EPA 904/9-78-008

Kentucky Air Quality Maintenance Planning and Analysis

Area Source Emission Inventory Allocation and Projection

U.S. Environmental Protection Agency Region IV, Atlanta, Georgia Kentucky Department for Natural Resources and Environmental Protection

	1 B		
BIBLIOGRAPHIC DATA	1. Report No. EPA 904/9-78-008	2.	3. Recipient's Accession No.
4. Title and Subtitle			5. Report Date
Kentucky Air Qual	ity Maintenance Planning	and Analysis	May 1978
Area Source Emiss	ion Inventory, Allocatio	n and Projection	6.
7. Author(s)			8. Performing Organization Rept. No.
9. Performing Organization N	ame and Address		10. Project/Task/Work Unit No.
Engineering-Scien			Task Order 16
7903 Westpark Dri			11. Contract/Grant No.
McLean, Virginia	22101		68-02-1380
12. Sponsoring Organization	Name and Address		13. Type of Report & Period
U. S. Environment	al Protection Agency		Covered
Region IV, Air Pr	ograms Branch		Final
Atlanta, Georgia	30308		14.
15. Supplementary Notes			
and Environmental NO, CO and HC Ar seven additional These outlying co and Trimble. Beck from Hardin County reservation. The 1985 and 1995. In developing made use of the in the EPA Guideline tions. In partice program, Mobile 1 Emission factors of (road class), amb start operation. patterns play an emissions, the re- examined. In gen projected to the the appropriate si	Protection in developin ea Source Emission Inven Kentucky counties surrou unties included Bullitt, ause of special consider y and a separate emissio baseline year was defin g, allocating and projec nstructions and methodol Series for AQMA analysi ular ES incorporated the , for motor vehicles in were determined for each ient temperature, fracti Because the magnitude a important part in the es gional growth patterns f eral, emissions from eac planning years and the t ub-county areas.	g, allocating and tory for the Louis nding the metropol Hardin, Henry, Ol ations, Fort Knox n inventory was de ed as 1975 with pr ting the area sour ogies described in s as well as other recently issued c the calculation of calendar year, po on cold-start oper nd location of fut timation projectio orecast by the pla h of the 26 area s otal emissions wer	ville AQMA (SMSA) and 2 itan Louisville area. dham, Shelby, Spencer was considered distinct veloped for this military ojection years of 1980, ce emission inventory, ES Volume 1 through 13 of EPA documents and publica omputer emission factor HC, NO _X and CO emissions. llutant, average speed vation and fraction hot- ure changes in activity n and allocation of nning agency were also ource categories were then distributed to
17.		ND DOCUMENT ANALYS	
a. Descriy		IERS/OPEN ENDED TE	RMS c.COSATI Field/Group
Air Pollution Air Quality Mainte	state of Louisvill	-	
Suspended Particu		Hardin, Henry, Old	ham,
Sulfur Dioxide		and Trimble Count	
Hydrocarbon	Emission	Inventory, Allocat	
Carbon Monoxide	and Pro	jection	
Nitrogen Oxides	.		
Area Source Catego	ories		
8. Availability Statement	I	Report) UNC 20. Security	Y Class (This 21. No. of Pages 225 225 Y Class (This 22. Price
Release Unlimited		Page	
ORM NTIS-35 (REV. 10-73) F	NDORSED BY ANSI AND UNESCO. i	THIS FORM MAY BE I	LASSIFIED USCOMM-DC 8263-P7

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (Bibliographic Data Sheet based on COSATI Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government, PB-180 600).

- 1. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performin organization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples FASEB-NS-73-87 and FAA-RD-73-09.
- 2. Leave blank.
- 3. Recipient's Accession Number. Reserved for use by each report recipient.
- 4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, subordinate subtitle to t main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.
- 5. Report Date. Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selection, date of issue, date of approval, date of preparation, date published).
- 6. Performing Organization Code. Leave blank.
- 7. Author(s). Give name(s) in conventional order (e.g., John R. Doe, or J.Robert Doe). List author's affiliation if it diff from the performing organization.
- 8. Performing Organization Report Number. Insert if performing organization wishes to assign this number.
- 9. Performing Organization Name and Mailing Address. Give name, street, city, state, and zip code. List no more than tw levels of an organizational hierarchy. Display the name of the organization exactly as it should appear in Government dexes such as Government Reports Index (GRI).
- 10. Project/Task/Work Unit Number. Use the project, task and work unit numbers under which the report was prepared.
- 11. Contract/Grant Number. Insert contract or grant number under which report was prepared.
- 12. Sponsoring Agency Name and Mailing Address. Include zip code. Cite main sponsors.
- 13. Type of Report and Period Covered. State interim, final, etc., and, if applicable, inclusive dates.
- 14. Sponsoring Agency Code. Leave blank.
- 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . Translation of ... Presented at conference of ... To be published in ... Supersedes ... Supplements ... Cite availability of related parts, volumes, phases, etc. with report number.
- 16. Abstract. Include a brief (200 words or less) factual summary of the most significant information contained in the rep If the report contains a significant bibliography or literature survey, mention it here.
- 17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms t proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be us as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators, etc. open-ended terms written in descriptor form for those subjects for which no descriptor exists.

(c). COSATI Field/Group. Field and Group assignments are to be taken from the 1964 COSATI Subject Category L Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will be the spec discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with second Field/Group assignments that will follow the primary posting(s).

18. Distribution Statement. Denote public releasability, for example "Release unlimited", or limitation for reasons other than security. Cite any availability to the public, other than NTIS, with address, order number and price, if known.

19 & 20. Security Classification. Do not submit classified reports to the National Technical Information Service.

21. Number of Pages. Insert the total number of pages, including introductory pages, but excluding distribution list, if any

22. NTIS Price. Leave blank.

904/9-78-008

Library Region IV US Environmental Protection Agency 345 Courtland Street Atlanta, Georgia 30365

KENTUCKY AIR QUALITY MAINTENANCE PLANNING AND ANALYSIS PROJECT

> BOA Contract 68-02-1380 TASK ORDER NO. 16

> > FINAL REPORT

Prepared For

U. S. ENVIRONMENTAL PROTECTION AGENCY

Region IV 345 Courtland Street Atlanta, Georgia 30309

and

Kentucky Air Quality Maintenance Area Air Quality Task Force

Submitted By

Engineering-Science 7903 Westpark Drive McLean, Virginia 22101

May 1978

This air pollution report is issued by Region IV, Environmental Protection Agency to assist state and local air pollution control agencies in carrying out their program activities. Copies of this report may be obtained, for a nominal cost, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22151.

This report was furnished to the Environmental Protection Agency by Engineering-Science, McLean, Virginia in fulfillment of EPA Contract No. 68-02-1380, Task Order No. 16. This report has been reviewed by Region IV, EPA and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Region IV Publication No. 904/9-78-008

TABLE OF CONTENTS

CHAPTER		PAGE
I	INTRODUCTION	I - 1
II	POPULATION AND EMPLOYMENT	II-1
	A. Population ProjectionsB. Employment Projections	II-2 II-3
III	SURVEY RESULTS	III-1
	 A. Fuel Use Survey B. Dry Cleaning Survey C. Automotive Paint Survey D. Gasoline Marketing Survey 	III-1 III-2 III-2 III-3
IV	GRID SYSTEM	IV-1
v	RESIDENTIAL FUEL USE	V-1
	 A. 1975 Emission Inventory B. 1975 Emissions Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	V-1 V-1 V-4 V-5
VI	COMMERCIAL AND INSTITUTIONAL FUEL USE	VI-1
	 A. 1975 Emissions Inventory B. 1975 Emissions Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	VI-1 VI-3 VI-3 VI-3
VII	INDUSTRIAL FUEL USE	VII-1
VIII	ON-SITE INCINERATION DATA	VIII-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	VIII-1 VIII-2 VIII-2 VIII-2
IX	OPEN BURNING	IX-1
	 A. 1975 Emissions Inventory B. 1975 Emissions Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	IX-1 IX-2 IX-3 IX-4
X	HIGHWAY VEHICLES	X-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	X-1 X-9 X-11 X-26

CHAPTER	TABLE OF CONTENTS (Continued)	PAGE
XI	AIRCRAFT	XI-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XI-1 XI-1 XI-1 XI-2
XII	RAILROAD LOCOMOTIVES	XII-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XII-1 XII-2 XII-2 XII-2
XIII	VESSELS	XIII-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XIII-1 XIII-2 XIII-2 XIII-2
XIV	SMALL GASOLINE ENGINES	XIV-1
	A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation	XIV-1 XIV-1 XIV-1 XIV-2
XV	AGRICULTURAL EQUIPMENT	XV-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XV-1 XV-4 XV-4 XV-4
XVI	CONSTRUCTION EQUIPMENT	XVI-1
	A. 1975 Emission Inventory Road Construction Equipment Residential Construction Equipment Miscellaneous Construction and Landfill Equipment	XVI-1 XVI-1 XVI-1 XVI-2
	 B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XVI-5 XVI-5 XVI-5
XVII	SMALL POINT SOURCES	XVII-1
XVIII	STRUCTURAL FIRES	XVIII-1
	 A. 1975 Emission Inventory B. 1975 Emissions Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XVIII-1 XVIII-2 XVIII-2 XVIII-2

TABLE OF CONTENTS (Continued)

CHAPTER

XVIX	WILD FOREST FIRES	XVIX-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XIX-1 XIX-1 XIX-2 XIX-2
XX	UNPAVED ROADS	XX-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XX-1 XX-2 XX-2 XX-2
XXI	UNPAVED AIRSTRIPS	XXI-1
XXII	TILLING ACTIVITY	XXII-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXII-1 XXII-1 XXII-4 XXII-4
XXIII	CONSTRUCTION ACTIVITY	XXIII-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXIII-1 XXIII-2 XXIII-2 XXIII-2
XXIV	WIND BLOWN DUST	XXIV-1
XXV	PAVED ROADS	XXV-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXV-1 XXV-2 XXV-2 XXV-2
XXVI	DRY CLEANING	XXVI-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXVI-1 XXVI-1 XXVI-1 XXVI-2
XXVII	SURFACE COATING	XXVII-1
	A. 1975 Emission Inventory Automotive Painting Trade Paint Application	XXVII-1 XXVII-1 XXVII-3
	B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation	XXVII-4 XXVII-4 XXVII-4

	TABLE OF CONTENTS (Continued)	
CHAPTER		PAGE
XXVIII	PETROLEUM STORAGE	XXVIII-1
XXIX	MARKETING OF PETROLEUM	XXIX-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXIX-1 XXIX-2 XXIX-3 XXIX-4
XXX	ASPHALT PAVING	XXX-1
	 A. 1975 Emission Inventory B. 1975 Emission Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXX-1 XXX-2 XXX-2 XXX-2
XXXI	FORT KNOX	XXXI-1
	 A. 1975 Emissions Inventory B. 1975 Projected Allocation C. Projected Emission Inventory D. Projected Emission Allocation 	XXXI-1 XXXI-3 XXXI-3 XXXI-3
XXXII	EMISSIONS SUMMARY	XXXII-1

APPENDICES

- APPENDIX A JEFFERSON, FLOYD, AND CLARK COUNTIES 1973 EMISSION INVENTORY
- APPENDIX B JEFFERSON, FLOYD, AND CLARK COUNTIES 1975 EMISSION INVENTORY UPDATE AND PROJECTIONS
- APPENDIX C TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE

LIST OF TABLES

TABLE PAGE II-1 **1975 POPULATION ESTIMATES** II-2 II-2 COUNTY POPULATION PROJECTIONS II-3 II-3 COMMERCIAL/INSTITUTIONAL EMPLOYEES BY COUNTY II-4II-4MANUFACTURING EMPLOYEES BY COUNTY II-4 II-5 CONSTRUCTION EMPLOYEES BY COUNTY II-5 III-1 FUEL SURVEY RESULTS III-1 III-2 DRY CLEANING SURVEY RESULTS III-2 III-3 AUTO BODY SHOP SURVEY RESULTS III-3 IV-1 GRID DATA IV-13 V-1 1975 COUNTY RESIDENTIAL FUEL USE V-2 **V-**2 ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY **V-**2 AND FUEL TYPE V-3 EMISSION FACTORS FOR RESIDENTIAL FUEL BURNING V-3 V-4 1975 RESIDENTIAL FUEL USE EMISSIONS SUMMARY V-3 V-5 1980 PROJECTED TOTAL RESIDENTIAL FUEL USE BY V-4 COUNTY AND FUEL TYPE 1985 PROJECTED TOTAL RESIDENTIAL FUEL USE BY V-6 V-5 COUNTY AND FUEL TYPE 1995 PROJECTED TOTAL RESIDENTIAL FUEL USE BY V-7 COUNTY AND FUEL TYPE V-5 1975 COUNTY COMMERCIAL/INSTITUTIONAL FUEL USE VI-1 VI-1 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL VI-2 VI-2 FUEL USE BY COUNTY AND TYPE EMISSION FACTORS FOR COMMERCIAL/INSTITUTIONAL VI-3 FUEL BURNING VI-2 1975 COMMERCIAL/INSTITUTIONAL EMISSIONS SUMMARY VI-3 VI-4 1980 PROJECTED TOTAL COMMERCIAL AND INSTITUTIONAL VI-5 VI-4 FUEL USE BY COUNTY AND FUEL TYPE 1985 PROJECTED TOTAL COMMERCIAL AND INSTITUTIONAL VI-6 FUEL USE BY COUNTY AND FUEL TYPE VI-41995 PROJECTED TOTAL COMMERCIAL AND INSTITUTIONAL VI-7 FUEL USE BY COUNTY AND FUEL TYPE VI-5

		PAGE
TABLE		
VIII-1	ON-SITE INCINERATION DATA	VIII-1
VIII-2	1975 ON-SITE INCINERATION EMISSION SUMMARY	VIII-3
IX-1	OPEN BURNING DATA	IX-2
IX-2	1975 OPEN BURNING EMISSION SUMMARY	IX-2
IX-3	1980 OPEN BURNING PROJECTIONS	IX-3
IX-4	1985 OPEN BURNING PROJECTIONS	IX-4
IX-5	1995 OPEN BURNING PROJECTIONS	IX-4
X-1	VMT BY ROAD CLASSIFICATION AND VEHICLE TYPE	X-2
X-2	1975 BULLITT COUNTY TRAFFIC DATA	X-3
X-3	1975 HARDIN COUNTY TRAFFIC DATA	X-4
X-4	1975 HENRY COUNTY TRAFFIC DATA	X-4
X-5	1975 OLDHAM COUNTY TRAFFIC DATA	X-5
X-6	1975 SHELBY COUNTY TRAFFIC DATA	X-5
X-7	1975 SPENCER COUNTY TRAFFIC DATA	X-6
X-8	1975 TRIMBLE COUNTY TRAFFIC DATA	X-6
X-9	1975 MOTORCYCLE TRAFFIC DATA	X-7
X-10	LOCALIZED 1975 VEHICLE REGISTRATION (FRACTION)	X-8
X-11	1975 MOTOR VEHICLE EMISSION FACTORS	X-10
X-12	1975 HIGHWAY VEHICLES EMISSIONS SUMMARY	X-10
X-13	1980 BULLITT COUNTY TRAFFIC DATA	X-12
X-14	1980 HARDIN COUNTY TRAFFIC DATA	X-12
X-15	1980 HENRY COUNTY TRAFFIC DATA	X-13
X-16	1980 OLDHAM COUNTY TRAFFIC DATA	X-13
X-17	1980 SHELBY TRAFFIC DATA	X-14
X-18	1980 SPENCER COUNTY TRAFFIC DATA	X-14
X-19	1980 TRIMBLE COUNTY TRAFFIC DATA	X-15
X-20	1985 BULLITT COUNTY TRAFFIC DATA	X-15
X-21	1985 HARDIN COUNTY TRAFFIC DATA	X-16
X-22	1985 HENRY COUNTY TRAFFIC DATA	X-16
X-23	1985 OLDHAM COUNTY TRAFFIC DATA	X-17
X-24	1985 SHELBY COUNTY TRAFFIC DATA	X-17
X-25	1985 SPENCER COUNTY TRAFFIC DATA	X-18
X-26	1985 TRIMBLE COUNTY TRAFFIC DATA	X-18

	HIGT OF TREES (Continued)	
TABLE		PAGE
X-27	1995 BULLITT COUNTY TRAFFIC DATA	X-19
X-28	1995 HARDIN COUNTY TRAFFIC DATA	X-19
X-29	1995 HENRY COUNTY TRAFFIC DATA	X-20
X-30	1995 OLDHAM COUNTY TRAFFIC DATA	X-20
X-31	1995 SHELBY COUNTY TRAFFIC DATA	X-21
X-32	1995 SPENCER COUNTY TRAFFIC DATA	X-21
X-33	1995 TRIMBLE COUNTY TRAFFIC DATA	X-22
X-34	1980 MOTOR VEHICLE EMISSION FACTORS	X-22
X-35	1985 MOTOR VEHICLE EMISSION FACTORS	X-23
X-36	1985 AND 1995 MOTOR VEHICLE EMISSION FACTORS	X-23
X-37	PROJECTED TSP EMISSION FACTORS	X-24
X-38	1980 HIGHWAY VEHICLES EMISSIONS SUMMARY	X-25
X-39	1985 HIGHWAY VEHICLES EMISSIONS SUMMARY	X-25
X-40	1995 HIGHWAY VEHICLES EMISSIONS SUMMARY	X-26
XI-1	AIRCRAFT OPERATION AND EMISSION SUMMARY	XI-3
XII-1	RAILROAD OPERATING DATA	XII-4
XII-2	1975 FUEL USAGE BY RAILROAD COMPANIES	XII-4
XII-3	1975 RAILROAD LOCOMOTIVE EMISSION SUMMARY	XII-5
XIII-1	1975 DIESEL VESSEL EMISSION SUMMARY	XIII-3
XIII-2	1975 GASOLINE VESSEL EMISSION SUMMARY	XIII-3
XIV-1	1975 SMALL GASOLINE ENGINES EMISSION SUMMARY	XIV-2
XV-1	ESTIMATED FARM TRACTOR FUEL CONSUMPTION	XV-2
XV-2	1975 GASOLINE TRACTOR EMISSION SUMMARY	XV-3
XV-3	1975 DIESEL TRACTOR EMISSION SUMMARY	XV-3
XV-4	PAST AND PROJECTED HARVESTED CROPLAND	XV-4
XVI-1	ROAD CONSTRUCTION EQUIPMENT OPERATING DATA	XVI-2
XVI-2	RESIDENTIAL CONSTRUCTION EQUIPMENT OPERATING DATA	XVI-3
XVI-3	MISCELLANEOUS CONSTRUCTION EQUIPMENT OPERATING DATA	XVI-3
XVI-4	EMISSION FACTORS FOR CONSTRUCTION EQUIPMENT	XVI-4
XVI-5	1975 CONSTRUCTION EQUIPMENT EMISSION SUMMARY	XVI-4
XVIII-1	1975 STRUCTURAL FIRE DATA	XVIII-1
XVIII-2	1975 STRUCTURAL FIRE EMISSION SUMMARY	XVIII-2

LIST OF TABLES (Continued)

TABLE		PAGE
XIX-1	1975 FOREST FIRE DATA	XIX-1
XIX-2	WILD FOREST FIRE EMISSION SUMMARY	XIX-2
XX-1	UNPAVED ROADS DATA	XX-3
XX-2	1975 UNPAVED ROADS EMISSION SUMMARY	XX-3
XXII-1	1975 ACREAGE TILLED AND NUMBER OF TILLINGS PER YEAR	XXII-2
XXII-2	1975 TILLING ACTIVITY EMISSION INVENTORY	XXII-3
XXIII-1	CONSTRUCTION ACTIVITY CALCULATIONS	XXIII-3
XXIII-2	1975 CONSTRUCTION ACTIVITY EMISSION SUMMARY	XXIII-4
XXV-1	1975 PAVED ROAD EMISSION SUMMARY	XXV-1
XXVI-1	1975 DRY CLEANING OPERATING DATA	XXVI-2
XXVII-1	1975 AUTOMOTIVE PAINTING DATA	XXVII-1
XXVII-2	1975 AUTOMOTIVE PAINTING EMISSION SUMMARY	XXVII-2
XXVII-3	1975 TRADE PAINT CONSUMPTION	XXVII-3
XXVII-4	1975 TRADE PAINT EMISSION SUMMARY	XXVII-4
XXIX-1	EMISSION FACTORS FOR GASOLINE MARKETING	XXIX-1
XXIX-2	1975 GASOLINE MARKETING DATA	XXIX-2
XXIX-3	1975 GASOLINE MARKETING EMISSION SUMMARY	XXIX-3
XXX-1	1975 CUTBACKS USED IN ASPHALT PAVING	XXX-1
XXX-2	1975 ASPHALT PAVING EMISSION SUMMARY	XXX-2
XXXI-1	DATA AVAILABLE FROM FORT KNOX	XXXI-2
XXXI-2	EMISSION SUMMARY FOR FORT KNOX KENTUCKY	XXXI-4
XXXII-1 through XXXII-5	AREA SOURCE EMISSIONS SUMMARY 1975 for PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	XXXII-2 through XXXII-6
XXXII-6 through XXXII-10	AREA SOURCE EMISSIONS SUMMARY 1980 for PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	XXXII-7 through XXXII-11

LIST OF TABLES (Continued)

TABLE

XXXII-11 through XXXII-15	AREA SOURCE EMISSIONS SUMMARY 1985 for PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	XXXII-12 through XXXII-16
XXXII-16 through XXXII-20	AREA SOURCE EMISSIONS SUMMARY 1995 for PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	XXXII-17 through XXXII-21
XXXII-21	BASELINE YEAR AND PROJECTED EMISSION SUMMARY	XXXII-22
A-1	1973 AREA SOURCE PARTICULATE EMISSIONS SUMMARY	A-3
A-2	1973 AREA SOURCE SULFUR DIOXIDE EMISSIONS SUMMARY	A-4
A-3	1973 AREA SOURCE CARBON MONOXIDE EMISSIONS SUMMARY	A-5
A-4	1973 AREA SOURCE HYDROCARBONS EMISSIONS SUMMARY	A-6
A-5	1973 AREA SOURCE NITROGEN OXIDES EMISSIONS SUMMARY	A-7
B-1	1975 ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE	B-3
B-2	1980 ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE	B-4
B-3	1985 ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE	B-4
B-4	1995 ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE	B-4
B-5	1975 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE	B-5
В-6	1980 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE	B-5
B-7	1985 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE	B-6
B-8	1995 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE	B-6
B-9	SAPOLLUT MODEL RESULTS (10 ⁶ VMT)	B-7
B-10	1975 LOUISVILLE SMSA TRAFFIC DATA	B-8
B-11	1975 LOUISVILLE SMSA HIGHWAY VEHICLE EMISSIONS	B-8
B-12	1980 LOUISVILLE SMSA TRAFFIC DATA	B - 9
B-13	1985 LOUISVILLE SMSA TRAFFIC DATA	B-9
B-14	1995 LOUISVILLE SMSA TRAFFIC DATA	B-10

LIST OF TABLES (Continued)

TABLE

PAGE

B-15	1975 AIRCRAFT OPERATIONS AND EMISSIONS	B-11
B-16	COMPARISON OF 1973 AND 1975 UNPAVED ROAD DATA FOR FLOYD AND CLARK COUNTIES	B-15
B-17	AVERAGE EMISSION DATA	B-17
B-18	1975 DRY CLEANING HYDROCARBON EMISSION SUMMARY	B-17
B-19	1975 REPORTED AUTOMOTIVE PAINT SALES	B-18
в-20	1975 AUTOMOTIVE PAINTING EMISSION SUMMARY	B-19
B-21	TRADE PAINT USAGE AND EMISSIONS	B-19
B-22	1975 GASOLINE MARKETING DATA	B-20
B-23	1975 PETROLEUM MARKETING EMISSION SUMMARY	B-20
B-24 through B-28	AREA SOURCE EMISSION SUMMARY - JEFFERSON COUNTY PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	. 1
B-29 through B-33	AREA SOURCE EMISSION SUMMARY - FLOYD COUNTY PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCAROBNS, AND NITROGEN OXIDES	B-27 through B-31
B-34 through B-38	AREA SOURCE EMISSION SUMMARY - CLARK COUNTY PARTICULATES, SULFUR DIOXIDE, CARBON MONOXIDE, HYDROCARBONS, AND NITROGEN OXIDES	B-32 through B-36
C-1	TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE FOR BULLITT, HARDIN, HENRY, OLDHAM, SHELBY AND SPENCER COUNTIES	C-3
C-2	TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE FOR CLARK AND FLOYD COUNTIES	C-5

LIST OF FIGURES

FIGURE

IV-1	BULLITT COUNTY GRID	IV-2
IV-2	HARDIN COUNTY GRID	IV-3
IV-3	HENRY COUNTY GRID	IV-4
IV-4	OLDHAM COUNTY GRID	IV-5
IV-5	SHELBY COUNTY GRID	IV-6
IV-6	SPENCER COUNTY GRID	IV-7

LIST OF FIGURES (Continued)

FIGURE

IV-7	TRIMBLE COUNTY GRID	IV-8
IV-8	JEFFERSON COUNTY GRID	IV-9
IV-9	FLOYD COUNTY GRID	IV-10
IV-10	CLARK COUNTY GRID	IV-11
IV-11	SUMMARY WORK SHEET	IV-12
XXII-1	GROWTH IN FREIGHT TRAIN MILES	XII-3

CHAPTER I

INTRODUCTION

In 1975 Engineering-Science, under contract to the Environmental Protection Agency Region IV (EPA), conducted an air pollution emission inventory for the Louisville Standard Metropolitan Statistical Area (SMSA) consisting of Jefferson County, Kentucky and Floyd and Clark Counties, Indiana. This project was part of the air quality maintenance planning and analysis program completed by the Kentucky Department for Natural Resources and Environmental Protection. The inventory was made for the 1973 base-line year and considered two pollutants, sulfur dioxide (SO_2) and particulate matter (TSP). In general, Engineering-Science was responsible for the analysis of area sources and the Department for point sources. The work was divided into four activity areas:

- o Update of the 1973 county-wide base-line year emission inventory.
- o Allocation of the base-line year emission inventory to subcounty areas appropriate to dispersion modeling.
- o Projection of the county-wide emission inventories to 1975, 1980, and 1985.
- o Allocation of the projected emissions to subcounty areas.

The final report of the project is contained in the EPA document, Louisville Air Quality Maintenance Area Planning and Analysis - Volume 1, EPA 904/9-76-015. Summary base-line year and projected emission inventories by source category taken from that report are contained in Tables A-1 and A-2, Appendix A.

The work reported in this volume is an extension of the earlier work. Seven additional Kentucky counties surrounding metropolitan Louisville are included: Bullitt, Hardin, Henry, Oldham, Shelby, Spencer and Trimble. Furthermore, the emissions inventoried include, in addition to SO_2 and TSP, the other three criteria pollutants, nitrogen oxide (NO_x) , carbon monoxide (CO) and hydrocarbons (HC). The base-line year is defined as 1975 with projection years of 1980, 1985, and 1995.

I-1

In the earlier project it was found that several source categories are not relevant to the study area. These source categories, listed below, are not considered further:

- o Frost Control
- o Slash Burning
- o Agricultural Burning
- o Prescribed Burning
- o Coal Refuse Burning

As in the earlier study, wherever possible and to the degree possible, the instructions and methodologies contained in EPA documents and publications have been followed. In particular, reference is made to the following:

- o Compilation of Air Pollution Emission Factors (AP-42 Supplement 6).
- Guide for Compiling a Comprehensive Emission Inventory, Second Edition (APTD 1135).
- Guidelines for Air Quality Maintenance Planning and Analysis.
 Volume 7: Projecting County Emissions.
- Guidelines for Air Quality Maintenance Planning and Analysis.
 Volume 13: Allocating Projected Emissions to Subcounty Areas.
- o Methodology for Inventorying Hydrocarbons (EPA-600/4-76-813).
- o 40 CFR 51 Subpart D. Maintenance of National Standards.

In addition to this introduction, this report contains a chapter which describes the population, employment and land use data base upon which the emissions are estimated and projected; a chapter which describes the results of the surveys conducted to define the base-line year emissions; and a chapter which describes the subcounty allocation scheme. The main body of the report contains the inventories and allocation procedures and results for the seven additional counties. Following the first three chapters, the next several chapters discuss the data requirements, data sources and availability, emission factors and methodology for determining the 1975 base-line year emissions and emission projections for each of the source categories.

Because of special considerations, Fort Knox is considered distinct from Hardin County and the results for the military reservation are reported in a separate chapter. Finally, the last chapter summarizes the results of the analysis.

1-2

The update and expansion of the Jefferson, Floyd, and Clark County Data are considered in the appendices. Appendix A is an expansion of the original 1973 emission inventory to include the three additional criteria pollutants.

An examination of the totals shown in Appendix A led to the conclusion that many of the original source categoreis were not significant. Therefore, it was agreed by the Jefferson County Air Pollution Control District (JCAPCD) that only those source categories contributing significantly to the totals of one or more pollutants and the new hydrocarbon evaporative sources would be reinventoried for 1975 and projected to the planning years. These inventories are contained in Appendix B.

CHAPTER II

POPULATION AND EMPLOYMENT

Because population and employment growth, and the location of the industry, housing, and commercial/institutional establishments to support the growth play such an important part in the projection and allocation of air pollution emissions, the general regional growth factors are examined separately in this chapter. In general, it will be required that each of the several area source category emissions be projected to the planning years and the total emissions be distributed to appropriate subcounty areas.

For each source category, the projections and distribution can be done in one of three ways.

- A two-step approach in which country-wide emissions are projected and then distributed to subcounty areas in accordance with independently determined factors, or,
- Direct projection of the disaggregated totals, since the baseline year emission inventory has already been distributed to subcounty areas, or,
- A combination of the first two approaches in which disaggregated baseline year emissions are projected and then adjusted to the correct projected county-wide totals. This approach will be the one more commonly used.

The distribution of county totals to subcounty areas may involve three processes. We have used the word "allocate" to indicate distribution of county totals to subcounty areas, such as census tracts, planning districts, drainage basins, etc., in accordance with some rational surrogate allocation factor, e.g., population. Apportionment is the distribution of county-wide or subcounty emissions to the square grid system discussed in Chapter III. This is done by area integration. Assignment places a discrete area source, e.g., aircraft operations, into a particular known subcounty area or grid square.

II-1

A. POPULATION PROJECTIONS

Provisional 1975 population estimates by counties, with the exception of Hardin County, were provided by the Kentuckiana Regional Planning and Development Agency (KIPDA). Revised 1975 estimates were received later, after baseline year emission calculations and allocations were made. The difference between the two estimates is considered insignificant with regard to air quality. The 1975 projections for Hardin County were provided by the Lincoln Trail Area Development District (LTADD). The 1975 Hardin County population is 78,000. This figure includes the Fort Knox military base. The 1975 on-post population of Fort Knox was 37,640.⁽¹⁾ This figure includes 6,000 residents of Meade County. Therefore, the 1975 Fort Knox population in Hardin County is 31,640. These data are summarized in Table II-1. In addition, for Jefferson, Floyd, and Clark Counties, the 1975 projected populations from the Louisville Air Quality Maintenance Plan (LAQMP) are shown.

The 1975 KIPDA population estimates by census tract were available for Jefferson County based on a county total of 731,843. These estimates were apportioned to grid squares by area integration and then normalized to the 1975 provisional estimate of 733,212.

TABLE	II-1

COUNTY	PROVISIONAL	REVISED	LAQMP
Bullitt	33,642	32,785	
Hardin	46,360	46,360	
Fort Knox	31,640	31,640	
Henry	11,532	11,666	
Oldham	18,651	18,134	
Shelby	20,126	20,201	
Spencer	5,372	5,330	
Trimble	5,683	5,683	
Jefferson	733,212	732,366	739,911
Floyd	59,457	59,300	58,484
Clark	84,595	84,331	87,726
TOTAL	1,050,270	1,047,796	886,121

1975 POPULATION ESTIMATES

⁽¹⁾Taken as an average of the 1975 fiscal year population: 34,062, and the population as of June 30, 1976: 41,217.

Such resolution of population distribution was not available for the other counties. For Floyd and Clark Counties, the 1975 census tract population estimates from the LAQMP were apportioned to grid squares by area integration and then normalized to the 1975 provisional estimates. For all other counties the 1970 population of county subdivisions (1) was disaggregated to grid squares by area integration and then normalized to the 1975 provisional estimates.

Projected population by county was available from KIPDA and LTADD. No significant changes in population were anticipated in Fort Knox. Reportedly, major changes in population would occur only in case of war. Hence, Fort Knox population remains the same through the projection years. County population projections are shown in Table_II-2.

••••••••••••••••••••••••••••••••••••••			
COUNTY	1980	1985	1995
Bullitt	41,811	50,004	70,582
Hardin	57,940	71,198	90,194
Fort Knox	31,640	31,640	31,640
Henry	12,261	13,143	15,158
Oldham	23,478	26,232	32,530
Shelby	21,738	23,480	27,222
Spencer	5,627	6,371	8,002
Trimble	6,076	6,507	7,412
Jefferson	789,124	845,480	957,186
Floyd	65,634	71,886	85,132
Clark	96,780	106,788	127,852
TOTAL	1,152,109	1,252,729	1,452,910

TABLE II-2

COUNTY POPULATION PROJECTIONS

B. EMPLOYMENT PROJECTIONS

Baseline 1975 and projected commercial/institutional, manufacturing and construction employment data by county, with the exception of Hardin County, were provided by KIPDA. Hardin County employment data were provided by the LTADD. Employment data for Floyd and Clark Counties were not available. Jefferson County growth projections were used to represent the growth in the entire Louisville SMSA.

⁽¹⁾ From 1970 Census of Population, Bureau of Census, July 1971.

The commercial and institutional employment data are summarized in Table II-3. Commercial and institutional data include employees from transportation, wholesale and retail trade, services, and government organizations. Manufacturing and construction employment data are presented in Tables II-4 and II-5, respectively.

TABLE II-3

		·		
COUNTY	1975	1980	1985	1995
Bullitt	2,289	3,855	4,901	7,501
Hardin	3,933	4,192	4,439	4,940
Henry	1,464	1,790	2,023	2,524
Oldham	2,015	3,160	3,777	5,190
Shelby	3,691	4,220	4,768	5,895
Spencer	428	563	681	937
Trimble	548	625	704	896
Jefferson	198,643	241,802	260,455	299,907

COMMERCIAL/INSTITUTIONAL EMPLOYEES BY COUNTY

TABLE II-4

COUNTY	1975	1980	1985	1995
Bullitt	882	1,510	2,167	4,203
Hardin	2,965	3,162	3,348	3,726
Henry	458	700	825	1,101
Oldham	486	783	986	1,478
Shelby	1,001	1,200	1,368	1,675
Spencer	31	49	57	71
Trimble	23	35	46	77
Jefferson	104,731	114,655	125,931	141,761

MANUFACTURING EMPLOYEES BY COUNTY

TABLE II-5

COUNTY	1975	1980	1985	1995
Bullitt	111	178	227	349
Hardin	410	437	463	515
Henry	61	90	110	145
Oldham	233	311	364	485
Shelby	175	180	193	223
Spencer	10	10	10	13
Trimble	26	38	50	78
Jefferson	14,140	17,354	18,409	20,465

CONSTRUCTION EMPLOYEES BY COUNTY

CHAPTER III

SURVEY RESULTS

Four vendor surveys were planned in order to gather data for the emission inventory. In general, the methods for conducting the surveys are those suggested in the EPA Publication, <u>Methodology for Inventorying Hydrocarbons</u>, EPA-600/4-76-813. The forms used for the surveys are found at the end of this chapter.

A. FUEL USE SURVEY

The 1973 emission inventory for the Louisville SMSA included a comprehensive survey of all fuel dealers in the area. Results were satisfactory, and it was believed that reasonably accurate estimates were made of fuel use by type and user. In order to avoid imposing further burden upon the fuel jobbers, it was agreed that a sample of fuel distributors would be surveyed to determine fuel use changes during the 1973 to 1975 period. The data collected could then be used to estimate 1975 fuel usage both in the SMSA and the seven other counties.

Eighteen fuel oil distributors and all natural gas distributors were surveyed; all responded. Those distributors who reported sharp changes in sales volume were recontacted to verify the accuracy of the data. The results of the survey are summarized in Table III-1. Because of the confidential nature of the information, only totals are shown.

TABLE III-1

	DISTILI	LATE OIL	(10 ³ gal)	NATU	JRAL GAS	$(10^{6} ft^{3})$
	1973	1975	% Change	1973	1975	% Change
Residential	3,435	3,502	+2.0	28,576	28,285	-1.0
Commercial/Institutional	7,059	7,038	-0.3	18,885	18,335	-2.9

FUEL SURVEY RESULTS

B. DRY CLEANING SURVEY

A survey of all dry-cleaning plants in the seven-county area and a partial survey of dry-cleaning plants in Jefferson County was conducted. The results of the latter survey are reported in Appendix B. Only a small portion of the dry-cleaning operators in the seven-county area responded to the mail survey. A telephone follow-up showed that most of the dry cleaners who had not responded were only pick-up centers for centralized cleaning. Three establishments had gone out of business.

Table III-2 summarizes the survey results. In the seven-county area, there were nine establishments with cleaning on the premises. Of these, seven provided solvent usage data; the other two were only able to estimate the quantity of clothes cleaned weekly.

TABLE III-2

COUNTY	NO. OF ESTABLISHMENTS			
COUNTI	TOTAL	CLEANERS	PICK-UP	PROVIDED DATA
Bullitt	3	1	2	1
Hardin	6	6	0	4
Henry	0	0	0	0
Oldham	2	0	2	0
Shelby	5	2	3	2
Spencer	0	0	0	0
Trimble	_0		0	_0
TOTAL	16	9	7	7

DRY CLEANING SURVEY RESULTS

C. AUTOMOTIVE PAINT SURVEY

A survey of all auto body shops and automobile dealers in the area, including the Louisville SMSA, was made. Response to the survey was unsatisfactory. A telephone follow-up was made in the seven outlying counties; however, because of the large number of shops and dealers in Louisville, a telephone follow-up was impractical. Instead, a survey of auto paint suppliers was conducted. Table III-3 summarizes the results of the body shop survey. Of the total of 89 establishments, 47 did no painting. Of those who did painting, 23 provided data.

TABLE III-3

	NO. OF ESTABLISHMENTS					
COUNTY	TOTAL	PAINTING	NO PAINTING	PROVIDED DATA		
Bullitt	21	2	17	2		
Hardin	34	21	10	11		
Henry	2	1	1	1		
Oldham	11	3	8	3		
Shelby	14	7	6	5		
Spencer	1	0	1	0		
Trimble	6	_1	4			
TOTAL	89	35	47	23		

AUTO BODY SHOP SURVEY RESULTS

The automotive paint supplier survey was conducted only in the Louisville SMSA. There are six automobile paint suppliers in the area. After a telephone follow-up, all responded. Data supplied by one of the suppliers, found to be inaccurate, was corrected by considering data supplied by the other five.

D. GASOLINE MARKETING SURVEY

The original survey was directed at gasoline service station operators. Response was unsatisfactory even after an extensive follow-up by telephone. An additional survey was made of the nine gasoline distributors in the area. All responded with accurate data.

1973-1975 FUEL USE UPDATE

COMPANY NAME:	
ADDRESS:	
PERSON TO CONTACT ABOUT FORM:	
TELEPHONE:	

On the form below, please indicate the percent increase on sales from 1973 to 1975. Extreme accuracy in calculating this figure is not necessary. For the intended purposes, a rough estimate will be adequate. The areas covered in the study are Jefferson County, Kentucky and Floyd and Clark Counties, Indiana.

		Type of Customer	
Type of Fuel Sold	Residential	Commercial/ Institutional	Industrial
Distillate Oil	%	%	<i>%</i>
Residual Oil	%	%	۳/ اه
Other (specify)	%	%	7

COMMENTS:_____

DATE FORM PREPARED:_____

ENGINEERING-SCIENCE

7903 WESTPARK DRIVE · McLEAN, VIRGINIA 22101 · 703/790-9300

CABLE ADDRESS: ENGINSCI TELEX. 89-9401

DRY CLEANING SURVEY

GENERAL INFORMATION:			
COMPANY NAME:		<u>11</u>	
ADDRESS:			
NEAREST STREET INTERSECTION:			
PERSON TO CONTACT ABOUT FORM:			
TELEPHONE:			
NORMAL OPERATING SCHEDULE:			
hrs/day	days/week		weeks/year
APPROXIMATE PERCENT OF SEASONAL	SALES:		
Dec Feb%	Mar May	<u>~</u> %	
Jun Aug%	Sep Nov	0/ /0	
APPROXIMATE PERCENT OF DAILY SAL	ES FROM: 6:00 AM	to 9:00 AM_	<u> </u>
OPERATIONAL INFORMATION:			
TYPE OF DRY CLEANING UNIT:			
hot or dry-to-dry			
cold or transfer			
both of the above			
other (please specify			
AMOUNT OF CLOTHES CLEANED PER YE	EAR:	tons	
or AVERAGE AMOUNT OF CLOTHES CLE	EANED PER WEEK:		pounds
TYPE AND AMOUNT OF SOLVENT CLEAN	VER PURCHASED IN 19	75:	
Perchloroethylene			gallons/year
Stoddard solvent			gallons/year
Other (specify)		<u></u>	gallons/year
Other (specify)			gallons/year
ON-SITE SOLVENT STORAGE CAPACITY	Y:gall	ons	

Y CLEANING SURVEY (CONT'D)
SUPPLIER OF SOLVENT - NAM	E AND ADDRESS
Perchloroethylene:	
Stoddard:	
Other (specify):	
Other (specify):	
other (specify).	
SOLVENT COMPONENTS - plea comp	se list the names of all solvent(s) used and their onents as listed on the solvent's package or bottle.
Name of Solvent	Ingredients
<u> </u>	

R POLLUTION CONTROL E	
	AVE A VAPOR RECOVERY SYSTEM INSTALLED?
Water-cooled condenser	
Activated-carbon absor	
Other (please specify)	:
COMMENTS:	
COMMENTS:	
COMMENTS:	
COMMENTS:	

ENGINEERING-SCIENCE CO.

7903 WESTPARK DRIVE · McLEAN, VIRGINIA 22101 · 703/790-9300

CABLE ADDRESS. ENGINSCI TELEX. 89-9401

AUTOMOTIVE PAINTING SURVEY

GENERAL INFORMATION:		
COMPANY NAME:		· · · ·
ADDRESS:		
NAME OF NEAREST STREET INTERSECTION:_		
PERSON TO CONTACT ABOUT FORM:		
TELEPHONE:		
NORMAL OPERATING SCHEDULE:		
hrs/day	days/week	weeks/year
APPROXIMATE PERCENT OF SEASONAL SALES	:	
Dec Feb%	Mar May	<i>↔</i> /o
Jun Aug%		
APPROXIMATE PERCENT OF DAILY SALES FR	OM: 6:00 AM to 9:00	AM%
OPERATIONAL INFORMATION:		
TYPE AND AMOUNT OF COATING BEING USED	:	
ACRYLIC ENAMEL	GAL/YR OR	GAL/WK
SYNTHETIC ENAMEL	GAL/YR OR	GAL/WK
ACRYLIC LACQUER	GAL/YR OR	GAL/WK
OTHER (please specify):		
	GAL/YR OR	GAL/Wk
	GAL/YR OR	GAL/WK
TYPE AND AMOUNT OF PRIMER BEING USED:		
ENAMEL PRIMER	GAL/YR OR	GAL/WK
LACQUER PRIMER	GAL/YR OR	
OTHER (please specify):		
	GAL/YR OR	GAL/WK
	GAL/YR OR	GAL/WK

TYPE AND AMOUNT OF THINNER OR REDUCER	USED:		
ENAMEL REDUCER	GAL/YR OR _	GAL/WK	
LACQUER THINNER	GAL/YR OR	GAL/WK	
OTHER (please specify):			
	GAL/YR OR	GAL/WK	
	GAL/YR OR	GAL/WK	
NUMBER OF SPRAYING BOOTHS AT THIS FACT		<u> </u>	
COMMENTS:			
DATE PREPARED:			

AUTOMOTIVE PAINT SURVEY (SUPPLIERS)

NAME OF COMPANY:

- 1) On the form below, please indicate one of the following:
 - a) Number of gallons sold in 1975, or
 - b) Average number of gallons sold per month in 1975

(You can choose whichever is easier for you to supply.)

	Units (fill in one column only)		
Kind of Coating	(a) Gallons Sold or in 1975	o) Average Number of Gallons Sold per Month, 1975	
Acrylic Enamel		-	
Synthetic Enamel			
Lacquer			
Enamel Primer			
Lacquer Primer			
Enamel Reducer			
Lacquer Thinner			
Other (specify)			

- 2) Were all the above stated amounts sold to establishments in the automotive paint business? Yes _____ No
- 3) If the answer to question 2) is "No", please indicate what percent of the sales was to automotive painting establishments.

4) Please indicate if you conduct business in one or more of the following counties:

Jefferson	Yes	No
Floyd	Yes	No
Clark	Yes	No
Bullitt	Yes	No
Hardin	Yes	No
Henry	Yes	No
Oldham	Yes	No
Others(please specify)		

Prepared by:_____

Date:_____

Comments:_____

_

ES	
ENGINEERING-SCIENCE	
7903 WESTPARK DRIVE · McLEAN, VIRGINIA 22101 · 703/790-930	0
CABLE ADDRESS. ENGINSC GASOLINE MARKETING SURVEY	
GENERAL INFORMATION: COMPANY NAME:	
ADDRESS:	
NEAREST STREET INTERSECTION: PERSON TO CONTACT ABOUT FORM: TELEPHONE:	
NORMAL OPERATING SCHEDULE:	
hrs/daydays/weekweeks/year	
APPROXIMATE PERCENT OF SEASONAL SALES:	
Dec Feb% Mar May%	
Jun Aug% Sep Nov%	
APPROXIMATE PERCENT OF DAILY SALES FROM: 6:00 AM to 9:00 AM	%
OPERATIONAL INFORMATION: Approximate number of gallons of gasoline sold per year: Number of pumps at station:	gallons
	gallons
Number of tanks:	
Capacity of tanks: No. 1gallons No. 4gallon	
No. 2gallons No. 5gallor	
No. 3gallons No. 6gallor	1\$
Frequency of gasoline deliveries to station: Every	_days
Method of filling storage tanks: (check one)	
Splash filling in which the outlet of the delivery hose is a the liquid surface in the tank.	
Uncontrolled submerged filling in which the outlet of the de hose is extended to the bottom of the tank.	
Controlled submerged filling in which a vapor return line to delivery truck reduces venting of vapors to the atmosphere.) the
COMMENTS:	
	·····

DATE PREPARED:

ARCADIA · ATLANTA · AUSTIN · BERKELEY · CLEVELAND · HOUSTON · McLEAN · SAN DIEGO · WASHINGTON, D.C.

CHAPTER IV

GRID SYSTEM

Dispersion models inputs include, among other things, area grid system locations and dimensions. In some cases, the grid system may be nonsymmetric and nonorthogonal. This was the system used in the earlier project for Jefferson, Floyd and Clark Counties for which the basic grid was based on census tracts. In other cases, a square grid system is required. It was suggested by the Department for Natural Resources and Environmental Protection that such a square grid system was required for this project.

A square grid based on the Universal Transverse Mercator system was designed. Figures IV-1 through IV-10 show the grids for each of the ten counties. The grid numbers, areas, and centroid locations are found in Table IV-1.

Allocation to the grid system was made independently for each source category. A work sheet was designed upon which the emissions for each category were entered in the appropriate grid. The emissions for all categories were then added to determine the total emissions for the grid square. The completed work sheets were submitted to the Department for Natural Resources and Environmental Protection Agency. A copy of the summary work sheet is shown in Figure IV-11.

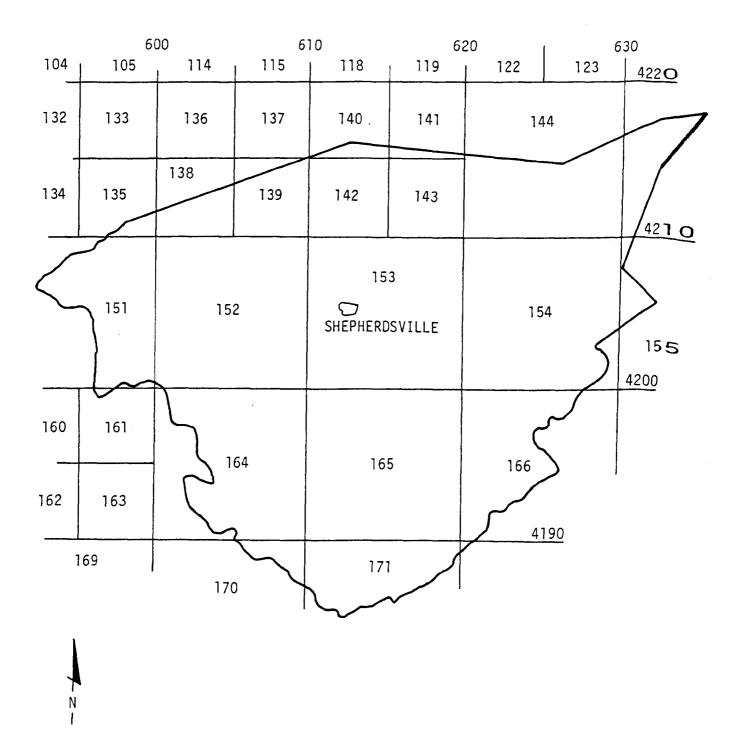
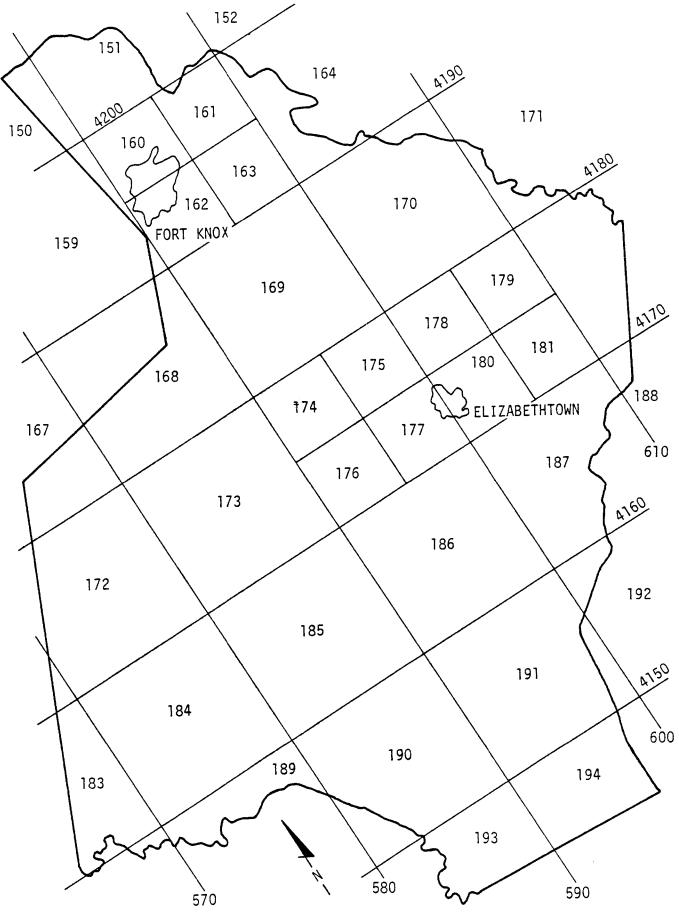
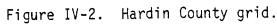




Figure IV-1. Bullitt County grid.

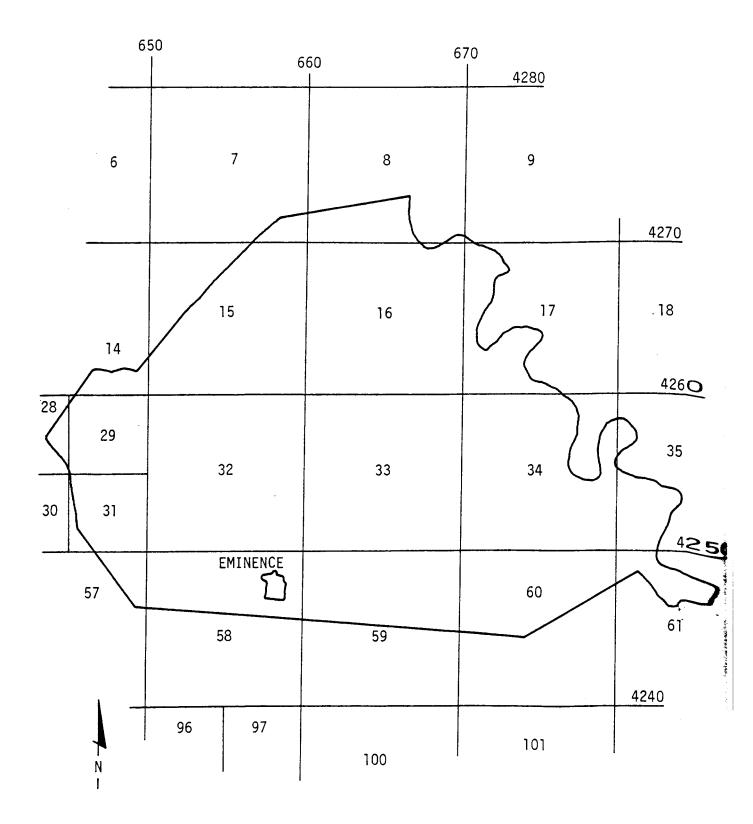


Figure IV-3. Henry County grid.

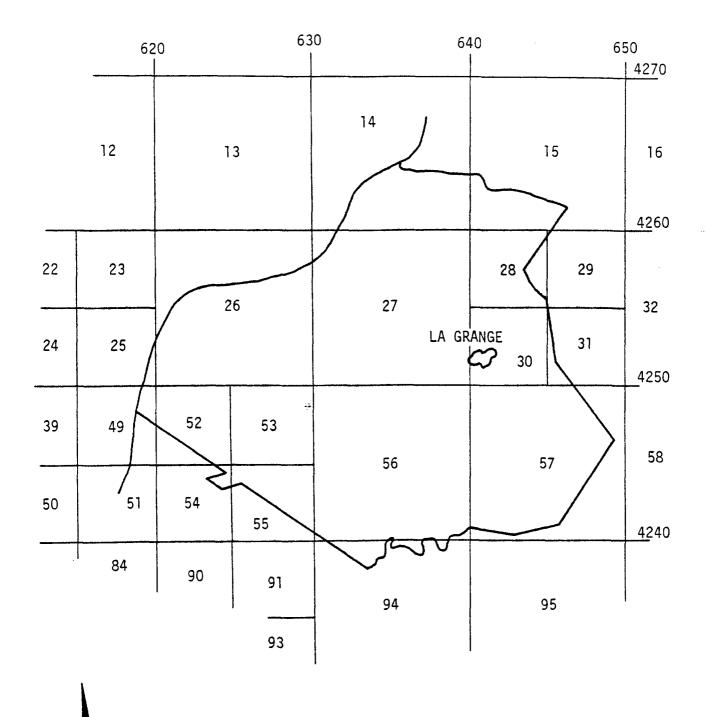


Figure IV-4. Oldham County grid.

1 N I

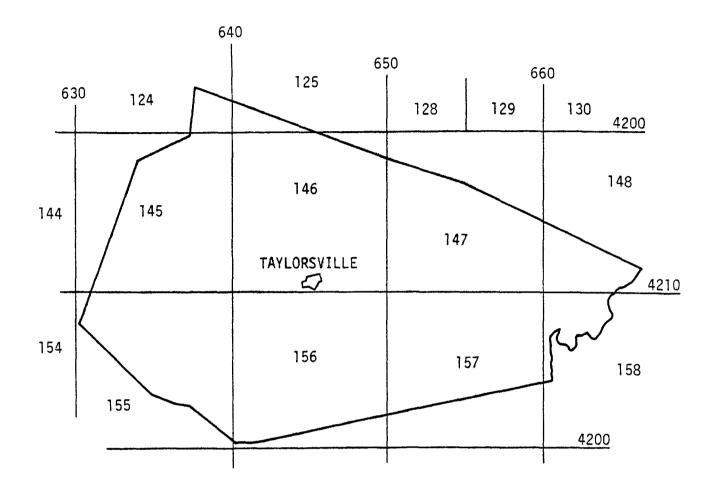


Figure IV-6. Spencer County grid.

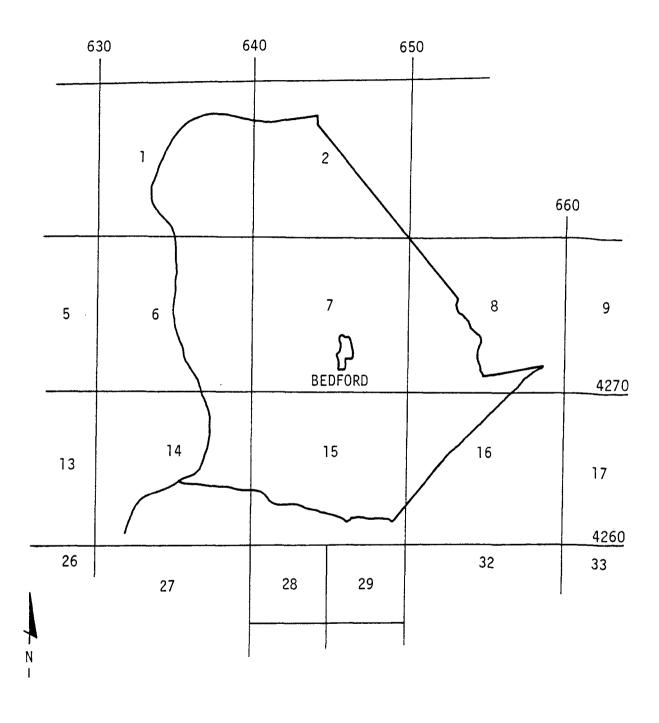
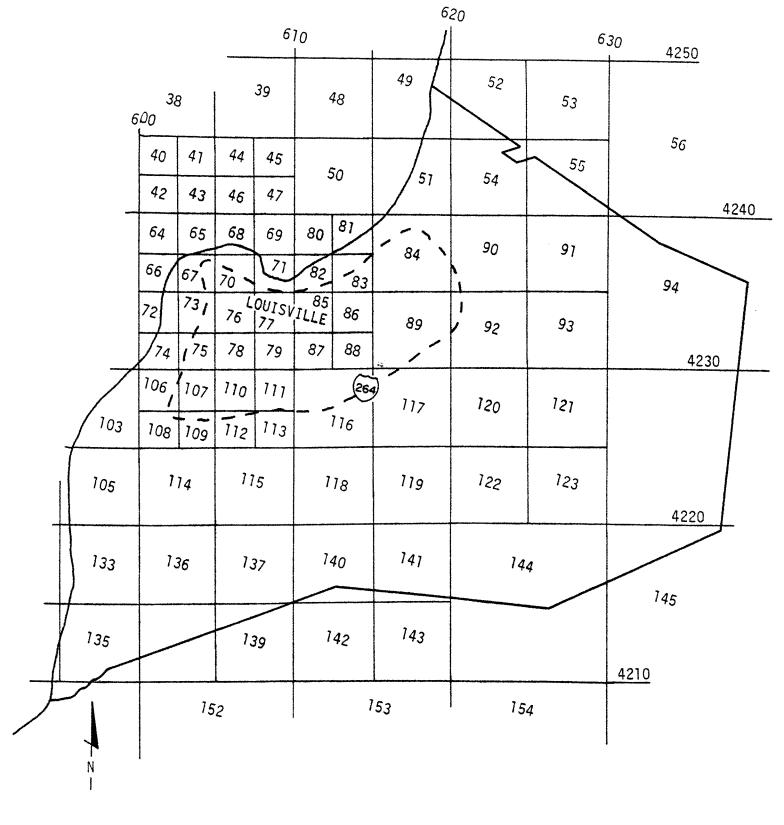
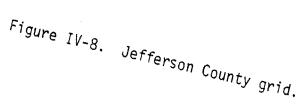




Figure IV-7. Trimble County grid.

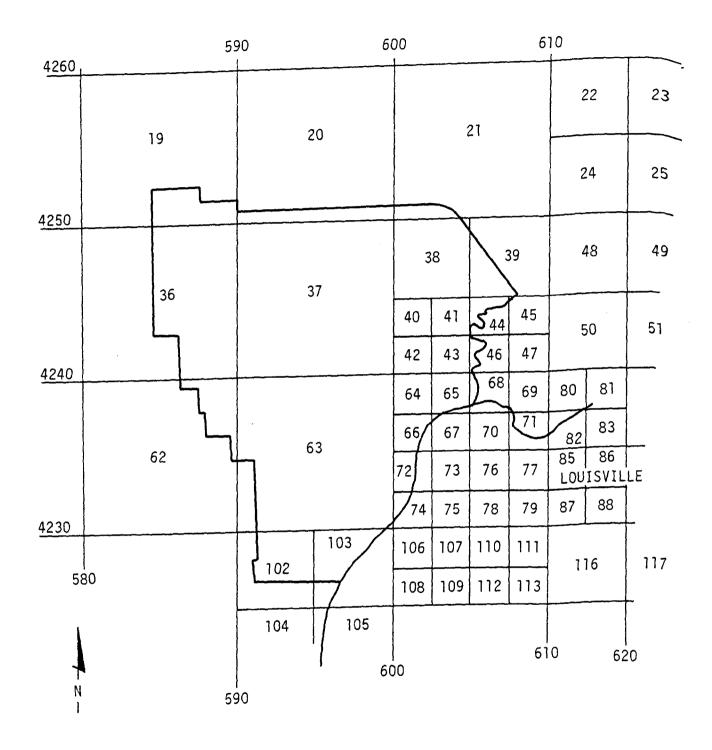


Figure IV-9. Floyd County grid.

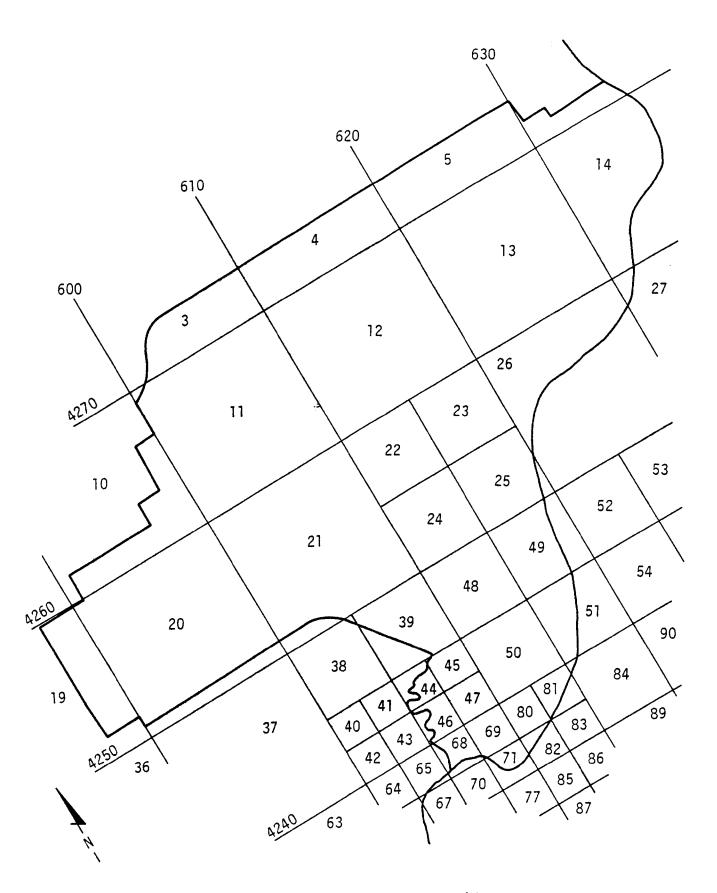


Figure IV-10. Clark County grid.

SUMMARY WORK SHEET

STUDY	STUDY AREA											
	COORDI	INATES	AREA	SOUDCE		тота	L (tons/d	ay)		POP.		
TRACT NO.	X	·Y	(KM ²)	SOURCE HEIGHT (M)	TSP	^{S0} 2	CO	нс	NOx	ror.		
TOTAL												
												······································
												· · · · · · · · · · · · · · · · · · ·
		•										
											 _	

FIGURE IV

GRID DATA

GRID	COORI	DINATES	AREA	GRID	COORI	DINATES	AREA
NO.	x	У	(km ²)	NO.	X	У	(km^2)
1	635.0	4285.0	100	31	647.5	4252.5	25
2	645.0	4285.0	100	32	655.0	4255.0	100
3	605.0	4275.0	100	33	665.0	4255.0	100
4	615.0	4275.0	100	34	675.0	4255.0	100
5	625.0	4275.0	100	35	685.0	4255.0	100
6	635.0	4275.0	100	36	585.0	4245.0	100
7	645.0	4275.0	100	37	595.0	4245.0	100
8	655.0	4275.0	100	38	602.5	4247.5	25
9	665.0	4275.0	100	39	607.5	4247.5	25
10	595.0	4265.0	100	40	601.25	4243.75	6.25
11	605.0	4265.0	100	41	603.75	4243.75	6.25
12	615.0	4265.0	100	42	601.25	4241.25	6.25
13	625.0	4265.0	100	43	603.75	4241.25	6.25
14	635.0	4265.0	100	44	606.25	4243.75	6.25
15	645.0	4265.0	100	45	608.75	4243.75	6.25
16	655.0	4265.0	100	46	606.25	4241.25	6.25
17	655.0	4265.0	100	47	608.75	4241.25	6.25
18	675.0	4265.0	100	48	612.5	4247.5	25
19	585.0	4255.0	100	49	617.5	4247.5	25
20	595.0	4255.0	100	50	612.5	4242.5	25
21	605.0	4255.0	100	51	617.5	4242.5	25
22	612.5	4257.5	25	52	622.5	4247.5	25
23	617.5	4257.5	25	53	627.5	4247.5	25
24	612.5	4252.5	25	54	622.5	4242.5	25
25	617.5	4252.5	25	55	627.5	4242.5	25
26	625.0	4255.0	100	56	635.0	4245.0	100
27	635.0	4255.0	100	57	645.0	4245.0	100
28	642.5	4257.5	25	58	655.0	4245.0	100
29	647.5	4257.5	25	59	665.0	4245.0	100
30	642.5	4252.5	25	60	675.0	4245.0	100

TABLE	IV-1	(Cont	inued)

GRID DATA

GRID	COOR	DINATES	AREA	GRID	COOI	RDINATES	AREA
NO.	X	У	(km ²)	NO.	x	У	(km ²)
61	685.0	4245.0	100	91	627.5	4237.5	25
62	585.0	4235.0	100	92	622.5	4232.5	25
63	595.0	4235.0	100	93	627.5	4232.5	25
64	601.25	4238.75	6.25	94	635.0	4235.0	100
65	603.75	4238.75	6.25	95	645.0	4235.0	100
66	601.25	4236.25	6.25	96	652.5	4237.5	25
67	603.75	4236.75	6.25	97	657.5	4237.5	25
68	606.25	4238.75	6.25	98	652.5	4232.5	25
69	608.75	4238.75	6.25	99	657.5	4232.5	25
70	606.25	4236.75	6.25	100	665.0	4235.0	100
71	608.75	4236.75	6.25	101	675.0	4235.0	100
72	601.25	4233.75	6.25	102	592.5	4227.5	25
73	603.75	4233.75	6.25	103	597.5	4227.5	25
74	601.25	4231.25	6.25	104	592.5	4222.5	25
75	603.75	4231.25	6.25	105	597.5	4222.5	25
76	606.25	4233.75	6.25	106	601.25	4228.75	6.25
77	608.75	4233.75	6.25	107	603.75	4228.75	6.25
78	606.25	4231.25	6.25	108	601.25	4226.25	6.25
79	608.75	4231.25	6.25	109	603.75	4226.25	6.25
80	611.25	4238.75	6.25	110	606.25	4228.75	6.25
81	613.75	4238.75	6.25	111	608.75	4228.75	6.25
82	611.25	4236.25	6.25	112	606.25	4226.25	6.25
83	613.75	4236.25	6.25	113	608.75	4226.25	6.25
84	617.5	4237.5	25	114	602.5	4222.5	25
85	611.25	4233.75	6.25	115	607.5	4222.5	25
86	613.75	4233.75	6.25	116	612.5	4227.5	25
87	611.25	4231.25	6.25	117	617.5	4227.5	25
88	613.75	4231.25	6.25	118	612.5	4222.5	25
89	617.5	4232.5	25	119	617.5	4222.5	25
90	622.5	4237.5	25	120	622.5	4227.5	25

TABLE I	<u>V-1</u>	(Continued)
---------	------------	-------------

GRID DATA

GRID		DINATES	AREA	GRID	COOR	DINATES	AREA
NO.	x	у	(km ²)	NO.	X	У	(km ²)
121	627.5	4227.5	25	151	595.0	4205.0	100
122	622.5	4222.5	25	152	605.0	4205.0	100
123	627.5	4222.5	25	153	615.0	4205.0	100
124	635.0	4225.0	100	154	625.0	4205.0	100
125	645.0	4225.0	100	155	635.0	4205.0	100
126	652.5	4227.5	25	156	645.0	4205.0	100
127	657.5	4227.5	25	157	655.0	4205.0	100
128	652.5	4222.5	25	158	665.0	4205.0	100
129	657.5	4222.5	25	159	585.0	4195.0	100
130	665.0	4225.0	100	160	592.5	4197.5	25
131	675.0	4225.0	100	161	597.5	4197.5	25
132	592.5	4217.5	25	162	592.5	4192.5	25
133	597.5	4217.5	25	163	597.5	4192.5	25
134	592.5	4212.5	25	164	605.0	4195.0	100
135	597.5	4212.5	25	165	615.0	4195.0	100
136	602.5	4217.5	25	166	625.0	4195.0	100
137	607.5	4217.5	25	167	575.0	4185.0	100
138	602.5	4212.5	25	168	585.0	4185.0	100
139	607.5	4212.5	25	169	595.0	4185.0	100
140	612.5	4217.5	25	170	605.0	4185.0	100
141	617.5	4217.5	25	171	615.0	4185.0	100
142	612.5	4212.5	25	172	575.0	4175.0	100
143	617.5	4212.5	25	173	585.0	4175.0	100
144	625.0	4215.0	100	174	592.5	4177.5	25
145	635.0	4215.0	100	175	597.5	4177.5	25
146	645.0	4215.0	100	176	592.5	4172.5	25
147	655.0	4215.0	100	177	597.5	4172.5	25
148	665.0	4215.0	100	178	602.5	4177.5	25
149	675.0	4215.0	100	179	607.5	4177.5	25
150	585.0	4205.0	100	180	602.5	4172.5	25

GRID NO.	COORI X	DINATES y	AREA (km ²)	GRID NO.	COOR x	DINATES y	AREA (km ²)
181	607.5	4172.5	25	188	615.0	4165.0	100
182	615.0	4175.0	100	189	575.0	4155.0	100
183	565.0	4165.0	100	190	585.0	4155.0	100
184	575.0	4165.0	100	191	595.0	4155.0	100
185	585.0	4165.0	100	192	605.0	4155.0	100
186	595.0	4165.0	100	193	585.0	4145.0	100
187	605.0	4165.0	100	194	595.0	4145.0	100

TABLE IV-1 (Continued)

GRID DATA

CHAPTER V

RESIDENTIAL FUEL USE

This source category includes emissions associated with residential fuel combustion. Emission factors for the various residential fuel types are found in AP-42.

A. 1975 EMISSION INVENTORY

The total Jefferson County residential heating requirements obtained as a result of the 1975 fuel survey were 3.149×10^{13} Btu⁽¹⁾ Table V-1 shows the residential heat requirements for the seven-county study area based on 1975 population ratios to Jefferson County. The distribution of heating requirements by fuel type is shown in Table V-2. For natural gas, the values are actual reported values obtained from the gas distributors. The distribution of the other types of fuel is based on the 1970 Census of Housing, which contains the distribution of dwelling units by fuel type. Two assumptions are apparent in the methods described:

- o Per capita fuel consumption is constant throughout the area.
- o There have been no major shifts in the fuel type distribution from 1970 to 1975.

Emission factors and emissions for this source category are summarized in Tables V-3 and V-4.

B. 1975 EMISSIONS ALLOCATION

Emissions were allocated in accordance with the population distribution, since subcounty area fuel type distributions were not available with sufficient resolution to permit allocation by fuel type.

⁽¹⁾A reduction from 3.17 x 10¹³ Btu from 1973, reflecting the weighted average change in fuel usage determined from the survey.

POPULATION RATIO	FUEL USE (Btu/yr)
0.0459	1.445×10^{12} 1.990×10^{12}
0.0157	$4.944 \times 10^{11} \\ 7.998 \times 10^{11}$
0.0254 0.0274	8.628×10^{11}
0.0073 0.0078	2.299×10^{11} 2.456 x 10^{11}
	RATIO 0.0459 0.0632 0.0157 0.0254 0.0274 0.0073

1975 COUNTY RESIDENTIAL FUEL USE

TABLE V-2

ESTIMATED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE⁽¹⁾

COUNTY	NATURAL GAS (10 [°] ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)	WOOD (tons)
Bullitt	562.1	3,102.7	2,889.7	3,108.6	6,837.7
Hardin	1,098.7	2,155.3	2,646.0	4,995.1	5,318.4
Henry	125.7	1,550.8	1,043.4	2,761.7	541.0
Oldham	353.0	1,016.3	1,823.8	3,734.7	723.7
Shelby	378.2	1,477.6	1,266.1	5,448.4	1,181.0
Spencer	14.4	1,137.7	478.5	1,443.8	359.4
Trimble	16.0	84.2	1,243.6	901.5	772.3

(1) In preparing Table V-2 from the fuel use ratios shown in Table V-1, the residential Btu fossil requirement has been adjusted to account for the relative split between fossil fuel and electric home heating in each county as compared to Jefferson County

	EMISSION FACTOR	EMISSION FACTORS						
FUEL TYPE	UNITS	PARTICU- LATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES		
Natural Gas LPG ⁽¹⁾ Oil Coal ⁽²⁾ Wood ⁽³⁾	lbs/10 ⁶ ft ³ lbs/10 ³ gal lbs/10 ³ gal lbs/ton lbs/ton	10.0 1.85 2.5 20.0 15.0	0.6 0.09 [0.16] ⁽⁴⁾ 142.0 [0.27] 38.0 [2.0] 1.5	20 1.95 5.0 90.0 60.0	8 0.75 1.0 20.0 70.0	80 7.5 18 3 10		

EMISSION FACTORS FOR RESIDENTIAL FUEL BURNING

(1) 50% propane, 50% butane

(2) Hand-fired units.

- (3) Highest emission factors used.
- (4) [] indicate sulfur content from AP-42 or 1973 fuel survey.

TABLE V-4

1975 RESIDENTIAL FUEL USE EMISSIONS SUMMARY

	EMISSIONS (tons/year)									
COUNTY	PARTICU- LATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES					
Bullitt	91.7	178.8	360.9	275.3	99.0					
Hardin	100.6	244.9	404.0	242.6	110.0					
Henry	35.1	125.4	146.1	48.4	27.1					
Oldham	47.8	177.5	198.9	65.4	43.6					
She1by	68.2	232.3	289.0	98.5	46.1					
Spencer	18.9	64.3	78.2	27.7	13.1					
Trimble	16.5	58.7	67.1	36.8	17.4					

C. PROJECTED EMISSION INVENTORY

The projections in this source category depend upon increasing population, as given in Table II-2, and future fuel type and dwelling distributions Assumptions used in projecting fuel type distribution are:

- o Decrease in coal consumption by 4.5% per year.
- o Natural and LP gas usage constant.
- o 5% of coal conversions and new dwellings will be heated by distillate oil and 95% by electricity.⁽¹⁾
- o Wood usage will increase with population growth.

Fuel usage projections based on these assumptions are presented in Tables V-5 through V-7. Emissions are summarized in Chapter XXXII.

TABLE V-5

1980 PROJECTED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE

COUNTY	NATURAL GAS (106 ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)	WOOD (tons)
Bullitt	562.1	3,102.7	3,158.4	2,469.3	8,499.3
Hardin	1,098.7	2,155.3	2,952.1	3,967.9	6,648.0
Henry	125.7	1,550.8	1,111.8	2,193.8	575.1
01dham	353.0	1,016.3	1,996.7	2,966.7	911 .1
Shelby	378.2	1,477.6	1,363.8	4,328.0	1,275.5
Spencer	14.4	1,137.7	509.5	1,146.9	379.5
Trimble	16.0	84.2	1,312.8	716.1	825.6

(1) As reported by Kentucky Utilities and verified by Kentucky Energy Office.

COUNTY	NATURAL GAS (106 ft3)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)	WOOD (tons)
Bullitt	562.1	3,102.7	3,281.0	1,961.6	10,160.8
Hardin	1,098.7	2,155.3	3,148.1	3,151.9	8,169.1
Henry	125.7	1,550.8	1,129.2	1,742.7	616.7
Oldham	353.0	1,016.3	2,045.0	2,356.6	1,018.2
Shelby	378.2	1,477.6	1,397.9	3,438.0	1,378.2
Spencer	14.4	1,137.7	522.0	911.0	462.2
Trimble	16.0	84.2	1,320.1	568.9	884.3

1985 PROJECTED TOTAL RESIDENTIAL FUEL USE BY COUNTY AND FUEL TYPE

TABLE V-7

1995	PRO	JECT	CED	TOTA	L R	ESIDE	TIAL
FUEL	USE	BY	COT	JNTY	AND	FUEL	TYPE

COUNTY	NATURAL GAS (106 ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)	WOOD (tons)
Bullitt	562.1	3,102.7	3,585.1	1,237.7	14;345.5
Hardin	1,098.7	2,155.3	3,429.1	1,988.9	10,349.6
Henry	125.7	1,550.8	1,165.4	1,099.6	710.9
01dham	353.0	1,016.3	2,150.4	1,487.0	1,262.1
Shelby	378.2	1,477.6	1,465.2	2,169.4	1,597.9
Spencer	14.4	1,137.7	549.3	574.9	535.5
Trimble	16.0	84.2	1,334.5	358.9	1,007.1

D. PROJECTED EMISSIONS ALLOCATION

Projected emissions were allocated in accordance with projected population distribution.

CHAPTER VI

COMMERCIAL AND INSTITUTIONAL FUEL USE

This source category includes emissions associated with commercial and institutional fuel combustion. Emission factors for the various commercial/institutional fuels are found in AP-42.

A. 1975 EMISSIONS INVENTORY

The total Jefferson County commercial/institutional heating requirements obtained from the 1975 fuel survey were 2.277×10^{13} Btu. Table VI-1 shows the commercial/institutional fuel use ratios for the seven-county study area relative to Jefferson County. The 1975 sales tax ratios were used to reflect the relative commercial activity within the counties. As Louisville is within shopping distance of many of the residents of the counties, a population-based comparison would not be appropriate. The distribution of heating requirements by fuel type is shown in Table VI-2. For natural gas, fuel usage was obtained from the gas distributors. The distribution of the other fuel types within each county was assumed to be the same as the 1975 fuel-type distribution for Jefferson County.

Emission factors and emissions for this source category are summarized in Tables VI-3 and VI-4.

COUNTY	SALES TAX RATIOS(1)	FUEL USE (Btu/yr)
Bullitt	0.0150	3.416×10^{11}
Hardin	0.0622	1.416×10^{12}
Henry	0.0074	1.685×10^{11}
Oldham	0.0111	2.527×10^{11}
Shelby	0.0219	4.987×10^{11}
Spencer	0.0026	5.920×10^{10}
Trimble	0.0015	3.416×10^{10}

TABLE VI-1

1975 COUNT	TY COMMERCIAL	/INSTITUTIONAL	FUEL USE

(1) Source: Research Staff, Kentucky Department of Revenue

COUNTY	NATURAL GAS (10 ⁶ ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)
Bullitt	279.8	7.8	344.8	258.4
Hardin	1,159.9	32.5	1,429.7	1,071.6
Henry	138.0	3.9	170.1	127.5
Oldham	207.1	5.8	255.1	191.2
Shelby	183.1	45.0	2,024.7	1,510.8
Spencer	48.5	1.3	59.8	44.8
Trimble	7.0	3.9	176.1	131.3

ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL FUEL USE BY COUNTY AND TYPE

TABLE VI-3

EMISSION FACTORS FOR COMMERCIAL/INSTITUTIONAL FUEL BURNING

	EMISSION	EMISSION FACTORS					
FUEL FACTOR TYPE UNITS		PARTICU- LATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES	
Natural Gas	1bs/106ft ³	10	0.6	20	8	120	
LPG ⁽¹⁾	lbs/10 ³ gal	1.85	0.09 [0.16] ⁽²⁾	1.95	0.75	11.5	
Oil	lbs/10 ³ gal	2	142 [0.27]	5	1	22	
Coal	lbs/ton	2 [8.0]	38 [2.0]	10	3	6	

(1) 50% propane, 50% butane

(2) [] indicate sulfur and ash content from AP-42 or 1973 fuel survey.

	EMISSIONS (tons/year)							
COUNTY	PARTICU- LATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES			
Bullitt	3.8	16.5	5.0	1.7	21.4			
Hardin	15.8	68.5	20.6	7.0	88.7			
Henry	1.9	8.1	2.4	0.8	10.6			
Oldham	2.8	12.2	3.7	1.2	15.8			
Shelby	15.1	96.3	14.5	4.0	38.0			
Spencer	0.7	2.9	0.9	0.3	3.7			
Trimble	1.3	8.4	1.2	0.3	2.8			

1975 COMMERCIAL/INSTITUTIONAL EMISSIONS SUMMARY

B. 1975 EMISSIONS ALLOCATION

The 1972 Census of Retail Trade gives the volume of retail sales for counties and cities of 2500 population or more. With the exception of Hardin County, emissions were allocated to such cities in accordance with volume of sales. In the case of Hardin County, more precise data were available. Emissions were allocated by land-use maps (April 1975) provided by the LTADD.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category were projected in accordance with projected commercial and institutional employment, as given in Table II-3. Assumptions used in projecting fuel type distribution are:

- o No growth in coal usage;
- o No growth in natural and LP gas usage;
- o 5% of the growth in fuel usage will be by distillate oil and 95% by electricity.⁽¹⁾

Commercial and institutional fuel usage projections based on these assumptions are presented in Tables VI-5 through VI-7. Projected emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSIONS ALLOCATION

Projected emissions were allocated in accordance with projected population distribution.

⁽¹⁾ As reported by Kentucky Utilities and verified by Kentucky Energy Office.

COUNTY	NATURAL GAS (10 ⁶ ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)
Bullitt	279.8	7.8	430.1	258.4
Hardin	1,159.9	32.5	1,463.8	1,071.6
Henry	138.0	3.9	183.8	127.5
Oldham	207.1	5.8	307.5	191.2
Shelby	183.1	45.0	2,051.1	1,510.8
Spencer	48.5	1.3	66.6	44.8
Trimble	7.0	3.9	177.9	131.3

1980 PROJECTED TOTAL COMMERCIAL AND INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE

TABLE VI-6

1985 PROJECTED TOTAL COMMERCIAL AND INSTITUTIONAL FUEL USE BY COUNTY AND FUEL TYPE

COUNTY	NATURAL GAS (106 ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)
Bullitt	279.8	7.8	487.1	258.4
Hardin	1,159.9	32.5	1,496.4	1,071.6
Henry	138.0	3.9	193.6	127.5
Oldham	207.1	5.8	335.8	191.2
Shelby	183.1	45.0	2,078.6	1,510.8
Spencer	48.5	1.3	72.6	44.8
Trimble	7.0	3.9	179.7	131.3

1995	PROJECTED	TOTAL	COMMERCIAL	AND	INSTITUTIONAL FUEL

COUNTY	NATURAL GAS (10 ⁶ ft ³)	LPG (10 ³ gal)	DISTILLATE OIL (10 ³ gal)	COAL (tons)
Bullitt	279.8	7.8	628.7	258.4
Hardin	1,159.9	32.5	1,562.0	1,071.6
Henry	138.0	3.9	214.6	127.5
Oldham	207.1	5.8	400.5	191.2
Shelby	183.1	45.0	2,134.9	1,510.8
Spencer	48.5	1.3	85.5	44.8
Trimble	7.0	3.9	184.2	131.3

USE BY COUNTY AND FUEL TYPE

CHAPTER VII

INDUSTRIAL FUEL USE

This source category includes area source emissions resulting from industrial fuel combustion. The total industrial fuel inventory for the seven counties in the study area has been included in either the point source inventory or the small point source category, Chapter XVII.

CHAPTER VIII

ON-SITE INCINERATION

This source category includes emissions produced by the burning of refuse in municipal, industrial or commercial incinerators. Emission factors based on the amount of refuse burned and on incinerator operating characteristics are found in AP-42.

A. 1975 EMISSION INVENTORY

Base-line year emission level computations from on-site incineration were based on the nationwide average factors given in Volume 7 of the Guidelines. These factors are:

- o Commercial/institutional on-site incineration: 50 tons/1000 population-year
- o Industrial on-site incineration:

335 tons/1000 manufacturing employees-year

Commercial/institutional and industrial charges for counties computed from these factors are presented in Table VIII-1.

TABLE VIII-1

			CHARGE (tons/year)		
COUNTY	1975 POPULATION	MANUFACTURING EMPLOYEES(1)	COMMERCIAL/ INSTITUTIONAL	INDUSTRIAL	TOTAL
Bullitt	33,642	882	1,526 ⁽²⁾	295	1,821
Hardin	46,360	2,965	2,068 ⁽²⁾	993	3,061
Henry	11,532	458	577	153	730
Oldham	18,651	486	932	163	1,095
Shelby	20,126	1,001	1,006	335	1,341
Spencer	5,372	31	269	10	279
Trimble	5,683	23	284	8	292

ON-SITE INCINERATION DATA

(1) Source: KIPDA and LTADD

(2) Charges have been modified to account for incinerators listed in the point source inventory. The point source inventory was reviewed to determine if any incinerators were included. The following commercial/institutional incinerators were included in the inventory, and the charges subtracted from the total charge to avoid double counting.

Brown IGS Foodliner	Bullitt County	156 tons/year
J. M. Jones IGA	Hardin County	250 tons/year

Residential on-site incinerators are usually located in large apartment buildings or complexes. Since the counties studied are rural, with mostly single dwelling units, residential on-site incinerators are negligible.

Emissions from on-site incineration are shown in Table VIII-2.

B. 1975 EMISSION ALLOCATION

Emissions from commercial/institutional incinerators were allocated in accordance with population distribution. Emissions from industrial incinerators were allocated according to the number of manufacturing employees, as found in the Kentucky Directory of Manufacturers.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category were projected to increase in accordance with the commercial and institutional, and industrial employment projections. Projected emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with projected population distribution.

TABLE VIII-2

1975 ON-SITE INCINERATION EMISSIONS SUMMARY

	EMISSIONS (tons/year)							
	PARTICULATES (1)	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN DIOXIDE			
COUNTY	$EF = 7.8 lbs/ton^{(1)}$	EF = 2.5 lbs/ton	$EF = 11 lbs/ton^{(1)}$	$\frac{1100000000}{\text{EF} = 4.2 \text{ lbs/ton}}(1)$	EF = 2.9 lbs/ton			
Bullitt	7.1	2.3	10.0	3.8	2.6			
Hardin	11.9	3.8	16.8	6.4	4.4			
Henry	2.8	0.9	4.0	1.5	1.1			
Oldham	4.3	1.4	6.0	2.3	1.6			
Shelby	5.2	1.7	7.4	2.8	1.9			
Spencer	1.1	0.3	1.5	0.6	0.4			
Trimble	1.1	0.4	1.6	0.6	0.4			

(1) 90% multiple chamber, 10% single chamber.

CHAPTER IX

OPEN BURNING

This source category includes emissions from refuse burning in open containers or in open fields. Emission factors for this source category are found in AP-42.

A. 1975 EMISSIONS INVENTORY

Baseline year emission level computations from open burning of residential, commercial/institutional, and industrial waste were based on the national average factors given in Volume 7 of the Guidelines. These factors are:

- o Residential open burning: 122 tons/1000 population-year
- o Commercial/institutional open burning: 12 tons/1000 population-year
- o Industrial open burning: 160 tons/1000 manufacturing employees-year

Use of these factors requires a trash pickup efficiency of 86% relative to the 5.5 lbs/person-day refuse generation rate generally applicable in the United States. This efficiency compares favorably with the 80% or greater pickup rates reported by most of the county officials. The amounts of residential, commercial/institutional, and industrial waste burned per county, estimated from the Volume 7 factors, are summarized in Table IX-1.

In addition to residential, commercial/institutional, and industrial waste, debris resulting from land clearing and construction is often burned in the open. In the LAQMP, it was shown from a comprehensive study provided by the JCAPCD that 13.8 tons of such debris were generated and burned for each acre cleared in Jefferson County. In the study area, however, land clearing for construction is required to a much lesser degree because of the availability of cleared land. Consequently, the Jefferson County factor is halved to 6.9 tons of debris generated and burned in the study area. The number of acres of construction involved is determined in Chapter XXIII.

IX-1

Table IX-1 summarizes the waste disposed of by open burning, and Table IX-2 shows the resulting emissions.

B. 1975 EMISSIONS ALLOCATION

Open burning emissions were allocated by population distribution.

TABLE IX-1

OPEN BURNING DATA

			CHARGE (tons/year)				
COUNTY	1975 POPULATION	MANUFACTURING EMPLOYEES(1)	RESIDENTIAL	COMMERCIAL/ INSTITUTIONAL	INDUSTRIAL	LAND CLEARING	TOTAL
Bullitt	33,642	882	4,104	404	141	683	5,332
Hardin	46,360	2,965	5,656	556	474	955	7,641
Henry	11,532	458	1,407	138	73	142	1,760
Oldham	18,651	486	2,275	224	78	897	3,474
Shelby	20,126	1,001	2,455	242	160	416	3,273
Spencer	5,372	31	655	64	5	90	814
Trimble	5,683	23	693	68	4	51	816

(1) Source: KIPDA and LTADD

TABLE IX-2

1975 OPEN BURNING EMISSIONS SUMMARY

	EMISSIONS (tons/year)						
	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES		
COUNTY	EF = 16 lbs/ton	EF = 1 lb/tan	EF = 85 lbs/ton	EF = 30 lbs/ton	EF = 6 lbs/ton		
Bullitt	42.7	2.7	226.6	80.0	16.0		
Hardin	61.1	3.8	324.7	114.6	22.9		
Henry	14.1	0.9	74.8	26.4	5.3		
Oldham	27.8	1.7	147.6	52.1	10.4		
Shelby	26.2	1.6	139.1	49.1	9.8		
Spencer	6.5	0.4	34.6	12.2	2.4		
Trimble	6.5	0.4	34.7	12.2	2.4		

C. PROJECTED EMISSION INVENTORY

The four classes of open burning shown in Table IX-1 are projected to increase in accordance with the following factors:

- o Residential population growth
- o Commercial/Institutional C/I employment growth
- o Industrial industrial employment growth
- o Land Clearing population growth

The amounts of projected open burning charges based on these factors are summarized in Tables IX-3 through IX-5. Emissions are summarized in Chapter XXXII.

TABLE IX-3

1980 OPEN BURNING PROJECTIONS

	CHARGE (tons/year)							
COUNTY	RESIDENTIAL	COMMERCIAL/ INSTITUTIONAL	INDUSTRIAL	LAND CLEARING	TOTAL			
Bullitt	5,101	680	141	849	6,771			
Hardin	7,070	593	505	1,194	9,362			
Henry	1.496	169	112	151	1,928			
Oldham	2,864	351	126	1,129	4,470			
Shelby	2,651	277	192	449	3,569			
Spencer	692	84	8	95	879			
Trimble	741	78	6	55	880			

TABLE IX-4

		CHARGE (tons/year)						
COUNTY	RESIDENTIAL	COMMERCIAL/ INSTITUTIONAL	INDUSTRIAL	LAND CLEARING	TOTAL			
Bullitt	6,099	865	346	1,015	8,325			
Hardin	8,688	628	535	1,467	11,318			
Henry	1,604	191	131	162	2,088			
Oldham	3,201	420	158	1,262	5,041			
She1by	2,865	313	219	485	3,882			
Spencer	777	102	9	107	995			
Trimble	793	87	8	58	946			

1985 OPEN BURNING PROJECTIONS

TABLE IX-5

1995 OPEN BURNING PROJECTIONS

	CHARGE (tons/year)						
COUNTY	RESIDENTIAL	COMMERCIAL/ INSTITUTIONAL	INDUSTRIAL	LAND CLEARING	TOTAL		
Bullitt	8,610	1,324	672	1,433	12,039		
Hardin	11,007	698	596	1,858	14,159		
Henry	1,849	238	175	187	2,449		
Oldham	3,968	577	237	1,564	6,346		
Shelby	3,322	386	268	563	4,539		
Spencer	976	140	11	134	1,261		
Trimble	904	111	13	67	1,095		

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the projected population distribution.

CHAPTER X

ROAD VEHICLES

This source category includes exhaust emissions from the following classes of road vehicles:

- o Light-duty gasoline automobiles (LDGA)
- o Light-duty gasoline trucks with GVW 0-6000 lbs. (LDGT,)
- o Light-duty gasoline trucks with GVW 6001-8500 lbs. (LDGT,)
- o Light-duty diesel vehicles (LDDV)
- o Heavy-duty gasoline vehicles (HDGV)
- o Heavy-duty diesel vehicles (HDDV)
- o Motorcycles

EPA recently issued new emission factors for motor vehicles. This document which will be published in a future supplement to AP-42 does not revise all information in Supplement No. 5. In particular, updated factors are not included for LDDV nor is any information included on particulates and SO_2 . The updated factors for the above vehicle classes contain several (optional) correction factors such as trailer towing, air-conditioning, vehicle loading and humidity correction factors and a single correction factor relating speed, ambient temperature and hot/cold vehicle operation. A computer program developed by EPA was used to calculate the emission factors for each calendar year, pollutant, average speed (road class), ambient temperature, fraction cold operation and fraction hot-start operation. (1)

A. 1975 EMISSION INVENTORY

Comprehensive and extensive average daily traffic (ADT) maps for each county were made available by the Kentucky Department of Transportation (DOT). For the minor roads, for which ADT were not available, estimates were made from ADT values for surrounding roads. In a few cases where estimates could not be made, a value of 50 ADT was assigned to through roads and streets. ⁽²⁾ ADT for dead-end roads and streets were estimated using the formula:

- (1) Mobile 1 program, obtained from OTLUP, January 1978.
- (2) An assumed ADT value of 50 was recommended by Kentucky DOT.

$ADT = \frac{No. of Roadside Buildings \times 3.3}{2}$

where 3.3 is the national average number of trips/day-vehicle suggested in AP-42, divided by two to account for the average length of trip on the deadend street.

VMT were calculated for each grid square as the product of ADT and road segment length. A comparison of the seven-county total VMT and the sevencounty total allocated on a population basis from DOT state totals, showed that the calculated total exceeded the allocated total by 18%. This is to be expected because of the greater number of major highways in the study are a as compared to the State as a whole.

VMT for each grid square were disaggregated by functional road classification. Statewide percentages of vehicle miles traveled by vehicle type and road classification were provided by DOT. These data are shown in Table X-1.

VEHICLE TYPE	FREEWAY	ARTERIAL	LOCAL
LDGA	70.6	70.4	70.3
LDGT	16.6	16.8	16.7
LDDV	4.1	4.1	4.3
HDGV	1.1	1.0	1.5
HDDV	7.6	7.7	7.2
TOTAL	100.0	100.0	100.0

TABLE X-1

VMT BY ROAD CLASSIFICATION AND VEHICLE TYPE⁽¹⁾ (%)

(1) Does not include motorcycles considered separately or LPG vehicles for which emissions are negligible.

Tables X-2 through X-8 summarize traffic data by county. Total VMT by road classification are aggregates of all grid squares. For each road

X-2

classification total, VMT were distributed by vehicle type in accordance with the values given in Table X-1. The VMT for the light-duty gasoline powered trucks (LDGT) was divided into each of the weight categories based upon the average sales weighting distribution of the two categories. The weighting distribution by sales is based on national data.

TABLE X-2

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Start (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	[±] 25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	123	71	54	248
$LDGT_1 VMT (10^6)$	21	12	9	42
$LDGT_2^{T}$ VMT (10 ⁶)	8	5	3	16
LDDV VMT (10 ⁶)	7	4	4	15
HDGV VMT (10 ⁶)	2	1	2	5
HDDV VMT (10 ⁶)	<u>_13</u>	8	6	_27
TOTAL VMT (10 ⁶)	174	101	78	353

1975 BULLITT COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	177	163	106	446
ldgt, vmt (10 ⁶)	30	28	19	77
$LDGT_2^{T}$ VMT (10 ⁶)	12	11	7	30
LDDV ^{VMT} (10 ⁶)	10	10	6	26
HDGV VMT (10 ⁶)	3	2	2	7
HDDV VMT (10 ⁶)	19	18	_10	47
TOTAL VMT (10 ⁶)	251	232	150	633

1975 HARDIN COUNTY TRAFFIC DATA

TABLE X-4

1975	HENRY	COUNTY	TRAFFIC	DATA

FREEWAY	ARTERIAL	LOCAL	TOTAL
54	35	25	
10	25	40	
0	25	20	
90	50	40	
36	32	16	84
6	6	3	15
2	2	1	5
2	2	0	4
1	0	0	1
_4	3	_2	9
51	45	22	118
	54 10 0 90 36 6 2 2 2 1 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

1975 OLDHAM COUNTY TRAFFIC DATA

FREEWAY	ARTERIAL	LOCAL	TOTAL
54	35	25	1
10	25	40	
0	25	20	
90	50	40	
44	32	18	94
7	6	3	16
3	2	1	6
3	2	2	7
1	0	0	1
_5	_4		<u>11</u>
63	<u> </u>	26	135
	54 10 0 90 44 7 3 3 1 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE X-6

<u>1975</u>	SHELBY	COUNTY	TRAFFIC	DATA
		and the second		

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	84	65	30	179
$LDGT_1$ VMT (10 ⁶)	14	11	4	29
$LDGT_2 VMT (10^6)$	6	5	2	13
LDDV ^{VMT} (10 ⁶)	5	4	2	11
HDGV VMT (10 ⁶)	1	1	0	2
HDDV VMT (10 ⁶)	9	_7	4	_20
TOTAL VMT (10 ⁶)	119	93	42	254

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	0	17	6	23
LDGT VMT (10 ⁶)	0	3	1	4
$LDGT_{2}^{1}$ VMT (10 ⁶)	0	1	1	2
LDDV VMT (10 ⁶)	0	1	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	_0	_2	_0	_2
TOTAL VMT (10 ⁶)	0	24	8	32

1975 SPENCER COUNTY TRAFFIC DATA

TABLE X-8

1975 TRIMBLE COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	20	2	6	28
LDGT ₁ VMT (10 ⁶)	4	1	1	6
$LDGT_{2}^{T}$ VMT (10 ⁶)	1	0	1	2
LDDV VMT (10 ⁶)	1	0	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	_2	_0	_0	_2
TOTAL VMT (10 ⁶)	28	3	8	39

VMT estimates for motorcycles were based on the number of motorcycles registered in each county, which was provided by the state motor vehicle registration office. An average value of 4,000 miles/motorcycle-year, 38% two-stroke and 62% four-stroke, was assumed, as suggested in AP-42. Motor-cycle data and VMT are summarized in Table X-9.

TABLE X-9

1975 MOTORCYCLE TRAFFIC DATA

COUNTY	NUMBER OF MOTORCYCLES	MILES TRAVELLED (10 ³ MI/YR)
Bullitt	796	3,184
Hardin	1,074	4,296
Henry	206	824
Oldham	41	1,644
Shelby	304	1,216
Spencer	71	284
Trimble	84	336

Emission factors for this source category were calculated using AP-42 Supplement #5 for SO₂ and particulates and the computerized EPA Emission Factor Programs for each calendar year, each pollutant (HC, CO and NO_x only) average speed (road class), ambient temperature, fraction cold operation and fraction hot operation.

The vehicle age distribution for Jefferson County was provided by the JCAPCD (Table X-10). The same distribution is appropriate for the sevencounty study area. The nationwide average of motorcycles by vehicle age distribution used is given in Table X-10. VMT by vehicle age were not available locally. Consequently, the nationwide average annual miles driven by vehicle age, built into the EPA emission factor program was used.

LOCALIZED 1975 VEHICLE REGISTRATION (FRACTION)

VEHICLE AGE	LDGA	LDT 1	LDT2	HDG	HDD	MC ⁽¹⁾
1	0.076	0.128	0.130	0.176	0.176	0.105
2	0.095	0.117	0.116	0.084	0.086	0.225
3	0.111	0.109	0.109	0.118	0.115	0.206
4	0.101	0.095	0.095	0.084	0.084	0.149
5	0.085	0.064	0.063	0.067	0.067	0.097
6	0.082	0.061	0.060	0.084	0.079	0.062
7	0.082	0.066	0.067	0.067	0.069	0.046
8	0.078	0.054	0.056	0.067	0.067	0.033
9	0.065	0.050	0.049	0.050	0.052	0.029
10	0.062	0.043	0.042	0.034	0.033	0.023
11	0.055	0.041	0.039	0.034	0.035	0.008
12	0.037	0.031	0.032	0.025	0.022	0.005
13	0.026	0.022	0.025	0.017	0.022	0.013
14	0.016	0.018	0.018	0.017	0.017	0
15	0.007	0.013	0.014	0.009	0.007	o
16	0.006	0.021	0.021	0.017	0.018	0
17	0.005	0.020	0.018	0.017	0.016	0
18	0.005	0.017	0.018	0.017	0.014	0
19	0.005	0.016	0.014	0.008	0.011	0
20	0.004	0.014	0.014	0.008	0.010	_0
TOTAL	1.003	1.000	1.000	1.000	1.000	1.001

(1) Nationwide average data used.

Other inputs and assumptions that went into the emission factor calculations include: $^{(1)}$

- o Ambient temperature 56° F.
- o Altitude low.
- o Assume the speed and the operating mix (i.e., % cold starts/% stabilized/ % hot starts in Table X-2 through X-8.)
- Assume a value of 1.00 for both the vehicle loading (Lip) and the trailer towing (Uipn) correction factors due to the unavailability of better data or information.
- For NO emission calculations, the humidity recorded for Louisville Airport was used.
- o The national average of vehicles equipped with air conditioning systems by model year, given in Supplement #8 was used.
- The fraction of vehicles which are equipped with air conditioning that have the air conditioning system in operation was obtained from the 1951-1960 Louisville temperature and wind speed relative humidity occurrence data.
- Number of tires 18 for HDDV, 10 for HDGV and four for all other vehicles.
- No attempt was made to correct for idle emissions since there are no available data on the duration and frequency of stops at major intersections, shopping centers, sport complexes, etc.

The computed emission factors (HC, CO, NO_x) and emissions from motor vehicles are summarized in Tables X-11 and X-12.

B. 1975 EMISSIONS ALLOCATION

Emissions were allocated to each grid square in accordance with the VMT distribution.

(1)

All inputs and assumptions used to calculate emissions were reviewed and approved by the Kentucky Department for Natural Resources and Environmental Protection.

1975 MOTOR VEHICLE EMISSION FACTORS

(GRAMS/MILE)

[FREEWAY				ARTERIAL			LOCAL		
VEHICLE MODE	нс	со	NOx	нс	со	NOx	нс	со	NO X	
LDV	7.45	30.33	5.01	9.20	50.95	4.98	11.48	80.81	4.59	
LDT	7.32	28.30	4.83	8.97	47.40	4.77	11.14	75.32	4.39	
LDT_2	9.14	31.14	7.42	11.18	52.19	7.31	13.86	83.17	6.73	
HDG	13.39	150.23	14.23	16.94	146.51	12.42	16.94	201.45	11.47	
HDD	2.16	16.04	25.42	2.81	18.34	18.55	2.81	25.56	19.41	
мС	9.09	18.72	0.16	11.32	27.72	0.16	14.35	41.14	0.15	
All Modes	7.18	30.22	6.78	8.87	48.83	6.18	11.02	77.62	5.86	

TABLE $X-12^{(1)}$

1975 HIGHWAY VEHICLES EMISSIONS SUMMARY

	EMISSIONS (TONS/YEAR)							
COUNTY	PARTICULATES	SULFUR DIOXIDE	HYDROCARBONS	CARBON MONOXIDE	NITROGEN OXIDES			
Bullitt	254.8	141.2	3,221.9	17,368.2	2,437.2			
Hardin	452.1	248.0	5,898.1	32,541.2	4,298.0			
Henry	84.2	46.5	1,079.0	5,826.4	810.7			
Oldham	98.3	56.4	1,205.7	6,406.1	932.3			
Shelby	182.8	102.8	2,261.1	11,926.9	1,745.7			
Spencer	21.8	11.3	327.5	1,925.6	202.0			
Trimble	25.8	12.4	349.2	1,746.0	256.2			

(1) Includes the motorcycles emissions.

C. PROJECTED EMISSION INVENTORY

The projection of emissions from highway vehicles depends upon:

- o Changes in traffic volume;
- o Changes in vehicle type mix; and
- o Changes in emission factors (emissions/vehicle-mile).

Traffic volume is assumed to grow at 2% linear growth/year.⁽¹⁾ The projected VMT growth is summarized in Tables X-13 - X-33. Information is not available on historical changes in the vehicle type mix. Hence, for projection purposes, the vehicle type mix is assumed to remain constant for each of the functional road classifications.

The HC, CO, and NO_x emission factors for the projection years were calculated using the EPA Emission Factor Programs. However, this program is valid only up to the year 1990. Changes in the HC, CO, and NO_x emission factors from 1990 to 1995 are, therefore, assumed to remain relatively constant and the 1990 emission factors were used to estimate the 1995 HC, CO and NO_x emissions. Actually the emission factors for the year 1995 should be less than the 1990 factors, hence this assumption results in a conservative, i.e., higher than expected, estimate of the 1995 HC, CO and NO_x emissions. The projected emission factors for HC, CO and NO_x are summarized in Tables X-34 - X-36. For light-duty diesel-powered vehicles, however, the HC, CO, and NO_x exhaust emission factors obtained from AP-42, Supplement #5 do not change with time.

SO₂ exhaust emission factors for all vehicle classes and particulate emission factors for LDDV and the heavy-duty vehicles (HDGV and HDDV) also do not change with time. However for the light-duty gasoline powered vehicles (LDGA and LDGT), particulate emission factors decrease with time because of the expected increased use of catalytic converters which require the use of unleaded gasoline and the resulting reduced emissions of lead oxides. For this vehicle class the particulate emission factor can be expressed as:

⁽¹⁾ The 2% linear growth/year for the traffic volume in the study areas was recommended by Kentucky DOT.

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	135	78	59	272
LDT ₁ VMT (10 ⁶)	23	14	9	46
$LDT_{2}^{T}VMT$ (10 ⁶)	9	5	4	18
LDDV VMT (10 ⁶)	8	4	4	16
HDGV VMT (10 ⁶)	2	1	2	5
HDDV VMT (10 ⁶)	_14	9		30
TOTAL VMT (10 ⁶)	191	111	85	387

TABLE X-13 1980 BULLITT COUNTY TRAFFIC DATA

TABLE X-14 1980 HARDIN COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGB)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	195	179	117	491
LDT ₁ VMT (10 ⁶)	33	31	21	85
$LDT_{2}^{T}VMT$ (10 ⁶)	13	12	8	33
LDDV VMT (10 ⁶)	11	11	7	29
HDGV VMT (10 ⁶)	3	2	2	7
HDDV VMT (10 ⁶)		_20	_11	52
TOTAL VMT (10 ⁶)	276	255	166	697

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	40	35	18	93
$LDT_1 VMT (10^6)$	6	6	3	15
LDT_2^{T} VMT (10 ⁶)	3	3	1	7
LDDV VMT (10 ⁶)	2	1	0	4
HDGV VMT (10 ⁶)	1	0	0	1
HDDV VMT (10 ⁶)	_4	_3	2	_9
TOTAL VMT (10 ⁶)	56	<u>-</u> 49	24	129

1980 HENRY COUNTY TRAFFIC DATA

TABLE X-16

1980 OLDHAM COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	48	35	20	103
LDT, VMT (10 ⁶)	8	6	3	17
LDT_2^1 VMT (10 ⁶)	3	3	1	7
LDDV VMT (10 ⁶)	3	2	2	7
HDGV VMT (10 ⁶)	1	0	0	1
hddv vmt (10 ⁶)	6	_4	_2	12
TOTAL VMT (10 ⁶)	69	50	28	147

TABLE X-171980 SHELBY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	92	72	33	197
$LDT_1 VMT (10^6)$	16	13	5	34
$LDT_2^{T} VMT (10^6)$	6	5	2	13
LDDV VMT (10 ⁶)	6	4	2	12
HDGV VMT (10 ⁶)	1	1	0	2
HDDV VMT (10 ⁶)	_10	8	_4	_22
TOTAL VMT (10 ⁶)	131	103	46	280

TABLE X-181980 SPENCER COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	0	19	7	26
LDT, VMT (10 ⁶)	0	3	1	4
LDT_2^{\dagger} VMT (10 ⁶)	0	1	1	2
LDDV VMT (10 ⁶)	0	1	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	<u>o</u>	_2	<u>o</u>	_2
TOTAL VMT (10 ⁶)	0	26	9	35
IOTAL VHI (IO)	Ŭ	20		

X-14

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
$LDGA VMT (10^{6})$	22	2	7	31
$LDT_1 VMT (10^6)$	4	1	1	6
LDT_2^{1} VMT (10 ⁶)	2	0	1	3
$LDDV VMT (10^6)$	1	0	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	_2	0		_2
TOTAL VMT (10 ⁶)	31	3	9	43

TABLE X-191980 TRIMBLE COUNTY TRAFFIC DATA

TABLE X-20

1985 BULLITT COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	148	85	65	298
$LDGT_1$ VMT (10 ⁶)	25	14	10	49
$LDGT_2^{1}$ VMT (10 ⁶)	10	6	4	20
$LDDV^2 VMT (10^6)$	8	5	5	18
HDGV VMT (10 ⁶)	2	1	2	5
HDDV VMT (10 ⁶)	_16	_10	_7	_ <u>33</u>
TOTAL VMT (10 ⁶)	209	121	93	423

TABLE X-21 1985 HARDIN COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	212	196	127	535
$LDGT_1 VMT (10^6)$	36	34	22	92
$LDGT_{2}^{T}VMT$ (10 ⁶)	14	13	9	36
LDDV ^V VMT (10 ⁶)	12	12	7	31
HDGV VMT (10 ⁶)	4	2	2	8
HDDV VMT (10 ⁶)	23	22		_57
IOTAL VMT (10 ⁶)	301	279	179	759

TABLE X-221985 HENRY COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	43	38	19	100
ldgt ₁ vmt (10 ⁶)	7	7	4	18
$LDGT_{2}^{T}$ VMT (10 ⁶)	3	3	1	7
LDDV ^{VMT} (10 ⁶)	2	2	0	4
HDGV VMT (10 ⁶)	1	0	0	1
HDDV VMT (10 ⁶)	_5	_4	_2	<u>_11</u>
FOTAL VMT (10 ⁶)	61	54	26	141

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	1
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	53	38	22	113
LDGT, VMT (10 ⁶)	9	7	4	20
DGT_2^{\dagger} VMT (10 ⁶)	3	3	1	7
DDV^{VMT} (10 ⁶)	4	2	2	8
IDGV VMT (10 ⁶)	1	0	0	1
IDDV VMT (10 ⁶)	_6	_5	_2	_13
OTAL VMT (10 ⁶)	76	÷ 55	31	162

TABLE X-231985 OLDHAM COUNTY TRAFFIC DATA

TABLE X-24 1985 SHELBY COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	101	78	36	215
LDGT, VMT (10 ⁶)	17	14	5	36
$LDGT_2^{1}$ VMT (10 ⁶)	7	5	2	14
LDDV ^V MT (10 ⁶)	6	5	2	13
HDGV VMT (10 ⁶)	1	1	0	2
HDDV VMT (10 ⁶)	_11	8	_5	_24
TOTAL VMT (10 ⁶)	143	111	50	304

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10 25		40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
ldga vmt (10 ⁶)	0	20	7	27
$LDGT_1 VMT (10^6)$	0	4	1	5
$LDGT_{2}^{T}VMT$ (10 ⁶)	0	1	1	2
LDDV ^V VMT (10 ⁶)	0 1		0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	<u>0</u>	_2	<u>0</u>	_2
TOTAL VMT (10 ⁶)	0	28	9	37

TABLE X-25 1985 SPENCER COUNTY TRAFFIC DATA

TABLE X-26

1985 TRIMBLE COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	24	2	7	33
LDGT, VMT (10 ⁶)	4	1	1	6
$LDGT_{2}^{T}$ VMT (10 ⁶)	2	0	1	3
LDDV VMT (10 ⁶)	1	0	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	_2	<u>0</u>	<u>o</u>	_2
TOTAL VMT (10 ⁶)	33	3	9	45

	FREEWAY	ARTERIAL	LOCAL	TOTAI
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10^6)	172	99	76	2/7
$LDGT_1 VMT (10^6)$	29	17		347
$LDGT_2$ VMT (10 ⁶)	12	7	12	58
DVVMT (10 ⁶)	10	6	5	24
$DGV VMT (10^6)$	3	1	6	22
DDV VMT (10^6)	_18		3	7
OTAL VMT (10 ⁶)		11	8	
UIAL VIII (LU)	244	141	110	495

TABLE X-27 1995 BULLITT COUNTY TRAFFIC DATA

TABLE X-28 1995 HARDIN COUNTY TRAFFIC DATA

FREEWAY	ARTERIAL	LOCAL	TOTAI
54	35	25	+
10	25		
0	25		
90	50		
248	228		624
42	39		107
17	16		43
14	14		36
4	3	-	10
27		-	66
352	325	209	886
	54 10 0 90 248 42 17 14 4 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE X-29 1995 HENRY COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	[
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	50	45	22	117
LDGT ₁ VMT (10 ⁶)	8	8	4	20
$LDGT_2^{1}$ VMT (10 ⁶)	3	3	2	8
LDDV VMT (10 ⁶)	3	3	0	6
HDGV VMT (10 ⁶)	1	0	0	1
HDDV VMT (10 ⁶)	_6	_4	_3	<u>_13</u>
TOTAL VMT (10 ⁶)	71	63	31	165

TABLE X-30

1995 OLDHAM COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	.
LDGA VMT (10 ⁶)	62	45	25	132
LDGT ₁ VMT (10 ⁶)	10	8	4	22
LDGT, VMT (10 ⁶)	4	3	2	9
LDDV ^V WT (10 ⁶)	4	3	3	10
HDGV VMT (10 ⁶)	1	0	0	1
HDDV VMT (10 ⁶)	_7	_6	_3	<u> 16 </u>
TOTAL VMT (10 ⁶)	88	65	37	190

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	118	91	42	251
LDGT, VMT (10 ⁶)	20	16	6	42
$LDGT_2 VMT (10^6)$	8	6	2	16
LDDV ^{VMT} (10 ⁶)	7	6	3	16
HDGV VMT (10 ⁶)	1	1	0	2
HDDV VMT (10 ⁶)	_13	10	_6	<u> </u>
FOTAL VMT (10 ⁶)	167	130	59	356

TABLE X-31 1995 SHELBY COUNTY TRAFFIC DATA

TABLE X-32

1995 SPENCER COUNTY TRAFFIC DATA

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	0	24	8	32
ldgt, vmt (10 ⁶)	0	4	2	6
$LDGT_2^{T}$ VMT (10 ⁶)	0	2	1	3
LDDV ^V VMT (10 ⁶)	0	1	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	<u>0</u>	3	_0	_3
TOTAL VMT (10 ⁶)	0	34	11	45

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Starts (LDGV)	10	25	40	
% Hot Starts (LDGV)	0	25	20	
% Stabilized	90	50	40	
LDGA VMT (10 ⁶)	28	3	8	39
LDGT ₁ VMT (10 ⁶)	5	1	2	8
$LDGT_{2}^{T}$ VMT (10 ⁶)	2	0	1	3
LDDV VMT (10 ⁶)	1	0	0	1
HDGV VMT (10 ⁶)	0	0	0	0
HDDV VMT (10 ⁶)	_3	<u>0</u>	_0	_3
TOTAL VMT (10 ⁶)	39	4	11	54

TABLE X-33 1995 TRIMBLE COUNTY TRAFFIC DATA

TABLE X-34 1980 MOTOR VEHICLE EMISSION FACTORS

RAMS/MILE)

	FREEWAY			[ARTERIAL			LOCAL		
VEHICLE MODE	HC	со	NO x	HC	CO	NOx	HC	СО	NOx	
LDV	4.40	21.33	4.21	5.75	37.94	4.02	7.47	62.93	3.69	
LDT	4.38	22.88	3.93	5.91	40.85	3.72	7.88	68.15	3.40	
LDT ₂	5.68	26.18	5.99	7.65	46.74	5.69	10.17	78.24	5.21	
HDG	10.60	145.12	13.45	13.50	156.26	11.62	18.86	203.10	10.66	
HDD	2.23	12.12	29.89	2.82	15.69	18.31	3.73	22.54	18.71	
мс	4.02	12.71	0.30	5.95	20.64	0.29	8.48	32.42	0.27	
All Modes	4.35	22.32	6.36	5.72	38.12	5.24	7.56	63.20	4.94	

<u>TABLE X-35</u> <u>1985 MOTOR VEHICLE EMISSION FACTORS</u> <u>(GRAMS/MILE)</u>

	FREEWAY			ARTERIAL			LOCAL		
VEHICLE MODES	HC	со	NO x	нс	со	NOx	нс	со	NOx
LDV	4.40	11.01	3.22	5.75	20.27	3.01	7.47	34.52	2.77
LDT	4.38	16.43	3.27	5.91	30.71	3.05	7.88	52.51	2.80
	5.68	17.36	3.91	7.65	32.23	3.68	10.17	55.02	3.38
HDG	10.60	100.43	11.24	13.50	107.54	9.52	18.86	131.48	8.62
HDD	2.23	10.70	26.30	2.82	14.46	14.79	3.73	21.32	15.09
мс	1.01	4.65	0.54	1.73	8.06	0.53	2.63	13.09	0.50
All Modes	4.33	12.90	5.15	5.68	22.54	4.03	7.51	38.06	3.80

TABLE X-36

1990 AND 1995 MOTOR VEHICLE EMISSION FACTORS (GRAMS/MILE)⁽¹⁾

		FREEWAY		A	ARTERIAL			LOCAL		
VEHICLE MODE	HC	со	NOx	нс	CO	NO _x	НС	со	NO x	
LDV	0.95	6.66	2.79	1.72	13.17	2.59	2.61	23.09	2.38	
LDT,	1.26	10.49	2.60	2.25	20.33	2.41	3.41	35.34	2.22	
	1.35	10.66	2.73	2.37	20.54	2.54	3.56	35.65	2.34	
HDG	4.73	65.47	8.85	6.44	70.38	7.44	9.35	83.46	6.70	
HDD	1.26	10.27	14.86	1.76	14.08	8.15	2.49	20.93	8.31	
мс	0.23	1.88	0.24	0.45	3.41	0.23	0.72	5.68	0.22	
All Modes	1.07	8.22	3.76	1.86	15.03	3.04	2.83	25.83	2.85	

(1) 1990 emission factors calculated using the Mobile 1 program, obtained from OTLUP, January 1978, were used for 1995 based on a telephone conversation with Len Fleckenstein and Lew Guthman of OTLUP.

$$EF = [EF_{cc} \times F] + [EF_{ncc} \times (1 - F)] + EF_{tw}$$

where:

F is calculated using Table I-22 in Appendix D of AP-42 (Supplement No. 5) for LDGA and Table D.2-11 for LDGT. The projected TSP emission factors for this vehicle class are summarized in Table X-37.

TABLE X-37

PROJECTED TSP EMISSION FACTORS

VEHICLE CLASS	1975	1980	1985	1995
LDGA	0.51	0.33	0.27	0.27
LDGT ₁	0.51	0.35	0.28	0.28
LDGT ₂	0.51	0.35	0.28	0.28

With these projected HC, CO, NO_x , particulate emission factors and the unchanging emission factors previously discussed, and the projected VMT, the projected highway vehicle emissions were calculated and summarized in Table X-38 - X-40.

1980 HIGHWAY VEHICLES EMISSIONS SUMMARY

	EMISSIONS (TONS/YEAR)								
COUNTY	PARTICULATES	SULFUR DIOXIDE	HYDROCARBONS	CARBON MONOXIDE	NITROGEN OXIDES				
Bullitt	214.3	155.6	2,256.8	14,818.2	2,394.4				
Hardin	379.7	273.8	4,163.1	27,958.1	4,189.8				
Henry	68.3	48.2	759.0	4,961.0	774.3				
01dham	82.1	61.2	839.3	5,408.8	919.8				
Shelby	153.8	113.2	1,586.3	10,168.3	1,723.1				
Spencer	17.3	11.7	234.3	1,668.7	182.6				
Trimble	20.4	13.0	242.8	1,486.1	250.8				

TABLE X-39

1985 HIGHWAY VEHICLES EMISSIONS SUMMARY

		EMISSIONS (TONS/YEAR)								
COUNTY	PARTICULATES	SULFUR DIOXIDE	HYDROCARBONS	CARBON MONOXIDE	NITROGEN OXIDES					
Bullitt	209.5	170.7	1,210.0	9,513.8	2,083.5					
Hardin	369.3	299.2	2,260.1	18,079.5	3,614.0					
Henry	68.1	56.0	408.5	3,204.6	688.7					
Oldham	80.7	66.9	454.1	3,520.2	793.1					
Shelby	149.0	123.0	842.6	6,470.7	1,484.9					
Spencer	15.7	12.1	126.3	1,037.5	146.2					
Trimble	18.1	13.3	119.2	892.9	206.0					

1995 HIGHWAY VEHICLES EMISSIONS SUMMARY

	EMISSIONS (TONS/YEAR)								
COUNTY	PARTICULATES	so ₂	HC	СО	NO x				
Bullitt	243.8	195.9	903.2	7,486.7	1.800.0				
Hardin	430.5	347.8	1,692.2	14,101.2	3,150.6				
Henry	80.4	66.3	299.6	2,471.8	597.7				
Oldham	96.2	80.8	332.9	2,725.1	692.6				
Shelby	176.2	147.1	616.3	5,005.3	1,295.1				
Spencer	20.1	16.2	101.4	852.5	137.8				
Trimble	22.9	17.6	86.7	710.0	196.7				

D. PROJECTED EMISSION ALLOCATION:

Projected emissions were allocated to each grid square in accordance with the projected VMT distribution.

CHAPTER XI

AIRCRAFT

This source category includes exhaust emissions from aircraft engines. Emission factors, based on the landing-takeoff cycle (LTO), are found in AP-42.

A. 1975 EMISSION INVENTORY

There are two tower-controlled airports in the study area, both in Hardin County: Elizabethtown Airport and Godman Field at Fort Knox. In addition, there are 15 noncontrolled auxiliary air strips at Fort Knox used for military helicopter training exercises. Aircraft emissions related to Fort Knox are accounted for in Chapter XXXI.

Aircraft operating data for Elizabethtown Airport were obtained from the office of the airport manager. Only general aviation and military operations take place at this airport.

Operating data and emissions are summarized in Table XI-1.

B. 1975 EMISSIONS ALLOCATION

Emissions from this source category were assigned to subcounty areas in accordance with the location of the airports.

C. PROJECTED EMISSION INVENTORY

Projected emissions from this source category are dependent upon three factors:

- o Increased operational activity.
- o Change in aircraft equipment mix.
- o More stringent control of aircraft emissions.

Of these, only increased activity is expected to affect emissions at Elizabethtown Airport. Military operations are expected to remain constant, but general aviation

operations are projected to increase at the rate of 10.75% per year as estimated in FAA publication, <u>Terminal Area Forecasts 1976-1986</u>, for general aviation in Kentucky. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the location of the airports.

AIR CRAFT OPERATIONS AND EMISSION SUMMARY

				Parti	culate	Sulfur	Dioxide	Carbon	Monoxide	Hydroca	rbons	Nitrogen	Oxides
	Operations Per Year	Engines	LTO's	EF (1bs/ LTO-eng)	Emissions (lbs/yr)								
Elizabethtown Airport Military-Helicopter	3,000	1	1,500	0,25	375	0.18	270	5.7	8,550	0.52	780	0.57	855
General Aviation- Piston	57,000	1	28,500	0.02	570	0.014	399	12.2	347,700	0.4	11,400	0.047	1,340
TOTAL HARDIN COUNTY (tons/year)					0.5		0.3		178.1		6.1		1.1

CHAPTER XII

RAILROAD LOCOMOTIVES

This source category includes exhaust emissions from diesel locomotive engines, both line-haul engines and switch engines, as well as emissions from auxiliary equipment and probably some space heating. Emission factors, based on the quantity of fuel consumed, are found in AP-42.

A. 1975 EMISSION INVENTORY

The three Class I railroads which operate in the study area were requested to provide 1975 fuel usage data by county. The Louisville and Nashville provided the following estimates:

Bullitt	876,000 gallons
Hardin	804,000 gallons
Henry	516,000 gallons
Jefferson	2,717,000 gallons
Oldham	360,000 gallons
Shelby	660,000 gallons
Spencer	0
Trimble	0

The sulfur in fuel content was reported to average 0.4%.

Neither the Southern Railway nor the Illinois Central Gulf could provide fuel usage by county, although total fuel dispensed for Southern's account at the Kentucky and Indiana terminal facility was 5,890,614 gallons for 1975. Sulfur in fuel content was 0.14%.

In the 1973 emission inventory it was shown that fuel usage could be estimated by the factor 8.0 gallons/train-mile for road-haul operations and 1.0 gallons/train-mile for switchyard operations. For the 1975 projection year, using a 1973 to 1975 growth factor of $1.07^{(1)}$, it was estimated that 2,297,000 gallons of fuel would be used by the Louisville and Nashville in Jefferson County. The discrepancy between the estimated value and the reported value may be, in part at least, a result of an inaccurate projection from 1973 to 1975. Nevertheless, it is believed that the 1973

(1) From the LAQMP

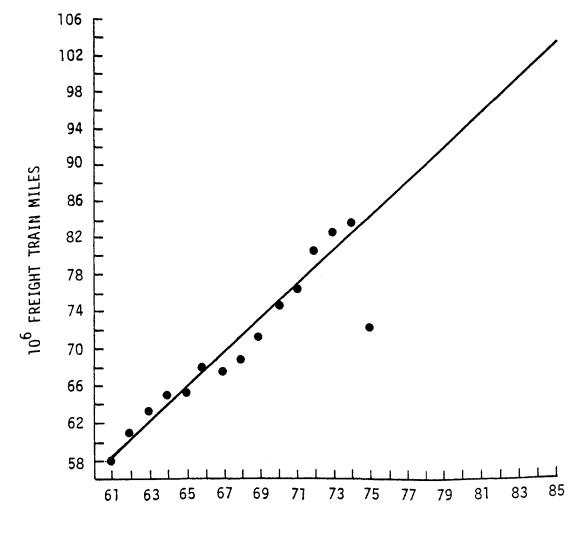
estimating technique is appropriate with the factors adjusted to reflect the increased fuel usage reported by the Louisville and Nashville. The adjusted factors are 10 gallons/train-mile for road-haul operations and 1.25 gallons/train-mile for switchyard operations in those counties in which substantial marshalling yards are located.

Railroad operating data for the Southern, Illinois Central Gulf, and AMTRAK, obtained from the railroads and the Official Railway Guide are summarized in Table XII-1. Fuel usage, by county, for all railroads is summarized in Table XII-2. For the Louisville and Nashville the fuel consumed values are those reported by the railroad. For the other railroads the fuel consumed is calculated by the fuel use factor for road-haul operations. There are no large switchyards in the seven-county study area. Emission summaries are shown in Table XII-3.

B. 1975 EMISSIONS ALLOCATION

Emissions from this source category were allocated to subcounty areas in accordance with train miles travelled.

C. PROJECTED EMISSION INVENTORY


Figure XII-1 shows the growth in freight train miles for the Southern District of the Association of American Railroads from 1961 to 1975. An average growth rate of 1.9 x 10^6 freight train miles/year was sustained from 1961 to 1974, but the recession resulted in a drop in freight train miles for 1975.

Freight train miles are projected to recover from the recession and resume the historical growth rate. The 1980 and 1985 projections, as shown in Figure XII-1, are 94 x 10^6 and 103.5×10^6 freight train miles, respectively. At the same linear rate, the 1995 projection is 122.5×10^6 freight train miles. As compared to 1975, increases of 30%, 43%, and 69% are expected for the three planning years. Emissions, projected to increase at the same rate, are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the projected train miles.

XII-2

YEAR

Figure XII-1. Growth in freight train miles.

TABLE XII-1

TRAIN-MILES PER DAY						
SOUTHERN	ICG	AMTRAK				
0	16.0	42.0				
0	156.2	59.2				
0	0	0				
0	0	0				
141.6	0	0				
0	0	0				
0	0	0				
	SOUTHERN 0 0 0 0 141.6 0	SOUTHERN ICG 0 16.0 0 156.2 0 0 0 0 141.6 0 0 0				

RAILROAD OPERATING DATA

TABLE XII-2

1975 FUEL USAGE BY RAILROAD COMPANIES

(10³ gal)

COUNTY	L&N	SOUTHERN	ICG	AMTRAK	TOTAL
Bullitt	876	0	58	153	1,087
Hardin	804	0	570	216	1,590
Henry	516	0	0	0	516
Oldham	360	0	0	0	360
Shelby	660	517	0	о	1,177
Spencer	0	0	0	0	0
Trimble	0	0	0	0	0
		<u> </u>			

TABLE XII-3

1975 RAILROAD LOCOMOTIVE EMISSION SUMMARY

		E	MISSIONS (tons/year)		
	PARTICULATES	SULFUR DIOXIDE (1)	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES
COUNTY	EF=25 lbs/10 ³ gal	EF=57 1bs/10 ³ gal	EF= 130 1bs/10 ³ gal	EF=94 1bs/10 ³ gal	EF=370 1bs/10 ³ gal
Bullitt	13.6	31.0	70.7	51.1	201.1
Hardin	19.9	45.3	103.4	74.7	294.2
Henry	6.5	14.7	33.5	24.3	95.5
01dham	4.5	10.3	23.4	16.9	66.6
Shelby	14.7	24.0	76.5	55.3	217.7
Spencer	0	0	0	0	0
Trimble	0	0	0	0	0

(1) An emission factor of 40.7 lbs/10³ gal was used for Shelby County to account for the low sulfur in fuel used by the Southern Railway.

CHAPTER XIII

VESSELS

This source category includes emissions from recreational and commercial cargo vessels including auxiliary equipment and heating. Emission factors are available in AP-42.

A. 1975 EMISSION INVENTORY

The 1973 emission inventory for Jefferson County determined that 422 x 10^3 gallons of diesel fuel and 275 x 10^3 gallons of gasoline fuel were comsumed on the Ohio River. The diesel fuel quantity was based on a 1972 fuel survey of marine operators and a confirming analysis for 1973 of river-borne traffic into and out of Louisville Port.

River-borne traffic for 1975 is available in Waterborne Commerce of the United States, 1975. These data show a 9% decrease in traffic from 1973 to 1975. The 1973 fuel usage by vessels operating on the Ohio River bordering Jefferson County was reduced by 9% to estimate the 1975 fuel usage for both diesel commercial vessels and gasoline recreational boats. Fuel use by diesel and gasoline vessels operating on the Ohio River bordering Bullitt, Oldham, and Trimble Counties was estimated from the 1975 Jefferson County totals in accordance with the ratios of river bank length. In arbitrary units of length:

DIESEL FUEL USE

Bullitt: $\frac{1}{17} \times 384 \times 10^3 = 23 \times 10^3$ gal Oldham: $\frac{1}{17} \times 384 \times 10^3 = 181 \times 10^3$ gal Trimble: $\frac{10}{17} \times 384 \times 10^3 = 226 \times 10^3$ gal GASOLINE FUEL USE

Bullitt:
$$\frac{1}{17} \ge 250 \ge 10^3 = 15 \ge 10^3$$
 gal
Oldham: $\frac{8}{17} \ge 250 \ge 10^3 = 118 \ge 10^3$ gal
Trimble: $\frac{10}{17} \ge 250 \ge 10^3 = 157 \ge 10^3$ gal

Emissions from this source category are summarized in Table XIII-1 and XIII-2.

B. 1975 EMISSIONS ALLOCATION

Emissions from this source category were allocated to subcounty areas in accordance with the length of river bank bordering each area.

C. PROJECTED EMISSION INVENTORY

Historical growth factors for tons transported on the Ohio River at Louisville are as follows:

1965-66	1.062	1970-71	1.071
1965-67	0.960	1971-72	0.979
1967-68	1,058	1972-73	0.964
1968-69	1.107	1973-74	0.893
1969-70	0.946	1974-75	1.015

Over the 10-year period an annual growth rate of only 0.25%/year has occurred. Although larger growth may result from proposed new shipping terminals and industrial parks, emissions from diesel vessels are projected to increase at the historical rate. Emissions from gasoline recreational vessels are projected to increase in accordance with population growth for the entire study area including Jefferson, Floyd and Clark Counties. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the length of river bank bordering each area.

TABLE XIII-1

1975 DIESEL VESSEL EMISSION SUMMARY

		E	MISSIONS (tons/year)		
	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES
COUNTY	EF= 105 1bs/10 ³ gal	$EF=27 \ 1bs/10^3 \ gal$	EF=100 1bs/10 ³ gal	EF= 50 lbs/10 ³ gal	EF=280 1bs/10 ³ ga1
Bullitt	1.2	0.3	1.2	0.6	3.2
Oldham	9.5	2.4	9.1	4.5	25.3
Trimble	11.9	3.1	11.3	5.7	31.6

TABLE XIII-2

1975 GASOLINE VESSEL EMISSION SUMMARY

		I	MISSIONS (tons/year),		
	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES
COUNTY	EF= Negligible	$EF=6.4 \ 1bs/10^3 \ gal$	EF=3300 lbs/10 ³ gal	EF= 1100 1bs/10 ³ gal	EF=6.6 lbs/10 ³ ga1
Bullitt	Negligible	Negligible	24.8	8.3	Negligible
Oldham	Negligible	0.4	194.7	64.9	0.4
Trimble	Negligible	0.5	242.6	80.9	0.5

CHAPTER XIV

SMALL GASOLINE ENGINES

This source category includes exhaust emissions from small two-stroke and four-stroke, air-cooled, gasoline-powered motors. Examples of the uses of these engines are: lawnmowers, small electric generators, pumps, and garden tractors. Emission factors are found in AP-42.

A. 1975 EMISSION INVENTORY

Volume 7 of the Guidelines states that fuel usage may be estimated by the factor, 13 gallons/person-year. On many occasions, this usage rate has been questioned. AP-42 provides emission factors by both g/gal of fuel and g/unit-year. These two factors permit calculating gal/unit-year. The results are shown below.

0	2-stroke,	1awn	and	garden		20.6	gal/	'unit-year
---	-----------	------	-----	--------	--	------	------	------------

- o 4-stroke, lawn and garden 10.8 gal/unit-year
- o 4-stroke, miscellaneous 12.3 gal/unit-year

Furthermore, AP-42 states that there are more than 44 million engines of this category in service or approximately one engine for each five persons.

The inconsistencies discussed above have been resolved by calculating emission as follows:

Emissions $(g/year) = EF(g/unit) \times 0.2 \times population$

The resulting emissions are shown in Table XIV-1.

B. 1975 EMISSION ALLOCATION

Emissions from this category were allocated in accordance with population distribution.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category are projected to increase in accordance with population growth. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the projected population distribution.

TABLE XIV-1

1975 SMALL GASOLINE ENGINES EMISSION SUMMARY

EMISSIONS (tons/year)						
COUNTY	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES	
	EF = 0.17 lbs/unit-yr	EF = 0.06 lbs/unit-yr	EF = 45.42 lbs/unit-yr	EF = 6.40 lbs/unit-yr	EF = 0.62 lbs/unit-yr	
Bullitt	0.6	0.2	152.8	21.5	2.1	
Hardin	0.8	0.3	210.5	29.7	2.9	
Henry	0.2	0.1	52.4	7.4	0.7	
Oldham	0.3	0.1	84.7	11.9	1.2	
Shelby	0.3	0.1	91.4	12.9	1.2	
Spencer	0.1	Negligible	24.4	3.4	0.3	
Trimble	0.1	Negligible	25.8	3.6	0.4	

CHAPTER XV

AGRICULTURAL EQUIPMENT

This source category includes exhaust emissions from diesel and gasoline farm tractors and other mobile agricultural equipment. Emission factors, based on the quantity of fuel consumed, are found in AP-42.

A. 1975 EMISSION INVENTORY

The cost of pretroleum products for farming operations, the number of tractors, and the acres of harvested cropland were obtained from the 1974 Census of Agriculture for 1974 and 1969. With certain assumptions these data permit calculating the quantity of fuel consumed by county for 1975. These assumptions are as follows:

- o The average price of diesel fuel in 1975 was \$0.375/gallon⁽¹⁾.
- o The average proce of gasoline in 1975 was $0.445/gallon^{(1)}$.
- o Harvested cropland changed at the same arithmetic rate from 1974 to 1975 as from 1969 to 1974.
- o Fuel costs were stable from 1974 to 1975.

Table XV-1 summarizes the census data and the fuel use estimates by county and for the state. The diesel fueled tractor percentages were estimated by the respective U. S. Department of Agriculture county extension agents.

The 1974 fuel costs were factored by the change in harvested cropland from 1974 to 1975 to determine 1975 fuel costs. Diesel and gasoline fuel usage was then determined from the diesel/gasoline split and the costs of the fuels. This method assumes that the cost of fuel per acre harvested was constant from 1974 to 1975.

Tables XV-2 and XV-3 summarize the agricultural equipment exhaust emissions for gasoline and diesel fuels. In calculating the nonoperating evaporative losses (34.4 lbs/unit) the 1974 number of tractors was used.

⁽¹⁾ Cost per gallon estimates provided by the Kentucky Independent Gasoline Marketers Association does not include road taxes.

TABLE XV-1

ESTIMATED FARM TRACTOR FUEL CONSUMPTION

ſ 						<u></u>		i
<u>1969</u>	STATE	BULLITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Petroleum Products (\$1,000)	34,015	192	533	412	260	664	284	159
Farm Tractors	137,105	1,016	2,339	1,832	948	2,783	1,140	824
Harvested Cropland (acres)	3,128,222	18,122	54,625	28,228	24,261	56,933	21,179	12,576
<u>1974</u>								
Petroleum Products (\$1,000)	48,956	254	769	516	552	913	421	220
Farm Tractors	129,668	872	2,364	1,529	770	2,421	1,061	774
Harvested Cropland (acres)	3,612,537	15,905	61,661	29,592	26,383	58,607	25,035	14,257
<u>1974/1969 Ratios</u>								
Petroleum Products	1.44	1.32	1.44	1.25	2.12	1.38	1.48	1.38
Farm Tractors	.95	.86	1.01	.83	.81	.87	.93	.94
Harvested Cropland (acres)	1.15	.88	1.13	1.05	1.09	1.03	1.18	1.13
<u>1975</u>								
larvested Cropland (acres)	3,709,400	15,462	63,068	29,865	26,807	58,942	25,806	14,593
Farmed by Diesel Tractors	40	40	75	75	60	40	50	10
etroleum Products (\$1,000)	50,269	247	787	521	561	918	434	225
<u>1975 Fuel Use (1,000 gal</u>)	Í							
iesel @ \$0.375/gal	48,220	237	1,504	996	835	881	529	51
asoline @ \$0.445/gal	72,329	355	501	332	557	1,321	529	462

TABLE XV-2

	EMISSIONS (tons/year)							
COUDWRI	PARTICULATES SULFUR DIOXIDE		CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES			
COUNTY	EF-8 1bs/103 gal	EF-5.31 1bs/103 gal	EF=3,260 lbs/103 gal	EF=150.1 1bs/103 gal + 34.4 lbs/tractor	EF-151 1bs/10 ³ gal			
Bullitt	1.4	0.9	578.7	41.6	26.8			
Hardin	2.0	1.3	816.6	78.3	37.8			
Henry	1.3	0.9	541.2	51.2	25.1			
Oldham	2.2	L.5	907.9	55.0	42.1			
Shelby	5.3	3.5	2,153.2	140.8	99.7			
Spencer	2.1	1.4	862.3	58.0	39.9			
Trimble	1.8	1.2	753.1	48.0	34.9			

1975 GASOLINE TRACTOR EMISSION SUMMARY

TABLE XV-3

1975 DIESEL TRACTOR EMISSION SUMMARY

	EMISSIONS (tons/year)							
	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES			
1	EF=45.7 lbs/10 ³ gzl	EF=31.2 1bs/103 gal	EF=119 1bs/103 gal	EF=60.7 1bs/10 ³ gal	EF=335 1bs/103 gal			
Bullitt	5.4	3.7	14.1	7.2	39.7			
Hardin	34.3	23.5	89.5	45.6	251.9			
Henry	22.8	15.5	59.3	30.2	166.8			
Oldham	19.1	13.0	49.7	25.3	139.9			
Shelby	20.1	13.7	52.4	26.7	147.6			
Spencer	12.1	8.3	31.5	16.1	88.6			
Trimble	1.2	0.8	3.0	1.5	8.5			

B. 1975 EMISSIONS ALLOCATION

Agricultural equipment emissions were allocated in accordance with nonforest/nonurban acres.

C. PROJECTED EMISSION INVENTORY

Projected emissions from this source category are projected to change with the change in acreage of harvested cropland, found in Table XV-1 for 1969, 1974, and 1975, and repeated in Table XV-4 along with estimates of projected acreage for 1980 through 1995.

			(acres)			
COUNTY	1969	1974	1975	1980	1985	1995
Bullitt	18,122	15,905	15,462	14,337	13,293	
Hardin	54,625	61,661	63,068	58,478	54,221	11,429
Henry	28,228	29,592	29,865	32,105	32,105	46,616
Oldham	24,261	26,383	26,807	24,856	23,047	19,815
Shelby	56,933	58,607	58,942	63,363	63,363	63,363
Spencer	21,179	25,035	25,806	27,741	27,741	27,741
Trimble	12,576	14,257	14,593	15,687	15,687	15,687

TABLE XV-4

PAST AND PROJECTED HARVESTED CROPLAND

The Census of Agriculture reported a decrease in acreage in all counties between 1964 and 1969. Between 1969 and 1974, with the exception of Bullitt County, the trend was for increasing acreage. Because of the substantial increase in population predicted for Bullitt, Hardin and Oldham Counties, a decrease in farmland would be expected. On the other hand, cropland in the other four counties might be expected to continue to increase to 1980 and then remain constant.

Emissions are projected to decrease in Bullitt, Hardin, and Oldham Counties at a geometric rate of 1.5%/year through 1995. Emissions from the other counties are projected to increase at an arithmetic rate of 1.5% to 1980 and then to remain constant. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected agricultural equipment emissions were allocated to subcounty areas in accordance with the projected nonforest/nonurban acres.

XV-4

CHAPTER XVI

CONSTRUCTION EQUIPMENT

This source category includes emissions associated with fuel combustion by off-road construction equipment. Emission factors are found in AP-42. Three types of construction operations are considered.

A. 1975 EMISSION INVENTORY

<u>Road Construction Equipment</u>. The number of miles of new road construction in 1975 for each county was provided by county works department officials. For Hardin County, the number of miles of heavy roadway maintenance was also available. Length of roadway maintenance in the other counties was estimated by the ratios of maintenance costs in each county to the Hardin County cost.

Hardin County officials were also able to provide the following data:

- o Average diesel fuel usage for new construction 2,125 gal/mile.
- Total gasoline fuel usage for construction and maintenance 805,000 gallons.

If it is assumed that the fuel usage per mile of new construction and maintenance is constant throughout the area and that all gasoline is used in heavy maintenance activities, fuel consumption by road construction equipment and emissions can be calculated for each county. Table XVI-1 summarizes road construction data and fuel usage.

<u>Residential Construction Equipment</u>. Residential construction includes both land clearing and new road construction within housing developments. The number of housing starts by county was provided by the planning agencies. Typical residential lot sizes for the area, determined from historical data and maps, indicate that one-half acre of land with 0.03 miles of new road is required for each residence. Based on an average diesel equipment fuel usage of 5.5 gal/hour (from AP-42) and 20 hours of equipment time per lot, land preparation fuel requirements are 110 gallons per residence. Road construction fuel requirements are 2,125 gal/mile. Table XVII-2 summarizes residential construction data and fuel usage.

<u>Miscellaneous Construction and Landfill Equipment</u>. Miscellaneous construction includes nonresidential building construction: commercial/institutional and industrial buildings and landfill operations. County officials stated that there was very little nonresidential building construction in 1975, varying from one acre of development in Spencer and Trimble Counties to seven acres in Henry County. Fuel usage at the same rate as for residential construction would be 220 gallons per acre developed.

Fuel usage for sanitary landfill operations was obtained from county authorities. Table XVII-3 summarizes miscellaneous construction data and fuel usage.

TABLE XVI-1

CONVERT	ROAD M	FUEL USAGE (10 ³ gal)		
COUNTY	CONSTRUCTION ⁽¹⁾	MAINTENANCE	DIESEL	GASOLINE
Bullitt	10	27	21	31
Hardin	19	70	40	81
Henry	7	36	15	42
Oldham	12	27	26	31
Shelby	10	44	21	51
Spencer	3	20	6	23
Trimble	3	16	6	19

ROAD CONSTRUCTION EQUIPMENT OPERATING DATA

(1) Includes hard surfacing of gravel roads.

TABLE XVI-2

COUNTY	RESIDENTIAL CO	FUEL USAGE	
	NUMBER OF UNITS	ROAD MILES	(10 ³ gal diesel)
Bullitt	381	11.4	66
Hardin	525	15.8	91
Henry	72	2.2	13
Oldham	502	15.1	87
Shelby	226	6.8	39
Spencer	49	1.5	9
Trimble	25	0.8	4

RESIDENTIAL CONSTRUCTION EQUIPMENT OPERATING DATA

TABLE XVI-3

MISCELLANEOUS CONSTRUCTION EQUIPMENT OPERATING DATA

	CONSTRUC	FION	LANDFILL	TOTAL
COUNTY	NUMBER OF ACRES	DIESEL FUEL USAGE (gal)	DIESEL FUEL USAGE (gal)	DIESEL FUEL USAGE (10 ³ gal)
Bullitt	1	220	19,485	20
Hardin	2	440	4,500	5
Henry	7	1,540	6,700	8
Oldham	2	440	10,800	11
Shelby	2	440	11,700	12
Spencer	2	440	3,100	4
Trimble	1	220	0	0

Table XV-4 shows the emission factors used in computations and Table XV-5 Summarizes the emissions computed with these emission factors.

TABLE XVI-4

	EMISSION FACTO	ORS ⁽¹⁾ (1bs/10 ³ gal)	
POLLUTANTS	DIESEL EQUIPMENT	GASOLINE EQUIPMENT	
Particulates	24.4	7.0	
Sulfur Dioxide	31.2	5.3	
Carbon Monoxide	91.1	3,728.2	
Hydrocarbons	29.2	179.7	
Nitrogen Oxides	419.2	112.5	

EMISSION FACTORS FOR CONSTRUCTION EQUIPMENT

(1) Weighted average emission factors estimated from AP-42.

TABLE XVI-5

1975 CONSTRUCTION EQUIPMENT EMISSIONS SUMMARY

.

	EMISSIONS (tons/year)						
COUNTY	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES		
Bullitt Hardin Henry Oldham Shelby Spencer Trimble	1.4 2.0 0.5 1.6 1.1 0.3 0.2	1.8 2.3 0.7 2.0 1.2 0.4 0.3	62.7 157.2 80.0 63.5 98.4 43.7 35.9	4.4 9.3 4.3 4.6 5.7 2.4 1.8	24.1 33.1 10.0 27.7 18.0 5.2 3.2		

B. 1975 EMISSION ALLOCATION

Emissions from construction equipment were allocated by construction site locations. Where construction site locations were not available, allocations were done by population distribution.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category were projected to increase in accordance with construction employment projections as provided by KIPDA. Projected emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the projected population change.

CHAPTER XVII

SMALL POINT SOURCES

This source category includes those small point sources included in the NEDS point source file which cannot be economically included as separate point sources for modeling pruposes. It was determined by the Department for Natural Resources and Environmental Protection that, for the time being and until the modeling requirements are formulated, no point sources would be included in the area source inventory.

CHAPTER XVIII

STRUCTURAL FIRES

This source category includes emissions from wild structural fires. It does not include emissions from structures burned in fire training, which are included under the open burning source category. There are no emission factors recorded in AP-42 which specifically apply to structural fires. Factors applicable to open burning of wood refuse have been used.

A. 1975 EMISSION INVENTORY

The Office of the State Fire Marshall provided information on the number of fires and amount of dollar loss from fires for each county. The average cost of a 1,500 square foot single family dwelling, including furnishings, is \$35,000, as estimated by the appraiser for First Federal Savings and Loan in Louisville.⁽¹⁾ Such a dwelling would include:

10,840 board feet of lumber = 791 ft³ 5,380 ft² of 3/8" plywood = $\frac{168 \text{ ft}^3}{\text{Total}}$ = 959 ft³

At a mean density of 35 lbs/ft³, this is equivalent to 16.8 tons per house plus four tons of furnishings, or 20.8 tons of wood per house. Calculations are summarized in Table VXIII-1 and emissions in Table XVIII-2.

COUNTY	STRUCTURAL FIRES	DOLLAR LOSS (1θ ³ \$)	EQUIVALENT NO. OF HOUSES	EQUIVALENT NO. OF TONS OF WOOD BURNED
Bullitt	38	1,179.1	33.7	701.0
Hardin	51	148.5	4.2	87.4
Henry	25	109.5	3.1	64.5
01dham	18	45.7	1.3	27.0
Shelby	52	317.5	9.1	189.3
Spencer	11	20.7	0.6	12.5
Trimble	5	2.5	0.1	2.1

TABLE XVIII-1 1975 STRUCTURAL FIRE DATA

(1) This estimate was made for 1973. In calculating the data given in Table XVIII-1, the value was inflated by 10%.

XVIII-1

TABLE XVIII-2

		E	MISSIONS (tons/year	;)		
COUNTY	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDROCARBONS	NITROGEN OXIDES	
	EF = 17 lbs/ ton of wood	EF = Negligible	EF = 50 lbs/ton of wood	EF = 4 lbs/ton of wood	EF = 2 lbs/ton of wood	
Bullitt	6.0	Negligible	17.5	1.4	0.7	
Hardin	0.7	Negligible	2.2	0.2	0.1	
Henry	0.5	Negligible	1.6	0.1	0.1	
01dham	0.2	Negligible	0.7	0.1	Negligible	
Shelby	1.6	Negligible	4.7	0.4	0.2	
Spencer	0.1	Negligible	0.3	Negligible	Negligible	
Trimble	Negligible	Negligible	0.1	Negligible	Negligible	

1975 STRUCTURAL FIRE EMISSION SUMMARY

B. 1975 EMISSIONS ALLOCATION

Emissions from this source category were allocated to subcounty areas in accordance with the distribution of population.

C. PROJECTED EMISSION INVENTORY

Base-line year structural fires and emissions were nonuniformly distributed among the seven counties; Bullitt County, for instance, having more than would be expected. There is no reason to assume that the same nonuniformity would continue in the future. Therefore, total seven-county emissions are projected to increase in accordance with the total population growth. Total emissions are then apportioned among the counties in proportion to population. Emissions

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the projected population distribution.

CHAPTER XIX

WILD FOREST FIRES

This source category includes emissions from forest wildfires. Emission factors based on both the number of acres burned and a regional factor to account for the type of vegetation in the area are found in AP-42.

A. 1975 Emission Inventory

The State Forest Service provided information on the number of fires and forest acres burned⁽¹⁾ per county. In addition, data regarding fires in other open areas were also made available. These other fires would include grass fires in locations such as parks or open fields. There are no emission factors listed for these fires. The regional factor for Kentucky is nine tons of material per acre of forest burned. For grass fires, the factor was assumed to be 0.9 tons/acre. Forest fire data is summarized in Table XIX-1.

COUNTY		FOREST FIR	ES	1	OTHER FIRES		
	NO.	ACRES	TONS	NO.	ACRES	TONS	
Bullitt	13	90	810	0	0	0	
Hardin	18	94	846	7	27	24	
Henry	0	0	0	0	0	0	
Oldham	2	5	45	0	0	0	
Shelby	1	4	36	1	2	2	
Spencer	0	0	0	0	0	0	
Trimble	0	0	0	0	0	0	

TABLE XIX-11975 FOREST FIRE DATA

Emissions from forest fires are given in Table XIX-2.

B. 1975 Emissions Allocation

Emissions from this source category were assigned to subcounty areas in accordance with the location of major forest areas or, in the case of Bullitt and Hardin Counties, the location of the fires.

⁽¹⁾ Bullitt and Hardin County firefighters described most of the fires as underbrush fires.

C. PROJECTED EMISSION INVENTORY

The State Forest Service reported that 1975 was not an unusual year with regard to the number of fires and acres burned. Because of the nature of the reported wildfires, the occurrence of a fire in one location is as likely as in another location. Consequently, emissions are projected to remain constant over time, but total emissions are redistributed among counties in accordance with land area. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with the location of major forest areas.

		EMI	SSIONS (tons/y	ear)	<u> </u>
COUNTY	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES
	EF = 17.2 1bs/ton	EF = 0	EF=141 1bs/ton	EF=24.2 1bs/ton	EF = 4 1bs/ton
Bullitt	7.0	0	57.1	9.8	1.6
Hardin	7.5	0	61.3	10.5	1.0
Henry	0	0	0	0	
Oldham	0.4	0	3.2		0
Shelby	0.3	0	2.7	0.5	0.1
Spencer	0	0	0	0.5	0.1
Trimble	0	0		0	0
			0	0	0

TABLE XIX-2 WILD FOREST FIRE EMISSIONS SUMMARY

CHAPTER XX

UNPAVED ROADS

This source category, applicable to particulate matter only, includes emissions from reentrained dust resulting from vehicles traveling on unpaved road surfaces. It does not include particulate matter due to exhaust emissions. AP-42 provides a method for estimating emission factors.

A. 1975 EMISSION INVENTORY

Unpaved road miles were measured from county maps provided by the Highway Department. ADT counts for these roads were not available; however, the county agents estimated that the traffic on the great majority of these roads would be minimal and would be proportional to the population in the immediate vicinity. Accordingly, ADT values ranging from <10 to 200 were assigned to all unpaved roads, based on the population density distribution.

The following empirical equation is given in AP-42, for estimating emission factors (lbs/vehicle-mile) for unpaved road emissions of particles \leq 30 µm:

$$EF = 0.49 \text{ s} \left(\frac{S}{30}\right) \left(\frac{365-W}{365}\right)$$

where s is the silt content of road surface material (%), S is the vehicle average speed (mph) and W is the number of days with precipitation ≥ 0.01 inches.

Using the following parameters: s = 15%, crushed rock S = 30 mph W = 120 EF = 0.49 x 15 $\left(\frac{30}{30}\right) \left(\frac{365-120}{365}\right)$ = 4.93 lbs/vehicle-mile

Unpaved roads data and particulate emissions from this source category are shown on Tables XX-1 and XX-2.

B. 1975 EMISSIONS ALLOCATION

Emissions from this source category were allocated in accordance with the unpaved road vehicle-miles traveled in each subcounty area.

C. PROJECTED EMISSION INVENTORY

There is no rationale available for projecting emissions from unpaved roads. Traffic on many existing roads will tend to increase and new unpaved roads will be constructed. However, paving programs will tend to reduce the number of miles of unpaved roads and such programs give priority to the more heavily traveled segments. If it is assumed that these two opposite effects are equal, emissions will remain constant with time. Emissions, summarized in Chapter XXXII, are projected to remain constant.

D. PROJECTED EMISSION ALLOCATION

Projected emissions allocation of this source category were unchanged from the baseline year.

TABLE XX-1

UNPAVED ROAD MILES						
COUNTY	$ADT = 11.7^{(1)}$	ADT = 100	ADT = 150	ADT = 200	VMT/DAY	
Bullitt Hardin Henry Oldham Shelby Spencer Trimble	131.43 372.39 128.04 100.67 38.75 80.35 93.07	3.46 1.92 0 8.07 0 0 0	2.55 2.22 0 0 0 0 0 0	14.32 2.07 0 0 0 0 0	5130.2 5296.0 1498.1 1984.8 453.4 940.1 1088.9	

UNPAVED ROADS DATA

(1) A mean value for the range 0 - 100 ADT is 11.7 calculated using: ADT = # Buildings x $(\frac{3 \cdot 3}{2})$

where 3.3 is the number of trips per vehicle per day from AP-42. The value is divided by two since, for the dead-end roads considered here, the average trip covers half the length of the road.

TABLE XX-2

1975 UNPAVED ROADS EMISSION SUMMARY

COUNTY	PARTICULATE EMISSIONS (tons/year) EF = 4.93 lbs/vehicle-mile
Bullitt	4,615.8
Hardin	4,764.9
Henry	1,347.8
Oldham	1,785.8
Shelby	407.9
Spencer	845.8
Trimble	979.7

CHAPTER XXI

UNPAVED AIRSTRIPS

This source category, applicable to particulate matter only, considers emissions from reentrained dust resulting from aircraft operation on unpaved airstrips. No emission factors are recorded in AP-42. With the exception of unpaved airstrips located within the Fort Knox reservation, there are no unpaved airstrips within the study areas. Emissions from Fort Knox are treated in a following chapter.

CHAPTER XXII

TILLING ACTIVITY

This source category, applicable to particulates only, includes emissions from reentrained dust resulting from agricultural tilling, plowing and cultivating of the land. AP-42 provides a method for estimating emission factors.

A. 1975 EMISSION INVENTORY

Information relative to acreage farmed by crop, and number of cultivations per year, was provided by the county agents. In most of the counties, the notilling method is used on a portion of the corn and soybeans farmed.

AP-42 suggests the following empirical expression for calculating emission factors (lbs/acre) for tilling operations for particles \leq 30 µm

$$E = \frac{0.80 \times 1.4 \text{ s}}{(\text{PE}/50)^2}$$

where s is the silt content of the surface soil, and PE is the Thornwaite precipitation-evaporation index. Parametric values used in the equation are:

$$s = 48\%$$
 (silty loam soil)
PE = 111
EF = 0.80 x $\frac{1.4 \times 48}{(111/50)^2}$ = 10.91 lbs/acre

Tilling activity data and emissions from this source category are summarized in Tables XXII-1 and XXII-2, respectively.

B. 1975 EMISSIONS ALLOCATION

Tilling activity emissions were allocated in accordance with nonurban/nonforest area.

TABLE XXII-1

1975 ACREAGE TILLED AND NUMBER OF TILLINGS PER YEAR

	Г	OBACCO	со	RN	SOYB	RANS	SMALL	GRAINS	TOTAL
COUNTY	ACRES FARMED	AVERAGE NO. OF TILLINGS(1)	ACRES TILLED						
Bullitt	580	2	3,800	1	2,700	2	1,300	2	12,960
Hardin	1,850	2.5	30,800	1	7,000	2	6,900	0	49,425
Henry	2,470	3	10,600	1	700	0.5	4,000	0	18,360
01dham	660	2	8,200	0.9	2,200	0.9	2,700	0	10,680
Shelby	4,560	4	23,400	2	2,200	0.8	8,600	1	75,400
Spencer	1,890	3	10,900	2.1	900	2.1	2,000	0	30,450
Trimble	1,520	3	3,400	2	3,000	1	2,400	0	14,360

(1) Adjusted to account for not-tilled acreage.

TABLE XXII-2

COUNTY	PARTICULATE EMISSIONS (tons/year) EF = 10.91 lbs/acre
Bullitt	70.7
Hardin	269.6
Henry	100.2
Oldham	58.3
Shelby	411.3
Spencer	166.1
Trimble	78.3

1975 TILLING ACTIVITY EMISSION INVENTORY

C. PROJECTED EMISSION INVENTORY

Emissions from this source category are projected to change in accordance with the change in harvested cropland given in Table XV-4. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the projected non-forest/nonurban areas.

CHAPTER XXIII

CONSTRUCTION ACTIVITY

This source category, applicable to particulate matter only, includes dust reentrained from construction sites by the activities of mobile equipment and by wind erosion. Not included are exhaust emissions from construction equipment. AP-42 suggests an emission factor of 1.2 tons/acre-month of construction operations.

A. 1975 EMISSION INVENTORY

The emission factor above was developed from experimental data gathered at Las Vegas, Nevada. It is said to $\frac{1}{2}$ apply to operations with

- o Medium activity level.
- o Moderate silt content (≈30%).
- o Semiarid climate (PE \simeq 50).

The emission factor may be modified to more adequately represent the climatic and soil conditions in the study area. On an annual basis

$$C = K \frac{W^3}{PE^2}$$

where C is the climatic factor, W is the windspeed, and PE is the Thornthwaite precipitation-evaporation index.⁽¹⁾ The Louisville emission factor (EF_{LO}) may be estimated from the Las Vegas emission factor (EF_{LV}) by

$$EF_{LO} = EF_{LV} \left(\frac{W_{LO}}{W_{LV}}\right) \left(\frac{PE_{LV}}{PE_{LO}}\right) \left(\frac{S_{LO}}{S_{LV}}\right)$$

S is silt content, 48 for the Louisville area and 30 for Las Vegas.

$$EF_{LO} = 1.2 \left(\frac{8.9}{9.7}\right)^3 \times \left(\frac{50}{111}\right)^2 \times \frac{48}{30} = 0.30 \text{ tons/acre-month.}$$

With the assumption of 50% effectiveness of control by watering during dry weather and with an exposure period of three months,

$$EF = 0.30 \times 3 \times 0.5 \times 2,000 = 900$$
 lbs/acre-year.

(1) Source: <u>Development of Emission Factors for Fugitive Dust Sources</u>, EPA 450/3-74-037. Tables XXIII-1 and XXIII-2 show the method for calculating emissions. Table XXIII-1 provides an estimate of contract value for three construction categories; residential, nonresidential building, and nonbuilding for each county. In Table XXIII-2, contract value for the three source categories are converted to acres of construction.

An alternative method of estimating acres of construction activity is available from the data in Table XVI-1 with the following assumptions:

- Residential construction at 0.25 acres/unit of disturbed land, half the lot size.
- Road construction 25% of road construction is for new roads disturbing 1.5 acres/mile.

These two assumptions plus other construction and sanitary landfill acreage lead to an estimate of construction acreage also shown in Table XXIII-2. This alternative method results in a total of 491 acres for the seven-county area as compared to 402 acres for the construction employment method. Since many of the construction employees commute from Louisville, it would be expected that the employment method would result in low estimates. Therefore, emissions in Table XXIII-2 were calculated from the alternative estimates of construction activity acreage.

B. 1975 EMISSION ALLOCATION

Emissions from construction activity were allocated by construction site locations. Where construction site locations were not available, allocations were done by population distributions.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category were projected to increase in accordance with construction employment projections. Projected emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the projected popula-

TABLE XXIII-1

CONSTRUCTION ACTIVITY CALCULATIONS

COUNTY	CONTRACT CONSTRUCTION	CONTRACT VALUE (10 ⁶ \$) ⁽²⁾					
	EMPLOYMENT (1)	RESIDENTIAL	NON-RESIDENTIAL	NON-BUILDING	TOTAL		
Bullitt	86	0.96	0.76	0.96	2.7		
Hardin	339	3.80	3.01	3.81	10.6		
Henry	62	0.70	0.55	0.70	2.0		
Oldham	294	3.29	2.61	3.31	9.2		
Shelby	190	2.13	1.69	2.14	6.0		
Spencer	21	0.24	0.19	0.24	0.8		
Trimble	26	0.28	0.23	0.29	0.8		
STATE ⁽³⁾ TOTAL	49,510	521	413	523	1,457		

(1) Source: County Business Patterns, 1974 (latest issue available).

(2) Apportioned from State totals in accordance with contract construction employment.

(3) Source: Statistical Abstracts, 1976.

TABLE XXIII-2

1975 CONSTRUCTION ACTIVITY EMISSION SUMMARY

Acres of Construction	Factor ⁽¹⁾ (Acre/10 ⁶ \$)	Bullitt	Hardin	Henry	Oldham	Shelby	Spencer	Trimble
Residential	8.0	7.7	30.4	5.6	26.3	17.0	1.9	2.2
Nonresidential	2.7	2.1	8.1	1.5	7.0	4.6	0.5	0.6
Nonbuilding	25.0	24.0	95.3	17.5	82.8	53.5	6.0	7.3
TOTAL (acres)		33.8	133.8	24.6	116.1	75.1	8.4	10.1
TOTAL (acres)		102.0	141.4	28.6	133.0	63.3	14.4	8.4
Emissions (tons/yr)		45.9	63.6	12.9	59.9	28.5	6.5	3.8

(1) Source: Development of Emission Factors for Fugitive Dust Sources, EPA 450/3~74-037.

CHAPTER XXIV

WIND BLOWN DUST

This source category applies to dust lost from temporary aggregate storage piles. It does not include permanent storage facilities associated with stone and sand and gravel quarrying operations, or hot-mix asphalt and concrete batching plants, which are contained in the point source inventory. Most significant temporary aggregate storage piles accompany large highway or industrial construction projects. None of these were reported in 1975 by highway authorities or local planning agencies. Emissions from this source category were negligible.

CHAPTER XXV

PAVED ROADS

This source category includes particulate emissions associated with dirt on paved roads and excludes particulates generated by tire wear which are included in Chapter X. Emission factors for this category are not available in AP-42.

A. 1975 EMISSION INVENTORY

Two particulate emission factors were developed for this source category in the LAQMP: 1.17 g/VMT, based on a Seattle study, and 0.97 g/VMT, based on a Chicago study. ⁽¹⁾ A growing body of evidence indicates that both of these factors are too small and that the real value lies between 2.0 and 6.0 g/VMT, depending upon street cleaning efficiency and the condition of road shoulders. Experience in Louisville indicated a value of 2.5 g/VMT to be appropriate, based upon the results of the model calibration. ⁽²⁾ This value was used for the calculations in this study area.

VMT, by county, from Chapter X and emissions from paved roads are summarized in Table XXV-1.

TABLE XXV-1

COUNTY	106 VMT	EMISSIONS (tons/year)
Bullitt	314	864.8
Hardin	558	1,536.3
Henry	107	294.6
Oldham	122	335.9
Shelby	233	641.5
Spencer	28	77.1
Trimble	35	96.4

1975 PAVED ROAD EMISSION SUMMARY

(1)

The two studies referenced here are unpublished papers provided to Engineering-Science by EPA, Region IV.

⁽²⁾ Corroborated by studies in North Carolina and South Carolina.

B. 1975 EMISSION ALLOCATION

Emissions from this source category were allocated in accordance with the distribution of road vehicle exhaust particulate emissions.

C. PROJECTED EMISSION INVENTORY

Emissions are projected to increase in accordance with the increase in VMT given in Chapter X. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the projected distribution of road vehicle exhaust particulate emissions.

CHAPTER XXVI

DRY CLEANING

This source category, applicable to hydrocarbons only, considers emissions resulting from evaporative solvents used in dry cleaning operations. Emission factors based on the amount and type of solvent used are found in AP-42.

A. 1975 EMISSION INVENTORY

A search of the seven counties showed no dry cleaning establishments in operation in Trimble, Henry or Spencer Counties, and a very small number of them in the other four counties under study. Further investigation, which included a mail survey and a follow up by telephone contacts, determined that, because of the proximity to the Louisville metropolitan area, a large amount of the cloth to be cleaned in these surrounding counties is collected locally but sent out to be cleaned at the larger plants in Louisville. For this reason, as well as because of the rural nature of the study area, dry cleaning operations are a rather small source of hydrocarbon emissions. Survey results are discussed in Chapter III.

Table XXVI-1 summarizes dry cleaning operating data adjusted to reflect solvent used by those operators which did not respond or who could not provide usage. For the latter, adjustment was made by factoring cloth cleaned by the average solvent usage per ton of cloth obtained from the reporting operators. Hydrocarbons emissions are the same as solvent usage since all solvent is eventually evaporated to the air.

B. 1975 EMISSION ALLOCATION

Emissions from this source category were assigned to the grid square in which the dry cleaning establishment was located.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category are projected to increase in accordance with population growth. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in accordance with the dry cleaning establishment locations.

TABLE XXVI-1

1975 DRY CLEANING OPERATING DATA

	CLEANING SOLVENT USED (tons/year)					
COUNTY	INTY PETROLEUM SYNTHETIC (PERC (STODDARD) AVG. CONTROL		CHLOROETHYLENE)	TOTAL		
			UNCONTROLLED	IOTAL		
Bullitt	0	0	2.2	2.2		
Hardin	62.4	35.5	0	97.9		
Henry	0	0	0	0		
01dham Shelbw	0	0	0	0		
Shelby Spencer	0	8.2	0	13.7		
Trimble	0	0	0	0		
		, v	0	0		

CHAPTER XXVII

SURFACE COATING

This source category, applicable to hydrocarbons only, considers emissions from solvent evaporation resulting from surface coating operations. Two types of operation are considered; automotive painting in garages or body shops and trade paint application, oil-based paint and water-borne paint. Emission factors for oil-based paints are found in AP-42. Emission factors for water-borne paints can be estimated from the quantity of organic volatiles in the paint.

Not considered are manufacturing applications of surface coatings, can coating, automobile assembly, etc., which are included in the point source inventory.

A. 1975 EMISSION INVENTORY

<u>Automotive Painting</u>. The quantity of automotive paint used in the sevencounty area was determined from the survey results discussed in Chapter III. Table XXVII-1 summarizes the data collected, adjusted for nonresponding operators by county. Hydrocarbon emissions from automotive painting are shown in Table XXVII-2.

TABLE XXVII-1

	TYPE AND AMOUNT OF COATING USED (gal/yr)						
COUNTY	ENAMEL	LACQUER	PRI	MER	THINNER AND REDUCER		
· · · · · · · · · · · · · · · · · · ·			ENAMEL	LACQUER			
Bullitt	364	78	0	168	422		
Hardin	3,154	4,676	104	3,410	15,716		
Henry	260	156	104	156	832		
Oldham	686	671	0	281	1,176		
Shelby	236	585	16	288	1,239		
Spencer	0	0	0	0	0		
Trimble	104	0	12	0	48		

1975 AUTOMOTIVE PAINTING DATA

TABLE XXVII-2

1975 AUTOMOTIVE PAINTING EMISSION SUMMARY

COLINEX		HYDROCARBON EMISS			
COUNTY	ENAMEL EF=840 lbs/ton	LACQUER EF=1,540 lbs/ton	PRIMER EF=1,320 lbs/ton	THINNER, REDUCER EF=2,000 lbs/ton	TOTAL
Bullitt	0.6	0.2	0.5	1.5	2.8
Hardin	5.4	15.5	10.7	56.6	88.2
Henry	0.4	0.5	0.3	3.0	4.7
Oldham	1.2	2.2	0.8	4.2	8.4
Shelby	0.4	1.9	0.9	4.5	7.7
Spencer	0	0	0	0	0
Trimble	0.2	0	0.1	0.2	0.5
					· · · · · · · · · · · · · · · · · · ·

In converting the volume units in Table XXVII-1 to weight units, the following density factors were used:

Enamel:	8.1 1bs/gal
Lacquer:	8.6 lbs/gal
Enamel primer:	11.0 lbs/gal
Lacquer primer:	9.2 lbs/gal
Thinner and reducer:	7.2 lbs/gal

<u>Trade Paint Application</u>. This subcategory refers to paint, enamel, varnish, etc., used by individuals and contractors for exterior and interior surface coating. The National Paint and Coating Association provided an estimate of average trade paint usage for 1975. On a national basis, this average is 2.1 gallons/person of which 45% is water-borne paint and 55% oil-based paint.⁽¹⁾ Trade paint usage based on these national figures is summarized in Table XXVII-3.

COUNTY	POPULATION	WATER-BORNE	OIL-BASE
Bullitt	33,642	31.8	38.9
Hardin	46,360	43.8	53.5
Henry	11,532	10.9	13.3
01dham	18,651	17.6	21.5
Shelby	20,126	19.0	23.2
Spencer	5,372	5.1	6.2
Trimble	5,683	5.4	6.6

TABLE XXVII-3

<u>1975 TRADE PAINT CONSUMPTION</u> (10³ gal/yr)

An emission factor of 1120 lbs/ton of paint from AP-42 can be applied to calculate emissions from oil-based paints. Emission factors for waterborne paint were estimated from information provided by the Paint, Varnish and Laquer Association. The volatile section of water-borne paint is 25 to 50% (35% weighted average) by weight of the paint. Of this, 5 to 20% (15% weighted average) are volatile organics. An emission factor of 5.25% by weight of water-borne paint results. Hydrocarbon emissions from trade paint application are summarized in Table XXVII-4.

⁽¹⁾ Calculations from data in the 1972 Census of Manufacturers, Paints and Allied Products, indicate 2.04 gal/person, 48% water-borne.

TABLE XXVII-4

WATER-BORNE OIL-BASE TOTAL COUNTY EF = 1120 lbs/ton EF = 5.25%Bullitt 7.1 141.6 148.7 9.8 194.7 204.5 Hardin 2.4 48.4 50.8 Henry 3.9 78.3 82.2 01dham 84.4 She1by 4.2 88.6 22.6 Spencer 1.1 23.7 24.0 Trimble 1.2 25.2

1975 TRADE PAINT EMISSION SUMMARY

(<u>tons/year</u>)

In converting volume units in Table XXVII-3 to weight units, the following density factors were used:

Water-borne paint:	8.5 lbs/gal
Oil-based paint:	13.0 lbs/gal

B. 1975 EMISSION ALLOCATION

Emissions from this source category were allocated to subcounty areas in accordance with population distribution.

C. PROJECTED EMISSION INVENTORY

Emissions from this source category were projected to increase in accordance with population growth. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated to subcounty areas in accordance with population distribution.

CHAPTER XXVIII

PETROLEUM_STORAGE

This source category, applicable to hydrocarbons only, includes evaporative losses associated with the storage of liquid organics in large vessels at oil fields, refineries and distribution terminals. In the study area, emissions from petroleum storage have been included in the point source inventory. There are no additional emissions from this category to be included as area sources.

CHAPTER XXIX

MARKETING OF PETROLEUM

This source category, applicable to hydrocarbons only, considers emissions resulting from motor vehicle refueling and underground gasoline storage at service stations. Storage emissions include loading losses and breathing losses. Vehicle refueling emissions are due to vapor displacement from the automobile tank and to spillage. Emission factors, based on the annual throughput and the tank-filling method, are found in AP-42. Factors are provided for each of the underground tank filling and vehicle refueling operations. These were combined as shown in Table XXIX-1 to obtain a single factor.

TABLE XXIX-1

	EMISSION FACTOR (1bs/10 ³ gal)					
EMISSION SOURCE	SPLASH LOADING	SUBMERGED LOADING				
Storage:						
Underground tank loading	11.5	7.3				
Tank breathing	1.0	1.0				
Vehicle refueling:						
Vapor displacement	9.0	9.0				
Spillage	0.7	0.7				
TOTAL	22.2	18.0				

EMISSION FACTORS FOR GASOLINE MARKETING

A. 1975 EMISSION INVENTORY

A mail survey of all gasoline stations was conducted to determine the .volume of gasoline sold, the type of loading operations used and other related parameters. Only 11% of the service station operators responded after an extensive follow-up by telephone. The survey was considered to be inadequate, and the information obtained from the gasoline distributing companies was used for the inventory. Gasoline sales by the one company that did not report this information were estimated from the number of pumps operated and the average throughput per pump calculated from the other, responding companies.

Table XXIX-2 summarizes the 1975 gasoline sales by county from the distributing companies survey. Hydrocarbon emissions from this source cate-gory are given in Table XXIX-3.

B. 1975 EMISSION ALLOCATION

Emissions were allocated in accordance with service station locations.

TABLE XXIX-2

COUNTY	1975 THROUGHPUT BY TYPE OF LOADING ⁽¹⁾ (10 ³ gal)						
e de la construcción de la constru	SPLASH LOADING	SUBMERGED LOADING					
Bullitt	217	6,377					
Hardin	415 12,408						
Henry	0	1,508					
Oldham	283	4,032					
Shelby	0	2,946					
Spencer	132	812					
Trimble	0	989					

1975 GASOLINE MARKETING DATA

(1) The 1975 throughput for splash and submerged loadings were obtained from gasoline distributing companies.

TABLE XXIX-3

1975 GASOLINE MARKETING EMISSION SUMMARY

	HYDROCARBO	N EMISSIONS (tons/year	
COUNTY	SPLASH LOADING EF= 22.2 lbs/10 ³ gal	SUBMERGED LOADING EF=18.0 1bs/10 ³ gal	TOTAL
Bullitt	2.4	57.4	59.8
Hardin	4.6		
Henry	0	111.7	116.3
Oldham	3.1	13.6	13.6
Shelby	0	36.3	39.4
		26.5	26.5
Spencer	1.5	7.3	8.8
Trimble	0	8.9	8.9

C. PROJECTED EMISSION INVENTORY

Projected emissions from this source category are dependent upon three factors:

- o Projected VMT growth.
- o Increased fuel efficiency of future automobile models.
- o Age distribution of vehicles.

It is difficult to assess the effect of these factors in view of the current national debate on energy policy. Gasoline fuel usage has increased about 5% from 1975 to 1977. The stated policy of the President is to reduce this increase to 1%/year through 1985 with a further decrease after that. A best estimate of gasoline usage, based on the 1975 to 1977 increase and the policy, relative to the 1975 baseyear is as follows:

o 1980 - 8% increase over 1975

- o 1985 13% increase over 1975
- o 1995 18% increase over 1975

Emissions from marketing of petroleum are projected to increase at those rates and are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions were allocated in proportion to the baseline year distribution.

CHAPTER XXX

ASPHALT PAVING

This source category, applicable to hydrocarbon emissions only, results from the use of petroleum distillate cutbacks to liquify asphalt paving material. Emulsified asphalts do not emit hydrocarbons.

Emissions from cutback asphalt vary with the type of cutback. The three types of cutback; Slow Cure, Medium Cure, and Rapid Cure; each have an average of 35% diluents but varying percentages of the volatile section. Emission factors were derived as the product of the diluent portion and the volatile section from information provided by the Asphalt Institute.

For the three types of cutback, emission factors are as follows:

Slow Cure - 8.75% by weight Medium Cure - 19.25% by weight Rapid Cure - 24.5% by weight

A. 1975 EMISSION INVENTORY

The amount of cutback used in asphalt paving by county was provided by the Kentucky DOT. These data are summarized in Table XXX-1.

TABLE XXX-1

	RAPID	CURE	MEDIUM CURE		
COUNTY	(tons/year)		LINSEED OIL (tons/year)	PRIME COAT (tons/year)	
Bullitt	60.6	79.2	1.1	39.3	
Hardin	102.0	10.6	1.4	149.2	
Henry	98.7	79.0	0.9	3.2	
Oldham	55.1	24.9	0	0	
Shelby	27.5	19.8	0	0	
Spencer	0	0	0	22.4	
Trimble	5.8	0	0	55.4	

1975 CUTBACKS USED IN ASPHALT PAVING

Emissions resulting from asphalt cutbacks are shown in Table XXX-2.

TABLE XXX-2

	HYDROCARBON EMISSIONS (tons/year)					
COUNTY	RAPID	CURE	MEDIUN	1 CURE	TOTAL	
	TACK COAT	SEAL COAT	LINSEED OIL	PRIME COAT		
Bullitt	14.8	19.4	0.2	7.6	42.0	
Hardin	25.0	2.6	0.3	28.7	56.6	
Henry	24.2	19.4	0.2	0.6	44.4	
Oldham	13.5	6.1	0	0	19.6	
Shelby	6.7	4.9	0	0	11.6	
Spencer	0	0	0	4.3	4.3	
Trimble	1.4	0	0	10.7	12.1	

1975 ASPHALT PAVING EMISSION SUMMARY

B. 1975 EMISSION ALLOCATION

Emissions from this source category were allocated in accordance with VMT.

C. PROJECTED EMISSION INVENTORY

Emissions are projected to increase in accordance with the growth in VMT shown in Chapter X. Emissions are summarized in Chapter XXXII.

D. PROJECTED EMISSION ALLOCATION

Projected emissions from asphalt paving were allocated in accordance with the projected VMT growth.

CHAPTER XXXI

FORT KNOX

A. 1975 EMISSIONS INVENTORY

The Fort Knox Reservation cannot be treated in the same manner as the civilian counties and communities have been treated in the preceding chapters. Although Fort Knox is a "city" having emission sources like those of civilian cities, it also has a wide variety of sources which are unique to military bases. Even the sources common to civilian cities and military bases must be considered differently due to the fact that source data is more available in the military community, and, consequently, the inventory for the military base is more complete. A comparison of emissions from Fort Knox and from any of the counties is not warranted. For instance, the Fort Knox data permitted an estimate of particulate emissions from wind erosion of exposed soil. No such estimate was possible for the remainder of the study area.

The Directorate of Facility Engineers, Environmental and Energy Control Office⁽¹⁾ was extremely cooperative in providing source data and the opportunity to meet with military representatives of the various training commands. In general, the source data used to estimate the Fort Knox emissions is of much higher quality than the data appearing in the preceding chapters. However, for national security reasons, the Environmental and Energy Control Office has requested that some of the detailed source data used to calculate the emissions reported in this chapter be excluded from the text. Table XXXI-1 provides a partial listing of data made available for this analysis.

Emission factors for some of the military sources, such as artillery range impacts, low level helicopter operations, and movement of tanks, are not available in AP-42 or other documents. In these cases, subjective data were obtained from officers of various training commands, which allowed reasonable estimates of emissions. As an example, emission rates for direct

(1) Contact is Mr. Duane Nelson, DFAE, Building 77, Fort Knox, Kentucky, 40121

DATA AVAILABLE FROM FORT KNOX

On-post military and dependent population On-post military and dependent housing Off-post military and base employed civilian population by place of residence Land use maps including military training areas Total base heating fuels by type Total base fuel use for vehicles and aviation Fuel use by point sources Construction equipment fuel use Small gasoline engines Fuel storage capacity Total use of solvents Total use of paints On-post registration of privately owned vehicles Aviation and Armor training data Military vehicle data (mileage, speeds, track size, road types used) Miles of roads maintained by type (excluding tank trails) Artillery and non-artillery rounds expended Explosives used by type Classified waste and pathological incineration Boiler and process point source data Quarry throughput Sanitary landfill throughput Smoke and fire training Open burning Range, vehicle, and building fire losses Acreage tilled Acreage exposed to wind erosion

fire tank-defeating rounds were computed by taking part of the mass of earth ejected from the impact crater. A small fraction⁽¹⁾ was selected, as weapons experts indicated that the targets are very rarely obscured by ground impacts. Other factors considered in this example include dust generation by gun recoil⁽²⁾ and use of nonexploding practice rounds.⁽³⁾ Table XXXI-2 lists the total emissions for Fort Knox.

B. 1975 EMISSIONS ALLOCATION

Fort Knox emissions were allocated by activity in accordance with the land use overlay on the 1:50,000 Fort Knox contour map. For example, emissions due to artillery impacts were allocated to the impact area.

C. PROJECTED EMISSION INVENTORY

Fort Knox authorities anticipate no change in the post population or activity level. Emissions are projected to remain constant except for those related to road vehicle exhaust which are projected to decrease.

D. PROJECTED EMISSION ALLOCATION

Projected emissions allocations were unchanged from the baseline year.

⁽¹⁾ For example, a .025 factor appears in <u>Development of Emission Factors</u> for Fugitive Dust Sources, USEPA, 1974, in reference to wind erosion losses measured as suspended particulate.

⁽²⁾ Recoil-generated dust varies with gun elevation and is controlled by surface wetting (dust slows the rate of fire along a firing line).

⁽³⁾These rounds create a different crater shape than high explosive rounds.

EMISSIONS SUMMARY FOR FORT KNOX KENTUCKY

SOURCE	EMISSIONS (tons/year)								
CATEGORY	PARTICULATES	SULFUR DIOXIDE	CARBON MONOXIDE	HYDRO- CARBONS	NITROGEN OXIDES				
Space Heating ⁽¹⁾	41.1	140.3	24.8	8.5	326.2				
Incineration	0.1	0	0.1	0	0				
Vehicle Exhaust ⁽²⁾	51.7	33.1	3,960.6	566.2	496.2				
Aircraft Exhaust	9.5	6.7	605.7	73.1	21.0				
Small Point Sources	431.2	0	0	0	8.0				
Structural Fires	0.1	0	0.9	0.2	0				
Wild Forest Fires	23.0	0	189.0	32.4	5.4				
Off Road (Tracked Vehicle)	7,228.0	0	0	0	0				
Off Road (Wheeled Vehicle)	1,196.0	0	0	0	0				
Wind Erosion	260.0	0	0	0	0				
Tilling Activity	3.3	0	0	0	0				
Construction Activity	260.0	0	0	0	0				
Paved Roads	77.7	0	О	0	0				
Dry Cleaning	0	0	0	98.3	0				
Surface Coating	0	0	0	52.5	0				
Petroleum Storage and Marketing	0	0	0	32.7	0				
Artillery	46.0	0	0	0	0				
TOTAL	9,627.7	180.1	4,781.1	863.9	856.8				

(1) Includes all space heating fuels normally separated by residential, commercial/ institutional, and industrial classes.

(2) Includes emissions from railroad locomotives, vessels, small gasoline engines, agricultural equipment, and construction equipment in addition to total vehicle exhaust emissions.

CHAPTER XXXII

EMISSIONS SUMMARY

Tables XXXII-1 through XXXII-5 are summaries of county-wide emissions by source category for the baseline year 1975. Tables XXXII-6 through XXXII-10, Tables XXXII-11 through XXXII-15, and Tables XXXII-16 through XXXII-20 summarize emissions by source category for the projection years 1980, 1985, and 1995, respectively. Finally, Table XXXII-21 is a summary of county-wide emissions by pollutant for all years. County-wide emissions by pollutant for Jefferson, Floyd, and Clark Counties have been taken from Appendix B.

The reader should be aware that such variables as spatial distribution, seasonal emission rates, and emission release parameters, as well as the mass emission rate, affect the ambient air quality at any given point. Consequently, one should draw conclusions about ambient air quality impact from the data presented in the following tables only after further analysis.

AREA SOURCE EMISSIONS SUMMARY 1975 - PARTICULATES (tons/year)

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	MAIID.IO	SHELBY	SPENCER	TRIMBLE
Residential Fuel	91.7	100.6	35.1	47.8	68.2	18.9	16.5
Commercial/Institutional Fuel	3.8	15.8	1.9	2.8	15.1	0.7	1.3
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	7.1	11.9	2.8	4.3	5.2	1.1	1.1
Open Burning	42.7	61.1	14.1	27.8	26.2	6.5	6.5
Highway Vehicles	254.8	452.1	84.2	98.3	182.8	21.8	25.8
Aircraft	0	0.5	0	0	0	0	0
Rallroad Locomotives	13.6	19.9	6.5	4.5	14.7	0	0
Vessels	1.2	o	0	9.5	υ	a	11.9
Small Gasoline Engines	0.6	0.8	0.2	0.3	0.3	0.1	0.1
Agricultural Equipment	6.8	36.3	24.1	21.3	25.4	14.2	3.0
Construction Equipment	1.4	2.0	0.5	1.6	1.1	0.3	0.2
Small Point Sources	0	0	0	Û	0	0	0
Structural Fires	6.0	0.7	0.5	0.2	1.6	0.1	0
Wild Forest Fires	7.0	7.5	0	0.4	0.3	0	0
Unpaved Roads	4,615.8	4,764.9	1,347.8	1,785.8	407.9	845.8	979.7
Unpaved Airstrips	0 O	0	0	0	· 0	0	0
Tilling Activity	70.7	269.6	100.2	58.3	411.3	166.1	78.3
Construction Activity	45.9	63.6	12.9	59.9	28.5	6.5	3,8
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	864.5	1,536.3	294.6	335.9	641.5	77.1	96.4
Dry Cleaning	0	0	Û	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	o	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
тотаі.	6,033.6	7,343.6	1,925.4	2,458.7	1,830.1	1,159.2	1,224.6

AREA SOURCE EMISSIONS SUMMARY 1975 - SULFUR DIOXIDE (tons/year)

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	178.8	244.9	125.4	177.5	232.3	64.3	
Commercial/Institutional Fuel	16.5	68.5	8.1	12.2	96.3	2.9	58.7
Industrial Fuel	Û	0	0	0	0		8.4
On-Site incineration	2.3	3.8	0.9	1.4	-	0	0
Open Burning	2.7	3,8	0.9	1.7	1.7	0.3	0.4
Nighway Vehicles	141.2	248.0	46.5	56.4	1.6	0.4	0.4
Alreraft	0	0.3	40.J 0	- 56.4 - 0	102.8	11.3	12.4
Rallroad Locomotives	31.0	45.3	14.7	10.3	0	0	0
Vessels	0.3	0	0		24.0	0	0
Small Gasoline Engines	0.2	0.3	0.1	2.8	0	0	3.6
Agricultural Equipment	4.6	24.8		0.1	0.1	0	0
Construction Equipment	1.8	24.8	16.4	14.5	17.2	9.7	2.0
Small Point Sources	0	0	0.7	2.0	1.2	0.4	0,3
Structural Fires	0	0	0	0	0	0	0
Wild Forest Fires	0		0	0	0	0	0
Unpaved Koada	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	Û
Filling Activity		0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Vind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	0	ο	0
Dry Cleanlog	0	0	o	0	0	0	0
Surface Coating	0	0	U	0	0	0	0
- · · · · · · · · · · · · · · · · · · ·	o	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	υ	0	0	-
Asphalt Paving	0	0	0	0	0	0	0
Тота	379.4	642.0	213.7	278.9	477.2	89.3	$\frac{0}{86.2}$

. .

AREA SOURCE EMISSIONS SUMMARY 1975 - CARBON MONOXIDE (tons/year)

SOURCE CATECORY	BULLITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	360.9	404.0	146.1	198.9	289.0	78.2	67.1
Commercial/Institutional Fuel	5.0	20.6	2.4	3.7	14.5	0.9	1.2
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	10.0	16.8	4.0	6.0	7.4	1.5	1.6
Open Burning	226.6	324.7	74.8	147.6	139.1	34.6	34.7
Highway Vehicles	17,368.2	32,541.2	5,826.4	6,404.1	11,926.9	1,925.6	1,746.0
Alreraft	0	178.1	0	0	0	0	0
Railroad Locomotives	70.7	103.4	33.5	23.4	76.5	0	0
Vessels	26.0	0	. 0	203.8	0	0	253.9
Small Gasoline Engines	152,8	210.5	52.4	84.7	91.4	24.4	25.8
Agricultural Equipment	592.8	906.1	600.5	957.6	2,205.6	893.8	756.1
Construction Equipment	62.7	157.2	80.0	63.5	98.4	43.7	35.9
Small Point Sources	0	ο	0	0	0	0	0
Structural Fires	17.5	2.2	1.6	0.7	4.7	0.3	0.1
Wild Forest Fires	57.1	61.3	0	3.2	2.7	0	0
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	Û	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roada	O	0	0	0	0	0	0
Bry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	υ	0	0	0	o	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	υ	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
TOTAL	18,950.3	34,926.1	6,821.7	8,097.2	14,856.2	3,003.0	2,922.4

AREA SOURCE EMISSIONS SUMMARY 1975 -HYDROCARBONS (tons/year)

SOURCE CATEGORY	BULI.ITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	275.3	242.6	48.4	65.4	98.5	27.7	36.8
Commercial/Institutional Fuel	1.7	7.0	0.8	1.2	4.0	0.3	0.3
Industrial Fuel	0	0	0	0	0	0	U
On-Site Incineration	3.8	6.4	1.5	2.3	2.8	0.6	0.6
Open Barning	80.0	114.6	26.4	52.1	49.1	12.2	12.2
Highway Vehicles	3,221.9	5,898.1	1,079.0	1,205.7	2,261.1	327.5	349.2
Aircraft	0	6.1	0	0	0	0	0
Railroad Locomotives	51.1	74.7	24.3	16.9	55.3	0	0
Vessels	8.9	0	0	69.4	0	0	86.6
Small Gasoline Engines	21.5	29.7	7.4	11.9	12.9	3.4	3.6
Agrícultural Equipment	48.8	123.9	81.4	80.3	167.5	74.1	49.5
Construction Equipment	4.4	9.3	4.3	4.6	5.7	2.4	1.8
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	1.4	0.2	0.1	0.1	0.4	0	0
Wild Forest Fires	9.8	10.5	0	0.5	0.5	0	0
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	U	O	0	0	0	0	0
Construction Activity	0	o	Û	O	Û	0	0
Wind Blown Dust	0	0	O	0	0	0	0
Paved Roads	U	0	U	0	0	0	0
Dry Cleaning	2.2	97.9	0	0	13.7	0	0
Surface Coating	151.5	292.7	55.5	90.6	96.3	23.7	25.7
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	59.8	116.3	13.6	39.4	26.5	8.8	8.9
Asphalt Paving	42.0	56.6	44.4	19.6	i'1.6	4.3	12.1
тотаі.	3,984.1	7,086.6	1,387.1	1,660.0	2,805.9	485.0	587.3

AREA	SOURCE	EMISSIONS	SUMMARY	1975 -	NITROGEN	OXIDES	(tons/year)	

SOURCE CATECORY	BULLITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	99.0	110.0	27.1	43.6	46.1	13.1	17.4
Commercial/Institutional Fuel	21.4	88.7	10.6	15.8	38.0	3.7	2.8
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	2.6	4.4	1.1	1.6	1.9	0.4	0.4
Open Burning	16.0	22.9	5.3	10.4	9.8	2.4	2.4
Highway Vehicles	2,437.2	4,298.0	810.7	932.3	1,745.7	202.0	256.2
Alreraft	0	1.1	0	0	0	0	0
Railroad Locomotives	201.1	294.2	95.5	66.6	217.7	0	0
Vessels	3.2	0	0	25.7	0	0	32.1
Small Gasoline Engines	2.1	2.9	0.7	1.2	1.2	0.3	0.4
Agricultural Equipment	66.5	289.7	191.9	182.0	247.3	128.5	43.4
Construction Equipment	24.1	33.1	10.0	27.7	18.0	5.2	3.2
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	0.7	0.1	0.1	0	0.2	0	0
Wild Forest Fires	1.6	1.7	0	0.1	0.1	0	U
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	υ	0	υ
Wind Blown Dust	Û	0	U	0	0	0	υ
Paved Roads	0	0	0	U	0	0	0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	ů	0	0	ů O
Asphalt Paving	Û	0	0	0	0	0	Û
TOTAL	2,875.5	5,146.8	1.153.0	1,307.0	2,326.0	355.6	358,3

AREA SOURCE EMISSIONS SUMMARY 1980 - PARTICULATES (tons/year)

SOURCE CATEGORY	BULLITT	HARDIN	IIENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	98.1	100.7	29.6	41.7	57.8	16.1	15.2
Commercial/Institutional Fuel	2.4	9.4	1.1	1.7	6.0	0.4	0.5
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	12.0	12.7	3.7	6.7	6.1	1.4	1.3
Open Burning	54.2	74.9	15.4	35.8	28.6	7.0	7.0
Highway Vehicles	214.3	379.7	68.3	82.1	153.8	17.3	20.4
Aircraft	0	0.6	0	0	0	0	0
Railroad Locomotives	17.7	25.9	8.5	5.9	19.1	0	0
Vessela	1.2	0	0	9.6	0	0	12.0
Small Gasoline Engines	0.7	1.0	0.2	0.4	0.4	0.1	0.1
Agricultural Equipment	6.3	33,7	25.9	19.7	27.3	15.3	3.2
Construction Equipment	2.2	2.1	0.7	2.1	1.1	0.3	0.3
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	2.7	3.7	0.8	1.5	1.4	0.4	0.4
Wild Forest Fires	2.4	3.3	2.3	1.5	3.1	1.5	1.2
Unpaved Roads	4,615.8	4,764.9	1,347.8	1,785.8	407.9	845.8	979.7
Unpaved Airstrips	0	0	0	o	0	0	0
Tilling Activity	65.6	250,0	107.7	54.1	442.1	178.6	84.2
Construction Activity	73.6	67.8	19.0	80.0	29.3	6.5	5.6
Wind Blown Dust	0	0	0	0	0	0	U
Paved Roads	951.0	1,689.9	324.1	369.5	705.7	84.8	106.0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
TOTAL	6,120.2	7,420.3	2,155.1	2.498.1	1,889.7	1,175.5	1,237.1

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDIIAM	SUELBY	SPENCER	TRIMBLE
Realdential Fuel	160.9	212.7	105.2	151.8	191.7	53.6	53.0
Commercial/Institutional Fuel	18.1	69.1	8.4	13.2	96.8	3.0	8.4
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	3.8	4.1	1.2	2.2	1.9	0.5	0.4
Open Burning	3.4	4.7	1.0	2.2	1.8	0.4	0.4
lighway Vehicles	155.6	273.8	48.2	61.2	113.2	11.7	13.0
Aircraft	0	0.4	0	0	0	0	0
Railroad Locomotives	40.3	58.9	. 19.1	13.4	31.2	0	0
Vessels	0.3	0	0	. 2.8	0	0	3.6
Small Gasoline Engines	0.3	0.3	0.1	0.1	0.1	0	0
Agricultural Equipment	4.3	23.0	17.6	13.4	18.5	10.4	2.2
Construction Equipment	2.9	2.5	1.0	2.7	1.2	0.4	0.4
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	0	0	0	0	0	0	0
Wild Forest Fires	0	0	0	0	0	0	0
Unpaved Roads	0	U	0	0	0	O	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	U U	0	0	0	0	0	0
Dry Cleaning	0	O	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	U	0
Marketing of Petroleum	0	0	0	0	0	0	0
	0	0	0	0 U	0	0	0
Asphalt Paving	389.9	649.5	201.8	263.0	456.4	80.0	81.4
TOTAL							

AREA SOURCE EMISSIONS SUMMARY 1980 - SULFUR DIOXIDE (tons/year)

AREA SOURCE EMISSIONS SUMMARY 1980 - CARBON MONOXIDE (tons/year)

SOURCE CATECORY	BULLITT	HARDIN	HENRY	OLDHAM	SHEL.BY	SPENCER	TRIMBLE
Residential Fuel	382.6	398.5	121.5	170.3	241.7		
Commercial/Institutional Fuel	5.2	20.6	2.5	3.8		65.5	60.5
Industrial Fuel	0	0	0	0	14.6	0.9	1.2
On-Site Incineration	16.9	17.9	5.2	9.5	0	0	0
Open Burning	287.8	397.9	81.9	1	8.5	2.0	1.8
Highway Vehicles	14,818.2	27,958.1	4,961.0	190.0 5,408.8	151.7	37.4	37.4
Alreraft	0	271.6	0	}	10,168.3	1,668.3	1,486.1
Rallroad Locomotives	91.9	134.4	1	0	0	0	0
Vessels	28.4	0	43.6	30.4	99.5	0	0
Small Gasoline Engines	189.9	263.2	u 55.7	222.8	0	0	277.5
Agricultural Equipment	549.7	840.2		106.6	98.7	25.6	27.6
Construction Equipment	100.6		645.5	887.9	2,371.0	960.8	812.8
Small Point Sources	0	167.6	118.0	84.8	101.3	43.7	52.5
Structural Firea		0	0	0	0	0	0
Hild Forest Fires	8.0	11.1	2.4	4.5	4.2	1.1	1.2
Inpaved Roads	19.6	26.8	18.9	12.0	25.0	12.6	9.5
Inpaved Airstrips	0	Û	0	0	0	0	0
filling Activity	0	0	0	0	0	0	0
	0	0	0	0	0	0	, i i i i i i i i i i i i i i i i i i i
Construction Activity	O	0	0	0	0	-	0
Vind Blown Dust	0	0	0	0	0	0	0
aved Roads	0	U	0	0	0		0
)ry Cleaning	0	0	Û	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	_	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	-	0	0	0
FOTAL	16,498.6	30,507.9		0	0	0	0
	1	50, 507.9	6,056.2	7,131.4	13,284.5	2,818.3	2,768.1

AREA SOURCE EMISSIONS SUMMARY 1980 - HYDROCARBONS (tons/year)

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDIIAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	327.2	279.0	43.7	64.3	90.7	25.5	36.8
Commercial/Institutional Fuel	1.7	7.0	0.8	1.3	4.0	0.3	0.3
Industrial Fuel	0	o	0	0	0	0	0
On-Site Incineration	6.5	6.9	2.0	3.6	3.3	0.8	0.8
Open Burning	101.6	140.4	28.9	67.1	53.5	13.2	13.2
Highway Vehicles	2,256.8	4,163.1	759.0	839.3	1,586.3	234.3	242.8
Alreraft	0	9.2	0	0	0	0	0
Railroad Locomotives	66.4	97.1	31.6	22.0	71.9	0	0
Veusels	9.7	0	0	75.8	0	0	94.5
Small Gasoline Engines	26.8	37.1	7.8	15.0	13.9	3.6	3.9
Agricultural Equipment	45.2	114.9	87.5	74.5	180.1	79.7	53.2
Construction Equipment	7.1	9.9	6.3	6.1	5.9	2.4	2.6
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	0.6	0.9	0.2	0.4	0.3	0.1	0.1
Wild Forest Fires	3.4	4.6	3.2	2.1	4.3	2.2	1.6
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	ů	0	0	0	0
Dry Cleaning	0.2	14.0	0	0	1.3	0	0
Surface Coating	188.3	366.6	59.0	114.1	104.0	25.0	27.5
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	64.6	125.6	14.7	42.6	28.6	9.5	9.6
Asphalt Paving	46.2	62.3	48.8	21.6	12.8	4.7	13.3
•	$\frac{40.2}{3,154.8}$	5,547.0	$\frac{40.0}{1,093.5}$	1,349.8	2,174.4	401.3	500.2
TOTAL							

AREA SOURCE EMISSIONS SUMMARY 1980 - NITROGEN OXIDES (tons/year)

SOURCE CATEGORY	BULLITT	IIARDIN	HENRY	OLDIAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	108.7	117.8	27.0	44.9	45.8	13.0	18.0
Commercial/Institutional Fuel	22.3	89.1	10.7	16.4	38.3	3.8	2.8
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	4.5	4.7	1.4	2.5	2.3	0.5	
Open Burning	20.3	28.1	5.8	13.4	10.7	2.6	0.5
Highway Vehicles	2,394.4	4,189.8	774.3	191.8	1,723.1	182.6	250.8
Aircraft	0	1.5	0	0	0	0	
Rallroad Locomotives	261.4	382.5	124.2	86.6	283.0	-	0
Vessels	3.2	0	0	26.0		0	0
Small Gasoline Engines	2.6	3.6	0.8	1.5	0	0	32.5
Agricultural Equipment	61.7	268.6		-16	1.3	0.3	0.4
Construction Equipment	38.7	35.3	206.3	168.8	265.8	138.1	46.7
Small Point Sources	0	1	14.8	37.0	18.5	5.2	4.7
Structural Fires		0	0	0	0	0	0
Wild Forest Fires	0.3	0.4	0.1	0.2	0.2	0	0
Unpaved Roads	0.6	0.8	0.5	0.3	0.7	0.4	0.3
-	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	Ö	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	0	0	-
Dry Cleaning	0	0	0	0	0		0
Surface Coating	0	0	0	. 0	0	0	0
Petroleum Storage	0	0	0	0	0	_	0
Marketing of Petroleum	0	0	0	0	-	0	0
Asphalt Paving	0	0	0	-	0	0	0
TOTAL	2,918.7			0	0	0	0
	2,910.7	5,122.2	1,165.9	1,317.4	2,389.7	346.5	359.3

AREA SOURCE EMISSIONS SUMMARY 1985 - PARTICULATES (tons/year)

SOURCE CATEGORY	BULI.ITT	HARD IN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	105.6	104.2	25.5	36.5	49.7	14.4	14.1
Commercial/Institutional Fuel	2.4	9.5	1.1	1.8	6.1	0.4	0.5
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	15.6	13.5	4.2	8.1	6.9	1.7	1.5
Open Burning	66.6	90.5	16.7	40.3	31.1	8.0	7.6
Highway Vehicles	209.5	369.3	68.1	80.7	149.0	15.7	18.1
Alreraft	0	0.8	0	0	0	0	0
Railroad Locomotives	19.4	28.5	9.3	6.4	21.0	0	0
Vessels	1.2	0	0	9.7	0	0	12.2
Small Gasoline Engines	0.9	1.2	0.2	0.4	0.4	0.1	0.1
Agricultural Equipment	5.8	31.2	25.9	18.3	27.3	15.3	3.2
Construction Equipment	2.9	2.3	0.9	2.5	1.2	0.3	0.4
Small Point Sources	Û	0	0	0	0	0	0
Structural Fires	3.2	4.6	0.8	1.7	1.5	0.4	0.4
Wild Forest Fires	2.4	3.3	2.3	1.5	3.1	1.5	1.2
Unpaved Roads	4,615.8	4,764.9	1,347.8	1,785.8	407.9	845.8	979.7
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	60.8	231.8	107.7	50.1	442.1	178.6	84.2
Construction Activity	93.9	71.8	23.3	93.6	31.4	6.5	7.3
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	1,037.4	1.843.6	353.5	403.1	769.8	92.5	115.7
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	o
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
тотаі.	6,243.4	7,151.0	1,987.3	2,540.5	1,948.5	1,181.2	1,246.2

Residential Fuel 145.2 186.6 00.0000000000000000000000000000000000	SOURCE CATEGORY	BULLITT	HARDIN				_	
Industrial Fuel 19.2 69.8 8.6 129.6 158.6 45.0 47. On-Site Interation 0	Residential Fuel	145.2		HENRY		SHELBY	SPENCER	TRIMBI
On-Site Inclneration 0	Industrial Visit	19.2	(158.6	45.0	47.6
Open Borning 5.0 4.3 1.3 2.6 2.2 0.6 0 Mighway Vehicles 4.2 5.7 1.0 2.5 1.9 0.5 0. Alreraft 170.7 299.2 56.0 66.9 123.0 12.1 13. Wessels 0 0.5 0 0 0 0 0 0 Small Casoline Englass 0.3 0 0 3.0 0 0 3.0 0 0 Small Casoline Englass 0.3 0.4 0.1 0.2 0.1 0 0 0 Versuels 0.3 0.4 0.1 0.2 0.1 0 <		-	0			ſ.	3.1	8.4
Highway Vehicles 4.2 5.7 1.0 2.5 1.2 0.6 0. Miccraft 170.7 299.2 56.0 66.9 123.0 12.1 13. Rallroad Locomotives 0 0.5 0	Open Borning		4.3	1.3		-	-	0
Aircraft Different 299.2 56.0 66.9 123.0 12.1 13. Rallroad Locomotives 44.3 64.8 21.0 14.7 34.3 0 0 Mail Gasoline Engines 0.3 0 0 3.0 0 0 3.0 0 0 Mail Gasoline Engines 0.3 0 0 3.0 0 0 3.0 0 0 Spricultural Equipment 4.0 21.3 17.6 12.5 18.5 10.4 2.3 Sonatruction Equipment 3.7 2.6 1.3 3.1 1.3 0.4 0.0 Mail Point Sources 0 0 0 0 0 0 0 0 0 Maard Roads 0 0 0 0 0 0 0 0 0 0 0 0 0 Mail Point Sources 0 0 0 0 0 0 0 0 0 0 Maard Roads 0 0 0 0 0 0 <		1		1.0		-		0,5
Activity 44.3 64.8 21.0 14.7 34.3 0 0 Mail Gasoline Engines 0.3 0 0 3.0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 </td <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>5</td> <td>66.9</td> <td>(</td> <td></td> <td>0,9</td>		· · · · · · · · · · · · · · · · · · ·		5	66.9	(0,9
imail Gasoline Engines 0.3 0 0 3.0 34.3 0 0 Agricultural Equipment 0.3 0.4 0.1 0.2 0.1 0 0 3.0 0 0 3.0 0 0 3.0 0 0 0 3.0 0 0 0 3.0 0 0 0 3.0 0	lessels	44.3		[-			
Agricultural Equipment A.A O.1 O.2 O.1 O A.A Sonstruction Equipment A.O 21.3 17.6 12.5 18.5 10.4 2.3 Small Point Sources A.7 2.6 1.3 3.1 1.3 0.4 0.6 small Point Sources O O O O 0<	imall Gasoline Engines		· · ·	1				0
Instruction Equipment 3.7 2.6 17.6 12.5 18.5 10.4 2.5 imall Point Sources 0	Bricultural Equipment				0.2			3.8
tructural Fires 0 0 0 0 0 0.4 0.4 0.6 tild Forest Fires 0 <td>mall Point Sources</td> <td>3.7</td> <td></td> <td>1</td> <td>1</td> <td>18.5</td> <td>- 1</td> <td>0 2.2</td>	mall Point Sources	3.7		1	1	18.5	- 1	0 2.2
11d Forest Fires 0	tructural Fires		U	- {			0.4	0.6
Apaved Roads 0 <t< td=""><td></td><td>1</td><td></td><td>0</td><td></td><td></td><td></td><td>O</td></t<>		1		0				O
Illing Activity 0	1				0	}	- 1	
Obstruction Activity 0	Daved Airstrips	0	1		- {	0		-
Ind Blown Dust 0	Distruction Activity	()	O				0	
aved Roads 0 0 0 0 0 0 0 cy Cleaning 0 0 0 0 0 0 0 0 arface Coating 0 0 0 0 0 0 0 0 etroleum Storage 0 0 0 0 0 0 0 0 arketing of Petroleum 0 0 0 0 0 0 0 0 sphalt Paving 0 0 0 0 0 0 0 0 0TAL 396.9 655.2 0 0 0 0 0	Ind Blown Dust		1	0	· · · · · · · · · · · · · · · · · · ·	1	1	U
of cleaning 0 <th< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td></th<>					0			
etroleum Storage 0		0	{	· · · · · · · · · · · · · · · · · · ·	0	0		-
arketing of Petroleum 0 0 0 0 0 0 0 sphalt Paving 0 0 0 0 0 0 0 0 0 OTAL 396.9 655.2 0 0 0 0 0		0			- 1	0	0	
apphalt Paving 0	arketing of Petroleum	· · · · · · · · · · · · · · · · · · ·	0		- 1	{	Ø	
$\frac{1}{396.9}$ $\frac{0}{655.2}$ $\frac{0}{0}$ 0 0	aphalt Paving			0		1	- 1	
195.3 248.9 437.2 0	JI'AL		$\frac{0}{655.2}$	0	$\frac{0}{248.9}$	0	00	U 0

TABLE XXXII-12 AREA SOURCE EMISSIONS SUMMARY 1985 - SULFUR DIOXIDE (tons/year)

AREA SOURCE EMISSIONS SUMMARY 1985 - CARBON MONOXIDE (tons/year)

SOURCE CATEGORY	BULLITT	HARD1N	HENRY	ƏLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	409.9	407.9	102.5	146.2	204.8	57.4	55.7
Commercial/Institutional Fuel	5.3	20.7	2.5	3.9	14.6	0.9	1.2
Industrial Fuel	0	0	0	0	0	0 ·	0
On-Site Incineration	22.0	19.0	5.9	11.4	9.7	2.5	2.1
Open Burning	353.8	481.0	88.7	214.2	166.0	42.3	40.2
Nighway Vehicles	9,513.8	18,079.5	3,204.2	3,520.2	6,470.7	1,037.5	892.9
Aircraft	0	365.0	0	0	0	0	0
Railroad Locomotives	101.1	147.9	47.9	33.5	109.4	0	0
Vessels	30.8	0	0	241.6	0	0	301.0
Small Casoline Engines	227.1	323.4	59.7	119.1	106.6	28.9	29.6
Agricultural Equipment	509.6	779.0	645.5	823.3	2,371.0	960.8	812.8
Construction Equipment	128.2	177.5	144.2	99.2	108.5	43.7	69.0
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	9.6	13.7	2.5	5.0	4.5	1.2	1.2
Wild Forest Fires	19.6	26.8	18.9	12.0	25.0	12.6	9.5
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	.0	0	0	0	0
Paved Roads	0	0	0	0	0	0	0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
TOTAL	11,330.8	20,841.4	4,322.9	5,229.6	9,590.8	2,187.8	2,215.2

AREA SOURCE EMISSIONS SUMMARY 1985 - HYDROCARBONS (tons/year)

SOURCE CATEGORY	BULLITT	ILARDIN	IIENRY	OLDNAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	380.3	324.2	40.7	62.0	85.4	26.0	37.4
Commercial/Institutional Fuel	1.8	7.0	0.8	1.3	4.1	0.3	0.3
Industrial Puel	0	0	0	0	0	0	0
On-Site Inclueration	8.4	7.3	2.3	4.4	3.7	0.9	0.8
Open Burning	124.9	169.8	31.3	75.6	58.2	14.9	14.2
Nighway Vehicles	1,210.0	2,260.1	408.5	454.1	842.6	126.3	119.2
Aircraft	0	12.2	0	0	0	0	0
Railroad Locomotives	73.1	106.8	34.7	24.2	79.1	0	0
Vessels	10.5	0	0	82.0	0	0	102.3
Small Gasoline Engines	32.0	45.6	8.4	16.8	15.0	4.1	4.2
Agricultural Equipment	42.0	106.5	87.5	69.0	180.1	79.7	53.2
Construction Equipment	9.0	10.5	7.8	7.2	6.3	2.4	3.5
Small Point Sources	0	0	0	Q	0	Û	0
Structural Fires	0.8	1.1	0.2	0.4	0,4	0.1	0.1
Wild Forest Fires	3.4	4.6	3.2	2.1	4.3	2.2	1.6
Unpaved Koada	0	0	0	0	0	0	0
Unpaved Airstri ps	0	0	0	0	o	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	o	0
Paved Roads	0	0	0	0	0	0	0
Dry Cleaning	0.3	17.2	0	0	16.0	0	0
Surface Coating	225.1	450.5	63.3	127.5	112.4	28.1	29.4
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	67.6	131.4	15.4	44.5	29.9	9,9	10.1
Asphalt Paving	50.4	67.9	53.3	23.5	13.9	5.2	14.5
TOTAL.	2,242.6	3,855.9	757.4	994.6	1,451.3	300.1	390.8

AREA SOURCE EMISSIONS SUMMARY 1985 - NITROGEN OXIDES (tons/year)

SOURCE CATEGORY	BULLITT	HARD1N	HENRY	OLDHAM	SHEL.BY	SPENCER	TRIMBLE
Residential Fuel	117.4	125.9	26.7	45.0	45.3	13.2	18.1
Commercial/Institutional Fuel	23.0	89.5	10.8	16.7	38.6	3.9	2.8
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	5.8	5.0	1.6	3.0	2.5	0.6	0.6
	25.0	34.0	6.3	15.1	11.6	3.0	2.8
Open Burning	2,083.5	3,614.0	688.7	793.1	1,484.9	146.2	206.0
Highway Vehicles	0	1.8	0	0	0	0	0
Aircraft Rallroad Locomotives	287.6	420.7	136.6	95.2	311.3	0	0
	3.3	420.7	0	26.4	0	0	33.0
Vessels	3.1	4.4	0.8	1.6	1.5	0.4	0.4
Small Gasoline Engines	57.2	249.1	206.3	156.5	265.8	138.1	46.7
Agricultural Equipment		37.4	18.0	43.3	19.9	5.2	6.2
Construction Equipment	49.3 0	0	0	0	0	0	0
Small Point Sources	-	0.5	0.1	0.2	0.2	0	0
Structural Fires	0.4	-	0.5	0.2	0.7	0.4	0.3
Wild Forest Fires	0.6	0.8		0.3	0.7	0	0
Unpaved Roads	0	0	0	<i>.</i>	0	0	0
Unpaved Airstrips	0	0	0	0		, , , , , , , , , , , , , , , , , , ,	0
Tilling Activity	0	0	0	0	0	0	_
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	6	0	0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
ΤΟΤΛΙ.	2,656.2	4,583.1	1,096.4	1,196.4	2,182.3	311.0	316.9

SOURCE CATECORY	BUI.I.ITT	HARDIN	HENRY	OLDIIAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	130.1	109.3	19.8	29.7	38.8	11.6	13.0
Commercial/Institutional Fuel	2.6	9.5	1.2	1.8	6.1	0.4	0.5
Industrial Fuel	0	0	0.	0	0	0	0
On-Site Incineration	25.0	15.0	5.3	11.3	8,5	2.4	1.9
Open Burning	96.3	113.3	19.6	50.8	36.3	10.1	8.8
Highway Vehicles	243.8	430.5	80.4	96,2	176.2	20.1	22.9
Alreraft	0	1.1	0	0	0	0	0
Railroad Locomotives	23.0	33.6	11.0	7.6	24.8	0	0
Vessels	1.3	0	0	10.0	0	0	12.5
Small Gasoline Engines	1.2	1.5	0.3	0.6	0.5	0.1	0.1
Agricultural Equipment	5.0	26.8	25.9	⁴⁶ -15.7	27.3	15.3	3.2
Construction Equipment	4.4	2.5	1.2	3.3	1.4	0.4	0.6
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	4.6	5.8	1.0	2.1	1.8	0.5	0.5
Wild Forest Fires	2.4	3.3	2.3	1.5	3.1	1.5	1.2
Unpaved Roads	4,615.8	4,764.9	1,347.8	1,785.8	407.9	845.8	979.7
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	52.3	199.3	107.7	43.1	442.1	178.6	84.2
Construction Activity	144.3	79.9	30.7	124.7	35.5	8.5	11.4
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	1,210.3	2,150.8	412.4	470.3	898.1	107.9	135.0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	Q
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	0	0	0	0
TOTAI.	6,562.4	7,947.1	2,066.6	2,654.5	2,108.4	1,203.2	1,275.5

AREA SOURCE EMISSIONS SUMMARY 1995 - PARTICULATES (tons/year)

AREA SOURCE EMISSIONS SUMMARY 1995 - SULFUR DIOXIDE (tons/year)

		HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
SOURCE CATEGORY	NULI.ITT			98.8	111.8	32.8	40.0
Residential Fuel	126.7	149.4	64.7 9.0	15.0	- 98.4	3.4	8.5
Commercial/Institutional Fuel	21.6	71.0		0	0	a	0
Industrial Fuel	0	0	0 1.7	3.6	2.7	0.8	0.6
On-Site Incineration	8.0	4.8	1.7	3.2	2.3	0.6	0.5
Open Burning	6.0	7.1 347.8	66.3	80.8	147.1	16.2	17.6
Ilighway Vehicles	195.9	0.8	0	0	0	0	0
Aircraft	0	0.0 76.6	24.8	17.4	40.6	0	0
Kailroad Locomotives	52.4	/6.0 ()	0	3.1	0	0	4.0
Vessels	0.3	0.5	0.1	0.2	0.2	0	U
Small Gasoline Engines	0.4	18.3	17.6	10.7	18.5	10.4	2.2
Agricultural Equipment	3.4 5.7	2.9	1.7	4.2	1.5	0.5	0.9
Construction Equipment	5.7 0	0	0	0	0	0	0
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	0	0	0	0	0	0	0
Wild Forest Fires	0	0	0	0	0	0	0
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	Ð	0	0	0
Construction Activity	0	Ø	Û	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	0	0	0
Dry Cleaning	0	о	a	0	O	0	0
Surface Coating	0	0	0	0	0	0	ů O
Petroleum Storage	0	0	Ô.	0	0	0	0
Harketing of Petroleum	0	0	0	0	_0	_0	
Asphalt Paving	420.4	679.2	187.1	237.0	423.1	64.7	74.3
тотаl							

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDHAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	503.7	421.6	76.5	114.7	154.4	44.6	49.9
Commercial/Institutional Fuel	5.7	20.9	2.6	4.0	14.8	0.9	1.2
Industrial Fuel	0	0	0	0	0	0	0
On-Site Incineration	35.2	21.1	7.5	15.9	11.9	3.4	2.7
Open Burning	511.7	601.8	104.1	269.7	192.9	53.6	46.5
liighway Vehicles	7,486.7	14,101.2	2,471.8	2,725.1	5,005.3	852.5	710.0
Alreraft	0	551.9	0	0	0	0	O
Rallroad Locomotives	119.5	174.7	56.6	39.5	1.29,3	0	0
Vessels	35.6	0	0	278.9	0	0	347.4
Small Gasoline Engines	320.6	409.7	68.8	147.8	123.6	36.3	33.7
Agricultural Equipment	438.2	669.7	645.5	707 8	2,371.0	960.8	812.8
Construction Equipment	197.1	197.6	190.2	132.2	125.4	56.8	107.7
Small Point Sources	0	0	0	0	0	0	0
Structural Fires	13.5	17.3	2.9	6.2	5.2	1.5	1.4
Wild Forest Fires	19.6	26.8	18.9	12.0	25.0	12.6	9.5
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	0	0	0	0	0
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	0	ΰ	0
Dry Cleaning	0	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Petroleum Storage	0	0	0	0	0	0	0.
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0		0	0	0
TOTAL	9,687.1	17,214.3	3,645.4	4,453.8	8,158.8	2,023.0	2,122.8

AREA SOURCE EMISSIONS SUMMARY 1995 - CARBON MONOXIDE (tons/year)

TABLE	XXXII-19

AREA SOURCE EMISSIONS SUMMARY 1995 - HYDROCARBONS (tons/year)

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDHAM	SHEI.BY	SPENCER	TRIMBLE
Residential Fuel	519.7	389.0	37.5	61.9	80.4	25.3	39.6
Commercial/Institutional Fuel	1.8	7.0	0.9	1.3	4.1	0.3	0.3
Industrial Fuel	0	0	0	0	0	0	Û
On-Site Incineration	13.5	8.1	2.9	6.1	4.6	1.3	1.0
	180.6	212.4	36.7	95.2	68.1	18.9	16.4
Open Burning	903.2	1,692.2	299.6	332.9	616.3	101.4	86.7
Highway Vehicles	0	18.3	0	0	0	0	0
Aircraft Railroad Locomotives	86.4	126.2	41.1	28.6	93.5	0	0
	12.1	0	0	94.5	0	0	117.9
	45.2	57.7	9.7	20.8	17.4	5.1	4.7
Small Gasoline Engines	36.1	91.6	87.5	59.4	180.1	79.7	53.2
Agricultural Equipment	13.8	11.7	10.2	9.6	7.3	3.1	5.4
Construction Equipment	0	0	0	0	0	0	0
Small Point Sources	-	1.4	0.2	0.5	0.4	0.1	0.1
Structural Vires	1.1		3.2	2.1	4.3	2.2	1.6
Wild Forest Fires	3.4	4.6		0	0	0	0
Unpaved Roads	0	0	0	-	0	0	0
Unpaved Airstrips	0	0	0	0	-		0
Tilling Activity	0	0	0	0	0	0	_
Construction Activity	0	0	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	O	0	0
Dry Cleaning	4.6	190.5	Ð	0	18.5	0	0
Surface Coating	317.8	570.8	72.9	158.0	130.3	35.3	33.5
Petroleum Storage	U	0	0	0	0	0	0
Marketing of Petroleum	70.6	137.2	16.0	46.5	31.3	10.4	10.5
Asphalt Paving	58.8	79.2	62.2	27.4	16.2	$\frac{6.0}{200}$	16.9
TOTAL	2,268.7	3,518.7	680.6	944.8	1,272.8	289.1	387.8

SOURCE CATEGORY	BULLITT	HARDIN	HENRY	OLDIIAM	SHELBY	SPENCER	TRIMBLE
Residential Fuel	140.0	137.6	26.5	45.8	45.1	13.3	18.3
Commercial/Institutional Fuel	24.5	90.2	11.0	17.4	39.3	4.0	2.9
Industrial Fuel	0	0	0	0	0	0	O
On-Site Incineration	9.3	5.6	2.0	4.2	3.1	0.9	0.7
Open Burning	36.1	42.5	7.3	19.0	13.6	3.8	3.3
lighway Vehicles	1,800.0	3,150.6	597.7	692.6	1,295.1	137.8	196.7
Aircraft	0	2.5	0	0	0	0	0
Railroad Locomotives	339.9	497.2	161.4	112.6	367.9	0	0
Vessels	3.4	0	0	27.2	0	0	33.9
Small Gasoline Engines	4.4	5.6	0.9	2.0	1.7	0.5	0.5
Agricultural Equipment	49.2	214.1	206.3	134.5	265.8	138.1	46.7
Construction Equipment	75.8	41.6	23.8	57.7	22.9	6.8	9.6
Small Point Sources	0	0	0	0 -	0	0	0
Structural Fires	0.6	0.7	0.1	0.3	0.2	0.1	0.1
Wild Forest Fires	0.6	0.8	0.5	0.3	0.7	0.4	0.3
Unpaved Roads	0	0	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0	0	0
Tilling Activity	0	0	ð	. 0	υ	0	0
Construction Activity	0	0	0	0	0	υ	0
Wind Blown Dust	0	0	0	0	0	0	0
Paved Roads	0	0	0	0	0	0	0
Dry Cleaning	0	0	0	0	o	Û	0
Surface Coating	0	o	0	0	o	0	0
Petroleum Storage	0	0	0	0	0	0	0
Marketing of Petroleum	0	0	0	0	0	0	0
Asphalt Paving	0	0	0	ů	0	0	0
TOTAL	2,483.8	4,189.0	1,037.5	1,113.6	2,055.4	305.7	313.0

AREA SOURCE EMISSIONS SUMMARY 1995 - NITROGEN OXIDES (tons/year)

BASELINE YEAR AND PROJECTED EMISSION SUMMARY (tons/year)

	1975	1980	1985	1995
BULLITT COUNTY				
Particulates	6,033.6	6,120.2	6,243.4	6,562.4
Sulfur Dioxide	379.4	389.9	396.9	420.4
Carbon Monoxide	18,950.3	16,498.6	11,330.8	9,687.1
Hydrocarbons	3,984.1	3,154.8	2,242.6	2,268.7
Nitrogen Oxides	2,875.5	2,918.7	2,656.2	2,483.8
HARDIN COUNTY				
Particulates	7,343.6	7,420.3	7,151.0	7,947.1
Sulfur Dioxide	642.0	649.5	655.2	679.2
Carbon Monoxide	34,926.1	30,507.9	20,841.4	17,214.3
Hydrocarbons	7,086.6	5,547.0	3,855.9	3,518.7
Nitrogen Oxides	5,146.8	5,122.2	4,583.1	4,189.0
HENRY COUNTY				
Particulates	1,925.4	2,155.1	1,987.3	2,066.6
Sulfur Dioxide	213.7	201.8	195.3	187.1
Carbon Monoxide	6,821.7	6,056.2	4,322.9	3,645.4
Hydrocarbons	1,387.1	1,093.5	757.4	680.6
Nitrogen Oxides	1,153.0	1,165.9	1,096.4	1,037.5
OLDHAM COUNTY				
Particulates	2,458.7	2,498.1	2,540.5	2,654.5
Sulfur Dioxide	278.9	263.0	248.9	237.0
Carbon Monoxide	8,097.2	7,131.4	5,229.6	4,453.8
Hydrocarbons	1,660.0	1,349.8	994.6	944.8
Nitrogen Oxides	1,307.0	1,317.4	1,196.4	1,113.6
SHELBY COUNTY				
Particulates	1,830.1	1,889.7	1,948.5	2,108.4
Sulfur Dioxide	477.2	456.4	437.2	423.1
Carbon Monoxide	14,856.2	13,284.5	9,590.8	8,158.8
Hydrocarbons	2,805.9	2,174.4	1,451.3	1,272.8
Nitrogen Oxides	2,326.0	2,389.7	2,182.3	2,055.4

TABLE XXXII-21(Continued)

BASELINE YEAR AND PROJECTED EMISSION SUMMARY (tons/year)

	1975	1980	1985	1995
SPENCER COUNTY				
Particulates	1,803.1	1,175.5	1,181.2	1,203.2
Sulfur Dioxide	89.3	80.0	72.1	64.7
Carbon Monoxide	3,003.0	2,818.3	2,187.8	2,023.0
Hydrocarbons	485.0	401.3	300.1	289.1
Nitrogen Oxides	355.6	346.5	311.0	305.7
TRIMBLE COUNTY				
Particulates	1,224.6	1,237.1	1,246.2	1,275.5
Sulfur Dioxide	86.2	81.4	76.1	74.3
Carbon Monoxide	2,922.4	2,768.1	2,215.2	2.122.8
Hydrocarbons	587.3	500.2	390.8	387.8
Nitrogen Oxides	358.3	359.3	316.9	313.0
FORT KNOX				
Particulates	9,627.7	9,627.7	9,627.7	9,627.7
Sulfur Dioxide	180.1	180.1	180.1	180.1
Carbon Monoxide	4,781.1	4,781.1	4,781.1	4,781.1
Hydrocarbons	863.9	863.9	863.9	863.9
Nitrogen Oxides	856.8	856.8	856.8	856.8
JEFFERSON COUNTY				
Particulate	17,436.4	19,081.2	19,636.7	22,353.5
Sulfur Dioxide	3,200.0	3,494.2	3,720.0	4,196.0
Carbon Monoxide	205,126.7	171,326.0	122,124.5	101,019.7
Hydrocarbons	41,069.3	30,782.2	21,829.0	19,823.6
Nitrogen Oxides	31,265.5	30,592.8	28,388.8	26,620.8

TABLE XXXII-21 (Continued)

BASELINE YEAR AND PROJECTED EMISSION SUMMARY (tons/year)

	1975	1980	1985	1995
FLOYD COUNTY				
Particulates	1,450.4	1,510.2	1,560.9	1,715.4
Sulfur Dioxide	288.3	316.2	331.5	370.5
Carbon Monoxide	13,191.7	11,083.9	8,030.6	6,670.2
Hydrocarbons	3,407.3	2,599.1	1,888.6	1,760.1
Nitrogen Oxides	1,870.3	1,887.0	1,805.4	1,776.8
CLARK COUNTY				
Particulates	10,181.9	10,323.8	10,495.3	10,878.4
Sulfur Dioxide	852.1	1,102.5	1,383.8	1,935.4
Carbon Monoxide	34,731.4	29,105.5	20,866.4	17,185.
Hydrocarbons	7,046.8	5,232.3	3,630.0	3,282.
Nitrogen Oxides	6,097.5	6,267.9	6,278.5	6,702.
AREA TOTAL				
Particulates	60,671.6	63,038.9	63,618.7	68,392.
Sulfur Dioxide	6,687.2	7,215.0	7,697.8	8,767.
Carbon Monoxide	347,407.8	295,361.5	211,521.1	176,961
Hydrocarbons	66,976.0	53,698.5	38,202.2	35,092
Nitrogen Oxides	53,612.3	53,224.2	49,671.8	47,455

APPENDIX A

JEFFERSON, FLOYD, AND CLARK COUNTIES

1973 EMISSION INVENTORY

APPENDIX A

JEFFERSON, FLOYD, AND CLARK COUNTIES 1973 EMISSION INVENTORY

Tables A-1 and A-2, taken from the report of the Louisville Air Quality Maintenance Planning and Analysis summarize the 1973 emission inventory for TSP and SO₂. Tables A-3 through A-5 summarize the 1973 emission inventory for CO, HC, and NO₂.

In expanding the earlier inventory to include the three new pollutants, the same baseline year data were used with the AP-42 emission factor appropriate to the pollutant. The following additional assumptions were made:

- Industrial and Commercial/Institutional Fuel In calculating NO x
 emissions from residual oil burned, all units were assumed to be horizontally fired.
- Railroad Locomotive Emissions The same emission factor was used for both railyard and road-haul operations.
- In calculating gasoline farm tractor hydrocarbon emissions, both the exhaust and crankcase emission factors were added together and entered as one factor.

1973 AREA SOURCE PARTICULATE EMISSIONS SUMMARY

SOURCE CATEGORY	JEFFERSON	FLOYD	CLARK
1. Residential Fuel	305.8	48.3	48.5
2. Industrial Fuel	0	22.2	61.2
3. C & I Fuel	409.4	15.1	45.8
4. Internal Fuel Combustion	0.6	0	0
5. Agricultural Equipment	13.1	3.5	8.5
6. Small Gasoline Engines	50.4	4.0	5.7
7. Construction Equipment	166.9	3.0	2.7
8. Railroad Locomotives	50.1	13.3	16.7
9. Vessels	22.2	6.2	20.8
10. LDV	1,986.6	86.1	212.8
11. HDGV	368.7	14.9	39.4
12. HDDV	198.3	8.1	21.2
13. Aircraft	29.1	0	0.1
14. On-Site Incineration	64.7	8.7	12.4
15. Open Burning	680.0	41.8	1,589.5
16. Structural Fires	22.3	3.2	3.3
17. Frost Control	0	0	0
18. Slash Burning	0	Ó	0
19. Wild Forest Fires	1.5	0	0
20. Agricultural Burning	0	0	0
21. Unpaved Roads	1,681.9	1,217.1	7,585.5
22. Unpaved Airstrips	0	0	2.5
23. Tilling Activity	65.3	31.0	222.8
24. Mineral Processing	0	0	0
25. Construction Activity	457.3	10.8	17.3
26. Windblown Dust	6.7	0	0
7. Small Point Sources	186.0	131.0	61.5
8. Paved Roads	4,769.8	203.8	510.6
TOTAL	11,536.7	1,872.1	10,488.8

1973 AREA SOURCE SULFUR DIOXIDE EMISSIONS SUMMARY

SOURCE CATEGORY	JEFFERSON	FLOYD	CLARK
1. Residential Fuel	497.4	89.5	82.6
2. Industrial Fuel	0	53.7	246.9
3. C&I Fuél	703.1	30.7	122.5
4. Internal Fuel Combustion	23.7	0	0
5. Agricultural Equipment	9.0	2.4	5.7
6. Small Gasoline Engines	23.7	2.0	2.7
7. Construction Equipment	199.2	3.6	3.2
8. Railroad Locomotives	98.0	26.0	32.6
9. Vessels	6.6	1.8	6.1
10. LDV	478.3	20.7	51.2
11. HDGV	100.7	4.1	10.7
12. HDDV	260.6	10.6	27.9
13. Aircraft	46.3	0	0.1
14. On-Site Incineration	17.1	3.1	4.4
15. Open Burning	0	2.6	3.7
16. Structural Fires	0	0	0
17. Frost Control	0	0	0
18. Slash Burning	0	0	0
19. Wild Forest Fires	0	о	0
20. Agricultural Burning	0	0	0
21. Unpaved Roads	0	0	0
22. Unpaved Airstrips	0	0	0
23. Tilling Activity	0	0	0
24. Mineral Processing	0	0	0
25. Construction Activity	0	0	0
26. Windblown Dust	0	0	0
27. Small Point Sources	61.0	0	0
28. Paved Roads	0	0	0
TOTAL	2,501.0	250.8	600.3

1973 AREA SOURCE CARBON MONOXIDE EMISSIONS SUMMARY

	SOURCE CATEGORY	JEFFERSON	FLOYD	CLARK
1.	Residential Fuel	763.5	84.6	70.4
2.	Industrial Fuel	ial Fuel 0		35.4
3.	C & I Fuel	333.7	11.9	25.2
4.	Internal Fuel Combustion	0	0	0
5.	Agricultural Equipment	601.1	455.5	1,115.4
6.	Small Gasoline Engines	18,223.3	1,446.4	2,061.0
7.	Construction Equipment	608.8	10.9	9.7
8.	Railroad Locomotives	259.9	69.4	86.9
9.	Vessels	191.6	53.7	179.8
10.	ΓDΔ	262,329.1	11,353.2	28,081.2
11.	HDGV	60,867.6	2,478.2	6,467.6
12.	HDDV	2,671.2	108.7	286.0
13.	Aircraft	4,075.4	0	55.7
14.	On-Site Incineration	25.4	35.4	24.8
15.	Open Burning	2,000.0	221.8	4,816.1
16.	Structural Fires	65.5	9.5	9.6
17.	Frost Control	0	0	0
18.	Slash Burning	0	0	0
19.	Wild Forest Fires	12.6	0	0
20.	Agricultural Burning	0	0	0
21.	Unpaved Roads	0	0	0
22.	Unpaved Airstrips	0	0	0
23.	Tilling Activity	0	0	0
24.	Mineral Processing	0	0	0
25.	Construction Activity	0	0	0
26.	Windblown Dust	0	0	0
27.	Small Point Sources	10.7	0	0
28.	Paved Roads	0	0	0
	TOTAL	353,039.4	16,347.0	43,324.8

1973 AREA SOURCE HYDROCARBONS EMISSIONS SUMMARY

	SOURCE CATEGORY	JEFFERSON	FLOYD	CLARK
1.	Residential Fuel	317.9	55.5	48.3
2.	Industrial Fuel	0	4.5	11.2
3.	C & I Fuel	113.2	4.0	7.7
4.	Internal Fuel Combustion	0	0	0
5.	Agricultural Equipment	47.8	28.6	70.0
6.	Small Gasoline Engines	2,110.3	167.5	238.7
7.	Construction Equipment	185.4	3.3	3.0
8.	Railroad Locomotives	188.7	50.2	62.7
9.	Vessels	22.4	6.3	21.0
10.	LDV	27,226.3	1,178.3	2,914.5
11.	HDGV	7,412.6	301.8	787.6
12.	HDDV	428.1	17.5	45.8
13.	Aircraft	652.3	0	1.8
14.	On-Site Incineration	19.8	26.6	18.7
15.	Open Burning	160.0	78.3	471.6
16.	Structural Fires	5.2	0.8	0.8
17.	Frost Control	0	0	0
18.	Slash Burning	0	0	0
19.	Wild Forest Fires	2.2	0	0
20.	Agricultural Burning	0	0	0
21.	Unpaved Roads	0	0	0
22.	Unpaved Airstrips	0	0	0
23.	Tilling Activity	0	0	0
24.	Mineral Processing	0	0	0
25.	Construction Activity	0	0	0
26.	Windblown Dust	0	0	0
27.	Small Point Sources	2.1	0	0
28.	Paved Roads	0	0	0
	TOTAL	38.894.3	1,923.2	4,703.4

1973 AREA SOURCE NITROGEN OXIDES EMISSIONS SUMMARY (tons/year)

	SOURCE CATEGORY	JEFFERSON	FLOYD	CLARK
1.	Residential Fuel	1,288.3	112.2	132.7
2.	Industrial Fuel	0	135.5	450.5
3.	C & I Fuel	1,451.1	. 64.3	145.8
4.	Internal Fuel Combustion	36.9	0	0
5.	Agricultural Equipment	112.6	38.7	112.2
6.	Small Gasoline Engines	193.2	15.3	21.9
7.	Construction Equipment	2,602.6	46.8	41.5
8.	Railroad Locomotives	- 742.5	197.6	247.1
9.	Vessels	77.1	21.7	64.0
10.	LDV	16,188.6	700.6	1,732.9
11.	HDGV	2,573.4	104.8	273.4
12.		1,945.2	79.1	208.3
13.	Aircraft	378.1	0	0.2
14.	On-Site Incineration	18.2	3.5	2.5
15.	Open Burning	80.0	15.7	202.3
16.	Structural Fires	2.6	0.4	0.4
17.		0	0	0
18.	Slash Burning	0	0	0
	Wild Forest Fires	0.4	0	0
20.	Agricultural Burning	0	0	0
21.	Unpaved Roads	0	о	0
	Unpaved Airstrips	0	0	0
23.	Tilling Activity	0	0	0
24.	Mineral Processing	0	0	0
25.	Construction Activity	0	0	0
26.	Windblown Dust	0	0	0
27.	Small Point Sources	47.3	0	0
28.	Paved Roads	0	0	0
	TOTAL	27,738.1	1,536.2	3,635.7

APPENDIX B

JEFFERSON, FLOYD, AND CLARK COUNTIES

1975 EMISSION INVENTORY UPDATE AND PROJECTION

APPENDIX B

JEFFERSON, FLOYD AND CLARK COUNTIES 1975 EMISSION INVENTORY UPDATE AND PROJECTION

Source categories being considered in this appendix are listed below. These categories include 12 which were updated from the 1973 inventory and the five new hydrocarbon sources. The 1973 inventory and projections were used for all other source categories.

- 1. Residential Fuel
- 2. Commercial/Institutional Fuel
- 3. Open Burning
- 4. Highway Vehicles
- 5. Aircraft
- 6. Railroad Locomotives
- 7. Small Gasoline Engines
- 8. Agricultural Equipment
- 9. Construction Equipment
- 10. Unpaved Roads
- 11. Construction Activity
- 12. Paved Roads
- 13. Dry Cleaning
- 14. Surface Coating
- 15. Petroleum Storage
- 16. Marketing of Petroleum
- 17. Asphalt Paving

Unless otherwise stated, emission factors and procedures discussed in the basic report for the seven outlying counties were applied to the SMSA counties. Allocation of emissions for the 12 old source categories was made proportional to the distribution of emissions by source category in the LAQMP. Procedures for allocation of the new hydrocarbon sources are defined for each category.

RESIDENTIAL FUEL

The results of the fuel use survey showed that 3.149×10^{13} Btu were used for residentail heating in 1975, a reduction of 0.8% from 1973. At the same per capita rate, Floyd County required 0.255 x 10^{13} Btu and Clark County 0.363 x 10^{13} Btu. The fuel use distribution update by fuel type is summarized in Table B-1.

TABLE B-1

<u>1975 ESTIMATED TOTAL RESIDENTIAL FUEL USE</u> <u>BY COUNTY AND FUEL TYPE</u>

COUNTY	NATURAL ⁽¹⁾ GAS (106 ft ³)	LPG (1000 gal)	DISTILLATE ⁽²⁾ OIL (1000 gal)	COAL (tons)	WOOD (tons)
Jefferson	28,285	6,202	10,586	7,628	3,421
Floyd	1,461	3,088	3,892	472	1,189
Clark	1,784	4,585	4,177	150	1,020

(1) As reported by the Louisville Gas and Electric Company and by the Indiana Gas Company.

(2) 1973 fuel oil usage factored by 1.02, as determined by the fuel oil survey.

Emissions were updated using the revised fuel type distribution and new emission factors from AP-42, Revision 6.

Emissions were projected using the same assumptions found in Chapter V except that a split of 10% distillate oil and 90% electric for new hookups was used. The projected fuel type distributions are shown in Tables B-2 through B-4.

1980 ESTIMATED TOTAL RESIDENTIAL FUEL USE

COUNTY	NATURAL ⁽¹⁾ GAS (106 ft3)	LPG (1000 _. gal)	DISTILLATE ⁽²⁾ OIL (1000 gal)	COAL (tons)	WOOD (tons)
Jefferson	28,285	6,202	13,406	6,057	3,681
Floyd	1,461	3,088	4,460	375	1,313
Clark	1,784	4,585	4,893	119	1,167

BY COUNTY AND FUEL TYPE

TABLE B-3

1985 ESTIMATED TOTAL RESIDENTIAL FUEL USE

BY COUNTY AND FUEL TYPE

COUNTY	NATURAL ⁽¹⁾ GAS (10 ⁶ ft ³)	LPG (1000 gal)	DISTILLATE ⁽²⁾ OIL (1000 gal)	COAL (tons)	WOOD (tons)
Jefferson	28,285	6,202	15,185	4,813	3,944
Floyd	1,461	3,088	4,640	298	1,438
Clark	1,784	4,585	5,137	95	1,287

TABLE B-4

1995 ESTIMATED TOTAL RESIDENTIAL FUEL USE

BY COUNTY AND FUEL TYPE

COUNTY	NATURAL ⁽¹⁾ GAS (10 ⁶ ft ³)	LPG (1000 gal)	DISTILLATE ⁽²⁾ OIL (1000 gal)	COAL (tons)	WOOD (tons)
Jefferson	28,285	6,202	18,708	3,036	4,468
Floyd	1,461	3,088	5,021	188	1,703
Clark	1,784	4,585	5,652	60	1,541

(1) As reported by the Louisville Gas and Electric Company and by the Indiana Gas Company.

(2) 1973 fuel oil usage factored by 1.02, as determined by the fuel oil survey.

COMMERCIAL/INSTITUTIONAL FUEL

The results of the fuel survey found a 2.9% decrease in the commercial/ institutional use of natural gas and a 0.3% decrease in the use of distillate oil from 1973 to 1975. A similar 0.3% reduction may be assumed for residual oil usage. The fuel use distribution update by fuel type is summarized in Table B-5.

TABLE B-5

1975 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL						
FUEL USE BY COUNTY AND FUEL TYPE						
		Γ	ſ		_ <u></u>	
COUNTY	NATURAL GAS (10 ⁶ ft ³)	LPG (1000 gal)	DISTILLATE OIL (1000 gal)	RESIDUAL OIL (1000 gal)	COAL (tons)	
Jefferson	18,335	514	22,909	396	17,210	
Floyd	775	151	1,360	20	94	
Clark	1,240	229	3,766	858	150	

Emissions were updated using the revised fuel type distribution and new emission factors from AP-42 Revision 6.

Emissions were projected using the same assumptions found in Chapter VI except that a split of 10% oil and 90% electric for new hookups was used. The projected fuel type distributions are shown in Tables B-6 through B-8.

TABLE B-6

1980 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL

FUEL USE BY COUNTY AND FUEL TYPE

COUNTY	NATURAL GAS (106 ft3)	LPG (1000 gal)	DISTILLATE OIL (1000 gal)	RESIDUAL OIL (1000 gal)	COAL (tons)
Jefferson Floyd	18,335 775	514 151 228	25,925 1,493	444 21	17,210 94
Clark	1,240	229	3,920	889	150

1985 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL

COUNTY	NATURAL GAS (106 ft ³)	LPG (1000 gal)	DISTILLATE OIL (1000 gal)	RESIDUAL OIL (1000 gal)	COAL (tons)
Jefferson	18,335	514	27,599	471	17,210
Floyd	775	151	1,571	22	94
Clark	1,240	229	4,037	915	150

FUEL USE BY COUNTY AND FUEL TYPE

TABLE B-8

1995 ESTIMATED TOTAL COMMERCIAL/INSTITUTIONAL

COUNTY	NATURAL GAS (106 ft ³)	_LPG (1000 gal)	DISTILLATE OIL (1000 gal)	RESIDUAL OIL (1000 gal)	COAL (tons)
Jefferson	18,335	514	31,189	529	17,210
Floyd	775	151	1,737	25	94
Clark	1,240	229	4,288	968	150

FUEL USE BY COUNTY AND FUEL TYPE

OPEN BURNING

Emissions from open burning for Floyd and Clark Counties were updated using revised population estimates and projections. No open burning is permitted in Jefferson County.

HIGHWAY VEHICLES

The SAPOLLUT transportation model utilized for the LAQMP has not been updated since that project was completed. VMT data taken from the report of that project are summarized in Table B-9. It should be noted that the 1973 through 1985 values are linearly interpolated between the 1970 base year and the 1995 projection year.

TA	BLE	B-9

	·	· · · · · · · · · · · · · · · · · · ·				
CLASSIFICATION	1970	1973	1975	1980	1985	1995
Freeway	1059	1315	1486	1913	2339	3193
Arterial	1786	1866	1920	2054	2188	2456
Local	939	1050	1124	1309	1494	1863
TOTAL	3784	4231	4530	5276	6021	7512
GROWTH FACTOR	0.84	0.93	1.00	1.16	1.33	1.66

SAPOLLUT MODEL RESULTS (106 VMT)

An updated estimate of 1975 VMT for the SMSA was provided by KIPDA. This estimate included both the traditional historical data and a 0.3% adjustment for VMT not assigned to the historical data. In addition, suggested vehicle speeds, cold starts, and distribution of VMT among road classes were provided. These KIPDA data are summarized in Table B-10, with VMT for each road classification distributed among vehicle types in accordance with Table X-1.

The VMT split between the two weight categories of light duty gasoline powered trucks was based on the average national weighting distribution by sales of the two categories.

With the computed emission factors discussed in Chapters X and the above traffic data, the 1975 highway vehicle emissions were calculated and summarized in Table B-11.

The Louisville SMSA highway vehicle TSP and SO_2 emissions were distributed to Jefferson County in Kentucky and Clark and Floyd Counties in Indiana in accordance with the distribution of TSP and SO₂ emissions in the previous LAQMP analysis studies, while the HC, CO, and NO_x emissions were distributed in accordance with the SAPOLLUT emissions data.

FREEWAY	ARTERIAL	LOCAL	TOTAL
54	35	25	
10	25	40	
0	25	20	}
90	50	40	
1,046	1,373	780	3,199
176	234	133	543
70	93	53	216
61	81	48	190
16	20	16	52
113	<u> 149</u>	80	342
1,482	1,950	1,110	4,542
	10 0 90 1,046 176 70 61 16 113	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} 10 & 25 & 40 \\ 0 & 25 & 20 \\ 90 & 50 & 40 \\ 1,046 & 1,373 & 780 \\ 176 & 234 & 133 \\ 70 & 93 & 53 \\ 61 & 81 & 48 \\ 16 & 20 & 16 \\ \underline{113} & \underline{149} & \underline{80} \end{array}$

1975 SMSA TRAFFIC DATA

TABLE B-11

1975 LOUISVILLE SMSA HIGHWAY VEHICLE EMISSIONS

LOUISVILLE SMSA	PARTICULATE (tons/yr)			CARBON MONOXIDE	NITROGEN OXIDES
Jefferson	2,817.8	1,556.8	33,745.5	195,179.3	24,874.0
Clark	314.2	173.4	6,035.1	32,330.3	4,606.3
Floyd	117.8	64.5	2,720.0	11,974.2	1,282.4
TOTAL	3,249.8	1,794.7	42,500.6	239,483.8	30,708.7

VMT was projected using the same assumptions found in Chapter X and the results are summarized in Table B-12 through B-14.

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed % Cold Starts (LDGV) % Hot Start (LDGV) % Stabilized (LDGV) LDGA VMT (106) LDGT ₁ VMT (106) LDGT ₂ VMT (10 ⁶) LDDV VMT (10 ⁶) HDGV VMT (10 ⁶) HDDV VMT (10 ⁶) TOTAL	54 10 0 90 1,151 194 77 67 18 <u>124</u> 1,631	35 25 25 50 1,510 257 102 89 22 <u>164</u> 2,144	25 40 20 40 858 146 58 53 18 88 1,221	3,519 597 237 209 58 <u>376</u> 4,996

1980 SMSA TRAFFIC DATA

TABLE B-13

<u>1985 s</u>	MSA	TRAFF	IC	DATA
---------------	-----	-------	----	------

54 10 0 90	35 25 25	25 40 20	
0	-		
	25	20)
90		20	
	50	40	
55	1,648	936	3,839
11	281	160	652
34	112	64	260
73	97	58	228
19	24	19	62
16	179	96	411
8	2,341	1,333	5,452
	84 73 19 <u>36</u> 78	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	FREEWAY	ARTERIAL	LOCAL	TOTAL
Speed	54	35	25	
% Cold Start (LDGV)	10	25	40	
% Hot Start (LDGV)	0	25	20	
% Stabilized (LDGV)	90	50	40	
LDGV VMT (10 ⁶)	1,464	1,922	1,092	4,478
LDGT ₁ VMT (10 ⁶)	246	328	186	760
LDGT, VMT (10 ⁶)	98	130	74	302
LDDV VMT (10 ⁶)	85	113	67	265
HDGV VMT (10 ⁶)	22	28	22	72
HDDV VMT (10^6)	158	209	112	479
TOTAL	2,073	2,730	1,553	6,356

1995 SMSA TRAFFIC DATA

With the projected HC, CO, NO_X , particulate, and the unchanging emission factors discussed in Chapter X and with the projected VMT contained in Table B-12 through B-14, the projected highway vehicle emissions were calculated and summarized in Table B-24 through B-38.

The projected highway emissions were allocated to the subcounty study area using the same allocation techniques discussed for the baseline year.

AIRCRAFT

Emissions from aircraft operating from Staniford and Bowman Field were updated using the 1975 edition of the FAA Air Traffic Activity Report. No change in equipment mix was apparent. The operator of HAP's airport reported little change in operating tempo from 1973 to 1975. The 1975 operating data and emissions are summarized in Table B-15. Projected emissions are expected to follow the growth in FAA Terminal Area Forecasts and are not changed from the LAQMP.

1975 AIRCRAFT OPERATIONS AND EMISSIONS

		,	1	Partic	ulates		Dioxide		Monoxide	1 .	ocarbons		en Oxides
	Operations/ Year	No. of Engines	LTOs	EF (lbs/LTO- eng.)		EF (1bs/LTO- eng.)	Emissions (1bs/yr.)	EF (1b/LTO eng.)	Emissions (lbs/yr.)	EF (1b/LTO- eng.)	Emissions (lbs/yr.)	EF 1b/LTO- eng.)	Emissions (lbs/yr.)
STANDIFORD AIRPORT													
<u>Air Carrier</u>	65,046												
Jumbo Jet		4	0	1.30	0	1.82	0	46.8	0	12.2	0	31.4	0
Long-Range Jet		4	650	1.21	3,146	1.56	4,056	47.4	123,240	41.2	107,120	7.9	20,540
Medium-Range Jet		2.26	27,970	0.41	25,917	1.01	63,844	17.0	1,074,607	4.9	309,740	10.2	644,764
Turbo~Prop		2	3,903	1.10	8,587	0.40	3,122	6.6	51,520	2.9	22,637	2.5	19,515
<u>Air Taxi</u>	5,717			1									
Piston Transport		1.5	953	0.56	800	0.28	400	304.0	434,568	40.7	58,181	0.40	572
Turbo-Prop		2	1,906	0.20	762	0.18	686	3.1	11,817	1.1	4,193	1.2	4,574
Military	6,196]	1										
Piston		1	929	0.28	260	0.14	130	152.0	141,208	20.4	18,952	0.20	186
Jet		2	2,169	0.31	1,345	0.76	3,297	15.1	65,504	9.93	43,076	3.29	14,272
General Aviation	51,167											1	
Businees Jet		2	2,558	0.11	563	0.37	1,893 ·	15.8	80,833	3.6	18,418	1.6	8,186
Terbo-Prop		2	1,279	0.20	512	0.18	461	3.1	7,930	1.1	2,814	1.2	3,070
Piston Transport		2	1,279	0.56	1,433	0.28	716	304.0	777,632	40.7	104,111	0.40	1,023
llelicopter		1	256	0.25	64	0.18	46	5.7	1,459	0.52	133	0.57	146
Piston		1	20,211	0.02	404	0.014		12.2	246,574	0.4	8,084	0.047	950
TOTAL STANDIFORD					43,793		78,934		3,016,892		697,459		717,798

TABLE B-15 (Continued)

1975 AIRCRAFT OPERATIONS AND EMISSIONS

						culates		Dioxide		Monoxide		carbons		en Oxides
		Operations/ Year	Nó. of Engine		EF (1bs/LTO eng.)	- Emissions (lbs/yr.)		Emissions (lbs/yr.)	EF (1bs/LTO- eng.)	Emissions (lbs/yr.)	EF (1b/LTO~ eng.)	Emissions (lbs/yr.)	EF (1b/LTO- eng.)	Emissions (lbs/yr.)
	BOWMAN FIELD													
	Air Carrier	69						1						
	Jumbo Jet		4	0	1.30	0	1.82	0	46.8	0	12.2	0	31.4	0
	Long-Range Jet		4	0	1.21	0	1.56	0	47.4	0	41.2	0	7.9	0
	Medium-Range Jet		: 2.20	5 30	0.41	28	1.01	68	17.0	1,153	4.9	332	10.2	692
	Turbo-Prop	1	2	4	· 1.10	9	0.40	3	6.6	53	2.9	23	2.5	20
٣	Air Taxi	2,134												
12	Piston Transport	i	1.5	356	0.56	299	0.28	150	304.0	162,336	40.7	21,734	0.40	213
	Turbo-Prop		2	711	0.20	284	0.18	256	3.1	4,408	1.1	1,564	1.2	1,706
ļ	<u>Military</u>	1,385							ł					
	Piston		1	138	0.28	39	0.14	19	152.0	20,976	20.4	2,815	0.20	28
	Helicopter	1	1	554	0.25	139	0.18	190	5.7	3,158	0.52	288	0.57	316
	General Aviation	240,463												
	Business Jet		2	12,023	0.11	2,645	0.37	8,897	15.8	379,927	3.6	86,566	1.6	38,474
	Turbo-Prop		2	6,012	0.20	2,405	0.18	2,164	3.1	37,274	1.1	13,226	1.2	14,429
	Piston Transport		2	6,011	0.56	6,732	0.28	3,366	304.0	3,654,688	40.7	489,295	0.40	4,809
	Helicopter		ינ	1,202	0.25	301	0.18	216	5.7	6,851	0.52	625	0.57	685
	Piston		1	94,983	0.02	1,900	0.014	1,330	12.2	1,158,793	0.4	37,993	0.047	4,464
Г	OTAL BOWMAN FIELD					14,781		16,570		5,429,617		654,461		65,836

TABLE B-15 (Continued)

1975 AIRCRAFT OPERATIONS AND EMISSIONS

				Partic	ulates	Sulfur	Dioxide	Carbon M	onoxide	Hydrod	arbons	Nitroge	n Oxides
	Operations/ Year	No, of Engines			Emissions (<u>l</u> bs/yr.)		Emissions (lbs/yr.)	EF (lbs/LTO- eng.)	Emissions (1bs/yr.)		Emissions (lbs/yr.)	EF (1b/LTO- eng.)	Emissions (lbs/yr.)
HAP'S AIRPORT General Aviation	18,250												
Piston		1	9,125	0.02	182	0.014	128	12.2	111,325	0.4	3,650	0.047	429
TOTAL JBFFERSCN COUNTY (tons/yr.)					29.3		47.8		4,223.2		676		391.8
TOTAL CLARK COUNTY (tons/yr.)					0.1		0.1	· 45 .	55.7		1.8		0.2

RAILROAD LOCOMOTIVES

An attempt was made to update emissions from railroad locomotives by obtaining fuel usage from each of the companies operating in Jefferson County. Only the Louisville and Nashville was able to provide definitive information, reporting a 1975 fuel usage of 2717 x 10^3 gallons in the county. This compares with a value of 3179×10^3 gallons estimated in the 1972 inventory and 2146 x 10^3 gallons calculated in the 1973 inventory. From the discussion in Chapter XII, it appears that the 1972 estimate was accurate since there was a decrease of 12.6% in train miles traveled from 1973 to 1975 and a corresponding 14.5% decrease in fuel usage. Fuel usage by other railroads and in Floyd and Clark Counties was determined from ratios of train miles traveled. Totals for all companies are as follow:

> Jefferson County - 3782×10^3 gallons Floyd County - 1006×10^3 gallons Clark County - 1259×10^3 gallons

Emissions are projected to increase in accordance with the growth factors given in Chapter XII.

SMALL GASOLINE ENGINES

Emissions and projections for this source category were updated using revised population estimates.

AGRICULTURAL EQUIPMENT

Emissions from agricultural equipment were updated with the data included in the 1974 Census of Agriculture, Preliminary Report, and with information provided by the U.S. Department of Agriculture county extension agents. A rather sharp decrease in the number of tractors was reported in Jefferson County and a shift from gasoline to diesel tractors in all counties.

The decreasing trend in farm land noted in the LAQMP continued from 1969 to 1974. Consequently, emissions from agricultural equipment are projected to decrease at a compound decay rate of 1.00%/year as suggested in the LAQMP.

B-14

CONSTRUCTION EQUIPMENT

Emissions from this source category were updated using 1975 construction employment estimates from County Business Patterns and the Department of Human Resources and revised emission factors found in Chapter XVI. Such estimates showed a 12% decrease in employment from 1973 to 1975. On the other hand, the Mineral Institute Survey showed a 3% increase in Kentucky and a 4% decrease in Indiana in miscellaneous off-highway diesel. It is believed that the employment figures more accurately reflect the known 1975 downturn in construction.

Based on the 12% reduction in employed, 1975 fuel usage estimates are as follows:

Jefferson County - 11,254,320 gallons Floyd County - 202,400 gallons Clark County - 179,520 gallons

Emissions were projected to increase in accordance with the Jefferson County projected growth in construction employment.

UNPAVED ROADS

Emissions from unpaved roads in Floyd and Clark Counties were updated with revised unpaved road mileage and traffic data provided by the offices of the County Commissioners. The revised estimates, shown in Table B-16, resulted in a substantial decrease in emissions in Floyd County. The emission factor and control efficiency was unchanged from 1973 to 1975.

TABLE B-16

COMPARISON OF 1973 AND 1975 UNPAVED ROAD DATA FOR FLOYD AND CLARK COUNTIES

COINTRY	19	73	19	75
COUNTY	MILES	ADT	MILES	ADT
FLOYD	76	45	35	45
CLARK	203	105	197	117

In Jefferson County the JCAPCA is conducting a comprehensive inventory of unpaved roads and the character of the road surface and traffic. They suggested that the unpaved road source category not be updated for this report.

As in the LAQMP, emissions are projected to remain constant.

CONSTRUCTION ACTIVITY

Since the completion of the 1973 inventory, Supplement 6 to AP-42 was published containing an emission factor for construction operations. This factor, applicable to a semiarid climate, was modified to more adequately represent the climatic and soil conditions in the study area (see Chapter XXIII). Furthermore, a 12% reduction of construction employment was reported for Jefferson County by the Department of Human Resources.

Emissions from construction activity were updated using the revised emission factor of 900 lbs/acre-year, factored by the decrease in construction employment.

Emissions were projected in accordance with the Jefferson County projected growth in construction employment.

PAVED ROADS

Emissions from this source category were updated with the revised three-county VMT estimates provided by KIPDA and the revised emission factors discussed in Chapter XXV. Emissions were projected in accordance with the projected growth in VMT. In both cases, allocation of total VMT to counties was made in accordance with the county distribution determined from the SAPOLLUT traffic model and link specific data from the LAQMP.

DRY CLEANING

This source category was not included in the 1973 emission inventory. A list of dry cleaning establishments in Jefferson County was available from the JCAPCD. Type and amount of solvent and emissions were available from those plants which had been visited and permitted. A telephone survey was conducted to determine the number of remaining establishments which performed cleaning on the premises as opposed to those which were only pick-up

B-16

centers. A total of 95 plants were found to be operating in Jefferson County. Operating and emission data were available for 47 of these. The average hydrocarbon emissions for the permitted plants is summarized in Table B-17.

TABLE B-17

AVERAGE EMISSION DATA

SOLVENT	EMISSION	
TYPE %		(lbs/day-plant)
Perchloroethylene	86	23.2
Stoddard	14	115.7

The average emissions compare favorably with a similar information available from a survey in the Los Angeles metropolitan area of over a thousand plants. It was found there that perchloroethylene plants averaged 30 lbs/day and Stoddard plants, 175 lbs/day.

The average emission rates were assumed to apply to the other 48 plants for which no data were available. Similarly, the averages were applied to the seven establishments in Floyd County and the 13 establishments in Clark County, determined from the survey and telephone follow-up. The resulting emissions are summarized in Table B-18.

TABLE B-18

1975 DRY CLEANING HYDROCARBON EMISSION SUMMARY (tons/year)⁽¹⁾

COUNTY	PERCHLOROETHYLENE	STODDARD	TOTAL
Jefferson	295.7	240.1	535.8
Floyd	21.8	17.7	39.5
Clark	40.5	32.8	73.3

(1) Based on six-day operating week.

The total of 648.6 tons/year compares to a total of 877 tons per year calculated from the factor given in AP-42 of 2 lbs/person-year. It is noted,

however, that the factor is based on an equal split between the two types of solvents.

Emissions from dry cleaning are projected to increase in accordance with population growth.

Emissions were allocated in accordance with the distribution of commercial/ institutional fuel usage emissions.

SURFACE COATING

This source category was not included in the 1973 emission inventory. As in Chapter XXVII, two types of surface coating operations are considered.

Automotive Painting

Automotive painting sales by county resulting from the paint supplies survey are summarized in Table B-19. Resulting emissions are summarized in Table B-20.

TABLE B-19

TYPE OF COATING	VOLUME SOLD (gal/year)				
	JEFFERSON	FLOYD	CLARK		
Enamel	16,877	2,024	3,676		
Lacquer	10,270	1,410	2,328		
Enamel primer	1,082	83	167		
Lacquer primer	6,123	388	798		
Thinner and reducer	47,192	7,345	12,860		

1975 REPORTED AUTOMOTIVE PAINT SALES

TYPE OF COATING		HYDROCARBON EMISSIONS (tons/year)			
TIPE OF COATING	(1bs/ton)	JEFFERSON	FLOYD	CLARK	
Enamel	840	28.7	3.4	6.2	
Lacquer	1,540	34.0	4.7	7.7	
Primer	1,320	22.6	1.5	3.1	
Thinner and reducer	2,000	170.0	26.4	46.3	
Total		255.3	36.0	63.3	

1975 AUTOMOTIVE PAINTING EMISSION SUMMARY

(1) In converting volume units to weight units, the following density values were used:

Enamel:	8.1	lbs/gal
Lacquer:	8.6	lbs/gal
Enamel primer	11.0	lbs/gal
Lacquer primer	9.2	lbs/gal
Thinner and reducer:	7.2	lbs/gal

Trade Paint Application

Emissions from trade paint application were calculated using the factors given in Chapter XXVII. Data and emissions are summarized in Table B-21.

TABLE B-21 TRADE PAINT USAGE AND EMISSIONS

		PAINT (103 ga		1	MISSIONS on s/ year)	
COUNTY	TY POPULATION		WATER	OIL	WATER	TOTAL
Jefferson Floyd	733,212 59,457	847 69	693 56	3,083.1 251.2	154.6 12.5	3,237.7 263.7
Clark	84,595	98	80	356.7	17.9	374.6

Emissions from surface coating operations are projected to increase in accordance with population growth.

Emissions were allocated in accordance with the distribution of population.

PETROLEUM STORAGE

All sources from this category are retained in the point source inventory.

MARKETING OF PETROLEUM

This source category was not included in the 1973 emission inventory.

Sales data obtained from the survey of gasoline distributors is summarized in Table B-22. Resulting emissions are summarized in Table B-23.

TABLE B-22

1975 GASOLINE MARKETING DATA

	THROUGHPUT BY TYPE OF LOADING (10 ³ gal)			
COUNTY	SPLASH LOADING	SUBMERGED LOADING		
Jefferson	1,898	131,485		
Floyd	46	4,948		
Clark	263	9,031		

TABLE B-23

1975 PETROLEUM MARKETING EMISSION SUMMARY

	HYDROCARBON	EMISSIONS (tons/year)	
COUNTY	SPLASH LOADING EF = 24.17 lbs/10 ³ gal	SUBMERGED LOADING EF = 19.97 lbs/10 ³ gal	TOTAL
Jefferson	21.1	1,183.4	1,204.5
Floyd	0.5	44.5	45.0
Clark	2.9	81.3	84.2

Emissions are projected to increase 8% by 1980, 13% by 1985, and 18% by 1995. Emissions were allocated in accordance with service station locations.

ASPHALT PAVING

This source category was not included in the 1973 emission inventory.

The quantity of cutback used in asphalt paving in Jefferson County in 1975, provided by the Department of Transportation and Jefferson County Public Works, is as follows:

Rapid Cure - 266.7 tons, volatile section 24.5% Medium Cure - 151.0 tons, volatile section 19.25%

Indiana highway authorities reported that cutback asphalt has not been used for the last ten years in their jurisdiction. Resulting emissions are summarized in Table B-27. Emissions are projected to increase in accordance with the growth in VMT. Emissions were allocated in accordance with VMT.

AREA SOURCE EMISSION SUMMARY

JI	FFERSON	COUNTY	- PARTICULATES	(tons/year)

JEFFERSON COOL				1985	1007
SOURCE CATEGORY	1973	1975	1980.		1995
	305.8	262.3	252.1	243.9	234.4
Residential Fuel	409.4	254.9	258.2	260.0	263.9
Commercial/Institutional Fuel	0	0	0	0	0
Industrial Fuel	64.7	35.2	38.9	43.0	50.8
On-Site Incineration	680.0	0	0	0	0
Open Burning	2,553.6	2,817.8	2,368.1	2,303.8	2,684.8
Highway Vehicles	2,555.0	29.3	35.0	43.3	59.9
Aircraft	50.1	47.3	61.5	67.6	79.9
Railroad Locomotives	22.2	23.8	28.2	33.5	43.2
Vessels	50.4	12.5	13.4	14.4	16.3
Small Gasoline Engines	13.1	6.7	6.4	6.1	5.5
Agricultural Equipment	166.9	137.3	168.5	178.8	198.7
Construction Equipment	186.0	186.0	204.4	218.4	250.8
Small Point Sources		23.0	24.7	26.7	30.4
Structural Fires	22.3	1.5		1.0	1.0
Wild Forest Fires	1.5	1,681.9		1,681.9	1,681.9
Unpaved Roads	1,681.9	0	0	0	0
Unpaved Airstrips	0	64.0	60.9	57.9	51.8
Tilling Activity	65.3	}		2,992.8	3,327.1
Construction Activity	457.3	2,298.8		1 _	6.7
Wind Blown Dust	6.7	6.7			13,366.4
Paved Roads	4,769.8		0	0	0
Dry Cleaning	-		0	0	0.
Surface Coating	-	1	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0			·
TOTAL	11,536.1	17,436.	4 19,081.	2 19,636.	7 22,353.5

AREA SOURCE EMISSION SUMMARY

JEFFERSON COUNTY - SULFUR DIOXIDE (tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	497.4	503.9	498.4	485.5	485.9
Commercial/Institutional Fuel	703.1	734.2	795.4	829.4	902.4
Industrial Fuel	0	0	0	0	0
On-Site Incineration	17.1	12.5	13.7	15.2	17.9
Open Burning	0	0	0	0	0
Highway Vehicles	839.6	1,556.8	1,711.0	1,868.8	2,177.8
Aircraft	46.3	47.8	56.1	70.1	98.1
Railroad Locomotives	98.0	92.3	120.0	132.0	156.0
Vessels	6.6	7.1	8.2	9.7	12.3
Small Gasoline Engines	23.7-	4.4	4.7	5.1	5.7
Agricultural Equipment	9.0	4.4	4.2	4.0	3.6
Construction Equipment	199.2	175.6	215.5	228.6	254.1
Small Point Sources	61.0	61.0	67.0	71.6	82.2
Structural Fires	0	0	0	0	0
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	. 0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	2,501.0	3,200.0	3,494.2	3,720.0	4,196.0

AREA SOURCE EMISSION SUMMARY

SOURCE CATEGORY	1973	1975	1980.	1985	1995			
Residential Fucl	763.5	761.3	705.4	651.8	606.3			
Commercial/Institutional Fuel	333.7	328.2	335.8	340.1	349.2			
Industrial Fuel	0	0	0	0	0			
On-Site Incineration	25.4	18.6	20.3	22.6	26.6			
Open Burning	2,000.0	0	0	0	0			
Highway Vehicles	325,867.9	195,179.3	160,191.8	109,449.8	85,220.8			
Aircraft	4,075.4	4,223.2	4,990.1	1	8,654.5			
Railroad Locomotives	259.9	245.8	319.5	351.5	415.4			
Vessels	191.6	206.1	238.0	281.6	357.1			
Small Gasoline Engines	18,223.3	3,330.2	3,584.2	3,840.2	4.347.5			
Agricultural Equipment	601.1	230.5	219.2	208.5	188.5			
Construction Equipment	608.8	512.6	629.0	667.4	741.7			
Small Point Sources	10.7	10.7	11.8	12.6	14.4			
Structural Fires	65:5	67.6	72.5	78.4	89.3			
Wild Forest Fires	12.6	12.6	8.4	8.4	8.4			
Unpaved Roads	0	0	0	0	0			
Unpaved Airstrips	0	0	0	0	0			
Tilling Activity	0	0	0	0	0			
Construction Activity	0	0	0	0	0			
Wind Blown Dust	0	0	0	0	0			
Paved Roads	0	0	0	0	0			
Dry Cleaning	-	0	0	0	0			
Surface Coating	-	0	0	0	0			
Petroleum Storage	-	0	0	0	0			
Marketing of Petroleum	-	0	0	0	0			
Asphalt Paving	-	0	0	0	0			
TOTAL	353,039.4	205,126.7	171,326.0		101,019.7			

JEFFERSON COUNTY - CARBON MONOXIDE (tons/year)

AREA SOURCE EMISSION SUMMARY

JEFFERSON COUNTY - HYDROCARBONS (tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	317.9	316.8	311.6	309.2	311.2
Commercial/Institutional Fuel	113.2	111.0	112.5	113.4	115.2
Industrial Fuel	0	0	0	0	0
On-Site Incineration	19.8	14.5	15.9	17.6	20.7
Open Burning	160.0	0	0	0	0
Highway Vehicles	35,067.0	33,745.5	22,797.7	13,193.0	9,945.4
Aircraft	652.3	676.0	798.7	994.3	1,385.3
Railroad Locomotives	188.7	177.8	231.1	254.3	300.5
Vessels	22.4	24.1	27.8	32.9	41.7
Small Gasoline Engines	2,110.3	469.3	505.0	541.1	612.6
Agricultural Equipment	47.8	32.6	31.0	29.5	26.7
Construction Equipment	185.4	164.3	201.6	213.9	237.7
Small Point Sources	2.1	2.1	2.3	2.5	2.8
Structural Fires	5.2	5.4	5.8	6.2	7.1
Wild Forest Fires	2.2	2.2	1.5	1.5	1.5
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	535.8	576.5	617.8	699.8
Surface Costing	-	3,493.0	3,758.5	4,027.4	4,561.9
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	1,204.5	1,300.9	1,361.1	1,421.3
Asphalt Paving	-	94.4	103.8	113.3	132.2
TOTAL	38,594.3	41,069.3	30,782.2	21,829.0	19,823.6

AREA SOURCE EMISSION SUMMARY

IFFFFRSON	COUNTY	_	NTTROGEN	OVIDES	(tone/man)
<u>OBLI BROOM</u>	0000111		REIROOEN	UNIDES	(tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	1,288.3	1,278.5	1,302.8	1,318.3	1,349.9
Commercial/Institutional Fuel	1,451.1	1,418.6	1,453.2	1,472.4	1,513.6
Industrial Fuel	0	0	0	0	0
On-Site Incineration	18.2	13.3	14.6	16.2	19.1
Open Burning	80.0	0	0	0	0
Highway Vehicles	20,707.2	24,874.0	23,306.0	20,662.2	18,026.6
Aircraft	378.1	391.8	462.9	576.3	802.9
Railroad Locomotives	742.5	699.7	909.6	1,000.6	1,182.5
Vessels	77.1	82.9	95.8	113.3	143.7
Small Gasoline Engines	193.2	45.4	48.9	52.4	59.3
Agricultural Equipment	112.6	51.9	49.4	46.9	42.4
Construction Equipment	2,602.6	2,358.9	2,894.4	3,071.3	3,413.3
Small Point Sources	47.3	47.3	52.0	55.5	63.7
Structural Fires	2.6	2.7	2.9	3.1	3.5
Wild Forest Fires	0.4	0.4	0.3	0.3	0.3
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	· 0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	27,701.2	31,265.5	30,592.8	28,388.8	26,620.8

AREA SOURCE EMISSION SUMMARY

		_		-		
FLOYD	COUNTY	<u> </u>	 PA	RTICULAI	ſES	(tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	48.3	28.7	29.4	29.7	31.1
Commercial/Institutional Fuel	15.1	6.2	6.4	6.5	6.6
Industrial Fuel	22.2	24.3	27.0	28.9	33.5
On-Site Incineration	8.7	8.8	10.0	10.9	13.0
Open Burning	41.8	43.4	47.9	52.5	62.1
Highway Vehicles	109.1	117.8	92.9	87.7	102.2
Aircraft	0	0	0	0	0
Railroad Locomotives	13.3	12.6	16.4	12.6	21.3
Vessels	6.2	6.6	7.9	9.4	12.2
Small Gasoline Engines	4.0	1.0	1.1	1.2	1.4
Agricultural Equipment	3.5	4.0	3.8	3.6	3.3
Construction Equipment	3.0	2.5	3.1	3.3	3.6
Small Point Sources	131.0	131.0	147.4	153.4	175.8
Structural Fires	3.2	3.3	3.5	3.8	4.3
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	1,217.1	560.5	560.5	560.5	560.5
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	31.0	30.4	28.9	27.5	24.6
Construction Activity	10.8	61.4	75.3	79.9	88.8
Wind Blown Dust	0	0	0	0	0
Paved Roads	203.8	407.9	448.7	489.5	571.1
Dry Cleaning	-	0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	1,872.1	1,450.4	1,510.2	1,560.9	1,715.4

AREA SOURCE EMISSION SUMMARY

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fucl	89.5	93.9	101.2	101.8	105.1
Commercial/Institutional Fuel	30.7	31.9	33.9	35.5	38.9
Industrial Fuel	53.7	59.4	66.3	71.0	82.6
On-Site Incineration	3.1	3.1	3.6	3.9	4.7
Open Burning	2.6	2.7	3.0	3.3	3.9
Highway Vehicles	35.4	64.5	67.1	71.1	82.9
Aircraft	0	0	0	0	0
Railroad Locomotives	26.0	24.6	32.0	35.2	41.6
Vessels	1.8	1.9	2.2	2.7	3.5
Small Gasoline Engines	2.0	0.4	0.4	0.4	0.5
Agricultural Equipment	2.4	2.7	2.6	2.4	2.2
Construction Equipment	3.6	3.2	3.9	4.2	4.6
Small Point Sources	0	0	0	0	0 -
Structural Fires	0	0	0	0	0
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	. 0	0	0	0	0
Unpaved Airstrips	0	о	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0		0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	0	0	0	o
Surface Coating	-	0	0	_	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0		0	0
Asphalt Paving	-	0	0	0	0
TOTAL	250.8		0	0	
	250.0	288.3	316.2	331.5	370.5

FLOYD COUNTY - SULFUR DIOXIDE (tons/year)

AREA SOURCE EMISSION SUMMARY

SOURCE CATEGORY	1973	1975	1980.	1985	1995	
Residential Fuel	84.6	84.3	85.0	85.8	89.7	
Commercial/Institutional Fuel	11.9	11.8	12.2	12.3	12.8	
Industrial Fuel	7.8	8.6	9.6	10.3	12.0	
On-Site Incineration	35.4	35.4	10.1	10.9	13.2	
Open Burning	221.8	230.6	254.5	278.8	330.2	
Highway Vehicles	13,940.1	11,974.2	9,827.8	6,714.7	5,228.3	
Aircraft	0	0	0	0	0	
Railroad Locomotives	69.4	65.4	85.0	93.5	110.5	
Vessels	53.7	56.7	65.6	80.6	104.4	
Small Gasoline Engines	1,446.4	270.1	298.1	326.5	386.7	
Agricultural Equipment	455.5	435.6	414.3	393.9	356.3	
Construction Equipment	10.9	9.2	11.3	12.0	13.3	
Small Point Sources	0	0	0	0	0	
Structural Fires	9.5	9.8	10.4	11.3	12.8	
Wild Forest Fires	0	0	0	0	0	
Unpaved Roads	· 0	0	0	0	0	
Unpaved Airstrips	0	0	0	0	0	
Tilling Activity	0	0	0	0	0	
Construction Activity	0	0	0	0	0	
Wind Blown Dust	0	0	0	0	0	
Paved Roads	0	0	0	0	0	
Dry Cleaning	-	0	0	0	0	
Surface Coating	-	0	0	0	0	
Petroleum Storage	-	0	0	0	0	
Marketing of Petroleum	-	0	0	0	0	
Asphalt Paving	-	0	0	0	0	
TOTAL	16,347.0	13,191.7	11,083.9	8,030.6	6,670.2	

FLOYD COUNTY - CARBON MONOXIDE (tons/year)

AREA SOURCE EMISSION SUMMARY

<u></u>		ARBONS (COIIS			
SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fucl	55.5	55.3	58.9	62.6	71.0
Commercial/Institutional Fuel	4.0	4.0	4.1	4.1	4.2
Industrial Fuel	4.5	5.0	5.6	5.9	6.9
On-Site Incineration	26.6	26.6	30.9	33.5	40.3
Open Burning	78.3	81.4	89.8	98.4	116.5
Highway Vehicles	1,497.6	2,720.0	1,837.6	1,063.4	801.7
Aircraft	0	0	0	0	0
Railroad Locomotives	50.2	47.3	61.5	67.6	79.9
Vessels	6.3	6.6	7.7	9.5	12.2
Small Gasoline Engines	167.5	38.1	42.0	46.0	54.5
Agricultural Equipment	28.6	35.0	33.3	31.7	28.6
Construction Equipment	3.3	3.0	3.7	3.9	4.3
Small Point Sources	0	0	0	0	0
Structural Fires	0.8	0.8	0.9	1.0	1.1
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning		39.5	43.6	47.8	56.6
Surface Coating	-	299.7	330.9	362.3	429.2
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	45.0	48.6	50.9	53.1
Asphalt Paving		0	0	0	0
TOTAL	1,923.2	3,407.3	2,599.1	1,888.6	1,760.1

FLOYD COUNTY - HYDROCARBONS (tons/year)

AREA SOURCE EMISSION SUMMARY

FLOYD	COUNTY -	NITROGEN	OXIDES	(tons/year)
				/

SOURCE CATEGORY	1973	1975	1980.	1985	19 95	
Residential Fuel	112.2	111.7	117.3	119.4	124.0	
Commercial/Institutional Fuel	64.3	63.2	64.7	65.6	67.5	
Industrial Fuel	135.5	149.9	167.3	179.2	208.4	
On-Site Incineration	3.5	3.5	4.1	4.4	5.3	
Open Burning	15.7	16.3	18.0	19.7	23.3	
Highway Vehicles	884.5	1,228.4	1,150.9	1,020.4	890.2	
Aircraft	0	0	0	0	0	
Railroad Locomotives	197.6	186.1	241.9	266.1	314.5	
Vessels	21.7	22.9	26.5	32.6	42.2	
Small Gasoline Engines	15.3	3.7	4.1	4.5	5.3	
Agricultural Equipment	38.7	41.8	39.8	37.8	34.2	
Construction Equipment	46.8	42.4	52.0	55.2	61.4	
Small Point Sources	0	0	0	0	0	
Structural Fires	0.4	0.4	0.4	0.5	0.5	
Wild Forest Fires	0	0	. 0	0	0	
Unpaved Roads	0	0	0	0	0	
Unpaved Airstrips	0	0	0	0	0	
Tilling Activity	0	0	0	0	0	
Construction Activity	0	0	0	0	0	
Wind Blown Dust	0	0	0	0	0	
Paved Roads	0	0	0	0	0	
Dry Cleaning	-	0	0	0	0	
Surface Coating	-	0	0	0	0	
Petroleum Storage	-	0,	0	0	0	
Marketing of Petroleum	-	0	0	0	0	
Asphalt Paving		0	0	0	0	
TOTAL	1,536.2	1,870.3	1,887.0	1,805.4	1,776.8	

AREA SOURCE EMISSION SUMMARY

CLARK CO	DUNTY -	PARTICULATES	(tons/vear)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	48.5	27.5	29.2	30.2	32.4
Commercial/Institutional Fuel	45.8	15.0	16.4	16.7	17.2
Industrial Fuel	61.2	88.3	124.8	170.1	251.9
On-Site Incineration	12.4	13.6	16.4	19.6	25.6
Open Burning	1,589.5	61.8	70.6	80.0	93.3
Highway Vehicles	273.4	314.2	270.4	265.7	309.7
Aircraft	0.1	0.1	0.1	0.2	0.4
Railroad Locomotives	16.7	15.7	20.4	22.5	26.5
Vessels	20.8	22.3	26.4	31.4	40.5
Small Gasoline Engines	5.7	1.4	1.6	1.8	2.2
Agricultural Equipment	8.5	12.8	12.2	11.6	10.5
Construction Equipment	2.7	2.2	2.7	2.9	3.2
Small Point Sources	61.5	61.5	75.8	85.9	110.3
Structural Fires	3.3	3.6	4.2	4.9	6.2
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	7,585.5	8,202.6	8,202.6	8,202.6	8,202.6
Unpaved Airstrips	2.5	2.7	0	0	0
Tilling Activity	222.8	218.4	207.7	197.5	176.6
Construction Activity	17.3	96.2	118.1	125.3	139.3
Wind Blown Dust	0	0	0	0	0
Paved Roads	510.6	1,022.0	1,124.2	1,226.4	1,430.0
Dry Cleaning	-	0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	10,488.8	10,181.9	10,323.8	10,495.3	0,878.4

AREA SOURCE EMISSION SUMMARY

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	82.6	87.1	99.8	103.6	112.4
Commercial/Institutional Fuel	122.5	138.9	144.0	148.1	156.7
Industrial Fuel	246.9	394.7	593.2	839.5	1,284.3
On-Site Incineration	4.4	4.8	5.8	6.9	9.0
Open Burning	3.7	3.9	4.4	4.9	5.8
Highway Vehicles	89.8	173.4	195.4	215.6	251.2
Aircraft	0.1	0.1	0.1	0.2	0.4
Railroad Locomotives	32.6	30.7	39.9	43.9	92.1
Vessels	6.1 _	6.5	7.6	9.0	11.5
Small Gasoline Engines	2.7	0.5	0.6	0.6	0.8
Agricultural Equipment	5.7	8.7	8.3	7.9	7.1
Construction Equipment	3.2	2.8	3.4	3.6	4.1
Small Point Sources	0	0	0	0	0
Structural Fires	0	0	0	0	0
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
D ry Cleaning	-	0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	600.3	852.1	1,102.5	1,383.8	1,935.4

CLARK COUNTY - SULFUR DIOXIDE (tons/year)

AREA SOURCE EMISSION SUMMARY

CLARK	COUNTY	-	CARBON	MONOXIDE	(tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fucl	70.4	70.1	74.9	78.0	85.4
Commercial/Institutional Fuel	25.2	24.9	25.4	25.8	26.5
Industrial Fuel	35.4	56.6	85.1	120.4	184.1
On-Site Incineration	24.8	27.1	32.7	38.9	50.7
Open Burning	4,816.1	328.1	375.3	414.1	495.8
Highway Vehicles	34,834.8	32,330.3	26,534.8	18,129.7	14,116.3
Aircraft	55.7	55.7	79.8	116.0	188.4
Railroad Locomotives	86.9	81.8	106.3	117.0	138.2
Vessels	179.8	191.6	224.0	265.3	339.0
Small Gasoline Engines	2,061.0	384.2	439.6	485.0	580.7
Agricultural Equipment	1,115.4	1,162.3	1,105.3	1,051.2	950.7
Construction Equipment	9.7	8.2	10.1	10.7	11.9
Small Point Sources	0	0	0	0	0
Structural Fires	9.6	10.5	12.2	14.3	18.0
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	o
Paved Roads	0	0	0	0	0
Dry Cleaning	-	0	0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving	-	0	0	0	0
TOTAL	43,324.8	34,731.4	29,105.5	20,866.4	17,185.7

AREA SOURCE EMISSION SUMMARY

CLARK COUNTY - HYDROCARBONS (tons/year)

SOURCE CATEGORY	1973	1975	1980.	1985	1995
Residential Fuel	48.3	48.1	53.4	57.4	66.2
Commercial/Institutional Fuel	7.7	7.6	7.7	7.7	7.9
Industrial Fuel	11.2	17.9	26.9	38.1	58.3
On-Site Incineration	18.7	20.4	24.6	29.3	38.2
Open Burning	471.6	115.8	132.5	146.2	175.0
Highway Vehicles	3,747.9	6,035.1	4,077.2	2,359.5	1,778.7
Aircraft	1.8	1.8	2.6	3.8	6.2
Railroad Locomotives	62.7	59.2	77.0	84.7	100.0
Vessels	21.0	22.4	26.2	31.0	39.6
Small Gasoline Engines	238.7	54.1	61.9	68.3	81.8
Agricultural Equipment	70.0	65.5	62.3	59.2	53.6
Construction Equipment	3.0	2.6	3.2	3.4	3.8
Small Point Sources	0	0	0	0	0
Structural Fires	0.8	0.9	1.0	1.2	1.5
Wild Forest Fires	0	0	. 0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	О	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	73.3	83.9	92.5	110.8
Surface Coating	-	437.9	501.0	552.6	661.7
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	84.2	90.9	95.1	99.1
Asphalt Paving	-	0	0	0	0
TOTAL	4,703.4	7,046.8	5,232.3	3,630.0	3,282.7

AREA SOURCE EMISSION SUMMARY

CLARK	COUNTY	_	NITROGEN	OXIDES	(tons/	'year)
			وهوا بالتصابية المتعاصية والمتعاوية والم			

SOURCE CATEGORY	· 1973	1975	1980.	1985	1995
Residential Fuel	132.7	131.5	138.6	141.4	147.2
Commercial/Institutional Fuel	145.8	143.3	146.0	148.0	152.4
Industrial Fuel	450.5	720.2	1,082.4	1,531.8	2,343.6
On-Site Incineration	2.5	2.7	3.3	3.9	5.1
Open Burning	202.3	23.2	26.5	29.2	35.0
Highway Vehicles	2,214.6	4,606.3	4,316.0	3,826.3	3,338.3
Aircraft	0.2	0.2	0.3	0.5	0.9
Railroad Locomotives	247.1	232.9	302.8	333.0	393.0
Vessels	64.0	68.2	79.7	94.4	120.7
Small Gasoline Engines	21.9	5.2	6.0	6.6	7.0
Agricultural Equipment	112.2	125.7	119.5	113.7	102.8
Construction Equipment	41.5	37.7	46.3	49.1	54.e
Small Point Sources	0	0	0	0	· 0
Structural Fires	0.4	0.4	0.5	0.6	0.8
Wild Forest Fires	0	0	0	0	0
Unpaved Roads	0	0	0	0	0
Unpaved Airstrips	0	0	0	0	0
Tilling Activity	0	0	0	0	0
Construction Activity	0	0	0	0	0
Wind Blown Dust	0	0	0	0	0
Paved Roads	0	0	0	0	0
Dry Cleaning	-	0	. 0	0	0
Surface Coating	-	0	0	0	0
Petroleum Storage	-	0	0	0	0
Marketing of Petroleum	-	0	0	0	0
Asphalt Paving		0	0	0	0
TOTAL	3,635.7	6,097.5	6,267.9	6,278.5	6,702.

APPENDIX C

TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE

APPENDIX C

TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE

Table C-1 summarizes total hydrocarbon emissions by SIC code for all Kentucky counties except Jefferson County. The data for Jefferson County is not available at this time. Table C-2 summarizes total hydrocarbon emissions by SIC code for Floyd and Jefferson Counties.

TABLE C-1

TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE FOR BULLITT, HARDIN, HENRY, OLDHAM, SHELBY AND SPENCER COUNTIES (TONS/YEAR)

OPERATION	SIC CODE	EMISSIONS
Crushed and Broken Limestone	1422	805.8
Misc. Nonmetallic Minerals Not Elsewhere Classified	1499	8,597.0
Flour and Other Grain Mill Products	2041	52.0
Prepared Feeds and Feed Ingredients for Animals and Foul Not Elsewhere Classified	2048	26.9
Distilled, Rectified, and Blended Liquors	2085	2,722.8
Sawmills and Planing Mills - General	2421	0.1
Wood Pallets and Skids	2448	1.0
Plastic Materials, Synthetic Resins and Non Vulcanizable Elastomers	2821	95.3
Synthetic Rubber (Vulcanized Elastomers)	2822	2.4
Fertilizers, Mixing Only	2875	50.0
Paving Mixtures and Blocks	2951	69.4
Fabricated Rubber Products Not Elsewhere Classified	3069	200.0
Miscellaneous Plastic Products	3079	101.3
Concrete Products, Except Block and Brick	3272	0.3
Ready-Mixed Concrete	3272	88.3
Steel Wire Drawing and Steel Nails and Spikes	3315	41.7

TABLE C-1 (CONT'D.)

TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE FOR BULLITT, HARDIN, HENRY, OLDHAM, SHELBY AND SPENCER COUNTIES (TONS/YEAR)

OPERATION	SIC CODE	EMISSIONS
Primary Production of Aluminum	3334	194.2
Fabricated Metal Products, Not Elsewhere classified	3499	11.1
Conveyors and Conveying Equipment	3535	4.0
Sporting and Athletic Good, Not Elsewhere Classified	3949	1.0
Costime Jewelry, Costume Novelties, Buttons and Miscellaneous Notions,		
Except Precious Metal	3960	1.7
Petroleum Bulk Stations and Terminals	5171	228.5
Grocery Stores	5411	4.5
General Medical and Surgical Hospitals	8062	94.5

TABLE C-2

TOTAL POINT SOURCE HYDROCARBON EMISSIONS BY SIC CODE FOR CLARK AND FLOYD COUNTIES (TONS/YEAR)

OPERATION	SIC CODE	EMISSIONS
Distilled, Rectified and Blended Liquors	2085	1,707
Wood Kitchen Cabinets	2434	735
Hardwood Veneer and Plywood	2435	137
Wood Household Furniture, Except Upholstered	2511	1,640
Industrial Inorganic Chemicals, Not Elsewhere Classified	2819	1
Soap and Other Detergents, Except Specialty Cleaners	2841	5
Explosives	2892	57
Aluminum Extruded Products	3354	111
Electroplating, Plating, Polishing, Anodizine and Coloring	3471	7
Electric Services	4911	215
Refuse Systems	4953	270
Petroleum Bulk Stations and Terminals	5171	146