ATHENS/GULF BREEZE ENVIRONMENTAL PROTECTION AGENCY COOPERAIVE INDUSTRIAL WASTEWATER BIOMONITORING PROJECT

Status Report: Through FY1978

U. S. Environmental Protection Agency Surveillance and Analysis Division Athens, GA 30605

UNITED STATES
ENVIRONMENTAL PROTECTION AGENCY
SCIENCE AND ECOSYSTEM SUPPORT DIVISION
REGION 4

980 COLLEGE STATION RD. ATHENS, GA 30605-2720 AUWARTER.ALAN @ EPAMAIL.EPA.GOV

(706) 355-8704 FAX (706) 355-8726

Table of Contents

Intro	ducti	ion	1
State	cult	ture and Handling of Saltwater Test Animals	
	1.	Static Culture Methods	2
		A. Cyprinodon variegatus	
		B. Mysidopsis bahia	
	2.	Transportation	5
	3.	Acclimation	6
Mobil	le To	xicity Test Trip Protocol	
	1.	Preparations	7
	2.	Flow-Through Tests	7
	3.	Static Tests	8
	4.	Chemical Analyses	9
	5.	Data Analysis	9
Test	Resu	lts and Discussion	10
	-	Evaluation of anAcute Toxicity Test	20
			23

INTRODUCTION

Flow-through acute toxicity tests have been conducted on industrial wastewaters at twenty-one sites throughout the coastal Southeast from the inception of this interlaboratory effort through Fiscal 1978.

Static acute toxicity tests, effluent toxicity evaluations using luminescent bacteria and chemical characterizations were run in parallel with flow-through tests on-site or at the Athens laboratory in some cases. Algal assays were conducted at the Gulf Breeze Laboratory on effluent samples shipped from most sites.

The scope of this report is limited to providing basic information pertaining to methods used, applicability of <u>Cyprinodon</u> and <u>Mysidopsis</u>, the relative toxicity of wastewaters evaluated to test animals, and early evaluation of a bacterial assay method in use over the past 6 months.

CULTURE AND HANDLING OF SALT WATER TEST ANIMALS

1. Static Culture Methods

Salt water static culture facilities have been established at the EPA laboratory in Athens, Georgia, for the purpose of supplying animals for our on-site acute toxicity testing. Sheepshead minnows (Cyprinodon variegatus) and a species of mysid shrimp (Mysidopsis bahia) were selected as test organisms. Original and supplemental stocks have been supplied as necessary from the Gulf Breeze Laboratory.

Athens cultures were originally established using synthetic salts $(Instant\ Ocean^R\ and\ Rila\ Marine\ Mix^R)$ dissolved in locally available well water. A poor hatching rate of sheepshead minnow eggs prompted a culture medium change to natural seawater.

To establish and maintain cultures in natural seawater, fullstrength seawater was periodically transported from coastal areas to

Athens and diluted with well water to culture salinities. Originally,
unfiltered seawater was used, but introduction of miscellaneous marine
organisms dictated a need for filtration. Filtered (1 micron) seawater has proven to be a satisfactory culture medium, assuming no
contamination from the seawater source.

A. Cyprinodon variegatus

Sheepshead culture in Athens involves three distinct steps:

Brood fish are held in 70-liter aquaria (61 x 33 x 41 cm) at a stocking rate of 1-2 males and 5-6 females per aquarium.
An external power filter using activated carbon/plastic floss media and a heater is used in each aquarium. Water

temperature is maintained at 28-30°C. Egg collection trays are formed by sewing together two layers of Nitex screening of different mesh sizes. Trays cover the floor of each aquarium, and are weighted with lengths of stainless steel tubing attached underneath. Eggs are demersal and slightly adhesive on the screening; they fall through the larger mesh of the uppermost layer and are held between this and the lower, smaller-mesh layer. Predation on eggs by adults has not been observed using this type of tray. To collect eggs, a tray is withdrawn from its aquarium, inverted over a shallow glass pan containing salt water of the appropriate salinity to a depth of about 3 cm, and agitated gently. Eggs fall to the bottom of the pan from which they may be easily collected with a pipette. Eggs may be counted as they are removed from the pan or their number estimated by volume displacement: 100 eggs have been found to displace about 0.21 ml. Sheepshead in Athens cultures are depositing 80-100 eggs per female per week. Eggs are collected twice each week. Adult sheepshead are fed frozen brine shrimp (Artemia sp.) to satiation daily. To avoid dietary deficiencies, the brine shrimp diet is supplemented with a commercial tropical fish flake food.

Eggs are incubated and hatched in 4-liter wide-mouthed glass jars. Jars are immersed in a water bath heated to 28-30°C; vigorous aeration within jars keeps eggs and hatched fish in suspension. A population of newly-hatched brine shrimp is maintained in each jar to feed developing fry.

3. Fry are held in 7-liter all-glass aquaria segregated by date of egg collection and salinity from the time they are two weeks of age until they are either used in tests or otherwise disposed of. These aquaria are supplied with bubble-up type activated carbon/plastic floss filters; water temperature stays at about 17°C. These fish are fed newly-hatched brine shrimp daily. Unusually large individuals are removed from each aquarium periodically to avoid predation on smaller fish.

B. Mysidopsis bahai

Complete life cycles of this mysid shrimp species are maintained in 70-liter aquaria at about 17°C. Each aquarium has a commercially available under-gravel filter which is covered with about 5 cm of small, smooth sheel fragments (4-15) mm in length). To avoid extensive algal growth, the walls of the aquaria and filter standpipes are scraped and shell substrate is periodically turned over to partially bury the existing algae. Velocity of water returned through filter standpipes is sufficient to maintain a moderate current in the aquarium. The shrimp often orient themselves into this current. Mysids are fed with newlyhatched brine shrimp twice daily. Frequent feeding is necessary to avoid cannibalism.

2. Transportation

Two days prior to departure for a bio-assay trip, standard size (36 X 30 X 30 cm) styrofoam coolers are prepared for the transport of test animals. Each cooler is supplied with two doubled plastic bags (56 X 32 cm), and each bag is filled with 1-3 gallons of synthetic salt water at a salinity of either 10 or 15 parts per thousand. Mysid shrimp are bagged by culture salinity, 50-200 individuals per bag. Sheepshead are bagged by culture salinity and age grouping, 200 to 500 fry per bag. All bags are moderately aerated with air stones powered by a Silent Giant for these two days.

The morning of departure, minnows and shrimp are carefully netted from culture or holding tanks and released into the appropriate pre-labeled plastic bag. Each bag is liberally stocked with newly-hatched brine shrimp to serve as food for test animals during transport. An additional supply of hatched brine shrimp and eggs is transported in a well-aerated gallon jar to prevent a lapse in food supply before Artemia cultures can be established at the test site. Air supply to the plastic bags is rerouted from the AC-powered pump to battery-powered aerators and the bags are closed with pipe cleaners. Animals are transported in a passenger vehicle rather than the test trailer to reduce temperature fluctuations and other environmental disturbances.

After arrival on-site, test organisms are transferred to the trailer where they are once again aerated with an AC pump. If necessary, additional laboratory-hatched brine shrimp are added to ensure an adequate interim food supply, and a fresh brine shrimp culture is started on-site.

3. Acclimation

On site acclimation of animals to local water is initiated as soon as suitable marine dilution water source has been located. A five-gallon sample of this seawater is transported to the trailer and diluted with well water (from the Athens laboratory or supplied by the plant being tested) to salinities of 10 and 15 parts per thousand. Half of the water volume from each bag of test organisms is removed and replaced with an equal volume of dilution water of the appropriate salinity. Partial volumes should be replaced in this way so that the holding medium for test animals is changed from 100% laboratory holding water to close to 100% locally available dilution water over a period of 24 hours. Organisms should be exposed to 100% dilution water for at least 24 hours prior to testing.

MOBILE TOXICITY TEST TRIP PROTOCOL

1. Preparations

Trip preparations include packing truck, trailer and test organisms for travel. A pre-trip check of equipment and supplies packed is made against a detailed checklist.

Upon arrival at an industry, in addition to immediate electrical hookup, suitable dilution water is sought, and where possible, collected that day. This water should be low in suspended particulate matter and industrial contaminants to the extent possible to determine in the field. When adjusted to proper salinity (if necessary) using suitable well water, this water is used for the acclimation of test animals and in the formulation of solutions for toxicity testing.

Twenty-four hour range-finding static bio-assays using a limited number of animals and wastewater concentrations are initiated as soon as possible after arrival on-site. Results of these tests serve to establish the concentration range(s) to be used for definitive toxicity tests.

2. Flow-Through Testing

The formal flow-through test begins on the third day. Ten shrimp or fish are counted out into each of 12 plastic weigh boats. Animals are observed for signs of abnormal behavior or other indications of poor physiological condition, and any such individuals are replaced. Individuals markedly larger or smaller than the population mean within each boat are likewise replaced to limit predation. One boat of test animals is then released into a screened chamber within each of the 12 aquaria used in toxicity testing. Aquaria containing 100 percent effluent are

infrequently used in testing since most effluents result from fresh water used in industrial processes, and therefore cannot be expected to support marine life without addition of or dilution by salt water. Animals are observed frequently on the first day of testing so that early counts can be taken for the purpose of LC50 calculation if the effects of the effluent are severe, and early mortality rates high. Counts of animals surviving in each test chamber are made routinely at the end of each of the four 24-hour periods comprising one 96-hour test.

3. Static Testing

One day prior to the initiation of the 96-hour flow-through test, an Isco Model 1580 sampler is set up to collect a 24-hour effluent composite totalling approximately 20 gallons. Up to fifteen gallons of this composite are sent to the Gulf Breeze laboratory for additional toxicity testing; five gallons are used on-site to formulate static test effluent concentrations reflecting those produced by the flow-through diluter system. Sheepshead minnows are tested in quart jars containing 750 ml of solution; mysid shrimp are tested in gallon jars containing 3000 ml of solution. Ten organisms are placed in each effluent concentration and static containers are slowly aerated (single-bubble) throughout the testing period. Statics are conducted for 96 hours. Initial water quality parameters, including dissolved oxygen, salinity and temperature are recorded for each test container. Dissolved oxygen values are monitored daily, and values for pH and total alkalinity are collected at the conclusion of the 96-hour testing period.

4. Chemical Analyses

Chemical analyses of test water involves continuous monitoring of undiluted effluent and daily aquarium checks. At sites where effluent flow to the trailer is sufficient, flow to the diluter is split and a portion is passed through a Schneider monitor/strip recorder to track pH, temperature, dissolved oxygen and conductivity of incoming effluent during the course of the study. Also a set of remote probes for temperature and pH is used in a selected test aquarium. This monitor system is electronically calibrated in Athens, and field checked both before beginning and periodically during each study. In addition to continuous monitoring, dissolved oxygen, temperature and salinity are recorded from each test aquarium and samples are taken from each effluent concentration for determination of pH and total alkalinity each day during the course of the flow-through testing.

5. Data Analysis

Post-test data analysis includes mathematical evaluation of the extent of wastewater toxicity to test animals. Whenever the pattern of mortality over test concentration permits, LC50 values calculated by probit analysis are reported including 95 percent confidence limits. Where probit analysis is inappropriate, LC50 values are determined by graphical interpolation using the log-concentration-versus-percent survival method. Where mortality exists but is too heavy or light to be described by standard LC50 values, a value such as 80/5.6 is reported: 80 percent mortality in 5.6 percent wastewater after an indicated exposure period.

TEST RESULTS AND DISCUSSION

Information pertinent to these on-site studies is summarized in Table 1. Entries are arranged in order of decreasing toxicity on the basis of 96-hour flow-through mysid test results. Test results from the SCM Cooperation are eliminated from the following considerations since temperature regulation problems resulting from trailer air-conditioning failure during summer temperatures in Florida created impossible conditions under which to conduct a valid study.

The degree of toxicity of wastewater apparently cannot be grouped by industrial category. Wastewater from the four kraft paper producers showed a high degree of toxicity (Container Corp., Westvaco), an intermediate degree of toxicity (International), and no toxicity (Brunswick) to mysid shrimp as compared to other industrial wastewaters tested. Further, of wastes from the two kraft producers demonstrating the highest toxicity to mysids, one (Container Corp.) showed high toxicity and the other (Westvaco) showed no toxicity to sheepshead. The two plants having wastes influenced primarily by dyestuffs are similarly split between the high (Verona) and low (dePoortere) ends of the scale of waste toxicity to mysids. Of the two Dacron/Dacron precursor plants visited, wastewater from one (Hercofina) was highly toxic, wastewater from the other (duPont) was non-toxic to the animals tested. The two plants producing agriculturally-related products discharged wastewaters that were among the most toxic to mysids. One (Grace), a fertilizer producer, was also higly toxic to sheepshead; the other (Stauffer, Cold Creek), a biocide producer, was non-toxic to sheepshead. Toxicity to specific aquatic organisms, or, specifically the lethality of

Table
Summary of Information From the rise two teads of the
Athens/Gulf Breeze EPA Cooperative Industrial On-site Acute Toxicity Testing Program

Industry &					Cyprinodon v.	Test Re irlegatus ^d	Mysidopsis	<u>bahra</u> e	
Address	Major Products	Study Dates	Plant Discharge Volume (MGD)	Receiving Waterway	Flow-through Test	Static Test	Flow-through Test	Statle Test	Action 1
R. Grace & Co. Imington, NC	agricultural fertilizers	7/26 Lu 8/6 1977	0.07-0.11	N. E. Cape Fear River	96 h = 15.6 72 h = 17.0 48 h = 18.0 24 h = 32.9 Sub-adult 96 h = 38.8 72 h = 38.3 48 h = 38.3 24 h = 42.6	48 h = 20/60 24 h = N.M.	96 h = 100/5.6 72 h = 95/5.6 48 h = 80/5.6 24 h = 11.6 Young 24 h = 100/5.6	48 h = 20.0 24 h = 60.0	А
auffer Chem. Co. 1d Creek Plant cks, AL	agricultural chem., herbicides and pesticides	9/9 Lo 9/15 1977	0.11-0.40	Mobile River	N.S.M. [[]		96 h = 75/5.6 72 h = 13.3 48 h = 26.0 24 h = 28.1 Young 72 h = 12.2 48 h = 17.6 24 h = 30.9		Α
ntainer Corp. rounding Beb.	kraft paper	2/2 to 2/9 1978	18.0-21.1	Amelia River	96 h = 7.7 72 h = 7.7 48 h = 30.1 24 h = 42.3	N.M. ^g	96 h = 5.9 72 h = 5.9 48 h = 18.0 24 h = 19.3	72 h = 50/56	В
erican Color d Chem. Co. beco, SC	dye intermediates	12/9 to 12/16 1977	0.25-0.33	Campbell's Creck	96 h = 5/32 72 h = 5/56 48 h = N.M. 24 h = N.M. Fish 26-28 days old 96 h = 43.6 72 h = 48.9 48 h = 49.0 24 h = 5/56	1	96 h = 6.3 72 h = 6.4 48 h = 19.1 24 h = 42.3 96 h = 80/10 72 h = 60/10 48 h = 11.0 24 h = 23.9 72 h = 8.0 ¹ 48 h = 15.7 24 h = 21.7		С
stvaco Corp. aft Division Charleston,	unbleached kraft paper, process chemical reclamation	4/29 to 5/6 1977	27-30	Cooper River	Ν.М.		96 h = 8.7 72 h = 13.1		Λ
reofina Corp. Imington, NC	TPA & DMI (two Ducron precursors)	7/19 to 7/24 1977	0.18-0.25	Cape Fear and N. E. Cape Fear Rivers	96 h = 21.3 72 h = 24.1 48 h = 25.7 24 h = 39.7	n.m. ^j	96 h = 9.6 72 h = 9.6 48 h = 9.6 24 h = 12.9 Young 48 h = 7.1 24 h = 7.4		, L

Ta at Inued

				Ta' it	Inued				
Verona Dyestmif Division Charleston, SC International Paper Co. Georgetown, SC Gardinier Chem. Tampa, FL Stauffer Chem. Co. LeMoyne Plant Axis, AL Reichhold Chemical Bay Minette, AL Olin Chemical St. Marks, FL Georgetown, SC Pfizer Chemical Southport, NC Virginia Chem. Bucks, AL Brunswick Pulp					Cyprinodon va	- 1	esults ^{bc} Mysidopsis	bahia e	
	Major Products	Study Dates	Plant Discharge Volume (MGD)	Receiving Waterway	Flow-through Test	Static Test	Flow-through Test	Static Test	Recommended Action
Verona Dyesturi Division	dyes	5/23 to 5/29 1977	3.5-5.2	Cooper River	96 h = 16.4 72 h = 28.0 48 h = 34.8 24 h = 46.7		96 h = 22.5 72 h = 24.0 48 h = 29.2 24 h = 75.0		٨
Paper Co.	bleached and unbleached kraft, neutral sulfite process paper	8/12 to 8/18 1977	29-31 (60-9- min. release, twice daily)	Sampit River	96 h = 15/56 72 h = 15/56 48 h = 15/56 24 h = 15/56	N.M.	96 h = 28.8 ^k 72 h = 31.8 48 h = 33.6 24 h = 38.3	N.S.M.	None
	phosphoric products	6/14 to 6/22 1978	#001: 21.6-23. #005: 18.8 #006: 0.18-0.3	2 Alafıa River O	N.M.	N.M. (3 tests)	96 h = 43.5 72 h = 82.5		D
leMoyne Plant	Industrial grade chem., H,SO,, CCl, Cl, Cl, CS, NãOH and others	9/15 to 9/22 1977	1.5-2.0	Mobile River	N.M.		96 h = 45.4 72 h = 45.4 48 h = 15/56 24 h = 10/56		None
	tall oil products	5/1 to 5/8 1978	0.018-0.041	Hollinger Creek	N.M.	N.M.	96 h = 50.0 72 h = 40.0 48 h = 32.0	72 h = 40.0	E
	smokeless powder, nitro-glycerine	1/12 to 1/19 1978	0.33-0.52	Big Boggy Branch	N.M.	N.M. (2 tests)	96 h = 45/56 72 h = 15/56 48 h = 30/56 24 h = 25/56		None
•••	steel wire and rod	3/20 to 3/27 1978	0.65-0.67	Sampit River	N.M.	N.II.	96 h = 20/56	N.S.M.	None
	citric acid	7/6 to 7/13 1978	0.71-2.43	Cape Fear River	N.M.	N.M.	96 h = 20/56		None
••	sodium hydrosulfite, aliphatic amines	4/24 to 5/1 1978	0.009-0.011	Cold Creek	N.M.	N.S.M.	96 h = 15/56		F
and Paper	bleached & unbleached market kraft paper	8/7 to 8/13 1978	54-59	Turtle River	N.M.	N.M. ¹	N.S.M.	N.S.M.	None
E. I. duPont de Nemont & Co. Wilmington, NC	TPA, DML and Diction polyetter filer	8/1 10 8/7 1977	1.7-1.9	Cape Fear River	N.S.M. ^m	N.M.	N.S.M. ^k	N.S.M.	tom

				Table	inued	Test Results bc							
Industry		a	D D		Cyprinodon v	d	Mysidopsls	bahia e					
Address	Major Products	Study Dates	Plant Discharge Volume (MGD)	Receiving <u>Waterway</u>	Flow-through Test	Static Test	Flow-through Test	Static Test	Recommended <u>Action</u>				
dePoorters Corporation Wilmington, NC	woven & knitted fabrics; dyeing	11/4 to 11/10 1977	1.04-1.22	Smith Creek	N.M.				None				
Dlamond Shamrock Castle Hayne, NC	sodium bichromate, chromic acid	7/13 to 7/20 1978	0.48-0.60	N. E. Cape Fear River	N.M.	N.M.			None				
General Electric Wilmington, NC	nuclear fuel pellets, metal fuel pellets	11/11 to 11/17 1977	0.62-0.70	N. E. Cape Fear River	N.M.	N.M.			None				
		Test	Results Inconclus	ive									
SCM Corp. Glidden-Durkee Div Organic Chem. Group Jacksonville, FL		6/23 to 6/29 1977	2.7-3.3	Moncrief Creek	Test Results In Concentration H		andom Mortality Throu	ighout	None				

inund

a. Unless otherwise indicated, all information presented in this table has been reported in Individual industry toxicity test reports.

Table

- b. Single values reported are LC50 values.
- c. Where LC50 values could not be mathematically derived, the percent of test animals that died at the lowest test concentration in which mortality occurred is given and is to be read as follows: 20/5.6 represents 20 percent mortality in the 5.6 percent concentration of wastewater.
- Unless otherwise stated, all Cyprinodon used were 1-3 weeks old, "Sub-adult" Cyprinodon were 13-20 mm in length, age unknown.
- e. Unless otherwise stated, all Misidopsis used had reached full length (6-8 mm) and were not further identified by sex or age. "Young" mysids were 1.5-2 mm in length and 1-3 days old.
- 1. N.S.M. = No significant mortality.
- g. N.M. = No mortality.
- 1. A 70:30 mixture of Mysidopsis bigelowi and Neomysis americana was used in this test.
- j. Test conducted in Athens using well water collected on November 10, 1977, substituting 6-month-old Lepomis macrochirus for Cyprinodon variegatus as the test organism.
- k. Test conducted substituting 1-3-day-old Daphnia magna for Mysidopsis bahia.
- 1. Additional static tests were conducted with fresh water species (effluent salinity 3 mg/ml or less).

 Pina phales promelas: no mortality after 96 hours. Daphnia pulex: 48 hour LC50 = 32.0 percent.
- m. Test conducted using fingerling letalurus punctatus for Cyprinodon variegatus as the test organism.
- n. See following mage.

Table med

Specific Actions Recommended to EPA Enforcement Division for Region IV Discharges Based on Results of On-site Acute Toricity Tests.

- A. Recommended action:
 - require the industry to determine how rapidly and uniformly their wastewater mixes with the receiving water.
 - if wastewater is not undergoing rapid mixing, require industry to install diffuser pipes in the receiving water.
- B. Recommended action:
 - require the company to conduct dye studies to determine the isopleths of wastewater concentration and submit the results displayed on a map of the receiving water.
 - require the company to provide EPA with their daily wastewater discharge flow in MGD.
 - once the wastewater concentration (toxicity limit) at the boundary of the mixing zone has been established, an effluent toxicity screening test should be required of the company using the calculated toxicity limit.
- C. Recommended action:
 - company should conduct dye studies to define the flow characteristics (plot isopleth of wastewater concentrations) of the wastewater as it enters and mixes with the receiving water.
- D. Recommended action:
 - require that the wastewater be discharged via a diffuser pipe for rapid and homogeneous mixture in the receiving water.
 - compute the 7010 flow at a point in the Alafia River near the plant outfall for use in determining the extent of dilution of wastewater.
 - from the extent of dilution determine the zone (area) of chronic toxicity.
 - the information on the area affected by chronic toxicity can be used by the regulatory agency to determine if and how much reduction of waste-water toxicity may be required by the plant.
- E. Recommended action:
 - company should provide EPA with calculated dilution ratios of their wastewater based on low flow conditions at selected locations downstream from their discharge.
- F. Recommended action:
 - no further biomonitoring unless the company's wastewater characteristics change due to plant production changes.

industrial wastes, is more likely related to the interaction of several factors including:

- wastes produced,
- in-plant waste treatment,
- final concentration of wastes when released, and
- species-specific physiological response to each
 complex effluent mixture.

Characterization of organics in wastewater using GC/MS analysis is reported for three plants in addition to those reported last year (Table 2). These three followed a trend established as a result of GC/MS characterizations for the six previous samples: wastewater toxicity seems to be related to both the number and total concentration of identified organic compounds. Organic analyses were discontinued as of September, 1977. Results of inorganic analyses are given in Table 3.

Recommendations to Region IV's Enforcement Division, based on these test results ranged from no action to the determination of isopleths depicting waste flow into the receiving waterway, determination of 7Q10 values at the point of discharge, possible installation of diffuser pipes in receiving waterway, further toxicity testing and possible reduction of toxicity of effluents based on the resultant information, each to be conducted by the industry (Table 1).

Flow-through tests have produced much more information to date in this project than have static tests. Of all flow-through tests conducted with salt-water animals, 63% have produced reportable toxicity (mortality relatable to wastewater concentration), and 51% have been at least toxic enough for the calculation of LC50 values. Of all on-site static tests

		Concentration(mg/1)				
Industry	Compound	Effluent	Dilution			
Westvaco	Di(2-ethyl hexyl) Phthalate	330	<5			
	Phenylacetic Acid $^{ m T}$	110	ND			
	5 unidentified fatty acids	approx. 5	ND			
	2 unidentified resin acids	approx. 5	ND			
	oil	unspecified	ND			
	grease	unspecified	ND			
Verona	Chloroaniline	52	ND			
	Chloronitrobenzene	180	ND			
	1,3,3-trimethy1-2-methylene indoline	170	ND			
	Dimethyl-2-methylene indoline	5.9	ND			
	1,3,3-trimethyl oxindole	220	ND			
	Unidentified Phthalate	58	ND			
SCM	organic samples discarded: toxicity test results inconclusive					
Hercofina	Ethyl hexanoic acid	180	ND			
	P-Cresol	190	ND			
	Phenyl acetic acid	200	ND			
	Phenol	110	ND			
	Indole _	95	ND			
	Alkyl C3 Benzenes ^T	60	ND			
	di(2-ethyl hexyl) Phthalate	19	trace(<5)			
	Isobutyric Aci <u>d^T</u>	130	ND			
	n-Butyric Acid $^{ m T}$	160	ND			
	Valeric Acid $^{ m T}$	560	ND			
	Lauric Acid $^{ m T}$	130	ND			
Grace	Phenyl Isoeyanate $^{ m T}$	140				
duPont	no organics present within detectable limits					
International Paper	Ethyl Toluene	8.5	ND			
	Xylene	1.5	ND			
	N-Propyl Benzene	1.8	ND			
	N-Pentene ^T	10	ND			
	Dimethyl Butane ^T	10	ND			
	Unidentified Phthalate	28	29			
	Lube-type oil	unspecified	ND			

Table 2, continued GC/MS Characterization of Wastewater and Dilution Water Used for Testing at Some Industrial Sites

		Concentration (ug/				
Industry	Compound	Effluent	Dilution			
Stauffer	Cycloate	19	NA			
(Cold Creck)	Fonophos	3,2	NA			
(002.0 0, 00.1)	Phosmet	ND	ND			
	Triethylphosphate	45	NA.			
	Bis (2-ethyl hexyl) phthalate	2.3	NA			
	EPTC	37	NA			
	Butylate	2.4	NA			
	Vernolate	7.7	NA			
	Pebulate	0.71	NA			
	Molinate	40	NA			
Stauffer	Cycloate	1.2	NA			
(LeMoyne)	Fonophos	ND	NA			
•	Phosmet	ND	ND			
	Triethylphosphate	ND	NA			
	Bis (2-ethyl hexyl) phthalate	6.6	NA			
	EPTC	1.2	NA			
	Butylate	0.11	NA			
	Vernolate	0.18	NA			
	Pebulate	ND	NA			
	Molinate	4.9	NA			
American Color	Methyl phenol (isomer)	14	ND			
	Benzamide	120	ND			
	Phenyl carbamic acid, methylester and/or isocyanatobenzene	21	ND			
	Dihydroxy anthraquinone	81	ND			
	Aniline	2500	ND			
	Methyl aniline (isomer)	500	ND			
	Chloroaniline (isomer)	270	ND			
	N-nitrosodiphenyl amine and/or diphenyl amine	23	ND			
	Nitro aniline	40	ND			
	Di-n-butyl phthalate	6	ND			
	Anthraquinone	20	ND			
	Aminoanthraquinone	86	ND			

T = tentative identification

Industry	Sample	NH ₃ -N (mg/1)	TOC (mg/1)	Phenols (mg/l)	Zinc (mg/1)	Chromium (mg/1)	Copper (mg/1)	Lead (mg/1)	Cadmium (mg/1)
Westvaco	Eff. Dil.	0.39 0.02	94 8	17 15	- -	-	<u>-</u>	-	<u>-</u>
Verona	Eff. Dil.	6.70 0.03	44 9	75 14	- -	- -	- -	- -	<u>-</u>
SCM	Eff. Dil.	- -	-	-	- -	<80 <80	57 34	- -	- -
Hercofina	Eff. Dil.	6.0 ND	-	<u>-</u> -	43 56	31 50	<20 35	101 247	<20 22
Grace	Eff. Dil.	14 0.31	-	- -	- -	-	-	- -	- -
duPo nt	Eff. Dil.c	0.04 0.04	- -	- -	43 55	88 <50	- -	- -	- -
International Paper	Eff. Dil.	1.10 0.20	330 3.3	21 <5	75 80	<80 <80	24 45	<80 296	<10 28

- a. Effluent samples are of unadulterated material.
- b. Dilution water is either estuarine water collected at the necessary tidal phase to be within the range of, usually, 15-18ppt salinity or is a mixture of higher salinity seawater and well water to provide a solution within the same salinity range.
- c. Flow-through tests were run using fresh water. Dilution water characterization given is, therefore, for fresh dilution water. Values for dilution salt water, used in static tests, are non-detectable, 22 and 41 mg/l for NH₃-N, zinc and chromium, respectively.

conducted with salt water animals, 17% have produced reportable toxicity and 8% have been toxic enough for the calculation of LC50 values.

Mysidopsis bahia has been a much more useful test species than Cyprinodon variegatus. Of all on-site toxicity tests conducted with Mysidopsis, 78% have produced reportable toxicity, and 63% have been at least toxic enough for the calculation of LC50 values. Of all on-site toxicity tests conducted with Cyprinodon, 24% have produced reportable toxicity, and 16% have been toxic enough for the calculation of LC50 values.

On-site sheepshead statics have never resulted in mortality sufficient for the calculation of LC50 values, and in only one test (6%) of the sixteen conducted has any toxicity been demonstrated through mortality. Sheepshead flow-through testing produced reportable toxicity in 36% of all tests conducted, and LC50 values could be calculated for 27% of the tests. Mysid statics have resulted in reportable toxicity in 38% of tests conducted, and LC50 values could be calculated for 25% of the tests. Mysid flow-through tests have resulted in reportable toxicity in 95% of the tests conducted, and LC50 values could be calculated for 74% of the tests.

AN EARLY EVALUATION OF AN ACUTE TOXICITY TEST USING LUMINESCENT BACTERIA

The Microtox[™] is a specialized photometer being developed by Beckman Instruments, Inc. and evaluated by this and other laboratories for its applicability as a new acute toxicity testing system. Essentially, a nearly instantaneous response is recorded as percent light increase or decrease from a suspension of luminescent bacteria upon exposure to a potential toxicant. Potential benefits to a regulatory agency or discharger conscientiously evaluating toxic effects of a wastewater would include savings of time and therefore expense and manpower, and a degree of uniformity of test organisms greater than that possible with current popular test organisms. Tests can take 30 minutes to 3 hours as opposed to conventional 96-hour tests that may take a total of 8 days in the field. Standard, cultured bacteria may be supplied from a pure culture maintained in a single, centralized laboratory. Vials of lyphilized bacteria are easily stored and shipped.

This test system is in an evaluative phase in its development, and problems do exist. One concerns data interpretation. A decrease in the amount of light emitted by the bacteria can easily be interpreted as a deleterious or "toxic" effect. An increase in the amount of emitted light, analagous to "stimulation" in an algal assay, is more difficult to categorize. Does such "stimulation" represent an enrichment of the environment, and if so, should such be regarded as deleterious, accelerating eutrophication, or should it be regarded as a desirable situation.

A comparison of results of the bacterial test with results of standard on-site flow-through tests with Cyprinodon variegatus and Mysidopsis bahia is given in Table 4. Entries are listed in order of decreasing wastewater toxicity to Mysidopsis. The wastewater most toxic to mysids

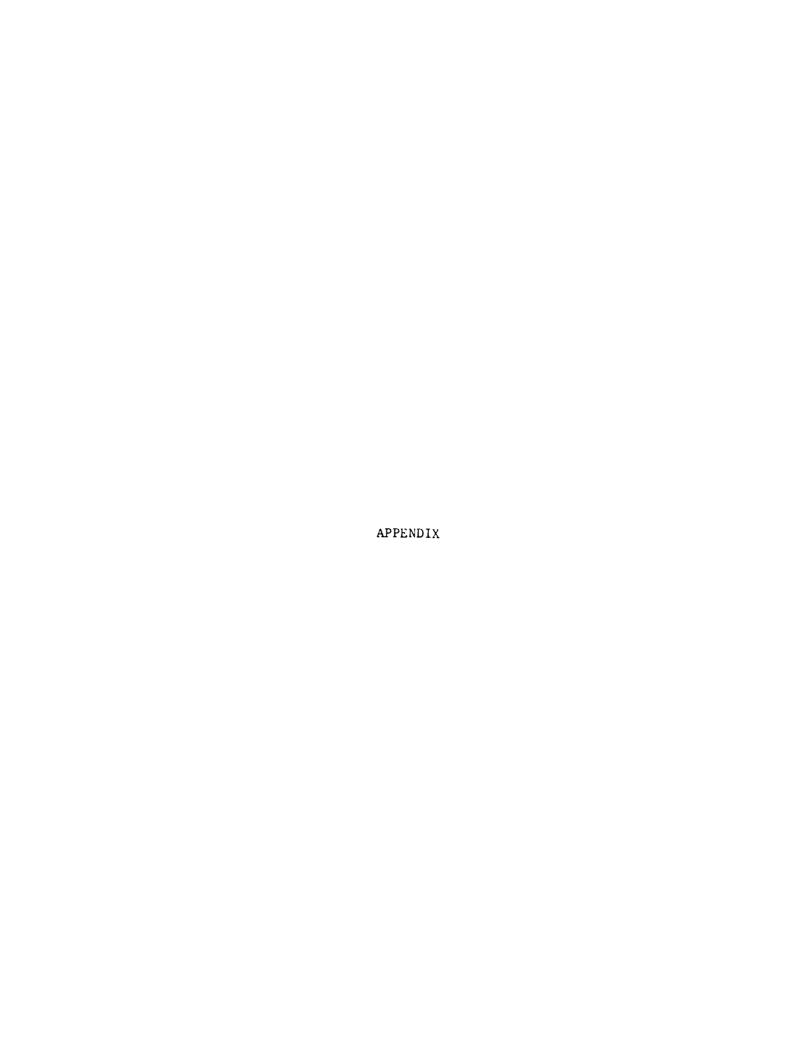
 $\hbox{ Comparison of Results Between On-site Toxicity Testing With Luminescent Bacteria and Flow-through Testing With Standard Test Organisms}^a$

Test Organism

Industry	Sheepshead Minnow (96-hr exposure)	Mysid Shrimp (96-hr exposure)	Luminescent Bacteria (10-min exposure)
Reichhold	0/56	32	41/50
Gardinier	0/100	44	13% stimulation ^b
Pfizer	0/56	20/56	18/50
Virginia	0/56	15/56	2% stimulation ^C
Brunswick	0/56	0/56	10/50

a. Single values represent LC50 (sheepshead, mysids) or EC50 (bacteria) values in percent effluent, unless otherwise indicated. Slashed values, used when test mortality was insufficient for calculation of LC50's or EC50's, represent:

percent mortality
highest effluent concentration tested


percent light decrease
highest effluent concentration tested

for sheepshead and mysids or

for bacteria.

- b. Increase in light output after 10 min. exposure to the highest test concentration of wastewater (33%).
- c. Increase in light output after 10 min. exposure to the highest test concentration of wastewater (50%).

(Reichhold) was also most toxic in the bacterial test. If a "toxic" bacterial test result may be defined absolute deviation from no effect, then Virginia Chemical and Brunswick Pulp and Paper wastewaters were shown to be the least toxic by both the mysid shrimp test and the bacterial test. If bacterial stimulation is defined to be other than a toxic or deleterious effect, the comparison between mysid and bacterial tests for these first five field-tested industries is not as direct. Sheepshead minnow test results for these industries is included in Table 4 to illustrate the relative insensitivity of this test species.

Data Collected On-site to Date as Part of Athens/Gulf Breeze EPA Cooperative Project

Table #	Table

- I. Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at Westvaco Corporation, North Charleston, SC, April 29-May 6, 1977.
- II. Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at Verona Dyestuff Division of Mobay Chemical Corporation, Charleston, SC, May 23-29, 1977.
- III. Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at the Glidden-Durkee Division of SCM Corp., Jacksonville, FL 32201.
- IV. Survival Data Recorded for Wastewater Concentrations During a Flow-through Toxicity Study Conducted at Hercofina Corporation, Wilmington, North Carolina, July 20-24, 1977.
- V. Chemical Parameters Recorded for Wastewater Concentrations During a Flow-through 96-hour Acute Toxicity Study at Hercofina Corporation, Wilmington, NC, July 20-24, 1977.
- VI. Survival Data Recorded by Test Aquarium During a Flow-through Acute Toxicity Study Conducted at W. R. Grace & Co., Wilmington, NC, July 25-August 2, 1977.
- VII. Survival Data Recorded During 48-hour Static Acute Toxicity Testing Conducted at W. R. Grace & Co., Wilmington, NC, July 25-August 2, 1977.
- VIII. Ranges of Values for Chemical Parameters Monitored Periodically for Each Wastewater Concentration Tested During a Flow-through Acute Toxicity Study at W. R. Grace & Co., Wilmington, NC, July 25-August 2, 1977.
 - IX. Survival Data Recorded by Test Aquarium During an Acute Toxicity Study Conducted at E. I. duPont de Nemours and Company, Wilmington, NC, August 2-6, 1977.
 - X. Chemical Monitoring Data Recorded by Test Aquarium During Flow-through Acute Toxicity Testing at E. I. duPont de Nemours and Company, Wilmington, NC, August 2-6, 1977.

- XI. Survival Data for Acute Toxicity Tests Conducted at International Paper Company, Georgetown, SC, August 14-18, 1977.
- XII. Chemical Parameters Recorded by Test Aquarium During a Flow-through Toxicity Study Conducted at International Paper Company, Georgetown, SC, August 14-18, 1977.
- XIII. Biological Data Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at the Cold Creek Plant of Stauffer Chemical Company, Bucks, Alabama, September 11-15, 1977.
- XIV. Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at the Cold Creek Plant of Stauffer Chemical Company, Bucks, Alabama, September 11-15, 1977.
- XV. Biological Data and Chemical Parameters Recorded by Test Aquaria During a Flow-through 96-hour Acute Toxicity Study Conducted at the LeMoyne Plant of Stauffer Chemical Company, Axis, Alabama, September 16-20, 1977.
- XVI. Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Toxicity Study Conducted at dePoortere Corporation, Wilmington, NC, November 7-11, 1977.
- XVII. Biological Parameters Recorded for Wastewater Concentrations During a Flow-through Study Conducted at American Color and Chemical Corporation, Lobeco, SC, December 9-17, 1977.
- XVIII. Chemical Parameters Recorded for Wastewater Concentrations During a Flow-through Acute Toxicity Study Conducted at American Color and Chemical Corporation, Lobeco, SC, December 9-17, 1977.
 - XIX. Survival Data Recorded by Test Aquarium During an Acute Toxicity Study Conducted at the Olin Corporation, Smokeless Powder Division, St. Marks, FL, January 15-19, 1978.
 - XX. Chemical Parameters Recorded by Flow-through Test Aquarium During an Acute Toxicity Study Conducted at the Olin Corporation, Smokeless Powder Division, St. Marks, FL, January 15-19, 1978.
 - XXI. Survival Data Recorded by Test Aquarium During Acute Toxicity
 Testing Conducted at the Container Corporation of America, Fernandian
 Beach, Florida, February 6-10, 1978.
- XXII. Chemical Parameters Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at the Container Corporation of America, Fernandina Beach, Florida, February 6-10, 1978.

Table	
#	Table
XXIII.	Survival Data Collected by Test Aquarium During an Acute Toxicity Study at the Georgetown Steel Corporation, Georgetown, SC March 22-26, 1978.
XXIV.	Chemical Parameters Recorded by Flow-through Test Aquarium During an Acute Toxicity Study Conducted at the Georgetown Steel Corporation, Georgetown, SC, March 22-26, 1978.
XXV.	Survival Data Recorded by Test Aquarium During Acute Toxicity Testing Conducted at Virginia Chemicals Incorporated, Mobile, Alabama, April 27-May 1, 1978.
XXVI.	Chemical Parameters Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at Virginia Chemicals Incorporated, Mobile, Alabama, April 27-May 1, 1978.
XXVII.	Survival Data Recorded by Test Aquarium During Acute Toxicity Testing Conducted at Reichold Chemicals, Inc., Newport Division, Bay Minette, Alabama, April 28-May 7, 1978.
XVIII.	Chemical Parameters Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at Reichold Chemicals, Inc., Newport Division, Bay Minette, Alabama, April 28-May 7, 1978.
XXIX.	Survival Data Recorded by Test Container During Acute Toxicity Testing Conducted at Gardinier, Inc., Tampa, Florida, June 17-21, 1978.
XXX.	Chemical Parameters Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at Gardinier, Inc., Tampa, Florida, June 17-21, 1978.
XXXI.	Survival Data Recorded by Test Aquarium During Acute Toxicity Testing Conducted at Pfizer, Inc., Southport, NC, July 8-12, 1978.
XXXII.	Chemical Data Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at Pfizer, Inc., Southport, NC, July 8-12, 1978.
XXIII.	Survival Data Recorded by Test Aquarium During Acute Toxicity Testing at Diamond Shamrock - Chrome Chemicals Plant, Castle Hayne, NC, July 12-19, 1978.

Chemical Parameters Recorded by Test Aquarium During Flow-through Acute Toxicity Testing Conducted at Diamond Shamrock - Chrome

Chemicals Plant, Castle Hayne, NC, July 12-19, 1978.

XXXIV.

Table #	Table
XXXV.	Survival Data Collected by Test Aquarium During an Acute Toxicity Study at the Brunswick Pulp and Paper Company, Brunswick, Georgia, August 7-13, 1978.
XXXVI.	Chemical Parameters Recorded by Flow-through Test Aquarium During an Acute Toxicity Study Conducted at the Brunswick Pulp and Paper Company, Brunswick, Georgia, August 7-13, 1978.

Table I.

Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-Through 26-hour Acute Toxicity Study Conducted at Westvaco Corporation, North Charleston, SC, April 29 - May 6, 1977

}			0. 0	f			-1	in. o	f		Dissolved Orygen							pii				tal			ty	• Clinty					
				r <u>vi</u> s			ir irii				$\frac{(mr/2)}{0+24+48+172+96}$				0 2 1 48 72 96					(<u>-5/</u>			96		24	7 <u>7 7 7 7</u>	72	126			
Wasterater	() hr		,	72 br		hr	24 hr		hr		hr	hı		hr_	hr	hr	lir	hr	hr	hr		hr				hr	hr	20		1.:	
0.0	10	10	10	10	10	5	5	5 4	5		7.3	7.2	6.4	6.5	6.6				7.8 7.8		75 75	73 72	71	70 69	70		16.5 16.5	15.5 15.5	15.5		
5.6 5.6	10	10	10	10	10	5	5 4	5 4	2	2	7.3 7.3	7.0) -	5.9 5.9)	7.6 7.6	7.5	7.6 7.6	7.7 7.7	7.7 7.7	80 80		88 87		89 37	15 15		15.5 15.5			
10.0 10.0	10 10	10		1	10 10	5 5	5	4	3	2	7.3	6.9 6.7		5.9 5.4	5.9	7.5 7.6					93 95					15 15	15 15	14.5 14.5			
18.0 18.0	10 10		10			5 5	5	5 4	2 2	1 1	6.9 6.9	6.6 6.5	5.1 5.1	5.3 5.3	5.1	7.6 7.6	7.5 7.5	7.6 7.6	7.7 7.7	7.7 7.7	105 105	106 102	1C3 110	30 83	108 111	14 14	14 14	14 14	13 13		
32.0 32.0	10 10			10 10	10 10	5 5	5 5	5	1	1 0	6.3	5.9 5.8	4.1	4.2	5.3	7.6 7.6					1 30 1 30		.			12	12	12 12	11 11		
56.0 56.0	10 10			10 10		5 5	5	0	0	0	5.3 5.3	4.6 4.7	2.8		4.3		7.5 7.5		7.5 7.5	7.5 7.7	175 175	172 173	198 195	201 203	197 195	. £	8	. 8 . 8	8 8		
															 				:					1							
			i									!												i							
			1			 																		ļ							

Table II.

Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-Through 96-hour Acute Toxicity Study Conducted at Verena Dyestuff Division of Mobay Chemical Corporation, Charleston, SC, May 23-29, 1977

	No. of Miners Surviving					No. of Shrimp Surviving				Dissolved Oxygen (-3/1)				Pit				Total Alkalinity (mm/8 CaCO3)					Salinity (mg/al)							
1	0	124	∔S	72	96	0	24	48	72	96		24	48		96	0 hr	1 24 hr	48 h.r	72 hr	96 hr		24	48	72 hr	196	0 hr	1 24	48 1.r	72	96 hr
Z Wastesuter	hr_	hr	hr	1r	hr	hr.	hr.	hr	hr	hr	hr	hr		T	1			-			i		1	1	1	16	: 16			1
0.0	20 20	20 20		19 ·		5	5	5	5	5	7.4	5.3 8,5	7.6	8.3	•	7.6	7.6	7.7	7.7	7.8			76 78	75 75	75	16	16			
5.6 5.6	20 20	20 20	20 19	19 18	17 16	5	5	4	4	4	6.8	7.7	7.4	7.9 8.1		7.6	7.6	7.7		7.7			75 76	76 75	76 76	16 16	16			
10.0 10.0	20 20	20 20		19. 17	15	5	5	5	5	5	6.3	7.3 7.1	7.1 6.9	7.8		7.5 7.6					77 77					15 15	14			
18.0 18.0	20	20	20	19 19	16 14	5	5	5	5	4	6.0 5.7	6.7 6.3	6.6 6.0	6.8 7.1		7.5	,			7.4			74 74		76 75	14 14	13			
32.0 32.0	20 20	19 20			4 2	5	4	2	0	0	4.9	7.0 6.5	6.3 6.9	7.4	T	7.4					71 72					12 12	12			
56.0 55.0	20 20	7.0	_		1 0	2	2	0	0	0	2.3	7.7 7.4	6.3 6.8	6.8		7.4		Į.	7.4 7.4			69 71		74 75	74 75	10 10	9			
100.0	14 14	0			0	2	0	0	0	0	1.8	7.5 6.3		}		7.0					58 57	65 63				5	4 4			
													i	}								}	1	}	1		1	}		1

Table III.

Biological Data and Chemical Parameters Recorded for Test Aquarium During a Flow-Through 96-hour Acute Toxicity Study Conducted at the Glidden-Durkee Division of SCM Corp., Jacksonville, FL 32201

j		No. of Dissolved Ox							x) g c n	gen pli						Total Alkalinity (rg/L CaCO3)					Saliraty (cg/.a)									
				.rviv						04		0 24 48 172 196					1, 24	1 48	72	1 96	0 24 48 72 96			0	1 24	48		156		
Wastewater	hr			br		ł. r					hr	hr		hr	hr	hr	hr	hr	٠.٢	1.1	lir	hr	hr	hr	hr	hr	lir_	hı	<u> </u>	1) r
0.0	10	9	7	7 6	5	10 10	9	9	8	8	6.3 6.4	6.7 6.6			5.8 5.7	7.5 7.6	7.8 7.8	7.7	7.8 7.7	7.8 7.8	81 82		96 96		94 96	18 18	18 18	18 18	18 18	18
5.6 5.6	10 10	8 10	7 8	6	3 4	10 10	9 7	8 7	8 5	5 5	6.2 6.1	6.4 6.3		5.6 5.5	5.4 5.6	7.6 7.6		7.8 7.8	7.7	7.8 7.8	85 85		98 93	95 93		17 17	17 18	17 17	18 18	18
10.0 10.0	10 10	8 9	S 9	5	4 8	10 10	10 10	7 10	8	8 8	5.9 5.9	5.9 6.0	6.5 6.5	5.1 5.2	5.1 5.2	7.6 7.6					90 89	:				16 16	16 16	17 17	18 13	17
18.0 18.0	10 10	9 10	7	6 8	6 6	10 10	10 10	6	6 7	6 7	5.7 6.0	5.7 5.7		5.1 5.2	5.0 5.0	7. 7 7.7	7.9 7.9	7.8	7.7	7.8 7.8			103 102			15 15	15 15	16 16	13 13	16 16
32.0 32.0	10 10	9	9	9	5	8 8	7 8	6 8	6	6 6	5.6 5.4	5.4 5.2		5.0 4.9	4.4	7.8 7.8					108 108					13 13	13 13	13 13	16 17	14
56.0 56.0	10 10	10 9	8	7 6	3	6 ن	5	5	4 5	4	5.4	\$.3 \$.3		4.8 5.0	4.0 4.1	7.9 7.9	8.1	8.0		8.0	112 112	12 7 130	136 129	100 99		13 12	10 10	9 10	15 14	10
100.0 100.0											6.2 5.4	5.7 5.7	5.3 5.8			8.4 8.4		8.3		8.5 8.3	165 173	158 170	167 176	179 185	18 5 185	1	2 2	1	2 2	3
														}															ı	

Table IV.

Survival Data Recorded for Wastewater Concentrations During a Flow-Through Toxicity Study Conducted at Hercofina Corporation Wilmington, North Carolina, July 20-24, 1977

Concentration of Wastewater		of sheepshead nnows surviving 24 48 72 96 hr hr hr hr				No. o		surv 48	iving	96	shrim;	survi 24	48
(%)	111	HE	III	III	hr	1112	III	hr	hr	hr	hr	hr	hr
0.0	10 10	9 10	9 7	8 5	8 5	10 10	10 10	10 10	10 10	10 10	10	10 	10
5.3 5.3	10	10 10	10 10	10 10	10 10	10 10	9 10	9	9 10	9 10	10 	10 	10
9.6 9.6	10 10	10 10	10 10	10	6 7	10 10	9°	0 10	0	0 10	10	1	0
18.0 18.0	10 10	10 10	10 10	10 10	9 5	10 10	0	0	0	0	10	0	0
32.0 32.0	10 10	10	0 2	0	0	10 10	0	0	0	0	10	6 	0
56.0 56.0	10 10	0	0	0	0	10 10	0	0	0	0	10	0 	0

Table V.

Chemical Parameters Recorded for Wastewater Concentrations During a Flow-Through 96-hour Acute Toxicity Study Conducted at Hercofina Corporation, Wilmington, NC July 20-24, 1977

	 	Dies	011104	0,,,,,,,,,,,						 i	W1-411-1-											
Concentration	}		olved ng/1)	oxyge	en.			pН		ļ	Total Alkalinity (mg/l CaCO3)						Salinity (ng/ml)					
of instewator	0	i 24		1 72	96	-0	24	48	72	96	0		48			0	24	48 i	, 72 i	96		
(%)	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr			hr		hr	hr	hr	hr	hr		
	1																					
0.0		6.2		5.9	5.9	7.4	7.4	7.8	7.5	7.5	70	67	79	88	77	20	20	20	22	21		
0.0	1	6.2	6.1	5.9	6.1	-	-	-	-	-	-	-	-	-	-	-	20	20	22	21		
5.3		7.2	6.4	5.8	5.9	7.2	7.3	7.5	7.6	7.5	165	1 5 5	1.70	00	150	10	18	10				
5.3		6.8		5.7	5.9	''	'. 3	1 '- '	1 '.'	'-'	163	155	179	99	150	19	1.9	18 18	21 21	20 20		
			J. 2]	1											1.7	10	21	20		
9.6	ĺ	6.9	6.4	6.0	5.9	7.2	7.2	7.5	7.5	7.5	195	183	185	102	182	18	18	1.9	22	20		
9.6		6.4	6.3	5.9	5.7	-	-	-	-		_	- :	_ !	_	_	_	18	19	21	19		
10.0] ;]	:]	ļ	}														
18.0	1	6.7	ľ	5.7	5.7	7.2	7.3	7.4	7.6	7.6	331	301	310	144	352	16	17	17	21	18		
18.0	•	6.3	6.2	5.5	5.8	-	-	-	-	-	-	_	-	-	- '	-	17	18	21	18		
32.0		6.4	6.5	5.0	5.8	7.2	7.3	7.4	7.6	7.6	555	541	523	306	566	,,	1.2] , [10	1 . ,		
32.0	}	6.2	6.2	5.4	5.8	′ _ ′ _	′ • 3	′ • 4	/ _ 0	7.0] 541)23	300	200	13	13	14	18 20	14		
32.0	ļ	"	0.2		3.0	H		-	_	_		_	_	_	_	-	14	14	20	14		
56.0	1	6.3	6.3	5.0	6.3	7.3	7.2	7.3	7.5	7.6	865	753	828	756	898	l ao	1.0	12	13	10		
6.0		6.3	5.9	5.1	6.0	-	-	_	-	-	_	_	_	_	_	-	10	11	13	10		
		Į]						1				H						
100.0	ł	7.8	1	4.7	1	7.5	7.6	7.6	7.7	7.7	1308	1208	1214	1406	1428	2	2	4	4	3		
100.0	1	7.7	7.4	4.8	6.6	-	-	-	-	-	-	-	-	-	-	∥ -	2	3	4	4		
	1	1	5	1	3	11		I	l .	۱ ا		ł	I	ı	I	11	1		ı			

Survival Data Recorded by Test Aquariu — ng a Fřow-Through Acute Toxicity Study Conducted at W. R. Grace & Co., Wilmington, NC —— July 25 — August 2, 1977

No. of Mysid Shrimp Surviving

No. of Sheepshead Minnows Surviving

No. of Mysid ShrImp Survi											NO	o. or	Sneep	snead	FITHIO	พรอแ	1 0 1 0 1	пв			
Concentra- tion waste- Adults (6-8 mm)							Young (1.5 - 2.0 mm)						3−20 n	um)	Young (4-7 mm)*						
() ()		1 48 hr	/2 hr	90 for	0 br	26 hr	in		D _O	!!	24 hr	48 hr	72 <u>Lir</u>	96 lir	0 hr	24 hr	48 <u>hr</u>	72 lir	96 hr		
10	9	8 8 1	8 8	8 8	3	3	3			6	6	6	6	6	10 10	8 7	7 5	2	0 3		
10	8.	2 2	1 0	0 -	3	0	-			6	6	6	6	6	10 10	10 10	10 10	9	9		
10	6 5	2	0	- 1	3	0	-			6	6	6	6	6	10 10	10 10	9 10	9	9		
10	3 4	0	-		3	0				6	6	6	6	5	10 10	9		4 5	2 5		
10 10	3	0	-	-	3	0	_			6	6	4	4	4	10	3 6	0	- 0	-		
10	0	- 0	-	-	-3	0	_			6	0	-		-	10 10	0	-	-	-		
		-																			
	10 10 10 10 10 10 10 10	10 9 10 8 10 8 10 8 10 10 10 11 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11	Adults (6- 1)	Adults (6-8 mm) O	Adults (6-8 mm)* O	Adults (6-8 mm) Y O	Adults (6-8 mm)* Young O	Adults (6-8 mm)* Young (1.5 0	Adults (6-8 mm)* Young (1.5 - 2.6 mm)* In 10 13 12 20 0 12 17 16 In 10 9 8 8 8 8 8 In 10 8 2 1 0 3 0 In 10 5 1 1 1 In 3 0 - - In 3 0 - - In 3 0 - - In 10 3 0 - In 10 3 0 - In 10 3 0 - In 10 1 0 - In 10 10 10 10 In 10 1	Adults (6-8 mm)* Young (1.5 - 2.0 mm) O	Adults (6-8 mm)* Young (1.5 - 2.0 mm) Sub- O	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adult O	Adults (6-8 mm)* Young (1.5 - 2.0 mm) Sub-adults (13 10	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adults (13-20 mm) Sub-adults	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adults (13-20 mm)	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adults (13-20 mm)	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adults (13-20 mm)	Adults (6-8 mm)* Young (1.5 - 2.0 mm) Sub-adults (13-20 mm) Young (4-7) 0	Adults (6-8 mm) Young (1.5 - 2.0 mm) Sub-adults (13-20 mm) Young (4-7 mm) Young (

^{*} Results of this test have been included in this report in spite of unacceptably high control mortality, since the pattern of mortality vs. concentration for all test concentrations is typical of mortality tests in general. Results are to be interpreted with caution.

Table VII.

Survival Data Recorded During 48-hour Static Acute Toxicity Testing Conducted at W. R. Grace & Co., Wilmington, NC July 25 - August 2, 1977

Concentration of	Sh	o. of Mys rimp Adul urviving		No. of Young Sheepshead Minnows (5-10 mm) Surviving							
Wastewater	0	24	48	0	24	48					
(%)	hr	hr	hr	hr	hr	<u>hr</u>					
0	10	10	10	10	10	10					
1	10	10	10	10	10	10					
3	10	10	10	10	10	10					
10	10	10	10	10	10	10					
30	10	8	2	10	10	10					
60	10	5	Ø	10	10	8					

Table VIII.

Ranges of Values for Chemical Parameters Monitored Periodically for Each Wastewater Concentration Tested During a Flow-through Acute Toxicity Study at W. R. Grace & Co., Wilmington, NC July 25 - August 2, 1977

Concentration of Wastewater (%)

Parameter	0	5.6	10	18	32	56
Dissolved oxygen (mg/1)	6.3-6.9	6.1-6.7	5.9-6.6	6.0-6.4	6.0-6.4	6.0-5.4
pН	7.7-8.1	7.8-8.1	7.8-8.1	7.9-8.2	8.1-8.3	8.2-3.5
Total Alkalinity (mg/1 CaCO ₃)	65-75	67-70	61-70	61-65	52-55	39-44
Salinity (mg/ml)	18-23	16-20	16-20	15-18	12-16	8-10

Table IX.

Survival Data Recorded by Test Aquarium During an Acute Toxicity Study
Conducted at E. I. duPont de Nemours and Company, Wilmington, NC, August 2-6, 1977

	Fı	resh-	water	F1ow	-Throu	gh Te	sts							Stati				
	i	Vo. 0	f Ict	aluru	S	No	• of	Daphn	ia			of My			No.	of C	yprino	odon
Concentration	pı	incta	tus s	urviv	ing	magi	<u>ia</u> su	rvivi		Concentration	<u>ba</u>	hia su						viving
of Wastewater	U	24	48	72	96	Ü	24	48	72	of Wastewater	U	24	48	72•	σ	24	48	72
(%)	hr	hr	hr	hr	hr	hr	hr	hr	hr	, (%)	hr	hr	hr	hr	hr	hr	hr	L
													١			1.0	1.0	1.0
0.0	10	10	10	10	10	10	10	10	10	0	15	15	15	15	10	10	10	10
0.0	10	10	10	10	10	10	10	10	10		İ		ļ	Ì	\			
5 (10	10	10	9	9	10	10	10	10	5	15	14	14	13	10	10	10	10
5.6	10	10	10	10	10	10	10	10	10		1,	14	14	1 13	10	10	10	10
5.6	10	10	10	10	10	10	1.10	10	10		1				1			
10.0	10	10	10	10	10	10	1.0	1.0	9	10	15	14	14	14	10	10	10	10
10.0	10	10	10	10	10	10	10	10	10	10	1 -				-	~~		
10.0			1	10	-		-		10			}		ļ	1	1	ļ]
18.0	10	10	10	10	9	10	10	10	10	20	15	15	15	14	10	10	10	10
18.0	10	10	10	10	10	10	10	10	10				1	ł		ļ	•	ł
		Ì	ļ								!	<u> </u>			1		ł	
32.0	10	10	10	10	10	10	10	9	8	30	15	14	14	14	10	10	10	10
32.0	10	10	10	10	10	10	10	10	1.0		ŀ	ĺ					i	l
			l	ł		Ī					-	ł						
56.0	10	10	1.0	10	10	10	10	10	9	50	15	15	15	15	10	10	10	10
56.0	10	10	10	1.0	10	10	10	9 9	9		[]		1			1
				<u> </u>	1	1	1	}			ł			İ			,	i
100.0	10	10	10	10	10	1.0	10	10	10		<u> </u>	•	Į.	1	Į.			
100.0	10	10	10	10	10	7	7	7	7		ĺ	1	Ì	1		1		
	1			[[ļ			1							i
		1	1	I	ì	I	ı	ī	i	1	ı	ł	ı	1			•	I

Chemical Monitoring Data Recorded by Test Aquarium During Flow-through Acute Toxicity Testing at E. I. duPont de Nemours and Company, Wilmington, NC, August 2-6, 1977

			lved mg/1)		n			pIl					Alka 1 CaC		у		Н	ardne:		
%	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Wastewater	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr
								-							20	, ,	20	20		20
0.0	7.1	6.8	6.8	6.4		7.2	7.5	7.5	7.5	7.6	33	31	35	39	38	40	38	38		38
0.0	7.2	6.8	6.7	6.3	6.4															
5.6	7.2	6.6	6.6	6.2	6.1	7.7	7.6	7.8	7.9		63	43	72	75		41	40	36		40
5.6	7.1	6.7	6.4	6.1	6.0	1	'	7.0	1	l										
J. 0	′ • •	0.7	0.4	0.1	0.0	}							İ			:				
10.0	7.1	6.6	6.3	6.1	6.0	7.7	7.6	7.8	7.9	7.9	63	40	73	75	74	41	39	37		38
10.0	7.1	6.6	6.4	1	6.0						}	!								
	ļ					-						ł								i
18.0	7.2	6.6	6.4	6.0	6.0	8.0	7.8	8.0	8.0		101	62	115	121	`	41	40	37		40
18.0	7.1	6.7	6.2	6.0	6.0															
]			·			}		Ì	İ	}		ŀ							
32.0	7.1	6.5	5.9	6.0	5.8	8.1	8.1	8.2	8.3	8.2	164	101	187	204	195	40	39	36		37
32.0	7.1	6.6	6.1	5.9	5.8														~-	
	Ì	ł	ĺ]	اند ا	Ì	1			}				
56.0	7.1	6.1	5.9	5.7	5.8	8.2	8.1	8.3	8.4]	231	125	279	294		40	40	36		38
56.0	7.1	6.3	5.8	5.7	5.8														-	
			Ì	l		 		ĺ			[1			1				l
100.0	7.2	6.3	5.4	6.5	6.5	8.3	8.6	8.5	8.6	8.5	366	371	379	457	463	38	30	32		39
100.0	7.3	6.4	6.2	6.5	6.4															1
			[1					1		1		1	f				1	İ	1

Table XI.

Survival Data for Acute Toxicity Tests Conducted at
International Paper Company, Georgetown, SC, August 14-18, 1977

		Flow-	Throu	gh Te	sts							Stat	ic Test	5	
Concentration		MLuno	ws Su	rvivi	ng		Shrimp	Sur	viving	*	Concentration	Minr Surv	ous viving		imp iving
of Wastewater	0	24	48	72	96	0	24	48	72	96	of Wastewater	0	48	0	48
(%)	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	(%)	hr	· hr	hr	hr_
0	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10 10	О	10	10	10	10
5.6 5.6	10 10	10 10	10 10	10 10	10 10	10 10	10 9	10 9	10 9	10 9	5	10	10	10	10
10.0 10.0	10 10	10 10	10 10	9 10	9 10	10 10	10 10	9 10	9 10	9 10	10	10	10	10	9
18.0 18.0	10 10	10 9	10 9	10 9	10 9	1.0 1.0	9 8	9 8	7 8	7 8	20	10	10	10	10
32.0 32.0	10 10	10 10	10 10	10 10	10 10	10 10	7	7 0	7 0	7 0	30	10	10	10	10
56.0 56.0	10 10	7 10	7 10	7 10	7 10	10 10	3	3	4 3	3 2	60	10	10	10	10

^{*} Although the data from which these values were calculated presented a credible pattern of mortality with respect to lethality concentration, this set of values was not included in the industry report since a short-term drop in dissolved oxygen in some aquaria may have prejudiced the results.

XII.

Chemical Parameters Recorded by Test Aquarium During a Flow-Through %6-hour Acute Toxicity Study Conducted at International Paper Company, Goergetown, SC, August 14-18, 1977

Concentration		Dissol (n	lved (i			рН					lkali CaCO	3)			(linit	<u>.</u>	
of Wastewater	0 hr	24 hr	48 hr	72 hr	96 hr	() hr	26 hr	48 hr	/ / 2 hr	95 <u>hr</u>	lir	24 hr	48 hr	72 	96 hr	lir	24 hr	48 <u>lir</u>	72 hr	96 ltr
0.0	7.7 7.6	6.7	6.6	6.3	6.3 6.1	8.0	8.0	8.0	8.0	8.0	83 -	84	94 -	95 -	98 -	18 18	19 19	19 19	19 19	19 19
5.6 5.6	7.0 7.0	6.0			5.2 5.3	7.9	7.9	7.9	7.8	7.9	91	101	100	105	107	18 18	18	18 18	18 18	18 18
10.0	6.9 7.0	5.8			4.7	7.9	7.9	7.9	7.8	7.8	91	101	100	107	110	17	18 18	17 17	16 16	17 17
J8.0 18.0	6.2	4.5	6.4		5.9 6.0	7.8	7.7	7.8	7.9	7.9	99	112	112	115	120	16 16	14	14	15 15	15 15
32.0 32.0	4.9	2.2	6.6		5.3	7.7	7.6	7.9	7.8	7.7	1.12	139	136	132	139	12	9	8	12	12
50.0 56.0	5.3 5.3	1.9	6.0		4.9	7.7	7.6	7.9	7.8	7.7	130	152	148	152	162	-8 8	. 7	7	8	8 8
100.0	1.4	-	2.2		- 	7.7	7.7	7.7	7.7	7.7	163	154	156	195	207	2 2	2 2	1	2 2	2 2

Table XIII.

Biological Data Recorded by Test Aquarium During a Flow-Through 96-Hour Acute
Toxicity Study Conducted at the Cold Creek Plant of
Stauffer Chemical Company, Bucks, Alabama, September 11-15, 1977

	1			epshea rvivir		1	o. of		-	II.	No.	of r	newly	natci	ed
%	0	1 24	48	72	96	1 0	24	48	72	196	0	24	48	72	
Wastewater	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	,
0.0 0.0	10 10	10 10	10 10	10 10	10 10	10 10	10 10	9	9	9	10	10	10	10	
5.6 5.6	10 10	10 10	10 10	10 10	10 10	10 10	10 10	9 9	8 4	3 2	10	10 	9	8	
10.0 10.0	10 10	10 10	10 10	10 10	10 10	10 10	10 10	7 8	3 0	0	10	10	7	6	
18.0 18.0	10 10	10 10	10 10	10 10	10 10	10 10	10 9	1 4	0	0	10	10	6 	5	
32.0 32.0	10 10	10 10	10 10	10 10	10 10	10	2	0	0 0	0	10	3	3	0	
56.0 56.0	10 10	10 10	9 10	9 10	9 10	10 10	0	0	0 0	0	10	1	0	0	

Table XIV.

Chemical Parameters Recorded by Test Aquarium During a Flow-Through 96-hour Acute
Toxicity Study Conducted at the Cold Creek Plant of Stauffer Chemical Company, Bucks, Alabama, September 11-15, 19

	}		lved (mg/1	0xyge	n			pll			1			linity CaCO3)				linit [mg/m]	-	
	0	24	48	72	1 96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	þ 6
Wastewater	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr
0.0	8.6 8.9	8.4 8.2	7.2 7.2	7.0 7.0	7.4	8.1	8.0	8.1	8.0	8.0	71	71 -	72 -	71 -	71	18 -	16 -	18	18	18
5.6 5.6	8.7 8.7	8.0	7.0	6.9	7.1	8.1	8.0	8.0	7.9	8.0	71	70 -	71	70 -	71	16	15 -	17	17	16 -
10.0 10.0	8.8 8.6	7.8 7.8	6.8	6.8	6.9 6.8	8.1	8.0	8.0	7.8	7.9	70 -	70 -	69 -	70 -	71 -	16	14 -	16 -	16 -	15
18.0 18.0	8.7 8.7	7.6 7.5	6.6	6.6 6.5	6.7 6.7	8.1	7.9 -	7.9 -	7.6	7.8	70 -	68 -	67 -	67 -	68 -	15	13	15 -	14	15
32.0 32.0	8.4 8.4	7.2	6.2	1	6.3 6.5	7.9	7.8	7.6 -	7.4	7.6	68	65 -	64	63	65 -	12	10 -	12	12	12
56.0 56.0	8.2 8.2	6.9	5.6 5.6	5.2 5.2	5.9 5.9	7.7	7.6 -	7.3	7.2	7.4	66 -	62 -	59 -	55 -	61 -	8 -	8 -	9 -	9 -	8 -
100.0 100.0	8.0 8.2	6.4 6.4	6.0 6.1	ı	6.3	7.7	7.5 -	7.2	7.2	7.4	61 -	54 -	48 -	53 -	52 _	C -	0 -	0 -	0 -	0 -

Table XV.

Biological Data and Chemical Parameters Recorded by Test Aquarla During a Flow-Through 96-hour Acute Toxicitity Study
Conducted at the Lelloyne Plant of Stauffer Chemical Company, Axis, Alabama
September 16-20, 1977

Leading to											t	Diago	lved 0			1		pii			To	tal	<u> Л.П.а</u>	lini	LV	 		alinit	,	
Concentration			. C.	rviv	ina	S1	.r.imr	s Sur	wiv	ne	į		ng/%)		'	•		1,				(53/				l		(: r/m:)	
of Waste-				72			1 24			96	0			172	196	0	1 24	1 48	72	96	0	24	48	72	196	υ	2 3	1 48		196
water (%)	hr	1			hr	hr	í			hr	hr	hr	hr	hr	hr	hı	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr.	115	<u> </u>	hr	hr
			-																				1	1	1		ŀ	ļ		
0.0	10	10	10	10	10	10	9	9	9	9	8.0	7.8	8.0	6.9	7.0	7.9	7.9	8.1	8.0	7.7	71	72	72	72	71	17	18	15	15	16
9.0	10		10		10	10	9	9	9	9	7.9	7.8	8.0	6.8	7.1	-) -	-] - '	-	-	-] -	-] -] 17	18	15	15	16
		l	ŀ		İ		1	ĺ	l	1	ļ	_		١.,	١			:	, ,	٦,		66		64	66	16	16	14	14	16
5.6	10		10		10	10	10		10	10		7.2	6.0			7.9	7.8	7.7	7.8	7.6	66	00	04	54	1''2	16	16	14	14	16
5.6	10	10	10	10	10	10	10	10	10	10	7.3	6.8	5.8	5.7	6:6	-	-	_	-	-	-	_				1 '''	'``			1."
10.0	10	١,,	10	10	10	10	10	10	10	10	7.2	6.8	5.2	5.6	6.5	7.9	7.6	7.6	7.8	7.7	63	63	64	64	65	16	16	14	14	15
10.0 10.0	10		10		10	10			10		7.2			5.4			-	_	- 1	- 1		ļ -	-	-	-	- 16	16	14	14	15
10.0	10,	1"	"	'	["	^~	-				[''-				ļ	į .	l						l	(Į.	ł				١.,
18.0	10	10	10	10	10	10	10			10	7.1		6.2			7.8	7.6	7.5	7.8	7.4	63	58	57	58	60	15	16 16	14	14	15
13.0	10	10	10	10	10	10	10	10	10	10	6.3	5.9	6.2	6.7	6.4	-	_	-	-	-	-	_	-] -	-	15	'"	1 14	14	1,7
		l		ļ			١	١	١				7.5	١,,	. ,	7.2	7.4	7.4	7.6	7.2	45	44	3.9	48	4.7	12	14	12	12	13
32.0	10		10		10	10 10	10 10			10 10		7.3	7.5	6.4		1	/:"	l ':"	7.0	'	4,5			-	"-	12	14	12	12	13
32.0	10	10	10	10	10	10	10	10	10	10).)	/.3	4.5	". "	"	l				1			!		ļ	· ·		!		1
56.0	10	10	10	10	10	10	8	8	. 0	0	3.4	6.2	3.4	5.8	4.3	6.8	6.6	6.7	6.9	6.9	28	19	15	22	30	10	12	8	8	10
56.0	20		20		20	10	10		ľ	4	3.3			5.9			} -	-	} - '	\	-	} -	-	-	-	10	12	8	8	10
50.00	2.7] -	• •				-]		1	1	}	1	Ì	1						[1	1 _	١.	١,	_	l
100.0		١.						1	1	į	5.5		0.5	,		5.6	4.2	6"	3.6	4.1	3	-	12	! -	1	3	4	3 3	3	[
100.0				1	l	1		l	1	1	5.0	5.1	1.0	3.9	-	-	-		-	_	-	-	-	-	1 -	i '	l "	,	,	
		1	, 	1	ł		Ī		1	i	ŀ		l	ŀ		l		l i			ľ					Į	ļ	1		İ
]				ŀ	l	1							1		1	1		1	Ī	1	[ĺ		
ł							1														!		i		1	1		ļ		
}				۱ ۱	i '		ì	\	1	1	j		i	1	1	ľ	ł	\			1	i	ì	Ì	l	Ì	Ì	}		1
				ľ	İ .			l						i			•	1					i		ł		ĺ	ŀ		-
		1							ł	ŀ	li					i	ľ			1			l	ŀ	1	Ì				
		ĺ		ł						ļ]			l					Ì		ł	İ	1	ļ	ĺ	ŀ		
ļ														Ì		ì							!			I				1
											1 1												1	1	1	1				
										Ī			1	İ	ŀ								1	l	1		[- 1
)				ٔ ا			}		1]	İ				1				1	1		1			Ì	1
,				,	•	'	'	ı	,	•	, ,		•	•	•	•	•			•	-		-	-	-		-	-		

Ta T.

Biological Data and Chemical Parameters Recorded by Test Aquarium During a Flow-through 96-hour Acute Temicity Study Conducted at dePoortere Corporation, Wilmington, NC, November 7-11, 1977.

Vastewater Concentra- tion (7)	# of Sheepshead Minnous Surviving 0 24 48 72 96 hr hr hr hr hr	Dissolved Oxygen (mg/1) 0 24 48 72 96 hr hr hr hr hr	pH 0 24 48 72 96 hr hr hr hr hr	Total AlkalInity (mg/L CaCO3) 0 24 48 72 96 hr hr hr hr hr	Salinity (ppt) 0 24 48 72 96 hr hr hr hr hr
U.0	10 10 10 10 10	6.8 7.6 6.5 8.6 7.7		152 152 153 136 132	16 15 16 16 16
0.0	10 10 10 10 10	6.9 7.5 6.5 8.6 7.5			16 16 16 16 15
5.6	10 10 10 10 10	7.0 6.7 6.7 8.0 7.4	7.9 8.0 8.0 8.0 8.0	144 143 147 136 131	15 16 15 15 14
5.6	10 10 10 10 10	7.6 6.8 5.9 8.2 7.5			15 15 15 15 15
10.0	10 10 10 10 10	6.8 6.9 6.5 8.3 7.5	7.9 8.0 8.0 8.0 7.9	142 143 146 133 129	15 15 15 14 14
10.0	10 10 10 10 10	6.7 6.9 6.4 8.0 7.3			14 14 14 14 14
18.0	10 10 10 10 10	6.5 6.8 6.2 7.6 7.1	7.8 7.9 8.0 7.9 7.9	132 135 138 123 124	14 14 14 13 14
18.0	10 10 10 10 10	6.7 6.2 6.2 6.9 7.1			13 13 14 13 14
32.0	10 10 10 10 10	6.6 6.3 6.2 7.9 7.6	7.8 7.9 7.9 7.9 7.9	117 126 124 109 115	11 12 12 11 12
32.0	10 10 10 10 10	6.5 6.3 6.4 7.6.7.4			11 12 12 10 12
56.0	10 10 10 10 10	6.4 6.6 6.0 6.9 6.6	7.7 7.6 7.7 7.7 7.7	95 97 96 90 100	10 8 9 8 8
56.0	10 10 10 10 10	6.2 6.4 6.1 7.4 7.4			10 8 8 8 8
100.0	*	6.2 5.9 4.0 5.3 4.9	7.3 7.5 7.2 7.2 7.1	37 33 36 38 31	0 0 0 0 0
100.0		6.7 5.9 5.7 6.8 5.0	<u> </u>		0 0 0 0 0

^{*} Estuarine or marine organisms cannot be tested in undiluted, noncaline wastewater.

Table XVII.

Biological Parameters Recorded for Wastewater Concentrations During a Flow-Through
Acute Toxicity Study Conducted at American Color and Chemical Corporation, Lobeco, SC

December 9-17, 1977

		No.	of C	yprin	odon v	aricca	tus s	urviv	ing						No.	of my	sid	shri	mp s	urviv	ing			<u>.</u>
%	<u>J. 1</u>	2-15	day o	ld mi	nnows	<u>II. 2</u>	6-28	day o	ld mi	nnows	<u>1.1</u>	lys i d	<u>opsi</u>	<u>s ba</u>	<u>hia</u>	II.	<u>Mysi</u>	dops	<u>is b</u>	<u>nhia</u>	111.	mysi	d mix	ture*
ste- water	Dec 12	Dec 	Dec 14	Dec 	Dec 16	Dec 13	Dec 14	Dec <u>15</u>	Dec 16	Dec 17			Dec <u>14</u>		Dec <u>16</u>	Dec 			De c 16		Dec 14	Dec 15	Dec 16	Dec 17
0.0	10	10	10.	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9	9	9
0.0	10	10	10	10	10	-	-	-	-	-	10	10	10	10	10	10	10	10	10	10	10	10	10	9
5.6	1.0	10	10	10	10	10	10	10	10	10	10	10	9	7	7	-	-	-	-	-	10	9	9	4
5.6	10	10	10	10	10	10	10	10	10	10	10	10	6	6	5	-	-	-	-	-	10	9	9	6
10.0	10	10	10	10	10	10	10	10	10	10	10	10	9	1	1	5	4	3	2	1	10	10	9	9
10.0	10	10	10	10	10	10	10	10	10	10	10	10	9	1	1	-	-	-	-	-	10	9	6	0
18.0	10	10	10	10	10	10	10	10	10	10	10	10	5	0	0	5	4	0	0	0	10	4	0	0
18.0	10	10	10	10	10	10	10	10	10	10	10	10	6	0	0	-	-	-	-	-	10	8	7	4
.0	10	10	10	10	10	10	10	1.0	10	9	10	10	0	0	0	5	1	0	0	0	10	0	0	0
32.0	10	10	10	10	9	10	10	10	9	9	10	10	1	0	0	-	-	-	-	-	10	4	1	1
56.0	10	10	10	10	10	10	10	4	4	2	10	0	0	0	0	5	0	0	0	0	10	0	0	0
56.0	10	10	10	9	4	10	9	3	2	1	1.0	0	0	0	0	-	-		-		10	0	0	0

^{*} A 70:30 mixture of Mysidopsis bigelowi and Neomysis americana was used in this test.

Table XVIII.

Chemical Parameters Recorded for Wastewater Concentrations During a Flow-Through
Acute Toxicity Study Conducted at American Color and Chemical Corporation, Lobeco, SC

December 9-17, 1977

	Dissolved Oxygen (mg/l)	рH	Total Alkalinity (mg/l CaCO3)	Salinity (mg/ml)	Temperature (°C)
	DecDecDecDecDec 12 13 14 15 16 17	DecDecDecDecDecDec	DecDecDecDecDecDec 12 13 14 15 16 17	DecDecDecDecDec 12 13 14 15 16 17	Dec Dec Dec Dec Dec Dec 12 13 14 15 16 17
0.0	9.47.97.47.77.64.2	7.98.28.08.07.98.0	147148148148149 -	18 15 18 17 16 17	16.0 - 22.722.517.724.2
0.0	9.68.07.47.87.94.4	- - - - -	- - - - -	18 15 18 18 16 17	15.921.922.422.217.723.9
5.6	9.36.76.44.26.03.8	7.98.28.07.87.87.8	198197195192188 -	18 15 18 18 16 16	15.822.022.522.518.124.0
5.6	8.87.06.44.15.23.7	- - - - -	- - - - -	18 15 18 18 16 17	15.520.(22.422.217.723.7
10.0	8.56.46.74.55.73.5	7.98.28.07.97.87.8	210224218214214 -	18 15 18 17 16 17	15.821.923.522.417.924.0
10.0	8.26.45.44.25.83.1	- - - - -	- - - - -	18 15 17 18 16 16	15.521.922.222.218.023.7
18.0	7.66.35.64.36.34.1	7.98.38.28.d8.ds.o	275294278266265 -	18 15 17 16 16 16	15.822.022.622.317.923.8
18.0	7.06.45.73.96.23.2	- - - - -	- - - - - -	18 15 17 17 16 16	15.622.022.422.218.023.6
32.0	5.84.42.94.25.84.2	8.08.38.18.18.08.1	381404397359360 -	18 15 16 16 16 15	15.922.222.822.418.123.9
32.0	6.15.24.43.15.64.2	- - - - - -	- - - - -	18 15 16 16 16 16	15.922.122.722.418.123.8
56.0	5.14.93.23.55.44.0	8.13.38.28.28.38.1	512536518488485 -	17 14 16 16 15 16	16.022.323.122.418.124.0
56.0	4.84.93.53.55.64.0		- - - - -	17 14 16 16 15 15	16.122.423.022.718.223.9
100.0	2.90.60.20.60.71.0	8.28.48.18.28.27.8	866856813766	16 14 15 14 14 14	15.3 - 23.622.818.524.2
100.0	2.60.50.20.60.6 -	- - - - -	- - - - -	15 14 15 14 14 14	15.0 - 23.422.818.824.0

Table XIX.

Survival Data Recorded by Test Aquarium During an Acute Toxicity Study Conducted at the Olin Corporation, Smokeless Powder Division, St. Marks, FL, January 15-19, 1978

					Flow-	-throug	gh Tes	ts							Static	Tests				
				S	Site 1	L Waste	ewater	<i>\tau</i>			S	ite 1	Waste	ewate	r <i>"</i> :	S	ite 2	Wast	evate	r *
Wastewater	Mys	id S	Shrim	ip Al	ive	Sheep	pshead	Min	nows A	Alive	Sheer	oshead	l Min	101.5	Alive	Sheep	shead	d Min	nows A	Alive
encentration	0	24	43	72	96	0	24	48	72	96	0	24	48	72	96	O	24	48	72	96
(%)	hr	þr	<u>hr</u>	<u>hr</u>	<u>h</u> r	<u>lı.</u>	hr	<u>lır</u>	hr	<u>hr</u>	<u>hr</u>	hr	līr	hr	hr	<u>lir</u>	br	lır	hŗ	hr
0.0	10	10	10	10	1.0	10	10	10]()	10	10	10	10	10	10	10	10	10	10	10
0.0	10	10	10	9	9	10	10	10	10	10	3.07	10	10	.1.0	10	to	* ()	(()	117	10
5.6	10] ().	10	10	8	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
5.6	10]()	10	10	10	10	10	10	10	0.1	10	10	1.0	10	1 ()	10	11)	10	117	10
10.0	10	1()	9	9	9	10	10	10	10	10										
10.0	10	10	10	10	10	10	10	10	10	10										
18.0	10	10	9	9	8	10	10	10	10	10	10	10	10	10	10	10	10	ŧ0	10	10
18.0	10	10	1()	10	10	10	10	10	10	10	10	10	10	10	10	10	10	W	10	10
32.0	10	10	9	9	9	10	10	10	10	10										
32.0	10	9	10	10	10	10	10	10	1.0	10										
56.0	10	7	7	7	5	10	10	1.0	1.0	10	10	10	10	10	10	10	10	10	10	10
56.0	10	8	7	6	6	10	10	10	10	10	1.0	10	10	10	10	.LO	LU	10	10	10

Collection sites for wastewater used for toxicity testing:

- 1. Just prior to spray irrigation wastewater tapped from pump station between holding pond and sprayfield.
- 2. From sprayfield drainage ditch leading to Big Boggy Branch wastewater was dipped from a bridge crossing the ditch on Olin property.

Table XX.

Chemical Parameters Recorded by Flow-through Test Aquarium During an Acute Toxicity Study
Conducted at the Olin Corporation, Smokeless Powder Division, St. Marks, LL, January 15-19, 1978

Mantevater encontration	Disnolved Oxygen (mg/l)	pП	Total Alkaliuity Saliuity (mg/l CaCO ₃) (mg/ml)	•
CHECHETACION	0 24 48 72 96		0 24 43 72 96 0 24 48 72	
(%)	hr hr hr hr hr		hr hr hr hr hr hr hr hr hr	
().()	9.2 8.5 7.9 8.6 8.7	8.1 8.1 8.1 8.1 8.2	115 113 116 109 113 16 15 15 20	20 12.3 18.8 20.1 18.5 18.2
0.0	9.3 8.3 7.9 8.5 8.6		16 15 15 20	20 11.3 18.6 20.1 17.7 18.1
5.6	9.3 7.0 7.4 8.4 8.5	8.1 8.1 3.1 8.0 8.1	133 133 132 113 112 14 14 14 20	20 11.6 18.9 20.8 18.0 17.7
5.6	9.2 7.1 7.6 8.4 8.5		15 14 14 20	20 11.3 19.0 20.7 18.0 17.8
10.0	9.2 7.3 7.5 8.4 8.6	8.1 8.1 8.1 8.1 8.1	138 139 135 111 112 14 14 14 20	20 11.4 19.2 21.4 18.2 17.4
10.0	9.0 7.2 7.4 8.3 8.3		15 14 14 20	20 11.6 19.0 20.8 17.8 17.8
18.0	8.9 7.2 7.2 8.0 8.0	8.1 8.1 8.1 8.0 8.1	154 155 154 154 138 14 13 12 18	1.) 12.0 19.1 20.9 18.2 18.1
18.0	8.9 7.3 7.4 8.0 8.1		13 13 13 18	18 11.8 19.6 21.5 18.8 17.7
32.0	8.6 7.0 6.6 7.6 7.3	8.2 8.2 8.1 8.0 8.0	191 191 189 190 194 11 12 11 15	15 12.8 19.8 21.2 18.8 18.4
32.0	8.6 7.1 6.4 7.6 7.2		11 11 11 14	15 (12.8 19.8 21.3 19.0 18.3
56.0	8.3 6.8 5.4 6.6 6.3	8.3 8.2 8.1 8.0 8.0	252 251 249 245 252 8 8 8 11	11 14.2 20.8 21.6 19.7 18.7
56.0	8.3 6.8 5.4 6.6 6.0		8 8 8 10	10 14.3 20.5 21.5 19.4 18.6
100.0	8.3 6.1 4.2 5.9 6.0	8.5 8.6 8.4 8.4 8.5	364 366 367 365 367 1 3 3 4	2 16.0 18.2 19.0 16.7 18.6

Table XXI.

Survival Data Recorded by Test Aquarium During Acute Toxicity Testing Conducted at the Container Corporation of America, Fernandina Beach, Florida February 6-10, 1978

1						igh t			~			10000	ab a -		tic To		Chr	
			eeps Minr				nysı	(1 5)	rımp	,			shea nove		1 11 Y	510	Shrı	пр
wastewater Concentration (3)	0 hr	24 hr	48 hr	72 hr	96 hr	0 hr	24 hr	48 hr	7 4 hr	96 hr	0 hr	24 hr	48 hr	72 hr	0 hr	2 4 hr	48 hr	72 hr
0.0	10 10	10 10	10 10	10	10	10 10	10	10	10	10 10	10	10	10	10	4	4	4	4
5.6 5.6	10 10	10 10	10 10	10 10	10 10	10 10	10 10	9 10	4 6	4 6	10	10	10	10	4	4	3	3
10.0	10	10	9	1	l	10 10	10 10	10	4 1	4 1	10	10	10	10	4	4	4	4
18.0	10 10	10 10	9 10	0 0	-	10 10	6 4	6 4	0 0	- ~	10	10	10	10	4	4	3	3
32.0 32.0	10 10	10 10	0 9	- 0	-	10 10	2 0	0 -	-	- 	10	10	10	10	4	4	4	4
56.0 56.0	10 10	0 0	-	<u>-</u>	-	10 10	0 0	<u>-</u>	-	-	10	10	10	10	4	3	2	2

Table XXII.

Chemical Parameters Recorded by Test Aquarium During Flow-Through
Acute Toxicity Testing Conducted at the Container Corporation of America,
Fernandina Beach, Florida, February 6-10 1978

	Dissolyed Oxygen (mg/l)	ьн	Total Alkalinity (mg/l CaCO ₃)	Salinity (mg/ml)	Temperature (°C)
Wastewater	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr
0.0	7.9 8.7 8.6 8.3 7.1 7.9 8.7 8.7 8.3 7.1	7.7 7.8 7.9 7.8 7.9	113 113 107 84 115	13 16 16 16 18 13 16 16 16 18	13.0 12.4 16.7 18.8 19.3 12.7 12.0 15.0 18.0 18.7
5.6 5.6	7.7 8.2 6.6 5.5 7.8 7.6 7.7 6.2 5.0 7.8	7.5 7.6 7.6 7.4 7.9	130 134 125 105 125	12 15 15 14 16 12 15 15 14 16	13.2 12.5 15.6 18.º 19.0 12.8 12.3 15.4 18.0 19.0
10.0	7.6 8.2 7.6 5.2 7.8 6.4 8.0 7.6 5.7 7.8	7.4 7.6 7.6 7.3 7.9	135.137 128 105 125	12 15 15 12 16 12 14 14 12 16	13.0 12.1 14.7 17.6 18.7 13.0 12.1 14.7 17.5 18.0
18.0	7.1 7.7 7.7 5.0 5.8 7.7 8.1 7.9 5.7 5.7	7.4 7.6 7.5 7.3 7.4	154 162 145 132 139	11 14 13 12 15 11 14 13 12 15	13.5 12.5 14.9 17.4 19.0 13.8 12.2 14.9 18.1 18.7
32.0	7.4 7.7 8.1 6.3 4.8 7.3 8.2 8.0 5.2 5.5	7.3 7.5 7.4 7.5 7.2	192 197 179 172 163	10 12 11 10 13 9 11 11 9 13	14.8 12.9 15.6 18.5 19.2 14.7 12.7 15.7 18.2 19.0
56.0 56.0	6.6 8.5 7.7 5.0 3.7 6.1 8.1 7.8 5.4 4.4	7.2 7.5 7.4 7.6 7.2	238 252 227 236 196	7 8 8 6 8 6 8 7 7 8	16.7 13.7 16.7 19.0 19.8 16.2 13.4 16.9 18.8 19.6
100.0	6.9 9.7 8.1 6.5 5.4	7.4 7.6 7.6 7.2 7.1	379 361 339 302 235	0 0 0 0 0	23.9 18.4 22.9 26.0 21.8

Table XXIII.

Survival Data Collected by Test Aquarium During an Acute Toxicity Study at the Georgetown Steel Corporation, Georgetown, SC, March 22-26, 1978

Weste witer				F1o	w-thro	ացի	Tests							;	Statle	Tes	t 15	
Concen- tration		Minne	ows* <i>i</i>	'al i ve			Shri	$^{\mathrm{mb}_{XY}}$ V	11 ive			Minn	ows* /	\1ive			Shrimp## /	Alive
(%)	<u>Ohr</u>	<u>24hr</u>	<u>48hr</u>	<u>72hr</u>	<u>96hr</u>	Ohr	24hr	48hr	72hr	<u>96hr</u>	Ohr	<u>24hr</u>	<u>48hr</u>	<u>7211c</u>	<u>96hr</u>	Ohr	24h <u>r</u> 48h <u>r</u>	72hr 96hr
().()	10	10	10	10	10	10	10	10]()	.10	10	10	10	10	10	10	ŋ	9
0.0	10	10	10	10	10	10	10	10]()]()		4 (• •		,	,		
5.6	10	10	10).()	10	10	10	10	10	10	10	1.0	10	10	10	10	10	10
5.6	10	10	10	10	10	10	10	10	10	1.0	- '-	3.0	***	~~	- 0	- "		
10.0]()	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10.0	10	10	10	10	10	10	10	10	10	10	10	3 ()	.1.(7	10	LO	10	10	10
13.0]()	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
18.0	10	10	10	10	10	10	10	10	10	10	10	10	10	,10	7 ()	10	11)	10
32.0	10	10	10	10	10	10	10	10	10	10	1.0	10	10	10	10	10	9	9
32.0	10	10	10	01	10	10	10	1.0	10	10	1.0	10	10	70	10	10	9	y
56.0	10	10	10	10	10	10	10	8	7	7	10	10	10	10	10	10	10	10
56.0	10	10	10	10	10	10	10	10	9	9	10	10	10	10	10	10	10	10

^{*} Cyprinodon variegatus

^{**} Mysidopsis bahia

Table XXIV.

Chemical Parameters Recorded by Flow-through Test Aquartum During an Acute to faity Study Conducted at the Georgetown Steel Corporation, Georgetown, SC, March 22-26, 1978

Wastewater Concentration	Dissolved Oxygen (mg/1)	pll	Total Alkalinity Salinity (mg/1 CaCO ₃) (mg/ml)	Temperature (°C)
(%)	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 0 24 48 72 96 hr hr hr hr hr hr hr hr hr hr	0 24 48 73 96 hr hr hr hr hr
0.0	8.4 8.1 7.7 8.1 8.2	7.8 7.8 7.8 7.8 7.8	63 69 67 63 64 18 20 20 18 20	19.4 20.5 22.7 20.4 21.0
0.0	8.6 8.4 8.0 8.3 8.3	-	18 19 20 18 20	19.8 20.2 22.7 20.1 20.9
5.6	8.5 8.4 8.0 8.5 8.2	7.8 7.8 7.8 7.8 7.8	66 65 66 62 63 18 18 19 18 19	19.9 20.1 23.2 19.8 21.0
5.6	8.6 8.5 8.1 8.4 8.3		18 18 18 18 19	19.9 20.0 22.9 19.8 20.7
10.0	8.6 8.7 8.2 8.6 8.3	7.8 7.8 7.7 7.8 7.8	67 65 63 61 64 18 18 18 17 19	19.7 20.0 23.1 19.7 20.9
10.0	8.6 8.7 8.1 8.6 8.4		18 17 18 17 19	20.3 20.0 23.2 19.7 21.0
13.0	8.7 8.6 8.1 8.6 8.3	7.8 7.8 7.7 7.8 7.8	68 64 62 59 63 17 16 17 16 19	20.1 20.3 23.0 19.9 20.7
18.0	8.9 9.1 8.1 8.6 8.4		16 16 18 16 19	20.4 20.3 23.6 19.8 21.0
32.0	9.0 8.8 8.1 8.6 8.3	7.7 7.8 7.7 7.8 7.8	69 63 61 57 63 14 13 15 13 19	20.6 20.7 23.4 20.1 20.8
32.0	8.9 8.8 7.9 8.6 8.4		14 13 15 13 19	20.6 20.7 23.1 20.1 21.0
56.0	8.8 8.5 7.7 8.4 7.7	7.7 7.7 7.6 7.7 7.7	71 59 55 55 60 10 10 10 10 19	20.7 21.1 23.1 20.8 21.0
56.0	8.7 8.6 7.8 8.2 8.0		10 10 10 10 19	20.9 21.2 23.3 20.6 20.0
100.0	8.7 8.6 8.3 8.3 7.6	7.6 7.4 7.5 7.6 7.3	72 54 45 53 44 0 0 0 0 t	22.9 22.0 23.8 20.2 19.0
100.0	8.4 8.3 8.3 8.1 7.1		0 0 0 0 1	23.8 22.6 22.7 20.3 19.6

Table XXV.

Survival Data Rederded by Test Agricing During Sente Todicity Testing Conducted at Virginia Chemicals Incorporated, sobile, Alabam April 27 - Hey 1, 1978

Floorthough Tents

Static Tester

Unstevater Concentration			epsh ilnnə					n du in					e p.di rinno					tiysi hrim		
· ('%)	0	24	48	72	96	()	24	48	7.2.	95	()	24	48	7 Z	96	()	24		72	91,
0.0	10	10	10	10	- 10	10	10	10	10	10	10	10	10	10	9	10	10	10	10	10
0.0	10	10	10	10]()	10	9	9	9	9										
5.6	10	10	10	1()	J()	10	10	10	10	10	10	10	10	10	10	10	10	to	10	10
5.6	10	10	10	10	1()	10	10	J ()	10	10										
10.0	10	10	10	i()	10	lΟ	10	10	8	8	10	10	10	1.0	10	10	10	10	10	10
10.0	10	10	10	10	10	10	(1)	10	10	10										
13.0	10	10	10	30]()	10	10	10	10	9	10	10	19	10	10	\mathbf{t}_0	10	10	10	LO
18.0	10	10	10	10	10	10	1()	<u> </u>	!0	10										
32.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
32.0	10	10	10	10	10	10.	10	10	9	8										
56. Ú	10	10	10	10	1()	10	1()	10	10	9	10	10	10	10	10	10	UI	C_i	10	10
56.0	10	10	10	1/)	10	iO	10	10	9	8										

Table XXVI.

Changal Parameters I conded by Test April on Boring Liow-Through Acute Toxicity Testing Conducted at Virginia Chemicals Incorporated, Mobile, Alabama April 27 - Bay 1, 1978

Billotyci (Co./1)											Tota	d Al	ka Li	nity	,	Salinity	Temperatur	e
astevater		(1	m(4)					ρH			(1.	17:/1	CaCC) ₂)		(mg/ml)	(°C)	
ncentration	()	24	46	12	90	U	24	43	12	9υ	()	24	48	72	95	0 24 48 72 96	0 24 48	72 9
(7.)	hr	ing.	itt	hr	hr	lır	lır	lir	hr	hr	<u>lu</u>	hr	hr	lır	lir	he he he he he	hr hr hr	lir li
().()	i.1	7.9	9.0	7.1	6.9	1.4	7.4	7.6	7.6	7. v	60	(1()	60	υθ	60	18 17 18 17	19.5 21.0 22.0	21.6 22
U.()	. 8	ა.3	9.2	7.4	7.2											18 17 18 17 17	19.2 20.9 21.4	21.6 22
5.6	$\mathbb{S}_{\bullet}0$	3.9	9.5	7.3	8.0	7.6	7.5	7.6	.7.6	7.7	79	69	64	62	62	18 17 18 17 16	19.1 20.9 21.4	21.4 22
5.6	0.3	9.0	9.6	1.5	8.1											18 17 18 17 16	19.0 20.9 21.2	21.5 22
10.0	-	9.3	9.7	7.6	8.2	7.7	7.6	7.6	7.5	7.7	96	77	71	60	65	18 16 18 16 16	- 21.5 21.5	21.5 22
10.0	3.2	9.4	ن. ن	7.6	8.1											17 16 18 17 16	18.8 20.4 1.2	21.3 23
18.0	8.6	9.6	9.7	7.6	7.9	7.8	7.7	7.6	7.5	7.6	122	69	84	67	71	16 16 16 16 15	18.9 20.8 21.7	21.2 22.
18.0	9.0	9.7	9.7	7.9	7.3											16 15 17 17 15	18.9 21.1 21.4	21.2 22.
32.0	9.3	10.2	9.1	7.6	7.1	8.0	7.8	7.7	7.6	7.6	172	98	106	80	78	14 14 16 16 14	19.1 21.0 21.7	21.0 21.
32.0	9.9	10.4	9.4	7.7	7.2											14 14 16 16 1.	19.0 21.2 21.5	21.1 22.
56.0	19.1	10.0	8.0	5.7	7.4	8.3	8.1	8.0	7.8	7.8	246	194	ر 173	139	93	12 12 12 14 11	19.2 20.9 21.5	21.0 21.
50.0	13.5	10.8	10.0	7.3	8.6								_			12 12 12 15 11	i).1 21.3 21.7	21.1 21.
100.0	12.7	10.5	16.0	11.2	9.8	8.6	8.9	8.6	8.7	8.2	393	388	310	210	113	6 6 6 5 6	19.7 21.3 22.8	22.3 22.
I()().()	12.6	10.5	13.8	10.2	6.3											6 6 6 5 6	10 % 21 % 22 %	22.

Table XXVII.

Survival Data Recorded by Test Aquarium During Acute Toxicity Testing Conducted at Reichold Chemicals, Inc., Newport Division, Bay Minette, Alabama April 28 - May 7, 1978

Flow-through Tests

Static Tests

Wastewater Congentration			Mysi hrim					epsh imo					Hysi hrim					e pai imp		
(/)	()	24	48	72	96	()	24	48	72	96	()	24	48	72	96	0_	24	43	72	96
0.0	10	9	9	9	9	10	10]()	10	10	10	10	:'c	10		10	10	10	.10	
0.0	10	9	9	9	9	10	10	10	1()	10										
5.6	10	10	10	10	10	10	10	10]()	10	10	10	*	10		10	10	10	10	
5.6	10	8	ઇ	8	8	10	10	1()	10	10										
10.0	10	10	10	1()	10	10	10	10	1()	10	10	9	*	8		10	10	10	10	
10.0	10	10	10	10	9	10	10]()	[()	10										
18.0	10	10	10	10	10	10	10	10	1()	10	10	sk	*	10		10	10	10	1()	
18.0	10	10	10	9	8	10	10	10]()	10										
32.0	11)	9	9	8	5	10	10	10	1()	10	10	*	*	7		10	10	10	10	
32.0	10	10	9	1	5	10	10]()	1()	10										
50.0	10	8	3	U	-	10	10	10	10	1()	10	k	ie	2		10	10	10	10	
56.0	10	10	5	2	2	10	10] ().	10	10										

^{*} Solutions were too turbid to permit accurate counting of organisms.

Table XXVIII.

Chemical Faremeters Recorded by Test Aquarium During Flow-Through Acute Toxicity Testing Conducted at

Wastewater	Dissolved Oxygen (ca/l)	ьH	Total Alkalinity (mg/l CaCO,)	Salinity (mg/ml)	Temperature (°C)
Concentration	0 24 48 72 96	0 24 48 72 96	0 24 48 72 96	0 24 48 72 96	0 24 48 72 96
(%)	hr hr hr hr hr	he he he he he	hr hrishr hr hr	hr hr hr hr hr	hr hr hr hr hr
0.0	6.7 6.9 6.8 6.6 7.9	7.9 7.8 7.7 7.8	68 57 52 60 57	20 18 17 18 18	23.4 22.4 21.6 22.2 22.0
0.0	6.7 6.5 6.6 6.8 7.6			20 18 17 18 18	23.3 22.7 21.5 22.2 22.1
5.6	6.6 6.4 5.8 6.6 7.1	7.8 7.7 7.5 7.6 7.6	70 62 55 62 60	20 17 16 17 16	23.4 22.6 21.7 22.2 22.1
5.6	6.5 6.5 6.1 6.6 7.5			20 17 16 17 16	23.5 22.7 21.5 22.3 22.1
10.0	6.9 6.3 6.4 6.6 7.5	7.8 7.7 7.6 7.6 7.9	70 58 57 62 61	20 17 16 16 16	23.4 22.5 21.6 22.2 22.0
10.0	6.7 6.5 6.2 6.6 6.8			20 16 15 16 16	23.6 22.8 21.8 22.3 22.1
18.0	6.5 6.5 5.2 5.8 7.4	7.7 7.1 7.3 7.5 7.8	74 58 58 67 65	18 16 14 15 15	23.6 22.6 21.7 22.3 22.0
18.0	6.4 6.4 4.9 6.9 7.6			18 16 14 15 14	23.6 22.6 21.5 22.3 22.6
32.0	6.3 6.2 5.1 4.9 7.6	7.5 7.7 7.3 7.4 7.8	82 69 65 73 73	14 15 12 13 12	23.7 22.4 21.6 22.2 22.0
32.0	6.0 6.5 3.5 5.0 7.4			14 15 12 13 12	23.8 22.6 21.6 22.2 22.6
50.0	5.2 5.4 3.5 3.4 7.2	7.4 7.6 7.2 7.3 7.8	92 73 78 83 83	10 10 8 9 8	24.0 22.5 21.6 22.2 22.3
56.0	5. 1 5. 6 4. 1 3. 6 7. 3			10 10 8 9 8	23.9 22.7 21.8 22.2 21.9
100.0	3.1 0.4 0.5 0.2 0.2	1.5 7.3 7.2 1.3 7.3.	104 116 102 104 106	0 1 1 1 1	24.0 22.7 22.5 22.0 22.1
100.0	2.4 0.4 0.6 0.2 0.2			0 1 1 1 1	24.2 22.8 22.0 22.0 22.0

keichold Chemicals, Inc. Nevport Division, Bay Minette, Alabama April 28 - May 7, 1978

Table XXIX.

Survival Data Recorded by Test Container During Acute Toxicity Testing Conducted at Gardinier, Inc., Tampa, Florida, June 17-21, 1978.

Flow-through Tests

Static Tests

												24	-hou	11											
Wastewater			#()01					#001			#	001	cont	osit	e			#005					£000	,)	
Concentration		Hysi	d sh	rimp	•	She	epst	iead	minn	OWS	She	epsl:	ead	mino	ows	She	epsh	ead		•		•		ភាព	.O 45
(%)	()	24	48	/2	96	()	24	_ 48	72	96	<u> </u>	24	48	72	96	()	24	<u> 48</u>	<u>72</u>	96	()	_ 24_	48		9(
0.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	I()	10	10	10	10	10	10
0.0	10	.10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1(
5.6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
5.6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10										
10.0	10	10	10	10	10	10	10	10	10	10	10	10	10	1.0	10	10	10	10	10	10	10	10	10	10	1(
10.0	10	10	9	9	9	10	10	10	10	10	10	10	10	1()	10										
18.0	10	9	9	9	9	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
18.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1.0										
32.0	10	10	10	10	8	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1(
32.0	10	10	10	10	8	10	10	10	10	10	10	10	10	10	10										
56.0	10	10	10	8	4	10	10	1()	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1(
56.0	10	9	9	8	J	10	10	10	10	10	10	10	10	10	10										
100.0	10	10	5	3	()]()	10	10	10	10	10	10	10	10	10										
100.0	10	9	6	4	0	10	10	10	10	10	10	10	10	10	10										

Table XXX.

Chemical Parameters Recorded by Test Aquarium During Flow-through Acute
Toxicity Testing Conducted at Cardinier, Inc., Tampa, Florida, June 17-21, 1978.

Wastewater	Dissolved Oxygen (mg/l)	pH	Total Alkalinity [mg/l CaCO ₂)	Salinity (mg/ml)	Temporature (°C)
Concertration (%)	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr	0 24 48 72 96 hr hr hr hr hr
().()	6.5 5.7 6.5 6.4 6.9	8.3 8.2 8.2 8.3 8.3	110 110 107 110 110	18 18 18 20 20	23.9 20.0 21.1 21.4 20.4
0.0	6.4 5.3 6.8 6.7 6.7			18 19 18 20 20	23.5 19.9 21.1 21.1 20.5
5.6	6.6 5.9 7.2 7.0 7.1	8.2 8.1 8.2 8.3 8.3	113 114 114 114 112	20 20 19 20 20	23.0 19.8 21.0 21.1 20.4
5.6	6.6 5.9 6.8 6.7 7.3			20 20 20 20 20	22.9 19.9 21.2 21.2 20.4
10.0	6.3 4.8 6.8 7.0 7.1	8.1 8.0 8.1 8.2 8.3	116 118 118 117 112	20 20 20 21 20	23.0 20.1 21.1 20.6 20.8
10.0	6.6 5.7 7.1 6.7 7.3			20 20 20 21 20	21.5 19.3 20.4 21.2 20.3
18.0	6.4 5.4 7.2 6.3 7.0	8.1 8.0 8.1 8.2 8.3	117 118 118 120 112	20 21 20 21 20	22.5 19.5 20.0 20.4 20.8
18.0	6.4 5.5 6.3 6.9 6.9			22 23 22 23 20	22.0 19.1 20.2 20.4 20.4
32.0	6.3 5.7 6.7 6.6 7.2	7.8 7.7 7.8 7.9 8.3	131 133 134 134 113	23 23 23 24 20	22.3 18.8 20.3 19.9 20.6
32.0	6.3 5.6 6.6 6.4 7.1			22 23 23 23 20	22.3 18.8 19.4 20.6 20.6
56.0	6.1 5.3 6.7 6.4 7.4	7.6 7.5 7.6 7.7 8.2	149 151 151 150 118	25 26 26 26 2h	123.5 19.1 20.1 19.9 20.0
56.0	6.0 5.4 6.5 6.6 7.2			26 26 26 26 20	23.1 18.9 19.3 20.6 20.6
100.0	5.4 5.7 6.4 6.6 7.9	7.5 7.4 7.5 7.7 8.1	182 182 182 182 182	32 32 32 32 32	28.8 18.6 19.9 20.0 19.1
100.0	5.3 6.0 6.9 7.1 7.8			31 32 32 32 32	28.4 18.7 19.8 20.0 19.1

Table XXXI.

Survival Data Recorded by Test Aquarium During Acute
Toxicity Testing Conducted at Pfizer, Inc., Southport,
NC, July 8-12, 1978

					Flow-	-through	test	s				Stat	ic t	ests	
Wastewater concentration			epsh inno					ysid hrim					epsh inno		
(%)	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
0.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
0.0	10	10	10	10	10										
5.6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
5.6	10	10	10	10	10										
10.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10.0	10	10	10	10	10										
18.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
18.0	10	10	10	10	10										
32.0	10	10	10	10	10	10	10	10	10	9	10	10	10	10	10
32.0	10	10	10	10	10										
56.0	10	10	10	10	10	10	10	10	8	8	10	10	10	10	10
56.0	10	10	10	10	10										

e XXXII.

Chemical Data Recorded by Test Aquarium During Flow-through Acute Toxicity
Testing Conducted at Prizer, Inc., Southport, NC July 8-12, 1978

Wastewater			Tved (ag/I		11			pH					Lini mg/m	-		Temperature (°C)					
Concentration	0	24	48	13	96	()	24	45	12	96	()	24		72	96	()	24	48	72	96	
(/)	101	lir	hr	111	hr	1.1	hr	<u>lır</u>	111	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	hr	
0.0	7.9	0. 0	0.6	8.2	7.2	ំចុះប្	7.7	1.7	3.0	7.6	20	20	20	16	17	20.0	23.4	22.7	20.2	21.0	
U . U	7.3	0.6	6.6	8.2	7.3						20	20	20	16	17	20.0	22.5	22.7	19.0	21.0	
5.6	8.1	7.2	7.0	8.3	7.2						19	19	19	16	16	20.0	22.5	22.7	19.2	21.5	
5. ΰ	8. 0	6.9	6.9	8.4	7.2						19	19	19	16	16	20.0	22.5	22.7	19.2	21.3	
10.0	7.9	6.3	6.3	7.9	6.7						18	18	18	15	15	20.0	22.2	22.8	19.2	21.7	
10.0	7.9	0.6	6.3	7.8	6.7						18	18	18	15	15	20.0	22.2	22.8	19.2	21.4	
18.0	7.9	6.5	6.1	7.6	6.7						16	l 6	16	14	14	20.0	22.2	22.8	19.1	21.5	
18.0	7.7	υ . ϳ	5.9	7.1	6.5						16	16	16	14	14	20.0	22.1	22.8	19.3	21.5	
32.0	7.5	6.2	5.8	6.9	6.2						13	14	14	12	12	20.0	22.2	22.8	19.1	21.5	
32.0	1.4	0.3	5.9	7.1	6.4						13	14	14	12	12	20.0	22.2	22.8	19.3	21.4	
56.0	7.6	0.1	υ.1	7.3	6.4						10	10	11	10	10	20.0	22.5	22.8	19.6	21.0	
50.0	7.3	υ . ()	6.1	7.9	6.3						10	10	11	10	10	20.0	22.5	22.8	19.8	21.0	
190.0	7.4	7.()	6.9	7.4	6.4	7.24	7.7	7.8	8.0	7.7	4	3	4	2	3	19.5	22.0	22.4	22.7	20.8	
100.0	7.8	5.6	5.6	1.5	6.9						4	J	4	2	3	20.0	22.2	22.4	22.5	20.5	

a pH probe broken.

Table XXXIII.

Survival Data Recorded by Test Aquarium During
Acute Toxicity Testing at Diamond Shamrock - Chrome
Chemicals Plant, Castle Hayne, North Carolina
July 12-19, 1978

			Flo	w-th	Static Test														
wastewater	sh		-day head		nows	sh		-day head		nows	10-day-old sheepshead minnows								
concentration (%)	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96				
0.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
0.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
5.6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
5.6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
10.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
10.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
18.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
18.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
32.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
32.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
56.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
56.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
100.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
100.0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				

Chemical Parameters Recorded by Test Aquarium During Flow-Through Acute Toxicity Testing Conducted At Diamond Shamrock - Chrome Chemicals Plant, Castle Hayne, North Carolina, July 12-19, 1978

Table XXXIV.

Dissolved Oxygen (mg/l)								F	ят <u> </u>					kalir CaCO _o	4			Salin (mg/	-			Te	mpera °C		
wastewater concentration (%)	0 hr	24 hr	48 hr	72 hr	96 hr	0 hr	24 hr	48 hr	72 hr	96 hr	0 hr	24 hr	48 hr	72 hr	96 hr	0 hr	24 hr	48 hr	72 hr	96 hr	0 hr	24 hr	4 8 hr	72 hr	96 hr
0.0	7.2	8.2 8.1	8.4 8.2	8.3 8.4	8.7 8.5	8.6	8.7	8.0	8.0	8.0	97	97	141	145	144	15 15	16 16	16 16	16 16	16 16			-	19.8 19.9	
5.6 5.6	7.2 7.1	8.2 8.2	8.3 8.3	8.5 8.2	8.6 8.6	8.6	8.7	8.0	8.0	8.0	98	95	139	143	139	14 14	16 16	16 16	16 16	16 16				19.7 19.8	
10.0	7.2 7.2	8.2 8.3	8.1 8.3	8.4 8.5	8.5 8.6	8.6	8.7	7.9	7.9	8.0	90	94	138	144	138	14 14	15 15	15 15	15 15	15 15				19.5 19.8	
18.0 18.0	7.2 7.2	8.2 8.1		8.5 8.5	8.5 8.4	8.6	8.6	7.9	8.0	8.0	85	99	131	140	134	13	15 15	14 14	14 14	14 14				19.6 19.9	
32.0 32.0	7.2	8.1 8.0		8.2 8.2		8.5	8.6	7.9	8.0	8.0	76	81	120	152	128	12 12	14 14	13 13	14 14	13 13				19.8 19.9	
56.0 56.0	7.2 7.1	8.0 8.0	7.1 6.9	8.1 8.0	8.1 8.0	8.3	8.4	7.8	8.0	7.9	61	64	106	157	115	10 10	12 11	11 11	12 12	11 11				19.9 20.1	
100.0 100.0	7.4 7.3	8.5 8.5	7.7 7.3		8.3 8.7	7.9	7.5	7.6	8.2	7.9	21	25	48	184	86	6	7 7	8	6 6					21.4 21.7	

Table XXXV.

SURVIVAL DATA COLLECTED BY TEST ADDAPTED DUPING AN ACUTE TOXICTLY STUDY AT THE BRUNGWICK PULP AND PAPER COMPANY, HRUGSWICK, GEDRGIA

AUGUST 07-13+ 1978

	FLOWTHIPE	011GHIESTS	STATIC TESTS (24-HOUR COMPOSITE SAMPLE)														
ASTEWATER CORCERT Treat Ford	NO.OF SHEEPS- HEAD "TOHOWS SURVIVING	NO.UF MYSID SHRIMP SURVIVING	NO.OF SHEEPS- HEAD MINNOWS SURVIVIUG	NO.OF MYSID SHRIMP SURVIVING	NO.OF FATHEAD MINDUWS SURVIVING	2004 [41.0] <u>Fin f x</u> 100 OE <u>DV640</u> IV											
Percent	0 24,46 72 96 60 63 66 66 68	0 24 48 72 96 HR HR HR HR HR	0 24 48 72 96 HR HR HP HP HP	0 24 43 72 96 BR BR BR BR	0 24 48 72 96 5ान शान पान पान पान	0 24 48 72 90 BB BB BB BB BB											
0,0	10 10 10 10 10	10 10 9 9 9 10 8 6 6 6	10 10 10 10 10	10 04	10 10 10 10 10	10 03											
5.6 5.5	10 10 10 10 10 10 10 10 10 10 10	10 7 / 7 7 10 8 7 7 7	10 10 10 10 10	10 08	10 10 10 10 10	10 09											
$\begin{smallmatrix}0&0&0\\0&0&1\end{smallmatrix}$	10 10 10 10 10 10 10 10 10 10	10 8 8 8 8 10 10 9 9 9	10 10 10 10 10	10 09	10 10 10 10 10	10 10											
1 M • 0 1 M • 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 9 9 9 10 7 7 7 7	10 10 10 10 10	10 10	10 10 10 10 10	10 10											
37.1 37.1 55.1	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	10 8 8 5 5 10 9 7 6 6 10 9 8 8 8	10 10 10 10 10 10	10 10 10 09	10 10 10 10 10	10 05 10 01											
56.0 190.0	10 10 10 10 10 10 10 10 10 10	10 10 10 9 9	70 70 70 70 70	,,,	10 10 10 10												
100.0	6 6 6 6																

Table XXXVI.

CONTINUE PARAMETERS RECORDED BY FLOW-THROUGH TEST ADVARTUM DUPTHS AN ACUTE TO VICITE STUDY COMBUCTED AT THE BRUNSWICK PIRP AND PAPER COMPANY. BRUNSWICK OF DRGIA

AUGUST 07-13+ 1978

WASTEWATER PESSON VED CO.GC - OXYGEO TWATTOR CHOZET							Рн				ΛLΚ	JATUL ALTIVI K, CAC			(147. 11.1			TEMPERATURE (°C)					
PERCECT	()	24 1112	4 19	7.2 11:11	96 Нк	HIS Q	24 HIR	4 () Hik	7.2 HH	96	HH:	24 ни	4 B Hit	7 <i>2</i> HΩ	96 HR	-			₹ HR	HIY	24 1111	4B HH	72 HH	96 HR	
0.0	1.5	1.5	7.2	7.1	0.4	7.8	 	o.1	り。い	1.9	117	120	122	115	117	18	lo l	8 l	 5 19	25	20.2	22.0	21.9	18.4	
0.0	1.7	1.0	1.3	1.2	6.3	7.8	8.0	0.1	6.0	1.8	117	119	122	115	118	18	18 1	8 1	3 19	60	20.2	22.1	21.0	10.4	
5.4	1.4	1.8	7.4	7.3	7.7	7.8	8.0	0.0	.11.0	7.9	124	126	128	122	124	18	18 1	8 1	3 18	د ا	20.3	55.0	21.5	18.6	
5.6	1.4	1.0	1.4	1.0	6.5	7.8	1.9		8.0	7.0	124			123	125	18	18 1	8 1	3 18	21	20.7	22.1	21.2	18.7	
10.0	1.5	7.0	7.0	6.5	5.7	7.8					129					18	17 1	8 18	3 17	د ا	20.6	22.0	21.2	18.7	
10.0	1.7	7.4	7.1	6.1	5.0	7.8					129					18	17 1	8 1	9 17	21	20.8	26.1	61.1	18.0	
14.0	1.5	1.0	6.6	5.1	4.0	7.8	7.9	1.9	7.8	1.5	137	139	142	137	138	16	16 1	6 1	5 16	دا	20.8	22.0	21.0	18.7	
14.0	7.4	7.0	5.7	5.7	4.4	7.8	7.9	1.9	7.8	7.5	138	141	140	137	138	16	16 1	6 1	5 16	~1	20.7	22.0	21.0	18.7	
16.0	1.0	0.0	6.0	3.9	5.9	1.7					152					14	14 1	4 1	4 14	<i>c</i> 1	20.6	42.1	<1.0	18.5	
J Z • ()	0.8	0.7	5.1	4.7	4.8	7.7					154					14	14 1	4 1	+ 14	21	20.8	22.0	21.0	18.6	
50.0		6.5	4	3.3	5.1	7.7					176					11	10 1	1 1	1 11	21	<0.6	22.0	20.8	18.5	
56.0	0.4	0.5	b • 11	4.5	4.3	7.1					176					11	10 1	1 1	1 10	c 1	20.7	22.1	20.8	15.8	
100.0		5. 1	5 · 1	4.2	٤.	1.7	7.8	7.8	7.d	7.5	528	224	633	230	227	5	4	5	4	21	20.1	21.1	20.2	0	
100.0	6.3	9.9	5.5	5.0	4.5	7.8	7.9	1.9	1.9	7.0	226	231	232	204	226	5	4	5	. 4	21	19.9	21.2	20.4	17.9	

[·] ORGITOD RATER ADEED TO TAUR BEFORE READINGS WERE TAKEN.