ML	70515 COLOR PT-CO-U	00020 AIR Temp Cent	00060 STREAM FLOW CUFT/SEC	00301 DO Satur Percent	
71/ 2/1	7											
71/ 2/2	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN 25	8 17000. 1100. 6113. 3872.	8 280. 180. 224. 221.	8 610.0 60.0 260.0 202.9	8 150.0 20.0 76.3 63.4	8 320000. 12000. 114250. 65238.	8 16000. 1300. 5263. 3574.	8 40. 10. 26. 22.				

121938-A CH-06A

CHATT R GA HWY 109 W OF LAGRANGE

WEST POINT STUDY Chattahoochee River Period of Record Schneider

121938-B CH-06B

CHATT R GA HWY 109 W OF LAGRANGE 13 GEORGIA Southeast Chattahoochee 11135050 7777777

******	*********	*****	****	*****	*******	******	*****	***	****	****	*****
DATE From To	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER TEMP CENT	00070 TURB JKSN JU	00095 CNDUCTVY At 25C Micromho	00300 D0 MG/L	00304 BOD 2 Day Mg/L	00305 BOD 3 DAY MG/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 Mg/L
71/ 2/1	7										
	NUMBER	8	7	8	8	7	3		3	8	8
	MAXIMUM	66.0	15.0	200.	78.	9,5	3.6		3.7	7.2	19.
	MINIMUM	66.0	10.5	21.	40.	6.1	1.6		1.7	6.5	12.
	MEAN	66.0	12.9	88.	55.	8.4	2.6		2.5	6.8	16.
71/ 2/2	LUG MEAN	660	12.8	60.	54.	8,3	2.5		2.3	6.8	15.
11/ 2/2	() ***********	**********	**********		*****		*******	*********	********		***********
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	NO26NO3	T P04	SOLP04-T	TORGC	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	643.	583.	67.	0.620	1.400	0.59	0.84	0.16	9.0	8.
	MINIMUM	67.	12.	41.	0.140	0.500	0.34	0.23	0.06	1.0	4.
	MEAN	223.	169.	54.	0.375	0.876	0.45	0.40	0.10	4.3	6.
	LOG MEAN	161.	73.	53.	0.346	0.840	0.44	0.36	0.09	2.9	6.
71/ 2/2	5										
*******	**********	*************	``````````````````````````````````````	89999999999 81855	*********	**********	**************************************	77777777777777777777777777777777777777	00000	***************************************	************
DATE		01045 TPON	101040 100N	MANGNESE	MANGNESE	J1201	51010 FFC COLT	10212	ATP	STDEAM	00301
FROM	FARAMETER	TOTAL	FFADISS	MN	MANGRESE	METMENDO	MEM-FC2D	CULUN	TEMP	FLOW	SATUR
TO		UGZL	UG/L	UGZL	UG/L	Z100ML	/100ML	PT-c0-U	CENT	CUFT/SEC	PERCENT
								•••••	•••		
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	48000.	300.	760.0	230.0	480000.	12000.	50.			
	MINIMUM	1100.	170.	60.0	30.0	11000.	900.	10.			
	MEAN	11500.	224.	277.5	91.3	163875.	4750.	26.			
71/ 9/9	LUG MEAN	4896.	219.	203.7	75.2	79466.	3259.	21.			
) 	*********	*****	******	****	****	******			******	**********

121939 CH-07

CHATTAHOOCHEE R AT LAG WATER INT 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

			*****	*******	********	********	****	***	***	******	*****
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 WATER Temp Cent	00070 TURB JKSN JU	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 MG/L	00304 BOD 2 DAY MG/L	00305 BOD 3 DAY Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 MG/L
71/ 2/1	7				_	_	-		4	7	7
	NUMBER	7	7	7	7	7	2		4.9	7.1	20-
	MAXIMUM	5.0	13.5	190.	12.	10.9	2.2		2.6	6.3	12.
	MINIMUM	5.0	10.5	17.	40.	0.6	2.9		3.6	6.8	16.
	MEAN	5.0	11.9	54	53.	9.4	2.8		3.5	6.8	16.
	LOG MEAN	240	11.7	20+	534	204	20-				
71/ 2/2	() 	*****	***	*****	***	****	****	****	****	******	*******
******		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T P04	SOLP04-T	TORGC	CHLORIDE
FROM	ANGULTEN	TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	HULL
	_										
71/ 2/3	17	-	7	7	7	7	7	7	7	7	7
	NUMBER	507.	463.	67.	0.930	1.900	0.60	0.78	0.18	11.0	7.
	MAAIMUM	67.	11.	33.	0.320	0.770	0.33	0.25	0.02	1.0	4.
	MEAN	187.	134.	53.	0.623	1.304	0.47	0.42	0.09	4.7	6.
	LOG MEAN	131.	53.	52.	0.588	1.253	0.46	0.39	0.08	3.0	6.
71/ 2/2	25								*******	***	*********
*****	*********	****	***	******	***********		2222222222 21212	74515	00020	0.0060	00301
		01045	01046	01055	01056	JIDUI	51010	COLOP	ATR	STREAM	DO
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	NETHENDO	NEM-ECODI	COLON	TEMP	FLOW	SATUR
FROM		TOTAL	FE.DISS	MN	MN+U155	ALDONI		PT-CO-U	CENT	CUFT/SEC	PERCENT
то		UG/L	UG/L	UGZL	00/2	TUOME	10000		•••	•	
71/ 2/		7	7	7	7	7	7	7			
		31000-	310-	660-0	150.0	310000.	13000.	45.			
	MINIMUM	1100-	200-	100.0	30.0	15000.	1400-	10.			
	MEAN	10086-	234.	282.9	77.1	136143.	5400.	25.			
· · ·	LOG MEAN	4670	232.	219.6	66.7	84874.	3952.	22•			
717.21	25								*****		
*****		********	*******	********	********	****	*********	*********	***********		

13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204 **** ---------******* ****** -----20000 00010 00070 00095 00300 00304 00310 00305 00403 00410 DATE PARAMETER HSAMPLOC WATER TURB CNDUCTVY D0 80D BOD 800 LAB T ALK FROM % FROM TEMP JKSN AT 25C 3 DAY PH CAC03 2 DAY 5 DAY TO RT BANK CENT JU MICROMHO MG/L MG/L MG/L MG/L SU MG/L 71/ 2/17 NUMBER 7 7 7 7 3 3 7 7 MAXIMUM 14.5 160. 47. 11.1 7.0 1.6 1.1 17. 32. MINIMUM 9.5 21. 6.5 4.6 0.2 0.2 11. MEAN 11.2 65. 39. 9.0 0.9 8.0 6.7 15. LOG MEAN 8.7 39. 6.7 11.1 48. 0.7 0.6 15. 71/ 2/25 *********** ******* 00500 00515 00530 00610 00625 00630 00650 00653 00680 00940 DATE PARAMETER RESIDUE RESIDUE RESIDUE AMMONIA TOT KJEL N026N03 T P04 SOLPO4-T T ORG C CHLORIDE FROM TOTAL DISS-105 TOT NELT NH3-N N N P04 P04 C CL TO MG/L C MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L 71/ 2/17 NUMBER 8 8 8 8 8 8 - 8 8 8 8 217. MAXIMUM 287. 72. 1.000 1.740 0.24 0.18 0.04 6.0 8. 8. MINIMUM 58. 35. 0.140 0.400 0.12 0.05 0.02 1.0 3. 5. 54. 0.415 0.874 2.8 MEAN 114. 61. 0.18 0.10 0.03 LOG MEAN 38. 52. 0.343 0.781 2.1 5. 100. 0.18 0.09 0.03 71/ 2/25 ************* ***** ****** ****** ***** ***** ***** ******** 31616 70515 00020 00301 01045 01046 01055 01056 31501 00060 DATE PARAMETER FEC COLI AIR STREAM DO IRON MANGNESE MANGNESE TOT COLI COLOR IRON FROM TOTAL FE,DISS MN MN,DISS MFIMENDO MFM-FCBR TEMP FLOW SATUR UG/L /100HL /100ML PT-CO-U CENT CUFT/SEC PERCENT TO UG/L UG/L UG/L 71/ 2/17 NUMBER 8 8 8 8 8 8 8 MAXINUM 6800. 280. 940.0 80.0 50000. 17000. 65. 30.0 MINIMUM 1500. 190. 160.0 4000. 50. 10. 3975. 2513. 245. 338.8 16350. 31. MEAN 66.3 280.8 63.3 10980. 652. 26. LOG MEAN 2195. 244. 71/ 2/25 ****** ********* ------

121940

CH-08

YELLOW JACKET CR S2098 W OF LAGR

WEST POINT STUDY

SCHNEIDER

CHATTAHOOCHEE RIVER PERIOD OF RECORD

WEST POI	NT STUDY					1214	945	CH-09			
PERIOD O SCHNEIDE	F RECORD					YELLO 13 G Sout Chat 1113	YELLOW JACKET CR NE LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204				
DATE FROM TO	PARAMETER	00002 HSAMPLOC & From Rt Bank	00010 WATER TEMP CENT	00070 Turb Jksn Ju	00095 CNDUCTVY At 25C Micromho	00300 D0 Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 Day Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACC3 Mg/L
71/ 2/1	7										
	NUMBER MAXIMUM MININUM MEAN LOG MEAN		7 15.5 8.5 12.2 12.0	7 155. 18. 57. 41.	7 42. 27. 34. 34.	7 11.0 8.5 9.4 9.4	2 1.5 0.9 1.2 1.2		4 1.0 0.4 0.8 0.7	7 7.0 6.3 6.7 6.7	7 17. 12. 14. 14.
71/ 2/2	5										
DATE FROM J TO	PARAMETER	00500 RESIDUE TOTAL MG/L	00515 RESIDUE DISS-105 C MG/L	00530 RESIDUE Tot NFLT Mg/L	00610 Ammonia NH3-N Mg/L	00625 TOT KJEL N MG/L	00630 N02&N03 N MG/L	00650 T P04 P04 MG/L	00653 SOLP04-1 P04 MG/L	00680 T ORG C C Mg/L	00940 Chloride Cl Mg/L
71/ 2/1	7										
71/ 2/2	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 217. 52. 96. 84.	8 164• 6• 50• 29•	8 57. 34. 45. 44.	8 0.480 0.060 0.197 0.156	8 1.040 0.190 0.562 0.480	8 0.28 0.12 0.18 0.18	8 0.14 0.04 0.07 0.06	8 20•0 10•0 20•0 20•0	8 6.0 1.0 2.6 2.1	8 10. 3. 5. 4.
******	*********	*********	*********	*********	*********	*******	*********	********	*********	******	********
DATE FROM TO	PARAMETER	01045 IRON Total Ug/L	01046 IRON FE+DISS UG/L	01055 MANGNESE MN UG/L	01056 MANGNESE MN,DISS UG/L	31501 TOT COLI MFIMENDO /100ML	31616 FEC COLI MFM-FCBR /100ML	70515 COLOR PT-CO-U	00020 AIR TEMP CENT	00060 STREAM FLOW CUFT/SEC	00301 DO SATUR PERCENT
71/ 2/1	7										
71/ 2/2	NUMBER MAXIMUM MINIMUM MEAN LOG MEAN	8 11000. 1500. 3800. 3022.	8 280. 160. 231. 227.	8 630.0 160.0 281.3 247.2	8 200.0 70.0 97.5 91.7	8 49000. 200. 8369. 1884.	8 10000. 20. 2066. 349.	8 50. 10. 26. 23.			

121960-A CH-10A

CHATT R GA HWY 219 N W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 7777777

******	**********	*****	*****	****	****	****	****	****	***	***	****
DATE From To	PARAMETER	00002 HSAMPLOC % From Rt Bank	00010 WATER TEMP Cent	00070 TURB JKSN JU	00095 CNDUCTVY At 25C Micromho	00300 D0 Mg/L	00304 BOD 2 DAY Mg/L	00305 BOD 3 Day Mg/L	00310 80D 5 Day Mg/L	00403 LAB Ph SU	00410 T ALK CACO3 Mg/L
71/ 2/1	7										
	NUMBER	8	8	8	8	8	3		4	8	8
	MAXIMUM	33.0	15.0	250.	75.	9.9	2.9		3.3	6.9	18.
	MINIMUM	33.0	10.5	18.	36.	5.5	1.6		2.0	6.4	12.
	MEAN	33.0	12.4	96.	53.	8.3	2.1		2.6	6.7	15.
	LOG MEAN	33.0	12.4	61.	52.	8.2	2.0		2.5	6.7	15.
71/ 2/2	5										
******	**********	**********	*********	**************************************	***********	36444444	**********	00450	***********	44999999999999999999999999999999999999	0.0040
DATE		DESTAUS	DESTONE	DESTAILE	AMMONTA	TOT K 151	N02000	T P04	501 P04-T	T 096 C	CHI 0940
FROM	PARAMETER	TOTAL	0155-105	TOT NELT	NH3-N	N	N	P04	P04		CI
TO		MG/L	C MG/L	MG/L	MG/L	MGZL	MGZL	MGZL	MG/L	MGZL	MGZL
71/ 2/1	7										
	NUMBER	8	8	8	9	9	9	9	9	9	9
	MAXIMUM	814.	770.	65.	0.970	1.600	0.50	0.85	0.13	12.0	9.
	MINIMUM	76.	15.	33.	0.260	0.670	0.33	0.22	0.04	1.0	4.
	MEAN	247.	193.	54.	0.543	1.127	0.42	0.41	0.07	4.2	6.
	LOG MEAN	174.	84.	53.	0 • 499	1.084	0.41	0.38	0.07	2•1	0.
71/ 2/25			*********	********	*********	********	*********	********	*******	********	**********
		01045	01046	01055	01056	31501	31616	70515	00020	00060	00301
DATE	DADAMETED	TPON	TRON	MANGNESE	MANGNESE	TOT COLT	FEC COLT	COLOR	ATR	STREAM	00
FROM	FANAREIEN	TOTAL	FE DISS	MN	MN+DISS	METMENDO	MFM-FCBR	002011	TEMP	FLOW	SATUR
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/17	7										
	NUMBER	9	9	9	9	8	8	8			
	MAXIMUM	64000.	360.	850.0	150.0	800000.	12000.	45.			
	MINIMUM	1100.	140.	90.0	30.0	25000.	1000.	10.			
	MEAN	10978.	224.	276.7	64.4	193125.	4338.	27.			
	LOG MEAN	3535.	218.	205.4	58.9	101298.	3329.	23.			
71/ 2/25				********					******		

WEST PO	WEST POINT STUDY CHATTAHOOCHEE RIVER						960-8	CH-103			
PERIOD	OF RECORD ER					CHAT 13 G Sout Chat	T R GA HWY Eorgia Heast Tahoochee	219 N W L	AGRANGE		
						1113	S050	7777	7777		
******	*********	*********** 00002	********** 00010	********** 00070	********* 00095	***************************************	***************************************	********* 00305	**********	********** 00403	********** 00410
DATE	PARAMETER	HSAMPLOC	WATER	TURB	CNDUCTVY	DO	BOD	800	BOD	LAB	T ALK
FROM TO		% FROM Rt bank	TEMP CENT	JKSN JU	AT 25C MICROMHO	MG/L	2 DAY MG/L	3 DAY MG/L	5 DAY MG/L	PH SU	CACO3 MG/L
71/ 2/1	7										
	NUMBER	8	8	8	8	8	3		4	8	8
	MAXIMUM	66.0	15.0	250.	71.	9.8	3.3		5.2	7.0	19.
	MINIMUM	66+0	10.5	19.	36.	5.9	1.5		1.0	6.4	12.
	MEAN	66.0	12.4	93.	53.	8.2	2.3		2.9	6.7	15.
71/ 2/2	LUG MEAN	66.0	12+4	5/.	51.	8.2	2.2		2.5	6.7	15.
11/ 2/2	그 북 삼 롺샦샦 삼북 북찪¢¢	***	****	***	***	****	****	******	********	********	*******
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N02&N03	T P04	SOLP04-T	TORGC	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	926 •	874.	67.	0.770	1.860	0.49	0.98	0.16	14.0	9.
	MINIMUM	73.	15.	36.	0.270	0.680	0.33	0.23	0.05	1.0	4.
	MEAN	259•	206.	55.	0.504	1.044	0.41	0.42	0.10	4•1	6.
	LOG MEAN	172•	76.	54.	0+475	0.997	0.40	0.38	0.09	2.7	ð.
11/ 2/2) 444444444444	********	*******	*****	****	****	*******	****	******	********	*****
		01045	01046	01055	01056	31501	31616	70515	00020	00060	00301
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	TOT COLI	FEC COLI	COLOR	AIR	STREAM	DO
FROM		TOTAL	FE,DISS	MN	MN+DISS	MFIMENDO	MFM-FCBR	•	TEMP	FLOW	SATUR
то		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7			-			_				
	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	73000.	400.	880.0	150.0	320000.	11000.	45.			
	MINIMUM	1200.	140.	80.0	30.0	28000.	2200.	10.			
	MEAN	14650+	224.	281.3	07.0	102/50.	5J0J. 6647	20.			
71/ 3/	LUG MEAN	2102.	213.	140•4	2005	13512.	440(+	23.			
******		********	********	********	****	********	*****	***	****	*****	*****

121980 CH-11

NEW R US 27 S OF FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

******	********	********	****	******	****	*******	******	****	****	*********	*********
DATE FROM TO	PARAMETER	00002 HSAMPLOC % FROM RT BANK	00010 Water Temp Cent	00070 TURB JKSN JU	00095 CNDUCTVY At 25C Micromho	00300 Do Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 DAY Mg/L	00310 BOD 5 DAY Mg/L	00403 LAB PH SU	00410 T ALK CACO3 MG/L
71/ 2/	17										
	NUMBER		8	8	8	8	3		4	8	8
	MAXIMUM		14.5	150.	61.	11.2	1.0		1.0	7+1	16.
	MINIMUM		8.5	16.	27.	7.7	8.0		0.2	6.5	10.
	MEAN		11.2	58.	41.	9.1	0.9		0.6	6.7	14.
71/ 2/	25		11+1	430	37.	7.0	V • 7		V.5	0.1	14+
*****	*********	*********	********	********	*********	********	*******	******	********	********	********
		00500	00515	00530	00610	00625	00630	00650	00653	00680	00940
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T_P04	SOLP04-T	T ORG C	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N MG (1	P04	P04	C	CL
10		MG/L	C MG/L	M67L	MOZL	MOL	MG/L	MGZL	M67L	MG/L	MG/L
71/ 2/	17										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	360.	306.	56.	0.400	1.050	0.24	0.30	0.21	7.0	7.
	MINIMUM	58.	6.	27.	0.100	0.350	0.06	0.16	0.05	1.0	3.
	MEAN	137.	88.	48.	0.285	0.734	0.17	0.23	0.11	4.1	5.
71/ 3/	LOG MEAN	109.	39.	46.	0.259	0.690	0.15	0.23	0.10	3.4	5.
******	 }***********	*******	******	******	*******	*******	********	****	********	********	**********
		01045	01046	01055	01056	31501	31616	70515	00020	00060	00301
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	TOT COLI	FEC COLI	COLOR	AIR	STREAM	DO
FROM		TOTAL	FE,DISS	MN	MN,DISS	MFIMENDO	MFM-FCBR		TEMP	FLOW	SATUR
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7			·							
	NUMBER	8	8	8	8	8	8	8			
	MAXINUM	9400.	460.	450.0	70.Ū	23000.	13000.	50.			
	MINIMUM	1100.	180.	120.0	50.0	70.	37.	15.			
	MEAN	3950.	276.	228.8	58.8	7291.	3080.	30.			
31/ 04	LOG MEAN	2934 .	265.	203.5	58.0	2112.	606.	27.			
11/ 2/2	()										

CHATTAHO PERIOD (SCHNEIDE	DOCHEE RIVER DF RECORD ER	CHATT R AT US 27 FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 77777777										
DATE	PARAMETER	00002 HSAMPLOC	00010 WATER	00070 TURB	00095 CNDUCTVY	********* 00300 DO	********** 00304 BOD	********* 00305 BOD	00310 80D	********* 00403 LAB	********** 00410 T ALK	
TO		RT BANK	CENT	JU	MICROMHO	MG/L	MG/L	MG/L	MG/L	SU	MG/L	
71/ 2/1	7											
	NUMBER	7	7	7	7	7	S		4	7	7	
	MINIMUM	33.0	14.0	210. 19.	73. 41.	10.9	3.1		2.1	7.0 6.5	19.	
	MEAN	33.0	12.5	82.	58.	9.1	2.2		3.5	6.7	16.	
71/ 2/2	S	33+0	12.5	24+	21.	8.9	2.0		3 e 4	6.1	15.	
******	**********	***********	00515	*********	*********	########## 70400	*********** 06~200	*******	*********** ^^~~~~	************	********	
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N026N03	T P04	SOLPO4-T	T ORG C	CHLORIDE	
FROM TO		TOTAL MG/L	DISS-105 C MG/L	TOT NFLT MG/L	NH3-N MG/L	N Mg/l	N Mg/l	P04 Mg/L	Р04 MG/L	C Mg/L	CL MG/L	
71/ 2/1	7											
	NUMBER	8 902.	8 821 -	8 81.	8	8	8 0.50	8 0.90	8 0.16	8 8-0	8	
	MINIMUM	73.	10.	34.	0.280	0.780	0.30	0.24	0.05	0.0	5.	
	MEAN Log Mean	257. 175.	197.	58. 56.	0.657 0.614	1.261	0.39 0.38	0.45		4•1 1-8	6.	
71/ 2/2	5	1.2.										-
******	***********	01045	01046	01055	01056	31501	31616	70515	00020	00060	00301	,
DATE	PARAMETER	IRON	IRON	MANGNESE	MANGNESE	TOT COLI	FEC COLI	COLOR	AIR	STREAM	DO	
FRUM TO		UG/L	UG/L	UG/L	UG/L	VIQOML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT	
71/ 2/1	7											
	NUMBER	8	8	8	8	8	8	8				
	MAXIMUM	49000. 1300.	360. 180.	80.0 80.0	170+0 40-0	22000• 22000-	40000.	50.				
	MEAN	10663.	234.	268.8	78.8	280000.	13113.	28,				
71/ 2/2	LOG MEAN	4837.	229.	201.1	71.1	152225.	8734.	25.				
		*********	*********	*********	********	*******	*******	******	*****	*****	********	#

121992-A CH-12A

WEST POINT STUDY

121992-B CH-12B

CHATT R AT US 27 FRANKLIN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 77777777

*****	**********	*******	****	****	****	***	*******	*****	***	*********	*********
DATE From To	PARAMETER	00002 HSAMPLOC % FROM Rt Bank	00010 Water Temp Cent	00070 Turb Jksn Ju	00095 CNDUCTVY AT 25C MICROMHO	00300 D0 Mg/L	00304 BOD 2 Day Mg/L	00305 BOD 3 Day Mg/L	00310 BOD 5 DAY MG/L	00403 LAB Ph SU	00410 T ALK CACO3 MG/L
71/ 2/	17										
	NUMBER	8	8	8	8	8	3		4	8	8
	MAXIMUM	66.0	15.0	200.	73.	11.0	3.0		4.3	7.0	19.
	MINIMUM	66.0	11.0	18.	37.	6.1	1.2		3.5	6.5	14.
	MEAN	66.0	12.8	86.	54.	8.7	2.0		3.9	6.7	17.
	LOG MEAN	66.0	12.7	59.	52.	8.5	1.9		3.9	6.7	17.
71/ 2/2	25										
******		**********	**********		**********		**********	**********	********	********	
0. Tr		00500	00515	00530	00610	00625	00630	00650	00053 COL BO4-T	00680 T 00C C	
FROM	PARAMETER	TOTAL	RESIDUE	TOT NELT			NUZGNUJ	P04	50LP04-1		CILORIDE
TO		MGZI	0133-105	MGZI	MGZI	MGZI	MGZI	MGZI	MGZI	MGZI	MGZL
10			C MOVE							E	
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	845.	717.	128.	0.920	1.900	0.48	0.97	0.16	9.0	9.
	MINIMUM	74.	10.	49.	0.300	0.920	0.34	0.22	0.05	1.0	5.
	MEAN	257.	189.	68.	0.627	1.216	0.40	0.46	0.10	4.1	6.
	LOG MEAN	179.	74.	65.	0,588	1.186	0.40	0.42	0.10	3.1	6.
71/ 2/2	5 *******	******	*******	******	********	********	*********	********		********	*********
*******	**********	01046	010/£	AJAEE	01056	31501	31616	70515	00020	00060	00301
DATE	DADAMETED	101045 TPON	1900	MANGNESE	MANGNESE			01.08	ATR	STREAM	D0
FROM	FAMAMETEN	TOTAL	FFADISS	MN	MN.DISS	MEIMENDO	MEM-ECBR	COLON	TEMP	FLOW	SATUR
TO			UGZ	11671	IIGZI	2100MI	2100ML	PT-CO-U	CENT	CUETZSEC	PERCENT
		00/2	0076	00/2	0072				••••		
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	63000.	270.	840.0	170.0	880000.	27000.	50.			
	MINIMUM	1200.	180.	70.0	40.0	32000.	1800.	15.			
	MEAN	12963.	229.	280.0	75.0	326500.	11375.	29.			
	LOG MEAN	5158.	227.	211.3	67.0	176282.	7763.	25.			
71/ 2/2	5							*****		******	******
******	***********	*********	**********	**********	**********	*********		*********			

WEST PO	INT STUDY	•				121	915	CH-13			
PERIOD SCHNEID	OF RECORD	κ. 				VEHA 13 G Sout	DKEE CR HWY Eorgia Heast	238 SE L	AGRANGE		
						CHAT 1113	TAMOUCHEE 5050	211	1204		
******	********	********	****	****	****	*********	*********	******	****	****	*********
DATE		00002	00010 WATER	00070 TIPP	00095	00300	00304 ROD	00305	00310 BOD	00403	00410 T ALK
FROM	FARAPETER	% FROM	TEMP	JKSN	AT 25C	00	2 DAY	3 DAY	5 DAY	PH	CACO3
TO		RT BANK	CENT	JU	MICROMHO	MG/L	MG/L	MG/L	MG/L	SU	MG/L
71/ 2/1	7										
	NUMBER		7	7	7	7	3		3	7	7
	MAXIMUM		15.0	110.	55.	11.0	2.7		5.7	7.0	15.
	MEAN		11.6	14.	20.	10.0	0.9		1.0	0.0 6.8	10.
	LOG MEAN		11.4	38.	35.	9.9	1.4		2.5	6.8	12.
71/ 2/2	5										
******	***********	00200	***********	00530	***************************************	*********	***********	00850	88888888898 52200	***************************************	4444444444444 00000
DATE	PARAMETER	RESIDUE	RESIDUE	RESIDUE	AMMONIA	TOT KJEL	N02&N03	T P04	SOLPO4-T	T ORG C	CHLORIDE
FROM		TOTAL	DISS-105	TOT NELT	NH3-N	N	N	P04	P04	C	CL
TO		MG/L	C MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
71/ 2/1	7										
	NUMBER	8	8	8	8	8	8	8	8	8	8
	MAXIMUM	154.	103.	68.	0.470	0.860	0.20	0.33	0.03	8.0	7.
	MINIMUM	49.	2.	33.	0.050	0.140	0.10	0.02	0.01	1.0	4.
	MEAN	90. 82.	41•	40.	0.145	0.402	0.16	0.05	0.02	3.0	
71/ 2/2	5			410							
******	****	****	****	*****	*****	*******	********	****	*******	****	****
DATE	DADAMETED	01045	01046 TPON	01055	01056	31501 TOT COLT	31616	70515	00020	00060 STDEAM	00301
FROM	PARAMETER	TOTAL	FE+DISS	MN	MN.DISS	MEIMENDO	MEM-ECBR	COLON	TEMP	FLOW	SATUR
TO		UG/L	UG/L	UG/L	UG/L	/100ML	/100ML	PT-CO-U	CENT	CUFT/SEC	PERCENT
71/ 2/1	7										
11 211	NUMBER	8	8	8	8	8	8	8			
	MAXIMUM	6600.	290.	2600.0	250.0	5600.	3800.	50.			
	MINIMUM	1100-	200.	150.0	80.0	80.	14.	10.			
	MEAN	3225.	241.	553.8	127.5	1798.	1069.	25.			
71/ 2/3	LUG MEAN	2502.	239.	322.4	110.0	(14.	2020	22.			
******	 }***** *****	********	****	****	****	*****	****	********	********	********	**********
		-									

APPENDIX G

Statistical Summary of Water Quality Data for a Diurnal Study at Stations 5, 6, 10 and 12 Chattahoochee River Basin September 1970

121920 CH-05

CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

DATE FROM TO	TIME OF DAY	DEPTH FEET	0 HSA % RT	0002 MPLOC FROM BANK	00010 WATER TEMP CENT	00410 T ALK Caco3 Mg/L	00403 LAR Ph Su	00300 D0 Mg/L	00010 Water Temp Cent	00410 T ALK CACO3 MG/L	00403 LAB PH SU	00300 DO MG/L
					LOG	LOG	LOG	LOG	04 F	20	6.8	4.7
70/09/17	0700			33	26.5	20	6.8	4.7	26.5	20	4 8	4.8
70/00/17	0800			33	26.0	20	6.8	4.8	26.0	20	0.0 / 7	4.8
70/09/17	0000			33	26.0	21	6.7	4.8	26.0	21	0.1	4.0
70/09/17	10900			22	26.0	19	6.8	4.9	26.0	19	0.0	4.7 E 0
70/09/17	1005			22	26.0	19	6.8	5.0	26.0	19	6.8	2.0
/0/09/1/	1100			33	2010	18	6-9	5.1	26.0	18	6.9	5.1
70/09/17	1200			55	20.0	10	6.9	5.5	26.0	17	6.9	۲۰ ۲
70/09/17	1300			33	20.0	16	7.0	5.8	26.0	16	7.0	5.8
70/09/17	1400			33	20.0	10	6.9	5.8	26.0	15	6.9	5.8
70/09/17	1500			33	26.0	15	7 0	6.1	25.0	14	7.0	6.1
70/09/17	1600			33	25.0	14	7.0	6.4	25.5	15	7.0	6.4
70/09/17	1710			33	25.5	15	7.0	57	25.0	16	6.9	5.7
70/09/17	1800			33	25.0	16	6.9	→ /	25.0	15	7.0	6.4
70/09/17	1900			33	25.0	15	7.0	0+4	25.0	• •		
00/00/00									13.0	13	13.0	13.0
STATION	NUMR	FR		13	13.0	13	13.0	13.0	13+0	21	7.0	6.4
3141104	MAXT	MUM		33	26.5	21	7.0	6.4	20.7	14	6.7	4.7
	MINI			37	25.0	14	6.7	4.7	25.0	14	<u> </u>	5.5
	MEAN			33	25.8	17	6.9	5.4	25.8	17	0.7	50.5

STORET RETRIEVAL DATE 71/04/22 WEST POINT STUDY

SOUTHEAST REGION CHATTAHOOCHEE+ RIVER 121920 CH-05

CHATTAHOOCHEE R GA 238 W OF LAGR 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

			00002	00010	00410	00403	00300	00010	00410	00403	00300
DATE	TIME	DEPTH	HSAMPLOC	WATER	T ALK	LAB	° DO	WATER	T ALK	LAR	D0
FROM	OF	_	% FROM	TEMP	CAC03	PH		TEMP	CAC03	PH	
TO	DAY	FEET	RT BANK	CENT	MG/L	SU	MG/L	CENT	MG/L	SU	MG/L
				LOG	LOG	LOG	LOG				
70/09/17	0705		66	26.5	19	6.8	4.9	26.5	19	6.8	4.9
70/09/17	0805		66	26.0	19	6.8	5.0	26.0	19	6.8	5.0
70/09/17	0905		66	26.0	19	6.7	4.6	26.0	19	6.7	4.6
70/09/17	1010		66	26.0	16	6.8	5+1	26.0	16	6.8	5.1
70/09/17	1105		66	26.0	19	6.8	5.1	26.0	19	6.8	5.1
70/09/17	1205		66	26.0	18	6.7	5.2	26.0	18	6.7	5.2
70/09/17	1305		66	26.0	16	6.8	5.7	26.0	16	6.8	5.7
70/09/17	1405		66	26.0	15	6.8	5.7	26.0	15	6.8	5.7
70/09/17	1505		66	26.0	14	6.7	6.4	26.0	14	6.7	6.4
70/09/17	1605		66	25.0	16	6.9	6.1	25.0	16	6.9	6.1
70/09/17	1705		66	25.5	15	6.9	6.6	25.5	15	6.9	6.6
70/09/17	1805		66	24.5	15	6.7	6.8	24.5	15	6.7	6.8
70/09/17	1905		66	24.5	16	6.8	6.6	24.5	16	6.8	6.6
00/00/00											
STATION	NUMB	ER	13	13.0	13	13.0	13.0	13.0	13	13.0	13.0
	MAXI	MUM	66	26.5	19	6.9	6.8	26.5	19	6.9	6.8
	MINI	MUM	66	24.5	14	6.7	4.6	24.5	14	6.7	4.6
	MEAN	i	66	25.7	17	6.8	5.6	25.7	17	6.8	5.7

121938 CH-06

CHATT R GA HWY 109 W OF LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE GDPH 16 11138050 2111204

		00002	00010	00410	00403	00300	00010	00410	00403	00300
DATE	TIME D	EPTH HSAMPLOC	WATER	T ALK	LAB	DO	WATER	T ALK	LAB	DO
FROM	OF	% FROM	TEMP	CAC03	PH		TEMP	CACO3	PH	
TO	DAY F	EET RT BANK	CENT	MG/L	SU	MGAL	CENT	MG/L	SU	MG/L
			LOG	LOG	LOG	LOG				
70/09/17	0725	33	25.0	20	6.8	5.1	25.0	20	6.8	5.1
70/09/17	0820	33	25.0	19	6.9	5+0	25.0	19	6.9	5.0
70/09/17	0920	33	24.5	16	6.9	4.8	24.5	16	6.9	4.8
70/09/17	1020	33	24.5	19	6.9	5.8	24.5	19	6.9	5.8
70/09/17	1120	33	24.5	18	6.9	6.1	24.5	18	6.9	6.1
70/09/17	1220	33	24.5	16	6.9	6.0	24.5	16	6.9	6.0
70/09/17	1320	33 -	24.0	16	7.0	6.5	24.0	16	7.0	6.5
70/09/17	1420	33	26+0	16	6.9	6.6	26+0	16	6.9	6.6
70/09/17	1520	33	25+0	16	7.0	6.6	25+0	16	7.0	6+6
70/09/17	1615	33	25.0	16	7.0	6.7	25.0	16	7.0	6.7
70/09/17	1730	33	24.0	15	7.0	6.6	24.0	15	7.0	6.6
70/09/17	1825	33	24.0	16	7.0	6.6	24.0	16	7.0	6.6
70/09/17	1915	33	24.0	18	7.0	6.4	24.0	18	7.0	6.4
00/00/00										
STATION	NUMBER	13	13.0	13	13.0	13.0	13.0	13	13.0	13.0
	MAXIMUM	4 33	26.0	20	7.0	6.7	26•0	20	7.0	6.7
	MINIMUM	4 33	24.0	15	6.8	4.8	24.0	15	6.8	4.8
	MEAN	33	24.6	17	6.9	6.0	24.6	17	6.9	6.1
99/99/99										

121938 CH-06

CHATT R GA HWY 109 W OF LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE GDPH 16 11135050 2111204

DATE	TIME	DEPTH	00002 HSAMPLOC	00010 Water	00410 T ALK	00403 LAB	00300 D0	00010 WATER	00410 T ALK	00403 Lab	00300 D0
FROM	OF		% FROM	TEMP	CACO3	PH		TEMP	CACO3	PH	
TO	DAY	FEET	RT BANK	CENT	MG/L	SU	MG/L	CENT	MG/L	SU	MG/L
			•	LOG	LOG	LOG	LOG				
70/09/17	0730		66	25.0	18	6.8	4.8	25+0	18	6.8	4.8
70/09/17	0825		66	25.0	17	6.9	5.0	25.0	17	6.9	5.0
70/09/17	0925		66	24.5	16	6.8	5.3	24.5	16	6.8	5.3
70/09/17	1025		66	24.5	15	6.8	5.8	24.5	15	6.8	5.8
70/09/17	1125		66	24.5	17	6.8	5.9	24.5	17	6.8	5.9
70/09/17	1225		66	24.5	15	6.9	5.9	24.5	15	6.9	5.9
70/09/17	1325		66	24.0	15	6.9	6.5	24.0	15	6.9	6.5
70/09/17	1425		66	24.5	14	7.0	6.6	24.5	14	7.0	6.6
70/09/17	1525		66	24.0	15	7.0	6.4	24.0	15	7.0	6.4
70/09/17	1620		66	24.0	15	7.0	6.4	24.0	15	7.0	6.4
74/44/17	1725		66	24.0	15	7.0	4 5	24-0	15	7.0	6.5
70/07/11	1920		66	24.0	13	6 9	6 7	24.0	17	6.9	6.3
70/07/17	1020		66	24.0	10	7 6	6 3	24.0	19	7.0	6.1
	1920		00	2400	17	7.0	0.1	2-00			
			10	12.4	10	12.0	12.4	12 0	רו	13.0	13.0
STATION	NUMH		13	13.0	. 13	13.0	13.0	25 0	10	7.0	13.0
	MAXI	MUM	00	25.0	19	7.0	0+0	23.0	14	6.8	4.5
	MINI	MUM	00	24.0	14	0.0	4+8	24.0	14	6.0	4.0
	MEAN		66	24.3	16	6.9	5.9	24.3	10	0.9	0.0

121960 CH-10

CHATT R GA HWY 219 N W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 1113S050 2111204

			00002	00010	00410	00403	00300	00010	00410	00403	00300
DATE	TIME	DEPTH	HSAMPLOC	WATER	TALK	LAB	D0	WATER	T ALK	LAB	DO
FROM	ÖF		% FROM	TEMP	CACO3	PH		TEMP	CAC03	PH	
TO	DAY	FEET	RT BANK	CENT	MG/L	SU	MG/L	CENT	MG/L	SU	MG/L
				LOG	LOG	LOG	LOG				
70/09/17	0700		33	23.5	15	6.8	5.8	23.5	15	6.8	5.8
70/09/17	0800		33	23.5	14	6.8	5.8	23.5	14	6.8	5.8
70/09/17	0000		11	23.5	15	6.8	6.3	23.5	15	6.8	6.3
70/09/17	1000		33	23.5	15	6.8	6.3	23.5	15	6.8	6.3
70/09/17	1100		11	23.5	15	6.8	6.1	23.5	15	6.8	6.1
70/09/17	1200		33	23.5	14	6.8	6.3	23.5	14	6.8	6.3
70/00/17	1200		17	24.0	14	6.8	6.3	24.0	14	6.8	6.3
70/09/17	1400		22	24.0	15	6.9	6.1	24.0	15	6.9	6.1
70/09/17	1500		33	23.5	15	6.9	6.3	23.5	15	6.9	6.3
70/09/17	1600		11	23.5	16	6.8	6.4	23.5	16	6.8	6.4
70/00/17	1700		33	23.5	16	6.9	6.0	23.5	16	6.9	6.0
70/09/17	1800		13	23.5	20	6.8	6.3	23.5	20	6.8	6.3
70/09/17	1900		11	23.5	14	6.8	6.4	23.5	14	6.8	6.4
00/00/00	1,44		55	2000	• •						
STATION	MIMOL	D	13	13.0	13	13.0	13.0	13.0	13	13.0	13.0
JIAIIVA	MAYTM		13	24.0	20	6.9	6.4	24.0	20	6.9	6.4
	MINIM	i Mil	33	23.5	14	6.8	5.8	23.5	14	6.8	5.8
	MEAN INT	1	33	22.4	15	6.8	6.2	23.6	15	6.8	6.2
	ME AN		33	2300	15	3.0		2000		•••	

121960 CH-10

CHATT R GA HWY 219 N W LAGRANGE 13 GEORGIA SOUTHEAST CHATTAHOOCHEE 11135050 2111204

DATE	TIME DE	00002 PTH HSAMPLOC	00010 WATER	00410 T ALK	00403 LAB	00300 DO	00010 Water	00410 T ALK	00403 LAB	00300 D0
FROM	OF	% FROM	TEMP	CACO3	PH	-	TEMP	CAC03	PH	
TO	DAY FE	ET RT BANK	CENT	MG/L	SU	MG/L	CENT	MG/L	SU	MG/L
			LOG	LOG	LOG	LOG				
70/09/17	0705	66	23.5	14	6.8	6.1	23.5	14	6.8	6.1
70/09/17	0805	66	23.5	14	6.8	6.1	23.5	14	6.8	6.1
70/09/17	0905	66	23.5	14	6.7	6.3	23.5	14	6.7	6+3
70/09/17	1005	66	23.5	14	6.7	6.1	23.5	14	6.7	6+1
70/09/17	1105	66	23.5	14	6.7	6.3	23.5	14	6.7	6.3
70/09/17	1205	66	23.5	13	6.8	6.3	23.5	13	6.8	6.3
70/09/17	1305	66	24.0	14	6.9	6.3	24.0	14	6.9	6.3
70/09/17	1405	66	24.0	15	7.0	6.3	24.0	15	7.0	6.3
70/09/17	1505	66	23.5	16	6.9	6.3	23.5	16	6.9	6.3
70/09/17	1605	66	23.5	14	6.7	6.4	23.5	14	6.7	6.4
70/09/17	1705	66	23.5	16	6.9	6.1	23.5	16	6.9	6.1
70/09/17	1805	66	23.5	16	6.7	6.0	23.5	16	6.7	6.0
70/09/17	1905	66	23.5			5.9	23+5			5.9
00/00/00										
STATION	NUMBER	13	13.0	12	12.0	13.0	13.0	12	12.0	13.0
	MAXIMUM	66	24.0	16	7.0	6.4	24.0	16	7.0	6.4
	MINIMUM	66	23.5	13	6.7	5.9	23.5	13	6.7	5.9
	MEAN	66	23.6	14	6.8	6.2	23.6	15	6.8	6•5

N S	OUTHEAS	INT STUDY			121992	CH-12				
č	HATTAHO	OCHEE. RIVER				CHATT R A 13 GEORGI SOUTHEAST				
						CHATTAHOO	CHEE C-1	GDPH 15	5	
						11135050	611	204		
		00002	00010	00410	00403	00300	00010	00410	00403	00300
DATE -	TIME D	EPTH HSAMPLOC	WATER	T ALK	LAR	DO	WATER	T ALK	LAB	DO
FROM	OF	% FROM	TEMP	CAC03	РН		TEMP	CAC03	PH	
то	DAY F	EET RT BANK	CENT	MG/L	SU	MG/L	CENT	MG/L	SU	MG/L
			LOG	LOG	LOG	LOG				
70/09/17	0700	33	21.0	15	6.7	6.5	21.0	15	6.7	6.5
70/09/17	0800	33	21.0	15	6.8	5.8	21.0	15	6.8	5.8
70/09/17	0900	33	21.0	14	6.9	5.7	21.0	14	6.9	5.7
70/09/17	1000	33	21.5	15	6.9	5.7	21.5	15	6.9	5+7
70/09/17	1100	33	21.5	15	6.9	5.8	21.5	15	6.9	5.8
70/09/17	1200	33	21.5	17	6.9	5.7	21.5	17	6.9	5.7
70/09/17	1300	33	22.0	15	6.8	5.7	22.0	15	6.8	5.7
70/09/17	1400	33	22.0	16	6.9	5.7	22.0	16	6.9	5.7
70/09/17	1500	33	22.5	18	7.0	5.6	22.5	18	7.0	5.6
70/09/17	1600	33	22.5	16	6.9	5.6	22.5	16	6.9	5.6
70/09/17	1700	33	23.0	18	6.9	5.5	23.0	18	6.9	5.5
70/09/17	1800	33	22.5	15	7.0	5.3	22.5	15	7.0	5.3
70/09/17	1900	33	22.5				22.5			
00/00/00										
STATION	NUMBER	13	13.0	12	12.0	12.0	13.0	12	12.0	15.0
	MAXIMU	M 33	23.0	18	7.0	6.5	23.0	18	7.0	6.5
	MINIMU	M 33	21.0	14	6.7	5.3	21.0	14	6.7	5.3
	MEAN	33	21.9	16	6.9	5.7	21.9	16	6.9	5.7
99/99/99										

STORET RETRIEVAL DATE 71/04/22

121992 CH-12

CHATT R AT US 27 FRNKLN 13 GEORGIA SOUTHEAST CHATTAHOOCHEE C-1 GDPH 15 1113S050 6111204

DATE	TIME	DEPTH	00002 HSAMPLOC	00010 WATER	00410 T ALK	00403 Lab	00300 DO	00010 WATER	00410 T ALK	00403 LAR	00300 D0
FROM	OF	-	% FROM	TEMP	CACO3	PH		TEMP	CACUS	PH	MC /I
TO	DAY	FEET	RT BANK	CENT	MG/L	SU	MG/L	CENT	MOL	50	MG7L
				LOG	LOG	LOG	LOG		• •		E 0
70/09/17	0705		66	21.0	14	6.7	5.9	21.0	14	6./	2.7
70/09/17	0805		66	21.0	16	6.9	5.7	21.0	16	6.9	2.1
70/09/17	0905		66	21.0	16	6.9	5.7	21.0	16	6.9	5+1
70/09/17	1005		66	21.5	14	6.9	5.6	21.5	14	6.9	2+0
70/09/17	1105		66	21.5	14	6.7	5.6	21.5	14	6.7	5+6
70/09/17	1205		66	21.5	14	6.9	5.7	21.5	14	6.9	5.7
70/09/17	1305		66	22.0	14	6.7	5.9	22.0	14	6.7	5.9
70/09/17	1405		66	22.0	17	7.0	5.6	22.0	17	7.0	5.6
70/09/17	1505		66	22.5	17	7.0	5.5	22.5	17	7.0	5.5
70/09/17	1605		66	22.5	17	7.0	5.7	22.5	17	7.0	5.7
70/09/17	1705		66	23.0	16	6.8	5.7	23.0	16	6.8	5.7
70/09/17	1805		66	22.5	17	6.9	5.5	22.5	17	6.9	5.5
70/09/17	1005		66	22.5	• •	007	545	22.5			
10/07/11	1 2 4 2										
		E0	13	13.0	12	12.0	12.0	13.0	12	12.0	12.0
STATION			13	22.0	17	7.0	5.0	23.0	17	7.0	5.9
	MAAI		00	23.0	17	1 • U 4 7	J.7 6 6	21.0	14	6.7	5.5
	MINI	MUM	00	21.0	14	0.1	2+3	21.0	16	6.9	5.7
	MEAN		66	21.9	15	0.9	3.1	2107	10		

APPENDIX H

Phytoplankton Data for West Point Preimpoundment Surveys September 1970 and February 1971

		Blue	Green	Gree	<u>n</u>	Flagel	lates		Inert Diatoms				
Sta.	Total		Filamen-		Filamen-	(pigme	nted)	Diat	oms	Shel	.1s		
<u>No.</u>	Algae	<u>Coccoid</u>	tous	<u>Coccoid</u>	tous	Green	Other	Centric	Pennate	Centric	Pennate		
1.	264	0	1	0	0	0	0	33	198	66	66		
2	2 9 7	132	0	0	0	0		66 99		0	0		
3	264	0	0	0	0	0	0	99	165	66	132		
4	495	0	0	0	0	0	0	99	396	33	132		
5	495	0	33	132	33	66	66 0		66 165		33		
6	462	0	33	33	0	0	0	132	264	33	99		
7	462	0	0	165	0	0	0	99	198	33	132		
8	363	0	0	66	0	0	0	66	231	33	132		
9	132	Ó	0	0	0	0	0	66	66	0	33		
10	231	0	33	· 0	33	0	0	0	165	0	33		
11	66	0	0	0	0	0	0	66	0	0	66		
12	264	0	0	33	0	0	0	165	66	33	66		
13	33	0	0	0	0	0	0	33	0	6 6	66		

WEST POINT PHYTOPLANKTON (September 14, 1970)

WEST POINT PHYTOPLANKTON (September 18, 1970)

8+-		Blue	Green Filomon-	Gree	n Edlemen	Flagel	lates	Diet		Inert Diatoms			
No.	Algae	Coccoid	tous	<u>Coccoid</u>	tous	Green	Other	Centric	Pennate	Centric	Pennate		
1	297	66	0	0	0	0	0	66	165	66	0		
2	264	0	0	33	0	0 0		99	99 132		165		
3	132	0	0	0	0	0 0		99	33	33	66		
4	396	0	0	33	0	0	0	66	297	33	99		
5	429	0	0	99	0	0	0	66	264	33	99		
6	429	0	0	99	0	0	0	99	231	33	132		
7	231	0	0	66	0	0	0	33	132	0	165		
8	231	0	0	0	0	0	0	33	198	0	132		
9	NO SA	MPLE											
10	396	0	0	165	0	0	0	99	132	33	66		
11	33	0	0	0	0	0	0	33	0	0	99		
12	66	0	33	0	0	0	0	33	33	33	198		
13	99	0	0	0	0	0	0	33	66	33	66		

WEST POINT PLANKTON (February 14, 1970)

	<u></u>	R1,10	Algae	(number p	er millil	Flagel	lates		- Inert Distor				
Sta.	Total	BIUE	Filamen-	<u> </u>	Filamen-	(pigme	nted)	Diato	ms	Shel	ls		
No.	Algae	Coccoid	tous	Coccoid	tous	Green	Other	Centric	Pennate	Centric	Pennate		
1	222	0	0	101	0	20	0	0	101	0	20		
2	361	0	0	60	40	40	0	20	201	0	60		
3	261	0	0	80	20	40	0	20	101	0	20		
4	160	20	0	40	20	20	0	20	40	0	0		
5	140	0	0	60	20	40	0	0	20	0	40		
6	140	. 0	0	60	20	0	0	0	60	0	20		
7	281	0	0	80	20	40	0	0	141	0	0		
8	120	0	0	· 0	40	40	0	0	40	0	20		
9	80	0	0	20	20	20	0	0	20	0	20		
10	583	0	0	161	20	80	0	20	302	0	40		
11	140	0	0	80	20	20	0	. 0	20	0	40		
12	483	0	0	181	20	60	0	101	121	20	40		
13	140	0	0	80	0	20	0	20	20	0	20		

APPENDIX I

Seasonal Distribution of Invertebrates Collected from Artificial Substrates in the Chattahoochee River and Major Tributaries Within the West Point Lake (Preimpoundment Study)

APPENDIX I

					_	-		-	St	atio	ons			•							_	
Organisms		1L	1R	2 <u>L</u>	$\overline{2R}$	3L	3R	4	5L	5R	61	. 6	R	7	8	9	10L	10R	11	12L	12R	13
TURBELLARIA																						
Planariidae	*S *W	1	1							1										1	1	
ANNELIDA																						
Oligochaeta	S W	1	3	4 12	5	2	1		3 6	4 61	1		4 7	3 2			2 8	2 2		4 5	20	
Hirudinea	S																					
	W	ſ	1	1					1	15							1			5		
<u>Dina parva</u>	S W	Ī		2	4				3	3			4	25			14	9		122	67	
OSTRACODA	S W	5 1 7																				
ISOPODA																						
Lieerus sp.	S	5 7														2			2			
<u>Asellus</u> sp.	S	5 W														1						
AMPHIPODA	2	S ม		1																		
<u>Hyalella</u> <u>azteca</u>	:	S W								2	2									2		
<u>Synurella</u> sp.		S W					1	•														
DECAPODA		S W			1	-] 1		1 2	2			1				1 1			2
HYDRACARINA		S W					1	L	1	3 d L	4	4	4				1	5 1		1	22	1
COLLEMBOLA																						
Isotoma sp		S W											1									
PLECOPTERA																						
Pteronarcys sp.		S W											1		1	_			1			

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (per Limestone Sampler Exposed for Five Weeks)

* S = August 1970; W= February 1971

APPENDIX I (cont'd)

	Stations																			
Organisms	$\overline{1L}$	1R	2L	2R	3L	3R	4	5L	5R	6L	6R	7	8	9	10L	10R	11	12L	12R	13
<u>Peltoperla</u> sp. *S																	-			
Taeniopteryx sp. S																	T			
W							1						1							
Nemoura spp. S				1	т		14				4		7				30			30
<u>Neoperla</u> sp S				T	T		14				4		'				37			50
W Neophasgapophora_sp.S													1							
W							1										3			3
<u>Acroneuria</u> sp. S							7										-			5
W Paragnetina sp. S							2							T			5			3
W																				1
<u>Isogenus</u> sp. S W							1										2			1
<u>Alloperla</u> sp. S							T										2			-
W											1			15		1				
EPHEMEROPTERA																				
albilingetue	170		-,					• •						-			~			-
<u>albilineatus</u> S W	1/9	12	74	4	//	40		38	49	42	49	69		1	26	30	9			8
<u>Caenia hilaris</u> S	_									2										
Enhemerella enn S	ſ																			
W	ſ						9	3	1		8		5	6		1	20	1		14
<u>Centroptilum</u> sp. S																	_			
N Isonvchia spp. S	1 5						1 510				1		4			4	2		1	1 179
	J .						14						1			-	1		-	35
Stenonema spp. S	54 N	26 4	10 25	19	18 18	13 10	54 20	34 26	11 30	61	9 35	20 5	6 65	6 1	8 9	6 6	6 10	1	2	20 42
·	-	•	-5	~/	~U	10	20	20	50		55		00	-	-	0	TO			

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

* S = August 1970; W = February 1971
| | | | | | | | | | | Sta | tion | s | | | | | | | | | |
|---------------------------------------|----------|----|----|----|----|----|----|---|----|-----|------|----|----|---|---|-----|-----|----|-----|-----|----|
| Organisms | | 1L | 1R | 2L | 2R | 3L | 3R | 4 | 5L | 5R | 6L | 6R | 7 | 8 | 9 | 10L | 10R | 11 | 12L | 12R | 13 |
| Stenonema carolina | *S
*W | | | 2 | | | | | | | | | | | | | | | | | |
| Stenonema exiguum | S
W | 3 | | | | | | 6 | | | | | | | | | | | | | 4 |
| Stenonema | ` | | | | | | | | | | | | | | | | | | | | |
| interpunctatum | S
W | | 4 | 4 | | | | | | | 5 | | 10 | | | | | | | | |
| <u>Stenonema</u> proximum | ร
พ | | | | | | | | | | | | | 4 | | | | 5 | | | |
| Stenonema rubrum | ร
พ | | | | | | | 2 | | | | | | | | | | | | | |
| ODONATA | | | | | | | | | | | | | | | | | | | | | |
| Gomphus sp. | ร
พ | | | | | | | | | | 1 | | | | | | | | | | |
| <u>Boyeria</u> <u>vinosa</u> | S
W | | | | | | | | | | | | | 1 | | | | | | | |
| <u>Hetaerina</u> sp. | S
W | | | | | | | | | | | | | | | 1 | | | | | |
| <u>Argia</u> sp. | S
W | | | 2 | 3 | | 3 | | | | 2 | 3 | 3 | 5 | | | | | | | 1 |
| <u>Argia moesta</u>
<u>putrida</u> | S | | | | | | | | | | | _ | | _ | | _ | | | | | |
| Argia translate | W
S | 2 | 1 | 1 | 2 | | | | 1 | | | 1 | | 1 | | 1 | | | | | |
| HEMTPTERA | W | | | | | | | | | | | | | | | | | | | | |
| Veliidae | S
W | | | | | | | | | | | | | | | 1 | | | | | |
| Rheumatobates sp. | S
W | | | | | | | | | | | | | | | | | 1 | | | |

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

* S = August 1970; W = February 1971

			(1) 4 U		ne o	ampi		LAP	Sta	tion	is									
Organisms		1L	1R	2L	2R	3L	3R	4	5L	5R	6L	6R	7	8	9	10L	10R	11	12L	12R	13
MEGALOPTERA																					
<u>Corydalus</u> cornutus	*S *W							3										1			1
TRICHOPTERA																		_			
Hydropsyche sp.	S,	1	5	2		1					23			2							
	W							2		1		13		2				1			
Cheumatopsyche sp.	S							146		1	22	1		11	1					1	63
	W							24				6		3				7	1		20
<u>Chimarra</u> sp.	S							-										-			1
Occetic co	W							L r	•		٦							T			ン ン
Jeceris sh.	ง พ							T	•		Т										2
Pycnopsyche sp.	S																				
	W	1										1									
COLEOPTERA																					
Dineutus sp.	S	5						-	L												1
	W	1																			
<u>Helichus</u> sp.	5	5																-			1
	V	V v			-												-	1			-
Steneimis sp.	2 1	5 J			ŗ							2				T		-			T
Macronychus	•	v										3									
glabratus	5	3					1		2				2								2
	Ţ	W					-	-	-	1		1		. 1	L						-
Ancyronyx																					
variegatus	:	S							2				2	2		9		1			
		W							4	4 1	-	2	2	2	2			1			
Unidentified		~																			
coleoptera		8]	L									
	1	W																			

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

APPENDIX I (cont'd)

* S = August 1970; W = February 1971

		-	_							Sta	tion	ıs									
<u>Organisms</u>		1L	1 R	2L	2R	3L	3R	4	5L	5R	6L	6R	7	8	9	10L	10R	11	12L	12R	13
Ωד₽יידדא																					
Tipulidae																					
Hexatoma sp.	*S														T						
	*W														-						
Simuliidae	S	1		4	1	2	2	8	67	29	23	4	64			44	228			8	
	W							6						2				1		•	7
Chironomidae																					
Conshapelopia sp.	S										2										
	W			1						1											
Ablabesmyia sp.	S																				
	W			1	1																
<u>Ablabesmyia</u>																					
auriensis	S											1				2					
	W	_					-			1											
<u>Ablabesmyia</u> jante	S	1					1				3	18	1		-				7	3	
	W																				
Ablabesmyla	~			-						-							-		-	-	
mallochi	5			1						T		b					T		T	T	
Ab 1 ab a second a	W																				
Ablabesmyla	c									1											
ornaca	ធ			1						T											
Procladius sp.	S			-								9								1	
<u></u> opt	พ											-								-	
Procladius																					
culiciformis	S																				
	W			1																	
Diamesa longimanus	S																				
	W											1									
<u>Brillia</u> slavirons	S																				
	W			1	2							3		1							

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

* S =August 1970; W = February 1971

										St	ati	ons								107	1.07		5
Organisms	1L	1R	2L	2R	31	3R	4	5	L	5R	6L	. 61	R 7	8	9	101	. 1()R	11	12L	128	1	3
Diplocladius sp.	*S *W								1				1			1							1
Nanocladius alternantherae	S							2												4			1
Nanocladius sp. 2	W									Ţ										•			-
(Roback '57)	S W							1	1				3		2				2				1
Orthocladius sp.	S W				1											1							
Orthocladius m. s (Roback '57)	p.2 S												-										
Cricotopus sp.	W S											3	1]	L		
Cricotopus m.sp.2	W 2									-	L												
(Roback '57)	S W			1	2	1			4		1		3				1		1.		1		
<u>Cricotopus</u> bicinctus	S										_		_	•			-7		0		6	8	
Cricotopus	W		1	4	3	1		1	44	L	8		5	3			/		9		0		
slossonae	S W												1										
<u>Cricotopus</u> trifasciatus	S											1											
Trichocladius sp	W S																						1
Trichocladius	W							•	1													. 1	⊥ 1
robacki	S W								1				4									Т	3

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

* S = August 1970; W = February 1971

I-7

							-		1	St	atio	ns									
Organisms		1L	1R	21	2R	3L	3R	4	5L	5R	6L	6R	7	8	9	10L	10R	11	12L	12R	13
<u>Psectrocladius</u> sp.	*S *U							1													2
Metriocnemus sp.	S							T				_						_			2
Metriocnemus	W											1						3			T
lundbecki	S W																	1			
<u>Corynoneura</u> (thienem an niella)																					
xena	S W							1 1													
Parachironomus pectinatellae	S W																		4	1	
Dicrotendipes sp.	S W																			1	
Polypedilum sp.	S W					1					1		1				1			3	1
Polypedilum halrerale	S																				
Polypedilum sp. A	W														1						
(Roback '53)	S W							1	1			3						7			
Tanytarsus sp.	S W																	1		1	
Tanytarsus sp. B (Beck)	S																			1	
(- 5011)	W																			_	

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

* S = August 1970; W = February 1971

a										Stat	ions										
Organisms		1L	1R	2L	2R	3L	3R	4	5L	5R	6L	6R	7	8	9	10L	10R	11	12L	12R	13
Rheotanytarsus																					
exiguus	*S		1			1			1												1
GASTROPODA	×W																	1			
Physa sp.	S						1		3	1		11	6			5	2		2	56	
Goniebasis sp.	W S									2							-		6	50	
	Ŵ									6											
PELECYPODA																					
<u>Corbicula</u> sp.	S W	113	14 3	2 1	25 1	10	7		1	٦											
										-											
TOTAL SPP.	S	11	8	12	8	7	10	15	11	11	19	13	12	6	5	11	12	6	8	20	17
	W	-	5	12	9	5	2	20	11	20	-	26	3	17	9	6	7	26	11	-	22
TOTAL INDIVIDUALS	S	307	67	108	41	110	70	746	155	105	200	123	206	29	18	105	200	^ 2	112	200	90.0
	W	-	12	50	35	23	11	103	92	138	_	111	10	100	29	27	290	117	143 32	200	293 173
RELATIVE ABUNDANCE	OF																				
THE MAJOR TAXA:																					
Worms	S	2	1	6	4	0	0	C) 6	7	1	8	28	0	0	16	11	0	126	00	•
	W	-	4	13	5	2	1	C) 7	77	_	7	2	Ő	ň	- Q		0	11	00	0
Crustaceans	S	1	0	1	1	0	2	C) 4	5	6	4	0	1	ň	1	5	1	2 + T	-	0
	W	-	0	0	0	0	0	1	1	4	_	Ó	n n	ō	2	0	1	2 T	2	22	2
Insects	S	191	52	99	11	100	60	746	5 141	92	193	100	172	28	18	83	1 272	2	L cr	-	1
	W		5	36	29	21	10	102	2 84	48		104		100	26	1.8	19	11/	1/	34	7.27
Mollusks	S	113	14	2	25	10	8	C) 4	1	0	11	6	-00	20	5	20	<u>тт</u> 4	.14	-	1/2
	W		3	1	1	.0	0	C) 0	9	-	0	0	0	0	0	0	0	2	56 ~	0

SUMMER AND WINTER MACROINVERTEBRATE POPULATIONS FOR WEST POINT PREIMPOUNDMENT SURVEY (Per Limestone Sampler Exposed for Five Weeks)

*S = August 1970; W = February 1971

		S	UMMER A FC (Per Lin	AND WIN1 DR WEST mestone	TER MACR POINT P Sample	OINVERT REIMPOU r Expos	EBRATE INDMENT ed for F	POPULAT STUDY ' ive We e	IONS 2ks)		
						Static	ns				
		<u>1L</u>	<u>1R</u>	<u>2L</u>	<u>2R</u>	<u>3L</u>	<u>3R</u>	4	<u>5L</u>	<u>5R</u>	<u>6L</u>
RANGE	*S	1-179	1-26	1-74	1-25	1-77	1-40	1-510	1-67	1-49	1-61
	*W	-	1-4	1-25	1-19	1-18	1-10	1-24	1-44	1-61	1
						Static	ons				
		6R [.]	7	8	9	<u>10L</u>	<u>10R</u>	11	<u>12L</u>	<u>12R</u>	13
RANGE	S	1-49	1-69	1-11	1-9	1-44	1-228	1-9	1-122	1-67	1-179
	W	1-35	2-5	1-65	1-15	1-9	1-9	1-39	1-6	-	1-42

* S = August 1970; W = February 1971

·····

APPENDIX J

Georgia Water Quality Standards

and

Chattachoochee River Classification

RULES OF STATE WATER QUALITY CONTROL BOARD

CHAPTER 730-3 WATER USE CLASSIFICATIONS AND WATER QUALITY STANDARDS

TABLE OF CONTENTS

730-301	Purpose	730-306	Exceptions
730- 302	Definitions	730-307	Treatment Requirements
730-303	Water Use Classifications	730-308	Streamflows
730-304	General Criteria for All Waters	730-309	Mixing Zone
730-3 05	Specific Criteria for Classified Water Usage	730-310	Notwithstanding the Foregoing
		730-311	Effective Date

730-3-.01 PURPOSE - The purpose of this rule is to establish water quality standards for prevention of pollution, enhancement of water quality and protection of public health or welfare, in accordance with the public interest in drinking water supplies, conservation of fish, game and other beneficial aquatic life, and agricultural, industrial, recreational and other beneficial uses.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.02 DEFINITIONS - All terms used in this rule shall be interpreted in accordance with definitions as set forth in the Act and as otherwise herein defined.

(1) "Reasonable and necessary uses" mean drinking water supplies, conservation of fish, game and other aquatic life, agricultural, industrial, recreational and other legitimate uses.

(2) "Shellfish" refers to clams, oysters, scallops, mussels and other mollusks.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.03 WATER USE CLASSIFICATIONS - Water use classifications for which the criteria of this rule are applicable are as follows:

- (1) Drinking Water Supplies
- (2) Recreation
- (3) Fishing, Propagation of Fish, Shellfish, Game and Other Aquatic Life.
- (4) Agricultural
- (5) Industrial
- (6) Navigation

Authority: Ga. Laws 1964, p.416, as amended.

730-3-.04 GENERAL CRITERIA FOR ALL WATERS - The following criteria are deemed to be necessary and applicable to all waters of the State:

(1) All waters shall be free from materials associated with municipal or domestic sewage, industrial waste or any other waste which will settle to form sludge deposits that become putrescent, unsightly or otherwise objectionable.

(2) All waters shall be free from oil, scum and floating debris associated with municipal or domestic sewage, industrial waste or other discharges in amounts sufficient to be unsightly or to interfere with legitimate water uses.

(3) All waters shall be free from material related to municipal, industrial or other discharges which produce turbidity, color, odor or other objectionable conditions which interfere with legitimate water uses.

(4) All waters shall be free from toxic, corrosive, acidic and caustic substances discharged from municipalities, industries or other sources in amounts, concentrations or combinations which are harmful to humans, animals or aquatic life.

(5) The maximum permissible concentration of radio-nuclides in the waters of the State must conform to the limits which are cited in Chapter 270-5-20, "Control of Radioactive Materials", of the Rules and Regulations of the Georgia Department of Public Health.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.05 SPECIFIC CRITERIA FOR CLASSIFIED WATER USAGE - The following criteria are deemed necessary and shall be required for the specific water usage as shown:

(1) Drinking Water Supplies -

(a) Those waters approved by the Georgia Department of Public Health and requiring only approved disinfection and meeting the requirements of the latest edition of "Public Health Service Drinking Water Standards"; or waters approved by the Georgia Department of Public Health for human consumption and food-processing or for any other use requiring water of a lower quality.

1. Bacteria: Fecal coliform not to exceed a mean of 50 per 100 ml (MPN) based on at least four samples taken over a 30-day period and not to exceed 200 per 100 ml in more than five percent of the samples in any 90-day period.

2. Floating solids, settleable solids, sludge deposits or any taste, odor or color producing substances: None associated with any waste discharge.

3. Sewage, industrial or other wastes: None.

(b) Those raw water supplies requiring approved treatment to meet the requirements of the Georgia Department of Public Health and the latest edition of "Public Health Service Drinking Water Standards" or which are approved by the Georgia Department of Public Health for human consumption and food-processing; or for any other use requiring water of a lower quality.

1. Bacteria: Fecal coliform not to exceed a mean of 5,000 per 100 ml (MPN) based on at least four samples taken over a 30-day period and not to exceed 20,000 per 100 ml in more than five percent of the samples taken in any 90-day period.

2. Dissolved Oxygen: Not less than 4.0 mg/l at any time; a minimum of 5.0 mg/l at all times for waters designated as trout streams by the State Game and Fish Commission.

3. pH: Within the range of 6.0 - 8.5.

4. No material or substance in such concentration that, after treatment, would exceed the requirements of the Georgia Department of Public Health and the latest edition of "Public Health Service Drinking Water Standards". 5. Temperature: Not to exceed $93.2^{\circ}F$. $(34.0^{\circ}C.)$ at any time and not to be increased more than $10^{\circ}F$. above intake temperature. In streams designated as trout waters by the State Game and Fish Commission, there shall be no elevation or depression of natural stream temperatures.

(2) Recreation - General recreational activities such as water skiing, boating and swimming, or for any other use requiring water of a lower quality. These criteria are not to be interpreted as condoning water contact sports in proximity to sewage or industrial waste discharges regardless of treatment requirements imposed on such waters.

> (a) Bacteria: Fecal coliform not to exceed a mean of 1,000 per 100 ml (MPN) based on at least four samples taken over a 30-day period, and not to exceed 4,000 per 100 ml in more than five percent of the samples taken in any 90-day period.

(b) Dissolved oxygen: Not less than 4.0 mg/l except that those streams designated as trout waters by the State Game and Fish Commission must have a minimum of 5.0 mg/l at all times.

(c) pH: Within the range of 6.0 - 8.5.

(d) Toxic Wastes, Other Deleterious Materials: None in concentrations that would harm man, fish and game or other beneficial aquatic life.

(e) Temperature: Not to exceed 93.2°F. (34.0°C.) at any time and not to be increased more than 10°F. above intake temperature. In streams designated as trout waters by the State Game and Fish Commission, there shall be no elevation or depression of natural stream temperatures.

(3) Fishing, Propagation of Fish, Shellfish, Game and Other Aquatic Life; or for any other use requiring water of a lower quality.

> (a) Dissolved Oxygen: A minimum of 5.0 mg/l at all times for streams designated as trout waters by the State Game and Fish Commission; a minimum of 4.0 mg/l at all times for waters supporting warm water species of fish.

(b) pH: Within the range of 6.0 - 8.5.

(c) Bacteria: Fecal coliform not to exceed a mean of 5,000 per 100 ml (MPN) based on at least four samples taken over a 30-day period and not to exceed 20,000 per

100 ml in more than five percent of the samples in any 90-day period.

(d) Bacteria: (Applicable only to shellfish to be commercially harvested.) Total coliform group not to exceed a median MPN of 70 per 100 ml, and not more than 10 percent of the samples shall exceed an MPN of 230 per 100 ml for a 5-tube decimal dilution test (or 330 per 100 ml where a 3-tube decimal dilution is used) in those areas most probably exposed to fecal contamination during the most unfavorable hydrographic and pollution conditions.*

(e) Temperature: Not to exceed 93.2°F. (34.0°C.) at any time and not to be increased more than 10°F. above intake temperature. In streams designated as trout waters by the State Game and Fish Commission, there shall be no elevation or depression of natural stream temperatures.

(f) Toxic Wastes, Other Deleterious Materials: None in concentrations that would harm man, fish and game or other beneficial aquatic life.

(4) Agricultural: For general agricultural uses such as stock watering and irrigating; or for any other use requiring water of a lower quality.

(a) Bacteria: Fecal coliform not to exceed a mean of 10,000 per 100 ml (MPN) based on at least four samples taken over a 30-day period and not to exceed 40,000 per 100 ml in more than five percent of the samples in any 90-day period.

(b) Dissolved Oxygen: A daily average of 3.0 mg/l and no less than 2.5 mg/l at any time.

(c) pH: Within the range of 6.0 - 8.5.

(d) Temperature: Not to exceed 93.2°F. (34.0°C.) at any time and not to be increased more than 10°F. above intake temperature.

(e) Toxic Substances, Other Deleterious Materials: None in concentrations or amounts that would interfere with or adversely affect uses for general agricultural purposes or would prevent fish survival.

*This is based on the requirements of the National Shellfish Sanitation Program Manual of Operations, Sanitation of Shellfish Growing Areas, published by the Public Health Service, U. S. Department of Health, Education and Welfare, and the requirements of the Georgia Department of Public Health. (5) Industrial: For processing and cooling water with or without special treatment; or for any other use requiring water of a lower quality.

(a) Dissolved Oxygen: A daily average of 3.0 mg/l and not less than 2.5 mg/l at any time.

(b) pH: Within the range of 6.0 - 8.5.

(c) Toxic Substances, Other Deleterious Materials: None in amounts or concentrations that would prevent fish survival or interfere with legitimate and beneficial industrial uses.

(d) Temperature: Not to exceed $93.2^{\circ}F$. (34.0°C.) at any time and not to be increased more than $10^{\circ}F$. above intake temperature.

(6) Navigation: To provide for commercial ship traffic and protection of seamen or crews.

(a) Bacteria: Fecal coliform not to exceed a mean of 10,000 per 100 ml (MPN) based on at least four samples taken over a 30-day period and not to exceed 40,000 per 100 ml in more than five percent of the samples in any 90-day period.

(b) Dissolved Oxygen: A daily average of 3.0 mg/l and no less than 2.5 mg/l at any time.

(c) pH: Within the range of 6.0 - 8.5.

(d) Toxic Substances, Deleterious Materials: None in concentrations or amounts that would damage vessels, prevent fish survival or otherwise interfere with commercial navigation.

(e) Temperature: Not to exceed 93.2°F. (34.0°C.) at any time and not to be increased more than 10°F. above intake temperature.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.06 EXCEPTIONS - It is recognized that certain natural waters of the State may have a quality that will not be within the general or specific requirements contained herein; therefore, the Board is empowered to make exceptions to the requirements upon presentation of adequate justification.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.07 TREATMENT REQUIREMENTS - Notwithstanding the above criteria, the requirements of the Board relating to secondary or equivalent treatment for all waste shall prevail. The adoption of these criteria shall in no way preempt the treatment requirements.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.08 STREAMFLOWS - Specific criteria or standards set for the various parameters apply to all flows on regulated streams. On unregulated streams, they shall apply to all streamflows equal to or exceeding the 7-day, 10-year minimum flow.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.09 MIXING ZONE - Effluents released to streams or impounded waters shall be fully and homogeneously dispersed and mixed insofar as practical with the main flow or water body by appropriate methods at the discharge point. Use of a reasonable and limited mixing zone may be permitted on receipt of satisfactory evidence that such a zone is necessary and that it will not create an objectionable or damaging pollution condition.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.10 NOTWITHSTANDING THE FOREGOING - The Board may authorize deviations from such standards, as the public interest may require or permit, consistent with Sections 2, 3(f), and 5(10) of the Act.

Authority: Ga. Laws 1964, p. 416, as amended.

730-3-.11 EFFECTIVE DATE - This Chapter shall become effective on June 13, 1967.

Authority: Ga. Laws 1964, p. 416, as amended.

CHATTAHOOCHEE RIVER (HEADWATERS - WEST POINT DAM)

Stream	Description	Recreation	Drinking Water	Industrial	Fishing	Navigation
Chattahoochee River	Headwaters to Buford Dam	x				
Chattahoochee River	Buford Dam to Atlanta (Peachtree Creek)		x			
Chattahoochee River	Atlanta (Peachtree Creek) to Cedar Creek			х		
Chattahoochee River	Cedar Creek to Franklin, Ga. (U. S. Highway 27)				X	
Chattahoochee River	U. S. Highway 27 Bridge at Franklin, Ga. to West Point Dam	x				

CHATTAHOOCHEE RIVER (WEST POINT DAM - GA. HWY. 91 AT NEAL'S LANDING)

Stream	Description	Recreation	Drinking Water	Industrial	Fishing	Navigation
Chattahoochee River	West Point Dam to West Point Mfg. Co. Water Intake		X			
Chattahoochee River	West Point Mfg. Co. Water Intake to Osanippa Creek				X	
Chattahoochee River	Osanippa Creek to Columbus, Ga. (14th Street Bridge)	X	x			
Chattahoochee River	Columbus, Ga. (14th Street Bridge) to Cowikee Creek				X	
Chattahoochee River	Cowikee Creek to Great Southern Div. of Great Northern Paper Company	X				
Chattahoochee River	Great Southern Div. of Great Northern Paper Company to Ga. Hwy. 91 (Neal's Landing)				x	

CHATTAHOOCHEE, OCHLOCKNEE, AUCILLA AND LOWER FLINT RIVERS

Stream	Description	Recreation	Drinking Water	Industrial	Fishing	Navigation
Chattahoochee River	Ga. Hwy. 91 (Neal's Landing) to Jim Woodruff Dam	X				
Ochlocknee River	Headwaters to Georgia-Florida State Line				x	
Aucilla River (Including Aucilla Cree	Headwaters to Georgia-Florida State Line k)				X	
Lower Flint River	Albany-Georgia Power Company Dam at Lake Worth to Bainbridge - U. S. Hwy. 84 Bridge				x	
Lower Flint River	Bainbridge - U. S. Hwy. 84 Bridge to Jim Woodruff Dam, Lake Seminole	X				

PARTICIPATING STAFF

Herbert C. Barden	Microbiologist
Bobby J. Carroll	Microbiologist
Wm. Rodney Davis	Chemist
Ralph E. Gentry	Microbiologist
Ray N. Hemphill	Chemist
David W. Hill	Sanitary Engineer
Charles Holland	Technician
Wilburn F. Holsomback	Computer Operator
John A. Little	Sanitary Engineer
Hoke S. Howard	Technician
Robert F. Schneider	Aquatic Biologist
Hugh C. Vick	Technician
M. Ronald Weldon	Aquatic Biologist
Tensey Whitmire	Stenographer
Roy A. Wiemert	Technician
Raymond T. Wilkerson	Technician

