COMPILATI ON OF THREE DIMENSIONAL CARBON MONOXIDE CONCENTRATI ONS IN MECKLENBURG COUNTY, NORTH CAROLINA

Contract No. 68-02-3509
Work Assignment No. 27

Prepared for

```
U.S. Environmental Protection Agency
Region IV
345 Courtland Street, N.E. Atlanta, Ga. 30365
```

March 1983
9227.00/84

Submitted by
Engineering-Science 10521 Rosehaven Street Fairfax, Virginia 22030

COMPILATION OF THREE DIMENSIONAL CARBON MONOXIDE CONCENTRATIONS IN MECKLENBURG COUNTY, NORTH CAROLINA

Contract No. 68-02-3509 Work Assignment No. 27

Prepared for
U.S. Environmental Protection Agency

Region IV
345 Courtland Street, N.E. Atlanta, Ga. 30365

March 1983
9227.00/84

LIBRARY US EPA Reglon 4 AFC/gth FL Tower 61 Forsyth St: S.W. Atlanta, GA 30303-3104

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION 1-1
Background 1-1
Summary of Prior Work 1-1
Purpose of This Study 1-2
Report Organization 1-3
CHAPTER 2 SUMMARY AND CONCLUSIONS 2-1
CHAPTER 3 METHODOLOGY 3-1
Traffic Data 3-1
Meteorological Data 3-2
Receptor Data 3-2
Background Concentration 3-2
Adjustment for Vehicles Not Subject to I\&M and Adjustment for I\&M Applied to Heavy Duty Gasoline Trucks 3-3
Calculation of Total CO Concentrations 3-3
Two-Dimensional and Three-Dimensional Plots of CO Concentrations 3-3
CHAPTER 4 RESULTS 4-1
Task 1a. Model Comparison 4-1
Task 1b. 1982 Air Quality 4-1
Task 1c. 1987 Air Quality with Growth But No I\&M and TCMs 4-1
Task 2. 1987 Air quality with Growth And I\&M But No TCMs 4-1
Task 3. 1987 Air Quality with Growth And TCMs But No I\&M 4-5
Task 4. 1987 Air Quality with Growth, TCMs and I\&M $4-5$
Task 5. 1982, 1987 And 1995 Air Quality with Relaxed Auto Emission Standard 4-5
Task 6. Three-Dimensional Plots of $C O$ Concentrations 4-5
Task 7. Two-Dimensional Plot for College Street Corridor 4-5

```ATTACHMENT I MODEL COMPARISONATTACHMENT II 1982 TRAFFIC DATAATTACHMENT III 1987 TRAFFIC DATA WI THOUT TCMSATTACHMENT IV 1987 TRAFFIC DATA WITH TCMsATTACHMENT V TECHNICAL MEMORANDUM FOR TASK 2
```


LIST OF TABLES

2.1	1982 and 1987 Air Quality (Tasks 1b thru 4)	2-2
4.1	Task 1b. 1982 Air Quality	4-2
4.2	Task 1b. 1987 Air Quality with Growth But No TCMs and No I\&M	4-3
4.3	Task 2. 1987 Air Quality with Growth and I\&M But No TCMs	4-4
4.4	Task 3. 1987 Air Quality with TCMs and Growth But No I\&M	4-6
4.5	Task 4. 1987 Air Quality with TCMs, Growth and I\&M	4-7
4.6	Task 5. Effect of Leuken Bill	4-8
	LIST OF FIGURES	
4.1	Central/Sharon Amity (87, I\&M, TCM \& GROWTH) (3-D Plot Looking from Southwest Direction)	4-9
4.2	Central/Sharon Amity (87, I\&M, TCM \& GROWTH) (3-D Plot Looking from Southeast Direction)	4-10
4.3	Albemarle/Sharon Amity ($87, \mathrm{I} \& \mathrm{M}, \mathrm{TCM}, \mathrm{GROWTH}$) (3-D Plot Looking from Southeast Direction)	4-11
4.4	Albemarle/Sharon Amity ($87, I \& M, T C M, ~ G R O W T H$) (3-D Plot Looking from Northeast Direction)	4-12
4.5	Co Concentration for College Street Corridor (1987, I\&M, GROWTH)	4-13

CHAPTER 1

INTRODUCTION

BACKGROUND

Mecklenburg County, North Carolina, has been designated as a nonattainment area for carbon monoxide (CO). This designation was made because measured concentrations of $C O$ exceeded the air quality standards. For areas designated as nonattainment, the Clean Air Act (CAA) Amendments of 1977 require that the States revise their State Implementation Plans (SIPs) to attain the air quality standards as expeditiously as possible. The 1979 SIP revision submitted by North Carolina stated that Mecklenburg County would not attain the National Ambient Air Quality Standards (NAAQS) for CO by 1982. Subsequently, the Environmental Protection Agency (EPA) granted an extension until 1987 for attaining the CO standards in Mecklenburg County. The Act requires that when an extension is granted, an air quality analysis be performed and a strategy developed to bring the area into compliance with the NAAQS by the end of 1987.

SUMMARY OF PRIOR WORK

The 1979 SIP revision submitted by North Carolina predicted attainment of the CO standards by 1987. This prediction was based on the inclusion of air quality benefits to be derived from a proposed automobile Inspection and Maintenance (I\&M) program. The need and air quality benefits of the I\&M program were based on an analysis performed in mid-1978. Since the air quality analysis was performed several years ago under a compressed time schedule, it was considered necessary to revise the analysis using up-to-date information and refined modeling techniques.

As a part of this effort, Engineering-Science under contract to the USEPA analyzed the CO problem in Mecklenburg County. Since CO problems in urban areas are related to localized traffic situations, the CharlotteMecklenburg Transportation Advisory Committee (TAC) identified twenty-nine (29) potential hot spots on the basis of street configuration and traffic congestion for further study. Using an air quality simulation model, ES computed the maximum expected ∞ concentrations in the vicinity of each of these intersections. The results of the analysis indicated that the
following four of these twenty-nine intersections would not attain the CO standard by 1987 even if the proposed I\&M program was implemented:

> Central Avenue and Sharon Amity Road
> Albemarle Road and Sharon Amity Road
> Independence Boulevard and Sharon Amity Road
> Independence Boulevard and Idlewild Road

In a subsequent study, the consulting firm of Peat, Marwick, Mitchell and Co. (PMM) considered the implementation of Transportation Control Measures (TCMs) for further reduction of $C O$ concentrations at these four intersections. The PMM study considered several sets of TCMs and evaluated their impact on traffic movements at these intersections.

PURPOSE OF THIS STUDY

The main purpose of this study is to perform a detailed air quality analysis of these hot spots and determine the extent of the CO problem at these intersections. Earlier studies had analyzed only one receptor at each of these intersections; in this study, a large number of receptors for each intersection is to be modeled in order to make a graphical presentation of the extent of the $C O$ problem. Another purpose of this study is to determine 1987 CO concentrations under several transportation scenarios including I\&M only, TCMs only, I\&M and TCMs, effects of Leuken Bill, etc. A part of this study also concerns the comparison of the air dispersion model to be used. Various tasks to be performed in this study are outlined below:

```
1a. Model Calibration
1b. 1982 Air quality
1c. 1987 Air quality with traffic growth only
2. 1987 Air Quality with growth and I&M but no TCMs
3. 1987 Air quality with growth and TCMs but no I&M
4. 1987 Air Quality with growth, TCMs and I&M
5. 1982, 1987 and 1995 Air Quality with relaxed auto emissions
    standard
6. Three-dimensional plot of isosurface with 10 mg/m}\mp@subsup{}{}{3}\textrm{CO}\mathrm{ concentra-
    tion
7. Two-dimensional plot of CO concentrations
```

These tasks are to be performed for a number of different intersections as given below:

Task 1a

Sharon Amity Road and Central Avenue

Task 1 b thru 4

Sharon Amity Road and Central Avenue Sharon Amity Road and Albemarle Avenue Sharon Amity Road and Independence Boulevard Independence Boulevard and Idlewild Road Fairview Road and Providence Road Park Road and Woodlawn Road

Task 5

Sharon Amity Road and Central Avenue

Task 6

Same as Tasks 1 b thru 4

Task 7

College Street corrider between 1 st and 4 th Streets

REPORT ORGANIZATION

This report is divided into four chapters. This chapter provides background information for the study. The results and conclusions of this study are summarized in Chapter 2. Chapter 3 presents a general methodology used to perform the various tasks. Chapter 4 presents the task by task results of this study. In addition there are five attachments to the report which provide most of the data upon which this study is based.

CHAPTER 2

SUMMARY AND CONCLUSIONS

1. The Intersection Midblock Model (IMM) was used for dispersion calculations in this study. A revision to the model was made by Engin-eering-Science as part of another contract for USEPA Region IV. The main purpose of the revision was to incorporate the latest available emission factors as contained in EPA's document MOBILE 2 (Mobile Source Emission Model).
2. The IMM predicted values were compared with data collected during a 4-1/2 day monitoring program at the Sharon Amity Road and Central Avenue intersection. Data on traffic and meteorology collected during the monitoring program were input to the model, and predicted CO concentrations were compared with measured $C O$ concentrations for the same time period. The results show good agreement between the model predicted and measured values.
3. Predicted 1987 CO concentrations under several scenarios are sumarized in Table 2.1. Predicted 1982 concentrations and NAAQS are included in this table for comparison. The results indicate a potential for violation of the $C O$ standard at two intersections even after the implementation of the proposed I\&M program and TCMs. If I\&M is not implemented, four of the six intersections shown in Table 2.1 are likely to exceed the CO standard.
4. The effects of the Leuken Bill were shown to be increased CO concentrations. In 1987, the expected $C O$ concentrations would be 8.3% higher than those without the Leuken Bill. By 1995, however, this increase reduces to only 2.3%. The increases are due to delayed compliance with the emission standards.
5. Of the six intersections modeled under Tasks 1 through 4, only two were found to be in violation of the CO standards by 1987 with I\&M and TCMs in place. Hence, a CO concentration isosurface of $10 \mathrm{mg} / \mathrm{m}^{3}$ was only plotted for these two intersections. The results indicate that $C O$ violations are confined to a limited area near the intersection.
'TABLE 2.1

1982 and 1987 AIR QUALITYa
(Tasks 1b thru 4)

Intersection	8-Hour CO Concentration ($\mathrm{mg} / \mathrm{m}^{3}$)					
	1982	1987 w/o TCMS		$1987 \mathrm{w} / \mathrm{TCMs}$		Standard
		W/O I\&M	W/I\&M	W/O I\&M	W/I $\& \mathrm{M}$	
Sharon Amity Road/Central Avenue	21.4	16.7	13.0	15.9	12.4	10.0
Sharon Amity Road/Albemarle Road	16.0	14.8	11.5	15.4	12.0	10.0
Sharon Amity Road/Independence Blvd.	16.4	14.7	11.6	11.7	9.4	10.0
Independence Blvd./Idlewild Road	17.0	15.9	12.4	12.7	9.9	10.0
Fairview Road/Providence Road	10.9	9.5	7.4	N. A.	N.A.	10.0
Woodlawn Road/Park Road	12.1	9.4	7.5	N.A.	N.A.	10.0

a Includes a background concentration of $1.5 \mathrm{mg} / \mathrm{m}^{3}$ for 1982 and $1.0 \mathrm{mg} / \mathrm{m}^{3}$ for 1987.
N.A. $=$ Not applicable (No TCMs considered).

NOTE: All predicted CO concentrations simulate worse-case meteorological and traffic conditions.
6. Study of the College Street corridor shows the potential for violation of the CO standard near all intersections analyzed. No transportation control measures have been proposed for this intersection. As a result, any improvements resulting from TCMs could not be determined.

CHAPTER 3

METHODOLOGY

The methodology consisted mainly of predicting, through the use of a computer diffusion model, ambient concentrations of $C O$. The model selected for this study was the Intersection Midblock Model which was developed in 1978 by GCA Corporation under contract to the USEPA. Details of the model are available in Reference 1. In an earlier study of the co problem in Mecklenburg County (Reference 2), ES revised this model to include the latest mobile source emission factors. The revised version of the model was used in this analysis. Since the 8 -hour $C O$ concentration is of critical importance (historical measurements show no violation of the 1-hour standard), only 8-hour $C O$ concentrations were modeled using traffic volumes for the peak 8 -hour period. Basic inputs to the model are traffic and meteorological data, Since emissions calculation is an inherent part of this model, other automobile-related parameters are required. In addition, the model requires a set of receptors at which concentrations are to be predicted. These model inputs are described below.

TRAFFIC DATA

Three sets of traffic data were used in this analysis, namely

- 1982 peak 8 -hour traffic volumes
- 1987 peak 8-hour traffic volumes without TCMs
- 1987 peak 8-hour traffic volumes with TCMs

1982 traffic volumes for all intersections were provided by the Charlotte Department of Transportation. Data provided by Charlotte DOT included intersection geometry and signal cycle times for signalized intersections. The data as provided are included in Attachment I.

1987 traffic volumes 'without TCMs (Attachment II) were computed by ES using 1982 traffic volumes and growth factors (also given in Attachment II) provided by Charlotte DOT. Annual percentage growth rates were compounded to determine growth factors from 1982 to 1987.

1987 traffic volumes with TCMs were computed by ES using information developed during another related study (Reference 3). Procedures used to compute these traffic volumes and the computed traffic data are given in Attachment III.

METEOROLOGICAL DATA

Since the NAAQS for $C O$ are in terms of 1 -hour and 8 -hour averages not to be exceeded more than once per year, it is imperative that the analysis be performed for the worst case meteorological conditions. A review of historical data (Reference 2) indicated that the highest concentrations of $C O$ in Mecklenburg County were measured during calm to light winds and stable atmospheric conditions. For reasons discussed in detail in Chapter 4 of Reference 2 , all modeling was performed for an assumed worst case meteorological condition; i.e., a wind speed of 2 $\mathrm{m} / \mathrm{sec}$ and stability Class 6 (very stable). A different wind direction was selected for each receptor being modeled depending upon the intersection geometry and traffic volumes so as to maximize the predicted concentrations. Many receptors were modeled for several wind directions in order to make sure that the maximum concentration was obtained.

RECEPTOR DATA

A number of receptors were selected for each intersection in order to provide adequate coverage of the intersection under consideration. The plotting package used to generate the three-dimensional and twodimensional plots of concentrations required that the receptors be equally spaced. In order to economize on the number of receptors to be modeled and still provide adequate coverage of the intersection with equally spaced receptors, a coordinate system with an axis parallel to one of the roadways at the intersection was selected. The coordinate system selected by Charlotte DOT to determine link coordinates did not correspond to this coordinate system; hence, coordinate transformation became necessary in order to make all model inputs consistent. A grid receptor spacing of 0.02 to 0.05 km was used depending upon the intersection geometry. On the average, 35 receptors were considered for each intersection.

BACKGROUND CONCENTRATION

The major contribution to the total $C O$ concentration is due to traffic on immediately adjacent roadways. However, a small contribution generally referred to as background is attributable to other emission sources including other roadways. Since there are no large point source co emitters in the area under consideration, background is primarily attributable to roadways not included the in modeling. Because roadway impact falls off rapidly with distance, the background concentration is considered
small. In an earlier study (Reference 2) a background concentration of $1.5 \mathrm{mg} / \mathrm{m}^{3}$ was assumed for 1987. Model comparison perfonmed as a part of this study indicated a much lower background concentration. For 1982 conditions, the difference between the 8 -hour modeled and measured concentrations was estimated to be $0.7 \mathrm{mg} / \mathrm{m}^{3}$. Adjusting this to 1987 conditions, the estimated background concentration would be $0.35 \mathrm{mg} / \mathrm{m}^{3}$. To be somewhat on the conservative side, it was agreed by the North Carolina Division of Environmental Management and the USEPA that a background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$ for the 8 -hour averaging period for 1987 should be used in this study. The background concentration for 1982 was assumed to be $1.5 \mathrm{mg} / \mathrm{m}^{3}$.

ADJUS TMENT FOR VEHICLES NOT SUBJECT TO I\&M AND ADJUSTMENT FOR I\&M APPLIED TO HEAVY DUTY GASOLINE TRUCKS

When modeling $C O$ concentrations under the I\&M scenarios, the model predicted concentrations were adjusted to account for the following conditions:

1. Vehicles not subject to $I \& M$-- these are vehicles in the study area but not registered in Mecklenburg County or the City of Charlotte and thus not subject to I\&M and
2. I\&M applied to heavy duty gasoline trucks as required by the current North Carolina program -- MOBILE 2 does not include adjustment factors for heavy duty gasoline trucks subject to I \& M.

Adjustment factors to account for these conditions were discused in detail in the Technical Memorandum for Task 2 which is included in this report as Attachment V.

CALCULATION OF TOTAL CO CONCENTRATIONS

A background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$ was added to the model predicted CO concentrations. For scenarios considering the impact of I\&M, further adjustments using factors given in Attachment V were made to obtain the total CO concentration.

TWO-DIMENSIONAL AND THREE-DIMENSIONAL PLOTS OF CO CONCENTRATIONS

The two-dimensional plot of $C O$ concentrations was straightforward. Ground level concentrations at equally spaced receptors were input to the graphics package called "DISPLA" and the results were output on a CALCOMP plotter.

For a three-dimensional plot, it is a common practice to plot ground level concentrations along the vertical axis as a function of horizontal (x) and transverse (y) coordinates using a cartesian coordinate system. To plot concentrations (or for that matter any variable) as a function of x, Y, and z in reality requires a four-dimensional plot. Since such a plot is impractical and we only wish to show a three-dimensional space where violation of the $C O$ standard is expected, it was decided to plot a CO isosurface of $10 \mathrm{mg} / \mathrm{m}^{3}$. The height of any point on this surface above ground level represents the height beyond which there would be no violation of the $C O$ standard. For the purposes of this plot, the height was determined by solving the vertical term of the Gaussian equation. Such calculations were only made for those receptors where the predicted ground level concentration exceeded the 8 -hour $C 0$ standard of $10 \mathrm{mg} / \mathrm{m}^{3}$. These heights, along with coordinates of the equally spaced receptors, were input to the plotting package and the results were output on a CALCOMP plotter.

RESULTS

This chapter presents the results of the analyses for the various tasks performed under this study.

TASK 1a. MODEL COMPARISON

The analysis performed under this task indicates that the model predicted concentrations are in good agreement with measured concentrations. However, due to the limited data used in this analysis, the comparison coefficients were not used in subsequent analyses. Details of the model comparison are given in Attachment I.

TASK 1b. 1982 AIR QUALITY
Predicted 1982 CO concentrations are shown in Table 4.1 and exceed the $C O$ standard for all six intersections. The highest predicted concentration was at the Sharon Amity Road and Central Avenue intersection. A background value of $1.5 \mathrm{mg} / \mathrm{m}^{3}$ was added to the model predicted concentrations to obtain total CO concentrations.

TASK 1c. 1987 AIR QUALITY WITH GROWTH BUT NO I\&M AND TCMS

Predicted 1987 CO concentrations shown in Table 4.2 show a violation of the $C O$ standard at four of the six intersections modeled.

TASK 2. 1987 AIR QUALITY WITH GROWTH AND I\&M BUT NO TCMs
The results shown in Table 4.3 still indicate a violation of the 8 -hour CO standard at four of the six intersections modeled. The impact of $I \& M$ is estimated to be a 20 to 23 percent reduction in $C O$ concentrations (Table 4.2).

TASK 3. 1987 AIR QUALITY WI TH GROWTH AND TCMS BUT NO I\&M
The results are shown in Table 4.4. Without I\&M, violations of the CO standard are expected at four of the intersections.

TABLE 4.1

TASK 1b. 1982 AIR QUALITY

INTERSECTION	PREDICTED 8-HOUR CO CONCENTRATION ${ }^{a}$ $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
Sharon Amity Road and Central Avenue	21.4
Sharon Amity Road and Albermarle Avenue	16.0
Sharon Amity Road and Independence Boulevard	16.4
Independence Boulevard and Idlewild Road	17.0
Fairview Road and Providence Road	10.9
Park Road and Woodlawn Road	12.1

a Includes a background concentration of $1.5 \mathrm{mg} / \mathrm{m}^{3}$.
NOTE: All predicted CO concentrations simulate worst case meteorological and traffic conditions.

TABLE 4.2

TASK 1c. 1987 AIR QUALITY WITH GROWTH BUT NO TCMs AND NO I\&M

INTERSECTION	PREDICTED 8-HOUR
Sharon Amity Road and	
Central Avenue	

a Includes a background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$.
NOTE: All predicted CO concentrations simulate worst case meteorological and traffic conditions.

TABLE 4.3

TASK 2. 1987 AIR QUALITY WITH GROWTH AND I\&M BUT NO TCMs

| INTERSECTION | PREDICTED 8-HOUR |
| :---: | :---: | :---: |
| Sharon Amity Road and | |
| Central Avenue | |

a Includes a background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$ and an adjustment factors for vehicles not subject to I\&M and for I\&M applied to heavy duty gasoline trucks.

NOTE: All predicted $C O$ concentrations simulate worst case meteorological and traffic conditions.

TASK 4. 1987 AIR QUALITY WITH GROWTH, TCMs AND I\&M
The results of this analysis are shown in Table 4.5. With the implementation of $I \& M$ and TCMs as proposed, two of the intersections still show potential for violation of the standard. The standard at these two intersections will be exceeded by approximately 20 percent.

TASK 5. 1982, 1987 AND 1995 AIR QUALITY WITH RELAXED AUTO EMISSION STANDARD

The effects of the relaxed auto emission standard as proposed in the draft Clean Air Act Amendment by Representative Luken (R-Ohio) (H.R. Bill 5252) was evaluated. Only one intersection (Sharon Amity Road and Central Avenue) was considered for this evaluation. Carbon monoxide concentrations at this intersection with a relaxed auto emissions standard were predicted under two scenarios; one with $I \& M$ and the second without I\&M. The effects of transportation control measures were not included. For predicting 1995 air quality, 1995 traffic volumes estimated from 1982 traffic volumes and growth factors were used. The results of the analysis are shown in Table 4.6. The effects of the relaxed auto emission standard were estimated to be an increase in CO concentrations of 8.3% in 1987 and 2.5% in 1995.

TASK 6. THREE-DIMENSIONAL PLOT OF CO CONCENTRATIONS

Of the six intersections modeled, two intersections were found to be in violation of the CO standard by 1987 if the proposed I\&M and TCMs are implemented. Hence, three-dimensional plots were only made for the two intersections. The plots are shown in Figures 4.1 through 4.4. For each intersection, two three-dimensional plots are shown based on two different viewpoints. These plots depict the three-dimensional surface where the 8 -hour average $C O$ concentration is expected to be $10 \mathrm{mg} / \mathrm{m}^{3}$. The area below the surface in each plot is in violation of the 8-hour CO standard.

TASK 7. TWO-DIMENSIONAL PLOT FOR COLLEGE STREET CORRIDOR

The College Street corridor between the 1 st and 4 th Streets was modeled for 1987 traffic conditions with the I\&M program in effect. The ground level concentrations were determined for a number of receptors and the results were input to a plotting package which produced a too-dimensional graphic display. The plot is shown in Figure 4.5. As can be seen from the plot in Figure 4.5, there are areas near each intersection in this corridor where violation of the eight-hour $C O$ standard is expected. The highest predicted concentration in this corridor is even higher than those predicted at the other intersections in this study. This is mainly because v / c (volume demand over capacity) ratios for some of the streets in the corridor are much higher than those for other intersections. For some streets (see Table 1 of Attachment II) this ratio approaches and even exceeds unity.

TABLE 4.4

TASK 3. 1987 AIR QUALITY WITH TCMs AND GROWTH BUT NO I\&M

	PREDICTED 8-HOUR
INTERSECTION	CO CONCENTRATIONa
	(mg/m m^{3})
Sharon Amity Road and	
Central Avenue	15.9
Sharon Amity Road and	
Albermarle Avenue	15.4
Sharon Amity Road and	
Indepandence Boulevard	11.7
Independence Boulevard and	
Idlewild Road	12.7
Fairview Road and	
Providence Road	N/A
Park Road and	
Woodlawn Road	N/A

a Includes a background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$.
$N / A=$ Not applicable (no TCMs considered)

NOTE: All predicted $C O$ concentrations simulate worst case meteorological and traffic conditions.

TASK 4. 1987 AIR QUALITY WITH TCMs, GROWTH AND I\&M

a Includes a background concentration of $1.0 \mathrm{mg} / \mathrm{m}^{3}$ and an adjustment for vehicles not subject to I\&M and for I\&M applied to heavy duty gasoline trucks.
$N / A=$ Not applicable (no TCMs considered for these intersections)

NOTE: All predicted CO concentrations simulate worst case meteorological and traffic conditions.

TABLE 4.6
TASK 5. EFFECT OF LEUKEN BILI a, b

YEAR	8-HOUR CO CONCENTRATIONC ($\mathrm{mg} / \mathrm{m}^{3}$)	
	Without	With
	Leuken Bill	Leuken Bill
1982	21.4	21.4
1987 with I\&M	13.0	14.1
1987 without I\&M	16.7	18.1
1995 with I\&M	11.6	11.9
1995 without I\&M	14.3	14.6

a Based on the ratio of emission factors with and without Leuken Bill as given in the Memorandum from Tom Cackette, Chief, I\&M Staff, to Air Program Branch Chiefs of USEPA Regions I-X, dated January 11, 1982.
b For Sharon Amity Road and Central Avenue intersection.
c Includes a background concentration of $1.5 \mathrm{mg} / \mathrm{m}^{3}$ for 1982 and $1.0 \mathrm{mg} / \mathrm{m}^{3}$ for 1987 and 1995.

NOTE: All predicted ∞ concentrations simulate worst case meteorological and traffic conditions.

CENTRAL/SHARON AMITY (87,IM, TCM, GROWTH)

CENTRAL/SHARON AMITY (87, IM, TCM, GROWTH)

FIGURE 4.2

ALBEMARLE./SHARON AMITY (87, IM, TCM, GROWTH)

FIGURE 4.3

ALBEMARLE／SHARON AMITY（87，IM，TCM，GROWTH）

The intersections of this corridor were not analyzed in previous studies. Transportation control measures were also not considered for this analysis because there were no such data available.

REFERENCES

1. Carbon Monoxide Hot Spot Guidelines, Volume V: User's Manual for Intersection Midblock Model, EPA-450/3-78-037, August 1978.
2. Review and Update of Modeling Analysis of Carbon Monoxide Emissions in Mecklenburg County, North Carolina, Prepared for USEPA Region IV by Engineering-Science, July 1981 .
3. Findings of CO Hot Spot Analysis for Mecklenburg County, North Carolina, prepared for USEPA Region IV by Peat, Marwick, Mitchell \& Co., March 11, 1982.
4. Personal Communication with David Johnson, North Carolina Division of Environmental Management, and Donald E. Stone, USEPA Region IV, January 19-20, 1983.

COMPILATION OF THREE-DIMENSIONAL CARBON MONOXIDE CONCENTRATIONS IN MECKLENBURG COUNTY, NORTH CAROLINA

Task 1 Model Comparison

Submitted to:
U.S. Environmental Protection Agency
Region IV
345 Courtland Street, N.E. Atlanta, Georgia 30365

June 1982
9227.00/91A

Submitted by:
Engineering-Science
7903 Westpark Drive McLean, Virginia 22102

TABLE OF CONTENTS

I NTRODUCTI ON 1
SCOPE OF WORK 1
TECHNLCAL APPROACH 1
MONITORING PROGRAM 1
DATA AVAILABILITY 2
MODELING RESULTS 4
MODEL COMPARISON 4
MODELING FOR MAXIMUM CONCENTRATI ON 14
SUMMARY AND CONCLUSIONS 15
RECOMMENDATI ONS 15
APPENDIX A AMBIENT AIR QUALITY DATA
APPENDIX B METEOROLOGICAL DATA
APPENDIX C TRAFFIC DATA

LIST OF FIGURES

Figure 1 Intersection Geometry and Monitor Locations - 3
Figure 2 Measured vs Modelled Concentration (Site 2) 13
LIST OF TABLES
Table 1 Data Availability 5
Table 2 Measured Versus Modelled Concentrations (Site 1) 9
Table 3 Measured Versus Modelled Concentrations (Site 2) 10
Table 4 Data Used for Model Comparison 12

MODEL COMPARISON FOR DETERMINING CARBON MONOXIDE CONCENTRATIONS IN MECKLENBURG COUNTY, NORTH CAROLINA

INTRODUCTION

The 1979 State Implementation Plan submitted by North Carolina demostrated that Mecklenburg County would not attain the CO standards by 1982. Therefore, EPA granted an extension until 1987 to attain the CO standards in Mecklenburg County. Under this extension, North Carolina is required to submit a revised State Implementation Plan for the attainment of $C O$ standards. U.S. EPA Region IV has contracted with Engineering-Science (ES) to study the problem of attaining the CO standards in Mecklenburg County.

SCOPE OF WORK

In an earlier study, ES used the Intersection Midblock Model (IMM) to determine $C O$ concentrations in the vicinity of 29 intersections in the Charlotte - Mecklenburg area. The study identified several intersections which had the potential for the violation of the standard in 1987. In the previous study, no attempt was made to compareIMM prediction with measured values. Furthermore, no growth in traffic was assumed because site-specific growth factors were not available.

One of the tasks specifically identified in this Work Assignment is the comparison of IMM prediction with measured values. This report presents the results of the analysis undertaken for this task.

TECHNICAL APPROACH

A project initiation meeting was held on March 24, 1982 in Raleigh, North Carolina. The following parties took part in the meeting:
U.S. Environmental Protection Agency, Region IV
N.C. Department of Natural Resources and Community Development City of Charlotte, Department of Transportation Mecklenburg County, Department of Environmental Health Engineering-Science, Air Quality Planning

After discussion of several aspects of the entire study, it was decided to conduct a monitoring program to collect data required to compare the model. Meteorological and traffic data collected during the monitoring period would be input to the model, and predicted concentrations would be compared with ambient air quality data collected during the same period.

MONL TORI NG PROGRAM

The monitoring program was conducted during the period March 30 to April 2, 1982 at the intersection of Central Avenue and Sharon Amity

Road. A general layout of the intersection is shown in Figure 1. There are two gasoline service stations (Shell in the northeast and Exxon in the southwest corners), one tire center (northwest corner) and a fast food restaurant (Burger King in the southeast) at the four corners of the intersection.

Ambient air quality and meteorological data were collected at two sites. The CO monitor (Site 1, Figure 1) operated by Mecklenburg County is located in the northwest corner and is a permanent monitor. Another CO monitor was installed in a trailer in the southwest corner. This is shown as Site 2 in Figure 1. The CO monitors were operated by the Mecklenburg County Department of Environmental Health. The measured data as provided by the Department are given in Appendix A.

Two meteorological towers were installed as shown in Figure 1, one on the top of the roof of Price Tire Center (Tower 1) and the other on the top of the trailer (Tower 2). The location of air vanes on the meteorological towers were as follows:

$$
\begin{aligned}
\text { Tower 1: } \begin{aligned}
\text { distance from Sharon Amity Road } & =44 \mathrm{ft.} \\
\text { distance from Central Avenue } & =72 \mathrm{ft} . \\
\text { height above ground } & =17 \mathrm{ft} . \\
\text { Tower 2: distance from Sharon Amith Road } & =24 \mathrm{ft} . \\
& \text { distance from Central Avenue } \\
& =136 \mathrm{ft} . \\
& =15 \mathrm{ft} .
\end{aligned} \text { height above ground } & =1
\end{aligned}
$$

The meteorological instruments were operated by U.S. EPA Region IV personnel. Wind speed, wind direction and temperature were recorded by these instruments. Cloud cover data required to determine stability classes were obtained from the airport. Data reduction and stability classification were performed by Region IV personnel. The data on wind speed, wind direction, temperature and atmospheric stability are given in Appendix B.

Traffic data were collected by the City of Charlotte Department of Transportation (DOT). Traffic counts were obtained by mechanical counters as well as by manual methods. Mechanical counters were placed on all four links of the intersection. Manual counts of traffic were performed by persons stationed in the northeast and southwest corners of the intersection. The data were analyzed by the City of Charlotte DOT and are given in Appendix C.

DATA AVAILABILITY FOR MODEI COMPARISON

Three sets of measured data are required to compare the model. These are data on:

- Traffic
- Meteorology, and
- Ambient air quality.

Availability of these data is shown in Table 1 . Collection of traffic data only covered periods of 7:00 a.m. to 7:00 p.m. over the 4-day period

Intersection Geometry and Monitor Locations

(March 30 through April 2). Meteorological and ambient air quality monitors are continuous instruments. Meteorological data collected at Tower 1 covered a period Erom 11:00 a.m. on March 30 to 9:00 a.m. on April 2 whereas those for Tower 2 did not start till 3:00 p.m. on March 30 and ended at 9:00 a.m. on April 2. No air quality data from Site 1 is available for March 30 and the Eirst 7 hours on March 31. Air•quality measurements at Site 2 began at 6:00 p.m. on March 30 and continued until 9:00 a.m. on April 2.

A review of the data presented in Table 1 shows that there is only one hour on March 30, 12 hours on March 31,12 hours on April 1, and 2 hours on April 2 for which all three sets of data are available. Thus, there are a total of 27 hours of data which can be used in model comparison. These hours are marked in Table 1.

MODELING RESULTS

Data on traffic and meteorology were input to the IMM and air quality predictions were obtained. Model predicted concentrations are compared with measured concentrations in Tables 2 and 3 for Site 1 and 2, respectively.

For Site 1, model predicted concentrations are always higher than the measured concentrations by a factor of almost 2 to 3. For Site 2, model calculated values are lower than the measured values. Within hours 11 through 18 on April 1, there were wide fluctuations in the wind direction (as noted by Region IV personnel, see Appendix B). Modeling results for these hours are inconsistent and were not considered for model calibration.

Low monitored $C O$ concentrations at Site 2 during hours 10 through 19 on March 31 are due to the fact that (1) the wind was mostly from the south, thus only free flowing traffic on south Sharon Amity Road was influencing the $C O$ monitor; (2) The atmospheric stability was neutral during these hours and the wind speeds were light to moderate; (3) The monitor is further from the edge of the nearby lane as compared to the monitor at Site 1; and (4) Site 2 is not located on the queue side of the road.

When the wind blew from 360° as during the morning hours of April 1, higher CO concentrations were measured. The model predictions were also higher. This is because the wind blew from the intersection toward the receptor; thus, the monitor was influenced by traffic with high emission rates caused by idling and accelerating conditions.

MODEL COMPARISON

For reasons mentioned above, data for hours 11 through 18 on April 1, 1982 are not considered suitable for model comparison. An accurate estimate of wind direction could not be made due to wide fluctuations in the wind direction during these hours.

Date	Hour ${ }^{1}$	Site 1 (NW)			Site 2 (SW)		
		$\begin{gathered} \text { Air } \\ \text { quality } \end{gathered}$	$\begin{aligned} & \text { Meteoro- } \\ & \text { logical } \end{aligned}$	Traffic	$\begin{gathered} \text { Air } \\ \text { Quality } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Me teoro- } \\ & \text { logical } \end{aligned}$	Traffic
3-30-82	0						
	1						
	2						
	3						
	4						
	5						
	6						
	7			X			X
	8			X			X
	9			X			X
	10			X			X
	11		X	X			X
	12		X	X			X
	13		X	X			X
	14		X	X			X
	15		X	X		X	X
	16		X	X		X	X
	17		X	X		X	X
	18		X	X	X	X	X
	19		X		X	X	
	20		X		X	X	
	21		X		X	X	
	22		X		X	X	
	23		X		X	X	

1 Beginning hour (hour 0 is 12 p.m. to 1 a.m.)

Table 1 -- Continued Data Availability

Date	Hour ${ }^{1}$	Site 1 (NW)			Site 2 (SW)		
		$\begin{gathered} \text { Aify } \\ \text { quality } \end{gathered}$	Meteorological	Traffic	$\begin{gathered} \text { Air } \\ \text { Quality } \\ \hline \end{gathered}$	Meteorological	Traffic
3-31-82	0		X		X	X	
	1		X		X	X	
	2		X		X	X	
	3		X		X	X	
	4		X		X	X	
	5		x		X	X	
	6		X		X	X	
	7		X	X	X	X	X
	8	X	X	X	X	X	X
	9	X	X	X	X	X	X
	10	X	X	X	x	X	x
	11	X	X	X	x	X	X
	12	X	X	X	X	X	X
	13	X	X	X	X	X	X
	14	X	X	X	X	X	X
	15	X	X	X	X	X	X
	16	x	X	X	X	X	X
	17	X	X	X	x	X	X
	18	-	X	X	X	X	X
	19	X	X		X	X	
	20	X	X		X	X	
	21	X	X		X	X	
	22	X	X		X	X	
	23	X	X		X	X	

Table 1 -- Continued
Data Availability

Date	Hour ${ }^{9}$	Site 1 (NW)			Site 2 (SW)		Traffic
		$\begin{gathered} \text { Air } \\ \text { guality } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Meteoro- } \\ & \text { logical } \end{aligned}$	Traffic	Air quality	Meteorological	
4-1-82	0	X	X		X	X	
	1	X	X		X	X	
	2	X	X		X	X	
	3	X	X		X	X	
	4	X	X		X	X	
	5	X	X		X	X	
	6	X	X		X	X	
	7	X	X	X	X	X	X
	8	X	X	X	X	X	X
	9	x	x	X	X	X	X
	10	X	X	X	X	X	X
	11	X	X	X	X	X	X
	12	X	X	X	X	X	X
	13	X	X	X	X	X	X
	14	X	X	X	X	X	X
	15	X	X	X	X	X	X
	16	X	X	X	X	X	8
	17	X	X	X	X	X	X
	18	X	X	X	X	X	X
	19	X	X		X	X	
	20	X	X		X	X	
	21	X	X		X	X	
	22	X	X		X	X	
	23	X	X		X	X	

Table 1 -- Continued
Data Availability

Date	Hour ${ }^{1}$	Site 1 (NW)			Site 2 (SW)		
		$\begin{gathered} \text { Air } \\ \text { quality } \end{gathered}$	$\begin{aligned} & \text { Me teoro- } \\ & \text { logical } \end{aligned}$	Traffic	$\begin{gathered} \text { Air } \\ \text { Cuality } \end{gathered}$	Meteorological	Trafific
4-2-82	0	X	X		x	X	
	1	x	X		X	X	
	2	X	X		X	X	
	3	X	X		X	X	
	4	X	X		X	X	
	5	X	X		X	X	
	6	X	X		X	8	
	7	X	X	X	X	X	X
	8		X	X	X	X	X
	9			X			X
	10			X			X
	11			X			X
	12			X			X
	13			X			X
	14			X			X
	15			X			X
	16			X			X
	17			X			X
	18			X			X
	19						
	20						
	21						
	22						
	23						

TABLE 2
MEASURED VERSUS MODELIED CONCENTRATIONS (SITE 1)

Day	Hour	Meteorological Data			$\begin{gathered} \text { co Concentration } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	
		Wind Direction	wind Speed (m/s)	Stability Class	Measured	Modelled
3-30-82	18	130	2.2	D	--	3.7
3-31-82	10	170	2.2	D	2.6	8.6
	11	170	3.6	D	3.2	6.0
	12	180	3.6	D	4.6	8.7
	13	180	4.9	D	2.6	4.9
	14	180	3.6	D	2.3	6.8
	15	150	4.0	D	3.5	3.0
	16	180	3.6	D	2.9	8.8
	17	170	4.0	D	3.5	9.2
	18	200	3.6	D	4.3	9.8
4-1-82	7	360	2.2	D	5.2	0.3
	7	360	2.2	D	2.6	0.5
	9	360	2.7	C	0.9	0.0
	10	360	1.8	c	0.9	0.0
	11	360	1.8	C	1.7	0.2
	12	340	1.8	C	1.2	0.1
	13	220	2.2	C	1.4	4.9
	14	200	2.2	D	2.3	5.1
	15	240	1.8	D	1.4	3.0
	16	240	1.3	D	1.4	4.7
	17	330	1.3	E	1.4	0.0
	18	270	1.3	E	3.2	5.4
4-2-82	7	60	1.8	D	7.8	2.0
	8	60	2.2	D	--	1.6

TABLE 3

MEASURED VERSUS MODELLED CONCENTRATIONS (SITE 2)

Day	Hour	Meteorological Data			$\begin{gathered} \text { CO Concentration } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	
		$\begin{gathered} \text { Wind } \\ \text { Direction } \\ \hline \end{gathered}$	Wind Speed (m/s)	Stability Class	Measured	Modelled
3-30-82	18	140	2.2	D	4.5	1.4
3-31-82	7	170	1.1	D	2.8	2.4
	8	170	1.1	D	3.7	2.3
	9	170	2.2	D	2.0	0.9
	10	170	2.2	D	0.6	0.7
	11	170	2.2	D	1.4	0.8
	12	180	2.6	D	2.0	0.6
	13	180	3.4	D	1.4	0.5
	14	180	3.4	D	1.1	0.5
	15	180	3.4	D	1.7	1.4
	16	180	2.5	D	1.4	0.7
	17	180	3.1	D	2.0	0.6
	18	180	1.3	D	2.0	1.4
4-1-82	7	10	2.2	D	9.3	4.8
	7	20	2.5	D	5.9	6.5
	9	350	3.1	C	3.4	1.6
	10	330	2.2	C	2.8	0.8
	11	180	1.8	C	4.2	0.0
	12	210	1.3	C	4.2	0.0
	13	210	1.3	C	4.5	0.0
	14	210	1.3	D	4.8	0.0
	15	240	1.1	D	5.9	0.0
	16	240	1.1	D	5.1	0.0
	17	280	0.7	E	5.6	0.0
	18	210	0.5	E	7.6	0.5
4-2-82	7	60	1.3	D	9.3	10.8
	8	70	1.8	D	6.2	8.0

Under normal conditions, model predictions are expected to be lower than measured concentrations, because model predictions only relate to the impact of traffic being modelled and do not account for background concentrations from sources not being modelled. The measured concentrations, on the other hand, include background. Modelled CO concentrations at Site 2 are lower, in general, than measured concentrations.

Data for site 1 do not follow the expected trend; i.e., predictions are in general higher than measurements. One possible reason for this appears to be the wide separation between the meteorological and ambient Co monitor. The two instruments were approximately 70 feet apart. The air vane was locted on top of the building and was approximately 17 feet above the ground whereas the $C O$ monitor was about 8 feet above the ground. There were heavy bushes immediately to the north of the CO monitor and there was a large tree to the west of the air vane. It is suspected that the $C O$ monitor at Site 1 did not experience the some wind regime as the instruments on Tower 1. Due to its location, the $C O$ monitor at Site 1 was subject to a localized wind flow pattern which was not observed at Tower 1.

At Site 2, the ambient $C O$ monitor and meteorological instruments were located close to each other, about 7 feet apart. The vertical distance between the two instruments was not more than 5 feet. Thus, it is believed that the $C O$ monitor at Site 2 was subject to the same wind conditions monitored at Tower 2.

It is concluded that data collected at Site 2 can be used for model comparison with the exception that data collected during hours 11 through 18 on April 1 be excluded from consideration due to wide fluctuations in wind directions. The data to be used for model comparison is summarized in Table 4 and plotted in Figure 2. A linear regression analysis on these data gives the following relationship between measured and modelled CO concentrations:

$$
y=1.3+0.67 x
$$

$$
\text { where } y=\text { measured concentration }
$$

$\mathbf{x}=$ modelled concentration

Since the values plotted in Figure 2 are one-hour CO concentrations, the intercept of $1.3 \mathrm{mg} / \mathrm{m}^{3}$ is the background concentration for a one-hour averaging period. The correlation coefficient was determined to be 0.93 which shows that measured and modelled values are in good agreement.

Sufficient data for examining 8-hour averaging period are not available. A maximum of 5 eight-hour averaging periods can be formed from the data given in Table 4 for March 31 , 1982. The measured and modelled CO concentrations for these 5 eight-hour periods are as follows:

Hours	Measured		Modelled	
				Difference
$7-14$	1.9	1.1	0.8	
$7-18$	1.7			
$7-19$	1.5		.8	0.7
				0.7

TABLE 4

DATA USED FOR MODEL COMPARISON

Day	Hour	Meteorological Data			$\begin{gathered} \text { CO Concentration } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	
		Direction	speed $(\mathrm{m} / \mathrm{s})$	Stability Class	Measured	Modelled
3-30-82	18	140	2.2	D	4.5	1 ، 4
3-31-82	7	170	1.1	D	2.8	2.4
	8	170	1.1	D	3.7	2.3
	9	170	2.2	D	2.0	0.9
	10	170	2.2	D	0.6	0.7
	11	170	2.2	D	1.4	0.8
	12	180	2.6	D	2.0	0.6
	13	180	3.4	D	1.4	0.5
	14	180	3.4	D	1.1	0.5
	15	180	3.4	D	1.7	1.4
	16	180	2.5	D	1.4	0.7
	17	180	3.1	D	2.0	0.6
	18	180	1.3	D	2.0	1.4
4-1-82	7	360	2.2	D	4.1	4.8
	7	360	2.2	D	5.2	6.5
	9	360	2.7	C	2.1	1.6
	10	360	1.8	C	2.8	0.8
4-2-82	7	60	1.3	D	9.3	10.8
	8	70	1.8	D	6.2	8.0

Measured vs. Modelled Concentration
 (Site 2)

Hours	Measured	Modelled	Difference
10-17	1.5	0.8	0.7
11-18	1.6	0.8	0.8
Aver age	1.6	0.9	0.7

The average difference of $0.7 \mathrm{mg} / \mathrm{m}^{3}$ can be considered as the background for the 8 -hour averaging period. The ratio between 8 -hour and 1hour bacikground concentrations is 0.5.

MODELLING FOR MAXIMUM CONCENTRATION

The NAAQS for carbon monoxide are 10 and $40 \mathrm{mg} / \mathrm{m}^{3}$ for the 8 -hour and 1-hour averages not to be exceeded more than once per year. This introduces the concept of modeling for the worst-case. Since predicted concentration is dependent upon emission rate (hence traffic) and meteorological condi mons, the determination of the worst condi tion should consist of wrse case meteorology and maximum emission rates. Experience indicates that for such low level sources as traffic, maximum concentrations are expected under stable atmospheric conditions and low wind speeds. The wind direction from the source to the receptor would produce the highest predicted concentrations. For a given intersection, high emission rates are expected during the time period when the traffic demand is the highest. For a given capacity of the roadway, this produces maximum congestion and longest queue lengtis.

Assuming worst-case meteorology, the calibrated model predicted a value of $15.6 \mathrm{mg} / \mathrm{m}^{3}$ for site 1 . The following conditions were used for this worstcase analysis:

1. Wind speed $=2.0 \mathrm{~m} / \mathrm{sec}$
2. Stability $=5$ (stable)
3. Wind direction $=180^{\circ}$ Eram north
4. Peak hour traffic during the period of the on-site monitoring program

Conditions 1 through 3 are the same as used in previous analys is under Assistance to States Contract No. 68-02-3509, Work Assignment No. 5.

The highest model predicted value compared well with the highest measured during the monitoring program. A maximum CO concentration of 13.0 $\mathrm{mg} / \mathrm{m}^{3}$ was measured on April 1 for hour 19. Wind direction during this hour was widely fluctuating, wind speed was low and the atmospheric conditions were stable. Such atmospheric characterisitcs are related to calm or near calm conditions and usually result in high concentrations from low level sources such as traffic generated emissions. It should be noted that the highest predicted concentration of $15.6 \mathrm{mg} / \mathrm{m}^{3}$ is based on the peak-hour traffic during this monitoring program. A peak-hour traffic value higher than the one used would certainly result in a higher concentration. Traffic values less than the peak-hour traffic value would re-
sult in a lower concentration which might be the case when the highest co concentration was measured during the late evening hours of April 1.

SUMMARY AND CONCLUSION

1. A monitoring program was conducted over a 4 day period to collect data for calibrating IMM.
2. A total of 27 hours were identified for which all data were available to be used in model calibration; however, due to fluctuating wind conditions, about eight hours of these data were considered inappropriate for inclusion in model calibration.
3. Model predicted concentrations for Site 1 did not correlate with measured $C O$ concentrations at this site. It is suspected that local distrubances caused the CO monitor to experience different wind conditions than the meteorological instrument at Tower 1. Thus, the data from Site 1 are not considered appropriate for model comparison.
4. Measured and modelled concentrations for site 2 compare well, with measured values being higher than modelled concentrations. The difference between these two values is the background concentration.
5. Measured and modelied concentrations at Site 2 are consistent with the meteorological and traffic data.
6. Using a worst-case meteorology and the comparison coefficients developed in this analysis, the model-predicted highest concentration compares well with the highest measured during the same period.
7. It is concluded that IMM predicts $C O$ concentrations which are in good agreement with measured concentrations.

RECOMMENDATI ONS

A rigorous model comparison could not be performed due to limited data availability; however, the limited data suggest that IMM is an appropriate model for predicting $C O$ concentrations near traffic intersections. Although the data used in model comparison represented neutral stability conditions, the model is considered appropriate to calculate maximum 1 -hour and 8 -hour Co concentrations using worst-case conditions. Based on the analysis performed here, ES recommends the following:

1. Assume a stable atmospheric conditions and low wind speeds with the wind blowing directly from the intersection to the receptor to estimate the highest concentrations.
2. Carbon monoxide concentrations predicted by IMM model be adjusted using comparions coefficients developed in this analysis and as given below:

$$
C a=A+B C_{P}
$$

where $C a=$ adjusted $C O$ concentration $C_{p}=$ model predicted concentration
A and B represent the Y-intercept and slope of the regression line. Values A and B using 1982 automobile emissions were determined to be 1.3 and 0.67 .
3. When predicting $C O$ concntrations for other years the y intercept (or background as commonly known) be modified to reflect emission factors for the year under consideration.

APPENDIR A

AMBIENT AIR QUALITY DATA

GUUKUE AVERAGES
station
DATE: \qquad

$$
3 / 30 / 82
$$

STATION OpErator \qquad
Dare 3/3/8a Rec 2

Fad 1453-1/74
startor:Centhern
DATE \qquad 3.28 .32

$$
20-0,0
$$

x

Stattor apgraion
$\xrightarrow{2}$ BATE 3. 2c.ET

stasten Ceithon
口агең. 4.1.82 DAIE 4.2.82

푬 1453 - 1/74

APPEND DX B

METEOROLOGICAL DATA

Tharave xC nind drection/word Speal

* NuTe Weath Sema speed $=$ Kriots
'Srif chat, data $=1 \mathrm{MPH}$
** Nove r. Refen To sinf charl decta for better dypunting of und drection Thue are lange shigte in derecter for centani houm.

ChanlotाE $N C$

APPENDIX C

IRAFFIC DATA

TrAFFIC ENGINEERING DEPArTMENT
ENGINEEEING DIVISICN/PIANNINGBAESEARCH SECTION CTIY OF CHARLOTTE NORTH ゙ CARCLINA

WEATHER: CLEAR
\qquad TIME PERIOD: 7 AM- 7 PM
 COMPILED $3 Y$ SO NO. HOURS CF COUNT-

Sate $3-31-32$

 DAY WEdNESéAY DATE: $4-8-82$REMARKS: \qquad

 ESTIMATED AVERAGE ANNUAL ENTERING TRAFFIC VOLUME (VEH/DAY): LIS, 200

TFAFFIC ENGINEERING CEPaRTMENT EVGINEEFING DIVISICNIFIANNING 3: ESEARCH SEOTICN Gity of chanlotim. nofth carclind

MANUAL VE:HCLE SURVEY SUMMAAY

ATHER:ChEAR TME FERICD:7AM-7PM COMFILED OY $\because 0$

REMAAKS:

 COUNTED BY: =. DT. C C.N, PB OATE: 3-30-821 no. hours cF COUNT II DAY. IuEsdRy\qquad
\qquad

Abstract

—___

 ESTIMATED AVERAGE ANNUAL ENTEFING TRAFFIC VOLUME(VE:H/OAY):_45600
 COUNTED ヨY：C N，J．D，P．B，M．C こATE： $4-1-821$ TIME FESICロ： $2 A m-7 ? \mathrm{~m}$ CDMFILED BY：SXU NO．HOURS CF COUNT 11 OAY THURSdAY
REMARKS：

TFAFFIC ENGINEETING EEPAFTMENT
ENGINEEFING OIVISICN／FIANNING 3 AESEAFCH SETICN CTI：GF CHARLOTTE NORTH CAECLINA

\qquad
 ESTIMATED AVEFAGE ANNUAL ENTEING TRAFFIC VCLUME（VEH／CAY）：47，GCJO

THAFEIC ENGINEEFING DEPARTMENT ENGINEEGING OIVISICN/F\&ANNING3FESEARCH SEGTICN CTT: OF CHARLOTE NORTH CAECEINA BEEN FILED

MANUAL VEHCLE SURVEY SUMMARET:
w $A T H E F$ EGER FIME FEFICD:THM-7 RM CCMFPE: $3 Y \square 1$
FEMARKS:
\qquad
locaricu: Centrat $A_{x} \in$ SHaRow $A_{m i t y r}$ CUNTED EM:C,N T.D P.B, EG NO. HCUES CF COUNE H

DAYFFAidAv

\qquad
\qquad
\qquad
 ESTMMATED AVERAGE ANNUAE ENTEFING IRAFFIC VOLUME(VE:HCAY: $=$ 51.300 FAGTOR: 1.32

ATTACHMENT II 1982 TRAFFIC DATA

DATA FOR MIDBLOCK MODEL
Intersection: First St./College St.;

Time Period: 10:00-16:00
$X=.088 \mathrm{Km} ; \quad Y=.070 \mathrm{Km}$

Stop sign controlled: First Street stops

Receptor Location:
X
Y

Z

(Link)
Parameter

Approach Link:

Exit Link:

Beg. X	. 184	--		. 004	. 016	Km
Beg. Y	.146	--	-	. 005	. 150	Km
End X	. 092	--		. 083	. 080	Km
End Y	. 074	\cdots		. 066	. 078	Km
Width	13.4	-		13.4	5.3	Meters
\# of Lanes	4	--		4	1	\#
Capacity	6000	--		6000	1400	veh/hr. (Level E)
Speed Limit	0	--		35	35	m. P.h.
Volume	0	--		2418	939	veh/hr.

Beg. X	.092	-	.083	.080	Km
Beg.Y	.074	-	.066	.078	Km
End X	.184	-	.004	.016	Km
End Y	.146	-	.005	.150	Km
Width	13.4	-	0	2	Meters
\# of Lanes	4	-	0	0	\#
Speed Limit	35	-	35	0	m.p.h.
Volume	3357	--	0	0	veh/hr.

Units
$N($ Coldege) E(1st) S(Coldege) W(1st) Km Km Km Km Meters \# veh/hr. veblar.

!

Link
.086
.248
3

Km
K
Meters

DATA FOR MIDBLOCK MODEL
Intersection: First St./College St.;
Stop sign controlled: First Street stops

Time Period: 16:00-18:00
$X=.088 \mathrm{Km} ; \quad Y=.070 \mathrm{Km}$

(Link)
Parameter

Approach Link:

Beg.X	.184	-	.004	.016	Km
Beg. Y	.146	-	.005	.150	Km
End X	.092	-	.083	.080	Km
End Y	.074	-	.066	.078	Km
Width	13.4	-	13.4	5.3	Meters
\# of Lanes	4	-	4	1	\#
Capacity	6000	$-\infty$	6000	1400	veh/hr. (Level E)
Speed Limit	0	-	35	35	m.p.h.
Volume	0	-	1098	540	veh/hr.

Exit Link:

Beg.X	.092	-	.083	.080	Km
Beg. Y	.074	-	.066	.078	Km
End X	.184	-	.004	.016	Km
End Y	.146	-	.005	.150	Km
Width	13.4	-	0	2	Meters
\# of Lanes	4	-	0	0	$\#$
Speed Limit	35	-	35	0	m.p.h.
Volume	1638	-	0	0	veh/hr.

Receptor Location:

X	.086	Km
Y	.248	Km
Z	3	Meters

DATA FOR MIDBLOCK MODEL
Intersection: Second St./College St.;

Time Period: 10:00-16:00
$X=.192 \mathrm{Km} ; \quad Y=.152 \mathrm{Km}$

Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.
(Link)
_ Parameter

Link
N(College) E(2nd) S(College) W(2nd)

Units Approach Link:

Beg. X	.286	.239	.092	.103	Km
Beg. Y	.229	.100	.074	.250	Km
End X	.199	.201	.184	.185	Km
End Y	.158	.144	.146	.162	Km
Width	15.0	7.2	14.7	6.1	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	35	35	35	m.p.h.
Volume	0	1295	2896	0	veh/hr.

Exit Link:

Beg.X	.199	.201	.194	.185	Km
Beg.Y	.158	.144	.146	.162	Km
End X	.286	.239	.092	.103	Km
End Y	.229	.100	.074	.250	Km
Width	15.0	7.4	14.7	6.1	Meters
\# of Lanes	4	25	35	0	2

Receptor Location:
X
Y

Z
$.086 \quad \mathrm{Km}$
.248

3

Km
Meters

DATA FOR MIDBLOCK MODEL
Intersection: Second St./College St.;

Time Period: 16:00-18:00 $X=.192 \mathrm{Km} ; \quad \mathrm{Y}=.152 \mathrm{Km}$ Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.
(Link)
Parameter
\qquad
$N($ College $) ~ E(2 n d) S(C o l l e g e) W(2 n d)$

Approach Link:

Beg.X	.286	.239	.092	.103	Km
Beg. Y	.229	.100	.074	.250	Km
End X	.199	.201	.184	.185	Km
End Y	.158	.144	.146	.162	Km
Width	15.0	7.2	14.7	6.1	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	35	35	35	m.p.h.
Volume	0	713	1769	0	veh/hr.

Exit Link:

Beg.X	.199	.201	.194	.185	Km
Beg.Y	.158	.144	.146	.162	Km
End X	.286	.239	.092	.103	Km
End Y	.229	.100	.074	.250	Km
Width	15.0	7.4	14.7	6.1	Meters
\# of Lanes	4	2	0	2	$\#$
Speed Limit	35	35	35	35	m.p.h.
Volume	1552	298	0	632	veh/hr.
ceptor Location:					
X			.086		Km
Y			348		Km

DATA FOR MIDBLOCK MODEL
Intersection: Third St./College St.; $X=.295 \mathrm{Km} ; \quad \mathrm{Y}=.236 \mathrm{Km}$
Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.

Link
$\mathrm{N}(\mathrm{College}) \mathrm{E}(3 \mathrm{rd}) \mathrm{S}($ College) $\mathrm{H}(3 \mathrm{rd})$

Units

Approach Link:

Beg. X	.392	.350	.199	.237	Km
Beg.Y	.208	.174	.158	.300	Km
End X	.302	.303	.286	.288	Km
End Y	.242	.226	.229	.244	Km
Width	14.8	12.0	14.7	13.3	Meters
\# of Lanes	0	0	4	3	$\#$
Capacity	0	0	5900	4700	veh/hr. (Level E)
Speed Limit	0	0	35	35	m.p.h.
Volume	0	0	2751	2965	veh/hr.

Exit Link:

Beg.X	.302	.303	.286	.288	Km
Beg. Y	.242	.226	.229	.244	Km
End X	.392	.350	.199	.237	Km
End Y	.308	.174	.158	.300	Km
Width	14.8	12.0	14.7	13.3	Meters
\# of Lanes	4	3	0	0	\#
Speed Limit	35	35	0	0	m.p.h.
Volume	2764	2952	0	0	veh/hr.

Receptor Location:

X	.086	Km
Y	.248	Km
Z	3	Meters

data for midblock model
Intersection: Third St./College St.; $\quad \mathrm{X}=.295 \mathrm{Km} ; \quad \mathrm{Y}=.236 \mathrm{Km}$ Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.
(Link)
Parameter
Approach Link:

Beg. X	.392	.350	.199	.237	Km
Beg. Y	.208	.174	.158	.300	Km
End X	.302	.303	.286	.288	Km
End Y	.242	.226	.229	.244	Km
Width	14.8	12.0	14.7	13.3	Meters
\# of Lanes	4	3	4	3	\#
Capacity	0	0	5900	4700	veh/hr. (Level E)
Speed Limit	0	0	35	35	$\mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Volume	0	0	1806	1982	veh/hr.

Exit Link:

Beg.X	.302	.303	.286	.288	Km
Beg.Y	.242	.226	.229	.244	Km
End X	.392	.350	.199	.237	Km
End Y	.308	.174	.158	.300	Km
Width	14.8	12.0	14.7	13.3	Meters
\# of Lanes	4	3	4	3	\#
Speed Limit	35	35	0	0	m.p.h.
Volume	1506	2282	0	0	veh/hr.

Receptor Location:

Link
$N($ College $) ~ E(3 r d) \quad S(C o l l e g e) \quad W(3 r d) \quad$ Units
Y
Z
X
.086 Km
.248 Km
3

Meters

DATA FOR MIDBLOCK MODEL
Intersection: Fourth St./College St.; $\quad X=.404 \mathrm{Km} ; \quad \mathrm{Y}=.317 \mathrm{Km}$ Phasing: 2-Phase, fixed time (coordinated); cycle $=90$ sec.
(Link)
Parameter Approach Link:

Beg. X	.496	.456	.302	.350	Km
Beg. Y	.387	.250	.242	.278	Km
End X	.419	.413	.392	.398	Km
End Y	.322	.307	.308	.325	Km
Width	14.8	12.7	14.6	10.3	Meters
\# of Lanes	0	2	4	0	F
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	35	35	0	m.p.h.
Volume	0	3164	2582	0	veh/hr.

Exit Link:

Beg. X	.411	.413	.392	.398	Km
Beg. Y	.322	.307	.308	.325	Km
End X	.496	.456	.302	.350	Km
End Y	.387	.250	.242	.378	Km
Width	14.7	12.7	14.6	10.3	Meters
F of Lanes	4	0	0	2	\#
Speed Limit	35	35	35	35	m.p.h.
Volume	2759	0	0	2987	veh/hr.

Receptor Location:
X
Y
Z

Link

N(College) E(4th) S(College) W(4th)

data for midblock model			Time Period:		16:00-18:00
Intersection: Fourth St./College St.;			$\mathrm{X}=.40$	4 Km ;	$Y=.317 \mathrm{Km}$
Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.					
(Link)					
Approach Link:					
Beg. $\%$.496	. 456	. 302	. 350	Km
Beg. Y	. 387	. 250	. 242	. 278	Km
End X	. 411	. 413	. 392	. 398	Km
End Y	. 322	. 307	. 308	. 325	Km
Width	14.8	12.7	14.6	10.3	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	85	35	0	m.p.h.
Volume	0	1372	1656	0	$\mathrm{veh} / \mathrm{hr}$.

Exit Link:

Beg. X	.411	.413	.392	.398	Km
Beg. Y	.322	.307	.308	.325	Km
End X	.496	.456	.302	.350	Km
End Y	.387	.250	.242	.378	Km
Width	14.7	12.7	14.6	10.3	Meters
\# of Lanes	4	0	0	2	\#
Speed Limit	35	35	35	35	m.p.h.
Volume	1691	0	0	1337	veh/hr.

Receptor Location:
X
Y

.086	Km
.248	Km
3	Meters

Time Period: 11:00-19:00
Intersection: Central Ave./Sharon Amity Rd.; $X=0.078 \quad \mathrm{Km} ; \mathrm{y}=0.097 \mathrm{Km}$
Phasing: 7-phase full actuated
(Iink)
Darameter
Approach Link:

Beg. X
Beg. 7
End Z
End Y

Width
8 of Lanes
Capacity
Speed Limit
Volume
Exit Link:

Beg. X	0.088	0.089	0.070	0.069	R
Beg.Y	0.113	0.084	0.085	0.109	K
End X	0.107	0.172	0.051	0.004	Km
End \mathbf{Y}	0.195	0.036	0.003	0.146	Km
Hidth	7.4	7.1	6.9	6.7	Meters
\# of Lanes	2	2	2	2	\%
Speed Limit	45	45	45	45	m.P.n.
Volume	980	1000	050	1000	veh/hr.

Receptor Location:

X
0.080
0.155

3

5

Km Yeters

TABLE 3
1982 TRAFEIC DATA

Exit Link：

Seg． 7	0.147	0.156	0.135	0.121	R
Beg．${ }^{\text {I }}$	0.152	0.134	0.114	0.130	X
End X	0.154	0.232	0.131	0.046	K⿴囗
End Y	0.250	0.170	0.018	0.093	هR
Width	6	7.5	7	8	Heters
It of Lanes	2	2	2	2	＊
Speed Limit	45	45	45	45	m．D．b．
Volume	990	1100	970	660	veh／hr．
z		0.199			Km
\underline{y}		0.184			x
z		3			！！eこers

DATA FOR MIDELOCX MODEL

Intersection: Independence/Sharon Amity (446) $\quad X=0.092 \quad K m ; Y=0.105 \quad$ Km Phasing: 8-phase full actuated

Parameter
Approach Link:

Beg. ${ }^{\text {I }}$	0.157	0.191	0.038	0.000	7m
Beg. ${ }^{\text {I }}$	0.203	0.000	0.009	0.202	!
End \bar{z}	0.100	0.190	0.082	0.072	K
End Y	0.132	0.100	0.079	0.111	Km
Widtt	8	12	8	12	l'eters
$\frac{8}{4}$ of Lanes	2	3	2	3	4
Capacity	3100	4600	3100	4600	
Speed Limit	45	45	45	45	m. P.h.
Volume	740	1400	740	1430	veh/hr

Exit Link:

Beg. ${ }^{\text {I }}$	0.110	0.110	0.071	0.072	K
Beg. 1	0.124	0.084	0.086	0.128	Km
Ead 8	0.175	0.160	0.022	0.021	Cl
End Y	0.202	0.002	0.010	0.212	Kn
Width	7	12	7	12	Meters
\$ of Lanes	2	3	2	3	$\frac{4}{4}$
Speed Limit	45	45	45	45	■.p.h.
Volune	960	1590	660	1100	ven/ar

Feceptor Location:
Z
Y

0.084	?
0.052	$!こ$
3	$!!=こ=r s$

1982 TRAFFIC DATA
DATA FOR MIDBLOCK MODEL
Time Period: 11:00-19:00
Intersection: Idlewild/Independence (448) $\quad X=0.552 \quad \mathrm{Km} ; \mathrm{Y}=0.130 \quad \mathrm{Zm}$
Phasiug: 7-phase, full actuated
(Link)
Parameter
Approach Link:

Beg. 1	0.446	0.655	0.663	0.102	Em
Beg. 7	0.203	0.142	0.055	0.081	Km
End X	0.529	0.579	0.579	0.532	$\mathrm{K}_{\text {m }}$
End Y	0.138	0.135	0.123	0.124	K/
Widtb	11	6	11	6.5	Meters
\% of Lanes	3	2	3	2	\#
Capacity	4500	2800	4500	2900	veh/hr.(Level E)
Speed Limit	45	35	45	35	m.p.h.
Volume	1520	430	1160	600	veh/hr.

Exit Link:

Beg.I	0.552	0.587	0.552	0.522	Km
Beg.I	0.145	0.129	0.119	0.132	Km
End I	0.456	0.655	0.652	0.092	Km
End I	0.223	0.136	0.038	0.087	Rm
Width	11	4	12	4	Meters
\# of Lanes	3	1	3	1	f
Speed Limit	45	35	45	35	m.p.h.
Volume	1320	540	1430	430	veh/hr.

Receptor Location:

I

I
z
0.475 Km
$0.152 \quad \mathrm{Rm}$

DATA FOR MIDELOCZ 1 IODEL

Intersection: Fairview/Providence/Sardis (510) $X=0.109 \quad K m ; Y=0.095 \quad K m$ Phasing: 8-phase full actuated

(Link)Parameter	LInk				Onits
	N(Proys $)$	E(Sard. $)$	S(Provi)	H(Faics)	
Approach Link:					
Beg. ${ }^{\text {I }}$	0.006	0.158	0.199	0.070	Rm
Beg. ${ }^{\text {Y }}$	0.209	0.201	0.000	0.000	Km
End \mathbf{Z}	0.087	0.115	0.124	0.103	Rm
End Y	0.109	0.116	0.086	0.068	Km
Width	7	7	7	7	Meters
\# of Lanes	2	2	2	2	\ddagger
Capacity	3000	3000	3000	3000	veh/hr.(Level E)
Speed Limit	45	45	45	45	m.p.h.
Volume	740	680	510	1050	veh/hr.

Exit Link:

Beg. I	0.094	0.125	0.119	0.094	Km
Beg. Y	0.117	0.109	0.075	0.074	Km
End I	0.013	0.171	0.186	0.057	Km
End Y	0.201	0.201	0.000	0.000	Km
Width	7	7	7	6	Meters
Of Lanes	2	2	2	2	$\#$
Speed Limit	45	45	45	45	m.p.h.
Volume	540	820	840	780	$\mathrm{veh} / \mathrm{hr}$.

Receptor Location:

\mathbf{Z}	0.148	Km
\mathbf{y}	0.076	Km
\mathbf{Z}	3	Ueters

1982 TRAFFIC DATA

DADA FOR MIDBLOCK MODEL
Intersection: Park Rd./roodiawn Rd.;
Phasing: 8-phase fully actuated

Exit Link:

Beg. ${ }^{\text {a }}$	0.111	0.126	0.095	0.083	Ra
Beg. Y	0.124	0.097	0.090	0.119	K
End X	0.120	0.209	0.089	0.000	S
End Y	0.215	0.091	0.000	0.138	8
Fidth	7.4	$7 \cdot 3$	7.3	7.1	Seters
\% of Lanes	2	2	2	2	$\frac{1}{*}$
Speed Limit	35	35	35	45	m.P.L.
Volume	840	870	780	650	ven/hr.

(Link)
Parapeter
Approach Link:

Eeg. ${ }^{\text {I }}$	0.107	0.208	0.102	0.000	8m
Beg. 7	0.216	0.103	0.000	0.130	R
End X	0.100	0.123	0.104	0.080	R
End Y	0.126	0.110	0.090	0.107	Rm
Width	7.0	6.8	7.3	8.1	Meters
\% of Lanes	2	2	2	2	\#
Capacity	2900	3000	3000	2900	veh/br.(Level E)
Speed Limit	35	35	35	45	E.P.t.
Volume	750	610	880	900	veh/hr.

p $\frac{\text { Link }}{\text { N(Park) E(Viood_) S(Park) M(ñood.) }}$ Units

Iise Period: 10:30-18:30
$Y=0.102 \quad \mathbb{Z} ; Y=0.107 \quad R$
Receptor Location:
X
\because

2

0.070	I=
0.098	In
3	!eters

TRAFFIC DATA FOR 1987 WITHOUT TCMS

TABLE 8
1987 TRAFEIC DATA
Attachment III
DATA FOR MIDBLOCK MODEL
Time Period: 11:00-19:00
Intersection: Central Ave./Sharon Amity Re.; $X=0.078 \quad \mathrm{Km} ; \mathrm{Y}=0.097 \quad \mathrm{Km}$
Phasing: 7-phase full actuated
$\frac{\text { (Link) }}{\text { Approach Link: }}$

Beg. Z
Beg. Y
End X
0.077
0.116
7.6
7.4
6.9
7.0

2
2400

45

1050
1230
2800
45
Volume
704
1030
0.088
0.089
0.070
0.069
$0.085 \quad 0.109$
$0.051 \quad 0.004$
$0.003 \quad 0.146$
6.9
6.7

2
45
m.p.h.

Onits

KII
Km
RII
RII Meters
\#
veh/hr.(Level E) veh/br.

R m
Km
Km
Km
Meters
\#
m.p.h. veh/hr.

998
7.1

2

45
1000

2

45
1023
Receptor Location:
X
0.080
0.155

3
Ψ
2
K
KII Keters

IATA FOR MIDBLOCX MODEL
 'hasing: 5-phase full actuated

$\frac{$| (Link) |
| :--- |
| Parameten |}{Pproach Link:}

Beg.I	0.142	0.228	0.141	0.050	Km
Beg.I	0.245	0.180	0.023	0.092	Km
End I	0.136	0.157	0.146	0.124	Km
End I	0.150	0.147	0.114	0.117	Km
Width	7	7.5	6.5	7	Meters
\# of Lanes	2	2	2	2	4
Capacity	3000	3000	2800	3000	
Speed Limit	45	45	45	45	m.p.h.
Volume	882	1112	1197	1232	veh/br.

: Link:

Beg. \boldsymbol{z}	0.147	0.156	0.135	0.121	Km
Beg. ${ }^{\text {I }}$	0.152	0.134	0.194	0.130	Rm
End X	0.154	0.232	0.131	0.046	Rn
End Y	0.250	0.170	0.018	0.093	Km
Width	6	7.5	7	8	Heters
* of Lanes	2	2	2	2	\#
Speed Limit	45	45	45	45	凹.p.n.
Volume	1040	1474	1019	884	ven/tr
eptor Location:					
z		0.199			K
Y		0.184			K
z		3			l!sters

1987 TRAFFIC DATA
DATA EOR MIDBLOCK MODEL
Time Period: 11:00-19:00

Phasing: 8-phase full actuated

(Link) Parameter	Link				Units
	N(S. Ae	E(Inden)	S(S. A.)	W(Indep)	
Approach Link:					
Beg. $\%$	0.157	0.191	0.038	0.000	Km
Beg.I	0.203	0.000	0.009	0.202	\%m
End X	0.100	0.110	0.082	0.072	Km
End 7	0.132	0.100	0.079	0.111	Km
Width	8	12	8	12	Heters
\# of Lanes	2	3	2	3	*
Capacity	3100	4600	3100	4600	
Speed Limit	45	45	45	45	m.p.h.
Volume	777	1876	777	1916	veh/hr.

Ent Link:

Beg. ${ }^{\text {I }}$	0.110	0.110	0.071	0.072	Km
Beg. ${ }^{\text {I }}$	0.124	0.084	0.086	0.128	Sn
End \mathbf{Z}	0.175	0.160	0.022	0.021	K
End I	0.202	0.002	0.010	0.212	gm
Width	7	12	7	12	Meters
* of Lanes	2	3	2	3	*
Speed Limit	45	45	45	45	\#.p.b.
Volume	1008	2131	693	1474	veh/br.

Beceptor Location:

X	0.084	5-3
Y	0.052	?
2	3	こrs

1987 TRAFFIC DATA
DATA FOR MIDBLOCX MODEL
Intersection: IdIewild/Independence (448) $\quad X=0.552 \quad \mathrm{Km} ; \mathbf{Y}=0.130 \quad \mathrm{Km}$
Phasing: 7-phase, full actuated
(Link)
Parameter
Approach Link:
Beg. \mathbf{x}
Beg. Y
End \mathbf{X}
End \mathbf{Y}
Width
\# of Lanes
Capacity
Speed Limit
Volume
Extt Link:
Beg. 1
Beg. 7
End Z
End Y
Width
\# of Lanes
Speed Limit
Volume
Receptor Location:

0.552	0.587	0.552	0.522	Km
0.145	0.129	0.119	0.132	Km
0.456	0.655	0.652	0.092	Km
0.223	0.136	0.038	0.087	Km

1
4
12
4
3
45
35
525
Meters
\#
m.p.h.
$\mathrm{veb} / \mathrm{hr}$.

X
Y
2

0.475	Km
0.152	R

1987 TRAFFIC DATA
JATA FOR MIDELOCK ::CDEL
Time Period: 11:00-19:00
[ntersection: Eairvitw/Providence/Sardis (510) $\quad X=0.109 \quad R ⿴ 囗=0.095 \quad$ Km Thasing: 8-phase full actuated
(Link)
Parameter
Approach Link:

Beg.Z	0.006	0.158	0.199	0.070	Km
Beg. Y	0.201	0.201	0.000	0.000	Km
End Z	0.087	0.115	0.124	0.103	Km
End Y	0.109	0.116	0.086	0.068	Km
Width	7	7	7	7	Meters
\# of Lanes	2	2	2	2	F
Capacity	3000	3000	3000	3000	veh/hr. (Level E)
Speed Limit	45	45	45	45	m.P.h.
Volume	903	748	622	1218	veh/hr.

Exit Link:

Beg. X	0.094	0.125	0.119	0.094	\underline{R}
Beg. 1	0.117	0.109	0.075	0.074	RIII
End 8	0.013	0.171	0.186	0.057	Km
End Y	0.201	0.201	0.000	0.000	Em
Width	7	7	7	6	Meters
\% of Lanes	2	2	2	2	\#
Speed Limit	45	45	45	45	m.p.a.
Volume	659	902	1025	905	veh/hr.

Receptor Location:
X
Y

2
$0.148 \quad \mathrm{Km}$
$0.076 \quad \mathrm{Km}$

1987 TRAFFIC DATA

DETA FOR MEDSLOCZ I!ODEL
Intersection: Park Rd./hoodlawn Rd.; $\quad X=0.102 \quad K=Y=0.107 \quad \mathbb{R}$

Phasiag: 8-phase fully actuated

$\begin{aligned} & \text { (Link) } \\ & \text { Parameter } \end{aligned}$	Link				Units
	N(Park	E(HoOd,	S(Park)	W(\%ood.)	
Approach Link:					
Eeg. \mathbf{X}	0.107	0.208	0.102	0.000	R
Beg. 7	0.216	0.103	0.000	0.130	R
End I	0.100	0.123	0.104	0.080	Km
End I	0.126	0.110	0.090	0.107	هR
Width	7.0	6.8	$7 \cdot 3$	8.1	Meters
\% of Lanes	2	2	2	2	\ddagger
Capacity	2900	3000	3000	2900	veh/br.(Level E)
Speed Limt	35	35	35	45	IT.P.L.
Volue	825	702	968	1035	veb/hr.

Exit Link:

Beg. ${ }^{\text {d }}$	0.111	0.126	0.095	0.083	Rm
Beg. Y	0.124	0.097	0.090	0.119	Km
End \mathbf{L}	0.120	0.209	0.089	0.000	K_{π}
End Y	0.215	0.091	0.000	0.138	Kc
Vidth	7.4	7.3	7.3	7.1	Keters
\% of Lanes	2	2	2	2	\#
Speed Limit	35	35	35	45	m.p.h.
Volume	924	1000	858	748	ven/hr

Receptor Location:
X
\mathbf{V}

2

1987 TRAFFIC DATA

DATA FOR MIDBLOCK MODEL
Intersection: First St./College St.;

Stop sign controlled: First Street stops

(Link) Parameter	Link				
	N(College)	E(1st.)	S(College)	$W($ ist)	Units
Approach Link:					
Beg.X	. 184	--	. 004	. 016	Km
Beg. Y	. 146	--	. 005	. 150	Km
End X	. 092	--	. 083	. 080	Km
End Y	. 074	--	. 066	. 078	Km
Width	13.4	--	13.4	5.3	Meters
$\#$ of Lanes	4	--	4	1	\#
Capacity	6000	-	6000	1400	veh/hr. (Level E)
Speed Limit	0	--	35	35	m. p.h.
Volume	0	--	2611	1014	veh/hr.
Exit Link:					
Beg. X	. 092	-	. 083	. 080	Km
Beg. Y	. 074	-	. 066	. 078	Km
End X	. 184	--	. 004	. 016	Kı
End Y	. 146	--	. 005	. 150	Km
Width	13.4	--	0	2	Meters
\# of Lanes	4	--	0	0	\#
Speed Limit	35	\cdots	35	0	m.p.h.
Volume	3625	--	0	0	veh/hr.
Receptor Location:					
X			. 086		Km
Y			. 248		Km
2			3		Meters

DATA FOR MIDBLOCK MODEL	Time Period:	16:00-18:00
Intersection: First St./College St.;	$\mathrm{X}=.088 \mathrm{Km} ; \quad \mathrm{y}=.070 \mathrm{Km}$	
Stop sign controlled: First Street stops		

(Link)
Parameter
Approach Link:

Exit Link:
leceptor Location:
X
Y
2

Beg.X	.184	-	.004	.016	Km
Beg. Y	.146	-	.005	.150	Km
End X	.092	-	.083	.080	Km
End Y	.074	-	.066	.078	Km
Width	13.4	-	13.4	5.3	$=$ Meters
\# of Lanes	4	-	4	1	$\#$

\# of Lanes	4	-	4	1	\#
Capacity	6000	--	6000	1400	veh/hr. (Level E)
Speed Limit	0	-	35	35	m.p.h.
Volume	0	-	1186	583	veh/hr.

Beg.X	.092	-	.083	.080	Km
Beg.Y	.074	-	.066	.078	Km
End X	.184	-	.004	.016	Km
End Y	.146	-	.005	.150	Km
Width	13.4	-	0	2	Meters
$\#$ of Lanes	4	-	0	0	$\#$
Speed Limit	35	-	35	0	m.p.h.
Volume	1769	-	0	0	veh/hr.

Link
N(College) E(1st) S(College) W(1st) Units veh/hr.
veh/hr.

DATA FOR MIDBLOCK MODEL
Intersection: Second St./College St.;

Time Period: 16:00-18:00
$X=.192 \mathrm{Km} ; \quad Y=.152 \mathrm{Km}$

Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.
(Link)
Parameter
Approach Link:

Beg.X	.286	.239	.092	.103	Km
Beg. Y	.229	.100	.074	.250	Km
End X	.199	.201	.184	.185	Km
End Y	.158	.144	.146	.162	Km
Width	15.0	7.2	14.7	6.1	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	35	35	35	m.p.h.
Volume	0	$77 \dot{\theta}$	1910	0	veh/hr.

:xit Link:

Beg. ${ }^{\text {x }}$. 199	. 201	. 194	. 185	Km
Beg. Y	. 158	. 144	. 146	. 162	Km
End X	. 286	. 239	. 092	. 103	Km
End Y	. 229	. 100	. 074	. 250	Km
Width	15.0	7.4	14.7	6.1	Meters
\# of Lanes	4	2	0	2	\#
Speed Limit	35	35	35	35	m.p.h.
Volume	1676	$32 \pm$	0	682	$\mathrm{veh} / \mathrm{hr}$.
eceptor Location:					
X			. 086		Km
Y			. 248		Km
z			3		Meters

data for midblock model
Intersection: Second St./College St.;

Time Period: 10:00-16:00
$\mathrm{X}=.192 \mathrm{Km} ; \quad \mathrm{Y}=.152 \mathrm{Km}$

Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.
Link
(Link)
$\frac{\text { Parameter }}{\text { Approach Link: }}$

Beg.X	.286	.239	.092	.103	Km
Beg.Y	.229	.100	.074	.250	Km
End X	.199	.201	.184	.185	Km
End Y	.158	.144	.146	.162	Km
Width	15.0	7.2	14.7	6.1	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	35	35	35	m.p.h.
Volume	0	1399	3128	0	veh/hr.

ixit Link:

Beg. X	.199	. 201	. 194	. 185	Km
Beg. ${ }^{\text {y }}$. 158	. 144	. 146	. 162	Km
End X	. 286	. 239	. 092	. 103	Km
End Y	. 229	. 100	. 074	. 250	Km
Width	15.0	7.4	14.7	6.1	Meters
* of Lanes	4	2	0	2	\#
Speed Limit	35	35	35	35	m.p.h.
Volume	2651	375	0	- ${ }^{\text {T }} 500$	$\mathrm{veh} / \mathrm{hr}$.
eceptor Location:					
X			. 086		Km
Y			. 248		Km
2			3		Meters

eceptor Location:

X

Y

2
.086 Km
.248
3

Units
N(College) E(2nd) S(College) W(2nd)

Meters
veh/hr.

DATA FOR MIDBLOCX MODEL			Time P	eriod:	10:00-16:00
Intersection: Third St./	College		$\mathrm{X}=.29$	5 Km ;	$Y=.236 \mathrm{Km}$
Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.					
(Link) Link					
(Link) Parameter	N(Colle	E(3rd)	S(College)	W(3rd)	Units
tpproach Link:					
Beg. X	. 392	. 350	. 199	. 237	Km
Beg. Y	. 208	. 174	. 158	. 300	Km
End X	. 302	. 303	. 286	. 288	Km
End I	. 242	. 226	. 229	. 244	Km
Width	14.8	12.0	14.7	13.3	= Meters
\% of Lanes	0	0	4	3	
Capacity	0	0	5900	4700	$\mathrm{veh} / \mathrm{hr}$. (Level E)
Speed Limit	0	0	35	35	m.p.h.
Volume	0	0	2970.	3202	veh/hr.
ixit Link:					
Beg. X	. 302	. 303	. 286	. 288	Km
Beg. $\%$. 242	. 226	. 229	. 244	Km
End X	. 392	. 350	. 199	. 237	Km
End Y	. 308	. 174	. 158	. 300	Km
Width	14.8	12.0	14.7	13.3	Meters
$\#$ of Lanes	4	3	0	0	*
Speed Limit	35	35	0	0	m.p.h.
Volume	2985	3188	0	0	veh/hr.
eceptor Location:					
X			. 086		Km
Y			. 248		Km
2			3		Meters

dATA FOR MIDBLOCK MODEL
Intersection: Third St./College St.;

Time Period: 16:00-18:00
$X=.295 \mathrm{Km} ; \quad \mathrm{Y}=.236 \mathrm{Km}$

Phasing: 2-Phase, fixed time (coordinated); cycle $=90$ sec.

(Link)
Parameter

Approach Link:
Beg. X
Beg. Y
End X
End Y
Width
\# of Lanes
Capacity
Speed Limit
Volume
Exit Link:

Beg. X	. 302	. 303	. 286	. 288	Km
Beg. Y	. 242	. 226	. 229	. 244	Xm
End X	. 392	. 350	. 199	. 237	Km
End Y	. 308	.174	. 158	.300	Km
Width	14.8	12.0	14.7	13.3	Meters
\# of Lanes	4	3	4	3	\#
Speed Limit	35	35	0	0	m.p.h.
Volume	1626	2465	0	0	veh/hr.
ceptor Location:					
X			. 086		Km
Y			.248		Kin
Z			3		Meters

DATA FOR MIDBLOCK MODEL
Intersection: Fourth St./College St.; $\quad X=.404 \mathrm{Km} ; \quad \mathrm{Y}=.317 \mathrm{Km}$ Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.

Time Period: 10:00-16:00
(Link)
Parameter

Approach Link:

Beg. X	.496	.456	.302	.350	Km
Beg.Y	.387	.250	.242	.278	Km
End X	.411	.413	.392	.398	Km
End Y	.322	.307	.308	.325	Km
Width	14.8	12.7	14.6	10.3	Meters
\# of Lanes	0	2	4	0	Feh/hr. (Level E)
Capacity	0	2900	5900	0	v.p.h.
Speed Limit	35	35	35	0	veh/hr.

Exit Link:

Beg.X	.411	.413	.392	.398	Km
Beg. Y	.322	.307	.308	.325	Km
End X	.496	.456	.302	.350	Km
End Y	.387	.250	.242	.378	Km
Width	14.7	12.7	14.6	10.3	Meters
\# of Lanes	4	0	0	2	Fim
Speed Limit	35	35	35	35	m.p.h.
Volume	2980	0	0	3226	veh/hr.

Receptor Location:

X
Y

2
.086 Km
$.248 \quad \mathrm{Km}$

3

Units
N(College) E(4th) S(College) W(4th)
27.88

0
veh/hr.

X	.086	Km
Y	.248	Km
Z	3	Meters

DATA FOR MIDBLOCK MODEL	Time Period:	16:00-18:00
Intersection: Fourth St./College St.;	$X=.404 \mathrm{Km} ;$	$\mathrm{Y}=.317 \mathrm{Km}$
Phasing: 2-Phase, fixed time (coordinated); cycle $=90 \mathrm{sec}$.		

(Link) Parameter	Link				Units
	N(College)	E(4th)	S(College)	W(4th)	
Approach Link:					
Beg. ${ }^{\text {\% }}$. 496	. 456	. 302	. 350	Km
Beg. Y	. 387	. 250	. 242	. 278	Km
End X	. 411	. 413	. 392	. 398	Km
End Y	. 322	. 307	. 308	. 325	Km
Width	14.8	12.7	14.6	10.3	Meters
\# of Lanes	0	2	4	0	\#
Capacity	0	2900	5900	0	veh/hr. (Level E)
Speed Limit	35	+35	35	0	m.p.h.
Volume	0	1482	1788	0	veh/hr.
Sxit Link:					
Beg. ${ }^{\text {I }}$. 411	. 413	. 392	. 398	Km
Beg. Y	. 322	. 307	. 308	. 325	Km
End X	. 496	. 456	. 302	. 350	KII
End Y	. 387	. 250	. 242	. 378	Km
Width	14.7	12.7	14.6	10.3	Meters
4 of Lanes	4	0	0	2	\#
Speed Limit	35	35	35	35	m.p.h.
Volume	1326	0	0	1444	$\mathrm{veh} / \mathrm{hr}$.
eceptor Location:					
X			. 086		Km
Ψ			. 248		Km
2			3		Meters

TABLE 15

GROWTH FACTORS

	Growth Factor	
	Per Year	1982-1987
Albemarle Road	6.0\%	1.34
Independence Blvd. at Sharon Arit ty	6.0\%	1.34
Independence Blvd. at Idlewild Road	4.0\%	1.22
Sharon Amity Road	1.0\%	1.05
Idlewild Road	4.0\%	1.22
Central Avenue	0.0\%	1.00
Second Street	1.5\%	1.08
Third Street	1.5\%	1.08
College Street	1.5\%	1.08
Fourth Street	1.5\%	1.08
Tryon Street	1.5\%	1.08
Fairview Road	3.0%	1.16
Providence Road	4.0\%	1.22
Sardis Road	2.0\%	9. 10
Woodlawn Road	2.9\%	1.15
Park Road	0.0\%	9.00

ATTACHMENT IV

TRAFFIC DATA FOR 1987 WITH TCMs
(Letter dated December 10, 1982 and November 20 with attachments)

```
## ENGINEERING-SCIENCE
TWO FLINT HILL • 10521 ROSEHAVEN STREET • FAIRFAX. VIRGINIA 22030 • 703/591-7575
December 10, 1982
9227.00/58
Mr. Don Stone
Air Management Branch
U.S. Environmental Protection Agency,
Region IV
345 Courtland Street, N.E.
Atlanta, GA 30308
Subject: 1987 Traffic Data for Charlotte CO Study.
Dear Don:
    With reference to my letter of November 30, 1982, on the same subject,
Nancy Williams of Charlotte DOT suggested certain modifications to the
predicted 1987 peak 8-hour traffic volumes. Her suggestions were as
follows:
O Determine the peak 8-hour to 1-hour ratio based on total (two-way)
    traffic for a roadway link rather than using directional traffic
    volume.
0 Determine total traffic volumes for 1987 peak 8-hour using total
    peak 1-hour traffic and the ratio developed above.
O Split the projected total 8-hour traffic volumes into approach and
    exit link volumes using directional split based on data provided for
    the base year peak 8-hour period.
    Based on these modifications, the revised traffic data are attached
for your information. These are the traffic volumes which will be used
in the final analysis.
Sincerely yours,
ENGINEERING-SCIENCE
```



```
Chandrika prasad
Air Quality Planning
cc: Dave Johnson
Nancy Williams
Bobby Cobb
```

TRAFEIC DATA FOR CENTRAL/SHARON AMITY

Link	Description	Base Year Peak 8-hr Iraffic (Veh/Hr)	Base Year Peak 1-hr Traffic (Veh/Hr)	$\begin{aligned} & \text { Ratio } \\ & \text { Peak } 8-\mathrm{hr} \\ & \hline \text { Peak } 1-\mathrm{hr} \end{aligned}$	1987 Peak 1-Hir Traffic with TCMs (Veh/Hr)	$\|$1987 Peak $8-\mathrm{Hr}$ Iraffic With ICMs (Veh/Hr)	Directional Split Ratio ${ }^{a}$	1987 Peak 8-hr Directional Traffic with TCMs (Veh/Hr)
E								
N L	N.S.A.	1650	2070	0.80	2079	1657		
'I I	S.S.A.	1950	2390	0.82	2396	1955		
1 N	E. Central	2030	2537	0.80	2525	2019		
R K	W. Central	2230	2727	0.82	2718	2223		
E								
A								
P	N.S.A.	670					0.41	679
P	S.S.A.	1000					0.51	1003
R L	E. Central	1030					0.51	1025
$\bigcirc \mathrm{I}$	W. Central	1230					0.55	1226
A N								
C K								
II								
E L	N.S.A.	980					0.59	978
X I	S.S.A.	950					0.49	952
I N	E. Central	1000					0.49	994
'f K	W. Central	1000					0.45	997

a. Based on Base Year peak 8-hour traffic volumes.
'IABLE 2

TKAEEIC DATA FOR AL,BEHMAKLE/SUARON AMI'IY

Link	Deseription	Base Year Peak 8-hr rraffic (Veh/ilir)	Base Year Peak 1-hir 'fraffic (Veh/Hr)	Ratio Peak B-lir Peak 1-hr	1987 Peak 1-Hr Thaffic with ICMs (Veh/ilr)	1987 Peak 8-Hir Iraffic with 'ICMs (Veh/Hr)	Directional Split Ratióa	1987 Peak 8-lix Directional Iraffic with TCMs (Vell/Hr)
E								
N L.	N.S.A.	1830	2066	0.89	2074	1837		
'11 1	S.S.A.	2110	2397	0.88	2326	2048		
I N	E. Albermarle	1930	2480	0.78	3710	2887		
R K	W. Albermarle	1580	2031	0.78	3284	2554		
E								
A								
1	N.S.A.	840	915				0.46	845
1	S.S.A.	1140	1315				0.54	1106
R 1.	E. Altermarle	830	922				0.43	1241
	W. Albermar le	920	1336				0,58	1481
CK								
11								
E I	N.S.A.	990	1151				0.54	992
X I	S.S.A.	970	1082				0.46	942
1 N	E. Albermale	1100	1558				0.57	1646
' ${ }^{\prime}$	W. Albermale	660	695				0.42	1073

a. Hased on Base Year peak 8 -hour traffic volumes.

TABLE 3
TRAFEIC DATA FOR INDEPENDENCE/SHARON AMITY

Link	Description	Base Year Peak 8-hr Trat fic (Veh/Hr)	Base Year Peak 1-hr Traffic (Veh/Hr)	$\begin{aligned} & \text { Ratio } \\ & \text { Peak } 8-\mathrm{hr} \\ & \hline \text { Peak } 1-\mathrm{hr} \end{aligned}$	1987 Peak 1-Hr Traffic with 'rCMs (Veh/Hy)	```1987 Peak 8-Hr Traffic with TCMs (Veh/Hr)```	$\begin{aligned} & \text { Directional } \\ & \text { Split } \\ & \text { Ratio } \end{aligned}$	1987 Peak 8-hr Directional Traffic with TCMs (Veh/Hr)
E 1								
N L	N.S.A.	1700	2154	0.79	1999	1578		
I I	S.S.A.	1400	1743	0.80	1683	1351		
I N	E. Independence	2990	3573	0.84	4347	3638		
R K	W. Independence	2530	3114	0.81	4081	3316		
E								
A								
P	N.S.A.	740	846				0.44	694
P	S.S.A.	740	950				0.53	716
R L	E. Independence	1400	1404				0.47	1709
$\bigcirc \mathrm{I}$	W. Independence	1430	2092				0.57	1890
A N								
C K								
H								
E L	N.S.A.	960	1308				0.56	884
X I	S.S.A.	660	793				0.47	635
I N	E. Independence	1590	2169				0.53	1929
'T K	W. Independence	1100	1022				0.43	1426

a. Based on Base Year peak 8-hour traffic volumes.

TABLE 4
TRAFFIC DATA FOR INDEPENDENCE/IDLEWILD

Link	Description	Base Year peak 8-hx I'raffic (Veh/Hr)	Base Year Peak 1-hr Traffic (Veh/Hr)	$\begin{aligned} & \text { Ratio } \\ & \text { Peak } 8-\mathrm{hr} \\ & \hline \text { Peak } 1-\mathrm{hr} \end{aligned}$	1987 Peak 1-Hr Iraffic with ICMs (Veh/Hr)	$\|$1987 Peak $8-\mathrm{Hr}$ Traffic wi th TCMs (Veh/Hr)	$\begin{aligned} & \text { Directional } \\ & \text { Split } \\ & \text { Ratio } \end{aligned}$	1987 Peak 8-hr Directional Iraffic with TCMs (Veh/Hr)
E								
N I.	N. Independence	2840	3553	0.89	4206	3361		
T I	S. Independence	2590	3299	0.79	3697	2902		
I N	E. Id lewild	970	1350	0.72	1527	1097		
R K	W. Idlewild	1030	1316	0.78	1443	1129		
E								
A								
P	N. Independence	1520	2122				0.53	1782
P	S. Independence	1160	1382				0.45	1306
R L.	E. Idlewild	430	419				0.44	482
0 I	W. Idlewild	600	836				0.58	655
A N								
H								
E L	N. Independence	1320	1431				0.47	1579
X I	S. Independence	1430	1917				0.55	1596
I N	E. Idlewild	540	931				0.56	615
T K	W. Idlewild	430	480				0.42	474

a. Based on Base Year peak 8-hour traffic volumes.

Es ENGINEERING-SCIENCE
 TWO FLINT HILL • 10521 ROSEHAVEN STREET • FAIRFAX, VIRGINIA 22030 • 703/591-7575

TELEX. 67-5428

November 30, 1982
9227.00/51

```
Mr. Don Stone
Air Management Branch
U.S. EPA Region IV
345 Courtland Street, N.E.
Atlanta, Georgia 30308
```

Sub: 1987 Traffic Data for Charlotte CO Study

Dear Don:

As you know, the remaining tasks for the study referenced above require 1987 traffic volumes which reflect the expected growth in traffic and effects of transportation control measures (TCMs). Problems resulting from the unavailability of such data were brought to the attention of all parties concerned through my Tecinnical Memorandum of October 11 and Monthly Progress Reports for September and October 1982.

Dave Johnson in his letter of October 18 (copy attached) suggested two possible approaches to generate the data needed and recommended that the second approach be used. I have discussed in detail the difficulties in using this approach with Dave and the same was brought to your attention. From these discussions it was concluded that the first approach (use of the peak 8 -hour to peak 1 -hour traffic ratio) would be more appropriate under present circumstances. Data required under this approach are readily available and the study could proceed without further delays.

Based on this approach I have compiled a table of traffic volumes for 1987 with growth and TCMs (See Attachments). The methocology used in compiling these traffic volumes is also attached. Through copies of this letter and Attachments, this information is being forewarded to all parties concerned so that everyone will be aware of the traffic data to be used in this study.

Unless otherwise directed, I intend to use these traffic data in completing the remainder of this Study. Anyone having objections to the same is requested to contact me as soon as this letter is received so that the study can be completed in an expedient time frame.

Sincerely,
ENGINEERING-SCIENCE

Chandrika Prasad
Air Quality Planning
P.S. Please note that we have moved and our new address and telephone number appear on the letterhead.
$C P / s f$
cc: Nancy Williams
Bobby Cobb
Dave Johnson
Enclosure:

METHODOLOGY USED TO COMPUTE 1987 PEAK 8-HOUR TRAFFIC VOLUMES TO INCLUDE EFFECTS OF TCMS AND GROWTH

The Methodology used to determine 1987 peak 8-hour traffic volumes with growth and TCMs was as follows:
(i) Determine a ratio for peak 8 -hour to peak 1 -hour traffic volumes using data for the base year.
(ii) Multiply the 1987 peak 1 -hour traffic data as given in the PMM report by the ratio determined above.

For the base year, peak 8-hour traffic volumes in IMM format (total for each approach and exit link) were provided by Charlotte DOT. Peak 1 hour traffic volumes for the same year were calculated from data available in the PMM report which provided data for each lane including turning lanes. By adding traffic volumes for each lane (including turning lanes) of a given approach or exit link, the peak 1 -hour traffic volume for that link was computed. From these two base year data sets, the ratio of peak 8 -hour to peak 1 -hour traffic for each approach and exit link was determined.

The PMM report also provided 1987 peak 1 -hour traffic data which include the effects of growti and TCMs. Using the same procedure mentioned above, 1987 peak 1 -hour traffic volumes for each approach and exit link were first determined. On the basis of the peak 8-hour to peak 1 -hour traffic ratios, the 1987 peak 1 -hour traffic volumes were transformed into peak 8 -hour traffic volumes.

The PMM report provided 1987 peak 1 -hour traffic volumes for two scenarios given below:

1. Alternative 1 (geometric improvements to the intersection)
2. Alternative 2 (parallel facility improvements) and Alternative 3 (coordinated signal system) combined.

For the purposes of this study, traffic data for scenario $\# 2$ were considered.

It should be noted here that the PMM report only considered four of the six intersections to be analyzed for this study. For the other two intersections, Park/Woodlawn and Fairview/Providence, it was assumed that there are no TCMs. For these two intersections, 1987 peak 8-hour traffic volumes were calculated using base year peak 8-hour traffic volumes and growth factors provided by Charlotte DOT.

Anomaly Normally 8-hour average traffic is expected to be lower than the peak 1 -hour traffic volumes. Slight variations Erom such expectations 'were noticed for two links (East Idlewild Road approach link and West Independence 3lvd. exit link, see tables attached).

Intersection: Central/Sharon Amity

Intersection: Albemarle/Sharon Amity

traffic volumes in vehicles per hour						
Link Description		$\begin{aligned} & \text { Base Year } \\ & \text { Peak } \\ & 8-\text { Hour } \end{aligned}$	Base Year Peak 1-Hour	$\begin{aligned} & \begin{array}{c} \text { Ratio } \\ \text { Peak } 8-\mathrm{hr} \end{array} \\ & \hline \text { Peak } 1-\mathrm{hr} \end{aligned}$	$\begin{gathered} 1987 \text { Peak } \\ \text { 1-hr } \\ \text { with } \mathrm{TCMs} \end{gathered}$	$\begin{aligned} & 1987 \text { Peak } \\ & \text { 8-hr } \\ & \text { with TCMs } \end{aligned}$
APPROACH LINKS:	N. S. A.	840	913	0.92	897	825
	S. S. A.	1140	1315	0.87	1297	1128
	E. Albemarle	830	922	0.90	1387	1248
	W. Albemarle	920	1336	0.69	2116	1460
EXIT LINKS:	N. S. A.	990	1151	0.86	1177	1012
	S. S. A.	970	1082	0.90	1029	926
	E. Albenarle	1100	1558	0.71	2323	1650
	W. Albemarle	660	695	0.95	1168	1109

Intersection：Sharon Amity／Independence

TRAFFIC VOLUMES IN VEHICLES PER HOUR						
Link Description		$\begin{aligned} & \text { Base Year } \\ & \text { Peak } \\ & \text { 8-Hour } \end{aligned}$	Base Year Peak 1－Hour	$\begin{aligned} & \text { Ratio } \\ & \text { Peak } 8-\mathrm{hr} \\ & \text { Peak } 1-\mathrm{hr} \end{aligned}$	1987 Peak 1－hr with TCMs	$\begin{aligned} & 1987 \text { Peak } \\ & \text { 8-hr } \\ & \text { with TCMs } \end{aligned}$
APPROACH LINKS ：	N．S．A．	740	846	0.87	782	，
	S．S．A．	740	950	0.78	936	730 ／バ1
	E．Independence	1400	1404	0.99	1842	$1824 \cdot 1.74$
	W．Independence	1430	2092 кй	0.68	2570	1748 只
EXIT LINKS：	N．S．A．	960	1308	0.73	1217	$888, \therefore \cdots$
	S．S．A．	660	793	0.83	747	620 ＇
	E．Independence	1590	2169	0.73	2505	1828 \％
	W．Independence	1100	1022a	1.07	1511	1616 は里

a．Data anomely（1－hr traffic less then $8-h r$ traffic）

'fraffic volumes in velitcles per hour						
Link Description		Base Year Peak 8-Hour	Base Year Peak 1-Hour	$\begin{aligned} & \text { Ratio } \\ & \text { Peak } 8-h r \\ & \text { Peak } 1-h r \end{aligned}$	```1987 Peak 1-hr with TCMs```	1987 Peak 8-hr with TCMs
APPROACH LINKS:	N. Independence	1520	2122	0.72	2582	1859
	S. Independence	1160	1382	0.84	1548^{\prime}	1301
	E. Idlewild	430	$419^{\text {a }}$	1.03	446	459
	W. Idlewild	600	836	0.72	860	620
EXI'P LINKS:	N. Independence	1320	1431	0.92	(1624)	1494
	S. Independence	1430	1917	0.75	2149	1611
	E. Idlewild	540.	931	0.58	1081	627
	W. Idlewild	430	480	0.89	583	519

a. Data anomely (Peak 1-hr traffic less then peak 8-hr traffic)

North Carolina Department of Natural Resources \& Community Development
 James B. Hunt, Jr., Govemor
 Joseph W. Grimsley, Secretary

DIVISION OF ENVIRONMENTAL MANAGEMENT
Air Quality Section

October 18, 1982

Mr. Doug Toothman
Engineering - Science
7903 Westpark Drive
McLean, Virginia 22102
Dear Doug:
As we discussed by phone, the CO study for Mecklenburg County has reached the point where the effect of selected transportation control measures must be considered in calculating future CO ambient concentrations. However, the difficulty in determing the effects of the TCM's and relating the effects to air quality necessitate that certain assumptions be made. Futhermore, it is important that the different parties involved in this project agree that these assumptions are reasonable and that the approach that is selected for analyzing the TCM's is based on an acceptable rationale.

In light of past studies and available data or projections; it seems that there are at least two approaches for performing the TCM analysis. These approaches are as follows:
(1) Using the TCM analysis performed by Peat, Marwick \& Mitchell, determine an appropriate $1-h r$ to $8-\mathfrak{h r}$ ratio and apply this ratio to the PMM analysis based on 1 -hr peak traffic.
(2) Using turning movement ratios based on existing data or other available data appropriate for the intersections, allocate the future midblock traffic volumes to the straight and turn lanes at the intersection. The effect of TCM's would show up as either reduced volumes at the intersection or as an additional lane(s) to handle the turning movement. Following the allocation of volumes to intersection lanes, the intersection would have to be "balanced" to be sure that future midblock volumes were not changed. This procedure could be done for the peak 8-hr period.

It seems to me that the second approach, although based on a continuation of existing turning movement allocations, might represent a more direct effort at analyzing the $8-h r$ peak concentrations at the subject intersections. This approach would also be more independent since it would not necessarily rely on the assumptions of the earlier study. Therefore, I suggest we pursue the second approach unless you or one of the persons copied on this letter have another suggestion.

I assume that Dr. Prasad will be able to perform the tasks involved in this approach if the existing volumes and turning movement distributions are supplied by Charlotte DOT. Unless this data for the six intersections has already been supplied to you, I hope Charlotte DOT will able to furnish you the data within the next two weeks. If there are other data needs, please let me know.

I realize that this point in the $C O$ analysis probably has more questionable inputs and outputs than other parts of the study, but I also believe we can select an approach that produces meaningful results based on the limited data and time we have for performing this task. If there are objections, I hope they are aired now and I hope they are accompanied by alternative suggestions.

Please let me know if you have any questions or if you feel. this matter needs further discussion by other participants in this study.

David G. Johnson
lh
cc: Nancy Williams
Don Stone
Bobby Cobb
Frank Wick

ATTACHMENT V

ADJUSTMENT EACTORS
(TASK 2, Technical Memorandum)

TECHNICAL MEMORANDUM

```
    TASK 2: 1987 AIR QUALITY WITH I&M
            FOR
                WORK ASSIGNMENT NO. }2
                CONTRACT NO. 68-02-3509
    COMPIIAATION OF THREE-DIMENSIONAL CARBON MONOXIDE
CONCENTRATIONS IN MECKLENBURG COUNTY, NORTH CAROLINA
```

```
Prepared for
U.S. Enviromental Protection Agency
Region IV
345 Courtland Street, N.E. Atlanta, Georgia 30308
```

September 1982
9227.00/79A

Prepared by

1987 AIR QUALITY WITH I\&M AND GROWTH BUT NO TCMs

This technical memorandum documents the results of Task 2 of Work Assignment No. 27 under the Assistance to States Contract No. 68-02-3509. The purpose of this task was to determine 1987 air quality with the inclusion of $I \& M$ and considering traffic growth but no transportation control measures. This memorandum summarizes the results of this task.

1987 Air Quality With I\&M and Growth But No TCMs

The six intersections as analyzed in Task 1 were again modeled for 1987 traffic conditions considering growth in traffic and including an automobile inspection and maintenance program. No transportation control measures were considered for purposes of this analysis. Traffic volumes for 1987 were obtained from 1982 traffic data and growth rates as provided by Charlotte DOT. The results of the analysis are shown in Table 1 along with 1982 predicted concentrations and 1987 predicted concentration without I\&M or TCMs. I\&M specifications used in this analysis were as follows:

- Calendar year of projection $=1987$
- Start of I\&M program = January 1983
- Stringency factor $=30 \%$
- Mechanics Training = yes
- First model year to be inspected $=1975$
- Last model year to be inspected $=1986$

The carbon monoxide concentrations presented in Table 1 do not include background or any adjustment based on model comparison. However, two adjustments were made to the IMM predicted values for 1987 with I\&M and growth. These adjustment factors are described below.

1. Adjustment for Vehicles Not Subject to I\&M

Under the proposed I\&M program, only vehicles registered in Mecklenburg County and the City of Charlotte will be subject to the inspection and maintenance program. Hence, an adjustment is required to account for the impact due to vehicles not subject to the I\&M program. Neither a site-specific breakdown of these vehicles nor a breakdown by vehicletype (autos, light duty trucks, diesel trucks, etc) is available. Therefore, an adjustment factor based on overall vehicle population was derived. As suggested by the Project Officer in consultation with the North Carolina Department of Natural Resources and Community Development, the percentage of non I\&M vehicles was assumed to be 10% for this analysis. Using this percentage, an adjustment factor was developed as follows:
O Composite 1987 emission factor $w / 0$ I\&M $=E_{1}$ gm/vehicle-mile
0 Composite 1987 emission factor $w / I \& M$
0 Percentage of vehicles not subject to $I \& M=E_{2}$ gm/vehicle-mile

Therefore, the adjustment factor $\left(F_{1}\right)$ is:

TABLE 1

1982 AND 1987 AIR QUALITYa

	8-Hour	Co Conce	ration	(mg/m ${ }^{3}$)
		1987C	1987 ${ }^{\text {d }}$	
Intersection	1982	w/o I\&M	W/I\&M	Standard
Sharon Amity Road/Central Avenue	19.89	15.72	11.98	10.0
Sharon Amity Road/Albemarle Road	14.46	13.83	10.44	10.0
Sharon Amity Road/Independence Blvd.	14.86	13.65	10.59	10.0
Independence Blvd./Idlewild Road	15.50	14.91	11.36	10.0
Fairview Road/Providence Road	9.37	8.49	6.40	10.0
Woodlawn Road/Park Road	10.61	8.91	6.45	10.0

a Does not include background or adjustments resulting from model comparison.
b Predicted under peak 8-hour traffic conditions as provided by Charlotte DOT.
c Does not include TCMs or I\&M but includes growth in traffic.
d Does not include TCMs but includes growth in traffic and $I \& M$ program as proposed for Charlotte-Mecklenburg area.

$$
F_{1}=\frac{\left(100-P_{1}\right) \times E_{2}+P_{1} E_{1}}{100 E_{2}}
$$

Since emission factors vary with speed, correction factors were calculated Eor idifna, zverage speed and raise speed and an average of these factors was used in the final analysis. The composite emission factor is dependent upon the vehicle-mix for a given intersection; hence, a separate correction factor was calculated for each intersection.

A review of the analysis indicated that variation in this factor with respect to speed was insignificant (less than 0.3\%). Variation in this factor for the six intersections analyzed was also found to be insignificant (less than 0.2\%). The average value of the correction factor was 1.05. This factor was multiplied by the IMM predicted concentrations with $I \& M$ to determine the corrected $C O$ concentrations.
2. Adjustment for I\&M Applied to Heavy Duty Gasoline Vehicles

The current version of MOBILE 2 includes options to calculate emission factors for I\&M applicable to a limited combination of vehicles as given below:

Option	Type of Vehicle Affected by
1	LDV
2	LDV and LDT1
3	LDV and LDT2
	LDV, IDT1 and LDT2

The I\&M program proposed for the Charlotte-Mecklenburg area will apply to all gasoline vehicles including heavy duty gasoline trucks. Limited testing ${ }^{b}$ of such vehicles indicates an 18% reduction in $C O$ emissions due to I\&M. A correction factor to account for the North Carolina I\&M program was developed as follows:
$\begin{array}{ll}01987 \text { HDG emission factor w/o I\&M } & =E_{3} \\ 0 & 1987 \text { HDG emission factor w/I\&M }\end{array}$

- 1987 HDG emission factor $w / I \alpha M \quad=E_{4}$
- 1987 composite emission factor with EPA $I \& M^{C}=E_{2}$
- Percentage of HDG vehicles $=P_{2}$
- Reduction in emission factor due to $\operatorname{HDG} I \& M=P_{2}\left(E_{3}-E_{4}\right)$
- Net 1987 emission factor $\quad=E_{2}-P_{2}\left(E_{3}-E_{4}\right)$

Therefore, the correction factor $\left(F_{2}\right)$ is:

$$
E_{2}=\frac{E_{2}-P_{2}\left(E_{3}-E_{4}\right)}{E_{2}}
$$

[^0]Since emission factors vary with speed and the percentage of $H D G$ vehicles varies from one intersection to the other, correction factors were calculated for each intersection and for each of several vehicle speeds.

Somputions indicated that the mariation in the corraction Eactor with respect to speed and intersection was not significant (less than 0.3\%). The average value was determined to be 0.995. This factor was used for all intersections and for all vehicular speeds.

Total (Net) Correction

To determine resultant effect of the two correction factors previously discussed, a total correction factor was obtained by multiplying factors F_{1} and F_{2}. The resultant factor was determined to be 1.045 .

Summary and Conclusions

Results of this analysis indicate that:

- The percentage of vehicles not subject to I\&M will have an identifiable impact on $C \infty$ concentrations. In this case, with 10% of the vehicles not subject to I\&M, the CO concentrations are 5\% higher than if all vehicles were subject to I\&M.
- Due to the low volume of heavy duty gasoline trucks, I\&M for these vehicles will have very little impact (about 0.5\% reduction) on overall CO concentrations at the intersections analyzed in this task.

The results further indicate a potential for nonattainment of the 8 -hour CO standard by 1987 at four intersections even with the application of proposed I\&M program.

[^0]: a $L D V=$ light duty vehicles
 IDT1 = light duty trucks (0-6000 lbs)
 LDT2 $=$ light duty trucks (6000-8500 lbs)
 b Personal communication with Phil Lorange, U.S. EPA Mobile Source PolLution Control, Ann Arbor, Michigan, July 1982.
 c I\&M for LDV, LDT1, and LDT2.

