840496

Development of Adjustment Factors for the EPA City and Highway MPG Values

Karl H. Hellman
and J. Dillard Murrell
U.S. Environmental Protection Agency

International Congress
\& Exposition
Detroit, Michigan
February 27-March 2, 1984

The appearance of the code at the bottom of the first page of this paper indicates SAE's consent that copies of the paper may be made for persona! or interncl use, or for the personal or internal use of specific clients. This consent is given on the condition. however, that the copier pay the stated per article copy fee through the Copyright Clearance Center, Inc., Operations Center, P.O. Box 765, Schenectady, N.Y. 12301, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Papers published prior to 1978 may also be copied at a per paper fee pi. $\$ 2.50$ under the above stated conditions.

SAE routinely stocks printed papers for a period of three years following date of publication. Direct your orders to SAE Order Department.

To obtain quantity reprint rates, permission to reprint a technical paper or pert mission to use copyrighted SAE publications in other works, contact the SAE Publications Division.

REN 0148-7191

Copyright © 1984 Society of Automotive Engineers, Inc.

This paper is subject to revision. Statements and opinions advanced in papers or discussion are the author's and are his responsibility, not SAE's; however, the paper has been edited by SAI: for uniform styling and format. Discussion will be printed with the paper if it is published in SAE Transactions. For permission to publish this paper in full or in part. contact the SAE Publications Division.

Persons wishing to submit papers to be considered for presentation or publication through SAE should send the mania script or a 300 word abstract of a proposed manusilipt to Secretary, Enginecring Activity Board, SAE.

Development of Adjustment Factors for the EPA City and Highway MPG Values

Karl H. Hellman
and J. Dillard Murrell
U.S. Environmental Protection Agency

ABSTRACT

This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methoos employed to arrive at adjustment factors of 0.90 for the EPA $c i t y$ MPG value and 0.78 for the EPA Highway MPG value.

IT HAS BEEN WELL KNOWN FOR YEARS that the EPA MPG values in advertising, on new car labels, and in the Gas Mileage Guide overpredict actual consumer fuel economy experience. This subject is discussed in several earlier SAE papers (1)-(4).* To improve the MPG information available to consumers. EPA studied this shortfall and proposed (5) to adjust the MPG values by certain specific numerical adjustment factors.

NATURE OF THE ADJUSTMENTS

The development of MPG adjustment factors followed an EPA decision to adjust both the City MPG and the Highway MPG by "uniform constant adjustment factors". More sophisticated adjustment methodologies had been developed (1), but the use of uniform constant adjustments was preferred because these would preserve the overall MPG ranking of venicles, and the marginal improvement of the more accurate adjustment methodology was not considered worth the perceived added complexity. Therefore, the analytical task was to find values of correction factors for city and hignway driving, fc and fh, so that MPG values of:

Adjusted City MPG $=$ fC X EPA City MPG and
Adjusted Hway MPG $=f n \times E P A$ Hway MPG
were the most representative of the average MPG achieved in actual use.
Bi-Modal Analysis

In a bi-modal MPG label system, to develop the adjustment for the EPA city MPG value $i t$ was necessary to use data from vericles that were operated in the city. Tne nignway MPG adjustment was similariy comeentrated on data from highway-driven cars This limited the on-road MPG data bases to : nose that contained information on the degree of urbanization of the oriving.

The data bases used contained iwe irportant parameters: city fraction, $=$. and average miles per day ($\triangle M P D$). Tre ca-ameter CF is subjective, based on resconses to a question of the type. "How musn ?"

```
*Numbers in parenthesis refer tc re'ences
listed et the end of this paper
```

vour driving was done in the city?", with a numerical response of $C F=100$ if all ariving was done in the city, and CF $=0$ corresponding to all ariving being non-city driving. The respondents were not given a definition of "city". so their responses reflect their own perceptions of city oriving.

The other parameter. AMPD. is a nonsubjective indicator of how vehicles are used. A vehicle driven many miles per day would tend to accumulate many of these miles in highway operation.

Stratifying the data by CF and AMPD. two venicle subsets are isolated: those "city driven for shorter distances" and those "nighway driven for longer distances". From these two data sets, the adjustment factors were to be derived.

Fuel Economy Data Base

Characteristics of the fuel economy data base are summarized in iabies 1 and 2. The codes RAC. RMC, etc. refer to the drive ("F"ront, "R"ear), the transmission ("A"utomatic. "M"anual), and fuel system ("C"arbureted, fuel "I "njected, "D"iesei): a RAC venicle is one with Rear wheel arive. an Automatic transmission, and a Carbureted engine.

Not all of the MPG data base was used To focus on newer model year ventcles, MPG data used was restricted to 1979 and newer models. Also, as shown in Table 1 , not all of the data sources had both CF and AMPD data. After screening for model year and the inclusion of both CF and $A M P D$, a total of some 43,000 data points remained.

Table 1
Qualitative Summary of In-use MPG Data

Table 2

Quantitative Summary of In-Use MPG Data

```
Total No. Data Points: 66.518
```

by data source:

Ford	GM	DOE	Chrys	EPA
37280	15280	9228	2630	2100

	1975	1976	1977	1978	1979	1980	1981	1982
by model year:								
	2246	2160	3424	16207	13077	14303	13687	1414

by technology:

RAC	RAI	RAD	RMC	RMI	RMD
49494	1175	596	6216	349	32
FAC	FAI	FAD	FMC	FMI	FMD
3543	262	111	4017	436	287

by manufacturer:
by month:
by state:

Calif	Texas	NYork	Onio	Penns	Illin	
5660	2303	1566	2333	1262	1610	
Flori	Michi'	Nuers	Georg	NCaro	Indi	$?$
1040	30292	695	658	530	797	7554
(balance of 10.218 divided among 38 other states, plus D.C. and P.R. and 3 Canadian Provinces)						

The CF/AMPD Data Base

The analysis required determination of "typical" values of CF and AMPD, to describe typical city and highway oriving for consumer owned and driven venicles. This determination of typical consumer CF and AMPD values used about 9.000 records of consumer data from the 43,000 -record fuel economy data base (Ford and Chrysier nonconsumer data were omitted), and some 10.000 records of J.D. Power data, which had valid consumer CF and AMPD data, although its perceived MPG aata ts considered unacceptable for MPG smortfall analysis.

This 19,000-record CF/AMPD data base was then divided into ninths. based on the tripartitioning of the number of data points for each of the two parameters. This subdivision of the data base is shown in Table 3.

The typical values of CF and AMPD were selected as the average values in two corners of the matrix: high CF. low AMPD; and low CF. high AMPD. These average values are given in Table 4.

Table 3
Cutpoints and Data Count for Tripartitioned CF/AMPD Data Base

CF	$\begin{aligned} & 26 \text { or } \\ & 1 \text { ess } \end{aligned}$	27 to 38	39 or more
75 or more	3249	2120	902
31 to 74	1707	2360	2204
30 or less	1314	1791	3165

Table 4
Characteristics of City-Driven and Highway-Driven Cars

Driving Mode	CF	AMPD
City-Driven	89	-7
Hignway-Driven	14	62

The analysis of the 43,000 -record fuel economy data base then proceeded as follows: The data base was divided into nine subsets using the numerical cutpoints of $C F$ and $A M P D$ from Table 3.

To retain as much data as possible in each of the two modal subsets, the "city $4 / 9^{\prime \prime}$ of the data base was used as the "city" subset and the "nighway 4/9" as the "highway" subset.

These vehicles in each subset represented different data sources, different times of the year, and a technological mix different from that of the fleet for which the adjustments would be used. These nonuniformities were addressed as follows.

The ventcles in aach subset were subdivided into one of the twelve technology groups: 1) Front or Rear Drive, 2) Automatic or Manual Transmission and 3) Carbureted, Fuel Injected or Diesel. For each of the technology combinations, regression equations were developed relating their shortfall parameter, GPMR, to five veriables: CF, $\triangle M P D, E P A 55 / 45$ MPG, temper ature, and odometer. To standardize for influencing variables, the temperature and odometer terms were reduced to constants by using 55 degf and 4000 miles for these vari ables, and the average value of the EPA $55 / 45$ MPG of each class was substituted, resulting in class equations containing three terms: a constant, the CF term, and the AMPD term.

These class equations were aggregated by weighting each by its expected percentage in the future fleet (1).

The uniform adjustment factors (which equal $1 /$ GPMR) are plotted as functions of AMPD. with CF as a parameter, in figure 1. The CF effect on the highway adjustment fac tor is too small to show up on the graph.

DETERMINATION OF ACTUAL AMPD AND CF VALUES

Figure 1 shows how the value of the adjustment factors are influenced by CF and AMPD. In addition to the data bases that were used to determine the factors, other sources of data were investigated that contained information on why and where driving is done. The references found to be most useful were reports (6)-(7) from the 1977 Nationwide Personal Transportation Study (NPTS).

City Driving

Ref, 6 presents city travel stratified in several ways. Converting the miles per year data into miles per day, the average AMPD for overall oriving is 27.9 miles The data in reference (6) are stratified by degree of urbanization: inside or outside of Standard Metropolitan Statistical Area (SMSA). Investigating "city" travel cnar. acteristics leads to the choice of "inside SMSA. within central city". The AMDD for this type of travel is 27.4.

The velue of 27.4 for $\triangle M P D$ characteristic of city ariving represents ariving on all types of roads within a central city o a SMSA. This consists of driving on city streets = the typical image of "city driving" - and also driving on freeways in the central city of a SMSA. Because this freeway driving is not considered really "city" in nature, the VM-1 Table for 1981 (8) was used to determine what portion of travel in urban areas was done on urban interstates; this value is 0.200

Therefore the AMPD of 27.4 was corrected by a factor of 0.800 to adjust it to the AMPD most characteristic of sity oriving, which is 21.9 miles per day. from Figure 1, at 21.9 AMPD and CF $=100$ ine value for $f C$ is 0.90 .

Another way to define city ariving is to extract from each of the surve;s inat data which can be said to be "pure city": those survey responses indicating C^{5} values of 100 . (Table 5)

Figure 1 - Adjustment Factors

Table 5
"All City" Driving Respondents' Adjustment factor

Highway Driving

The NPTS data do not cover highway driving in a manner comparable to that of city driving. which relates to a specifiable location. Determination of a "typical" AMPD for hignway driving involves consideration of the more generai parameters of trip type and trip length. The type of driving that most would agree corresponds to "highway driving" is the vacation trip. In data on vacation trip length from Reference (7), vacation driving accounts for 0.1% of trips and 0.6% of VMT, so it definitely is at an extreme end of the distribution. The overall average trip length for vacations is 95 miles, and for certain segments of the population it is higher. Table 6 lists the average vacation trip length for the highest trip length groups. for eight different ways of stratifying the data.

The average of the nigh-stratum vacation trip lengtins is 154 miles. Assuming conservatively that one-way trips of this
length occur in one day, we see from figure
1 the value for $f n$ a: 154 miles per day is 0.79 . (The value for fh at the average vacation $\triangle M P D$ of 95 is 0.77 .) If vacation trips are the definition of highway ariving the highway factor. fh, woula be in the range of 0.77 to 0.79 .

Taole 7
Highway Factors Corresponding to the "No City Driving Equals Highway Driving" Definiton

Data Source			Number Data Points	Highway Factor
Emission		Factors	56	078
GM	1980		383	0.73
	1981		390	0.77
Cnrysier Chrysler		1981	11	0.75
		1982	136	0.74
Ford Ford Ford	197		283	0.83
	d 198		12	0.82
	198		135	0.82
A11			1407	0.79

Another possibility for the definition of hignw'ay ariving could be those survey responses for which city fraction was zero. Using this "no city ariving equals highway driving" definition, the values for fin are as shown in Table 7.

In the EPA Emission Factors survey, the respondents were asked to describe their ariving by choices - one of which was "all nighway". So for this survey there is no need for the assumption that "zero CF" equals "nighway".

DISCUSSION

The choice of adjustment factors depends on what definitions of $c i t y$ and highway driving are usea. Selection of definition of city and highway driving carries with it a selection of miles per day and city fraction that correspond to that definition.

In some of the approacnes used, travel characteristics entered into figure l vield adjustment factors.

In other approaches, data yielded adjustment factors directly: from these factors. travel characteristics that correspond to these uniform adjustment factors can be deduced from figure 1.

In comparing the results of the two approaches. consistency considerations allow the evaluation of definitions of city and highway driving that yiela results compatible with both the directly-derived adjustment factors from the in-use surveys and the travel characteristics from the deta in references (6) and (7).

Tables 8 and g summarize the results for city and highway adjustment factors. In the tades. values in parenthesis are those implied using Figure 1 , and values not in parenthesis are those that come directiy from the deta.

With respect to city driving, it appears that the survey results for implied values of AMPD of 17,23 , and 27 AMPD are consistent with the SMSA central city definition of 21.9 AMPD.

It must be pointed out that the actual data sets yielded lower uniform adjustment factors (0.86 and 0.87) in Table 8 because the data sets contain aistributions of venicle technology different from what is projected for the future. Because the adjustments are to be used for future venicies, the values given by figure 1 , whicn are suitadly adjusted for future fieet characteristics, are the ones used.

With respect to highway driving, all nignway uniform adjustment factors are clustered in a narrow range. 0.75 to 0.79 . (see Taole 9) because the highway adjustment is not as sensitive to $\triangle M P D$ as is the city adjustment

Implied or actual AMPD values of 90 to 118 represent a consistent estimate of hignway ariving. The range of adjustments nere 150.77 to 0.79.

Table 8
Summary of City Adjustment Results

Definition of Highway Driving	Hignway Adjustment Factor	Average Miles Per Day
High-stratum vacation trip	(0.79)	154
Non-Emission Factors: "Zero City"	$\begin{aligned} & 0.79 \\ & (0.79) \end{aligned}$	$\begin{gathered} (120) \\ 118 \end{gathered}$
Emission Factors: "All Hignway"	$\begin{gathered} 0.78 \\ (0.77) \end{gathered}$	$\begin{gathered} (100) \\ 90 \end{gathered}$
Average vacation trip	(0.77)	95
"Typical" AMPD	(0.75)	62

CONCLUSIONS

1. Ei-modal adjustment factors for EPA City and Highway MPG values have been shown to be sensitive to the definition of city and nignway driving.
2. Survey results and travel characteristics data agree on the nature of city and highway driving. City driving is
characterized by AMPD values within 5 of 22 miles per day: highway oriving
is characterized by AMPD values within
15 of 105 miles per day.
3. The best uniform city adjustmen: factor is 0.90 and the best uniform nignway adjustment factor is 0.78 .

REFERENCES

(1) "Why Vehicles Don't Achieve the EPA MPG on the Road and How That Shortfall Can be Accounted For", SAE Paper 820791. K.H. Hellman and J.D. Murrell, June 1982.
(2) "Fuel Economy Ratings vs. Road Experience - An Analysis of Ford's 1982 Lease Fleet". SAE Paper 831034, D.L. Kulp and J.C. Mckenna, June 1983.
(3) "In-Use Fuel Economy of 1981 Passenger Cars", SAE Paper 820790, R.W. Schneider. W.S. Freas, and T.P. McMahon, June 1982.
(4) "Comparison of EPA and On-Road Fuel Economy - Analysis Approaches, Trends. and Impacts", SAE Paper 820788, B.D. MeNutt, R. Dulla, R. Crawford, H.T. Mcadams, and N. Morse, June 1982.
(5) "Fuel Economy of Motor Venicles: Revisions To Improve Fuel Economy Labeling and the Fuel Economy Data Base", Federal Register, 48 FR 26698-26717, June 9, 1983
(6) "Household Vehicle Utilization". Report No. 5 of the 1977 Nationwide Personal Transportation Study, U.S. Department of Transportation, FHWA/PL/81/011. April 1981.
(7) "Purposes of Venicie Trips and Travel" Report No. 3 of the 1977 Nationwide Personal Transportation Study, U.S. Department of Transportation, FHwA/PL/ 81/001. December 1980.
(8) Annual Vehicle Miles of Travel and Related Data - 1981. by Highway Category and Vehicle Type". Table VM-1, U.S. Department of Transportation. September 1982 (Preliminary).

