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I Introduction

Most of the modeling done for ecological systems falls into one of two

categories each of which has a serious disadvantage Large systems models

contain numerous variables and parameters in attempts to maximize mechanistic

realism Because of their complexity and large parameter spaces these

models are difficult to corroborate with typically small ecological data

bases On the other hand purely statistical models summarize data well but

have little predictive value when ecosystem inputs or internal structures

change Occasionally however one studies a system whose dynamics can be

described by a fairly simple mechanistic model and whose data base is large

enough to permit statistical evaluations of model adequacy

We encountered this situation in attempting to model the dynamics of

phosphorus in a eutrophic lake This paper describes the development and

parameter estimation of a mass balance model for phosphorus Sufficient data

exists to statistically test the adequacy of the model and we compare model

projections with further data when phosphorus inputs to the lake are signifi-

cantly reduced
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II Background

Shagawa Lake in northeastern Minnesota has been intensively studied by

the U S Environmental Protection Agency for many years The lake has a long

history of cultural eutrophication in 1973 a tertiary wastewater treatment

plant funded by EPA and the City of Ely MN began operation in an attempt

to reduce the supply of the critical nutrients that were considered responsible

for recurrent algal blooms Specifically the plant was designed to remove a

large proportion of the phosphorus P from wastewater effluent which fed

into the lake

Since 1973 the treatment plant has successfully kept supplies of P to

Shagawa Lake at ~20 of their former levels It was expected that with

reduced inputs of P to the lake P concentrations would gradually decline as

P was lost to outflow and to deposition into lake sediments thus relieving

the eutrophic condition

A central objective of the continuing Shagawa study is to predict the

dynamics of P levels in the lake We would like to predict whether or not a

steady state condition will eventually occur if the reduction in P inputs is

maintained Assuming a steady state will be reached we would also like to

predict the length of time required to reach steady state and whether steady

state P levels will be low enough to significantly reduce algal growth

Detailed accounts of the wastewater treatment project and the limnology

of the lake can be found in the following Malueg et al 1975 Larsen and

Malueg 1976 Schults et al 1976 Summaries of the dynamics of phosphorus

and chlorophyll a in Shagawa are presented in Larsen et al 1975 and Larsen

et al 1978a
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In conjunction with the long term monitoring of chemical and biological

characteristics of the lake EPA researchers have worked with several models

to describe Shagawa s history and predict its future trophic status These

models and their predictions have been fully described by Larsen and Mercier

1976

The modeling effort described in this paper was to some extent motivated

by Hsu s recent model study of Shagawa Lake 1976 Hsu treated the phosphorus

P levels in the lake recorded weekly between 1971 and 1975 as a time

series He recognized the recurring seasonal fluctuations seen in the pre

treatment data Fig 1 and described this pattern with two models The

first model was a stochastic auto regressive moving average equation Box and

Jenkins 1970 which produces the recurrent seasonal pattern by requiring the

P level at any given week in a year to be highly correlated with the P level

in the same week of the previous year In the second model Hsu fit a deter-

ministic model consisting of piecewise linear and sinusoidal functions to

the pretreatment data and then described the residual differences between

model and data with a Box Jenkins moving average model

Both models gave an excellent fit to the pretreatment pattern of P

concentrations However because they were both strictly empirical and based

on 1971 1972 data neither model could predict the downward trend in lake P

levels which began following the start of wastewater treatment in 1973 Hsu

was able to follow this trend by superimposing another deterministic component

on one of the previous models but the basic model inadequacy still remained

Purely empirical models cannot predict novel structural changes in a time

series
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We recognized this problem in the empirical approach and decided to try

a simple mechanistic deterministic model to describe the underlying seasonal

fluctuations in lake P levels However we also saw the value of the time

series techniques advocated by Hsu to deal with the residual differences

between a deterministic model and data We used time series methods to study

the adequacy of a mechanistic P model and to provide confidence limits for

the P trajectories which it would predict

This paper describes the development of a mechanistic model and treats

in some detail the estimation of model parameters analysis of residuals and

generation of confidence intervals The actual model predictions as compared

with observed lake P levels and the resulting implications for recovery of

the lake are discussed in another paper Larsen et al 1978a Here the

emphasis will be on the analytical methods which generated the model predic-

tions and the limitations on these methods imposed by the data

III The Deterministic Model

We used a mass balance equation to describe changes in lake P In the

model P is dealt with as a concentration by dividing mass flow rates by the

lake volume As illustrated by Figure 2 the change in P levels is a sum of

inflow outflow deposition and sediment release rates

v
[P]

¦

°pcp] v 0

where [P] Concentration of total P pfl l

J Rate of P supply from external sources

V Lake volume

Q Rate of water outflow

5



Op
Instantaneous loss rate of P to the lake sediments

R Rate of P release from the sediments

With the exception of the release terra R
v equation 1 is an accepted

description of an instantly well mixed lake system which loses P to the

sediments Vollenweider 1975 Sonzogni et al 1976 Larsen et al 1978a

Sbagawa Lake is unusual in that its P dynamics have been dominated by a

significant feedback of P from the sediments This release of P appears in

Figure 1 as the sudden increases which begin about the 10th and 25th weeks of

each year Larsen et al 1978b discuss the mechanisms for this phenomenon

and their analysis indicates that both the spring and summer releases begin

suddenly proceed at a constant rate for a number of weeks and then end

suddenly Thus we modeled the release rate as

fRi
11 ^ t ^ tg

R2 t3 t t4 2

0 otherwise

The switch times tx t4 refer to specific weeks of an arbitrary year

so R t is a periodic function having a period of 1 year A final assumption

in equation 1 is that we take 0p
to have one of two constant values depending

on the season of the year viz

fa s
if lake is ice free week 17 to week 46

v
p

f o
w

if lake is ice covered week 46 to week 17
v P

This assumption is more in agreement with the mechanics of P deposition than

the use of a fixed
ay
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Equation 1 with a piecewise constant
op

and R t specified by 2

constitutes the deterministic model for P in Shagawa Lake The schedules for

P input J and water flow rate Q are provided on a weekly basis from flow

and P loading data whose measurement has been described elsewhere Malueg et

a] 1975 Larsen et air 1975 Larsen and Malueg 1976

IV Preliminary Model Analysis

Because equation 1 is linear we can address the questions of model

steady state behavior which we previously raised in section II with respect

to actual lake dynamics Suppose the model is started at an arbitrary initial

condition Further suppose the same weekly schedules for J and Q are used

in the model year after year so that all parameters and forcing functions are

periodic with a period of 1 year Then there exists a unique steady state

for [P t ] which has the same period as that of the forcing function J t V

R t i e the steady state has a period of 1 year Yakubovich and Starzhin

skii 1975 This result is true as long as the unforced model with J t V

R t 0 has no periodic steady state By a result of Floquet theory

D1Angelo 1970 the unforced model can have a periodic steady state only if

state is periodic in the forced model

This steady state result was borne out by simulations in which the

initial condition for the model was taken to be the value of [P] at the end

of 1972 Following parameter estimation the model was run with a reduced

a dt 0 D Angelo 1970 p 194

P

3

Since Q and
op

are not negative the integral cannot be zero and the steady
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schedule for Inputs typical of a post treatment year and two different water

flow schedules one for a wet year and one for a dry year In both

cases steady state was reached within three years

Thus if the model is valid we would expect to see the lake P levels

show a new steady state type of behavior within a few years after P inputs

are reduced Of course an exact steady state will not be seen because of

year to year variations in the loading and washout rates J and Q

V Parameter Estimation

The next stage in the model development is the estimation of parameters

for equation 1 based on the pretreatment data time series of Figure 1

For the estimation the pretreatment interval from the onset of ice cover in

late 1971 until the onset of ice cover in 1972 was partitioned into an ice

covered and an ice free period The 1971 1972 ice covered interval 23

weeks was used to estimate cjpw Rlt tj and t2 the ice free period during

1972 29 weeks was used to estimate a^s R2» t3 and t4 The remainder of

the pretreatment period made up of the first 46 weeks of 1971 and the last 6

weeks of 1972 was used to corroborate the model Fig 3

We used a least square criterion for the estimation i e

Minimize C 2 ^

with respect to the parameters OpW a^s Ri R2» tj t2 t3 t4 In equation

3 [P]| and [P] are weekly concentrations from the data and model respec
K IN

tively and the week index k runs over the appropriate estimation interval

The large size of the parameter space strongly suggests using a directed

search technique to minimize C There are several gradient search algorithms
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available for this type of optimization Pierre 1969 and we decided to use

a gradient approach However the problem of minimizing C has an unusual

feature — the gradient of C must be computed with respect to the switch time

parameters tj t4

Fortunately methods which have been derived in the context of optimal

control theory for calculating this type of gradient do exist It is not

difficult to recast the minimization problem 3 in control theoretic terms

We view equation 3 as a cost functional for a linear tracking problem with

fixed initial and final times Kirk 1970

In the remainder of this section we will sketch the results from the

calculus of variations which compute the gradient of C We follow closely

the method of Hasdorff 1976 which should be consulted for derivations and

other mathematical details One preliminary note the cost functional C

will be restated as an integral to simplify the mathematics Implementation

of the results requires that discrete time be used i e C takes the form of

equation 3 and equation 1 is restated as a difference equation with an

update interval of one week However since equation 1 is linear with rate

coefficients having small absolute values discretization of the continuous

equations is straightforward and details will be omitted

Let v [ct
w

Rx t1 t2] where the denotes vector transpose and

P

~ signifies a vector For estimation of these parameters we restate C as

where [tQ tf] is the 1971 1972 ice covered period and where [P] has been

renamed xx We also restate equation 1 as

4
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dx
Ai A

It fl x V

with fi given by the right hand side of equation 1 and x [xlf x2]

Define the state variable x2 t by

dx2

ft f2 x V Xj Xi
2

x2 t0 0 5

This definition allows us to write the cost functional in terms of a system

state variable viz

C 0 x tf x2 tf 6

The notation combines the systems dynamical equation and the cost functional

into a single state equation

| ra

Finally we need to define adjoint variables X t also known as costate

variables or Lagrange multipliers Kirk 1970 The adjoint variables satisfy

the state equation

T X X tf V 0 x t » 8
at x i a i

In equation 8
x

is the matrix of partial derivatives whose ij th element

is given by
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Also Vx signifies a gradient with respect to the vector x i e

p «x tf »0 x tf
8x5

Armed with these definitions Hasdorff uses variational methods to calculate

the gradient of an arbitrary cost functional 0 x tf with respect to

several forms of initial conditions and input and control parameters For

the system described by equations 4 and 5 the gradient is

9 apw Rlt tlf t2

£ t t dt
fit

f £ t dt

rt2

K

Tcti [^ xctj o x t1 R1 j
X t2 pCxCta ^ x t2 R2 j

9

Each component in the gradient vector corresponds to the parameter having the

same position in the argument list of g In addition

K
3fj dfs

Ba
w

da
w V

afj af2

MI br7

Calculation of the gradient is accomplished with the following sequence

1 Given an initial guess for the parameter vector v the state

equation 7 is integrated numerically from tQ to tf This calcula-

tion also gives the value of C
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2 The final state xft^ provides the initial condition for the

adjoint equations via 8

3 The adjoint system 8 is integrated backwards in time from tf to

t and the values of t are stored
o

4 Equation 9 uses the stored values of \ t to compute the gradient

9

5 The values of C and g are passed on to a gradient search algorithm

which uses them to change the parameter vector such that C decreases

The sequence is repeated until C has been satisfactorily minimized For step

5 of the sequence we used the fast and efficient Davidon Fletcher Powel1

conjugate descent algorithm Pierre 1969 The algorithm is implemented by

subroutines FMFP and DFMFP of the IBM System 360 Scientific Subroutine package

The algorithm converged quickly for this problem but due to the the noise

in the data the cost functional was fairly insensitive to small changes in

some parameters Thus estimation runs were made in groups with each run of

a group having different initial guesses for the parameters

Table 1 gives the best estimates for the model parameters The fitted

model and data are shown in Figure 3 As measured by the sum of squared

residuals the model showed a 25 better fit during the corroboration interval

than it did during the estimation interval Therefore we concluded that

equations 1 and 2 with the parameter estimates of Table 1 provide an

adequate deterministic model for the P dynamics seen in Figure 1

VI Analysis of Residuals

A The Stochastic Model

The process of parameter estimation produced a best fit »del according
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to the least squares criterion However this type of fitting does not

necessarily eliminate systematic departures through time between model and

data We can test for these trends by analyzing the model residuals using

the time series techniques of Box and Jenkins 1970

The residual time series ek for 1971 1972 is shown in Figure 4 The

first step in the analysis of this series is calculation of the mean and

variance Since the mean value of the series is effectively zero we next

studied the autocorrelation structure of e^ The theoretical autocorrelation

function at time lag j is defined by

E [ e MJ ek i Me 3

p
£ S J S 10

J
Qf

2

e

where E is the expectation operator j and k are discrete time indices and

Me and are the mean and variance respectively of the series
e^

Figure 5 shows the function pi
as estimated for the e s of Figure 4 The

«J

estimated values of p indicate whether the e series is covariance stationary

If the e series is stationary then
pj

will approach zero rapidly with

increasing j The dashed lines in Figure 5 show the standard error of the

estimate of p Estimated values of an autocorrelation which is theoretically
J

zero are approximately normally distributed Hence values of
p^

such as

Pi7» which are theoretically zero but fall outside the line have about a one

third probability of occurring Box and Jenkins 1970 p 178

Another restriction on the reliability of
pj

estimates is provided by N

the number of data points available Here N 104 and Box and Jenkins

1970 p 33 claim that estimates of
p^

are unreliable for j N 4 The

deterministic model and the lake P dynamics operate on a fundamental period
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of 1 year so we expect to see a peak in at j 52 This peak does appear

in Figure 5 but the above criterion requires at least 4 years of data for

one to be statistically assured of its importance As it is we cannot

depend on the estimated value of p beyond lag 26
J

Based on Figure 5 we decided to try a stationary model for ek with a

theoretical autocorrelation function which is effectively zero beyond lag 2

A second order moving average model of the following form is indicated

ek ak 61 ak l 02 ak 2
11

In equation 11 the a s are independent random shocks having zero mean and

constant variance o£
a

The model 11 was fit to the series e^ using an estimation algorithm

given in chapter 7 of Box and Jenkins 1970 The results of the estimation

produced

ek ak 0 55 ak 1
0 2 aR_2

a 30 6 12

Finally we apply diagnostic checks to assess the adequacy of the model

12 The procedure is to use 12 and the residuals ek to generate a

series a If equation 12 is adequate the ak s should be uncorrelated
l\

with a zero mean A white noise test is performed on the autocorrelation

function of the a s Box and Jenkins 1970 p 299 This test confirmed
In

the adequacy of 12

The preceding analysis shows that the model residuals ek can be

described by a stationary random time series with a zero mean and a low

oraer of autocorrelation We interpret this result to mean that the mass

balance model 1 adequately represents a^l of the deterministic information

about P dynamics which can be extracted from the 1971 1972 data
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B Forecasts and Confidence Limits

With the aid of equation 12 we can place confidence limits on the

predictions of the deterministic model 1 We assume that the nature of the

random errors e^
remains unchanged following the start of wastewater treat-

ment in 1973 Following the method of Box and Jenkins 1970 chapter 5 we

forecast values for the series e^ and superimpose the forecast on the deter-

ministic predictions The error variance of the forecast gives confidence

limits for the prediction of ek

Let e forecast of the e series for j weeks ahead of the time
K J

origin k If we take k as the last week in 1972 then except for the first

two weeks in 1973 the forecasts ek j
are identically zero since

pe 0 and

the model 12 is stationary Therefore the expected future value of the

residuals is zero and we center the confidence limits on the trajectory of

the deterministic model

For j 3 the confidence intervals are defined by

195
confidence interval _ p n q H31
at lead time j J Pt j

1 U° 05 2 °e l3

where P is the deterministic prediction at time k j and
k j

deviate exceeded by the fraction e 2 of the unit Normal distribution

VII Model Predictions

Figures 6 and 7 show model predictions compared with data for 1973 74

and 1975 76 The two predicted trajectories employ observed flow rates

during 1973 1976 for the parameters Q t The prediction which assumes
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treatment uses the observed P inputs for J t which are about 80 lower than

pretreatment inputs Larsen et al 1978a We made the prediction which

assumes no treatment by employing the average P input rate observed during

the two pretreatment years 1971 1972 Confidence intervals are shown centered

on the trajectory which assumes treatment but intervals of equal width would

also apply to the no treatment curve

Since observed values for J and Q were used Figures 6 and 7 are not

predictions in the truest sense To make such predictions we would also

need to forecast time series for J and Q both of which are functions of

river discharge and thus of weather patterns However we compared simula-

tions of the model which employed Q t for a typical high water year as

opposed to a low water year and found that the P trajectories were never

separated by more than 4 pg 1 Based on this trial we feel that the model

would provide good predictions for future normal water years

The observed lake P response to reduced loading appears to be delayed

since it follows the no treatment prediction more closely than the treat-

ment prediction during most of 1973 However by 1975 and certainly 1976

the observed lake P levels track the treatment prediction quite closely and

consistently fall within the confidence intervals Following a sharp reduction

in P inputs equations 1 2 and 12 clearly provided an accurate descrip-

tion of P dynamics in Shagawa once the lake response has become stabilized

Larsen et al 1978a give a statistical summary of the results shown in

Figures 6 and 7 and they discuss the Figures implications for improvement in

the trophic status of the lake
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VIII Summary and Conclusions

We have outlined the methodology used to develop a predictive model of

phosphorus dynamics in Shagawa Lake The modeling process involved a sequence

of steps beginning with selection of a simple mass balance equation and

mathematical formulation of the various rate functions in the equation In

the next stage we estimated model parameters using a least squares criterion

applied to pretreatment data of 1971 1972 The fitted model was then subjected

to a time series analysis of its residuals to uncover systematic departures

from the data Upon finding no trends in the residuals we judged the deter-

ministic model to be adequate and went on to generate confidence limits from

the stochastic model of the residuals Finally we made predictions of P

levels for 1973 1976 and compared them with data

In constructing this model we have taken an approach more akin to

conventional statistics than to currently popular practices of systems

ecology That is we began with the constraints imposed by the data base

constraints of sampling frequency sampling duration and types of variables

sampled Our goal was to build a predictive model which could extract the

maximum amount of information about lake P dynamics from the available data

and would require as few assumptions about mechanisms or parameter values as

possible The recent work of Walker 1977 is an excellent discussion of

this approach applied to a variety of lake water quality models

The data base for Shagawa Lake constitutes one of the longest most

comprehensive records available for variables pertinent to algal nutrient

dynamics Thus even though equation 1 appears fairly elementary it may

be the most sophisticated model of its type which can be supported by currently

available data
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TABLE 1 Parameter estimates for equations 1 and 2

Ice covered season Ice free season

II0 0 035 wk 1

°p
0 072 Wk 1

Ri 280 kg wk r2 500 kg wk

week 12 t3 week 25

ii week 14 t4 week 34
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Figure 2 Sources arid losses of phosphorus in Shagawa Lake
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