URBAN BMP COST AND EFFECTIVENESS SUMMARY DATA FOR 6217(g) GUIDANCE

ONSITE SANITARY DISPOSAL SYSTEMS

January 29, 1993

WOODWARD-CLYDE

URBAN BMP COST AND EFFECTIVENESS

SUMMARY DATA

FOR 6217(g) GUIDANCE

LIBRARY US EPA Region 4 AFC/9th FL Tower 61 Forsyth St. S.W. Atlanta, GA 30303-3104

ONSITE SANITARY DISPOSAL SYSTEMS

January 29, 1993

WOODWARD-CLYDE

ACKNOWLEDGEMENTS

The authors of this report were Mr. Dale Lehman, Mr. Brian Donovan, and Mr. Dan Sheridan of Woodward-Clyde.

The authors would like to thank Mr. Rod Frederick and Mr. Robert Goo of the Unites States Environmental Protection Agency (EPA) for their guidance and comments during the development of this document.

The project was funded by the EPA Assessment and Watershed Protection Division.

TABLE OF CONTENTS

1.0	INTR	RODUCTION
2.0	ONS PRA	TE SANITARY DISPOSAL SYSTEMS MANAGEMENT CTICES EFFECTIVENESS AND COST SUMMARY2-1
	2.1	DESCRIPTION OF ONSITE SANITARY SYSTEMS MANAGEMENT PRACTICES
	2.2	EFFECTIVENESS
	2.3	COST
3.0	EFFI	ECTIVENESS AND COST SUMMARY TABLE
4.0	MAN	AGEMENT PRACTICES OPTIONS
	4.1	NEW OSDSs
	4.2	REPLACEMENT OR ENHANCEMENT OF EXISTING OSDSs 4-5
5.0	REF	ERENCES
	APP	ENDICES
	Α.	STATE REGULATIONS
	B.	RESIDENTIAL SEPTAGE POLLUTANT LOADS
	C.	IMPLEMENTATION RESTRICTIONS
	D.	EFFICIENCY DATA

E. COST DATA

Onsite Sanitary Disposal Systems 80040000H:\wp\report\osd\rpt.toc

LIST OF TABLES

TABLE 1-1.	Water Use and Pollutant Loadings by Category
TABLE 1-2.	Reduction in Pollutant Loading byElimination ofGargage DisposalsGargage Disposals
TABLE 2-1.	Minimum Lot Sizes Required to Accomodate a Septic Tank Leaching Field
TABLE 2-2.	Suggested Septic Tank Pumping Frequency (Years)
TABLE 3-1.	OSDS Effectiveness and Cost Summary

In November 1990, the U.S. Congress passed the Coastal Zone Act Reauthorization and Amendments (CZARA). As part of this reauthorization, Congress created a new, distinct program to address nonpoint source (NPS) pollution of coastal waters (Section 6217). The U.S. Environmental Protection Agency (EPA) and the National Oceanic and Atmospheric Administration (NOAA) jointly drafted Proposed Program Guidance for Section 6217. EPA was given the lead responsibility for developing the Management Measures Guidance required under Section 6217(g) of CZARA.

EPA established five Federal/State Work Groups to assist in preparation of the 6217(g) Guidance. Woodward-Clyde has supported the Urban Work Group through the collection and analysis of information on Best Management Practices (BMPs) used to control urban NPS pollution. The results of these efforts includes four books that present cost and effectiveness information on BMPs for:

- Erosion and Sediment Control;
- Post Construction Runoff;
- Onsite Sewage Disposal Systems; and
- Roads, Highways and Bridges.

This report is a summary of the cost and pollutant removal effectiveness information that was obtained from published literature regarding onsite sanitary disposal systems (OSDSs). The report also contains options for management practices and systems of management practices for control of nonpoint source (NPS) pollution from OSDSs. These options are based on the information obtained from the literature review.

This document contains information from nearly 60 documents. The documents were obtained through literature searches and telephone contacts with all states and territories with approved Coastal Zone Management Plans. Cost and effectiveness data from the various management

practices presented in the documents were reviewed and analyzed to summarize the information. Data were omitted from consideration where substandard field technique was used in the collection of the data or if results were influenced by atypical climatological or site characteristics (e.g. high water table or heavy water loads to the system). Also, only management practices that were applied in the field were considered. Experimental practices only applied in a research setting were not considered.

Many of these documents indicate the need to address NPS pollution originating from OSDSs. The Chesapeake Bay Program (1990) found that 55%-85% of nitrogen entering an OSDS can pass into the groundwater. OSDSs account for 74% of the nitrogen entering Buttermilk Bay (at the northern end of Buzzard's Bay) in Massachusetts (Horsely Witten Hegeman, 1991). Similar results were obtained from studies performed on the Delaware Inland Bays (Reneau, 1977; Ritter, 1986). These studies indicated that septic systems were major contributors of nitrogen entering into the Delaware Inland Bays. Assawoman Bay, Indian River Bay, and Rehoboth Bay received 15%, 16% and 11% of their nitrogen from septic systems, respectively. Groundwater discharges of NPS pollution were estimated to contribute 75% of the total nitrogen entering the Bays (Reneau, 1977).

Water flow reduction can help to diminish NPS pollution by increasing the residence time within OSDSs and reducing hydraulic load to the system. Flow saving devices such as water saving appliances, flow reducing fixtures, and low flush toilets can be installed in new buildings, or used to replace existing equipment as it wears out. When these devices are used in connection with management practices for new and replacement construction, the reduced flows save costs by reducing the size of new and retrofit treatment facilities, extending the life of OSDSs, increasing performance of existing facilities, and lowering costs of operation for holding tanks. Cost savings have also been documented due to reduced demands for potable water (Logsdon, 1990). The cost is minimal, especially for replacement when a fixture breaks.

Table 1-1 compares various sources of water usage with typical pollutant loadings.

Water Use	Volume (l/capita)	BOD (g/capita)	SS (g/capita)	Total N (g/capita)	Total P (g/capita)
Garbage Disposal	4.54	10.8	15.9	0.4	0.6
Toilet	61.3	17.2	27.6	8.6	1.2
Basins and Sinks	84.8	22.0	13.6	1.4	2.2
Misc.	25.0	0	0	0	0
Totals	175.6	50.0	57.1	10.4	4.0

Table 1-1. Water Use and Pollutant Loadings by Category

Source: EPA, 1980

Table 1-2 summarizes the effectiveness of eliminating garbage disposals in reducing the loadings of pollutants in wastewater.

Table 1-2. Reduction in Pollutant Loading by Elimination of Garbage Disp	osals
--	-------

Parameter	Reduction in Pollutant Loading (%)
SS	25-40
BOD	20-28
Total N	3.6
Total P	1.7

This report contains descriptions of the management practices considered, summary cost and effectiveness information, and recommended management practices options for use in OSDSs. The appendices present the data analyzed to develop the summary cost and effectiveness information.

Onsite Sanitary Disposal Systems 80040000H:\wp\report\osd\report1.osd

INDEX	K

MANAGEMENT PRACTICE	PRACTICE DESCRIPTION	PRACTICE EFFECTIVENESS	PRACTICE COST
Aerobic Treatment Units	Page 2-8	-	
Alternate Trench	Page 2-3	Page 2-12	Page 2-14
Anaerobic Upflow Filter	Page 2-4	Page 2-12	Page 2-14
Center Sewage Treatment Facility	Page 2-6	Page 2-13	Page 2-15
Cluster Systems	Page 2-7	Page 2-13	Page 2-15
Constructed Wetlands	Page 2-6	Page 2-13	Page 2-16
Conventional Septic System	Page 2-1	Page 2-11	Page 2-14
Disinfection Devices	Page 2-8	Page 2-14	Page 2-16
Eliminating Garbage Disposals	Page 2-7	Page 2-13	Page 2-15
Evapotranspiration Systems	Page 2-7	Page 2-12	Page 2-15
Fixed Film Systems	Page 2-8		
Intermittent Sand Filter	Page 2-3	Page 2-12	Page 2-14
Low Phosphate Detergents	Page 2-7	Page 2-12	Page 2-14
Low Pressure Systems	Page 2-3	Page 2-11	Page 2-14
Mound Systems	Page 2-2	Page 2-11	Page 2-14
Recirculating Sand Filter	Page 2-4	Page 2-12	Page 2-14
RUCK System	Page 2-6	Page 2-12	Page 2-15
Trenches and Beds	Page 2-5	Page 2-12	Page 2-14
Vaults and Holding Tanks	Page 2-7	Page 2-13	Page 2-16
Water Conservation Fixtures	Page 2-8	Page 2-13	Page 2-16
Water Separation System	Page 2-6	Page 2-12	Page 2-15

Onsite Sanitary Disposal Systems 80040000H:\wp\report\osd\report1.osd

2.0 ONSITE SANITARY DISPOSAL SYSTEMS MANAGEMENT SYSTEMS EFFECTIVENESS AND COST SUMMARY

This section describes the types of Onsite Sanitary Disposal System (OSDS) management practices considered, the limitations of these types of systems, and the cost and effectiveness of these systems.

Nearly 60 documents were reviewed to develop effectiveness and cost data for OSDSs. It should be noted that the documents obtained and reviewed do not include all of the published literature regarding OSDS management practices. However, many of the documents obtained were summaries of other investigations and the most widely used OSDS documents were reviewed. The influence of soil type, climate, water loads, and separation distance (distance to groundwater or limiting layer) on OSDS performance are also discussed.

2.1 DESCRIPTION OF OSDS MANAGEMENT PRACTICES

The following is a description of various OSDS management practices.

<u>Conventional Septic System</u> - A conventional septic system consists of a settling or septic tank and a leaching field. The traditional system accepts both greywater (wastewater from showers, sinks and laundry) and blackwater (wastewater from toilets). These systems are typically restricted in that the bottom invert of the leaching field must be at least 2 feet above the seasonally high water table or impermeable layer (separation distance) and the percolation rate of the soil must be between 1 and 60 minutes/inch. To ensure proper operation, the tank should be pumped every 3 to 5 years. Nitrogen removal of these systems is minimal and somewhat dependent on temperature. The most common type of failure of these systems is from clogging of the leaching field, insufficient separation distance to the water table, insufficient percolation capacity of the soil, and over loading of water. Table 2-1 shows estimates of lot areas required as a function of soil type, assuming that at least 5,000 square feet is needed for a house and its setbacks.

Soil Texture	Perc.Rate (min/in)	Bottom Area Application Rate (gpd/ft ²)	Leaching Field Area Required [*] (ft ²)	Lot Area Required incl. 5,000 ft ² for house (acres)
Gravel, coarse sand	<1	not suitable	not applicable	not applicable
Coarse/medium sand	1-5	1.2	1357	0.2
Fine sand, loam sand	5-15	0.8	2035	0.2
Sandy loam, loam	15-30	0.6	2728	0.25
Loam, porous silt loam	30-60	0.45	3608	0.3
Silty clay loam, clay loam	60-120	0.2	8140	0.5

Table 2-1: Minimum Lot Sizes Required to Accomodate a Septic Tank Leaching Field

* Area of leaching field assumes the use of a series of five, 2 ft. wide trenches, spaced 6 ft. apart, and 5 ft. setback at each edge.

Setbacks are necessary to minimize the threat of public health or environmental problems in case a system should fail. The setback should be based on soil type, slope, presence and character of the water table. Setback guidelines should be set for both traditional and alternative OSDS.

EPA recommends the following setbacks for soil absorption systems although other setbacks may be required for normal high tide marks, pressurized water lines, etc.:

Water Supply Wells:	50 to 100 feet
Surface Waters, Springs:	50 to 100 feet
Escarpments:	10 to 20 feet
Boundary of Property:	5 to 10 feet
Building Foundations:	10 to 20 feet (30 feet when located upslope from a building in
	slowly permeable soils.)

<u>Mound Systems</u> - Mound systems operate in much the same manner as conventional septic systems except that effluent from the septic tank enters a dosing tank and then is pumped to a leaching field that is located in elevated sand fill above the natural soil surface. This system is used when insufficient separation distance or percolation conditions exist for a conventional system. It is maintained and performs in much the same manner as a conventional system. In

fact, the performance of the system is generally a little better because the pressure dosing provides for more uniform distribution of effluent throughout the leaching field.

For mound systems, the mound perimeter requires downslope setbacks to make certain that the basal area of the mound is sufficient to absorb the wastewater before it reaches the perimeter of the mound to avoid surface seepage. On level sites the entire basal area of the mound (i.e., the product of the length of the mound times the width) is used to determine the setbacks. On sloping sites, only the area downslope of the absorption bed is considered. The exact downslope setbacks will depend on the permeability of the soil. Upslope and side slope setbacks for sloped systems should be 10 feet, based on a 3 to 1 side slope.

Where adequate area is available for subsurface effluent discharge, and permanent or seasonal high ground water is at least 2 feet below the surface, the elevated sand mound may be used in coastal areas. This system can treat septic tank effluent to a level that usually approaches primary drinking water standards for BOD_5 , suspended solids, and pathogens by the time the effluent plume passes the property line for single-family dwellings.

<u>Low Pressure Systems</u> - Low pressure systems are nearly identical to mound systems except that the leaching field is in natural soil. This system has the same design limitations as a conventional system and its main advantage is slightly better performance because the pressure dosing provides for more uniform distribution of effluent throughout the leaching field.

<u>Alternate Trench</u> - As stated in the description of the conventional septic system, the most common failure is from clogging of the leaching field and/or overloading of water to the field. Alternate trenches are simply a second leaching field that can be used to rest the primary leaching field. During the rest period of the primary field, the system reverts to aerobic clogging and the assimilative capacity of the field is usually improved. Alternate trenches are typically used 3 to 6 months a year.

Intermittent Sand Filter - Intermittent sand filters are used in conjunction with septic tanks and leaching fields. An intermittent sand filter receives and treats effluent from the septic tank before it is distributed to the leaching field. The sand filter consists of a bed (either open or buried) of granular material from 24 to 36 inches deep. The material is usually from 0.35 to

1.0 mm in diameter. The bed of granular material is underlain with graded gravel and collector drains. These systems have been shown to be effective for nitrogen removal, however, this process is dependent on temperature. Water loading recommendations for these filters is typically between 1 and 5 gallons per day/square foot (gpd/sf) but can be higher depending on wastewater characteristics. Primary failure of sand filters is from clogging. The following maintenance is recommended to keep the system performing properly: resting bed; raking surface layer; or removing top surface media and replacing it with clean media. In general, the filters should be inspected every 3 - 6 months to ensure that they are operating properly.

Intermittent sand filters are used for small commercial and institutional developments and individual homes. The size of the facility is limited by land availability. The filters should be buried in the ground, but may be constructed above ground in areas of shallow bedrock or high water tables. Covered filters are required in areas with extended periods of subfreezing weather. Excessive long-term rainfall and runoff may be detrimental to filter performance, requiring measures to divert water away from the system (EPA, 1980).

<u>Recirculating Sand Filter</u> - A recirculating sand filter is nearly identical to an intermittent sand filter except that effluent from the filter is recirculated through the septic tank and/or the sand filter again before it is discharged to the distribution field. Recirculating the effluent enhances performance and allows media size to be increased to as much as 1.5mm in diameter and water loading rates in the range of 3 to 10 gpd/sf to be used. Recirculation ratios of 3:1 to 5:1 are generally recommended.

Recirculating sand filters can achieve a very high level of treatment of septic tank effluent before discharge to surface water or soil. This usually means single-digit figures for BOD₅ and suspended solids and secondary body contact standards for pathogens (in practice, 100-900 per 100 ml). Dosed recycling between sand filter and septic tank or similar devices can result in significant levels of nitrification/denitrification, equivalent to between 50 and 75 percent overall nitrogen removal, depending on the recycling ratio. Recirculating sand filters may require as much as 1 square foot of filter per gallon of septic tank effluent.

<u>Anaerobic Upflow Filter</u> - An anaerobic upflow filter (AUF) resembles a septic tank filled with 3/8-inch gravel with a deep inlet tee and a shallow outlet tee. An AUF system includes a septic

tank, AUF, a sand filter, and a leaching field. As with the sand filter, dose recycling can be used to enhance this systems performance. Hydraulic loading for an AUF is generally in the range of 3 - 15 gpd.

A growing body of data at the University of Arkansas and elsewhere suggests that an upflow anaerobic filter (UAF) can provide further treatment of septic tank effluent before discharge to a sand filter. This treatment allows a drastic reduction (by a factor of 8 to 20) in the size of sand filter needed to attain the performance described above, with major reductions in cost.

An upflow anaerobic filter resembles a septic tank or the second chamber of a dual-chambered tank. It is filled with 3/8-inch gravel, where wastewater enters at the bottom and exits at the top. It should be sized to allow retention times between 16 and 24 hours. There is a high degree of removal of suspended solids and insoluble BOD. Dosed recycling between sand filter and UAF can result in 60 to 75 percent overall nitrogen removal.

<u>Trenches and Beds</u> - Trenches are typically 1 to 3 feet wide and can be greater than 100 feet long. Infiltration occurs through the bottom and sides of the trench. Each trench contains one distribution pipe, and there may be multiple trenches in a single system. Like conventional septic systems, they require 2 to 4 feet between the bottom of the system and the seasonally high water table or bedrock, and are best suited in sandy to loamy soils where the infiltration rate is 1 to 60 minutes per inch. Gravelly soils or poor-permeability soils (60 to 90 minutes per inch) are not suitable for trench systems. However, where the infiltration rate is greater than 1 minute per inch, 6 inches of loamy soil can be added around the system to create the proper infiltration rate (Otis, undated).

Beds are similar to trenches except that infiltration occurs only through the bottom of the bed. Beds are usually greater than 3 feet wide and contain one distribution pipe per bed. Single beds are commonly used; however, dual beds may be installed and used alternately. The same soil suitability conditions that apply to trenches apply to bed systems.

Trenches are often preferred to beds for a few reasons. First, with equal bottom areas, trenches have five times the sidewall area for effluent absorption; second, there is less soil damage during the construction of trenches; and third, trenches are more easily used on sloped sites.

The effluent from trenches or beds can be distributed to gravity, dosing, or uniform application. Dosing refers to periodically releasing the effluent using a siphon or pump after a small quantity of effluent has accumulated. Uniform application similarly stores the effluent for a short time, after which it is released through a pressurized system to achieve uniform distribution over the bed or trench. Uniform application results in the least amount of clogging.

Maintenance of trenches and beds is minimal. Dual trench or bed systems are especially effective because they allow the use of one system while the other rests for 6 months to a year to restore its effectiveness (Otis, undated).

<u>Water Separation System</u> - A water separation system separates greywater and blackwater (toilet waste). The greywater is treated using a conventional septic system and the blackwater is contained in a vault/holding tank. The blackwater is later hauled offsite for disposal.

For extreme situations or for seasonal residents, some form of separation of toilet wastes from bath and kitchen wastes may be helpful. Most nitrogen discharges in residential wastewater come from human urine. A very efficient toilet (0.8 gallon per flush), if routed to a separate holding tank, would need pumping only three or four times per year even for a family of four permanent residents.

<u>RUCK System</u> - The RUCK system also requires separation of the greywater and the blackwater. However the blackwater is nitrified in a buried sand filter and then mixed with the greywater in an anaerobic tank for denitrification. The effluent is then dosed to a leaching field.

<u>Constructed Wetlands</u> - Constructed wetlands are usually used for polishing of septage effluent that has already had some degree of treatment. Pretreatment could include processing through a septic tank or some type of primary and secondary treatment of effluent from a group of individual properties. Constructed wetlands performance will be degraded in colder climates during winter months because of plant die off and reduction in the metabolic rate of aquatic organisms.

<u>Central Sewage Treatment Facility</u> - A central sewage treatment facility would include sewering of all units to a central facility, and primary, secondary, and tertiary treatment at the facility.

<u>Cluster Systems</u> - Cluster systems can take on many forms. For this document, a cluster system is defined as septic systems on individual properties for primary treatment of septage and then effluent from several of these systems being collected and provided with additional treatment. The additional treatment could include sand filters or AUF, constructed wetlands, chemical treatment, or aerobic treatment. The benefit of cluster systems is centralization of the secondary treatment which can provide some economy of scale in such things as filters or constructed wetlands.

<u>Evapotranspiration (ET) Systems</u> - ET systems combine the process of evaporation from the surface of a bed and transpiration from plants to dispose of wastewater. The wastewater would require some form of pretreatment such as a septic tank. An ET bed usually consists of a liner, drainfield tile, and gravel and sand layers. ET systems are useful where soils are unsuitable for subsurface disposal, where the climate is favorable to evaporation, and where ground-water protection is essential. In both types of systems, distribution piping is laid in gravel, overlain by sand, and planted with suitable vegetation. Plants can transpire up to 10 times the amount of water evaporated during the daytime. For an ET system because it requires an impermeable seal around the system. In the United States, this limits use of ET systems to the Southwest. The size of the system depends on the quantity of effluent inflow, precipitation, the local evapotranspiration rate, and soil permeability (Otis, undated).

<u>Vaults and Holding Tanks</u> - Vaults and holding tanks are used to contain wastewater in emergency situations or other temporary functions. This technology should be discouraged because of high anticipated overloads due to difficult pumping logistics. Such systems require frequent pumping, which can be expensive.

<u>Eliminating Garbage Disposals</u> - Eliminating garbage disposals reduces the waste loads on OSDSs. The garbage can be composted by the homeowner and the compost has beneficial uses.

<u>Low Phosphate Detergents</u> - Several areas require the use of low phosphate detergents. Low phosphate detergents have been shown to be as effective in cleaning ability as other detergents.

<u>Water Conservation Fixtures</u> - Water conservation fixtures can consist of low flush toilets, and high efficiency shower heads and faucets. There are a variety of fixtures that are commercially available and their effect on performance of OSDSs can be significant. These modern, high efficiency fixtures include: 1.5 gallon or less per flush toilets, 2.0 gallon per minute (gpm) or less shower heads, faucets of 1.5 gpm or less, and front loading washing machines of up to 27 gallons per 10 to 12 pound load. These can result in a 30 to 70 percent reduction of total inhouse water use. In fact, studies have shown that a majority of the failures of conventional septic systems can be attributed to water overloads.

<u>Fixed Film Systems</u> - A fixed film system employs media to which microorganisms may become attached. Fixed film systems include trickling filters, upflow filters, and rotating biological contractors. These systems require pretreatment of septage in a septic tank and the effluent can be discharged to a leaching field. Data were unavailable on this BMP so its cost and effectiveness were not evaluated.

<u>Aerobic Treatment Units</u> - Aerobic treatment units can be employed on site. There are a couple of commercially available packages. However, these systems require regular supervision and maintenance to be effective. These systems require pretreatment by a septic tank and effluent can be discharged to a leaching field. Power requirements can be significant for certain types of these packages. Data were unavailable on this BMP so its cost and effectiveness were not evaluated.

<u>Disinfection Devices</u> - In some areas, pathogen contamination from OSDS is a major concern. Disinfection devices may be used in conjunction with the above systems to treat effluent for pathogens before it is discharged to a soil absorption field. Disinfection devices include halogen applicators (for chlorine and iodine), ozonators, and UV applicators. Of these three types, halogen applicators are usually the most practical (EPA, 1980). Installation of these devices in an OSDS increases the system's cost and adds to the system's operation and maintenance requirements. However, it may be necessary in some areas to install these devices to control pathogen contamination of costal waters and ground water.

(NOTE: The use of disinfection systems should be evaluated to determine the potential impacts of chlorine and iodine loadings. Some States, such as Maryland, have additional requirements

or prohibit the use of these processes).

<u>General Information</u> - Most septic tanks need to be pumped every three to five years; however, there are several household factors that need to be considered when determining pumpout needs, including:

- the capacity of the tank,
- the flow of wastewater (based on family size), and
- the volume of solids in the wastewater (more solids are produced if a garbage disposal is used) (Mancl and Magette, 1991).

Failure will not occur immediately if a septic system is not pumped; however, continued neglect will cause the system to fail because the soil absorption system is no longer protected from solids and may need to be replaced at considerable expense.

Table 2-2 shows an estimate of how often a septic tank should be pumped based on tank and household size.

Tank Size (gal)	Household Size (number of people)												
	1	1 2 3 4 5 6 7 8 9 10											
500	5.8	2.6	1.5	1.0	0.7	0.4	0.3	0.2	0.1				
750	9.1	4.2	2.6	1.8	1.3	1.0	0.7	0.6	0.4	0.3			
1,000	12.4	5.9	3.7	2.6	2.0	1.5	1.2	1.0	0.8	0.7			
1,250	15.6	7.5	4.8	3.4	2.6	2.0	1.7	1.4	1.2	1.0			
1,500	18.9	9.1	5.9	4.2	3.3	2.6	2.1	1.8	1.5	1.3			
1,750	22.1	10.7	6.9	5.0	3.9	3.1	2.6	2.2	1.9	1.6			
2,000	25.4	12.4	8.0	5.9	4.5	3.7	3.1	2.6	2.2	2.0			
2,250	29.6	14.0	9.1	6.7	5.2	4.2	3.5	3.0	2.6	2.3			
2,500	31.9	15.6	10.2	7.5	5.9	4.8	4.0	4.0	3.0	2.6			

Table 2-2. Suggested Septic Tank Pumping Frequency (Years)

Source: University of Maryland, 1991.

2.2 EFFECTIVENESS

Data on OSDSs were collected from nearly 60 different documents. Some of these documents were a little dated but reliable information about removal efficiencies still seemed to be relevant. In many of the publications, system performance was presented as quality of effluent and not a percent reduction in pollutant. In these cases, the percent removal was computed by using the following average household septage pollutant concentrations: Total Suspended Solids (TSS) - 220 mg/l; Biological Oxygen Demand (BOD) - 220 mg/l; Total Nitrogen (TN) - 60 mg/l; Total

Phosphorous (TP) 25 mg/l, and pathogens - 9 logs. The data that were used to develop these averages are presented in Section b of the Appendix. The following should be noted about the above household septage pollutant concentrations:

- The TN value of 375mg/l reported in Anderson and Machmeir (1988) was eliminated from consideration because it was deemed to be unrealistically high.
- The TP value of 8 mg/l reported in EPA (1984) was eliminated from consideration because it was deemed to be unrealistically low.
- The TP average is based on limited data.
- COD values reported in reference Swanson and Dix (1988) were eliminated from consideration because they were deemed to be unrealistically low (especially when compared to the BOD values reported in the same reference).

The following discusses the factors that influence the effectiveness of the various management practices and also discusses the development of the summary values presented in Table 3-1.

<u>Conventional Septic Systems</u> - The effectiveness values presented in the OSD Cost and Effectiveness Summary Table were based on the information from 5 references. Nitrogen removal in these systems can be influenced by temperature. The values assume that the system is properly maintained (e.g. pumped out every 3 - 5 years) and that water loading is not excessive. It should be noted that the effectiveness numbers reported in the literature generally also considered the assimilative capacity of the soil between the bottom of the leaching field and the water table.

<u>Mound and Low Pressure Systems</u> - No effectiveness data were obtained from the literature. However, the effectiveness numbers presented in the summary table were based on these systems being nearly identical to conventional septic systems. Some increased effectiveness was given to these systems because the pressure dosing to the leaching field provides a more even distribution of effluent throughout the field. <u>Alternate Trench</u> - No effectiveness data were obtained from the literature. However, the effectiveness numbers presented in the summary table were based on these systems being nearly identical to conventional septic systems.

<u>Trenches and Beds</u> - No effectiveness data were obtained from the literature. However, the effectiveness numbers presented in the summary table were based on these systems being nearly identical to conventional septic systems.

<u>Anaerobic Upflow Filters</u> - Data reported for AUFs was generally from analysis of effluent from the filter. Given that in most cases that the effluent is generally also passed through a sand filter, and the assimilative capacity of the leaching field and soil beneath the field, the total effectiveness from a system with an AUF would be higher than the numbers presented in the summary Cost and Effectiveness Table.

Intermittent and Recirculating Sand Filters - These types of filters generally have improved TSS, BOD, TN and TP removal over conventional systems. It should again be noted that effectiveness numbers in the literature were generally based on analysis of filter effluent. Consequently, total system performance should be higher because of the removal that takes place in the leaching field. TN performance of these types of systems can be effected by temperature, however in Venhuizen (1991), the investigator concluded that these types of filters would be very effective in Wisconsin.

<u>Water Separation System</u> - The effectiveness information for these systems is based on data from 4 references. The TP effectiveness would be higher if consideration is given to soil removal capacity. Additionally, loads from the treatment facility processing the blackwater was not considered.

<u>RUCK Systems</u> - Most of the data presented in references for RUCK systems concentrated on nitrogen removal. The other effectiveness data are based on limited information.

<u>Evapotranspiration Systems</u> - Because of the evaporation requirements for these types of systems, they would only be effective in certain areas of the southwestern portions of the country. No data on the effectiveness of an operating system's performance were available.

However, since these systems do not discharge effluent, and assuming that they are maintained and properly lined, it is estimated that they would be 90% or higher effective at controlling OSDS pollution.

<u>Constructed Wetlands</u> - The summary of constructed wetlands effectiveness data also considered data on rock-plant filters. No data were available for TP effectiveness. Additionally, no lower limit was placed on the TN removal effectiveness because the performance may be severely impaired during the winter in very cold climates. However, these systems have been installed in areas such as Michigan, but the majority have been installed in the more mid- and southern-latitudes of the U.S.

<u>Central Sewage Treatment Facility</u> - Only limited effectiveness information has been included in the summary Table because performance is dependent on the type of system used. However, discharges from central facilities are generally regulated under NPDES and the systems performance must meet these requirements.

<u>Cluster Systems</u> - No effectiveness information has been presented for cluster systems because the effectiveness strongly depends on the types of treatment given to the effluent once it has been collected. Effectiveness information could be developed assuming that the collected effluent is only going to be processed to a leaching field.

<u>Vaults and Holding Tanks</u> - No effectiveness information has been presented for these types of practices. One could present that they are 100% effective but this would be misleading since the septage must eventually be treated and discharged by a facility.

<u>Eliminating Garbage Disposals and Use of Low Phosphate Detergents</u> - The effectiveness numbers presented for these practices only consider reductions in residential septage pollutant loads.

<u>Water Conservation Fixtures</u> - The only effectiveness numbers presented for these types of fixtures is reduction in water loads. This may not convey the proper message. For example, the majority of conventional septic system failures are due to excessive water loads. By implementing water conservation fixtures, the prolonged effectiveness of nearly all of the other

OSDS management practices is enhanced.

<u>Disinfection Devices</u> - With proper installation, disinfection devices can be 90% to 99% effective at eliminating pathogens in OSDS effluents.

2.3 COST

No regional cost variation conclusions could be drawn from the cost data obtained. It is believed that the cost could vary greatly within a state depending on local cost of living effects (e.g cost of installing a septic system in rural Garrett County, Maryland as opposed to the rapidly developing Carroll County, Maryland). The following is a discussion on how the cost numbers presented in the Cost and Effectiveness Summary Table were determined.

<u>Conventional Septic System</u> - Capital and maintenance costs for these systems varied greatly in the 6 references that reported cost information. The maintenance cost included the cost of pumping out the tank every 3 years but did not include inspection costs. It is has been assumed that homeowners could inspect their own systems with minimal inconvenience.

<u>Mound and Low Pressure Systems</u> - The maintenance costs for these systems is based on the same septic tank cleaning schedule as for conventional septic systems. However, a slightly higher maintenance cost is assumed because of maintenance on the pump for the pressure dosing.

<u>Alternate Trench</u> - Depending on the percolation rate and drain field size, the estimated capital cost of an alternate trench ranges from \$2,500 to \$5,600. The estimated maintenance cost is \$40 a year (Heller et al, 1992).

<u>Trenches and Beds</u> - Depending on the percolation rate and the drain field size, the estimated capital cost of trenches and beds ranges from \$4,900 to \$11,100. These cost estimates include the cost of a 1,000 gallon septic tank, 100 feet of 12 inch plastic perforated pipe, and 35 cubic yards of soil excavation. The estimated maintenance cost is \$40 a year (Heller et al, 1992).

Anaerobic Upflow, Intermittent Sand, and Recirculating Sand Filters - Although the literature did not include total system costs, the costs presented appeared to include the costs of a septic

tank and a leaching field. The maintenance costs included replacement of filter media (e.g. sand) as necessary.

<u>Water Separation System</u> - The only cost information available for this type of system was from the Draft 6217(g) Guidance Document. It is unclear what the source was for the cost presented in that document.

<u>RUCK System</u> - Only one reference to cost was available for RUCK systems (Leak, 1986). The cost number presented in that report was taken from a New Alchemy Institute report on the cost of a system for Cape Cod (\$10,000) and their assessment about what the cost of future systems may cost (\$6,000).

<u>Central Sewage Treatment Facility</u> - The capital cost for these systems was based on the initial hookup fee for homeowners. It was felt that this would be reasonable even if a new system were built because the community would attempt to recover the initial construction cost in the hookup fees. The maintenance costs were based on average yearly user fees to the homeowners and did not include any cost that may be incurred by the community.

<u>Cluster Systems</u> - The capital cost for these types of systems was based on the per homeowner hookup fees from two projects (one in New York and one in Michigan). In both of these cases the homeowners already have septic tanks so that cost has not been included. The maintenance cost is based on the yearly user fee presented in the New York study.

<u>Evapotranspiration (ET) Systems</u> - The estimated capital cost of an ET system is \$19,000. This cost includes a 1,000 gallon septic tank and a 2,250 square foot drain field. The estimated maintenance cost is \$120 a year (Heller et al, 1992).

<u>Eliminating Garbage Disposals and Use of Low Phosphate Detergents</u> -No costs for these two source control measures have been included. It is felt that no significant cost would be incurred by eliminating garbage disposals. Additionally, many manufacturers produce low phosphate detergents at competitive prices. <u>Vaults and Holding Tanks</u> - A fair amount of cost data are available for vaults and holding tanks. These costs (both capital and maintenance costs) vary greatly with the size of the tank and the water loading rate. This information should be included in the summary table, however some careful thought must be given on how to present the costs. The cost of a 2000 gallon tank may be a useful starting point for calculating capital cost, and maintenance could be computed based on the average water loading from a 4 person household.

<u>Constructed Wetlands</u> - The costs for constructed wetlands varied greatly. The costs included land cost and that could explain the wide range (\$0.10/gpd to \$3.00/gpd). The range of costs presented in the summary table covers nearly the whole range of costs reported. Minimal information was available on maintenance costs. The only reported value was for a wetland serving several households. It may be prudent not to present any values for the maintenance costs unless more data can be obtained.

<u>Water Conservation Fixtures</u> - No cost data were presented for water conservation fixtures in the summary table because costs can vary greatly from manufacturer to manufactures and on the level of fixtures installed (e.g. only low flush toilets). Additionally, savings in water use charges, size of distribution field, filter, and septic tank should also be considered when evaluating the total cost of installing these fixtures.

<u>Disinfection Devices</u> - Installation of these devices in an OSDS increases the system's capital and maintenance costs.

This section presents quantitative effectiveness and cost summary information for various OSDS management practices in Table 3-1. The summary table is based on the detailed cost and effectiveness data presented in Appendix D and E. It should be noted that only practices that had sufficient quantitative data on which to base conclusions are presented in the Table.

Table 3-1 presents both cost and effectiveness information. The effectiveness information includes the average, the range observed in the reviewed literature, the probable range expected from a properly designed and maintained practice, and the number of data values considered in developing the averages and ranges. The cost information is presented in terms of capital cost and annual maintenance cost.

	EFFECTIVENESS						COST			
PRACTICE	WATER	TSS	BOD	TN	TP	ратн.	CAPITAL COST ¹	MAINTENANCE COST ¹	REFERENCES	
	(%)	(%)	(%)	(%)	(%)	(LOGS)	(\$/HOUSE)	(\$/YEAR)		
CONVENTIONAL SEPTIC SYSTEM	NA	72	45	28	57	35	\$4.500	\$70	EPA, 1977; EPA, 1980; EPA 1989; EPA, 1991; Sandy et al 1988: Lamb et al., 1988;	
Probable Pange	NA	60-70	40.55	10-45	30-80	3-4	\$2,000-\$8,000	\$50-\$100	Rhode Island, 1989: Degen et	
Observed Range	NA	54-83	30-60	0-58	0-95	3-4	\$2,000-\$10,000	\$25-\$110	al., 1991: Healy, 1982: Hans	
No. Values Considered		7	7	13	12	2	8	4	et al., 1988; Dix, 1986; Fulhage & Day, 1988.	
ALTERNATE TRENCH									Heller et al, 1992	
Average	NA	NA	NA	NA	NA	NA	NA	NA		
Probable Range	NA	60-70	40-55	10-45	30-80	3-4	\$2,400-\$5,600	\$40		
Observed Range	NA	NA	NA	NA	NA	NA	NA	NA		
No. Values Considered		0	0	0	0	0	1	<u>1</u>		
MOUND SYSTEMS									EPA, 1977; EPA, 1980; EPA	
Average	NA	NA	NA	44	NA	NA	\$8,300	\$180	1991; Small Flows	
Probable Range	NA	60-75	40-50	10-45	30-80	3-4	\$7,000-\$10,000	\$100-\$300	Clearinghouse, n.d.; Hanson	
Observed Range	NA	NA	NA	44-44	NA	NA	56,800-511,000	\$90-\$310	al., 1988; Degen et al., 1991	
No. Values Considered		U	0		Ů	U U	•	-		
TRENCHES AND BEDS				1			· · ··		Heller et al, 1992	
Average	NA	NA	NA	NA	NA	NA	NA	NA		
Probable Range	NA	60-70	40-55	10-45	30-80	3-4	\$4,900-\$11,100	\$ 40	1	
Observed Range	NA	NA	NA	NA	NA	NA	NA	NA		
No. Values Considered	0	0	0	0	0	0	1	1		
LOW PRESSURE SYSTEMS									EPA, 1980; Fulhage and Day 1988.	
. Average	NA	NA	NA	NA	NA	NA	\$5,100	\$150		
Probable Range	NA	60-70	30-40	10-45	30-80	3-4	\$4,000-\$6000	\$100-\$200	J	
Observed Range	NA	NA	NA	NA	NA	NA	\$2,800-\$7,400	\$150-\$150	1	
No. Values Considered	0	0	0	0	0	0	2	1		
ANAEROBIC UPFLOW									EPA, 1991; Venhuizen, 199 Mitchell, n.d.	
Average	NA	44	62	59	NA	NA	\$5,550	NA		
Probable Range	NA	30-60	50-75	40-75	60-80	3-4	\$3,000-\$8,000	\$150-\$400	}	
Observed Range	NA	24-89	46-84	20-75	NA	NA	\$3,000-\$8,000	NA	f	
No. Volum Considered	ا م	6	6	6	1 0	0	2	0	1	

TABLE 3-1.-OSDS EFFECTIVENESS AND COST SUMMARY

TABLE 3-1. OSDS EFFECTIVENESS AND COST (Continued)

EFFECTIVENESS COST PRACTICE WATER TSS BOD TN TP PATH. CAPITAL MAINTENANCE COST COST (%) (%) (%) (%) (%) (LOGS) (\$/HOUSE) (\$/YEAR) INTERMITTENT SAND EPA, 1977; EPA, 1980; EPA, FILTER 1991; Small Flows Average NA 92 92 55 80 3.2 \$5,400 \$275 Clearinghouse, n.d.; 90-95 Probable Range NA 80-95 50-65 70-90 3-4 \$4,000-\$8,000 \$250-\$400 Venhuizen, 1991. 70-99 80-99 Observed Range NA 40-75 70-90 2-4 \$2,300-\$10,000 \$100-\$440 No. Values Considered 0 7 10 7 2 6 7 5 RECIRCULATING SAND Hoxic et al., 1988; Small FILTER Flows Clearinghouse, n.d.; Fulhage & Day, 1988; EPA, Average NA 90 92 64 80 2.9 \$3.900 \$140 **Probable Range** NA 85-95 85-95 60-85 70-90 2-4 \$5,000-\$8,000 \$250-\$400 1991; Venhuizen, 1991; Observed Range NA 70-98 75-98 1-94 70-90 2-4 \$1,850-\$7,500 \$15-\$410 Swanson & Dix, 1988; Lamb No. Values Considered 0 12 15 13 2 8 7 et al., 1988; Laak, 1986; EPA, 8 1980; Sandy et al., 1988. Lask, 1986; Lamb et al., 1988; RUCK SYSTEM NA 85 86 51 83 4 \$14,000 EPA, 1991. Average NA 80-90 80-90 50-80 \$250-\$400 NA 70-90 3-4 \$12,000-\$16,000 **Probable Range Observed Range** NA 85-85 86-86 6-80 83-83 4-4 \$12,000-\$16,000 NA No. Values Considered 0 1 1 5 1 1 0 1 WATER SEPARATION EPA, 1991; EPA, 1986; EPA, SYSTEM 1980; EPA, 1977. 42 NA 60 83 30 3 \$8,000 \$300 Average Probable Range NA 55-70 35-55 70-90 30-55 2-4 \$5,000-\$11,000 \$300-\$750 36-75 22-55 NA \$5,000-\$11,000 \$300-\$300 **Observed** Range NA 68-99 14-42 No. Values Considered 0 4 3 6 6 0 1 1 CONSTRUCTED Reed, 1991; Small Flows WETLANDS Clearinghouse, n.d., EPA, 81 \$710 \$25 Average NA 80 90 NA 4 1980; Amberg, 1990; Dwyer et **Probable Range** 70-90 60-90 3-4 NA 60-90 30-70 \$1,000-\$3,000 \$25-\$100 al., 1989. **Observed** Range NA 50-98 65-97 90-90 NA 4-4 \$50-\$350 \$25-\$25 No. Values Considered 0 3 4 2 0 1 19 1

REFERENCES

Woodward-Clyde January 27, 1993

		EFFECTIVENESS						·····		
PRACTICE	WATER	TSS	BOD	TN	TP	PATH.	CAPITAL COST ¹	MAINTENANCE COST ¹	REFERENCES	
	(%)	(%)	(%)	(%)	(%)	(LOGS)	(\$/HOUSE)	(\$/YEAR)		
CENTRAL SEWAGE TREATMENT FACILITY Average Probable Range Observed Range No. Values Considered	NA NA NA O	85 80-90 85-85 1	85 80-90 85-85 1	NA 75-95 NA 0	NA 30-70 NA 0	NA 3-4 NA 0	\$5,450 \$3,000-\$10,000 \$40-\$9,977 4	\$180 \$150-\$250 \$70-\$240 3	Orr, 1989; EPA, 1980; Decker, 1987.	
CLUSTER SYSTEMS Average Probable Range Observed Range No. Values Considered	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA O	\$4,950 \$5,000-\$7,000 \$3,000-\$6,900 3	\$370 \$300-\$400 \$370-\$370 1	Decker, 1987; Small Flows Clearinghouse, n.d.	
EVAPOTRANSPIRATION SYSTEM Average Probable Range Observed Range No. Values Considered	NA NA O	NA 95-100 NA 0	NA 95-100 NA 0	NA 95-100 NA 0	NA 95-100 NA 0	NA 3-4 NA 0	NA \$19,000 NA 0	NA \$120 NA 0	Heller et al, 1992	
ELIMINATING GARBAGE DISPOSALS Average Probable Range Observed Range No. Values Considered	NA NA NA O	37 35-40 37-37 3	28 25-30 28-28 2	5 5-10 5-5 2	2.5 2-3 2-3 2	NA NA NA O	NA Negligible NA O	NA Negligible NA O	EPA, 1991; EPA, 1986; EPA, 1980.	
LOW PHOSPHATE DETERGENTS Average Probable Range Observed Range No. Values Considered	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA 0	50 40-50 50-50 2	NA NA NA O	NA Negligible NA O	NA Negligible NA O	EPA, 1991; EPA, 1980.	

TABLE 3-1. OSDS EFFECTIVENESS AND COST (Continued)

Onsite Sanitary Disposal Systems 80040000H:\wp\report\osd\report1.osd

Woodward-Clyde January 27, 1993

			EFFECTIVENESS			COST			
PRACTICE	WATER TSS		BOD	TN	TP	PATH.	CAPITAL- COST'	MAINTENANCE COST ¹	REFERENCES
	(%)	(%)	(%)	(%)	(%)	(LOGS)	(\$/HOUSE)	(\$/YEAR)	
WATER CONSERVATION FIXTURES Average Probable Range Observed Range No. Values Considered	45 25-80 4-90 11	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA O	NA NA NA O	NA Varies NA O	NA Negligible NA O	EPA, 1991; EPA, 1980; EPA, 1977; Small Flows Clearinghouse, n.d.; Jarrett et al., 1985.
HOLDING TANKS Average Probable Range Observed Range No. Values Considered	NA NA NA O	NA 95-100 NA 0	NA 95-100 NA 0	NA 95-100 NA 0	NA 95-100 NA 0	NA 3-4 NA 0	\$3,900 \$4,000-\$6,000 \$1,220-\$6,670 8	\$1,300 \$1,000-\$2,000 \$100-\$2,400 12	Small Flows Clearinghouse, n.d.; Dix, 1986; Hanson et al., 1988.

TABLE 3-1. OSDS EFFECTIVENESS AND COST (Continued)

¹Cost are in 1988 equivalent dollars and an average household with 4 occupants was assumed.

Woodward-Clyde January 27, 1993 This section presents management practices options that were deemed, based on the literature review, technically and economically achievable for control of NPS pollution from OSDSs in the coastal zone. In general, new OSDSs should be designed, installed, operated, and maintained to prevent the discharge of pollutants to the surface of the ground and minimize the discharge of pollutants into ground water. A few conditions that should be met for all new OSDSs are the use of low-volume plumbing fixtures and the prohibition of the installation of garbage disposals. OSDSs that minimize nitrogen loadings to ground water should be used in areas where conditions indicate that nitrogen-limited coastal waters may be adversely affected by excess nitrogen loadings from OSDSs. The OSDS management practice options are presented in two sections, one for new OSDSs and one for replacement or enhancement of existing OSDSs.

4.1 NEW OSDSs

1. <u>Conventional Septic System with Alternate Trench and Water Conservation</u> <u>Fixtures, Low Phosphate Detergents, and No Garbage Disposals</u>

Description: Septic systems have been widely used as an OSDS practice. A septic system can be effective if it is installed with an alternate trench to the leaching field and if water conservation fixtures are installed in the house. An alternate trench is recommended so that the primary leaching field can be rested for 3 to 6 month intervals on a yearly basis. This will ensure that aerobic conditions are maintained in the soil below the leaching field. The majority of conventional septic system failures are due to water overload. Consequently, water conservation fixtures should also be installed in conjunction with the system. Finally, garbage disposals can be eliminated and low phosphate detergents can be employed at very minimal cost and can significantly reduce the waste loads to the system.

Maintenance: The conventional septic system should be inspected yearly, the septic tank

should be cleaned out every 3 years, and the alternate trench should be used for 3 to 6 months each year.

Limitations: Conventional septic systems should not be used if the following conditions are present:

- Unsuitable site areas such as poorly or excessively drained soils (e.g. percolation rate less than 5 min/inch or greater than 120 min/inch), areas with shallow and/or rising water tables (e.g. depth to groundwater or limiting layer less than 2 feet), areas overlaying fractured bedrock that drain directly to ground water, areas within floodplains, or areas where effluent cannot be sufficiently treated before it reaches sensitive waterbodies, including ground or surface water.
- Nitrogen-limited coastal waters that may be adversely affected by excess nitrogen loadings from conventional OSDS exist.

Regional Factors: Conventional septic systems can be applied in every region of the country provided the above design limitations are not violated. There may be some slightly less effectiveness with regard to nitrogen removal in colder climates. However, these differences would be overshadowed by the variability in the performance of the systems based on differences in soil type within one region.

2. <u>Mound Systems with Water Conservation Fixtures, Low Phosphate Detergents,</u> and No Garbage Disposals

Description: This mound system would essentially function the same as the septic system described in 1. above with the notable exception that the leaching field would be elevated in a sand mound and pressure dosing would be used for discharging effluent to the leaching field. The effectiveness would be very similar to the septic system described above. Mound systems can be used when there is insufficient separation distance for a conventional septic system. Water conservation fixtures and low phosphate detergents

should be used in conjunction with the mound system and the use of garbage disposals should be prohibited.

Maintenance: The system should be inspected yearly, the septic tank should be cleaned out every 3 years, and there should be routine maintenance of the dosing pump.

Limitations: Mound systems should not be used if the following conditions are present:

- Unsuitable site areas such as poorly or excessively drained soils (e.g. percolation rate less than 5 min/inch or greater than 120 min/inch), areas overlaying fractured bedrock that drain directly to ground water, areas within floodplains, or areas where effluent cannot be sufficiently treated before it reaches sensitive waterbodies, including ground or surface water.
- Nitrogen-limited coastal waters that may be adversely affected by excess nitrogen loadings from conventional OSDS exist.

Regional Factors: Mound systems can be applied in every region of the country provided the above design limitations are not violated. There may be some slightly less effectiveness with regard to nitrogen removal in colder climates. However, these differences would be overshadowed by the variability in the performance of the systems based on differences in soil type within one region.

3. <u>Anaerobic, Intermittent Sand, or Recirculating Sand Filter in Conjunction with</u> <u>Septic Tank, Leaching Field, Water Conservation Fixtures, No Garbage Disposals</u> <u>and Low Phosphate Detergent</u>

Description: In areas with known or suspected nitrate problems, or in areas with excessively drained soils (e.g. percolation rates are less than 5 min/inch), denitrifying devices such as anaerobic, intermittent sand, or recirculating sand filters should be used in conjunction with a conventional type septic system. These filters greatly enhance the nitrogen removal from septage (50 to 60% more effective than septic system alone). The

type of filter selected can be based on local cost with the recirculating sand filter having slightly better performance than the intermittent sand or anaerobic upflow filters. Again, water conservation fixtures and low phosphate detergents should be used and garbage disposals should be prohibited.

Maintenance: Inspect system yearly, pump out septic tank every 3 years, replace sand as needed, and perform routine maintenance on pumps.

Limitations: Septic systems with one of the filters described above should not be used if the following conditions are present:

• Unsuitable site areas such as poorly drained soils (e.g. percolation rate greater than 120 min/inch), areas with shallow and/or rising water tables (e.g. depth to groundwater or limiting layer less than 2 feet), areas overlaying fractured bedrock that drain directly to ground water, areas within floodplains, or areas where effluent cannot be sufficiently treated before it reaches sensitive waterbodies, including ground or surface water.

Regional Factors: These types of systems can be applied in every region of the country provided the above design limitations are not violated. There may be some slightly less effectiveness with regard to nitrogen removal in colder climates. However, field studies have shown these differences to be very small even in the most northern latitudes.

4. Constructed Wetlands or Evapotranspiration Systems

Description: In areas with known or suspected nitrate problems, or in areas with poorly drained soils (e.g. percolation rates are greater than 120 min/inch), or where there is an insufficient separation distance (e.g. less than 2 feet to ground water or limiting layer), constructed wetlands or evapotranspiration systems should be used in conjunction with a conventional septic tank. The selection of either a constructed wetland or an evapotranspiration system will depend on the region of the country, available land, and cost. Again, water conservation fixtures and low phosphate detergents should be used

and garbage disposals should be prohibited.

Maintenance: Inspect system yearly, pump out septic tank every 3 years, harvest plants from wetlands as needed, and perform routine maintenance on pumps.

Limitations: Constructed wetlands or evapotranspiration systems should not be used if the following conditions are present:

• Unsuitable site areas such as areas within floodplains, or areas where effluent cannot be sufficiently treated before it reaches sensitive waterbodies, including ground or surface water.

Regional Factors: Constructed wetland systems can be applied in every region of the country provided the above design limitations are not violated. There may be some slightly less effectiveness with regard to nitrogen removal in colder climates. However, field studies have shown these differences to be very small even in the most northern latitudes. Because of the high potential evapotranspiration rates needed, evapotranspiration systems can only be applied in the southwestern portion of the country.

4.2 REPLACEMENT OR ENHANCEMENT OF EXISTING OSDSS

This section assumes that the system that is being replaced or enhanced is a conventional septic system. If a system is being replaced, the management practices described in Section 4.1. above should be employed as appropriate. If a septic system is failing or if there are water quality problems due to septic systems (e.g. high nitrate concentrations in groundwater) then the following management practices should be considered.

Install Water Conservation Fixtures with an Alternate Trench, Low Phosphate Detergents, and No Garbage Disposals

As stated previously, the majority of all conventional septic system failures are due to water overloads. Water conservation fixtures with use of alternate trenches have been shown to correct failing septic systems in certain situations. Using low phosphate detergents and eliminating the use of garbage disposals should also be employed where the conventional septic system is failing. The alternate trench should be used a minimum of 3 months per year and its initial use should be until aerobic conditions have been restored in the original leaching field.

2. Install Anaerobic Upflow, Intermittent Sand, or Recirculating Sand Filters in Areas with Nitrogen Problems in Groundwater

In areas where high nitrogen concentrations are found in groundwater and where the source of the nitrogen has been attributed to conventional septic systems, the above mentioned filter systems should be installed. Water conservation fixtures should also be installed, low phosphate detergent should be used, and the use of garbage disposals eliminated.

3. Install Constructed Wetlands or Evapotranspiration Systems

In areas with failing septic systems due to either poorly drained (e.g. percolation rate greater than 120 min/in.) or insufficient separation distance (e.g. less than 2 feet to ground water or limiting layer) constructed wetlands or evapotranspiration systems should be installed. Again, water conservation fixtures and low phosphate detergents should be used in conjunction with the elimination of garbage disposals.

- Alabama Dept. of Public Health. 1988. <u>Rules of State Board of Health and Onsite Sewage</u> <u>Disposal</u>.
- Amberg, L.W. 1990. <u>Rock-Plant Filter An Alternative for Septic Tank Effluent Treatment</u>. U.S. EPA.
- American Society of Agricultural Engineers. 1988. <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth National Symposium on Individual and Small Community</u> <u>Sewage Systems.</u> (Chicago, Illinois. December 14-15, 1987.) ASAE. Publication No. 10-87.
- Anderson, J.L. and R.E. Machmeier. 1988. "Establishment of State Rules for Land Application and Utilization of Septage." <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth National Symposium on Individual and Small Community</u> <u>Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE. Publication No. 10-87. p. 68-76.
- Bailey, R., et. al. 1988. "Long-Term Performance of a Pressure Dosed Septic Tank Filter Field." <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth National</u> <u>Symposium on Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 114-121.
- Barnstable Count Health and Environmental Department. 1991. <u>Material Concerning Proposed</u> <u>Board of Health Regulations</u>.

California Water Resources Control Board. 1989. Onsite Septic System Regulation.

Chesapeake Bay Foundation. Date Unknown. Septic Systems and the Bay.

Onsite Sanitary Disposal Systems 80040000H:\wp\report\osd\report1.osd

- Converse, J., et. al. 1988. "The Wisconsin At-Grade Soil Absorption System for Septic Tank Effluent." <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth National</u> <u>Symposium on Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 114-121.
- Decker, R.W. 1987. Crystal Lake Life or Death. Board of Public Works, Benzie County, MI.

Delaware DNR. 1990. Delaware Inland Bays Recovery Initiative. Delaware DNR.

- Dix, S.P. 1986. <u>Case Study No. 4 Crystal Lakes, Colorado</u>. EPA/National Small Flows Clearinghouse.
- Dwyer, T. and K. Sylvester. 1989. "Natural Processes for Tertiary Treatment of Municipal Wastewater Coupled with Shallow Ground-Water Discharge in a Saltwater Marsh Environment." <u>Proceedings of Groundwater Issues and Solutions in the Potomac River</u> <u>Basin/Chesapeake Bay Region</u> (Washington, DC. March 14-16, 1989.) NWWA.
- Friebele, E. 1989. <u>Present and Potential Impacts on Ground Water in the Potomac River Basin</u> <u>in Maryland</u>. Interstate Commission on the Potomac River Basin.
- Frimpter, M.H., J.J. Donohue, and M.V. Rapacz. 1988. The Cape Code Aquifer Management Project (CDAMP) <u>A Mass Balance Nitrate Model for Predicting the Effects of Land Use</u> on Groundwater Quality in Municipal Wellhead Protection Areas. U.S. EPA Region I, U.S.G.S., Mass. Department of Env. Qual. Engineering, Cape Cod Planning and Economic Development Commission.
- Fulhage, C.D. and D. Day. 1988. "Design, Installation and Operation of a Low Pressure Pipe Sewage Absorption System in the Missouri Claypan Soil." <u>On-Site Wastewater Treatment</u> <u>Vol. 5, Proceedings of the Fifth National Symposium on Individual and Small</u> <u>Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 114-121.

- Gunn, I. 1988. "Lehigh Laboratory Evapo-Transpiration System." <u>On-Site Wastewater</u> <u>Treatment Vol. 5, Proceedings of the Fifth National Symposium on Individual and Small</u> <u>Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 114-121.
- Hanson, M.E. and H.M. Jacobs. 1987. "Land Use and Cost Impacts of Private Sewage System Policy in Wisconsin." <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth</u> <u>National Symposium on Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp.26-39.
- Heller, K.B., K.E. Mathews, R.A. Cushman, E.S. Newbold, and T. Applegate. May 1992.
 <u>Economic Analysis of Coastal Nonpoint Source Controls: Urban Areas,</u> <u>Hydromodifications, and Wetlands - Draft</u>. Research Triangle Institute. Prepared for USEPA.
- Hopkins, M. Date Unknown. "Sewage Disposal System Makes Residents See Red." Broadneck Newspaper.
- Horsely Witten Hegeman, Inc. 1991. <u>Qualification and Control of Vitroga Inputs to Buttermilk</u> <u>Bay. Vol. 1.</u>
- Hoxie, D.C., R.G. Martin and D.P. Rocque. 1988. "A Numerical Classification System To Determine Overall Site Suitability for Subsurface Wastewater Disposal." <u>On-Site</u> <u>Wastewater Treatment Vol. 5, Proceedings of the Fifth National Symposium on</u> <u>Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 366-374.
- Institute of Environmental Negotiation. 1991. <u>Report of the Virginia Task Force on Septic</u> <u>Regulations</u>. University of Virginia.
- Jarrett, A.R., D.D. Fritton, and W.E. Sharpe. 1985. <u>Renovation of Failing Absorption Fields</u> by Water Conservation and Resting. ASAE. Paper No. 85-2630.

- Laak, R. 1986. <u>RUCK Systems Environmentally Efficient Modern On-Site Wastewater</u> <u>Technology</u>.
- Lamb, B., A.J. Gold, G. Loomis and C. McKiel. 1988. "Evaluation of Nitrogen Removal Systems for On-Site Sewage Disposal." <u>On-Site Wastewater Treatment Vol. No. 5</u>, <u>Proceedings of the Fifth National Symposium on Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 151-160.
- Logsdon, G. 1990. "Greenhouse Industry Breakthrough: Plant Protection Through Compost." <u>Biocycle Journal</u>. pp. 52-54.
- MacIntyre, W., et. al. 1989. "Groundwater Non-Point Sources of Nutrients to the Southern Chesapeake Bay." <u>Proceedings of the Conference on Groundwater Issues and Solutions</u> in the Potomac River Basin/Chesapeake Bay Region. NWWA.
- Mancl, K. and W. Magette. 1991. <u>Maintaining Your Septic Tank. Water Resources 28.</u> Cooperative Extension Service, Univesity of Maryland, College Park, MD.
- Mitchell, D. Date Unknown. "Laboratory and Prototype Onsite Denitrification by an Anaerobic - Aerobic Fixed Film System WWPCRE11" University of Arkansas.
- North Carolina Dept. of Env. Health and Nat. Resources. 1991. Laws and Rules for Sanitary Sewage Collection Treatment and Disposal.
- Orr, R. 1989. "Septic Tank Effluent Collection and Sand Filter Treatment." <u>Case Study 18</u> <u>New York State I/A Technology Evaluation Report No. 8</u>. New York State Dept. Of Environmental Conservation.
- Otis, R.J. 1983. "State of Vermont Wastewater Treatment and Disposal Individual Onsite Systems WWPCDM19." <u>Vermont Health Regulations Chapter 5, Sanitary Engineering</u>. Subchapter 10. State of Vermont, Agency of Human Services.

- Otis, R.J. Date Unknown. <u>Onsite Wastewater Treatment Septic Tanks</u>. Rural Systems Engineering.
- Reed, S.C. 1991. "Constructed Wetlands for Wastewater Treatment." <u>BioCycle: Journal of</u> <u>Waste Recycling</u>.
- Reneau, R. 1977. "Changes in Organic Nitrogenous Compounds from Septic Tank Effluent in a Soil with Fluctuating Water Table." Journal of Environmental Quality.
- Ritter, W. 1986. Nutrient Budgets for the Inland Bays.
- Rhode Island, Land Management Project. 1989. <u>Nitrate Ntrogen Pollution from Septic systems</u>: and Phosphorus Pollution from Septic Systems. U.S. EPA, Land Management Project.
- Sandy, A.T., W.A. Sack and S.P. Dix. 1988. "Enhanced Nitrogen Removal Using a Modified Recirculating Sand Filter (RSF²)." <u>On-Site Wastewater Treatment Vol. 5, Proceedings</u> of the Fifth National Symposium on Individual and Small Community Sewage <u>Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 161-170.
- Sawka, G., et. al. 1988. "Evaluation of Florida Soils for Onsite Disposal Systems." <u>On-Site</u> <u>Wastewater Treatment Vol. 5, Proceedings of the Fifth National Symposium on</u> <u>Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 161-170.
- Schutz, F.R. 1990. "Constructed Wetlands Growing Throughout U.S." <u>Small Flows Vol. 4</u>, <u>No. 6</u>. National Small Flows Clearinghouse, WVU. Vol. 4, No. 6.
- Sherman, K.M., D.L. Anderson, D.L. Hargett, R.J. Otis and J.C. Heber III. 1988. "Florida's Onsite Sewage Disposal System (OSDS) Research Project." <u>On-Site Wastewater</u> <u>Treatment Vol. No. 5, Proceedings of the Fifth National Symposium on Individual and Small Community Sewage Systems</u>. Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 47-56.

- Small Flows Clearinghouse, West Virginia University, editors. 1991. "Very Low Flush Toilets WWBKGN09." (Product Information from Various Vendors.) SFC, WVU.
- Small Flows Clearinghouse, West Virginia University, editors. Date Uknown. "On-Site Systems." (A Series of Fact Sheets.) SFC, WVU.
- Small Flows Clearinghouse, West Virginia University, editors. Date Uknown. "Introduction Package on Sand Filters." SFC, WVU.
- South Carolina Dept. of Health and Environment. 1986. <u>Regulation for Conventional and</u> <u>Alternative Individual Waste Disposal Systems</u>.
- Swanson, S.W. and S.P. Dix. "On-Site Batch Recirculation Bottom Ash Filter Performance." On-Site Wastewater Treatment Vol. No. 5, Proceedings of the Fifth National Symposium on Individual and Small Community Sewage Systems. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 132-141.
- U.S. EPA. 1991. "A Method for Tracing On-Site Effluent from Failing Septic Systems." <u>EPA</u> <u>Nonpoint Source News Notes</u>. EPA-OWOW.
- U.S. EPA. 1991. <u>Proposed Guidance Specifying Management Measures for Sources of</u> <u>Nonpoint Pollution in Coastal Waters</u>. EPA-OWOW.
- U.S. EPA. 1990. Buzzards Bay Comprehensive Conservation & Management Plan.
- U.S. EPA. 1989(a). Septic Systems. Office of Water, The Land Management Project.
- U.S. EPA. 1989(b). <u>Process Design Manual Land Treatment of Municipal Wastewater</u>. with the USACE, USDA, and Dept. of Interior.
- U.S. EPA. 1989(c). <u>Research Review: Nitrate Nitrogen Pollution from Septic Systems</u>. Office of Water, The Land Management Project.

- U.S. EPA. 1989(d). <u>Research Review: Phosphorus Pollution from Septic Systems</u>. Office of Water, The Land Management Project.
- U.S. EPA. 1986. <u>Septic Systems and Groundwater Protection</u>: A Program Manager's Guide and Reference Book. Office of Water.
- U.S. EPA. 1984. <u>Handbook: Septage Treatment and Disposal</u>. Water Planning Division. Municipal Env. Research Lab, CERI.
- U.S. EPA. 1980. <u>Design Manual Onsite Wastewater Treatment and Disposal Systems</u>. Office of Water.
- U.S. EPA. 1977. <u>Alternatives for Small Wastewater Treatment Systems (Volumes 1, 2 and 3)</u>. EPA Technology Transfer Seminar Publication.
- Venhuizen, D. 1991. <u>Town of Washington, WI Wastewater System Feasibility Study</u> -<u>Exploration of Treatment Technology and Disposal System Alternatives</u>. WI DNR.
- Virginia Department of Health. Date Uknown. <u>Alternative Discharging Sewage Treatment</u> <u>System</u>.

Virginia Department of Health. 1989. Sewage and Handling and Disposal Regulations.

- Yahner, J., et. al. 1988. "Summary of a 5-Year Monitoring Effort of Alternative Systems in Indiana." <u>On-Site Wastewater Treatment Vol. 5</u>, <u>Proceedings of the Fifth National</u> <u>Symposium on Individual and Small Community Sewage Systems</u>. (Chicago, Illinois. December 14-15, 1987.) ASAE Publication No. 10-87. pp. 114-121.
- Yates, M. 1987. <u>Septic Tank Siting to Minimize the Contamination of Groundwater by</u> <u>Microorganisms</u>. EPA Office of Water.

Yates, M. 1985. "Septic Tank Density and Ground Water Contamination." Ground Water.

APPENDICES

APPENDIX A STATE REGULATIONS

SUMMARY OF STATE SEPTIC SYSTEM REGULATIONS

LOCATON	PERC. RATE	SET BACKS FROM BODIES OF WATER	SEPARATION DISTANCE (SHWT)
Alaska			4'
American Samoa			
Alabama	5 - 60 min./inch	50'	1.5'
California			
Region I	60 min./inch	50 - 100'	5 - 40'
Region II		100'	5 - 50'
Connecticut			1.5'
Delaware	6 - 60 min./inch	50'(Body of water) 100'(Wetland)	3'
Florida	Use soil classification to determine sizing of system	75'	2'
Georgia	50-90 min./inch	50'(Leach Field) 25'(Septic Tank)	2'
Guam			
Hawaii	10-30 min./inch	50'	3'
Indiana		50 - 100'	
Louisiana	20 min./inch		2'
Maine		100'	1 - 2'
Maryland	5-30 min./inch	25'	4'(May be waived but requires groundwater protection ?)

LOCATON	PERC. RATE	SET BACKS FROM BODIES OF WATER	SEPARATION DISTANCE (SHWT)
Massachusetts (Clint Watson)	1-30 min./inch	25'(Septic Tank) 50'(Leach Field)	4'
Michigan	30-60 min./inch	50'	4'
(Minnesota)	0.1 min./inch - 60 min./inch		3'
Mississippi	Use soil evaluation instead of perc. test	Slope greater than $8\% = 100'$ Slope less than $8\% - 50'$	2' if no layer within 5' 2' if layer within 5'
North Carolina	None	50 - 100'	1'
New Hampshire	1-60 min./inch	75'	4'
New Jersey			2 - 9'
New York	1-60 min./inch	100'(Leach Field) 50'(Septic Tank)	2'
Northern Marianas			
(Ohio)			4'
Oregon			0.5'
Pennsylvania		٥	4'
Puerto Rico			4'
Rhode Island			3'
South Carolina	None	50'	0.5'
Virginia	5-120 min./inch	50' 70'(Shellfish Water)	0.17 - 1.67'
Virgin Islands			

LOCATON	PERC. RATE	SET BACKS FROM BODIES OF WATER	SEPARATION DISTANCE (SHWT)
Washington			3'
Wisconsin			3'

APPENDIX B RESIDENTIAL SEPTAGE POLLUTANT LOADS

		RESIDENTIAL SEPTAGE POLLUTANT LOADS													
ST	STUDY	WATER	TS	S	BO	D	CO	D	TN		TP		PATH	D .	REFERENCE
	TYPE	LOAD	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	
Ľ_		GPD	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/I	LOGS	LOGS	
MA	MODEL	200							35	40					Frimpter et. al., 1988
RI							ľ		30	80	1				EPA, 1989(a)
NAT.)	200			Ì		1)		Ì	1]		EPA, 1986
MI	IN-SITU	200	ļ	 .	ľ						ļ		}		Decker, 1987
MD	IN-SITU			220		220						i			Dwyer et. al., 1989
∥wv	IN-SITU	175	45	102	95	250			30	80			ļ		Swanson and Dix, 1988
MN	IN-SITU									375				8	Anderson & Machmeier, 1988
wv	IN-SITU	100							42	83					Hoxie et. al., 1988
NAT.		240	200	290	200	290	680	730	35	100	18	29	8	10	EPA, 1980
NAT.]			220	ļ ,	220		500		65	ļ	8	8	10	EPA, 1984
				335		264				120		25			EPA, 1977
	AVERAGE	183		202		220		637		95		20		8.8	
1										ĺ					
		I										1		ł	
ŀ													i i		

APPENDIX C IMPLEMENTATION RESTRICTIONS

	IMPLEMENTATION RESTRICTIONS											
PRACTICE	WATER	DEPTI	H TO	INFILTRA	TION/	OTHER	REFERENCE					
	LOADING	WATER	TABLI	PERC P	ATE	·						
-		LOW	HI	LOW	HI							
		FT	FT	MIN/IN	MIN/IN							
ANAER. UPFLOW FILT	2.13-8.53*						Venhuizen, 1991					
ANAER. UPFLOW FILT	8-15*					<u> </u>	Venhuizen, 1991					
AVERAGE	8											
RANGE	2 - 15											
INTER. SAND FILTER	1-5**					0.35–1.0 MM MAT.	Small Flows Clearing House					
INTER. SAND FILTER	< 1**		_			0.5–1.0 MM MAT.	EPA, 1980					
AVERAGE	2.3											
RANGE	1-5											
MOUND SYSTEM	NA	2			120	PUMP 3–5 YR	Small Flows Clearing House					
MOUND SYSTEM	NA	3	5	0	120		EPA, 1980					
AVERAGE			3.3		80.0							
RANGE			2 - 5		0 - 120							
RECIRC. SAND FILTER	3-5**					0.3-1.5 MM MAT.	EPA, 1980					
RECIRC. SAND FILTER	3-5**						Small Flows Clearing House					
RECIRC. SAND FILTER	5-13.8**						Venhuizen, 1991					
RECIRC. SAND FILTER	5-10**					INSPECT EACH YR	Small Flows Clearing House					
RECIRC. SAND FILTER	7.5–9**						Venhuizen, 1991					
RECIRC. SAND FILTER	3-5**					0.3-1.5 MM MAT.	Small Flows Clearing House					
AVERAGE	6.2											
RANGE	3 - 13.8											
SEPTIC SYSTEM	NA		4		60	PUMP 3-5 YR	EPA, 1986					
SEPTIC SYSTEM	NA	2				PUMP 3 YR	Otis, 1983					
SEPTIC SYSTEM	NA	2					Gunn, 1987					
SEPTIC SYSTEM	NA	2	4	1	60		EPA, 1980					
SEPTIC SYSTEM	NA	3	4		60	PUMP 3–5 YR	Small Flows Clearing House					
AVERAGE			3		45.3							
RANGE			2 – 4		1-60							

* GPD/CF ** GPD/SF

NA - NOT AVAILABLE

APPENDIX D EFFICIENCY DATA

PRACTICE ST STUDY WATER TS BOD COD TN TP PATHO. WATER REFERENCE ANAEROBIC UPFLOW FILT. LAB LOAD GPD % <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>RED</th><th>UCT</th><th>IONI</th><th>N PO</th><th>LLUI</th><th>CANT</th><th>LOA</th><th>DS .</th><th></th><th></th><th><u> </u></th><th></th><th></th></t<>							RED	UCT	IONI	N PO	LLUI	CANT	LOA	DS .			<u> </u>		
TYPE LOAD COWHI LOWHI LOW LOW	PRACTICE	ST	STUDY	WATER	TS	S	BO	D	CO	D	TN		TP		PAT	HO.	WAT	ER	REFERENCE
AnAREROBIC UPFLOW FILT. LAB Z4 54 75 20 7	1	1	TYPE	LOAD	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	ו ו
ANAEROBIC UPFLOW FILT. ANAEROBIC UPFL		{		GPD	%	%	%	%	%	%	70	70	%	9%	LOG	LOG	%	%	
ANAEROBIC UPFLOW FILT. ANAEROBIC UPFLOW WILT. ANAEROBIC WILT.	ANAEROBIC UPFLOW FILT.		LAB		24	54	54	- 75			20	75							Venhuizen, 1991
ANAEROBIC UPFLOW FILT. ANAEROBIC UPFLOW FILT. ANE. ANE. ANAEROBIC UPFLOW FILT. ANAEROBIC UPFLOW U	ANAEROBIC UPFLOW FILT.	AK	LAB								50	75							Mitchell, n.d.
ANAEROBIC UPFLOW FILT. WA N-SITU 30 89 46 84 60 75 Wenbuilzen. 1991 ANAEROBIC UPFLOW FILT. RANGE RANGE 24 89 46 84 60 75 Wenbuilzen. 1991 NO. VALUES CONSIDERED 0 6 6 0 0 0 0 0 CENT SEPTIC SYS (170 UNIT) NY 38000 85 85 ***** ***** ***** ***** ***** 0 <td< td=""><td>ANAEROBIC UPFLOW FILT.</td><td></td><td>IN-SITU</td><td></td><td>25</td><td>40</td><td>50</td><td>65</td><td></td><td></td><td>i i</td><td></td><td></td><td></td><td></td><td></td><td></td><td>İ</td><td>Venhuizen, 1991</td></td<>	ANAEROBIC UPFLOW FILT.		IN-SITU		25	40	50	65			i i							İ	Venhuizen, 1991
ANAEROBIC UPFLOW FILT. Ander Average Ander Average <th< td=""><td>ANAEROBIC UPFLOW FILT.</td><td>WA</td><td>IN-SITU</td><td></td><td>30</td><td>89</td><td>46</td><td>84</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Venhuizen, 1991</td></th<>	ANAEROBIC UPFLOW FILT.	WA	IN-SITU		30	89	46	84	1										Venhuizen, 1991
AVERAGE RANGE NO. VALUES CONSIDERED 1 44 62 ****** ***** ***** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ******* ****** ******	ANAEROBIC UPFLOW FILT.	Į		l					l	l	60	75					1		EPA. 1991
RANGE NO. VALUES CONSIDERED 24 89 46 84 20 75 ************************************	AVERAGE	1	1			44		62		*****	<u> </u>	59		*****		*****	1	*****	
NO. VALUES CONSIDERED 0 6 6 0 6 0 0 0 CENT SEPTIC SYS (170 UNIT) NY 38000 85 85 ****** ****** ***** ***** ******* ******* ******* ******* ******* ********	RANGE	3	1		24	89	46	84	*****	*****	20	75	*****	*****	****	*****	*****	****	
CENT SEPTIC SYS (170 UNIT) NY 38000 85 85	NO. VALUES CONSIDERED	3		0	_	6		6	1	0		6		0		0		0	
CENT SEPTIC SYS (170 UNIT) NY 38000 85 85 0							1	•		Ŭ		Ŭ		Ŭ		-		•	
AVERAGE RANGE NO. VALUES CONSIDERED 38000 85 85 ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ****** ****** *****	CENT SEPTIC SYS (170 UNIT)	NY		38000		85		85	<u> </u>	T			[<u> </u>	Orr. 1989
RANGE NO. VALUES CONSIDERED Range 1 Range 1 Rest 1 85 80 81 90 4 4 Amberg, 1990 Duryer, et. al. 1989 Duryer, et. al. 1980	AVERAGE		<u> </u>	38000		85	'	85		*****		****		*****		+++++		*****	
NO. VALUES CONSIDERED 1 1 1 0	RANGE]	l.		85	85	85	85	*****	*****	*****	*****	*****	*****	*****	*****	****	****	
CONST WETLAND (2200 UNIT MD IN-SITU 100000 98 97 90 4 Reed, 1991 CONST WETLAND MD IN-SITU 14000 50 65 90 90 4 Amberg, 1990 CONST WETLAND MD IN-SITU 14000 50 65 90 90 4 4 Amberg, 1990 CONST WETLAND MD IN-SITU 14000 50 65 90 90 90 4 4 Amberg, 1990 CONST WETLAND MD IN-SITU 14000 50 86 57 90 90 90 4	NO. VALUES CONSIDERED			1		1		1		0		0	ļ	0		0		0	
CONST WETLAND (2200 UNIT MD ROCK PLANT FILTERS IN-SITU 100000 98 97 90 90 4 Reed, 1991 AVERAGE RANCE MD IN-SITU 14000 50 65 90 4 Amberg, 1990 AVERAGE RANCE 57000 80 81 ****** 90 90 ****** 4 4 ******* 4 ******* 4 ******* 4 ************************************				-		-		-				Ŭ		Ū		•		•	
ROCK PLANT FILTERS CONST WETLAND MD IN-SITU 14000 92 67 96 90 Amberg, 1990 Dwyer, et. al. 1989 AVERAGE RANGE NO. VALUES CONSIDERED 14K - 1008 50 98 65 90 4	CONST WETLAND(2200 UNIT	MD	IN-SITU	100000		98		97	<u> </u>	r –		90				4	1		Reed, 1991
CONST WETLAND MD IN-SITU 14000 50 65 90 Duryer, et. al. 1989 AVERAGE RANGE 57000 80 81 ****** 90 4 4 ****** 4 ****** 4 ****** 4 ****** 4 ****** 4 ****** 4 4 ****** 4 ****** 4 4 ****** 4 4 ****** 4 4 ****** 4 4 ****** 4 4 ****** 4 4 ****** 4 4 ****** 4 4 4 ****** 4 4 ****** 4	ROCK PLANT FILTERS]				92	67	96											Amberg, 1990
AVERAGE RANGE NO. VALUES CONSIDERED 57000 2 50 98 65 97 90 90 90 90 4	CONST WETLAND	MD	IN-SITU	14000		50		65				90							Dwver, et. al. 1989
RANGE NO. VALUES CONSIDERED 14K - 1008 50 98 65 97 ****** 90 <t< td=""><td>AVERAGE</td><td></td><td></td><td>57000</td><td></td><td>80</td><td></td><td>81</td><td></td><td>*****</td><td>· · ·</td><td>90</td><td></td><td>*****</td><td></td><td>4</td><td></td><td>*****</td><td></td></t<>	AVERAGE			57000		80		81		*****	· · ·	90		*****		4		*****	
NO. VALUES CONSIDERED 2 3 4 0 2 0 1 0 ELIM. GARBAGE DISPOSAL ELIM. GARBAGE DISPOSAL 37 28 5 3 EPA, 1986 AVERAGE RANGE 37 28 5 2 EPA, 1986 MO. VALUES CONSIDERED 37 28 5 2 EPA, 1980 AVERAGE RANGE 37 37 28 ***** 5 2.5 ***** NO. VALUES CONSIDERED 0 3 2 0 2 2 0 0 INT. SAND FILTER INT. SAND FILTER 94 98 96 99 40 60 70 4 EPA, 1977 INT. SAND FILTER 70 98 92 40 60 90 2 4 EPA, 1977 INT. SAND FILTER Y 1N-SITU 98 92 40 60 90 2 4 EPA, 1977 INT. SAND FILTER TX IN-SITU 98 92 46 3.2 <td>RANGE</td> <td></td> <td></td> <td>14K - 100K</td> <td>50</td> <td>98</td> <td>65</td> <td>97</td> <td>*****</td> <td>*****</td> <td>90</td> <td>90</td> <td>*****</td> <td>****</td> <td>4</td> <td>4</td> <td>*****</td> <td>*****</td> <td></td>	RANGE			14K - 100K	50	98	65	97	*****	*****	90	90	*****	****	4	4	*****	*****	
ELIM. GARBAGE DISPOSAL 37 28 5 3 EPA, 1986 ELIM. GARBAGE DISPOSAL 37 28 5 3 EPA, 1980 AVERAGE RANGE 37 28 5 2 EPA, 1980 NO. VALUES CONSIDERED 0 3 2 0 2 2 0 INT. SAND FILTER INT. SAND FILTER 94 98 96 99 40 60 70 2 4 EPA, 1980 INT. SAND FILTER 94 98 96 99 40 60 70 2 4 EPA, 1977 INT. SAND FILTER 70 90 85 95 46 Small Flows Cr. Hse. Small Flows Cr. Hse. INT. SAND FILTER IN-SITU 98 92 46 3 Venhuizen, 1991 INT. SAND FILTER IN-SITU 98 92 46 3 Venhuizen, 1991 INT. SAND FILTER IN-SITU 98 92 5 5 80 3 Venhuizen, 1991	NO. VALUES CONSIDERED			2		3		4		0		2		0		1	1	0	
ELIM. GARBAGE DISPOSAL 37 28 5 3 EPA, 1986 ELIM. GARBAGE DISPOSAL 37 28 5 2 EPA, 1980 AVERAGE RANGE 37 37 28 5 2 EPA, 1986 NO. VALUES CONSIDERED 0 37 37 28 5 5 2 EPA, 1980 INT. SAND FILTER 37 37 28 5 5 2 0 0 INT. SAND FILTER 94 97 91 40 60 90 2 4 EPA, 1977 INT. SAND FILTER 70 98 95 91 40 60 90 2 4 EPA, 1977 INT. SAND FILTER 70 98 95 40 60 90 2 4 EPA, 1980 INT. SAND FILTER TX IN-SITU 98 95 46 3 Venhuizen, 1991 INT. SAND FILTER TX IN-SITU 98 95 46 3 2 4 Venhuizen, 1991 INT. SAND FILTER TX IN-SITU				_		_				-		_		-		_		-	
ELIM. GARBAGE DISPOSAL 37 28 5 3 EPA, 1980 AVERAGE RANGE NO. VALUES CONSIDERED 37 37 28 5 2 37 28 20 5 2 37 28 20 40 80 80 85 95 20 20 20 40 20 20 20 40 20 <t< td=""><td>ELIM. GARBAGE DISPOSAL</td><td>Ì</td><td></td><td></td><td></td><td>37</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td>EPA, 1986</td></t<>	ELIM. GARBAGE DISPOSAL	Ì				37			1								<u> </u>		EPA, 1986
ELIM. GARBAGE DISPOSAL 37 28 5 2 EPA, 1991 AVERAGE RANGE 37 37 28 5 2 3 5 2 10 NO. VALUES CONSIDERED 0 3 2 0 2 2 0 0 INT. SAND FILTER INT. SAND FILTER 94 98 96 99 40 60 70 4 EPA, 1977 INT. SAND FILTER 94 98 96 99 40 60 90 2 4 EPA, 1977 INT. SAND FILTER 70 90 85 95 46 90 2 4 EPA, 1980 INT. SAND FILTER 1N - SITU 98 92 4 EPA, 1991 Venhuizen, 1991 INT. SAND FILTER IN - SITU 98 92 46	ELIM. GARBAGE DISPOSAL					37		28				5		3					EPA, 1980
AVERAGE RANGE NO. VALUES CONSIDERED 37 28 ***** 5 2.5 ***** ***** NO. VALUES CONSIDERED 0 37 37 28 28 ***** 5 5 2 3 ******* ****** ******* ******* ****** ****** ****** ****** ******* ******* ******* ******* ****** ******* ******* ******* ******* ******* ******* ************************ ******* ************************************	ELIM. GARBAGE DISPOSAL					37		28				5		2					EPA 1991
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AVERAGE		[·			37		28		*****		5		2.5		****	[/	*****	
NO. VALUES CONSIDERED 0 3 2 0 2 2 0 0 INT. SAND FILTER INT. SAND FILTER RANGE NO. VALUES CONSIDERED 0 97 91 40 60 70 2 4 EPA, 1977 AVERAGE RANGE 99 94 95 46 4 91 Venhuizen, 1991 AVERAGE RANGE 99 94 95 46 4 91 Venhuizen, 1991 AVERAGE RANGE 92 92 92 93 55 80 3.2 ****** NO. VALUES CONSIDERED 0 70 99 80 99 95 69 94 55 80 3.2 ****** RECIR SAND FILTER NECIR SAND FILTER IN - SITU 10500 <	RANGE				37	37	28	28	*****	*****	5	5	2	3	*****	*****	*****	*****	
INT. SAND FILTER INT. SAND FILTER IN IN-SITU INT. SAND FILTER IN IN-SITU INT. SAND FILTER IN INT. SAND FILTER IN IN-SITU INT. SAND FILTER INT. SAND FILTER INT. SAND FI	NO. VALUES CONSIDERED			l ol		3		2]	0		2		2		0		0	
INT. SAND FILTER 94 97 91 60 70 4 EPA, 1977 INT. SAND FILTER 94 98 96 99 40 60 90 2 4 EPA, 1977 INT. SAND FILTER NY IN-SITU 98 92 40 60 90 2 4 EPA, 1980 INT. SAND FILTER NY IN-SITU 98 92 46 4 EPA, 1991 Venhuizen, 1991 INT. SAND FILTER TX IN-SITU 98 92 46 4 EPA, 1977 INT. SAND FILTER TX IN-SITU 98 92 46 4 EPA, 1991 INT. SAND FILTER LAB 99 94 55 75 3 Venhuizen, 1991 INT. SAND FILTER LAB 99 94 55 75 3 Venhuizen, 1991 NO. VALUES CONSIDERED 0 70 99 80 99 55 80 3.2 4 RECIR SAND FILTER IN-SITU 10500 87 95 69 94 94			1	- -		•		_		Ĩ		_		-		•	1		
INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER NY NY IN-SITU IN-SITU LAB 94 98 96 99 40 60 90 2 4 EPA, 1980 Small Flows Cr. Hse. Venhuizen, 1991 INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER NY IN-SITU LAB 98 92 46 40 60 90 2 4 EPA, 1980 Small Flows Cr. Hse. Venhuizen, 1991 AVERAGE RANGE NO. VALUES CONSIDERED AVERAGE RECIR. SAND FILTER 94 98 96 99 94 55 75 3 Venhuizen, 1991 Venhuizen, 1991 RECIR. SAND FILTER RECIR. SAND FILTER TN IN-SITU IN-SITU 10500 87 95 50 2 4 Venhuizen, 1991 Venhuizen, 1991 RECIR. SAND FILTER RECIR. SAND FILTER TN IN-SITU 10500 87 95 50 2 4 Venhuizen, 1991 Venhuizen, 1991 RECIR. SAND FILTER RECIR. SAND FILTER RECIR. SAND FILTER TN IN-SITU 10500 87 95 69 94 50 50 50 50 50 50 5	INT. SAND FILTER	<u> </u>	1			97		91				60		70		4			EPA, 1977
INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER INT. SAND FILTER RANGE NO. VALUES CONSIDEREDNY IN-SITU IN-SITU INT. SAND FILTERNY IN-SITU IN-SITU INT. SAND FILTER NO. VALUES CONSIDEREDNY IN-SITU INT. SAND FILTER NO. VALUES CONSIDEREDNO.<	INT. SAND FILTER				94	98	96	- 99			40	60		90	2	4			EPA, 1980
INT. SAND FILTER INT. SAND FILTER INT. SAND FILTERNY IN-SITU LABIN-SITU LAB98 9992 9546 95Venhuizen, 1991 Venhuizen, 1991 50INT. SAND FILTER INT. SAND FILTERLAB99 999455 93502 5046 23Venhuizen, 1991 Venhuizen, 1991 Venhuizen, 1991 Venhuizen, 1991AVERAGE RANGE NO. VALUES CONSIDERED92 092 70 799 1099 909350 502 2 440 75 70 70 70 7032 2 4****** ****** 40 75 70 70 70 70 70 260RECIR SAND FILTER RECIR SAND FILTER RECIR SAND FILTER RECIR SAND FILTER NO. VALUES CONSIDEREDIN-SITU 10500 2087 87 95 95 9595 96 949455 5080 32 2 432 4 40 40 75 75 70 70 70 90 246 40 75 70 70 70 70 240 7 70 70 280 70 <br< td=""><td>INT. SAND FILTER</td><td>l</td><td></td><td></td><td>70</td><td>90</td><td>85</td><td>95</td><td></td><td></td><td></td><td></td><td></td><td>Í</td><td></td><td></td><td></td><td></td><td>Small Flows Clr. Hse.</td></br<>	INT. SAND FILTER	l			70	90	85	95						Í					Small Flows Clr. Hse.
INT. SAND FILTER TX IN-SITU 99 95 46 95 33 Venhuizen, 1991 INT. SAND FILTER LAB 99 94 55 75 3 Venhuizen, 1991 INT. SAND FILTER AVERAGE 99 99 94 55 75 3 Venhuizen, 1991 AVERAGE 70 99 80 93 55 80 3.2 ****** NO. VALUES CONSIDERED 0 7 10 0 7 2 6 0 RECIR SAND FILTER TN IN-SITU 10500 87 95 95 94 55 80 3.2 ****** RECIR SAND FILTER TN IN-SITU 10500 87 95 95 94 50	INT. SAND FILTER	NY	IN-SITU			98		92											Venhuizen, 1991
INT. SAND FILTER LAB 99 94 55 75 3 Venhuizen, 1991 INT. SAND FILTER AVERAGE 99 92 92 55 50 2 4 Venhuizen, 1991 AVERAGE 70 99 80 93 55 50 2 4 Venhuizen, 1991 NO. VALUES CONSIDERED 0 7 99 80 99 40 75 70 90 2 4 ****** NO. VALUES CONSIDERED 0 7 10 0 7 2 6 0 Venhuizen, 1991 RECIR SAND FILTER TN IN-SITU 10500 87 95 95 94 50 <t< td=""><td>INT. SAND FILTER</td><td>hx</td><td>in-situ</td><td></td><td></td><td></td><td></td><td>95</td><td></td><td>1</td><td></td><td>46</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Venhuizen, 1991</td></t<>	INT. SAND FILTER	hx	in-situ					95		1		46							Venhuizen, 1991
INT. SAND FILTER AVERAGE 92 93 50 2 4 Venhuizen, 1991 AVERAGE 70 99 80 93 55 80 3.2 ****** NO. VALUES CONSIDERED 0 7 10 0 7 2 6 0 RECIR. SAND FILTER TN IN-SITU 10500 87 95 95 69 94 Venhuizen, 1991 Second Filter TN IN-SITU 200 84 93 91 98 69 94 Venhuizen, 1991 Swanson & Dix, 1988 WV IN-SITU 200 84 93 91 98 69 94 Venhuizen, 1991	INT. SAND'FILTER		LAB			99		94			55	75				3			Venhuizen, 1991
AVERAGE RANGE 92 93 90 2 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 75 70 90 2 4 40 77 2 6 0 40 40 75 70 90 2 4 40 75 70 90 2 4 40 <t< td=""><td>INT. SAND FILTER</td><td></td><td></td><td></td><td></td><td></td><td>80</td><td>93</td><td></td><td></td><td></td><td>50</td><td></td><td></td><td>2</td><td>4</td><td></td><td></td><td>Venhuizen, 1991</td></t<>	INT. SAND FILTER						80	93				50			2	4			Venhuizen, 1991
RANGE NO. VALUES CONSIDERED TN IN-SITU 10500 87 95 69 94 Venhuizen, 1991 RECIR. SAND FILTER TN IN-SITU 200 84 93 91 98 69 94 Venhuizen, 1991 Swanson & Dix, 1988 UNV IN-SITU 200 84 93 91 98 69 94 Venhuizen, 1991	AVERAGE					92		- 92		*****		55		80		3.2	<u> </u>	*****	
NO. VALUES CONSIDERED071007260RECIR SAND FILTERTNIN-SITU10500879595849391989894 <td>RANGE</td> <td></td> <td></td> <td></td> <td>70</td> <td>99</td> <td>80</td> <td>99</td> <td>*****</td> <td>*****</td> <td>40</td> <td>75</td> <td>70</td> <td>90</td> <td>2</td> <td>4</td> <td>*****</td> <td>****</td> <td></td>	RANGE				70	99	80	99	*****	*****	40	75	70	90	2	4	*****	****	
RECIR SAND FILTER IN - SITU 10500 87 95 RECIR SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988 RECIR SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988	NO. VALUES CONSIDERED			0		7		10		0		7		2	_	6		0	
RECIR. SAND FILTER IN IN-SITU 10500 87 95 RECIR. SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988 RECIR. SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988				Ű								ſ,		-		Ŭ		5	
RECIR. SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988 DECIP. SAND FILTER WV IN-SITU 200 84 93 91 98 69 94 Swanson & Dix, 1988	RECIR. SAND FILTER	TN	IN-SITU	10500	1	87	T.	95			1	·····					1		Venhuizen, 1991
PECID SAND FIL TTD VIG IN SITU	RECIR. SAND FILTER	wv	IN-SITU	200	84	93	91	98			69	94							Swanson & Dix 1988
NECIN SAND FILIEN WYY IN TSILU I I I I I I I I I I I I I I I I I I 	RECIR. SAND FILTER	wv	IN-SITU		- '							80							Venhuizen, 1991

						RED	ŪCTI	ON I	N PO	CLUT	ANT	LOA	DS			·		
PRACTICE	ST	STUDY	WATER	TS	S	BO	D	CO	D	TN		TP		PATI	HŌ.	WAT	ER	REFERENCE
		TYPE	LOAD	LOW	HI	LOW	ні	LOW	HÌ	LOW	HI	LOW	HI	LOW	ĤÌ	LOW	HI	
			GPD	%	%	%	%	%	%	%	%	%	%	LOG	LOG	%	%	
RECIR. SAND FILTER	FL	<u>IN-SITU</u>									60							Venhuizen, 1991
RECIR. SAND FILTER					90	91	98									1		Venhuizen, 1991
RECIR. SAND FILTER	RI	IN-SITU								1	- 84							Lamb et. al., 1988
RECIR. SAND FILTER										30	80							Laak, 1986
RECIR. SAND FILTER				70	90	85	90					[Small Flows Clr. Hse.
RECIR. SAND FILTER	NY	IN-SITU			86		75											Small Flows Clr. Hse.
RECIR. SAND FILTER	ł	1			95		95				80			2	3			Small Flows Clr. Hse.
RECIR. SAND FILTER				95	98	94	98											EPA, 1980
RECIR. SAND FILTER	WV.	IN-SITU	100							57	81							Sandy et. al., 1988
RECIR. SAND FILTER						90	95					70	- 90	2	4			Small Flows Clr. Hse.
RECIR. SAND FILTER	IL	IN-SITU			97		97							2	3			Small Flows Clr. Hse.
RECIR SAND FILTER					95		_ 95			_ 50	70			3	4	[]	-	EPA, 1991
AVERAGE			3600		90		92		****		64		80		2.9		*****	
RANGE	1		100-10500	70	98	75	98	****	*****	1	- 94	70	90	2	4	*****	****	
NO. VALUES CONSIDERED	1		3		12		15		0		13		2		8		0	
	l																	
RUCK SYSTEM					85		86			70	80		, 83		4			Laak, 1986
RUCK SYSTEM	RI	IN-SITU								6	50							Lamb et. al., 1988
RUCK SYSTEM											50							EPA, 1991
AVERAGE		1			85		86		****		51		83		4	I	****	
RANGE				85	85	86	86	****	*****	6	80	83	83	4	4	****	*****	
NO. VALUES CONSIDERED	1	-	0		1		1		0		5		1		1		0	
		Ļ														<u> </u>		
LOW PHOSPHATE DETER,													50					EPA, 1980
LOW PHOSPHATE DETER.		ļ						L					50			ļ		EPA, 1991
AVERAGE					*****		*****		*****		*****		50		*****		*****	
RANGE				*****	*****	*****	*****	*****	*****	*****	*****	50	50	****	+++++	*****	*****	
NO. VALUES CONSIDERED			0		0		0		0		0		2		0		0	
																ļ		
CONV. SEPTIC SYSTEM													15					EPA, 1980
CONV. SEPTIC SYSTEM					65		30		50		45		30	3	4			EPA, 1977
CONV. SEPTIC SYSTEM	WV	IN-SITU	100							19	43							Sandy et. al., 1988
CONV. SEPTIC SYSTEM	RI	IN-SITU								0	6							Lamb et. al., 1988
CONV. SEPTIC SYSTEM	RI												90					EPA, 1989
CONV. SEPTIC SYSTEM	VA	IN-SITU										40	70					Rhode Island, 1989
CONV. SEPIIC SYSTEM	Cr	IN-SITU										0	70					Rhode Island, 1989
CONV. SEPTIC SYSTEM	NY	IN-SITU									42							Rhode Island, 1989
CONV. SEPTIC SYSTEM	WI	IN-SITU									9		29			1 1		Rhode Island, 1989
CONV. SEPTIC SYSTEM	RI	IN-SITU											95					Rhode Island, 1989
CONV. SEPTIC SYSTEM	CAN	IN-SITU								_		60	90					Rhode Island, 1989
CONV. SEPTIC SYSTEM			60		70		60			0	35		90					Degen et al., 1991
CONV. SEPTIC SYSTEM					54		36				40					l l		Healy, 1982

EFFECTIVENESS DATA FOR ONSITE SEWAGE DISPOSAL SYSTEMS

EFFECTIVENESS DATA FOR ONSITE SEWAGE DISPOSAL SYSTEMS

						RED	UCT	IONT	NPO	LLUT	'ANI	LOA	DS					
PRACTICE	ST	STUDY	WATER	TS	S	BO	D	CO	D	TN		TP		PATI	HO.	WAT	ER	REFERENCE
		TYPE	LOAD	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	LOW	HI	1
			GPD	%	%	70	%	%	%	%	%	9%	%	LOG	LOG	70	70	
CONV. SEPTIC SYSTEM					-		- 58				45					1		Healy, 1982
CONV. SEPTIC SYSTEM					79		59											Healy, 1982
CONV. SEPTIC SYSTEM					83						58							Healy, 1982
CONV. SEPTIC SYSTEM					78													Healy, 1982
CONV. SEPTIC SYSTEM	· ·				78						28							Healy, 1982
CONV. SEPTIC SYSTEM	ļ	l I				30	40											EPA, 1991
AVERAGE			80		72		45	1	50		28	· · · ·	57		3.5		*****	
RANGE			60-100	54	83	30	60	50	50	0	58	0	95	3	4	*****	*****	
NO. VALUES CONSIDERED	1		2		7		7		1		13		12		2		0	
MOUND SYSTEM											44				[Degen et al., 1991
AVERAGE			80		*****		*****		*****		44		*****		*****		*****	
RANGE	1		60-100	*****	*****	*****	*****	*****	*****	44	44	*****	****	*****	*****	****	*****	
NO. VALUES CONSIDERED	\$		0		0		0		0		1		0		0		0	
·			•			L						l						
RECYCLE WAST. WATER					_											36	90	EPA, 1980
LOW FLUSH TOILET																30	90	Small Flows Clr. Hse.
WATER CONS FIX.	PA	IN-SITU						t l								25	60	Jarrett et. al., 1985
HIGH EFF PLUMB.																	33	EPA, 1977
HIGHEFF PLUMB (TOIL)																4	31	EPA, 1980
HIGH EFF PLUMB.																30	70	EPA, 1991
AVERAGE					*****		*****		****	'	*****	'	*****		*****		45	
RANGE				*****	*****	****	****	****	*****	*****	*****	*****	*****	*****	*****	4	90	
NO. VALUES CONSIDERED			0		0		0	l	0		0		0		0	ļ	11	i
					-											1		
WATER SEP. SYSTEM				36	67	22	49			68	99	14	42					EPA, 1977
WATER SEP. SYSTEM					61					_	82		30					EPA, 1986
WATER SEP. SYSTEM										78	90	20	40					EPA, 1980
WATER SEP. SYSTEM							_ 55				83		32			ļ		EPA, 1991
AVERAGE		l l			60		42		*****		83		30		*****	·	****	
RANGE				36	75	22	55	*****	*****	68	99	14	42	****	*****	*****	****	
NO. VALUES CONSIDERED			0		4		3		0		6		6		0		0	
L		L <u></u>														I		

APPENDIX E COST DATA

		
COST (19885)	DATAFOR	ONSITE SEWAGE DISPOSAL SYSTEMS

PRACTICE	ST	CAPITAL COST	CAPITAL COST	O&M COST	O&M COST	REFERENCE
		LOW	HIGH	LOW (\$/YR)	HIGH (\$/YR)	
CLUSTER SYSTEM	MI	\$3,075	\$5,124			Decker, 1987
CLUSTER SYSTEM	NY		\$6,900		\$370	Small Flows Clr. House
AVERAG	E		\$5,033		\$370	
RANG	E	\$3,075	\$6,900	\$370	\$370	
NO. VALUES CONSIDERE	D		3		1	
						<u> </u>
CENT. SEWER SYSTEM	NY		\$9,977		\$237	Orr, 1989
CONV. TREATMENT SYS.	MI		\$8,711		•···	Decker, 1987
CONV. TREATMENT SYS.	VA	\$49	\$3,926	\$86	\$294	EPA, 1980
AVERAG	E	•	\$5,666		\$206	
RANG	E	\$49	\$9,977	\$86	\$294	
NO. VALUES CONSIDERE	р		4		3	
CONSWETT AND****	AV		\$200.00			Pood 1991
CONSWETLAND			\$000.00			Reed, 1991
CONSWETLAND****	OF		\$1,500.00			Reed 1991
CONSWETLAND****		\$780.00	\$905.00			Reed 1991
CONSWETLAND****		÷700.00	\$675.00			Reed 1991
CONSWETLAND****		\$50.00	\$215.00			Reed 1991
CONS WETLAND****	NM	\$50.00	\$1,000,00			Reed, 1991
CONS WETLAND*****	MA		\$230.00			Reed. 1991
CONSWETLAND*****	NA	\$265.00	\$495.00			Reed, 1991
CONS WETLAND*****	OR		\$90.00			Reed. 1991
CONS WETLAND*****	CA		\$155.00			Reed. 1991
CONS WETLAND*****	MS		\$290.00			Reed, 1991
CONS WETLAND*****	FL		\$375.00			Reed, 1991
CONS WETLAND*****	MI		\$450.00			Reed, 1991
CONS WETLAND (120 SITES)	KY	\$1,500.00	\$3,500.00			Small Flows Clr. Hse., 1992
CONS WETLAND	VA				\$24.54	EPA, 1980
AVERAG	E		\$706.58		\$24.54	
RANG	В	\$50.00	\$3,500.00	\$24.54	\$24.54	
NO. VALUES CONSIDERE	D		19		1	
HOLDING TANK(2000GAL)			<u>\$1.970</u>	\$1.200	\$2,400	Small Flows Clr. House
HOLDING TANK(4000GAL)			\$4,770	\$1,200	\$2,400	Small Flows Cir. House
HOLDING TANK (5000GAL)			\$6.670	\$1,200	\$2,400	Small Flows Clr. House
HOLDING TANK(1000GAL)			\$1.220	\$1.200	\$2,400	Small Flows Clr. House
HOLDING TANK(2000GAL)	col		\$4.104	/	\$103	Dix, 1986
HOLDING TANK(4000GAL)	co		\$4,104		\$205	Dix, 1986

PRACTICE	KT	CAPITAL COST	CAPITAL COST	O&M COST	O&MCOST	DEEEDENCE
TRACTICE	51	LOW				REPERENCE
HOLDING TANK (8000GAL)	$\overline{\mathbf{co}}$	LOW	¶11011 €5 225		<u></u>	Div 1986
HOLDING TANK	wī		\$3,333		\$203	Hanson et al. 1988
AVERAGE	*** 1		\$3,422			
RANGE		\$1.220	\$6,670	\$103	\$1,514	
		\$1,220	30,070	\$105	32,400	
			0		12	
INT. SAND FILTER*			\$2,373		\$258	Small Flows Clr. House
INT. SAND FILTER**			\$2,290		\$98	Small Flows Clr. House
INT. SAND FILTER			\$4,408		\$134	EPA, 1977
INT. SAND FILTER	NY		\$6,960		\$440	Small Flows Clr. House
INT. SAND FILTER	NY		\$6,700		\$440	Small Flows Clr. House
INT. SAND FILTER		\$5,000	\$10,000			EPA, 1991
AVERAGE			\$5,390		\$274	
RANGE		\$2,290	\$10,000	\$98	\$440	
NO. VALUES CONSIDERED			7		5	
LOW PRESS. SYSTEM	VA		\$7,361		\$147	EPA, 1980
LOW PRESS. SYSTEM	MO		\$2,833			Fulhage & Day, 1988
AVERAGE			\$5,097		\$147	
RANGE		\$2,833	\$7,361	\$147	\$147	
NO. VALUES CONSIDERED			2		1	
MOUND SYSTEM	VA		\$11,041		\$86	EPA, 1980
MOUND SYSTEM			\$8,348		\$134	EPA, 1977
MOUND SYSTEM	WI				\$198	Hanson et. al., 1988
MOUND SYSTEM	NY		\$6,800		\$310	Small Flows Clr. House
MOUND SYSTEM			\$7,000			EPA, 1991
AVERAGE			\$8,297		\$182	
RANGE		\$6,800	\$11,041	\$86	\$310	
NO. VALUES CONSIDERED			4		4	
DACKACE TREAT DI ANT		<u> </u>	PA 417	<u></u>		
PACKAGE IREAL PLANT	VA	<u> </u>	\$4,410	{	\$/01 \$761	EPA, 1980
		\$A A16	54,410 CA A12	\$7C1	۵/01 ۳7/1	
		\$ 4,4 10	\$4,410 1	\$/01	ۍ/10 ۱	
INC. VALUES CONSIDERED			1		1	
RECIRC, SAND FILTER		<u> </u>		<u>\$</u> 15	\$30	Hoxie et. al., 1988
RECIRC. SAND FILTER***			\$1 874	41 5	\$100	Small Flows Cir House
RECIRC. SAND FILTER	NY		\$1,900		\$410	Small Flows Clr. House
	• • •	1	\$1,700		Ψ+10	

COST (1988\$) DATA FOR ONSITE SEWAGE DISPOSAL SYSTEMS

COST	(1988\$)	DATA FO	OR ONSITE	SEWAGE I	DISPOSAL	SYSTEMS

PRACTICE	ST	CAPITAL COST	CAPITAL COST	O&M COST	O&M COST	REFERENCE
		LOW	HIGH	LOW (\$/YR)	HIGH (\$/YR)	
RECIRC. SAND FILTER			\$5,700		\$20	Fulhage & Day, 1988
RECIRC. SAND FILTER	VA		\$9,201		\$196	EPA, 1980
RECIRC. SAND FILTER****			\$2,514		\$260	Small Flows Clr. House
AVERAGE			\$4,238		\$147	
RANGE	4	\$1,874	\$9,201	\$15	\$410	
NO. VALUES CONSIDERED	×		5		7	
RUCKSYSTEM	NY	\$12,311	\$16,415			Laak, 1986
AVERAGE	1		\$14,363		ERR	
RANGE	1	\$12,311	\$16,415	ERR	ERR	
NO. VALUES CONSIDERED	}		2		0	
CONV. SEPTIC SYSTEM	WI		\$2,815		\$110	Hanson et. al., 1988
CONV. SEPTIC SYSTEM	co		\$8,207		\$46	Dix, 1986
CONV. SEPTIC SYSTEM	VA		\$3,680		\$25	EPA, 1980
CONV. SEPTIC SYSTEM			\$2,738		\$83	EPA, 1977
CONV. SEPTIC SYSTEM	мо	\$2,000	\$2,500			Fulhage & Day, 1988
CONV. SEPTIC SYSTEM	ļ	\$4,000	\$10,000			EPA, 1991
AVERAGE			\$4,493		\$66	
RANGE		\$2,000	\$10,000	\$25	\$110	
NO. VALUES CONSIDERED	2		8		4	
	L					
ANAEROBIC UPFLOW FIL.	ļ	\$3,000	\$8,000			EPA, 1991
AVERAGE		_	\$5,500		ERR	
RANGE		\$3,000	\$8,000	ERR	ERR	
NO. VALUES CONSIDERED	i i		2		0	
					<u> </u>	
WATER SEP. SYST.		\$5,000	\$11,000		\$300	EPA, 1991
AVERAGE			\$8,000		\$300	
RANGE	4	\$5,000	\$11,000	\$300	\$300	
NO. VALUES CONSIDERED	}		2		1	

Per household cost for a 5000 gpd system assuming 500gpd/household Per household cost for a 30000 gpd system assuming 500gpd/household Per household cost for a 30000 gpd system assuming 500gpd/household

**

**** Per household cost for a 5000 gpd system assuming 500gpd/household ***** Per household cost assuming 500gpd/household

*