Findings of Chronic Bioassays at • Champion International Paper Mill, Frenchtown, Montana May 13 - June 12, 1985

by

Del Wayne Ninmol Jim Lazorchakl Denise Link¹ Steven Potts² Mark Kerr³

lwater Management Division State Program Management Branch Water Quality Requirments Section U.S. Environmental Protection Agency Region VIII Denver, Colorado

2Montana Operatons Office U.S. Environmental Protection Agency Helena, Montana

³Environmental Sciences Division Montana Department of Health and Environmental Sciences Helena, Montana

DISCLAIMER

This report has been reviewed by the U.S. Environmental Protection Agency but has not been approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

Thirty-day flow-through bioassays were conducted on the button-up stage of rainbow trout, <u>Salmo gairdneri</u>, using dilutions of waste water from the Champion International Paper Mill near Frenchtown, Montana. A seven-day daphnid, <u>Ceriodaphnia</u> dubia, life-cycle test was conducted on a similar series of dilutions as those used for the trout. In addition, a <u>Ceriodaphnia</u> dubia static-renewal life-cycle test was conducted on samples of Clark Fork River water from nine stations above and below Champion (ambient test).

Test dilutions used in the study and endpoints used as indicators of effects follow. Dilution waters used for each test were from two sources: (1) Clark Fork River water taken above Champion property and (2) unchlorinated well water. For the trout the percentages of waste for each dilution water were 2, 1.5, 1.12, 0.64, 0.36, 0.2 and 0 (control) percent. For the <u>C</u>. <u>dubia</u> test, the series was 4, 2, 1.5, 1.12, 0.64, 0.36, 0.2, and 0 (control) percent. For the ambient test using <u>C</u>. <u>dubia</u> and river water, samples were taken daily at each of nine locations, returned to the laboratory unpreserved and the test organisms transferred daily into the new sample. Endpoints of effects for the trout was mortality and growth measured two ways: weights and lengths. Any other indication of effect was noted. For the tests with <u>C</u>. dubia, mortality and reproduction were used as endpoints.

Mortality of fish in both series of dilution waters and waste was extremely low and no indications of reduced growth could be attributed to increased concentrations of Champion's waste water. No abnormal swimming or feeding behavior, incidences of disease, nor pathology were apparent during or after the test. No evidence was found to indicate that test dilutions were chronically toxic to trout.

Using reproduction as an endpoint of effect, the number of young daphnids produced by each female <u>C</u>. <u>dubia</u> was significantly less in the four percent waste dilution using Clark Fork River water. Control mortality in the dilutions of unchlorinated well water was 60 percent indicating incompatibility with this water.

<u>Ceriodaphnia dubia</u> survived and reproduced in ambient water from nine locations on the Clark Fork River and no indication of toxicity was found at any of the stations. Greatest reproduction was in water taken at Huson, the station immediately below Champion.

ACKNOWLEDGEMENTS

The assistance of the following individuals is gratefully acknowledged. Mr. Bruce Binkley of the Operations Division, National Enforcement Investigations Center (NEIC), Denver, Colorado for driving NEIC's mobile bioassay vehicle to the study site and assisting in the preparation of the laboratory. Mr. Robert Harp, Chief, Assistance Director of Operations (NEIC) for the loan of the vehicle. Ms. Maureen Martin of EPA Region VIII Environmental Services Division for assistance in set-up at the bioassay. Mr. Daniel Potts, Plant Manager of the Stone Container Corporation (formerly Champion International) for his support of the project. Messers Larry Weeks, Bill Henderson and Dick Kulawinski for assisting in the day-to-day activities at the study site such as laboratory support, providing water, electrical power and access to the area. Mr. Tom Pruitt of the U.S. Fish and Wildlife hatchery Creston, Montana for providing the test fish. Finally, Dr. Loren Bahls, Department of Health and Environmental Sciences for providing assistance in locating space, transporting samples, making travel arrangements, contacting managers at the Stone Container Corporation and providing valuable technical assistance. Without his assistance this project would not have been possible.

CONTENTS

bstract_		. ii
cknowled	igements	iii
Intr	oduction	_ 1
	Background of the Study	1
	Request for Assistance	2
	Consideration of Test Procedure and Conditions	23
	Site Description	3
Meth	ods and Materials	. 3
	Procedures	3
	Sampling Dates and Parameters	6
Resu	ilts	9
	Clogged Drain System	9
	Mortality	- 9
	Growth of Fish	- 9 - 9
	Ceriodaphnia Growth and Reproduction in Waste Water	13
	Ceriodaphnia Growth and Reproduction and Below Outfall Analysis of Chemical Constituents	13 17
Disc	russion	18
		- 19
	erature Cited	20
	endices	-
Α.	Outline for Chronic Fish Bioassay: Champion Internatio Mill, Frenchtown, Montana.	mal Pap
в	Means (and Ranges) of Chemical Parameters Measured On-S	ita.

- B. Means (and Ranges) of Chemical Parameters Measured On-Site: Champion International Waste Water Diluted with Unchlorinated Well Water.
- C. Means (and Ranges) of Chemical Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Unchlorinated Well Water.
- D. Means (and Ranges) of Chemical Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Unchlorinated Well Water.

- E. Means (and Ranges) of Chemical Parameters Measured On-Site: Champion International Waste Water Diluted with Clark Fork River Water.
- F. Means (and Ranges) of Chemcial Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Clark Fork River Water.
- G. Means (and Ranges) of Chemical Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Clark Fork River Water.
- H. Organic Analysis Data Sheet Champion Waste 5/17/85.
- I. Organic Analysis Data Sheet Champion Waste 5/31/85.
- J. ICAP Analyses Data Sheets, Champion Waste Water, Well Water, and Clark Fork River Water, collected on 5/17/85 and 5/31/85.

INTRODUCTION


In a letter dated January 9, 1985, the Regional Administrator of EPA's Region VIII received a request for assistance from the Department of Health and Environmental Sciences, State of Montana, for use of a mobile bioassay facility to conduct a long term test using rainbow trout on treated waste water from Champion International Paper Mill.

For some time, there had been public concern about water quality in the lower Clark Fork, River, in particular the long-term impacts from the discharge of treated waste water from Champion International. The question was whether Champion waste water had deleterious effects on the early-life stages of trout inhabiting the Clark Fork River. Results of such a study would aid in conducting a modified discharge permit originally issued by the State of Montana in April 1984. Assistance was requested to conduct long-term chronic bioassays using trout eggs through post hatch.

Background of the Study

The Champion International Paper Mill, formerly Hoemer-Waldorf and recently purchased by the Stone Container Corporation, located at Frenchtown, Montana, began operation in 1957. At startup, mill production of unbleached kraft pulp totalled 250 tons/day (TPD). Since 1957, mill expansions have occured in 1960, 1966, 1970, and 1976; with the current production, a maximum of 2005 TPD unbleached kraft pulp and liner board. At present, Champion waste water receives the equivalent of secondary treatment (aeration) followed by a minimum of 10 days retention. An intricate and convoluted series of retention ponds is shown by diagram in Figure I. Three non-chloro-phenolic biocides are used to treat the paper machine stock systems and the minimum amount of dilution the waste water would receive in the Clark Fork River is 200 parts river water to 1 part waste water. A more detailed summary concerning issues in the Clark Fork follows.

According to the publication, <u>Montana Water Quality 1984</u>, the two largest dischargers to the lower Clark Fork are the City of Missoula and Champion International. Both have been asked to expand their self-monitoring programs to provide data needed by the state to assess water quality impacts. A modified permit, issued in April 1984, allowed Champion to increase its yearly load of suspended solids to the river and to discharge year-round, but only when flows in the river exceed 1,900 cubic feet per second (cfs). Nutrients, heavy metals and suspended solids, expecially organic solids had been issues raised. Concern has been expressed about Champion and the City of Missoula as point sources of nitrogen and phosphorus which may have stimulated undesirable algal growth in downstream reserviors and in Lake Pend Oreille, Idaho. Heavy metals which originate upstream in the Butte mining district, may have been mobilized by lowered dissolved oxygen and lower pH of bottom waters downstream, thereby making them more toxic to fish and aquatic life.

Request for Assistance

Therefore, the request from the State of Montana involved testing the long term effects of wastewater using two options:

- 1. a 30-day test from fertilized trout eggs to hatch, or
- 2. a 60-day test from the eyed-egg stage of a trout through 30 days of growth.

The first option has the advantage of testing at what was believed to be the most sensitive stage of embryological development, the period immediately after fertilization. The second option allowed for measurement of rate of growth and survival, two sensitive endpoints. Because the American Society for Testing and Materials procedure (ASTM, 1985) recommended the eggs should be incubated at 10°C and at extremely low light intensity, the development of eggs using either option was extremely lengthy due to the low temperature. EPA responded to the request for assistance with a workplan outlining an optional approach to address the concerns in the letter of request (Appendix A).

Considerations of Test Procedure and Conditions

The Montana Department of Health and Environmental Sciences requested that tests be conducted on the most sensitive stages of fish inhabiting the Clark Fork River. Specifically, tests were requested using the egg stage of the rainbow trout life cycle. Wastes from the pulp mill lagoon system were to be mixed with dilution water from the Clark Fork River and pumped through a "flow-through" dilution system to test chambers containing trout eggs.

However, information received from Dr. C.E. Warren at Oregan State University (Personal Communication 2-4-85) indicated that the most sensitive stage of a salmonid species exposed to stable unbleached kraft pulp mill waste, was the period from button-up stage to the juvenile stage in the life cycle. Therefore, EPA Region VIII personnel proposed the following tests: (1) rainbow trout exposed to dilutions of waste from the button-up stage through 30 days, and (2) a seven-day <u>Ceriodaphnia dubia</u> life cycle test, exposed to a series of waste dilutions similar to those used in the studies with trout. In addition to the test above, a seven-day <u>Ceriodaphnia</u> life cycle test was used to determine ambient toxic conditions in the Clark Fork River at nine sites above and below Champion International. Each day from May 10 to 16, a grab sample of water from the CLark Fork was transported to the study site at Champion International to be used in the testing.

Site Discription

The Champion International Paper Mill is located about five miles northwest of Missoula, Montana near Frenchtown. The mill and waste ponds are located on the left side of the river (north bank) with some treatment ponds close enough to the river to seep wastes into the river. The mobile laboratory was located on Champion's property next to the River at a power source close to ponds 1A and 2 (Figure 1). Treated waste water was hauled (daily) to the mobile laboratory and mixed with Clark Fork River water for one series of dilutions. A separate set of dilutions was obtained by mixing the waste with unchlorinated well water from wells adjacent to the mobile laboratory.

METHODS AND MATERIALS

Procedures

The following procedures were used as guidance for conducting the test with rainbow trout: ASTM, 1985; Birge and Black, 1981; and Peltier and Weber, 1985. Larval rainbow trout, <u>Salmo gairdneri</u>, were obtained from the U.S. Fish and Wildlife hatchery, Creston, Montana on May 3, 1985 and transported to the mobile laboratory. They were acclimated to and held in unchlorinated well water until testing began on May 13, 1985. During this period of ten days the fish began to actively feed on trout chow and from this stage through the 30 days of testing they were fed a rate of 4% diet (dry weight/fish weight/day) as suggested in the ASTM, draft No. 8 document. Test temperature was 12 + 1.5 C throughout the test period and test dates, May 13 - June 12, 1985. Forty fish were used in each aquarium, resulting in 80 fish per waste dilution.

We used the following methods to test <u>Ceriodaphnia dubia</u>: Mount and Norberg 1984; Horning and Weber 1985; and Hamilton 1984. To begin a test, twelve-hour-old daphnids, one per test container and ten replicates per dilution of Champion International waste water or ambient site water from the Clark Fork River, were used. Each day, for seven consecutive days, the daphnids were transferred into renewed test solutions. On day four, the females began to produced young and within three days and two additional broods, about 30 + daphnids/female daphnid in "control" water are produced. Their diet consisted of a mixture of dried cereal leaves, trout chow and bakers' yeast. For the fish tests, dilutions of Champion's waste water were predetermined to provide the following series using Clark Fork River as dilution: 4/200; 3/200; 2.24/200; 1.28/200; 0.72/200; 0.4/200; and 0/200 (control). A second series of identical dilutions were also tested using unchlorinated well water. This latter series was tested because of the possibility of metals in Clark Fork River Water confounding the results using the Champion waste. The result was a median dilution between 1/200 and 0.72/200 diluter setting in both series of dilutions. In terms of percentages of waste to dilution water, the series were 2, 1.5, 1.12, 0.64, 0.36, 0.2, and 0 (control) percent.

For the <u>Ceriodaphnia</u> tests, the percentages of waste using either the Clark Fork River water or unchlorinated well water were 4, 2, 1.5, 1.12, 0.64, 0.36, 0.2 and 0 (control) percent.

To test ambient conditions in the Clark Fork River with <u>Ceriodaphnia</u>, each day from May 10 to 16, grab samples of water from nine sites on the Clark Fork River were transported to the study site at Champion's. These sites were above and below the plant and the locations are listed in Table 1. Each day test animals were transferred to new solutions (static renewal) and events such as mortality or reproduction were noted and recorded. Table 1. Locations of Sampling Stations on the Clark Fork River, (CFR) May 10-16, 1985.

Station Number	Description
10	CFR Below Milltown Dam
11	CFR Above Missoula WWIP
12	CFR Harper Bridge
13	CFR At Huson (below Champion)
14	CFR At Superior
15	CFR Above Flathead confluence
16	CFR Thompson Falls
17	CFR Below Thompson Falls
18	CFR Below Noxon Dam

Sampling Dates and Parameters

Samples were collected from each of 14 aquaria according to the schedule in Table 2. In some instances, samples were taken from a single replicate. All sample collection, handling and preservation followed the guidelines established in the following: EPA, 1983; Peltier and Weber, 1985. Information regarding sample size, container, perservative and special handling for various parameters to be analyzed is summarized in Table 3. Table 2. Sample Parameters and Frequency Champion International Paper Mill, Frenchtown, Montana

Analysis	Frequency	Lab Location
D.O.	Daily	Mobile Lab
Temp.	Continuous	Mobile Lab
Hardness	Daily	State
Alkalinity	Daily	Mobile Lab
PH	Daily	Mobile Lab
Conductivity or TDS	Weekly	State
		Mobile Bioassay
NH3-N	Daily	State
Dissolvent Organic Carbon	Weekly	State
Total Organic Carbon	Weekly	State
BOD	Weekly	State
Color	Weekly	State
Chlorides	Daily & Weekly	State
Sulfide	Weekly	State
ICAP Metals	6 Samples	Denver-EPA
Organic Priority Pollutants	6 Samples	Denver-EPA

Table 3

Sample Requirements for Chemical Samples Sent to the State and EPA Laboratories

<u>Chemical</u>	Samples Size	Container	Preservative
NH ₃ -N, Total NO ₃ -N NO ₂ -N	l liter	Cubitainer	2ml conc H2SO4
TDS, Conductivity and Hardness	l liter	Cubitainer	Chilled
Priority Pollutant Organics	l quart	Glass Jar	Chilled
ICAP-Metals	l quart	Cubitainer	5ml conc. HNO3

RESULTS

Clogged Drain System

One unfortunate event interrupted an otherwise problem-free study at Champion. On day 12, a drain system evacuating test water from each of the test aquaria, became clogged. As a result, the test dilutions delivered to aquaria, were not drained. The aquaria finally filled and overflowed into the temperature control bath. As this process was occurring, test fish escaped into the bath, and eventually mixed with fish from other aquaria. Consequently, certain data could not be used in the analyses because of increased numbers of fish in two aquaria while most had reduced numbers of fish. As a result, aquaria with the 0.2 percentage wastewater dilutions were not used in the analysis of data.

Mortality

Mortality during the tests was extremely low in both river and well water dilutions. Using a base of 80 fish per dilution, the percentage of deaths was 10% or less in the dilutions of river water; 8.75% or less in the well water dilutions. No fish died in the last nine days in the well water and only one died in the last ten days in the river water dilutions. Approximately half of the fish that died in the first 20 days of the test were recorded as "pinheads" or non-feeding larvae.

Growth of Fish

Means of condition coefficients, determined by dividing the wet weight by the (length)³, are shown in Table 4. Although significant differences in coefficients occurred among several test groups and controls (0.0), there was no relationship between coefficients and dilution of waste water. Based on condition coefficients, significant differences occurred between control and test fish in the 1.12 and 1.5 percent waste water diluted with river water. Also, in waste water diluted with well water, fish were smaller in the 0.64 and 1.5 percent. We note that some fish exposed to dilutions of river water appeared to be healthier (based on condition coefficients) than those in well water; however, the grand average of the two test regimes (all groups in river water vs. those in well water) were the same, i.e. 165.9 mg for river water and 165.8 mg for well water.

Means and 95 percent confidence limits of wet weights of fish are shown in Table 5. These data are provided to address the varying number of fish in a tank with regard to their growth due to overcrowding and competition for food, or effects of behavior because of in an uneven number of fish per tank. Inspection of wet weights again did not show a dose-response effect with increased concentration of Champion waste water, although fish in dilutions of riverwater of 0.36, 0.64, 1.12 and 1.5 weighed significantly less than controls. Interestingly the heaviest fish were the controls in river water, the next heaviest were fish in the 2.0 percent waste water/river dilution. We also noted that the lowest number (33) of fish in any test dilution (2.0 percent of wastewater/river; 1.12 percent dilution wastewater/well), were heavier than those in other dilutions, but these differences were not significant. The grand average of mean weights of all fish in the river water dilutions were 15 percent greater than those in dilutions of well water suggesting that some factor in the well water was not compatible with successful weight gain of the fish.

Table 4

Means (\bar{x}) and 95% Confidence Intervals of Condition Coefficients of Rainbow Trout, Tested in Various Dilutions of Champion International Waste Water.

RIVER WATER				
Percentage Waste water Dilution	Means (x) Condition Coefficient	95% Confidence Interval	Number of Fish Per Dilution	
0.0 0.2 0.36 0.64 1.12 1.5 2.0	173.7 182.7 164.4 160.0 159.0 148.3 173.2	166.9-180.5 176.8-188.7 ² 156.7-172.2 152.5-167.4 154.4-163.6 ³ 142.6-154.1 ³ 168.8-177.6	56 85 66 58 76 48 33	
		WELL WATER	· · · · · · · · · · · · · · · · · · ·	

1 Condition coefficients were calculated by dividing the wet weights of each fish alive at the end of the study by the (length)³, multiplied times 10⁴. This procedure provided a measure of the "health" or "plumpness" of the fish expressed as whole numbers.

 2 Excluded from analysis due to co-mingling of fish; data used in the analysis are from the replicates showing number of fish as > 40 each

³ Significantly different from control fish based on 95% confidence limits.

Percentage Waste Water Dilution	Means (x) Wet Weights (mg)	95% Confidence Interval	Number of Fish Per Dilution
	:	RIVER WATER	
0.0 0.2	909.7 837.6	828.7-990.7 775.6-899.61	85
0.36	742.0	678.9-805.5 ²	66
0.54	666.6	611.2-722.02	58
1.12	732.6	678.7-787.02	76
1.5 2.0	697.3 900.2	649.1-745.5 ² 815.3-985.1	48 33
		WELL WATER	
0.0 0.2 0.36 0.54 1.12 1.5 2.0	675.9 597.8 708.0 673.6 724.0 697.1 612.7	645.5-706.4 567.2-628.41 651.6-764.4 618.1-729.1 645.2-802.8 634.0-760.2 555.5-669.9	49 111 70 74 33 39 49

Means (\overline{x}) and 95% Confidence Intervals of Wet Weights of Rainbow Trout, Tested in Various Dilutions of Champion International Waste Water.

1. Excluded from analysis due to co-mingling of fish; data shown are from the replicates showing total number of fish as > 40 each.

2. Significantly different from control fish based on 95% confidence limits.

Table 5

Ceriodaphnia Growth and Reproduction in Waste Water

Tests with <u>Ceriodaphnia</u> (chronic seven-day static renewal) using waste water and dilutions of <u>well</u> water were not considered acceptable for analysis. Control mortality was 60% in this study, indicating something in the test dilution (well) water affected the survival of daphnids.

Test with the daphnids and wastewater diluted with <u>Clark Fork River</u> water were completed successfully and these data are shown in Table 6. Using the 95% confidence intervals to indicate differences, the number of neonates produced per female was significantly lower in the 4% (8/200) dilution than in controls. We also noted that reproductive success of the 4% dilution-group of daphnids was significantly less than in the 0.2, 0.36, 1.12, 1.5, dilutions as well.

Ceriodaphnia Growth and Reproduction, Above and Below Outfall

Using ambient water from the Clark Fork River sampling stations above and below Champion's outfall as test water, <u>Ceriodaphnia</u> survived and reproduced in water from all locations (Table 7). Survival was 90% and above, and reproduction in water from all stations equalled or exceeded the controls (Table 3). Stations 10, 11, and 12 were considered as "controls" because they were upstream of Champion's outfall. Stations 14 through 18 were considered as "test" stations because they are below Champion. Interestingly, there were no statistical differences among any stations with respect to survival (all greater than 90%), or reproduction (Table 7), except that station 13 (Huson below Champion), reproduction (measured as number of young per female) was significantly greater than all others (Table 7). This difference was significant using data from the 3rd, 4th, or 5th brood releases in the calculations. For example, almost 40 neonates per female were produced on day 7 in water from Huson; whereas between 30 to 34 were produced, on the average, at the other eight stations.

<u></u>			<u></u>
Percentage	Number	Mean	95% Confidence
Waste water	of	Number of	Interval
Dilution	Survivors	Neonates	
		Produced	
		10.6	
0.0	8	10.6	6.5-14.7
0.2	9	9.9	7.2-12.6
0.36	9	10.9	5.8-16.0
0.64	9	6.6	4.2-9.0
1.12	9	12.2	7.2-17.2
1.5	10	10.1	6.6-13.6
2.0	10	9.9	4.9-14.9
4.0	9	3.41	1.0- 5.8

Means (\bar{x}) , Standard Deviations (S.D.) and Confidence Intervals of Ceriodaphnia Reproduction, Tested in Various Dilutions of Champion International Waste water Diluted with Clark Fork River Water

1. Significantly different from controls (0.0) at P 0.05.

Table 6

Table	7
-------	---

Average Number (\bar{x}) of Neonates Produced Per Female Ceriodaphnia in Seven Consecutive Daily Samples of Clark Fork River Water Taken From Nine Stations.

Stat	· · · · · · · · · · · · · · · · · · ·	Number of Surviors	Mean Number of Neonates Produced	95% Confidence Interval
	- Data fro	m Total of Five	Broods -	
10	CFR Below Milltown Dam	10	30.6	26.2-35.0
11	CFR Above Missolua WWIP	10	30.0	28.4-31.6
12	CFR Harper Bridge	9	30.6	27.8-33.4
13	CFR At Huson (below Champion) 10	39.9	35.9-43.91
14	CFR At Superior	9	32.1	30.3-33.9
15	CFR Above Flathead confl.	9	33.8	28.9-38.7
16	CFR Thompson Falls	9	30.2	27.5-32.9
17	CFR Below Thompson Falls	10	30.6	28.1-33.1
18	CFR Below Noxon Dam	10	31.3	28.7-33.9

- Data from Total of Four Broods -

10	CFR Below Milltown Dam	10	29.6	26.3-32.9
11	CFR Above Missoula WWIP	10	30.0	28.4-31.6

12	CFR Harper Bridge	9	29.3	27.3-31.3
13	CFR At Huson (Below Champion)	10	35.4	33.7-37.11
14	CFR At Superior	9	32.1	30.3-33.9
15	CFR Above Flathead Confl.	9	30.0	28.0-32.0
16	CFR Above Thompson Falls	9	29.1	27.5-30.7
17	CFR Below Thompson Falls	10	29.1	27.6-30.6
18	CFR Below Noxon Dam	10	31.3	28.7-33.9
	- Data from 7	rotal of	Three Broods -	
10	CFR Below Milltown Dam	10	21.0	19.4-22.6
11	CFR Above Missoula WWIP	10	20.0	18.9-21.1
12	CFR Harper Bridge	9	10 0	10 = 21 1
		2	19.8	18.5-21.1
13	CFR At Huson (below Champion)	10	23.4	22.5-24.31
13 14	CFR At Huson (below Champion) CFR At Superior			
		10	23.4	22.5-24.31
14	CFR At Superior	10 9	23.4 21.3	22.5-24.31 20.3-22.3
14 15	CFR At Superior CFR Above Flathead confl.	10 9 9	23.4 21.3 19.9	22.5-24.31 20.3-22.3 18.9-20.9
14 15 16	CFR At Superior CFR Above Flathead confl. CFR Above Thompson Falls	10 9 9 9	23.4 21.3 19.9 19.9	22.5-24.3 ¹ 20.3-22.3 18.9-20.9 18.9-20.9

1 Significantly different from other stations, i.e. greater number of neonates produced per female.

Analyses of Chemical Constituents

Summaries of chemical parameters measure during the testing are shown in Appendices B through G. Inspection of these data indicate that characteristics of the final test dilutions were similar among the aquaria with either well water or river water. Total ammonia and test temperatures were virtually identical. The pH was higher in well-water dilutions along with conductivity, calcium, magnesium, and alkalinity. Concentrations of dissolved sulfide was greater in dilutions of river water than well water as were concentrations of dissolved organic carbon and total organic carbon. Concentrations of dissolved oxygen throughout the test aquaria were essentially indentical and well above acceptable lower limits for trout. The decision to deliver compressed air to test aquaria was due to slightly lower dissolved oxygen in dilutions of unoxygenated well water and not the river water.

Analysis of 100 percent Champion waste water, Champion's well water, and the Clark Fork River above Champion's outfall on two different sampling dates did not reveal concentrations of known toxic materials (priority pollutants) (Appendices H and I). Of note were concentrations of natural acids, ketones and alcohols in Champion's wastewater with most of these substances higher in the sample collected on 5/17/85 that the sample collected on 5/31/85.

Analyses of metals by ICAP (Appendix J) on two sampling dates did not show any metals at concentrations believed to be toxic. Of interest was the concentration of aluminum in Champion's waste water of 4860 ug/l in the 5/17/85 sample and 3440 ug/l in the 5/31/85 sample. Freeman and Everhart (1971), found that aluminum salts were slightly soluble at pH of about 7.0 and had little effect in rainbow trout. As the pH was raised, greater amounts of aluminum became dissolved and therefore, more toxic. Likewise, studies of acid precipitation suggest that at lower pH, e.g. 5-6, aluminum is also mobilized and more toxic. Important to consider in the tests at Champion was that the maximum concentrations of aluminum in the test solutions were only two percent of those concentrations shown in the analyses because of the dilution factors.

DISCUSSION

We found no evidence that test dilutions of Champion's waste water were chronically toxic to trout. It was unfortunate that the drain system evacuating the test water caused the mingling of fish, but it should also be understood that after the upset, the fish in their respective test aquaria were continuously exposed to the dilutions of waste water for at least 20 days with no apparent effects in survival or growth. There were no noticeable behavioral changes and no incidences of disease nor pathology associated with the waste water.

The single criterion of effect which appeared to be significant was the reduced number of neonates (young) produced by <u>Ceriodaphnia</u> in the four (4) percent waste diluted with Clark Fork River water, a concentration which is 16 times the current allowable dilution. Also, there was no indication that the Clark Fork River was impaired at Huson (downstream of Champions' discharge) based on a <u>Ceriodaphnia</u> test. In fact, <u>Ceriodaphnia</u> produced more young (daphnid) at this station than at all others.

RECOMMENDATIONS

Recommendations for further testing include additional acute and chronic tests with fish and invertebrates. Acute tests are necessary because they provide data for a better-defined series of dilutions for subsequent chronic tests and provide data for calculating acute and chronic ratios. (Using the data in the present report, there were no LC50 limits of toxicity and no toxicological basis for choosing the two percent dilution as the upper limit.) Recommended dilutions of wastewater in the acute tests could be the series; 100, 75, 56, 32, 18, 10 percent waste and a Clark Fork River Water control. Suggested species could include post button-up rainbow trout; the midge <u>Tanytarsus tentans</u>, and <u>Hyalella azteca</u> both representing benthic forage species; and Ceriodaphnia as a reference species-comparison for earlier tests.

For the chronic test, we recommend an eight-day-growth study with post button-up stage rainbow trout tested in two diluter systems be considered. Because we do not have data from acute tests to aid in setting the range of test dilutions, two options are available. The first would provide two identical series of dilutions and about 160 fish per dilution to provide values of (n) great enough to determine subtle differences. The second option could provide a concurrent series using both diluters and a range of 50, 37.5, 28, 16, 9, 5, 2, 1.5, 1.12, 0.64, 0.36, 0.2 percent plus two Clark Fork water controls. These dilutions are feasible without alterations in the diluter design. By this method, if the acute tests showed that the LC50 was between 35 and 65% dilution for example, then the series should bracket the chronic range. In contrast, by using the present test methodology of a two percent upper dilution, a chronic value may never be determined regardless of the duration of the test. A distinct advantage of an eight-day-growth study with rainbow trout would be the ability to repeat the study within a three to four weeks testing period if an upset occurred.

LITERATURE CITED

ASTM, 1985, Proposed New Standard Guide for Conducting Fish Early Life-Stage Toxicity Tests. Draft. American Society for Testing and Materials. November 1985.

Birge, Wesley J. and Jeffrey A. Black, 1981. In Situ Acute/Chronic Toxicological Monitoring of Industrial Effluents for the NPDES Biomonitoring Program Using Fish and Amphibian Embryo-Larval Stages As Test Organisms. OWEP-82-001 USEPA Office of Water Enforcement and Permits, Washington, D.C. 121 pp.

EPA, 1983, Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. Revised March 1983. EMSL, Office of Research and Development. Cincinnati, Ohio.

Freeman, R.A., and W.H. Everhart 1971. Toxicity of Aluminum Hydroxide Complexes in Neutral and Basic Media to Rainbow Trout. Trans. Am. Fish Soc. 100(4): 644-658.

Hamilton, M.A. 1984. Statistical Analysis of a Seven-Day <u>Ceriodaphnia</u> <u>reticulata</u> Reproductivity Toxicity Test (unpublished manuscript available from M.A. Hamilton, 309 South Sixth, Bozeman, MT 59715).

Horning, W.B. II, and C.I. Weber. 1985. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA/600/4-85/014. EMSL, Office of Research and Development. Cincinnati, Ohio.

Peltier, William H. and Cornelius I. Weber (eds.) 1985. Method for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. 3rd ed. EPA/600/4-85/013. Office of Research and Development, Environmental Monitoring and Support Laboratory, U.S. EPA. Cincinnati, Ohio. 216 pp.

Montana Water Quality. 1984. The 1984 Montana 305(b) Report, October 1984. Water Quality Bureau, Environmental Sciences Division, Department of Health and Environmental Sciences, Helena, Montana 59620.

Mount, D.I. and T.J. Norberg. 1984. A Seven-Day Life-Cycle Cladoceran Toxicity Test. Environmental Toxicology and Chemistry 3(3): 425-434.

Appendix A. Outline for Chronic Fish Bioassay: Champion International Paper Mill, Frenchtown, Montana.

APPENDIX A

Outline for Chronic Fish Bioassay: Champion International Paper Mill, Frenchtown, Montana

Introduction

In a letter dated January 9, 1985, the Regional Administrator (Region VIII) received a request for assistance from the Department of Health and Environmental Sciences, State of Montana for use of a mobile bioassay facility to conduct a long term test using eggs of rainbow trout, on treated wastewater from Champion International paper mill. Assistance was requested to conduct long-term chronic bioassays using trout eggs through post hatch.

For some time, there has been public concern about water quality in the lower Clark Fork River, in particular the long-term impacts from the discharge of treated wastewater from Champion International at Frenchtown. The question that needs resolution is whether the Champion wastewater has discernable effects on the early-life stages of trout inhabiting the Clark Fork River. Results of such a study would aid in the review of a modified discharge permit issued by the State of Montana in April 1984.

Background of the Study

The Champion International Paper Mill, formerly Hoerner-Waldorf, located at Frenchtown, Montana began operation in 1957. At startup, mill production of unbleached kraft pulp totalled 250 tons/day (TPD). Since 1957, mill expansions have occurred in 1960, 1966, 1970, and 1976; with the current production, a maximum of 2005 TPD unbleached kraft pulp and liner board. At present, Champion wastewater receives the equivalent of secondary treatment (aeration) followed by a minimum of 10 days retention. An intricate and convoluted series of retention ponds is shown by diagram in Figure I. Three non-chloro-phenolic biocides are used to treat the paper machine stock systems and the minimum amount of dilution the wastewater would receive in the Clark Fork River is 200 parts river water to 1 part wastewater. A more detailed explanation follows concerning issues in the Clark Fork.

According to the publication, <u>Montana Water Quality 1984</u>, the two largest dischargers to the lower Clark Fork are the City of Missoula and Champion International. Both have been asked to expand their self-monitoring programs to provide data needed by the state to assess water quality impacts. A modified permit, issued in April 1984, allows Champion to increase its yearly load of suspended solids to the river and to discharge year-round, but only when flows in the river exceed 1,900 cubic feet per second (cfs). Nutrients, heavy metals and suspended solids, especially organic solids also are **of** concern. Concern has been expressed about Champion and the City of Missoula as point sources of nitrogen and phosphorus which may stimulate undesirable algal growth in downstream reservoirs and in Lake Pend Oreille, Idaho. Heavy metals which originate upstream in the Butte mining district, may be mobilized by lowered dissolved oxygen and lower pH of bottom waters downstream thereby making them more toxic to fish and aquatic life.

Request for Assistance

The request from the State of Montana involved testing the long term effects of wastewater using two options:

- 1. a 30-day test from fertilized trout eggs to hatch, or
- a 60-day test from the eyed-egg stage of a trout through 30 days of growth.

According to the letter of request, the first option has the advantage of testing at what is believed to be the most sensitive stage of embyological development, the period immediately after fertilization. The second option allows for measurement of rate of growth and survival, two sensitive endpoints. Because the American Society of Testing and Materials Procedure (ASTM) recommends the eggs should be incubated at 12°C and at extremely low light intensity, the development of eggs using either option is extremely lengthy.

Test Procedure and Conditions

The Montana Department of Health and Environmental Sciences has requested that tests be conducted on the most sensitive stages of fish inhabiting the Clark Fork River. Specifically, tests were requested using the egg stage of the rainbow trout life cycle. Wastes from the pulp mill lagoon system are to be mixed with dilution water from the Clark Fork River and pumped through a "flow-through" dilution system to test chambers containing trout eggs. However, information received from Dr. C.E. Warren at Oregon State University (Personal Communication 2-4-85) indicates that the most sensitive stage of a salmonid exposed to stable unbleached kraft pulp mill waste, is the period from button-up stage to the juvenile stage in the life cycle.

Therefore, EPA Region VIII personnel propose the following tests. Rainbow trout, just after the button-up stage (on feed), will be exposed to dilutions of mill waste for approximately 30 days. Waste dilutions will range from 1:10 to 1:1000 with median dilution present at 1:200 dilution of wastewater to dilution water. Major endpoints of the study will be mortality and growth rates of the larvae. Larvae will be fed four times/day at a relatively high rate of food consumption (>4% diet dry weight/fish weight/day) as suggested in the proposed ASTM methods for chronic tests with salmonid fish. Test temperatures will be held at $12^{\circ}C + 1.5^{\circ}$ throughout the test period. The test species will be rainbow trout, <u>Salmo gairdneri</u>. Larval fish will be obtained from the U.S. Fish and Wildlife hatchery located at Creston, Montana. A seven-day Ceriodaphnia life cycle test will be conducted in parallel with the rainbow trout study using samples from the dilutions used in the trout study. In addition a 7-day Ceriodaphnia life cycle test will be used to test ambient stream conditions in the Clak Fork River at eight sites above and below Cham pion International. The locations selected are those in which algal assays are being conducted by EPA/Corvallis as part of the Water Quality Bureau's Lower Clark Fork River Study.

Station Number 11	Location CFR above Missoula WWTP
12	CFR at Harper Bridge (above Champion)
13	CFR at Huson (below Champion)
14	CFR at Superior
15	CFR above Flathead River confluence
16	CFR above Thompson Falls Reservoir
17	CFR below Thompson Falls Dam
18	CFR below Noxon Dam

Note: An additional station (CFR below Milltown Dam) was added at the time of the study.

Project Description

<u>Study Location</u> - The Champion Paper Mill is located about 20 miles northwest of Missoula, Montana near Frenchtown. The mill and waste ponds are located on the left side of the river (north bank) with some ponds close enough to the river to seep wastes into the river. The mobile laboratory will be located on mill property at a power source located upstream of ponds 1A and 2 (Figure 1). Treated wastewater will be hauled (daily) to the mobile laboratory and tested in two ways. Using one diluter system, wastewater will be mixed with Clark Fork River water obtained at the site (upstream of the mill).

In a second separate diluter system, wastewater will be diluted with unchlorinated well water (used for processing at the mill). The well water will be pumped daily to the mobile laboratory. Using two sources of dilution water should aid in the interpretation of results from the trout studies and the wastewater.

<u>Dates of Testing</u> - The test is scheduled from May 4th through June 3rd. Allowing for set-up and breakdown time, we estimate actual on-site time would be from May 1st through June 6th.

Reference Methodologies - All test procedures will follow the EPA "Methods of Measuring the Acute Toxicity of Effluents to Aquatic organisms", 2nd edition and 3rd edition (draft). However, because this is a chronic study, guidance for the the test will be ASTMS "Proposed New Standard Practice for Conducting Fish Early Life-Stage Toxicity Tests (draft No. 8). In addition, methods listed in Birge and Blacks "In Situ Acute/Chronic Toxicological Monitoring of Industrial Effluents for NPDES Biomonitoring Program Using Fish and Amphibian Embryo-Larval Stages as Test Organisms" (EPA Report No. DWEP-82-001), and Short-Term Embryo-Larval Test for Effluent Biomonitoring (Preliminary Draft; available from T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KI 40506. Methods for the <u>Ceriodaphnia</u> testing will be those of Mount and Norberg (1984), with analysis of data following the procedures of Hamilton, M.A. 1984. Statistical Analysis of the Seven-day <u>Ceriodaphnia reticulata</u> Reproductivity Toxicity Test. Contract Order No. <u>J3905 NASX-1</u>, U.S. EPA Duluth, MN.

<u>Sampling Dates and Parameters</u> - Sets of "grab" samples will be collected from each of 14 aquaria according to the schedule in Table 1.

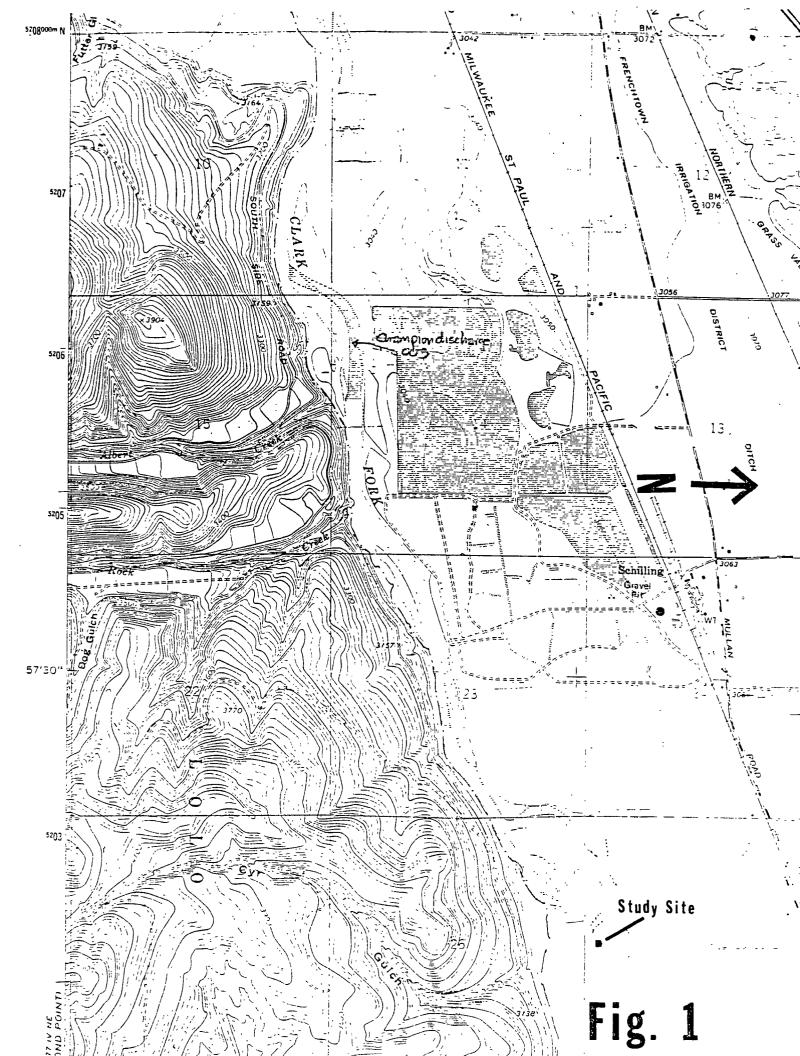


Table 1. Sample Parameters and Frequency Champion International Paper Mill, Frenchtown, Montana

Analysis	Frequency	Lab Location
Dissolved Sulfide D.O. Temp. Hardnessl Alkalinity pH TDSl Conductivity NH3-N Dissolvent Organic Carbon Total Organic Carbon BOD Color Chlorides Sulfide ICAP Metals	Weekly Daily Continuous Twice Weekly Daily Daily Weekly Weekly Weekly Weekly Weekly Weekly Weekly Weekly Weekly Weekly Weekly Weekly Samples	State Mobile Lab Mobile Lab State Mobile Lab Mobile Lab Mobile Bioassay State State State State State State State State State State State State
Organic Priority Pollutants	8 Samples	Denver-EPA

1 - Frequency may be increased due to unusual hydrologic conditions.

Sample Collection, Handling, Preservation

All sample collection, handling and preservation will follow the guidelines established in "a Guide for Field Samples", "Methods for Chemical Analysis of Water and Wastes, and "Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents". Information regarding sample size, container, preservative and special handling for parameters under consideration is summarized in Table 2.

Table 2

Sample Requirements for Chemical Samples Sent to the State and EPA Laboratories

<u>Chemical</u>	Sample Size	Container	Preservative
NH3-N, Total NO3-N NO2-N	l liter	Cubitainer	2ml conc H ₂ SO ₄
TDS or Conductivity and Hardness	l liter	Cubitainer	Chilled
Priority Pollutant Organics	l quart	Glass Jar	Chilled
ICAP-Metals	l quart	Cubitainer	5ml conc. HNO ₃

Quality Assurance

All direct reading bioassay laboratory equipment will be checked for calibration before each series of samples are collected. In addition, each test concentration is run in duplicate and a control (0% waste) is run at the same time. Samples of various waste concentrations from select aquaria will be split with the State lab and the EPA mobile lab. When the mobile laboratory is set-up on site, each diluter will be checked and recalibrated to deliver the required amounts of effluent or dilution water to each aquarium. At the end of the test a representative number of fish from each test conc. will be weighed, measured and checked for abnormalities. The conclusion of an integration of a standard and checked for abnormalities. The conclusion of the standard and checked for abnormalities. Personnel Needs

Personnel from EPA (Bruce Binkley [NEIC], Jim Lazorchak, Denise Link and Del Nimmo [WMD]) will conduct the trout and Ceriodaphnia studies. In addition, Gary Ingman from the State Department of Health and Environmental Sciences will assist in the project and be the primary contact with Champion International.

Record Keeping

Sample tags shall be affixed to each sample container. Tags shall be legible and filled out using ball-point or other permanent marking pen. Information to be entered on each tag shall include:

- 1. Sample identification number
- 2. Date and time for collection
- 3. Name of source, type of sample
- Appropriate field measurements (pH, temperature, etc.)
- Analyses to be performed
 Preservative(s) used
- 7. Size of sample
- 8. Name of person collecting sample
- 9. Witness to the collection, if appropriate

Lab request sheets will accompany all samples. A bound field notebook will be maintained by the survey leader to provide a daily record of events pertaining to the study. All members of the survey party will provide input to the survey leaders field notebook. Notes entered into the field notebook should be kept complete and permanent.

Information regarding calibration of field instrumentation shall be entered into the field notebook or logbook specifically provided for the purpose.

Report

A report of the findings will be prepared upon completion of field and laboratory work. Reports may be prepared as appropriate to call attention to significant findings. Data will be entered into STORET. Del Nimmo will be responsible for data reduction, analyses, and preparing the report. An initial draft report will be prepared within 60 days of completion of all tests.

Any question regarding this plan can be addressed to C. Runas, Del Nimmo (293-1579) or L. Parrish (236-5084)

Cost Estimate

Per diem for (for 6 weeks 2 staff persons) Overtime (40 hrs/person) Misc. Supplies Air Freight Rental Car Gas for the rental car	\$ 3,600 1,300 300 150 500 200
Total	\$ 6,150

Equipment Needs

Table 3 summarizes the equipment and supplies required for the testing.

Table 3

Equipment List - Bioassay

Mobile Bioassay Lab Another Support Vehicle Pumps Hose Extension cords pH meters - 2 plus standards Dissolved Oxgen meters - 2 Thermometers - 2 Tygon Tubing - 1/4", 3/8", 1/2", 5/8" Plastic Buret - Dissolved Oxygen Ring Stand D.O. powder pillows

Balance Weighing boats H₂SO₄ Disposable pipettes Ice chests

Cubitainers HNO3 Specific Conductance Meter Appendix B. Means (and Ranges) of Chemical Parameters Measure On-Site: Champion International Waste Water Diluted with Unchlorinated Well Water.

APPENDIX B

Means (and Ranges) of Chemical Parameters Measured On-Site: Champion International Waste water Diluted with Unchlorinated Well Water.

Percentage Waste Water		ature	рн		Dissolv Oxygen i		Conduct		Alkalin mg/l as	
	RI	R2	RI	R2	RI	R2	Rl	R2	RÌ	R2
0	12 [10.5-13.5]	12 (10-13.3)			7.6 (6.2-10.1)			279 (230-350)	115 (107-127)	124 (103-168)
0.2	12 (10-13.5)	11 (10-13)	7.3 (6.9-8.0)	7.4 (6.9-8.0)	7.5 (6.5-10)	7.2 (6.3-8.1)		285 (240-340)	116 (107–126)	124 (107–170)
).36	12	11	7.4	7.4	7.7	7.3	285	289	116	123
(10.5-13.2)	(10-13)	(7.0-8.2)	(6.9-8.1)	(6.3-9.8)	(6.2-8.2)	(240-340)	(240–345)	(108–127)	()
).64	12	11	7.4	7.4	7.4	7.3	293	293	118	126
	(10-13)	(10-13)	(7.0-8.1)	(7.1-8.1)	(6.2-10)	(6.2-8.0)	(250–355)	(250–350)	(111–127)	(106–170)
1.12	12	11	7.4	7.5	7.6	7.6	303	304	119	127
	(10-13)	(10-13)	(6.9-8.3)	(7.1-8.2)	(6.2-9.5)	(6.2-8.2)	(205–360)	(260–360)	(110-128)	(111–127)
1.5	12	11	7.4	7.5	7.6	7.5	312	312	119	125
	(10.5-13)	(10-13)	(6.9-8.2)	(7.1-8.1)	(6.1-10)	(6.2-8.2)	(270-370)	(270-370)	(111–128)	(109-168)
2.0	12	11	7.4	7.5	7.5	7.2	323	327	122	129
	(10-13)	(10-13)	(7.1-8.1)	(7.1-8.2)	(5.9-10)	(5.9–8.2)	(280-390)	(280-370)	(119–130)	(111-168)

21. Replicate 1
22. Replicate 2

Appendix C. Means (and Ranges) of Chemical Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Unchlorinated Well Water.

APPENDIX C

Percentage	Calcium	Magnesium	Chloride	Conductivity
Waste water	my/l	mg/l	mg/l	umhos/em
0	39.1	10.5	2.9	295
	(37.5-40.6)	10.3-10.8)	(2.0-3.4)	(288–308)
0.2	39.8	10.4	3.2	303
	(37.7-41.5)	(10.0-10.9)	(2.7-3.6)	(292-321)
0.36	38.8	10.4	2.9	302
	(37.2-40.5)	(10.0-10.7)	(2.0-3.6)	(296-312)
0.64	39.0	10.6	3.2	310
	(37.6-40.7)	(10.4-10.8)	(2.1-3.9)	(304–322)
1.12	39.2	10.5	3.7	318
	(38.4-40.9)	(10.2-10.7)	(2.4-4.6)	(314–327)
1.15	39.4	10.5	4.2	330
	(38.6-40.7)	(10.3-10.6)	(3.1-5.0)	(325–337)
2.0	39.3	10.4	4.0	341
	(37.9-41.1)	(10.1-10.7)	(3.3-5.0)	(336-346)

Means (and Ranges) of Chemical Parameters Measured in the Laboratory 1,2: Champion International Waste water Diluted with Unchlorinated Well Water.

1. One Replicate Only

2. State Department of Health and Environmental Sciences

Appendix D. Means (and Ranges) of Chemical Parameters Measure in the Laboratory: Champion International Waste Water Diluted with Unchlorinated Well Water.

APPENDIX D

Percentage Waste water	Total Organic Carbon mg/l	Dissolved Organic Carbon mg/l	Dissolved ³ Sulfide mg/1	Total Ammonia mg/l
0	2.5 . (1.9-3.7)	0.9 (0.8-1.0)	0.05	0.07 (0.05-0.15)
0.2	4.0 (1.5-8.4)	3.6 (1.6-5.6)	0.05	0.17 (0.13-0.17)
0.36	2.2 (1.2-3.0)	1.4 (1.3-1.6)	0.05	0.24 (0.18-0.30)
0.64	2.6 (1.7-3.3)	1.9 (1.9-2.0)	0.05	0.2 (0.11-0.35)
1.12	3.4 (2.4-4.2)	2.2 (2.0-2.5)	0.05	0.15 (0.11-0.22)
1.5	4.4 (2.6-5.7)	2.4 (2.3-2.5)	0.05	0.17 (0.12-0.25)
2.0	4.6 (1.3-8.0)	2.3 (2.2-2.4)	0.05	0.2 (0.016-0.24)

Means (and Ranges) of Chemical Parameters Measured in the Laboratory 1,2: Champion International Waste water Diluted with Unchlorinated Well Water.

1. One Replicate Only

2. State Department of Health and Environmental Sciences

Appendix E. Means (and Ranges) of Chemical Parameters Measured On-Site: Champion International Waste Water Diluted with Clark Fork River Water.

APPENDIX E

Percentay Waste wat		cature	pH		Disso	lved n mg/l	Conduct umhos		Alkali mq/l as	_
nasce wat	Rl	R2	Rl	R2	Rl	R2	Rl		Rl	R2
0	12	12	7.2	7.1	7.9	7.8	135	131	51	50
	(10-13.9)	(10.5-14)	(6.7-7.9)	(6.6-7.9)	(7.0-9.1)	(7.2-9.0)	(100-160)	(100-160)	(45-60)	(51–5
0.2	12	11	7.1	7.1	7.5	7.5	134	134	52	56
	(10-13.5)	(10-12)	(6.6-7.7)	(6.6-7.8)	(6.8–9.0)	(6.8-8.5)	(100-160)	(100-160)	(46-61)	(51-6
0.36	12	12	7.1	7.1	7.8	7.7	140	140	53	57
	(10-14)	(10-13)	(6.5-7.8)	(6.7-7.6)	(6.3-9.1)	(6.3-8.5)	(110-165)	(105–165)	(46-61)	(47–6
0.64	12	12	7.1	7.1	7.4	7.7	147	147	57	58
	(10-13.5	(10-13)	(6.6-7.7)	(6.5-7.8)	(6.5-9.0)	(6.5–9.0)	(115-190)	(110-190)	(48–63)	(53-6
1.12	12	12	7.1	7.1	7.5	7.6	159	160	57	61
	(10-13.5)	(10.5-14)	(6.5-7.8)	(6.5-7.8)	(6.6-9.0)	(6.6-9.0)	(120-200)	(120-202)	(50–63)	(55-6
1.5	12	12	7.1	7.1	7.7	7.4	170	171	60	63
	(10.5-14)	(10.5-13)	(6.5-7.9)	(6.5-7.8)	(6.7-9.1)	(6.5-9.5)	(125-218)	(135-214)	(53–65)	(57–€
2.0	13	12	7.1	7.1	7.7	7.5	185	187	59	65
	(11-14.8)	(11-14)	(6.5-8.0)	(6.5-7.9)	(6.6-9.5)	(6.8–7.2)	(140-227)	(130-230)	(49–68)	(61-7

Means (and Ranges) of Chemical Parameters Measured On-Site: Champion International Waste water Diluted with Clark Fork River Water.

Rl. Replicate 1 R2. Replicate 2

Appendix F. Means (and Ranges) of Chemcial Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Clark Fork River Water.

APPENDIX F

Percentage	Calcium	Magnesium	Chloride	Conductivity
Wastewater	mg/l	mg/l	mg/l	umhos/em
0	17.7	4.0	1.2	134
	(16.4-18.5)	(3.6-4.3)	(0.2-2.0)	(123-140)
0.2	17.7	4.0	1.1	141
	(16.1-18.6)	(3.6-4.4)	(0.8-1.6)	(129-150)
0.36	17.2	4.0	1.6	144
	(15.7-18.4)	(4.0-4.2)	(0.7-2.2)	(135-153)
0.64	17.9	4.1	1.9	164
	(16.7-18.9	(3.7-4.5)	(1.2-2.6)	()
1.12	17.9	4.1	2.3	166
	(16.6-19.0)	(3.7-4.4)	(1.5-2.9)	(153-180)
1.5	18.0	4.0	2.6	177
	(16.7-18.9)	(3.7-4.4)	(1.5-3.3)	(163–199)
2.0	18.1	4.2	2.7	193
	(16.4-19.3)	(4.0-4.5)	(1.8-3.4)	(177-210)

Means (and Ranges) of Chemical Parameters Measured in the Laboratory 1, 2: Champion International Wastewater Diluted with Clark Fork River Water

One Replicate Only
 State Department of Health and Environmental Sciences

Appendix G. Means (and Ranges) of Chemical Parameters Measured in the Laboratory: Champion International Waste Water Diluted with Clark Fork River Water.

APPENDIX G

Percentage Waste water	Total Organic Carbon mg/l	Dissolved Organic Carbon mg/l	Dissolved ³ Sulfide mg/1	Total Ammonia mg/l
0	4.1	2.7	0.05	0.13
	(3.2-5.4)	(2.6–2.8)	(0.05-0.1)	(0.07-0.11)
0.2	4.9	4.1 ⁴	0.03	0.23
	(3.3-7.1)	()	(0.05-0.08)	(0.14-0.40
0.36	5.1	2.9	0.04	0.18
	(4.0-7.8)	(2.0-3.8)	(0.05-0.09)	(0.10-0.32)
0.64	5.0	4.4	0.05	0.19
	(3.9-6.2)	(4.3-4.6)	(0.05-0.10)	(0.08-0.32)
1.12	6.0	5.0	0.05	0.25
	(4.8-7.1)	(4.8–5.3)	(0.05-0.11)	(0.19-0.36)
1.5	6.5	4.6	0.06	0.17
	(5.2-7.8)	(3.7-5.6)	(0.05-0.12)	(0.15-0.19)
2.0	6.3	5.2	0.06	0.13
	(4.1-7.6)	(4.3-6.1)	(0.05-0.12)	(0.09-0.16)

Means (and Ranges) of Chemical Parameters Measured in the Laboratory 1, 2: Champion International Waste water Diluted with Clark Fork River Water.

One Replicate Only
 State Department of Health and Environmental Sciences

3. Less than values (< 0.05) were used in the calculations

as 1/2 (0.05) or 0.025

4. Single value

Appendix H. Organic Analysis Data Sheet - Champion Waste 5/17/85.

Note: Sample was Champion Waste and was logged due to

(43B) 111-91-1 bis (2-chloroethoxy) methane

APPENDIX H

i in	the labo	ratory as Silver Bow						
ac	oncurren	t study.		FA	RN 93			F
		ORGANICS	ANALY	SIS DATA	SHEET	<u>CHAMPION</u> 5-17-	85	-
	N/	USEPA REGION B					- 0 /	
	•	SILVER ROW		_ Case No				-
	-	AQUEOUS		_ QC Rep				<u> </u>
•	Matrix:	ized By: <u>A. CURTIS</u>		_ Contrac	mple Receiv	ed: 5-18-85		
					mple Receiv	eu:		
		SEMIT	OLATILI	e compou	NDS			
		CONCENTRATION		MEDIUM	HIGH (circl	e one)		
		DATE EXTRACTED/	PREPAR	ED:	<u>5-29</u> -	-85		
		DATE ANALYZED		6-10	2-85			
		PERCENT M	OISTURE	<u> </u>				
		CONCIDILUTIO	N FACTO	or:2	200	_		
			~			_		
		(J)				(ug)	D
PP #	CAS	art (cure	le one)	PP #	CAS #		crug	(kg mr)
(21 A)	88-06-2	2, 4.6- trichlorophenol </td <td></td> <td>(528)</td> <td>17-68-3</td> <td>hexachlorobutadiene</td> <td><!--</td--><td></td></td>		(528)	17-68-3	hexachlorobutadiene	</td <td></td>	
(22A)	59-50-7	p-chloro-m-cresol	<u> </u>	(33B)	77-47-4	hexachlorocyclopentadiene	1	
(Z+A)	95-57-8	2- chlorophenol	†	(548)	78-59-1	isopharane		
(31A)	120-83-2	Z,4-dichlorophenol	<u>+</u>	(558)	91-20-3	naphthalene		
(34 A)	105-67-9	2,4-dimethylohenol	 	(368)	98-95-3	nitrobenzene		
(57 A)	88-75-5	2- nitrophenol	<u>†</u>	(61B)	62-75-9	N-nitrosodimethylamine		
(58A)	100-02-7	4-nitrophenol		(62B)	86-30-6	N-nitrosodiphenylamine		
(59A)	51-28-5	2,4-dirutrophenol	<u>+</u>	(638)	621-64-7	N-nitrosod:propylamine		
(60A)	534-52-1	\$,6-dinitro-2-methylphenol	1	(668)	117-\$1-7	bis (2-ethylhexyl) phthalate		
(64A)	87-86-5	pentachlorophenol	1	(678)	85-68-7	benzyl butyl phthalate		
(65A)	108-95-2	phenal	<u> </u>	(618)	84-74-2	di-n-butyl phthalate		
	65-85-0	benzoic acid	<u></u>	(698)	117-84-0	di-n-octyl phthalate		اختخصيدي
	95-48-7	2-methylphenol	—	(70B)	84-66-2	diethyl phthalate		
	108-39-4	4-methylphenol		(71B)	131-11-3	dimethyl phthalate		
	95-95-4	2,4,5-trichlorophenol		(728)	56-55-3	benzo(a)anthracene		
(18)	83-32-9	acenaphthene		(73B)	50-32-8	benzolabyrene		
(5B)	92-87-5	benzidine		(746)	205-99-2	benzo(b)/luoranthene		
(8B)	120-82-1	1,2.4-trichlorobenzene		(758)	207-08-9	benzo(k)fluoranthene		
(98)	118-74-1	hexachlorobenzene		(768)	218-01-9	chrysene		
(12B)	67-72-1	hexachloroethane		(778)	208-96-8	acenaphthylene		
(188)	111-44-4	bis(2-chloroethyl)ether		(718)	120-12-7	-anthracene		
(208)	91-58-7	2-chloronaphthalene		(798)	191-24-2	benzo(ghi)perylene		
(258)	95-50-1	1,2-dichlorobenzene		(\$08)	86-73-7	fluorene		
(268)	541-73-1	1,3-dichlorobenzene		(\$15)	\$5-01-8	phenanthrene		
(278)	106-46-7	1,4-dichlorobenzene		(82B)	33-70-3	dibenzo(a,h)anthracene		
(288)	91-94-1	3, 3'-dichlarobenzidine		(\$3B)	193-39-5	indeno(1,2,3-cd)pyrene		
(35B)	121-14-2	2,4-dinitrotoluene		(\$4B)	129-00-0	pyrene		
(368)	606-20-2	2,6-dinitrotoluene			62-53-3	aniline		
(37B)	122-66-7	1,2-diphenylhydrazine	<u> </u>		100-51-6	benzyi alcohol		
(398)	206-44-0	fluoranthene			106-47-8	4-chloroaniline	<u> </u>	
(408)	7005-72-3	4-chlorophenyl phenyl ether			132-64-9	dibenzofuran		
(418)	101-55-3	4-bromobenyl phenyl ether			91-57-6	2-methylnaphthalene		
(428)	39638-32-9	bis (2-chloroisopropyl) ether			88-74-4	2-nitroaniline	+	
(438)	111-91-1	bis (2-chloroethoxy) methane	\checkmark		99-09-2	3-nitroaniline		

100-01-6

4-nitroaniline

FRN 9371

Environmental Protection Agency, CLP Semple Management Office, P. O. Bak 818, Alexandria, Virginia 22313 703/557-2480

Sample Number CHAMPION WASTE 5-17-85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs					
Concentration		(Circle One)			
Date Extracte	d/Prepared: 5-2	9-85			
Date Analyze	6-10-	85			
Conc/Dil Fac	3.00				
\sim	(Of				
CAS Number		(ug/Lor ug/Kg {Circle One}			
319.84.6	Alpha-BHC	<10			
319-85-7	Beta-BHC				
319-86-8	Deita-8HC				
58-89-9	Gamma-BHC (Lindane)				
76-44-8	Heptachlor				
309-00-2	Aldrin				
1024-57-3	Heptachlor Epoxide				
959-98-8	Endosulfan I				
60-57-1	Dieldrin				
72.55.9	4 4 - DDE				
72-20-8	Endrin				
33213-65-9	Endosulfan II				
72-54-8	4.4.000				
7421.93.4	Endrin Aldehyde				
1031-07 8	Endosulfan Sulfate				
50-29-3	4 4 -DDT				
72-43-5	Methoxychior				
53494.70.5	Endrin Ketone				
57.74.9	Chiordane				
8001-25-2	Toxaphene	NA			
12674-11-2	Aroctor-1016	1			
11104-28-2	Arocior-1221				
11141-16-5	Aroctor-1232				
53469 21.9	Aroclor-1242				
12672-29-6	Aroctor-1248				
11097-69-1	Aroclar-1254				
11096-82-5	Arocior-1260				

- V. = Volume of extract injected (ul)
- Vg. = Volume of water extracted (ml)
- W_g = Weight of sample extracted (g)
- V_t = Volume of total extract (ul)

Form 1

4 84

Form I. (continued).

vironmental Protection Agency, CLP Sample Management Office, Ø Box 818, - Alexandria, Virginia 22313-703/557-2490

FRN 9371 Sample Number CHAMPion WASTE Sheet 5-17-85

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/Dor ug/kg)
1	1[2-(2-METHOXY-1-METHYLETHOXY)-1-	AlBIN	76.53	- 480
2	METHYLETHOXY] -2 - PROPANOL CIOH2204			
	ISOMER OF #1		16.90	145
4.3	METHYLPENTABECANOic Acib		26.82	188
5 .4	ANDROST-16-EN-3-ONE		26.98	99.5
e .5	1-EICOSENE C20 H40 MW 280		30.73	164
7.6	ISOPIMARIC ACIS MW 302		31.30	216.
ə .7	PIMARIC ACIS MW 302		31.77	804
9 .8	SIMILAR TO PIMARIC ACIL MW 302		32.52	1050
10.2	REHYDROABIETIC ACID MW300		32.97	1120
11.10	15-HYBROXY-ANDROST-4-ENE-3, 17-DIONE		33.42	538
12.//	UNRNOWN ACIN MW340		37.75	336
13./2	1-TETRACOSANOL C24 HEOO		34.95	/ 7 ./
+4.13	ERGOST-5-EN-3-01. C28H480 MW 400		41.72	243
15.14	STIGMAST-5-EN-3-OL C29 H50 O MW44		43.65	847
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

NATURAL ACISS, RETONES AND ALCOHOLS.

Note: Sample was Clark Fork River (River at Champion International) and logged in as Silver Bow due to a concurrent study.

FRN 9362

Sample Number	
CHAMPION RIVE	R
5-17-85	

ORGANICS	ANAL YSIS		SHEET
		UNIN	JULEI

Laboratory Names USEPA REGION 8	Case Not
Lab Sample ID Noz SILVER BOW	QC Report No:
Sample Matrixs AQUEOUS	Contract No.:
Data Release Authorized By: A. CURTIS	Date Sample Received: 5-17-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MEDIUM	HIGH (circle one)
DATE EXTRACTED/PREPARED	5-29-85
DATE ANALYZEDI 6-	7-85
PERCENT MOISTURE	
	1000

PP #	CV2		(circle one)	PP 🖉	CAS /		(ci	rcie one)
(21A)	88-06-2	2.4.6 trichlorophenol	<2	(528)	17-68-3	hexachlorobutadiene		. 2
(22A)	59-50-7	p-chloro-m-cresol		(53B)	77-47-4	hexachlorocyclopentadiene		
(24A)	<u>95-57-8</u>	2- chlorophenol		(54B)	78-59-1	isophorone		
(31A)	120-83-2	2.4-dichlorophenol		(558)	91-20-3	naphthalene		
(34A)	105-67-9	2,4-dimethylphenol		(56B)	98-95-3	nitrobenzene		
(57A)	88-75-5	2- nitrophenal		(61B)	62-75-9	N-nitrosodimethylamine		
(58A)	100-02-7	4-nitrophenol		(628)	86-30-6	N-nitrosoduphenylamine		
(59A)	51-28-5	2,4-dirutrophenol	·	(638)	621-64-7	N-nitrosod:propylamine		
(60A)	534-52-1	4,6-dinitro-2-methylphenol		(668)	117-81-7	bis (2-ethylhexyl) phthalate		
(64A)	17-86-5	pentachlorophenol		(678)	85-68-7	benzyl butyl phthalate		
(65A)	108-95-2	phenol		(618)	\$4_74_2	di-n-butyl phthalate		
	65-85-0	benzoic acid		(69B)	117-84-0	di-n-octyl phthalate		
	95-48-7	2-methylphenol		(70B)	84-66-2	diethyl phthalate	¥	,
	108-39-4	8-methylphenal		(718)	131-11-3	dimethyl phthalate	2.0	
	95-95-4	2, 4, 5-trichlorophenol		(72B)	36-55-3	benzo(a)anthracene	< 2	
(18)	83-32-9	acenaphthene		(738)	50-32-8	benzo(a)pyrene	I.	
(58)	92-87-5	benzidine		(74B)	205-99-2	benzolbHluoranthene		
(8B)	120-12-1	1,2,4-trichlorobenzene		(73B)	207-08-9	benzo(k)fluoranthene		
(98)	118-74-1	hexachlorobenzene		(76B)	218-01-9	chrysene		
(12B)	67-72-1	hexachloroethane		(77B)	208-96-8	acenaphthylene		
(188)	111-44-4	bis(2-chloroethyl)ether		(788)	120-12-7	anthracene		<u></u>
(20B)	91-58-7	2-chloronaphthalene		(798)	191-24-2	benzo(ghilperylene		
(258)	95-50-1	1,2-dichlorobenzene		(208)	86-73-7	fluorene		
(26B)	541-73-1	1,3-dichlorobenzene		(118)	15-01-8	phenanthrene		
(Z7B)	106-46-7	1,4-dichlorobenzene		(82B)	33-79-3	dibenzo(a,h)anthracene		
(28B)	91-94-1	3,3'-dichlorobenzidine		(\$3B)	193-39-5	indeno(1,2,3-cd)pyrene		
(35B)	121-14-2	2,4-dinitrotoluene		(\$48)	129-00-0	pyrene		
(368)	606-20-2	2,6-dinitrotoluene			62-53-3	anitine		
(37B)	122-66-7	1,2-diphenylhydrazine			100-51-6	benzyi alcohol		
(39B)	206-44-0	fluoranthene			106-47-8	N-chloroaniline		
(+0B)	7005-72-3	4-chlorophenyl phenyl ether			132-64-9	dibenzofuran		
(418)	101-55-3	4-bromobenyl phenyl ether			91-37-6	2-methylnaphthalene		
(42B)	39638-32-9	bis (2-chloroisopropyl) ether			88-74-4	2-nitroaniline		
(4)B)	111-91-1	bis (2-chloroethoxy) methane	\rightarrow		99-09-2	3-nitroaniline		
					100-01-6	4-nitroaniline		

Environmental Protection Agency, CLP Sample Management Office, P. O. Box 818, Alexandris, Virginia 22313 703/657-2490

FRN 9362 CHAMPion River 5-17-85

Organics Analysis Data Sheet (Page 3)

	Pesticide/PCBs				
Concentration					
Date Extracte		9-85			
Date Analyze	<u>6-7-8</u>	35			
	1000				
Conc Dil Fac	tor:/Cross				
CAS Number		ug/lorug/Kg (Circle One)			
319-84-6	Alpha-BHC	<2			
319-85-7	Вета-ВНС				
319-86-8	Delta-BHC				
58-89-9	Gamma-BHC (Lindane)				
76-44-8	Heptachior				
309-00-2	Aldrin				
1024-57-3	Heptachior Epoxide				
959-98-8	Endosulfan I				
60-57-1	Dieldrin				
72-55-9	4 4-0DE				
72-20-8	Endrin				
33213-65-9	Endosultan II				
72-54-8	4 4'-DDD				
7421-93-4	Endrin Aldenvde				
1031-07-8	Endosulfan Sulfate				
50-29-3	4 4 -DDT				
72-43-5	Methoxychlor				
53494-70-5	Endrin Ketone				
57.74.9	Chiordane	×			
8001-25-2	Toxaphene	NIA			
12574-11-2	Aroctor-1016				
11104-28-2	Aroclor-1221				
11141-16-5	Aroctor-1232				
53469-21-9	Arocior-1242				
12672-29-6	Arocior-1248				
11097-69-1	Arocior-1254	1			
11096-82-5	Arocior-1260	¥			

V₁ = Volume of extract injected (ul)

Vg. = Volume of water extracted (mi)

W_g = Weight of sample extracted (g)

V_t = Volume of total extract (ul)

_____ - v, -V₈ _____ or W₈ _____ _ v, _

Form 1

4 84

Form I. (continued).

Note: Sample was well water at Champion International and was logged in at the laboratory as Silver Bow

due to a concurrent study.

FRN	9363
-----	------

Sample Numb	•
CHAMPION	WELL
5-17-8	5

، (دندد) 2 >

	YSIS DATA SHEET 5-17-85
Laboratory Name: USEPA REGION 8	Case Not
Lab Sample ID No: SILVER BOW	QC Report No:
Sample Matrix: AQUEOUS	Contract No.:
Data Release Authorized By: A. SURTIS	Date Sample Received: 5-17-85

SEMIVOLATELE COMPOUNDS

CONCENTRATION: (LOW MEDIUM HIGH (circle one) DATE EXTRACTED/PREPARED: 5-29-85 6-7-85 DATE ANALYZED PERCENT MOISTURE 1000 CONCIDELUTION FACTOR

P9 /	CAS /		(curcie one)	PP /	CAS #		6
(21A)	88-06-2	2,4,6- trichlorophenol	<2	(528)	\$7-68-3	hexachlorobutadiene	
(22A)	59-50-7	p-chloro-m-cresol		(53B)	77-47-4	hezachlorocyclopentadiene	
(2+A)	95-57-8	2- chlorophenol		(548)	78-59-1	isophorone	
(31A)	120-83-2	2,4-dichlorophenol		(358)	91-20-3	naphthalene	
(34 A)	105-67-9	2,4-dimethylphenol		(36B)	98-95-3	nitrobenzene	
(57A)	88-75-5	2- nitrophenol		(61B)	62-75-9	N-nitrosodimethylamine	
(58A)	100-02-7	4-nitrophenol		(62B)	86-30-6	N-nitrosodiphenylamine	
(59A)	51-28-5	2,4-dinstrophenol	·	<u>(63B)</u>	621-64-7	N-nitrosodipropylamine	
(60A)	534-52-1	4,6-dinitro-2-methylphenol		(66B)	117-81-7	bis (2-ethylhexyl) phthalate	
(64A)	87-86-3	pentachiorophenol		<u>(67B)</u>	15-61-7	benzyl butyl phthalate	
(65A)	108-95-2	phenol		(618)	84-74-2	di-n-butyl phthalate	
	65-85-0	benzoic acid		(69B)	117-84-0	di-n-octyl phthalate	
_	95-48-7	2-methylphenol		(70B)	84-66-2	diethyl phthalate	
	108-39-4	4-methylphenol		(718)	131-11-3	dimethyl phthalate	
	95-95-4	2,4,5-trichlorophenol		(72B)	16-35-3	benzofalanthracene	
(18)	83-32-9	acenaphthene		(73B)	50-32-8	benzola)pyrene	
(5B)	92-87-5	benzidine		(74B)	205-99-2	benzo(b)fluoranthene	
(88)	120-82-1	1,2,4-trichlorobenzene		(73B)	207-08-9	benzo(k)fluoranthene	
(9B)	118-74-1	hexachlorobenzene		(76B)	212-01-9	chrysene	
(12B)	67-72-1	hexachloroethane		(778)	208-96-8	acenaphthylene	
(188)	111-48-8	bis(2-chloroethyl)ether		(718)	120-12-7	anthracene	
(20B)	91-58-7	2-chloronaphthalene		(79B)	191-24-2	benzo(ghi)perylene	
(258)	95-30-1	1,2-dichlorobenzene		(203)	\$6-73-7	fluorene	
(26B)	541-73-1	t,3-dichlorobenzene		(\$15)	85-01-8	phenanthrene	
(278)	106-46-7	1,9-dichlorobenzene		(125)	53-75-3	dibenzola,h)anthracene	
(28B)	91-94-1	3,3'-dichlorobenzidine		(138)	193-39-5	indeno(1,2,3-cd)pyrene	
(35B)	121-14-2	2,4-dinitrotoluene		(\$4B)	129-00-0	pyrene	
(368)	606-20-2	2,6-dinitratoluene			62-53-3	aniline	
(378)	122-66-7	1,2-diphenvlhydrazine			100-51-6	benzyl alcohol	
(39B)	206-44-0	fluoranthene			106-47-8	•-chloroaniline	
(+0B)	7005-72-3	4-chlorophenyl phenyl ether			132-64-9	dibenzofuran	
(418)	101-55-3	4-bromophenyl phenyl ether			91-57-6	2-methylnaphthalene	
(428)	39638-32-9	bis (2-chloroisopropyl) ether			88-74-4	2-nitroaniline	
(438)	111-91-1	bis (2-chloroethoxy) methane	<u> </u>		99-09-2	3-nitroaniline	
					100-01-6	4~nitroaniline	

Environmental Protection Agency, CLP Sample Management Office. P. O. Box 818, Alexandrie, Virginia 22313, 703/557-2490

FRN 9363

ata Sheet 5-17-85

Sample Number

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs						
Concentration	Concentration: Low Medium (Circle One)					
Date Extracte		.9-85				
Date Analyze	d: <u>6-7-8</u>	5				
Cong/Dil Fac	tor:/000					
CAS Number		ug/Lor ug/Kg (Circle One)				
319-84-6	Alpha-BHC	< 2				
319-85-7	Beta-BHC					
319-86-8	Delta-BHC					
58-89-9	Gamma-BHC (Lindane)					
76-44-8	Heptachior					
309-00-2	Aldrin					
1024-57-3	Heptachlor Epoxide					
959-98-8	Endosulfan I					
60-57-1	Dieldrin					
72-55-9	4 4 -DDE					
72-20-8	Endrin					
33213-65-9	Endosulfan II					
72-54-8	4. 4 - ODD					
7421.93.4	Endrin Aldehyde					

1024-57-3	Heptachlor Epoxide	
959-98-8	Endosulfan I	
60-57-1	Dieldrin	
72-55-9	4 4 -DDE	
72-20-8	Endrin	
33213-65-9	Endosulfan II	
72-54-8	4, 4'-000	
7421-93-4	Endrin Aldehyde	
1031-07-8	Endosulfan Sulfate	
50-29-3	4 4-00T	
72-43-5	Methoxychior	
53494.70.5	Endrin Ketone	
57-74-9	Chiordane	V
8001-35-2	Toxaphene	NIA
12674-11-2	Arocior-1016	
11104-28-2	Arocior-1221	
11141-16-5	Aroctor-1232	
53469-21-9	Aroctor-1242	
12672 29.6	Arocior-1248	
11097-69-1	Aroclor-1254	
11096-82-5	Aroctor-1260	$\overline{\mathbf{v}}$

- V₁ = Volume of extract injected (ul)
- V = Volume of water extracted (ml)
- Ws = Weight of sample extracted (g)

V₁ = Volume of total extract (ui)

Form 1

4 84

Form I. (continued).

Appendix I. Organic Analysis Data Sheet - Champion Waste 5/31/85.

Note: Sample was Cłark Fork River water at Champion International and was logged in at the laboratory as Silver Bow due to a concurrent study.

APPENDIX I

FRN 9366

Sample Mumber CHAMPION	
5-31-85	

ORGANICS ANALY	SUS DATA SHEET 5-31-85
Laboratory Names USEPA REGION 8	Case Not
Lab Sample ID No: SILVER BOW	QC Report No:
Sample Matrix AQUEQUS	Contract No.:
Data Release Authorized By: A. CURTIS	Date Sample Received: 5-31-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MEDIUM	HIGH (circle one)
DATE EXTRACTED/PREPARED	6-5-85
DATE ANALYZED: 6-7-	.85
PERCENT MOISTURE	_
	000

P P /	CV2 🕯		er ug/kg (curcle one)	P P /	CAS /		er ug/kg (circle one)
(21A)	88-06-2	2.4.6- trichlorophenol	< 2	(525)	87-68-3	hexachlorobutadiene	< く 2
(22A)	59-50-7	p-chloro-m-cresol		(53B)	77-47-4	hexachlorocyclopentadiene	
(2+A)	95-57-8	2- chlorophenol		(548)	78-59-1	isophorone	
(31A)	120-83-2	2,4-dichlorophenol		(358)	91-20-3	naphthalene	
(34A)	105-67-9	2,4-dimethylphenol		(568)	98-95-3	nitrobenzene	
(57A)	88-75-5	2- nitrophenol		(61B)	62-75-9	N-nitrosodimethylamine	
(58A)	100-02-7	4-nitrophenol		(62B)	86-30-6	N-nitrosoduphenylamine	
(39A)	51-28-5	2,9-dirutrophenol		(638)	621-64-7	N-nitrosod:propylamine	
(60A)	534-52-1	4,6-dinitro-2-methylphenol		(668)	117-81-7	bis (2-ethylhexyl) phthalate	
(64A)	87-86-5	pentachiorophenol		(67B)	\$5-68-7	benzyl butyl phthalate	
(65A)	108-95-2	phenol		(638)	84-74-2	di-n-butyi phthalate	
	63-85-0	benzoic acid		(698)	117-84-0	di-n-octyl phthalate	
	95-48-7	2-methylphenol		(70B)	84-66-2	diethyl phthalate	
	108-39-4	4-methylphenol		(718)	131-11-3	dimethyl phthalate	
	95-95-4	2,4,5-trichlorophenol		(728)	56-55-3	benzo(a)anthracene	
(18)	83-32-9	acenaphthene		(73B)	50-32-8	benzo(a)pyrene	
(5B)	92-87-5	benzidine		(74B)	205-99-2	benzo(b)fluoranthene	
(88)	120-82-1	1,2,4-trichlorobenzene		(758)	207-08-9	benzo(k)fluoranthene	
(9B)	112-74-1	hexachlorobenzene		(76B)	218-01-9	chrysene	
(128)	67-72-1	hexachloroethane		(77B)	208-96-8	acenaphthylene	
(18B)	111-44-4	bis(2-chloroethyl)ether		(718)	120-12-7	anthracene	
(208)	91-58-7	2-chloronaphthalene		(798)	191-24-2	benzo(ghi)perylene	
(258)	95-50-1	1,2-dichlorobenzene		(\$08)	86-73-7	fluorene	
(268)	541-73-1	1,3-dichlorobenzene		(\$15)	85-01-8	phenanthrene	
(278)	106-46-7	1,4-dichlorobenzene		(\$25)	33-70-3	dibenzo(a,h)anthracene	
(28B)	91-94-1	3,3'-dichlorobenzidine		(138)	193-39-5	indeno(1,2,3-cd)pyrene	
(35B)	121-14-2	2,4-dinstrotoluene		(3+8)	129-00-0	pyrene	
(368)	606-20-2	2,6-dinitrotoluene			62-53-3	aniline	
(378)	122-66-7	1,2-diphenylhydrazine			100-51-6	benzyl alcohol	
(39B)	206-14-0	fluoranthene			106-47-8	4-chloroaniline	
(40B)	7005-72-3	A-chlorophenyl phenyl ether		<u> </u>	132-64-9	dibenzofuran	
(418)	101-55-3	4-bromophenyl phenyl ether			91-57-6	2-methylnaphthalene	
(428)	39638-32-9	bis (2-chloroisopropyl) ether			88-74-4	2-nitroaniline	
(438)	111-91-1	bis (2-chloroethoxy) methane	V		99-09-2	3-nitroaniline	
					100-01-6	4-nitroaniline	<u>↓</u>

FRN 9366

Environmental Protection Agency, CLP Semple Management Office, P. Q. Bos 818, Alexandria, Virginia 22313-703/657-2490

Organics Analysis Data Sheet (Page 3)

Sample Number CHAMPION 5-31-85

Pesticide/PCBs Medium (Circle One) Concentration. 6-5-85 Date Extracted/Prepared. . 6-7-85 Date Analyzed. 1000 Cong/Dil Factor: _ Ug/lor ug/Kg (Circle One) CAS Number 319-84-6 Alpha-BHC < 2 319-85-7 Beta-BHC 319-86-8 Detta-BHC 58-89-9 Gamma-BHC (Lindane) 76-44-8 Heptachior 309-00-2 Aldrin 1024-57-3 Heptachior Epoxide 959.98 8 Endosulfan I 60-57 1 Dieldrin 72-55 9 4 4 -DDE 72-20-8 Endrin 33213 65-9 Endosultan II 72-54-8 4 4 DDD 7421-93-4 Endrin Aldenyde 1031-07 8 Endosulfan Sulfate 4 4 -DDT 50-29-3 72-43 5 Methoxychlor 53494-70-5 Endrin Ketone 57.74.9 Chlordane NIA 8001 25 2 Toxaphene 12574-11-2 Aroctor 1016 11104-28-2 Arocior 1221 11141-16-5 Aroctor-1232 53469 21-9 Aroctor-1242 12672-29 6 Arocior-1248 11097 69-1 Arocior-1254 11096 82 5 Arocior-1260

- V, = Volume of extract injected (ul)
- V_a = Volume of water extracted (ml)
- W_e = Weight of sample extracted (g)
- V, = Volume of total extract (ui)

v_s _____ v_i _____ v_i _____ v_i _____ v

Form 1

4 84

Form I. (continued).

Note: Sample Number should have been Champion well water and was identified as Silver Bow due to a concurrent study.

FRN 9369 Sample Number CLARK FORK WELL SHEET 5-31-85

Laboratory Name: USERA REGION 8	Case Nor
Lab Sample ID No: SILVER BOW	QC Report No:
Sample Matrixs AQUEOUS	Contract No.:
Data Release Authorized Bys <u>A. CURTIS</u>	Date Sample Received: 5-3/-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION LOT MEDIUM HIGH (circle one)
DATE EXTRACTED/PREPAREDI
DATE ANALYZED: 6-10-85
PERCENT MOISTURES
CONCIDILUTION FACTOR: 1000

PP #	CAS /		(circle one)
(21A)	88-06-Z	2,4,5- trichlorophenol	<2
(22A)	59-50-7	p-chloro-m-cresol	1
(Z+A)	95-57-8	2- chlorophenol	
(31A)	120-83-2	2.4-dichlorophenol	
(34 A)	105-67-9	2,4-dimethylphenol	
(57A)	88-75-5	2- nitrophenol	
(58A)	100-02-7	-nitrophenol	
(59A)	51-28-5	2,4-dirutrophenol	•
(60A)	534-52-1	+,6-dinitro-2-methybhenol	
(64A)	87-86-5	pentachlorophenol	
(65A)	108-95-2	phenol	
	65-85-0	benzoic acid	
	95-42-7	2-methylphenol	
	108-39-4	4-methylphenal	
	95-95-4	2,4,5-trichlorophenol	
(18)	83-32-9	acenaphthene	
(5B)	92-87-5	benzidine	
(8B)	120-82-1	1,2,4-trichiorobenzene	
(98)	118-74-1	hexachlorobenzene	
(128)	67-72-1	hexachloroethane	
(188)	111-44-4	bis(2-chloroethyi)ether	
(208)	91-58-7	2-chloronaphthalene	
(25B)	95-50-1	1,2-dichlorobenzene	
(268)	541-73-1	1,3-dichlorobenzene	
(27B)	106-46-7	1,9-dichlorobenzene	
(28B)	91-94-1	3,3'-dichlorobenzidine	
(358)	121-14-2	2,8-dinitrotoluene	
(368)	606-20-2	2,6-dinitrotoluene	
(37B)	122-66-7	1,2-diphenvlhydrazine	
(398)	206-+4-0	fluoranthene	
(408)	7005-72-3	4-chlorophenyl phenyl ether	
(418)	101-35-3	4-bromophenyl phenyl ether	
(428)	39638-32-9	bis (2-chloroisopropyl) ether	
(438)	111-91-1	bis (2-chloroethoxy) methane	

			(III)
PP /	CAS /		er ug/kg (circle one)
(328)	\$7-68-3	hexachiorobutadiene	<2
(33B)	77-47-4	hexachlorocyclopentadiene	1
(348)	78-59-1	isophorone	
(358)	91-20-3	naphthalene	
(368)	98-95-3	nitrobenzene	
(618)	62-75-9	N-nitrosodimethylamine	
(628)	86-30-6		
(638)	621-64-7	N-nitrosoduphenylamine	
(668)		N-nitrosodipropylamine	36. [
	117-81-7	bis (2-ethylhexyl) phthalate	<2
(67B)	85-63-7	benzyl butyl phthalate	
(618)	84-74-2	di-n-butyl phthalate	
(698)	117-84-0	di-n-octyl phthalate	
(708)	84-66-2	diethyl phthalate	
(718)	131-11-3	dimethyl phthalate	
(728)	56-55-3	benzolalanthracene	
(73B)	50-32-8	benzola)pyrene	
(74B)	205-99-2	benzo(b)fluoranthene	
(756)	207-08-9	benzolk)fluoranthene	
(76B)	218-01-9	chrysene	
(778)	205-96-8	acenaphthylene	
(718)	120-12-7	-anthracene	
(798)	191-24-2	benzo(ghi)perylene	
(80B)	86-73-7	fluorene	
(\$15)	\$3-01-8	phenanthrene	
(\$25)	53-70-3	dibenzola,hlanthracene	
(\$38)	193-39-5	Indeno(1,2,3-cd)pyrene	
(84B)	129-00-0	pyrene	
	62-33-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-8	4-chloroaniline	
	132-64-9	dibenzoluran	
	91-57-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-Z	3-nitroaniline	
	100-01-6	4-nitroaniline	

Environmental Protection Agency, CLP Sample Management Office, P. O. Bas 818, Alexandria, Virginia 22313 703/657-2490

FRN 9369

Sample Number CLARK FORK WELL 5-31-85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs Concentration: Low Medium (Circle One) 6-5-85 Date Extracted/Prepared: _ -10-85 Date Analyzed. 1000 Conc Dil Factor: (Circle One) CAS Number 319-84-6 Alona-BHC 22 319-85-7 Beta-BHC 319-86-8 Deita-BHC 58-89-9 Gamma-BHC (Lindane) Heptachlor 76.44-8 309-00-2 Aldrin 1024-57-3 Heptachior Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DDE 72-20-8 Endrin 33213-65-9 Endosultan II 72.54.8 4 4'-00D 7421-93-4 Endrin Aldenyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4 .0DT 72-43-5 Methoxychior 53494-70-5 Endrin Ketone 57.74.9 Chiordane Toxaphena NIA 8001-35-2 12674-11-2 Aroctor-1016 11104-28-2 Arocior-1221 11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242 12672-29-6 Arocior-1248 11097-69-1 Arociar-1254 11096-82-5 Arocior-1260

- V₁ = Volume of extract injected (ul)
- V. = Volume of water extracted (ml)
- W_e = Weight of sample extracted (g)
- V₁ = Volume of total extract (ul)

V_s _____ V_t _____ V_t _____ V_t _____ V_t _____

Form 1

4 84

Form I. (continued).

Note: Sample Identification should have read Champion wastewater and reference to Silver Bow was due to a concurrent study.

FRN	9372	

Sample Number	
CHAMPION WA	STE
5-31-85	•

ORGANICS ANALY	rsis data sheet 5-31-85	
Laboratory Names USEPA REGION 8	Case Not	
Lab Sample ID Noz SILVER BOW	QC Report No:	
Sample Matrix: AQUEOUS	Contract No.:	
Data Release Authorized By: A. CURTIS	Date Sample Received: 5-3/-85	_

SEMIVOLATELE COMPOUNDS

CONCENTRATION: LOW MEDIUM HIGH (circle one) DATE EXTRACTED/PREPARED: 5-5-85 DATE ANALYZED: 5-10-85 PERCENT MOISTURE: ______ CONCADILUTION FACTOR: 200

	CAS		(curcle one) <∠	PP /	CAS #	t it basks	(circie one)
(21A)	88-06-2	2,4,5- trichlorophenol	<u> </u>	(528)	\$7-68-3	hexachlorobutadiene	
(22A)	59-50-7	p-chloro-m-cresol	<u></u>	<u>(938)</u>	77-47-4	hexachlorocyclopentadiene	
(24A)	95-57-8	2- chlorophenol		(548)	78-59-1	isophorane	
(31A)	120-83-2	2,0-dichlorophenol		(55B)	91-20-3	naphthalene	
(34A)	105-67-9	2,4-dimethylphenol		<u>(56B)</u>	98-95-3	nitrobenzene	
(57A)	88-75-5	2- nitrophenol	<u> </u>	(61B)	62-75-9	N-nitrosodimethylamine	
(58A)	100-02-7	►nitrophenol		<u>(62B)</u>	86-30-6	N-nitrosodiphenylamine	
(59A)	51-28-5	2,4-dinitrophenol		(638)	621-64-7	N-nitrosodipropylamine	'
(60A)	534-52-1	•,6-dinitro-2-methylphenol		(668)	117-81-7	bis (Z-ethylhexyl) phthalate	
<u>(64A)</u>	17-86-5	pentachlorophenol		<u>(67B)</u>	85-68-7	benzyl butyl phthalate	
(65A)	108-95-2	phenol		(68B)	84-74-2	di-n-butyl phthalate	
<u> </u>	63-85-0	benzoic acid		(69B)	117-84-0	di-n-octyl phthalate	·
	95-48-7	2-methylphenol		(70B)	84-66-2	diethyl phthalate	
	108-39-4	4-methylphenol		(718)	131-11-3	dimethyl phthalate	
_	95-95-4	2,9,5-trichlorophenol		(728)	56-55-3	benzo(a)anthracene	
(1B)	83-32-9	acenaphthene		(738)	50-32-8	benzo(a)pyrene	
(5B)	92-87-5	benzidine		(748)	205-99-2	benzo(b)fluoranthene	
(88)	120-82-1	1,2,4-trichlorobenzene		(758)	207-08-9	benzo(k)fluoranthene	
(98)	118-74-1	hexachlorobenzene		(76B)	218-01-9	chrysene	
(12B)	67-72-1	hexachloroethane		(778)	208-96-8	acenaphthylene	
(18B)	111-40-0	bis(2-chloroethyi)ether		(718)	120-12-7	-anthracene	
(208)	91-58-7	2-chloronaphthalene		· (79B)	191-24-2	benzo(ghi)perylene	
(258)	95-50-1	1,2-dichlorabenzene		(\$CB)	86-73-7	fluorene	
(268)	541-73-1	1,3-dichlorobenzene		(\$15)	85-01-8	phenanthrene	
(278)	106-46-7	i,4-dichlorobenzene		(\$28)	33-70-3	dibenzola,h)anthracene	
(288)	91-94-1	3,3'-dichlorobenzidine		(\$38)	193-39-5	indeno(1,2,3-cd)pyrene	
(35B)	121-14-2	2,4-dinitrotoluene		(\$48)	129-00-0	pyrene	
(36B)	606-20-2	2,6-dinitrotoluene			62-33-3	aniline	
(378)	122-66-7	1,2-diphenylhydrazine			100-51-6	benzyl alcohol	
(398)	206-44-0	fluoranthene			106-47-8	4-chloroaniline	
(408)	7005-72-3	4-chlorophenyl phenyl ether			132-64-9	dibenzofuran	
(415)	101-55-3	4-bromophenyl phenyl ether			91-57-6	2-methyinaphthalene	
(428)	39632-32-9	bis (2-chloroisopropyl) ether			88-74-4	2-nitroaniline	
(438)	111-91-1	bis (2-chloroethoxy) methane			99-09-2	3-nitroaniline	
					100-01-6	4-nitroaniline	

Environmental Protection Agency, CLP Sample Management Office, FRN 9372 P. O. Box 818. Alexandria, Virginia 22313 703/657-2490

Organics Analysis Data Sheet (Page 3)

CHAMPION WASTE 5-31-85 Sample Number

Pesticide/PCBs

Pesticide/PC3s				
Concentration		(Circle One)		
Date Extracte		-85		
Date Analyze	6-10-8	35		
Cone Dil Fac	10r: 200			
CAS		ug/lor ug/kg		
Number		(Circle One)		
319-84-6	Alpha-BHC	X 2		
319-85-7	Beta-BHC			
319-86-8	Delta-8HC			
58-89-9	Gamma-BHC (Lindane)			
76-44-8	Heptachlor			
309-00-2	Aldrin			
1024-57-3	Heptachtor Epoxide			
959-98-8	Endosulfan I			
60-57-1	Dieldrin			
72-55-9	4 4 - ODE			
72-20-8	Endrin			
33213-65-9	Endosulfan II			
72-54-8	4, 4-000			
7421.93.4	Endrin Aldehyde			
1031-07-8	Endosulfan Sulfate			
50-29-3	4 4-00T			
72-43-5	Methoxychlar			
53494-70-5	Endrin Ketone			
57-74-9	Chiordane	\checkmark		
8001-25-2	Toxaphene	NA		
12674-11-2	Arocior-1016	1		
11104-28-2	Arocior-1221			
11141-16-5	Aroctor-1232			
53469-21-9	Aroclor-1242			
12672-29-6	Arocior-1248			
11097-69-1	Aroclor-1254			
11096-82-5	Aroctor-1260			

- V, = Volume of extract injected (ul)
- V_ = Volume of water extracted (ml)
- W_a = Weight of sample extracted (g)
- V_t = Volume of total extract (ul)

_____ or W_s _____ V₁ _ V. ____

Form 1

4 84

Form I. (continued).

varonmental Protection Agency, CLP Sample Management Office, O. Bex 818, . Alexandria, Virginia 22313 703/557 2490

FRN 9372 Sample Number CHAMPION WASTE Sheet 5-31-85

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RL or Scan Number	Estimated Copcentration (ug/Lor ug/kg)			
1	1-[2-(2-METHOXY-1-METHYLETHOXY)-	AIRIN	76.58	547			
2	1-METHYLETHOXY7-2-PROPANOL CIOH2294						
3	ISOMER OF #1		16.93	190			
4	METHYLPENTALECANOIC ACID		26-78	11.6			
5	ANDROST-16-EN-3-ONE		26.98	62.6			
8	1-EICOSENE COOH40 MW 280		30.68	94.6			
7	ISOPIMARIC ACID MW 302		31.22	155			
8	PIMARIC ACIA MW 302		31.65	375			
9	SIMILAR TO PIMARIC ACID MW302		32.37	570			
10	BEHYBROABIETIC ACID MW 300		32.83	905			
11	15-HYBROXY-ANDROST-4-ENE-3, 17-DIONE		33.28	340			
12	UNKNOWN Acis MW 340		33.65	285			
13	1-TETRACOSANOL C24H500		34.90	160 -			
14	ERGOST-5-EN-3-OL CABH480 MW400		41.88	194			
15	STIGMAST-5-EN-3-OL C29 HOO MW 414	↓	43.57	695			
16							
17							
18				[
19			···				
20							
21							
22							
23							
24							
25			L				
26				l			
27							
28							
29							
30							

NATURAL ACÍDS, KETONES + ALCOHOLS.

.

Appendix J. ICAP Analyses Data Sheets, Champion Waste Water, Well Water, and Clark Fork River Water, collected on 5/17/85 and 5/31/85.

ENVIRONMENTAL PROTECTION AGENCY APPENDIX J REGION VIII, DEN 3, COLORADO																
	PROJECT NAME LABORATORY SERVICES REQUEST PROJECT NAME PROJECT CODE SAMPLES COLL. BY DATE															
	SAMPLES RECEIVED A	المعطم	M. Accendens							DATA REVIEWED BY						
	STATION CODE		Se.	ples In	un	. 5/3		25 -7		· · · · · · · · · · · · · · · · · · ·			÷	i		
	SAMPLE COLL. TIME	1		•			ľ	,		111	,	11-1-5				
VET INITIALS	STATION DESCRIPTION Junich, Vielbeharty AND REMARKS Chuillet I.C.M.D. S.M.S. MND; PACET		Chuengion Unote		Welf ichtin		Clarite Jacker Alissoula Starty		las june.		(Clark Fak)					
	PACIE			<u>a-11</u>	/ (51	a-4	Messoula Sta-Mg-t.		7.4							
	CODE	PARAMETER														
		oul Pollulatta	\times	'	\times		$\left \right\rangle$		\times							
·	J-CHP		\times		\geq	-	X		Ύ		. /		•			
<u> </u>		. Ag light		15		15	 .	1.5		1.5		15		2.0	<u>. </u>	
		<u> </u>		3440		230		194		230		20		1 Caro		
		As		6		15		25		15		15		,		
	· · · · · · · · · · · · · · · · · · ·	Bq		171		167		68		171		58		; .		
		BO		L10		410		110		110		1.10		120		
		<u> </u>		15		45		15		1.5		15		<u></u>		
	<u> </u>	(0		- 15		15		45		1.5		4.5		t an an		
		<u>(r</u>		13		1.5		4.5%		25		25				
		Cu		15		15		5		1. 5		1.5		r ,		
		Fe		434		110		230		110		40		Ceres .		
		Min		619		15		31		15	┃┃	11		720		
		<u> </u>		1-10		110	 	210		140		1.10				
		<u> </u>		1-30		130	 	130		770		$C^{-}c$, • · · ·		
	<u></u>	Fb		230		130		<u> 4. 20</u>		2.0	<u> </u>			1.5		

All results in mg/1 unless otherwise indicated, heavy metals in ug/1, pH in unite, turbidity in JTU, specific conductance in ju mhos/cm, as per STORET. * GPO: 1979-680-570

R8EPA-012 (Rev. 11-82)

	REGION VIII, DENVER, COLORADO LABORATORY SERVICES REQUEST PROJECT NAME PROJECT CODE SAMPLES COLL BY_DINK_ DATE													2			
	PROJECT NAME			<u> </u>		.	. PR	OJECT COD	E	\$A	MPLE	S COLL. BY.	D	Link DA	TE	<u></u>	7 ,
	SAMPLES RECEIVED AT					DATE				<u> </u>	DATA REVI						
	STATION CODE SAMPLE COLL. TIME			ple taken	a Sample fiken		Sample bake		h						¢ ;		₩
				31/85	5	131/85	5	131/85		SPICE	[3/01/3		110/25	· .	·····	-
DR SYMBOL	STATION DESCRIPTION		Cherry Made 10 price		well white k		CHAIN'R FORK Lt MISSICK MISSICK MORE		(har yher well		C Hien pra		Chaingra. WASTES				
TAG COLOR				1,171 II		STA-4		Missoche Monte		5771-1		(Clark Forld		574-3			
	CODE	PARAMETER	·····					<u> </u>	[]			<u> </u>				·····	-
		· · · · · · · · · · · · · · · · · · ·			X		~	· · · · · · · · · · · · · · · · · · ·	\mathbf{X}		X		X				7'
					<u>\.</u>				V		X		X	a	<i>k</i> i		••••
				1.5		15		15		15		15		25			Ŧ
ļ		····	· ·	1.5		15		15		25		. 45		15			
L				377		210		110		110		210		73	Ľ.		
				16		15		10	. 	45	 	10		59			
 				2100	ļ	1100		2100	 	4100		2100		1100			
-		••••••		5000		3005		17.4	 .	36.8	· ·	18.5		47.4		·····	
-				12.3		11.0		5.2		1101	'	5.5	 	12.7			
 				<u>"(), ()</u>		2.3		3.0	 	7.2		3.6	`	531			-
				· · · · · · · · · · · · · · · · · · · ·											┝╼╼╉		-
┨──															┟──╂		-
╂								<u>-</u>							┟──╂		-
╂	<u> </u>														┟╼╌╂		,
╂──								<u></u>		· · · · · · · · · · · · · · · · · · ·					┟──╂		+
<u> </u>	in mall unlass otherwise in dis-					[1979-680 - 570	<u> </u>	<u> </u>	L	l	I	BBEPA-01	12

esults in mg/I unless otherwise indicated, pH in units, turbidity in JTU, specific conductance in µmhos/cm, as per STORET.

☆ GPO; 1979-680 - 570

.... - 1 Ý - Ý