

# Mobile Source Observation Data (MSOD) Database Update



# Mobile Source Observation Data (MSOD) Database Update

Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

> Prepared for EPA by Eastern Research Group, Inc. EPA Contract No. 68-C-00-112 Work Assignment No. 2-06

#### NOTICE

This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position, or regulatory action. Mobile Source Observation Data (MSOD) Database Update

INTERIM REPORT REVISION 2

Prepared for:

U.S. Environmental Protection Agency

October 31, 2002



ERG No.: 0136.02.006.001 EPA Contract No.: 68-C-00-112 Work Assignment No.: 2-06

#### Mobile Source Observation Data (MSOD) Database Update

INTERIM REPORT REVISION 2

EPA Contract No. 68-C-00-112 Work Assignment No. 2-06

Prepared for:

Kitty Walsh Project Officer

Constance Hart Work Assignment Manager

Prepared by:

William Gerber Patience Henson

Eastern Research Group 5608 Parkcrest Drive, Suite 100 Austin, TX 78731-4947

October 31, 2002

5608 Parkcrest Drive, Suite 100, Austin, TX 78731-4947, Telephone: (512) 407-1820, Fax: (512) 419-0089 Arlington, VA • Austin, TX • Boston, MA • Chantilly, VA • Chicago, IL • Lexington, MA • Portland, ME • Morrisville, NC • Sacramento, CA

# **Table of Contents**

| <ul> <li>2.0 Inspection and Maintenance Programs</li> <li>2.1 Overview</li> <li>2.2 Arizona Car Care</li> <li>2.3 British Columbia AirCare</li> <li>2.4 Colorado Air Care</li> <li>3.0 Special Studies</li> <li>3.1 Overview</li> <li>3.2 California Air Resources Board</li> <li>3.3 Coordinating Research Council</li> <li>3.4 Environment Canada</li> <li>3.5 New York Instrumentation Protocol Assessment</li> <li>3.6 North Carolina State University</li> <li>3.7 University of California CE-CERT</li> <li>3.7.1 Comprehensive Modal Emissions Model</li> <li>3.7.2 CE-CERT Ammonia Study</li> <li>3.8 West Virginia University</li> </ul> | 2<br>5<br>9 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <ul> <li>2.2 Arizona Car Care</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>9      |
| <ul> <li>2.3 British Columbia AirCare</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9           |
| <ul> <li>2.4 Colorado Air Care</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| <ul> <li>3.0 Special Studies</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| <ul> <li>3.1 Overview</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| <ul> <li>3.2 California Air Resources Board</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18          |
| <ul> <li>3.3 Coordinating Research Council</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| <ul> <li>3.4 Environment Canada</li> <li>3.5 New York Instrumentation Protocol Assessment</li> <li>3.6 North Carolina State University</li> <li>3.7 University of California CE-CERT</li> <li>3.7.1 Comprehensive Modal Emissions Model</li> <li>3.7.2 CE-CERT Ammonia Study</li> <li>3.8 West Virginia University</li> <li>4.0 Other Possible Sources of Data for Future Collection</li> <li>4.1 Overview</li> </ul>                                                                                                                                                                                                                             |             |
| <ul> <li>3.5 New York Instrumentation Protocol Assessment</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| <ul> <li>3.6 North Carolina State University</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23          |
| <ul> <li>3.7 University of California CE-CERT</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| <ul> <li>3.7.1 Comprehensive Modal Emissions Model</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| <ul> <li>3.7.2 CE-CERT Ammonia Study</li> <li>3.8 West Virginia University</li> <li>4.0 Other Possible Sources of Data for Future Collection</li> <li>4.1 Overview</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| <ul> <li>3.8 West Virginia University</li> <li>4.0 Other Possible Sources of Data for Future Collection</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| <ul> <li>4.0 Other Possible Sources of Data for Future Collection</li> <li>4.1 Overview</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31          |
| 4.1 Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38          |
| 4.2 Coordinating Research Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| 4.3 Environment Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40          |
| 4.4 West Virginia University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41          |
| 4.5 University of California CE-CERT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45          |
| 4.6 University of Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47          |
| Appendix A Fields for MSOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |

# List of Tables

| Table 2-1: I/M Program Details                                                                                   | 2        |
|------------------------------------------------------------------------------------------------------------------|----------|
| Table 2-2: Coverage of Datasets                                                                                  | 2        |
| Table 2-3: Model Year Groupings                                                                                  | 3        |
| Table 2-4: Number of Tests for Each Vehicle Type for All Three I/M Programs                                      |          |
| Table 2-5: Number of Tests for Mileage Groupings for All Three I/M Programs                                      | 4        |
| Table 2-6: Number of Tests for Each Fuel Type Used from All Three I/M Programs                                   | 5        |
| Table 2–7: Number of Tests for Each Vehicle Type                                                                 | 6        |
| Table 2-8: Number of Tests for Each Mileage Grouping and Vehicle Type                                            | 6        |
| Table 2–9: Number of Tests for Each Fuel Type and Vehicle Type                                                   | 7        |
| Table 2–10: Statistics for Numerical Data Fields                                                                 |          |
| Table 2–11: Number of Tests for Each Vehicle Type                                                                | 9        |
| Table 2–12: Number of Tests for Each Mileage Grouping and Vehicle Type                                           |          |
| Table 2–13: Number of Tests for Each Fuel Type and Vehicle Type                                                  |          |
| Table 2–13: Number of Tests for Each Fuel Type and Vehicle Type (Continued)                                      |          |
| Table 2–13: Number of Tests for Each Fuel Type and Vehicle Type (Continued)                                      |          |
| Table 2–14: Statistics for Numerical Data Fields                                                                 |          |
| Table 2–15: Number of Tests for Each Vehicle Type                                                                | 14       |
| Table 2–16: Number of Tests for Each Mileage Grouping and Vehicle Type                                           |          |
| Table 2–17: Number of Tests for Each Fuel Type and Vehicle Type                                                  |          |
| Table 2–18: Statistics for Numerical Data Fields                                                                 |          |
| Table 3-1: Population of Special Studies                                                                         |          |
| Table 3-2: Number of Tests for Each Vehicle Type from Special Studies                                            |          |
| Table 3-3: Number of Tests for Each Mileage Grouping from Special Studies                                        |          |
| Table 3-4: Number of Tests for Each Fuel Type from Special Studies                                               |          |
| Table 3–5: Number of Vehicles for each Vehicle Type                                                              |          |
| Table 3–6: Number of Vehicles for Each Mileage Grouping and Vehicle Type                                         |          |
| Table 3–7: Statistics for Numerical Data Fields                                                                  |          |
| Table 3-8: Vehicle Summary (Two Vehicles of Each Model)                                                          |          |
| Table 3–9: Statistics for Numerical Data Fields                                                                  |          |
| Table 3-10: Bus Characteristics                                                                                  |          |
| Table 3–11: Number of Tests for Each Fuel Type                                                                   |          |
| Table 3–12: Number of Tests for each Vehicle Type                                                                |          |
| Table 3–13:       Number of Tests for Each Mileage Grouping and Vehicle Type                                     |          |
| Table 3–14:     Statistics for Numerical Data Fields                                                             |          |
| Table 3-15:     Vehicles used in NCSU Study                                                                      |          |
| Table 3–16:       Number of Tests for Each Mileage Grouping and Vehicle Type                                     |          |
| Table 3–17:     Statistics for Numerical Data Fields                                                             |          |
| Table 3–18:     Number of Test for Each Vehicle Type                                                             |          |
| Table 3.–19: Number of Tests for Each Mileage Grouping and Vehicle Type                                          |          |
| Table 3–20:     Statistics for Numerical Data Fields                                                             |          |
| Table 3-20: Statistics for Numerical Data Fields       Table 3-21: Vehicles Used In Ammonia Study                |          |
| Table 3-21:     Vemere's osed in Anniona Study       Table 3-22:     Testing Activity at Each Site               |          |
| Table 3–22:     Testing Activity at Each Site       Table 3–23:     Number of Tests for Each Vehicle Type Tested |          |
| Table 3–23: Number of Tests for Each Fuel Type Used         Table 3–24: Number of Tests for Each Fuel Type Used  | 55<br>21 |
| radie 3-24. Rumber of resis for Lach rule rype Used                                                              | 34       |

| Table 3–25: Number of Tests for Each Drive Cycle Used     |  |
|-----------------------------------------------------------|--|
| Table 3–26: Drive Cycles Used During Testing (Continued)  |  |
| Table 4-1: Targeted Vehicles for Testing [2]              |  |
| Table 4-2: Description of Test Vehicles [3]               |  |
| Table 4-3: Vehicles Description [1]                       |  |
| Table 4-4: Test Sites                                     |  |
| Table 4-5: Number of Tests Performed on Each Vehicle Type |  |
| Table 4-6: Number of Tests on Each Fuel Type              |  |
| Table 4-7: Number of Tests for Each Drive Cycle           |  |
| Table 4-8: CE-CERT Studies                                |  |
|                                                           |  |

#### 1.0 Introduction

The United States Environmental Protection Agency (EPA) is in the process of creating a new mobile source emissions modeling system entitled the Multi-Scale Motor Vehicle and Equipment Emission System (MOVES). This new model will generate emissions factors in units of grams per second. This is a marked difference from previous models, such as MOBILE6, which were based on factors in grams per mile. Much of the new factor development will be based on the vehicle testing information contained within EPA's Mobile Source Observation Database (MSOD).

The goal of this project is to augment the data currently in the MSOD with data collected by other entities such as research groups and industry organizations. Towards this end, ERG staff have contacted numerous vehicle-testing organizations and investigated the availability of vehicle testing data. This investigation focused on tests that recorded second by second emissions results with emphasis placed on greenhouse gas exhaust emissions, i.e  $CO_2$ ,  $CH_4$ , and  $N_2O$ . Appendix A contains a description of the type of vehicle test information that is targeted for this project.

Each of the different data sources were questioned by EPA or ERG staff to determine what type of vehicle test data they have that could be included in the EPA MSOD and made available for public access. The available data can be generally grouped as stemming from either an inspection and maintenance (I/M) program, or a special study. This report presents a review of the different datasets that are of interest and are being considered for inclusion into the MSOD. In some instances only a sample of the data was available for review at the time that this report was written and the statistics presented should be taken as only an example of the type of information that is available.

Also included in this report is a brief discussion of other datasets that have been determined to be available outside of the time frame of this project. These datasets will be discussed briefly and highlighted for possible examination in the future.

# 2.0 Inspection and Maintenance Programs

#### 2.1 Overview

Test data from three inspection and maintenance (I/M) programs were highlighted for collection and inclusion into the MSOD. The selected programs were the Arizona Car Care program, British Columbia AirCare program, and the Colorado Air Care program. All three programs use centralized testing facilities operated by a primary contractor with tests administered by trained technicians. A summary of the program details appears below in Table 2-1.

| State               | Cities                   | Network<br>Type | Test Type                          | Evap<br>Tests | Frequency                        | Vehicle<br>Types                 | Model Years             |        | OBD<br>testing     |
|---------------------|--------------------------|-----------------|------------------------------------|---------------|----------------------------------|----------------------------------|-------------------------|--------|--------------------|
| Arizona             | Phoenix                  | Test Only       |                                    | •             | Annual 1967-80<br>Biennial 1981+ | LDGVs,<br>LDGTs,<br>HDBVs,<br>MC | 1967+ <4<br>exempt      | Jan-95 | pass/fail:<br>1/02 |
| Colorado            | Denver<br>and<br>Boulder |                 | 82+: IM240<br><82: 2 speed<br>Idle |               | 82+: Blenniai                    | 11/11/5                          | All except <4<br>exempt | Jan-95 | MIL fail<br>only   |
| British<br>Columbia |                          | Test Only       |                                    |               | 1992+ : Biennial<br><1992 Annual |                                  | All except <2<br>exempt | Sep-92 |                    |

| Table 2-1: | I/M Program | Details |
|------------|-------------|---------|
|------------|-------------|---------|

Different amounts of data were available from each of the programs as detailed in Table 2-2 below. At the time this report was written only a one month sample set of data was available from the Colorado I/M program. The table below lists both the sample set and the estimates for the full Colorado data set.

| Table 2-2: | <b>Coverage of Datasets</b> |
|------------|-----------------------------|
|------------|-----------------------------|

| Program                     | Start Date      | End Date          | Number of Tests |
|-----------------------------|-----------------|-------------------|-----------------|
| Arizona                     | January 1, 2002 | June 30, 2002     | 317,192         |
| Colorado Sample             | January 1, 2002 | January 31, 2002  | 128,682         |
| Colorado Full Set Estimates | January 1, 1999 | September 1, 2002 | 3,000,000       |
| British Columbia            | January 1, 2001 | June 3, 2002      | 1,414,356       |

The vehicles in each dataset have been categorized by model year into groupings of similar technologies or standards for summary purposes. Since there is not a strict correlation between model year and technology used, this grouping should be viewed as a generalization only. The model year ranges used are shown in Table 2-3.

| Model Year     | Technology Grouping |
|----------------|---------------------|
| Pre-1975       | Non-Catalyst        |
| 1975-1980      | Oxidation Catalyst  |
| 1981-1985      | 3-Way Catalyst      |
| 1986-1993      | Tier 0              |
| 1994-2000      | Tier 1              |
| 2001-2003      | NLEV                |
| 2004 and newer | Tier 2              |

# Table 2-3: Model Year Groupings

In each of the following sub sections there will be a brief discussion of the I/M program followed by summary statistical data for each program. In the following three tables that summary data is shown for all three I/M programs combined.

# Table 2-4: Number of Tests for Each Vehicle Type for All Three I/M Programs

|              | Model Year Group |                    |                   |        |        |      |         |                |  |
|--------------|------------------|--------------------|-------------------|--------|--------|------|---------|----------------|--|
| Vehicle Type | Non-catalyst     | Oxidation catalyst | 3-way<br>catalyst | Tier 0 | Tier 1 | NLEV | Missing | Grand<br>Total |  |
| LDV          | 20018            | 33843              | 127936            | 632126 | 311815 | 3403 |         | 1129141        |  |
| LDT          | 6134             | 6193               | 40554             | 285659 | 230207 | 2704 |         | 571451         |  |
| HDT          | 1408             | 16925              | 15153             | 24912  | 13794  | 349  |         | 72541          |  |
| DIES         | 75               | 1101               | 5825              | 8937   | 6718   | 6    |         | 22662          |  |
| Missing      | 1074             | 2539               | 7737              | 38000  | 13478  | 13   | 1526    | 64367          |  |
| Grand Tota   | 28709            | 60601              | 197205            | 989634 | 576012 | 6475 | 1526    | 1860162        |  |

|               | Mahiala         | Model Year Group |                       |                   |        |        |      |         | Orrend         |
|---------------|-----------------|------------------|-----------------------|-------------------|--------|--------|------|---------|----------------|
| Mileage       | Vehicle<br>Type | Non-<br>catalyst | Oxidation<br>catalyst | 3-way<br>catalyst | Tier 0 | Tier 1 | NLEV | Missing | Grand<br>Total |
|               | LDV             | 5226             | 5012                  | 9503              | 28657  | 97016  | 3350 |         | 148764         |
|               | LDT             | 1690             | 1628                  | 4087              | 11799  | 55850  | 2573 |         | 77627          |
| Mileage < 50K | HDT             | 300              | 2536                  | 1698              | 1600   | 3521   | 338  |         | 9993           |
|               | DIES            | 11               | 74                    | 123               | 195    | 1320   | 5    |         | 1728           |
|               | Missing         | 242              | 325                   | 418               | 7220   | 5281   | 10   |         | 13496          |
| Mileage < 50  | K Total         | 7469             | 9575                  | 15829             | 49471  | 162988 | 6276 |         | 251608         |
|               | LDV             | 14778            | 28804                 | 118110            | 602024 | 214096 | 53   |         | 977865         |
|               | LDT             | 4433             | 4543                  | 36231             | 273242 | 173757 | 131  |         | 492337         |
| Mileage > 50K | HDT             | 1108             | 14389                 | 13455             | 23312  | 10273  | 11   |         | 62548          |
|               | DIES            | 64               | 1027                  | 5702              | 8742   | 5398   | 1    |         | 20934          |
|               | Missing         | 742              | 2134                  | 7124              | 30089  | 7571   | 2    |         | 47662          |
| Mileage > 50  | K Total         | 21125            | 50897                 | 180622            | 937409 | 411095 | 198  |         | 1601346        |
|               | LDV             | 14               | 27                    | 323               | 1445   | 703    |      |         | 2512           |
| - 5           | LDT             | 11               | 22                    | 236               | 618    | 600    |      |         | 1487           |
|               | Missing         | 90               | 80                    | 195               | 691    | 626    | 1    | 1526    | 3209           |
| Missing       | Fotal           | 115              | 129                   | 754               | 2754   | 1929   | 1    | 1526    | 7208           |
| G             | rand Total      | 28709            | 60601                 | 197205            | 989634 | 576012 | 6475 | 1526    | 1860162        |

# Table 2-5: Number of Tests for Mileage Groupings for All Three I/M Programs

## Table 2-6: Number of Tests for Each Fuel Type Used from All Three I/M Programs

|                        |                  |                       | Mode              | l Year G | roup   |      |         | Grand          |
|------------------------|------------------|-----------------------|-------------------|----------|--------|------|---------|----------------|
| Fuel                   | Non-<br>catalyst | Oxidation<br>catalyst | 3-way<br>catalyst | Tier 0   | Tier 1 | NLEV | Missing | Grand<br>Total |
| Alcohol                | 4                |                       | 1                 | 2        | 1      |      |         | 8              |
| Butane                 |                  |                       | 2                 | 16       | 12     | 2    |         | 32             |
| Compressed Natural Gas |                  |                       | 1                 | 83       | 772    | 148  |         | 1004           |
| Diesel                 | 83               | 1148                  | 6128              | 9213     | 7439   | 6    |         | 24017          |
| Diesel-Butane          |                  |                       |                   | 1        | 7      |      |         | 8              |
| Diesel-Natural Gas     |                  |                       | 1                 |          | 1      |      |         | 2              |
| Diesel-Propane         | 3                |                       |                   |          | 3      |      |         | 6              |
| E85                    |                  |                       |                   |          | 1      |      |         | 1              |
| Gasoline               | 27687            | 54733                 | 181772            | 950137   | 560465 | 6141 |         | 1780935        |
| Gasoline-Alcohol       | 3                | 5                     | 8                 | 36       | 19     |      |         | 71             |
| Gasoline-Electric      | 2                | 1                     | 5                 | 11       | 19     | 2    |         | 40             |
| Gasoline-Natura IGas   | 51               | 252                   | 549               | 2096     | 540    |      |         | 3488           |
| Gasoline-Propane       | 58               | 269                   | 308               | 1881     | 336    |      |         | 2852           |
| LNG                    |                  | 1                     |                   | 4        | 2      |      |         | 7              |
| LPG                    | 1                | 7                     | 7                 | 18       | 15     |      |         | 48             |
| M85                    |                  |                       |                   | 1        |        |      |         | 1              |
| Multi-fuels            |                  |                       |                   | 12       | 2      |      |         | 14             |
| Natura IGas            | 8                | 74                    | 106               | 178      | 379    | 1    |         | 746            |
| Other                  |                  |                       |                   | 3        | 12     |      |         | 15             |
| Propane                | 358              | 2712                  | 3999              | 10224    | 2198   | 164  |         | 19655          |
| Propane-Natural Gas    |                  | 1                     |                   | 8        | 2      |      |         | 11             |
| Missing                | 451              | 1398                  | 4318              | 15710    | 3787   | 11   | 1526    | 27201          |
| Grand Total            | 28709            | 60601                 | 197205            | 989634   | 576012 | 6475 | 1526    | 1860162        |

#### 2.2 Arizona Car Care

Arizona has been conducting an enhanced vehicle-testing program in Phoenix since 1995. As part of this program most light duty gasoline vehicles with model years 1981 through 1995 undergo an IM 147 test on a biennial basis. Arizona has provided the results of all IM 147 tests performed from January through June 2002 for inclusion into the EPA MSOD [1, 2, 3].

Summary statistics for the Arizona data appear in the tables below.

| Model Veer Group      | ١     | Grand Total |        |             |
|-----------------------|-------|-------------|--------|-------------|
| Model Year Group      | LDT1  | LDT2        | LDV    | Granu Totar |
| 1. Non-catalyst       | 12    | 10          | 28     | 50          |
| 2. Oxidation catalyst | 12    | 32          | 54     | 98          |
| 3. 3-way catalyst     | 10355 | 4900        | 21095  | 36350       |
| 4. Tier 0             | 49144 | 14122       | 119113 | 182379      |
| 5. Tier 1             | 29875 | 13292       | 54466  | 97633       |
| 6. NLEV               | 30    | 573         | 79     | 682         |
| Grand Total           | 89428 | 32929       | 194835 | 317192      |

# Table 2–7: Number of Tests for Each Vehicle Type

# Table 2–8: Number of Tests for Each Mileage Grouping and Vehicle Type

| Mileene       | Medel Veer Creun      | Vel    | Vehicle Type |       |             |  |  |
|---------------|-----------------------|--------|--------------|-------|-------------|--|--|
| Mileage       | Model Year Group      | LDV    | LDT1         | LDT2  | Grand Total |  |  |
|               | 1. Non-catalyst       | 2      | 3            | 1     | 6           |  |  |
|               | 2. Oxidation catalyst | 2      |              | 4     | 6           |  |  |
| Mileage < 50K | 3. 3-way catalyst     | 2834   | 1189         | 727   | 4750        |  |  |
| Mileage < 50K | 4. Tier 0             | 11015  | 4037         | 1501  | 16553       |  |  |
|               | 5. Tier 1             | 6716   | 2242         | 1688  | 10646       |  |  |
|               | 6. NLEV               | 60     | 23           | 488   | 571         |  |  |
| Mileag        | 20629                 | 7494   | 4409         | 32532 |             |  |  |
|               | 1. Non-catalyst       | 12     | 3            | 4     | 19          |  |  |
|               | 2. Oxidation catalyst |        | 6            | 12    | 43          |  |  |
| Mileage > 50K | 3. 3-way catalyst     | 17938  | 9013         | 4090  | 31041       |  |  |
| Mileage > 50K | 4. Tier 0             | 106653 | 44652        | 12458 | 163763      |  |  |
|               | 5. Tier 1             | 47047  | 27214        | 11423 | 85684       |  |  |
|               | 6. NLEV               | 19     | 7            | 85    | 111         |  |  |
| Mileag        | e > 50K Total         | 171694 | 80895        | 28072 | 280661      |  |  |
|               | 1. Non-catalyst       | 14     | 6            | 5     | 25          |  |  |
|               | 2. Oxidation catalyst | 27     | 6            | 16    | 49          |  |  |
| Missing       | 3. 3-way catalyst     | 323    | 153          | 83    | 559         |  |  |
|               | 4. Tier 0             | 1445   | 455          | 163   | 2063        |  |  |
|               | 5. Tier 1             | 703    | 419          | 181   | 1303        |  |  |
| Mis           | Missing Total         |        | 1039         | 448   | 3999        |  |  |
|               | Grand Total           | 194835 | 89428        | 32929 | 317192      |  |  |

| Table 2-9. Number of Tests for Each rule Type and Vehicle Type | Table 2–9: | Number of Tests for Each Fuel Type and Vehicle Type |  |
|----------------------------------------------------------------|------------|-----------------------------------------------------|--|
|----------------------------------------------------------------|------------|-----------------------------------------------------|--|

| Firel                  |                       | Ve     | One of Tetal |       |             |
|------------------------|-----------------------|--------|--------------|-------|-------------|
| Fuel                   | Model Year Group      | LDV    | LDT1         | LDT2  | Grand Total |
|                        | 3. 3-way catalyst     | 1      |              |       | 1           |
| Butana                 | 4. Tier 0             |        | 7            | 1     | 8           |
| Butane                 | 5. Tier 1             | 1      |              |       | 1           |
|                        | 6. NLEV               |        |              | 2     | 2           |
| Butane 7               | Fotal                 | 2      | 7            | 3     | 12          |
|                        | 3. 3-way catalyst     | 1      |              |       | 1           |
| Compressed Natural Gas | 4. Tier 0             | 24     | 36           | 7     | 67          |
| Compressed Natural Gas | 5. Tier 1             | 214    | 73           | 465   | 752         |
|                        | 6. NLEV               | 17     | 6            | 123   | 146         |
| Compressed Natu        | ural Gas Total        | 256    | 115          | 595   | 966         |
|                        | 1. Non-catalyst       | 14     | 6            | 5     | 25          |
|                        | 2. Oxidation catalyst | 27     | 6            | 14    | 47          |
| Gasoline               | 3. 3-way catalyst     | 20769  | 10200        | 4807  | 35776       |
| Gasoline               | 4. Tier 0             | 117625 | 48618        | 13929 | 180172      |
|                        | 5. Tier 1             | 53225  | 29362        | 12450 | 95037       |
|                        | 6. NLEV               | 52     | 19           | 299   | 370         |
| Gasoline               | Total                 | 191712 | 88211        | 31504 | 311427      |
| Other                  | 4. Tier 0             | 2      |              | 1     | 3           |
| Other                  | 5. Tier 1             | 5      | 5            | 2     | 12          |
| Other T                | otal                  | 7      | 5            | 3     | 15          |
|                        | 2. Oxidation catalyst |        |              | 2     | 2           |
|                        | 3. 3-way catalyst     | 1      | 2            | 10    | 13          |
| Propane                | 4. Tier 0             | 17     | 28           | 21    | 66          |
|                        | 5. Tier 1             | 318    | 16           | 194   | 528         |
|                        | 6. NLEV               | 10     | 5            | 149   | 164         |
| Propane                | Total                 | 346    | 51           | 376   | 773         |
|                        | 1. Non-catalyst       | 14     | 6            | 5     | 25          |
|                        | 2. Oxidation catalyst | 27     | 6            | 16    | 49          |
| Missing                | 3. 3-way catalyst     | 323    | 153          | 83    | 559         |
|                        | 4. Tier 0             | 1445   | 455          | 163   | 2063        |
|                        | 5. Tier 1             | 703    | 419          | 181   | 1303        |
| Missing                | Total                 | 2512   | 1039         | 448   | 3999        |
|                        | Grand Total           | 194835 | 89428        | 32929 | 317192      |

| Variable                | Count   | Missing | MIN   | MAX    | MEAN    | STD    |
|-------------------------|---------|---------|-------|--------|---------|--------|
| Model Year              | 317,192 | 0       | 1967  | 2003   | 1991    | 3.84   |
| Cylinders               | 0       | 317,192 |       |        | •       |        |
| Displacement (L)        | 0       | 317,192 |       |        | •       |        |
| Ambient Humidity (%)    | 317,192 | 0       | 0.00  | 99.92  | 25.43   | 13.82  |
| Ambient Pressure        | 317,192 | 0       | 27.08 | 30.76  | 28.65   | 0.23   |
| Ambient Temperature (F) | 317,192 | 0       | 1.85  | 121.97 | 75.58   | 14.53  |
| Horsepower              | 317,192 | 0       | 7.30  | 33.90  | 14.57   | 3.41   |
| Curb Weight (lbs)       | 0       | 317,192 |       |        |         |        |
| Inertia Weight (lbs)    | 317,192 | 0       | 1750  | 6000   | 3510.20 | 662.03 |
| Odometer (in thousands) | 313,193 | 3,999   | 0     | 255    | 110.03  | 50.05  |

## Table 2–10: Statistics for Numerical Data Fields

#### Documentation rating: A. Fully Documented

Information on the Arizona Car Care program can be found on their web site at: <u>http://www.ev.state.az.us/environ/air/vei/index.html</u> (last verified October 24, 2002). Multiple documents exist for the Arizona's Car Care program detailing the entire I/M program. The program has been audited both internally and externally and the reports are readily available. Some of the reports of interest are:

1. *Profiling and Prediction of Individual Arizona Vehicle IM147 Pass/Fail Results*, prepared by Eastern Research Group (ERG) for Air Quality Division, Arizona Department of Environmental Quality, June 27, 2002.

2. *Analysis of Arizona I/M Program Repair Data*, prepared by Eastern Research Group (ERG) for Air Quality Division, Arizona Department of Environmental Quality, June 28, 2002.

3. *Baseline Analysis of Enhanced I/M Compliance*, prepared by Eastern Research Group (ERG) for Air Quality Division, Arizona Department of Environmental Quality, June 28, 2002.

#### Completeness rating: C. Missing Data

The Car Care program did not record all of the data fields listed as being of interest in Appendix A. The fuel parameters were not included and all tests were conducted with the fuel that was in the vehicle when it arrived at the testing facility (tank fuel).

<u>Contact:</u> John Walls Arizona Department of Environmental Quality Phone: 602-207-7027 E-mail: <u>walls.john@ev.state.az.us</u>

#### 2.3 British Columbia AirCare

A vehicle inspection and maintenance program entitled AirCare was started in British Columbia, Canada, in 1992. This program originally used centralized testing facilities to perform ASM 2525/idle test procedures. In 2000 the program was reviewed and modified into AirCare II. In the new program IM240 tests were used for vehicle model years over 1991. Data from the AirCare from January 2001 through June 2002 program has been made available for inclusion into EPA's MSOD [1, 2, 3].

Summary statistics for the AirCare data appear in the tables below.

| Model Year Group      | LDGV   | LDGT   | HDGT  | DIES  | Missing | <b>Grand Total</b> |
|-----------------------|--------|--------|-------|-------|---------|--------------------|
| 1. Non-catalyst       | 18462  | 4818   | 1252  | 75    | 1074    | 25681              |
| 2. Oxidation catalyst | 31159  | 3377   | 16200 | 1101  | 2539    | 54376              |
| 3. 3-way catalyst     | 101581 | 21669  | 14233 | 5825  | 7737    | 151045             |
| 4. Tier 0             | 484229 | 207237 | 22015 | 8937  | 38000   | 760418             |
| 5. Tier 1             | 227074 | 164508 | 9343  | 6718  | 13478   | 421121             |
| 6. NLEV               | 43     | 123    | 4     | 6     | 13      | 189                |
| 0. Missing            |        |        |       |       | 1526    | 1526               |
| Grand Total           | 862548 | 401732 | 63047 | 22662 | 64367   | 1414356            |

|                |                       |        | Ve     | hicle Typ | е     |         | Grand   |
|----------------|-----------------------|--------|--------|-----------|-------|---------|---------|
| Mileage        | Model Year Group      | LDGV   | LDGT   | HDGT      | DIES  | Missing | Total   |
|                | 1. Non-catalyst       | 4512   | 1130   | 224       | 11    | 242     | 6119    |
|                | 2. Oxidation catalyst | 4048   | 454    | 2198      | 74    | 325     | 7099    |
| Mileage < 50K  | 3. 3-way catalyst     | 5430   | 1131   | 1278      | 123   | 418     | 8380    |
| whileage < 50K | 4. Tier 0             | 14072  | 3833   | 840       | 195   | 7220    | 26160   |
|                | 5. Tier 1             | 79843  | 44853  | 2216      | 1320  | 5281    | 133513  |
|                | 6. NLEV               | 40     | 120    | 4         | 5     | 10      | 179     |
| Mileage <      | 50K Total             | 107945 | 51521  | 6760      | 1728  | 13496   | 181450  |
|                | 1. Non-catalyst       | 13950  | 3688   | 1028      | 64    | 742     | 19472   |
|                | 2. Oxidation catalyst | 27111  | 2923   | 14002     | 1027  | 2134    | 47197   |
| Mileage > 50K  | 3. 3-way catalyst     | 96151  | 20538  | 12955     | 5702  | 7124    | 142470  |
| willeage > 50K | 4. Tier 0             | 470157 | 203404 | 21175     | 8742  | 30089   | 733567  |
|                | 5. Tier 1             | 147231 | 119655 | 7127      | 5398  | 7571    | 286982  |
|                | 6. NLEV               | 3      | 3      |           | 1     | 2       | 9       |
| Mileage >      | 50K Total             | 754603 | 350211 | 56287     | 20934 | 47662   | 1229697 |
|                | 1. Non-catalyst       |        |        |           |       | 90      | 90      |
|                | 2. Oxidation catalyst |        |        |           |       | 80      | 80      |
|                | 3. 3-way catalyst     |        |        |           |       | 195     | 195     |
| Missing        | 4. Tier 0             |        |        |           |       | 691     | 691     |
|                | 5. Tier 1             |        |        |           |       | 626     | 626     |
|                | 6. NLEV               |        |        |           |       | 1       | 1       |
|                | Missing               |        |        |           |       | 1526    | 1526    |
| Mis            | sing Total            |        |        |           |       | 3209    | 3209    |
|                | Grand Total           | 862548 | 401732 | 63047     | 22662 | 64367   | 1414356 |

| E                  |                       | Vehicle Type |        |       |       |         | Grand   |
|--------------------|-----------------------|--------------|--------|-------|-------|---------|---------|
| Fuel               | Model Year Group      | LDGV         | LDGT   | HDGT  | DIES  | Missing | Total   |
|                    | 1. Non-catalyst       |              | 4      |       |       |         | 4       |
|                    | 3. 3-way catalyst     | 1            |        |       |       |         | 1       |
| Alcohol            | 4. Tier 0             |              |        |       |       | 2       | 2       |
|                    | 5. Tier 1             | 1            |        |       |       |         | 1       |
| Alcoh              | nol Total             | 2            | 4      |       |       | 2       | 8       |
|                    | 3. 3-way catalyst     | 1            |        |       |       |         | 1       |
| Butane             | 4. Tier 0             | 2            | 2      |       |       | 4       | 8       |
|                    | 5. Tier 1             | 7            | 4      |       |       |         | 11      |
| Buta               | ne Total              | 10           | 6      |       |       | 4       | 20      |
|                    | 1. Non-catalyst       |              |        |       | 75    | 8       | 83      |
|                    | 2. Oxidation catalyst |              |        |       | 1101  | 47      | 1148    |
| Direct             | 3. 3-way catalyst     |              |        |       | 5825  | 303     | 6128    |
| Diesel             | 4. Tier 0             |              |        |       | 8937  | 276     | 9213    |
|                    | 5. Tier 1             |              |        |       | 6718  | 721     | 7439    |
|                    | 6. NLEV               |              |        |       | 6     |         | 6       |
| Dies               | el Total              |              |        |       | 22662 | 1355    | 24017   |
|                    | 4. Tier 0             |              | 1      |       |       |         | 1       |
| Diesel-Butane      | 5. Tier 1             | 3            | 2      |       |       | 2       | 7       |
| Diesel-B           | utane Total           | 3            | 3      |       |       | 2       | 8       |
| Diesel-Natural Gas | 3. 3-way catalyst     | 1            |        |       |       |         | 1       |
| Diesei-Matural Gas | 5. Tier 1             |              | 1      |       |       |         | 1       |
| Diesel-Nati        | ural Gas Total        | 1            | 1      |       |       |         | 2       |
| Diesel-Propane     | 1. Non-catalyst       |              | 2      | 1     |       |         | 3       |
| Diesei-Floparie    | 5. Tier 1             |              | 1      |       |       | 2       | 3       |
| Diesel-Pr          | opane Total           |              | 3      | 1     |       | 2       | 6       |
|                    | 1. Non-catalyst       | 18357        | 4604   | 1092  |       | 639     | 24692   |
|                    | 2. Oxidation catalyst | 30659        | 3139   | 13737 |       | 1040    | 48575   |
| Gasoline           | 3. 3-way catalyst     | 100896       | 20665  | 11106 |       | 3541    | 136208  |
| Casoline           | 4. Tier 0             | 482607       | 200259 | 16653 |       | 23741   | 723260  |
|                    | 5. Tier 1             | 226489       | 162877 | 8681  |       | 10463   | 408510  |
|                    | 6. NLEV               | 41           | 122    | 4     |       | 12      | 179     |
| Gasol              | ine Total             | 859049       | 391666 | 51273 |       | 39436   | 1341424 |
|                    | 1. Non-catalyst       | 3            |        |       |       |         | 3       |
|                    | 2. Oxidation catalyst | 5            |        |       |       |         | 5       |
| Gasoline-Alcohol   | 3. 3-way catalyst     | 7            | 1      |       |       |         | 8       |
|                    | 4. Tier 0             | 21           | 11     | 2     |       | 2       | 36      |
|                    | 5. Tier 1             | 9            | 8      |       |       | 2       | 19      |
| Casalina           | Alcohol Total         | 45           | 20     | 2     |       | 4       | 71      |

 Table continued on next page.

 Table 2–13: Number of Tests for Each Fuel Type and Vehicle Type (Continued)

| Fuel Model Year Group | Vehicle Type | Grand Total |
|-----------------------|--------------|-------------|
|-----------------------|--------------|-------------|

|                      |                       | LDGV | LDGT | HDGT | DIES | Missing |       |
|----------------------|-----------------------|------|------|------|------|---------|-------|
|                      | 1. Non-catalyst       | 1    |      | 1    |      |         | 2     |
|                      | 2. Oxidation catalyst |      |      | 1    |      |         | 1     |
| Concline Electric    | 3. 3-way catalyst     | 5    |      |      |      |         | 5     |
| Gasoline-Electric    | 4. Tier 0             | 5    | 3    | 2    |      | 1       | 11    |
|                      | 5. Tier 1             | 17   | 2    |      |      |         | 19    |
|                      | 6. NLEV               | 1    | 1    |      |      |         | 2     |
| Gasoline-E           | lectric Total         | 29   | 6    | 4    |      | 1       | 40    |
|                      | 1. Non-catalyst       | 24   | 11   | 12   |      | 4       | 51    |
|                      | 2. Oxidation catalyst | 80   | 7    | 150  |      | 15      | 252   |
| Gasoline-Natural Gas | 3. 3-way catalyst     | 142  | 121  | 262  |      | 24      | 549   |
|                      | 4. Tier 0             | 379  | 1196 | 465  |      | 56      | 2096  |
|                      | 5. Tier 1             | 124  | 307  | 95   |      | 14      | 540   |
| Gasoline-Nat         | ural Gas Total        | 749  | 1642 | 984  |      | 113     | 3488  |
|                      | 1. Non-catalyst       | 8    | 25   | 24   |      | 1       | 58    |
|                      | 2. Oxidation catalyst | 28   | 13   | 204  |      | 24      | 269   |
| Gasoline-Propane     | 3. 3-way catalyst     | 49   | 64   | 178  |      | 17      | 308   |
|                      | 4. Tier 0             | 77   | 949  | 764  |      | 91      | 1881  |
|                      | 5. Tier 1             | 13   | 231  | 71   |      | 21      | 336   |
| Gasoline-P           | ropane Total          | 175  | 1282 | 1241 |      | 154     | 2852  |
| Multi-fuels          | 4. Tier 0             | 9    |      |      |      | 3       | 12    |
| Multi-Tueis          | 5. Tier 1             | 2    |      |      |      |         | 2     |
| Multi-fu             | els Total             | 11   |      |      |      | 3       | 14    |
|                      | 1. Non-catalyst       | 5    |      | 3    |      |         | 8     |
|                      | 2. Oxidation catalyst | 18   | 5    | 48   |      | 3       | 74    |
| Natural Gas          | 3. 3-way catalyst     | 23   | 25   | 52   |      | 6       | 106   |
| Natural Gas          | 4. Tier 0             | 52   | 57   | 58   |      | 11      | 178   |
|                      | 5. Tier 1             | 177  | 115  | 79   |      | 8       | 379   |
|                      | 6. NLEV               | 1    |      |      |      |         | 1     |
| Natural (            | Gas Total             | 276  | 202  | 240  |      | 28      | 746   |
|                      | 1. Non-catalyst       | 64   | 172  | 119  |      | 3       | 358   |
|                      | 2. Oxidation catalyst | 369  | 213  | 2059 |      | 69      | 2710  |
| Propane              | 3. 3-way catalyst     | 456  | 793  | 2635 |      | 102     | 3986  |
|                      | 4. Tier 0             | 1077 | 4757 | 4066 |      | 258     | 10158 |
|                      | 5. Tier 1             | 232  | 958  | 417  |      | 63      | 1670  |
| Propar               | ne Total              | 2198 | 6893 | 9296 |      | 495     | 18882 |

Table continued on next page.

# Table 2–13: Number of Tests for Each Fuel Type and Vehicle Type (Continued)

| Fuel                |                           |        | Ve     | hicle T | уре   |         | Crond Total |  |
|---------------------|---------------------------|--------|--------|---------|-------|---------|-------------|--|
| Fuel                | Model Year Group          | LDGV   | LDGT   | HDGT    | DIES  | Missing | Grand Total |  |
|                     | 2. Oxidation catalyst     |        |        | 1       |       |         | 1           |  |
|                     | 4. Tier 0                 |        | 2      | 5       |       | 1       | 8           |  |
| Propane-Natural Gas | 5. Tier 1                 |        | 2      |         |       |         | 2           |  |
| Propane-Nat         | Propane-Natural Gas Total |        | 4      | 6       |       | 1       | 11          |  |
|                     | 1. Non-catalyst           |        |        |         |       | 419     | 419         |  |
|                     | 2. Oxidation catalyst     |        |        |         |       | 1341    | 1341        |  |
|                     | 3. 3-way catalyst         |        |        |         |       | 3744    | 3744        |  |
|                     | 4. Tier 0                 |        |        |         |       | 13554   | 13554       |  |
|                     | 5. Tier 1                 |        |        |         |       | 2182    | 2182        |  |
|                     | 6. NLEV                   |        |        |         |       | 1       | 1           |  |
| Missing             | 0. Missing                |        |        |         |       | 1526    | 1526        |  |
| Missin              | ng Total                  |        |        |         |       | 22767   | 22767       |  |
|                     | Grand Total               | 862548 | 401732 | 63047   | 22662 | 64367   | 1414356     |  |

Table 2–14: Statistics for Numerical Data Fields

| Variable                | Count     | Missing | MIN   | MAX   | MEAN    | STD    |
|-------------------------|-----------|---------|-------|-------|---------|--------|
| Model Year              | 1,412,830 | 1,526   | 1901  | 2002  | 1990    | 6.18   |
| Cylinders               | 1,391,475 | 22,881  | 1     | 12    | 5.37    | 1.52   |
| Displacement (L)        | 1,411,148 | 3,208   | 0.10  | 91.20 | 3.03    | 1.46   |
| Ambient Humidity (%)    | 1,288,987 | 125,369 | 11.70 | 97.20 | 60.96   | 13.89  |
| Ambient Pressure        | 1,313,681 | 100,675 | 18.66 | 34.49 | 29.98   | 0.35   |
| Ambient Temperature (C) | 526,522   | 887,834 | -3.10 | 34.60 | 13.55   | 5.39   |
| Horsepower              | 1,391,588 | 22,768  | 1.20  | 34.70 | 14.05   | 3.56   |
| Curb Weight (lbs)       | 1,411,146 | 3,210   | 1     | 24860 | 1398.03 | 386.48 |
| Inertia Weight (lbs)    | 1,391,589 | 22,767  | 1000  | 8000  | 3395.31 | 725.79 |
| Odometer (in thousands) | 1,411,147 | 3,209   | -1    | 999   | 145.12  | 85.18  |

#### Documentation rating: A. Fully Documented

Multiple documents exist for the AirCare project detailing the entire project. The program has been audited both internally and externally and the reports are readily available. Supporting documentation can be downloaded at their web site <u>http://www.aircare.ca</u> (last verified October 24, 2002). Some of the reports of interest are as follows:

1. S.J. Stewart, D.J. Gourley, and J. Wong, *AirCare® Results and Observations Relating to the First Eight Years of Operation (1992-2000)*. Copies available at <u>http://www.aircare.ca</u>.

2. *Review of the British Columbia AirCare Program*. Prepared by Rob Klausmeier, De La Torre Klausmeier Consulting, Inc. for the Ministry of Environment, Lands and Parks, Air Resources Branch. September 15, 2000.

3. Review of Air Quality and Motor Vehicle Technology Issues Pertaining to the Design of AirCare II. Prepare by Sierra Research, Inc. for the Greater Vancouver Regional District. July 1998.

#### Completeness rating: C. Missing Data

The AirCare program did not record all of the data fields listed as being of interest in Appendix A. The fuel parameters were not included and all tests were conducted on whatever fuel was in the vehicle when it arrived at the testing facility (tank fuel). <u>Contact:</u> Mr. David Gourley The Greater Vancouver Transportation Authority, also known as "TransLink" Phone: 604-453-5170 E-mail: dave\_gourley@translink.bc.ca

#### 2.4 Colorado Air Care

Colorado's inspection and maintenance program, titled Air Care, was started in January of 1995. All 1982 and newer vehicles in Denver and surrounding effected areas are required to have an I/M240 emissions test every two years at one of the 15 Air Care testing stations. The test facilities are operated by Envirotest Systems Corp., a subsidiary of Environmental Systems Products, Inc. (ESP). Vehicles older then 1982 are only required to pass an idle emissions test annually and can be taken to any Envirotest Air Care center or to any licensed independent testing center [1].

At the time this report was written only a one-month sample set of data was available from the Colorado I/M program for tests run in January of 2002. The full dataset is expected from Colorado in early November 2002.

The summary tables below show the results of analysis from the one month sample.

| Model Year Group      | LDGV  | LDGT1 | LDGT2 | HDGT1 | HDGT2 | <b>Grand Total</b> |
|-----------------------|-------|-------|-------|-------|-------|--------------------|
| 1. Non-catalyst       | 1528  | 648   | 646   | 62    | 94    | 2978               |
| 2. Oxidation catalyst | 2630  | 1177  | 1595  | 244   | 481   | 6127               |
| 3. 3-way catalyst     | 5260  | 2865  | 765   | 766   | 154   | 9810               |
| 4. Tier 0             | 28784 | 10078 | 5078  | 2260  | 637   | 46837              |
| 5. Tier 1             | 30275 | 11848 | 10684 | 3254  | 1197  | 57258              |
| 6. NLEV               | 3281  | 768   | 1210  | 219   | 126   | 5604               |
| Grand Total           | 71758 | 27384 | 19978 | 6805  | 2689  | 128614             |

# Table 2–16: Number of Tests for Each Mileage Grouping and Vehicle Type

|               |                       |       | ١     | Vehicle Ty | ре    |       |                    |
|---------------|-----------------------|-------|-------|------------|-------|-------|--------------------|
| Mileage       | Model Year Group      | LDGV  | LDGT1 | LDGT2      | HDGT1 | HDGT2 | <b>Grand Total</b> |
|               | 1. Non-catalyst       | 712   | 279   | 277        | 37    | 39    | 1344               |
|               | 2. Oxidation catalyst | 962   | 527   | 643        | 107   | 231   | 2470               |
| Miloogo < 50K | 3. 3-way catalyst     | 1239  | 790   | 250        | 342   | 78    | 2699               |
| Mileage < 50K | 4. Tier 0             | 3570  | 1465  | 963        | 606   | 154   | 6758               |
|               | 5. Tier 1             | 10457 | 3473  | 3594       | 877   | 428   | 18829              |
|               | 6. NLEV               | 3250  | 756   | 1186       | 213   | 121   | 5526               |
| Mileage «     | < 50K Total           | 20190 | 7290  | 6913       | 2182  | 1051  | 37626              |
|               | 1. Non-catalyst       | 816   | 369   | 369        | 25    | 55    | 1634               |
|               | 2. Oxidation catalyst | 1668  | 650   | 952        | 137   | 250   | 3657               |
| Mileege EOK   | 3. 3-way catalyst     | 4021  | 2075  | 515        | 424   | 76    | 7111               |
| Mileage > 50K | 4. Tier 0             | 25214 | 8613  | 4115       | 1654  | 483   | 40079              |
|               | 5. Tier 1             | 19818 | 8375  | 7090       | 2377  | 769   | 38429              |
|               | 6. NLEV               | 31    | 12    | 24         | 6     | 5     | 78                 |
| Mileage :     | > 50K Total           | 51568 | 20094 | 13065      | 4623  | 1638  | 90988              |
|               | Grand Total           | 71758 | 27384 | 19978      | 6805  | 2689  | 128614             |

| Firel                  |                       |              | ١     | Vehicle Ty | pe    |       |                    |
|------------------------|-----------------------|--------------|-------|------------|-------|-------|--------------------|
| Fuel                   | Model Year Group      | LDGV         | LDGT1 | LDGT2      | HDGT1 | HDGT2 | <b>Grand Total</b> |
|                        | 4. Tier 0             | 2            | 3     | 5          | 6     |       | 16                 |
| Compressed Natural Gas | 5. Tier 1             | 5            | 1     | 9          | 3     | 2     | 20                 |
|                        | 6. NLEV               | 1            |       | 1          |       |       | 2                  |
| CNG <sup>-</sup>       | Total                 | 8            | 4     | 15         | 9     | 2     | 38                 |
| E85                    | 5. Tier 1             |              | 1     |            |       |       | 1                  |
| E85T                   | otal                  |              | 1     |            |       |       | 1                  |
|                        | 1. Non-catalyst       | 1522         | 647   | 645        | 62    | 94    | 2970               |
|                        | 2. Oxidation catalyst | 2625         | 1173  | 1592       | 243   | 478   | 6111               |
| Gasoline               | 3. 3-way catalyst     | 5245         | 2863  | 765        | 762   | 153   | 9788               |
| Gasoline               | 4. Tier 0             | 28686        | 10073 | 5059       | 2252  | 635   | 46705              |
|                        | 5. Tier 1             | 29993        | 11844 | 10644      | 3249  | 1188  | 56918              |
|                        | 6. NLEV               | 3271         | 768   | 1208       | 219   | 126   | 5592               |
| Gasolin                | e Total               | 71342        | 27368 | 19913      | 6787  | 2674  | 128084             |
|                        | 2. Oxidation catalyst |              |       |            | 1     |       | 1                  |
| Liquefied Natural Gas  | 4. Tier 0             | 3            |       |            | 1     |       | 4                  |
|                        | 5. Tier 1             | 1            |       |            | 1     |       | 2                  |
| LNG <sup>-</sup>       | Fotal                 | 4            |       |            | 3     |       | 7                  |
|                        | 1. Non-catalyst       |              |       | 1          |       |       | 1                  |
|                        | 2. Oxidation catalyst |              | 1     | 3          |       | 3     | 7                  |
| LPG                    | 3. 3-way catalyst     |              | 2     |            | 4     | 1     | 7                  |
|                        | 4. Tier 0             | 4            | 2     | 9          | 1     | 2     | 18                 |
|                        | 5. Tier 1             | 1            |       | 6          | 1     | 7     | 15                 |
| LPG 1                  | Fotal                 | 5            | 5     | 19         | 6     | 13    | 48                 |
| M85                    | 4. Tier 0             | 1            |       |            |       |       | 1                  |
| M85T                   | otal                  | 1            |       |            |       |       | 1                  |
|                        | 1. Non-catalyst       | 6            | 1     |            |       |       | 7                  |
|                        | 2. Oxidation catalyst | 5            | 3     |            |       |       | 8                  |
| Miccina                | 3. 3-way catalyst     | 15           |       |            |       |       | 15                 |
| Missing                | 4. Tier 0             | 88           |       | 5          |       |       | 93                 |
|                        | 5. Tier 1             | 275          | 2     | 25         |       |       | 302                |
|                        | 6. NLEV               | 9            |       | 1          |       |       | 10                 |
| Missino                | Missing Total         |              | 6     | 31         |       |       | 435                |
|                        | Grand Total           | 398<br>71758 | 27384 | 19978      | 6805  | 2689  |                    |

# Table 2–17: Number of Tests for Each Fuel Type and Vehicle Type

| Variable                | Count   | Missing | MIN    | MAX    | MEAN     | STD      |
|-------------------------|---------|---------|--------|--------|----------|----------|
| Model Year              | 128,614 | 0       | 1901   | 2003   | 1992     | 6.73     |
| Cylinders               | 128,614 | 0       | 0      | 14     | 5.76     | 1.58     |
| Displacement (L)        | 128,614 | 0       | 0.00   | 93.40  | 3.48     | 1.86     |
| Ambient Humidity (%)    | 80,529  | 48,085  | 6.41   | 99.39  | 34.41    | 13.61    |
| Ambient Pressure        | 80,529  | 48,085  | 23.47  | 25.68  | 24.59    | 0.27     |
| Ambient Temperature (F) | 80,529  | 48,085  | -43.13 | 79.67  | 6.40     | 7.31     |
| Horsepower              | 88,773  | 39,841  | 3.80   | 28.70  | 10.01    | 2.78     |
| Curb Weight (lbs)       | 0       | 128,614 |        |        |          |          |
| Inertia Weight (lbs)    | 88,773  | 39,841  | 1500   | 6500   | 3291.07  | 723.31   |
| Odometer                | 128,614 | 0       | 0      | 999999 | 88117.33 | 72437.84 |

## Table 2–18: Statistics for Numerical Data Fields

#### Documentation rating: A. Fully Documented

Multiple documents exist for Colorado's Air Care project detailing the entire project. Supporting documentation and information can be downloaded at the program web site <u>http://www.aircarecolorado.com</u> (last verified October 24, 2002) as well as the Colorado Department of Health and Environment web site at <u>http://www.cdphe.state.co.us/ap/aphom.asp</u> (last verified October 24, 2002). One of the reports of interest is:

1. *Report to the Colorado General Assembly on the Vehicle Emissions Inspection and Maintenance Program.* Submitted to the Colorado General Assembly by the Colorado Air Quality Control Commission on July 1, 2002.

#### Completeness rating: C. Missing Data

The Air Care program did not record all of the data fields listed as being of interest in Appendix A. The fuel parameters were not included and all tests were conducted with whatever fuel was in the vehicle when it arrived at the testing facility (tank fuel).

<u>Contact:</u> Mr. James Sidebottom Colorado Department of Public Health and Environment Phone: 303-692-3149 E-mail: <u>James.Sidebottom@state.co.us</u>

# 3.0 Special Studies

#### 3.1 Overview

Along with the state I/M programs, we have contacted several labs throughout the US and Canada that perform vehicle emissions testing for a variety of different purposes and studies. While many of the studies were confidential to the clients that they were performed for, there was still a wide range of data that could be made available for public release. All publicly available data that contains second by second emissions testing was examined for possible inclusion into the MSOD. The following four tables show summary information and analysis for data received from all of the special studies.

| Source Description               | <b># Vehicles</b> | # Tests |
|----------------------------------|-------------------|---------|
| California Air Resources Board   | 42                | 51      |
| University of California CE-CERT | 344               | 878     |
| Coordinating Research Council    | 12                | 510     |
| Environment Canada               | 5                 | 47      |
| North Carolina State University  | 7                 | 787     |
| New York IPA                     | 6897              | 18038   |
| West Virginia University         | 130               | 2128    |
| Grand Total                      | 7437              | 22439   |

## Table 3-1: Population of Special Studies

## Table 3-2: Number of Tests for Each Vehicle Type from Special Studies

|              | Model Year Group |                       |                   |        |        |      |         |             |  |
|--------------|------------------|-----------------------|-------------------|--------|--------|------|---------|-------------|--|
| Vehicle Type | Non-catalyst     | Oxidation<br>catalyst | 3-way<br>catalyst | Tier 0 | Tier 1 | NLEV | Missing | Grand Total |  |
| LDV          | 24               | 27                    | 1152              | 9268   | 5733   | 99   |         | 16303       |  |
| LDT          | 6                | 7                     | 169               | 1929   | 1805   | 36   | 142     | 4094        |  |
| HDT          |                  |                       |                   |        |        |      | 1342    | 1342        |  |
| Bus          |                  |                       |                   |        | 47     |      | 640     | 687         |  |
| Missing      |                  |                       |                   |        |        |      | 4       | 4           |  |
| Grand Total  | 30               | 34                    | 1321              | 11197  | 7585   | 135  | 2128    | 22430       |  |

|                | Vehiele         |                  |                       | Мо                | del Year Gr | oup    |      |         | Orend          |
|----------------|-----------------|------------------|-----------------------|-------------------|-------------|--------|------|---------|----------------|
| Mileade        | Vehicle<br>Type | Non-<br>catalyst | Oxidation<br>catalyst | 3-way<br>catalyst | Tier 0      | Tier 1 | NLEV | Missing | Grand<br>Total |
| Mileage < 50K  | LDV             | 11               | 15                    | 63                | 611         | 3388   | 99   |         | 4187           |
| willeage < 50K | LDT             | 4                | 3                     | 15                | 138         | 853    | 36   |         | 1049           |
| Mileage < 50   | K Total         | 15               | 18                    | 78                | 749         | 4241   | 135  |         | 5236           |
| Mileage > 50K  | LDV             | 13               | 12                    | 1089              | 8657        | 2344   |      |         | 12115          |
| willeage > 50K | LDT             | 2                | 4                     | 154               | 1791        | 945    |      |         | 2896           |
| Mileage > 50   | K Total         | 15               | 16                    | 1243              | 10448       | 3289   |      |         | 15011          |
|                | LDV             |                  |                       |                   |             | 1      |      |         | 1              |
|                | LDT             |                  |                       |                   |             | 7      |      | 142     | 149            |
| Missing        | HDT             |                  |                       |                   |             |        |      | 1342    | 1342           |
|                | Bus             |                  |                       |                   |             | 47     |      | 640     | 687            |
|                | Missing         |                  |                       |                   |             |        |      | 4       | 4              |
| Missing T      | otal            |                  |                       |                   |             | 55     |      | 2128    | 2183           |
| (              | Grand Total     | 30               | 34                    | 1321              | 11197       | 7585   | 135  | 2128    | 22430          |

# Table 3-3: Number of Tests for Each Mileage Grouping from Special Studies

# Table 3-4: Number of Tests for Each Fuel Type from Special Studies

| Fuel                  | Non-catalyst | Oxidation<br>catalyst | 3-way<br>catalyst | Tier 0 | Tier 1 | NLEV | Missing | Grand Total |
|-----------------------|--------------|-----------------------|-------------------|--------|--------|------|---------|-------------|
| CNG                   |              |                       |                   |        | 8      |      |         | 8           |
| GASOLINE              | 30           | 34                    | 1321              | 11197  | 7028   | 135  |         | 19745       |
| LSD                   |              |                       |                   |        | 6      |      |         | 6           |
| TOSCO                 |              |                       |                   |        | 4      |      |         | 4           |
| ULSD                  |              |                       |                   |        | 14     |      |         | 14          |
| GAS (Sulfur modified) |              |                       |                   |        | 510    |      |         | 510         |
| CARB                  |              |                       |                   |        |        |      | 479     | 479         |
| CECD1                 |              |                       |                   |        |        |      | 127     | 127         |
| CNG                   |              |                       |                   |        |        |      | 157     | 157         |
| Diesel #1             |              |                       |                   |        |        |      | 14      | 14          |
| Diesel #2             |              |                       |                   |        |        |      | 536     | 536         |
| ECD                   |              |                       |                   |        |        |      | 402     | 402         |
| FT                    |              |                       |                   |        |        |      | 35      | 35          |
| Gasoline              |              |                       |                   |        |        |      | 26      | 26          |
| LNG                   |              |                       |                   |        |        |      | 129     | 129         |
| M100                  |              |                       |                   |        |        |      | 42      | 42          |
| MG                    |              |                       |                   |        |        |      | 44      | 44          |
| MG50D250              |              |                       |                   |        |        |      | 54      | 54          |
| ULSD1                 |              |                       |                   |        |        |      | 83      | 83          |
| Missing               |              |                       |                   |        | 15     |      |         | 15          |
| Grand Total           | 30           | 34                    | 1321              | 11197  | 7585   | 135  | 2128    | 22430       |

#### 3.2 California Air Resources Board

As part of the California Air Resources Board (CARB) development of the Emission Factor (EMFAC) model, they have developed adjustments to EPA's Unified Cycle (UC). These adjustments, entitled Unified Correction Cycles (UCC) are based off of route specific driving data representative of driving within the Los Angeles area in 1992. CARB then updated the UCC's in 1996 to account for changes in driving patterns. After developing 8 new driving cycles, they conducted an emissions testing program to generate new factors for their EMFAC model.

For this emissions testing program they recruited approximately 81 vehicles from the general fleet population and tested them using the 8 new UCCs, an FTP, and an UC test. Only a portion of the testing data was available for inclusion into the MSOD. Each vehicle's fuel tank was emptied and refilled with Phase I summertime gasoline fuel prior to preconditioning and testing. Second by second data was collected for the UCC and UC tests only [1, 2].

Summary statistics for CARB data appear in the tables below.

| Model Year Group      | Veh        | Grand Total |     |             |
|-----------------------|------------|-------------|-----|-------------|
|                       | LDGV LDT N |             | MDV | Granu Totai |
| 1. Non-catalyst       | 1          |             |     | 1           |
| 2. Oxidation catalyst | 1          |             |     | 1           |
| 3. 3-way catalyst     | 7          | 2           |     | 9           |
| 4. Tier 0             | 21         | 6           |     | 27          |
| 5. Tier 1             | 2          | 1           | 1   | 4           |
| Grand Total           | 32         | 9           | 1   | 42          |

#### Table 3–5: Number of Vehicles for each Vehicle Type

#### Table 3–6: Number of Vehicles for Each Mileage Grouping and Vehicle Type

| Mileage             | Model Year Group      | Veł  | Grand Total |     |             |
|---------------------|-----------------------|------|-------------|-----|-------------|
| wheage              |                       | LDGV | LDT         | MDV | Granu Totai |
|                     | 4. Tier 0             | 3    | 4           |     | 7           |
| Mileage < 50K       | 5. Tier 1             | 2    | 1           | 1   | 4           |
| Mileage < 50K Total |                       | 5    | 5           | 1   | 11          |
|                     | 1. Non-catalyst       | 1    |             |     | 1           |
|                     | 2. Oxidation catalyst | 1    |             |     | 1           |
| Mileage > 50K       | 3. 3-way catalyst     | 7    | 2           |     | 9           |
|                     | 4. Tier 0             | 18   | 2           |     | 20          |
| Mileage > 50K Total |                       | 27   | 4           |     | 31          |
|                     | Grand Total           | 32   | 9           | 1   | 42          |

| Variable                | Count | Missing | MIN      | MAX       | MEAN     | STD      |
|-------------------------|-------|---------|----------|-----------|----------|----------|
| Model Year              | 42    | 0       | 1973     | 1994      | 1988     | 4.55     |
| Cylinders               | 42    | 0       | 2        | 8         | 5.19     | 1.53     |
| Displacement (L)        | 42    | 0       | 1.14     | 5.73      | 2.83     | 1.16     |
| Ambient Humidity (%)    | 0     | 42      |          |           |          |          |
| Ambient Pressure        | 0     | 42      |          |           |          |          |
| Ambient Temperature (F) | 0     | 42      |          |           |          |          |
| Horsepower              | 42    | 0       | 5.60     | 15.90     | 8.80     | 2.45     |
| Curb Weight (lbs)       | 0     | 42      |          |           |          |          |
| Inertia Weight (lbs)    | 42    | 0       | 2250     | 5500      | 3369.05  | 670.57   |
| Odometer                | 42    | 0       | 22085.00 | 332391.00 | 87786.90 | 54091.94 |

# Table 3–7: Statistics for Numerical Data Fields

Documentation rating: A. Fully Documented

This project is documented by two main papers, which are shown below. General information about the California Air Resources Board can be found at <u>url:http://www.arb.ca.gov/msei/msei.htm</u> (last verified October 24, 2002).

1. *Development of Unified Correction Cycles* written by Robert Gammariello and Jeffrey R. Long, submitted to the Sixth CRC On-Road Vehicle Emissions Workshop in March 1996.

2. *Memorandum: Unified Correction Cycles Test Plan.* Written July 19, 2995 by Mark Carlock to Raphael Susnowitz.

#### Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. The test program did not record any OBD data and the only fuel information is Phase I summertime.

<u>Contact:</u> Jeff Long Phone: (626) 450-6140 California Air Resources Board; Analysis Section 9528 Telstar Ave. El Monte, CA 91731 USA E-mail: jlong@arb.ca.gov

#### 3.3 Coordinating Research Council

The Coordinating Research Council (CRC) conducted studies in 1997 to determine the effects of sulfur levels in fuel on vehicles. They used approximately 12 vehicles as shown in Table 3-8. Each vehicle was first tested with approximately 10,000 miles on the odometer. The catalysts were then rapidly aged to the equivalent of over 100,000 miles and retested. To investigate the effects of sulfur, they varied the amount of sulfur in two base fuels by adding the

Auto/Oil 3-component sulfur mixture. They used Federal RFG base fuel with 40, 100, 150, 330, and 600 ppm Sulfur as well as California Phase 2 RFG with 40 and 150 ppm sulfur [1, 2, 3]. Summary statistics for CRC data appear in the tables below.

| Vehicle Model      | Emission Level | Inertia  | HP Dynamometer |
|--------------------|----------------|----------|----------------|
| 1997 Ford Taurus   | C_LEV          | 3625 lb. | 5.9 hp         |
| 1997 Ford Escort   | C_LEV          | 3000 lb. | 6.3 hp         |
| 1997 Honda Civic   | C_LEV          | 2750 lb. | 7.5 hp         |
| 1997 Nissan Sentra | C_LEV          | 2750 lb. | 6.7 hp         |
| 1997 Toyota Camry  | C_LEV          | 3375 lb. | 7.4 hp         |
| 1997 Geo Metro     | C_LEV          | 2375 lb. | 7.3 hp         |

## Table 3-8: Vehicle Summary (Two Vehicles of Each Model)

# Table 3–9: Statistics for Numerical Data Fields

| Variable                | Count | Missing | MIN   | MAX   | MEAN     | STD     |
|-------------------------|-------|---------|-------|-------|----------|---------|
| Model Year              | 510   | 0       | 1997  | 1997  | 1997     | 0       |
| Cylinders               | 510   | 0       | 4     | 7     | 4.34     | 0.76    |
| Displacement (L)        | 510   | 0       | 1.30  | 3.00  | 1.96     | 0.56    |
| Ambient Humidity (%)    | 510   | 0       | 31.48 | 57.95 | 44.53    | 4.38    |
| Ambient Pressure        | 510   | 0       | 97.76 | 99.36 | 98.51    | 0.29    |
| Ambient Temperature (F) | 510   | 0       | 70.20 | 78.60 | 73.92    | 1.28    |
| Horsepower              | 510   | 0       | 5.90  | 7.50  | 6.83     | 0.60    |
| Curb Weight (lbs)       | 0     | 510     |       |       |          |         |
| Inertia Weight (lbs)    | 510   | 0       | 2375  | 3630  | 2983.73  | 421.34  |
| Odometer                | 509   | 1       | 1066  | 15075 | 10825.06 | 2113.76 |

Documentation rating: B. Can be documented

A full project report detailing the test methods and analysis was not found for the E-47 and E-42 at the time this report was published. Documentation appears in the test records and subsequent analysis. The CRC main web site is at <u>http://www.crcao.com/</u> (last verified October 24, 2002). Some of the documentation that was available is as follows:

1. AAMA / AIAM Study on the Effects of Fuel Sulfur on Low Emission Vehicle Criteria Pollutants. December 1997.

2. ReadMe file included with the data entitled *CRC Project E-47 Sulfur Reversibility Program CD-ROM Description*.

3. ReadMe file included with the data entitled *CRC Certified-LEV Vehicle Fuel Sulfur Effects Emissions Program.* 

Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. OBD parameters are not available from this project.

<u>Contacts:</u> Mr. Brent Bailey. Phone: 678-795-0506 Coordinating Research Council E-mail: <u>bkbailey@crcao.com</u>

#### 3.4 Environment Canada

The Environmental Technology Centre (ETC) at Environment Canada has been conducting a wide range of vehicle testing for many years on both heavy and light duty vehicles and has been collecting second by second data during the vast majority of tests. We have been in discussions with the staff of ETC to determine which of their data sets could be added to the MSOD. At the time this interim report was written, these discussions were still on going and only a very small portion of the potential data had been delivered for use. This section will discuss the data from the two studies that have already been delivered. While it is likely that additional data will be delivered in time for inclusion in this project, all other data is discussed further in Section 4.3 as data for future collection.

The two studies that Environment Canada has already provided for use in the MSOD examined emissions from 40 foot Orion V transit buses from the New York City Transit Authority. The first study examined the emissions from 3 buses, all of which use compressed natural gas. The buses were tested at Environment Canada's testing facility and exhaust emissions were measured while the buses were operated over the Central Business District (CBD) and New York Bus (NYBUS) cycles [1].

The second study examined the performance and durability of continuously regenerating particulate filters for diesel-powered buses. In this study 25 New York City transit buses were equipped with continuously regenerating diesel particulate filter systems for 9 to 12 months. As part of this study, two of the buses were selected for in-depth exhaust emissions testing before and after the particulate filter systems were in use. The buses were tested operating over the CBD and NYBUS cycles and were tested operating on New York standard diesel fuel #1 (300 ppm sulfur) as well as ultra low sulfur diesel (<30 ppm sulfur) [2].

Details of the buses used in both studies appear in Table 3-10 and 3-11. No data is available for the ambient test conditions.

| Detail         | Value                |
|----------------|----------------------|
| Model – CNG    | 1999 DDC Series 50 G |
| Model - Diesel | 1999 DDC Series 50   |
| Chassis        | New Flyer CLF 40     |
| Displacement   | 8.5L                 |
| Туре           | 4-Stroke             |
| Power (hp)     | 275                  |
| Configuration  | Inline 4 cylinder    |

## Table 3-10: Bus Characteristics

## Table 3–11: Number of Tests for Each Fuel Type

| Fuel                             | Number of Test |
|----------------------------------|----------------|
| Compressed Natural Gas           | 8              |
| Low Sulphur Diesel               | 6              |
| TOSCO (Ultra Low Sulphur Diesel) | 4              |
| Ultra Low Sulphur Diesel         | 14             |
| Missing                          | 15             |
| Grand Total                      | 47             |

Documentation rating: A. Fully Documented

Two main papers, as shown below, document the projects. Additional information about Environment Canada can be found at http://www.etcentre.org/etchome\_e.html (last verified October 24, 2002).

1. Determination of Exhaust Emissions from Three New York City Transit CNG Buses. ERMD Report #01-34. Prepared by Environmental Technology Centre, Emissions Research and Measurement Division in 2001.

2. Chatterjee, et al. Performance and Durability Evaluation of Continuously Regenerating Particulate Filters on Diesel Powered Urban Buses at NY City Transit – Part II. Society of Automotive Engineers, Inc. Report number 2002-01-0430, written in 2002.

Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. None of the ambient test conditions were recorded.

<u>Contacts:</u> Environmental Technology Centre Environment Canada 335 River Road South, Gloucester, ON K1A 0H3 Tel. (613) 991-5633 Fax. (613) 998-1365

#### 3.5 New York Instrumentation Protocol Assessment

New York State runs a decentralized inspection and maintenance (I/M) program that does not use the EPA standard IM240 protocol, but instead uses a New York Transient Emissions Short Test (NYTEST) testing program and equipment. To support this substitution in testing programs, New York has been performing a comparison study between the NYTEST and IM240 emissions test. This study is entitled *Evaluation of Simultaneous Emissions Test Data Derived From the NYTEST Instrumentation/Protocol Assessment Pilot Study*. The study is referred to as the IPA. This study began as a pilot study in 1998 and has been carried on yearly ever since.

During the IPA study, vehicles are simultaneously tested using both the NYTEST and IM240 equipment. The composite results are then analyzed for equivalency. All tests were performed by TESTCOM contractors at one testing facility. The vehicles used during the testing were recruited from the general vehicle fleet population and were roughly followed the distribution fleet age distribution. Tank fuel (gasoline) was used for all vehicles. Second by second data has been made available for all years of the IPA program for the IM240 testing [1, 2, 3].

Summary statistics for the New York IPA program data appear in the tables below.

| Model Year Group      | Vehicle | Grand Total |             |
|-----------------------|---------|-------------|-------------|
|                       | LDV     | LDT         | Granu Totai |
| 2. Oxidation catalyst | 3       | 0           | 3           |
| 3. 3-way catalyst     | 1089    | 121         | 1210        |
| 4. Tier 0             | 9004    | 1772        | 10776       |
| 5. Tier 1             | 4424    | 1490        | 5914        |
| 6. NLEV               | 99      | 36          | 135         |
| Grand Total           | 14619   | 3419        | 18038       |

Table 3–12: Number of Tests for each Vehicle Type

|               |                       | Vehic | le Type |                    |
|---------------|-----------------------|-------|---------|--------------------|
| Mileage       | Model Year Group      | LDV   | LDT     | <b>Grand Total</b> |
|               | 3. 3-way catalyst     | 3     | 55      | 58                 |
| Miloogo < 50K | 4. Tier 0             | 111   | 536     | 647                |
| Mileage < 50K | 5. Tier 1             | 686   | 2166    | 2852               |
|               | 6. NLEV               | 36    | 99      | 135                |
|               | Mileage < 50K Total   | 836   | 2856    | 3692               |
|               | 2. Oxidation catalyst | 0     | 3       | 3                  |
|               | 3. 3-way catalyst     | 118   | 1034    | 1152               |
| Mileage > 50K | 4. Tier 0             | 1661  | 8468    | 10129              |
|               | 5. Tier 1             | 804   | 2258    | 3062               |
|               | Mileage > 50K Total   | 2583  | 11763   | 14346              |
|               | Grand Total           | 3419  | 14619   | 18038              |

# Table 3–13: Number of Tests for Each Mileage Grouping and Vehicle Type

# Table 3–14: Statistics for Numerical Data Fields

| Variable            | Count  | Missing | MIN   | MAX       | MEAN   | STD    |
|---------------------|--------|---------|-------|-----------|--------|--------|
| Model Year          | 18,038 | 0       | 1,980 | 2,001     | 1,992  | 4      |
| Cylinders           | 18,038 | 0       | 0     | 8         | 5      | 1      |
| Displacement        | 0      | 18,038  |       |           |        |        |
| Ambient Humidity    | 18,038 | 0       | 0     | 92        | 35     | 13     |
| Ambient Pressure    | 0      | 18,038  |       | •         |        |        |
| Ambient Temperature | 0      | 18,038  |       |           |        |        |
| Horsepower          | 18,038 | 0       | 1     | 27        | 14     | 3      |
| Curb Weight         | 0      | 18,038  |       |           |        |        |
| Inertia Weight      | 18,038 | 0       | 1,750 | 6,000     | 3,323  | 583    |
| Odometer            | 18,038 | 0       | 239   | 1,255,864 | 91,199 | 52,486 |

Documentation rating: A. Fully Documented

The program is fully documented in several reports. Some of the primary reports are as follows:

1. Evaluation of Simultaneous Emissions Test Data Derived From the NYTEST

Instrumentation/Protocol Assessment Pilot Study, Regression and Residual Analysis of NYTEST and IM240 Composite Emission Test Results. Prepared by the New York State Department of Environmental Conservation Division of Air Resources Bureau of Enhanced Inspection and Maintenance & the Automotive Emissions Laboratory, May 2000.

2. Amendments 1 and 2 Project Summary Report (Emissions Data Collected in 1999 and 2000), prepared by the New York State Department of Environmental Conservation Division of Air Resources Bureau of Enhanced Inspection and Maintenance & the Automotive Emissions Laboratory, January 2002.

3. *IPA Amendment #3 Project Summary Report*. Prepared by the New York State Department of Environmental Conservation Division of Air Resources Bureau of Enhanced Inspection and Maintenance & the Automotive Emissions Laboratory, July 2002.

#### Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. OBD and fuel parameters are not available from this project.

<u>Contacts:</u> Celia Shih, (518) 402-8337 Data Analysis Section, Bureau of Enhanced I/M Division of Air Resources, NYSDEC 2nd Fl, 625 Broadway Albany, NY 12233-3257 <u>cxshih@gw.dec.state.ny.us</u>

#### 3.6 North Carolina State University

In 2001 Dr. Christopher Frey from the Department of Civil Engineering at North Carolina State University headed a team to investigate the emissions reductions that could be achieved through improvement in traffic management. They used the portable exhaust gas analyzer, OEM-2100<sup>TM</sup>, from Clean Air Technologies International, Inc. to collect on-road vehicle emissions. This instrumentation was attached to a small number of vehicles that were then repeatedly driven on predefined routes.

Two main sites were used for the study, Chapel Hill Road and Walnut Street in North Carolina. The vehicles used at each site appear in Table 3-15. A small number of drivers were used to ensure repeatability in the driving behavior. Regular unleaded gasoline was used for all vehicle runs and no further fuel information is available from the study [1].

Summary statistics for the North Carolina data appear in the tables below

| Vehicle                        | Chapel Hill Road | Walnut Street |
|--------------------------------|------------------|---------------|
| 1999 Ford Taurus               | Primary          | Primary       |
| 1998 Chevrolet Venture Minivan | Primary          | (not used)    |
| 1998 Toyota Camry              | Secondary        | Secondary     |
| 1998 Dodge Caravan             | Secondary        | Secondary     |
| 1997 Jeep Cherokee             | Secondary        | (not used)    |
| 1996 Oldsmobile Cutlass        | Secondary        | Primary       |

Table 3-15: Vehicles used in NCSU Study

|               |                  | Vehicle Type |     |                    |
|---------------|------------------|--------------|-----|--------------------|
| Mileage       | Model Year Group | LDV          | LDT | <b>Grand Total</b> |
| Mileage < 50K | 5. Tier 1        | 592          | 77  | 669                |
| Mileage > 50K | 5. Tier 1        |              | 111 | 111                |
| Missing       | 5. Tier 1        |              | 7   | 7                  |
|               | Grand Total      | 592          | 195 | 787                |

# Table 3–16: Number of Tests for Each Mileage Grouping and Vehicle Type

# Table 3–17: Statistics for Numerical Data Fields

| Variable                | Count | Missing | MIN   | MAX   | MEAN     | STD      |
|-------------------------|-------|---------|-------|-------|----------|----------|
| Model Year              | 787   | 0       | 1996  | 1999  | 1998     | 1.25     |
| Cylinders               | 0     | 787     |       |       | •        |          |
| Displacement (L)        | 767   | 20      | 0.30  | 4.00  | 2.80     | 0.56     |
| Ambient Humidity (%)    | 671   | 116     | 20.00 | 97.00 | 48.46    | 21.07    |
| Ambient Pressure        | 0     | 787     |       |       |          |          |
| Ambient Temperature (F) | 745   | 42      | 28.00 | 95.00 | 61.12    | 15.96    |
| Horsepower              | 0     | 787     |       |       |          |          |
| Curb Weight (lbs)       | 727   | 60      | 1063  | 5357  | 4495.97  | 741.67   |
| Inertia Weight (lbs)    | 0     | 787     |       |       |          |          |
| Odometer                | 780   | 7       | 30875 | 83260 | 41397.46 | 10395.85 |

Documentation rating: A. Fully Documented

The project is well documented in its final report. The report and additional information can be downloaded from NCSU's website <u>http://www4.ncsu.edu/~frey/</u> (last verified on October 24, 2002).

1. Frey, et. al. Emissions Reduction Through Better Traffic Management: An Empirical Evaluation Based Upon On-Road Measurements. Prepared for the North Carolina Department of Transportation, December 2001.

# Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. The project used regular unleaded gasoline and did not record any further fuel parameters.

Contacts:

H. Christopher Frey Associate Professor Department of Civil Engineering North Carolina State University Raleigh, NC 27695-7908 Telephone: (919) 515-1155 E-mail:<u>frey@eos.ncsu.edu</u>

#### 3.7 University of California CE-CERT

Researchers at the University of California College of Engineering-Center for Environmental Research and Technology (CECERT) have been conducting a variety of vehicle test programs for several years. After discussions with the CE-CERT staff, data from two of their test programs were submitted for inclusion into the MSOD. These two test programs are discussed below. Several other studies performed at CE-CERT appear to be of interest but were not available within the time frame of this project and are discussed further in Section 4.5.

#### 3.7.1 Comprehensive Modal Emissions Model

Data was collected by CECERT for the modal emissions model development program. This program can best be described through the following excerpt taken from the report *NCHRP Project 25-11 Development of a Comprehensive Modal Emissions Model final Report* written by Matthew Barth and associates in April 2000.

In August 1995, the College of Engineering-Center for Environmental Research and Technology (CECERT) at the University of California-Riverside along with researchers from the University of Michigan and Lawrence Berkeley National Laboratory, began a four-year research project to develop a *Comprehensive* Modal Emissions Model (CMEM), sponsored by the National Cooperative Highway Research Program (NCHRP, Project 25-11). The overall objective of the research project was to develop and verify a modal emissions model that accurately reflects Light-Duty Vehicle (LDV, i.e., cars and small trucks) emissions produced as a function of the vehicle's operating mode. The model is comprehensive in the sense that it is able to predict emissions for a wide variety of LDVs in various states of condition (e.g., properly functioning, deteriorated, malfunctioning). The model is now complete and capable of predicting secondby-second tailpipe emissions and fuel consumption for a wide range of vehicle/technology categories. In creating CMEM, over 350 vehicles were extensively tested on a chassis dynamometer, where second-by-second measurements were made of both engine-out and tailpipe emissions of carbon monoxide, hydrocarbons, oxides of nitrogen, and carbon dioxide. CMEM itself runs on a personal computer or on a UNIX workstation. The model and the emissions database are both available on a CD [1].

The vehicles used in the study were typically tested with three test cycles: 3-bag Federal Test Procedure (FTP), US06 cycle (bag 4 of the supplemental FTP), and a second by second emissions cycle developed by CECERT entitled the Modal Emission Cycle (MEC). The MEC was designed to cover a range of driving modes including steady-state cruise, accelerations, decelerations, and idle. All vehicles were recruited out of the general vehicle population and whatever gasoline that they had in their tanks was used during testing.

Summary statistics for the NCHRP data appear in the tables below.

| Model Year Group      | Vehicle | е Туре | Grand Total |
|-----------------------|---------|--------|-------------|
| woder rear Group      | LDV     | LDT    | Granu Totar |
| 1. Non-catalyst       | 23      | 6      | 29          |
| 2. Oxidation catalyst | 23      | 7      | 30          |
| 3. 3-way catalyst     | 56      | 46     | 102         |
| 4. Tier 0             | 243     | 151    | 394         |
| 5. Tier 1             | 205     | 118    | 323         |
| Grand Total           | 550     | 328    | 878         |

## Table 3–18: Number of Test for Each Vehicle Type

## Table 3.–19: Number of Tests for Each Mileage Grouping and Vehicle Type

| Miloogo       | Model Veer Group      | Vehicle | е Туре | Grand Total |
|---------------|-----------------------|---------|--------|-------------|
| Mileage       | Model Year Group      | LDV     | LDT    | Grand Total |
|               | 1. Non-catalyst       | 11      | 4      | 15          |
|               | 2. Oxidation catalyst | 15      | 3      | 18          |
| Mileage < 50K | 3. 3-way catalyst     | 8       | 12     | 20          |
|               | 4. Tier 0             | 72      | 23     | 95          |
|               | 5. Tier 1             | 119     | 88     | 207         |
|               | Mileage < 50K Total   |         |        | 355         |
|               | 1. Non-catalyst       | 12      | 2      | 14          |
|               | 2. Oxidation catalyst | 8       | 4      | 12          |
| Mileage > 50K | 3. 3-way catalyst     | 48      | 34     | 82          |
|               | 4. Tier 0             | 171     | 128    | 299         |
|               | 5. Tier 1             | 86      | 30     | 116         |
|               | Mileage > 50K Total   | 325     | 198    | 523         |
|               | Grand Total           | 550     | 328    | 878         |

## Table 3–20: Statistics for Numerical Data Fields

| Variable            | Count | Missing | MIN  | MAX    | MEAN     | STD      |
|---------------------|-------|---------|------|--------|----------|----------|
| Model Year          | 878   | 0       | 19   | 1999   | 1966     | 219      |
| Cylinders           | 878   | 0       | 3    | 8      | 5        | 2        |
| Displacement        | 878   | 0       | 0    | 8      | 2.55     | 1.90     |
| Ambient Humidity    | 878   | 0       | 0    | 88     | 48.33    | 24.01    |
| Ambient Pressure    | 878   | 0       | 0    | 30     | 23.40    | 11.25    |
| Ambient Temperature | 878   | 0       | 0    | 93     | 67.79    | 21.72    |
| Horsepower          | 878   | 0       | 0    | 29     | 9.18     | 6.78     |
| Curb Weight         | . 0   | 878     |      |        |          |          |
| Inertia Weight      | 878   | 0       | 1750 | 8000   | 3333.86  | 778.19   |
| Odometer            | 878   | 0       | 96   | 228988 | 67774.06 | 47422.64 |

#### Documentation rating: A. Fully Documented

The project is well documented in its final report cited below. Additional information can also be found on their web site at <u>http://www.cert.ucr.edu</u>.

1. Matthew Barth, et. al. NCHRP Project 25-11 Development of a Comprehensive Modal Emissions Model Final Report April 2000.

#### Completeness rating: C. Missing Data

This program did not record all of the data fields listed as being of interest in Appendix A. The project used whatever fuel was in the vehicle at the time of recruitment (tank fuel) and did not record any OBD information.

<u>Contacts:</u> Dr. Matthew Barth Director of Transportation Systems & Vehicle Technology Research Laboratory Phone: 909-781-5782 E-mail : barth@cert.ucr.edu

## 3.7.2 CE-CERT Ammonia Study

In 2001 CE-CERT conducted a study to examine the factors that influence ammonia emissions from light-duty cars and trucks. During this study they tested 39 vehicles on the FTP driving cycle. The manufacturer of these vehicles is shown below in Table 3-21. All of these tests were performed with whatever gasoline was in the vehicle tank at the time that the vehicle was procured. During each test they recorded the standard exhaust measurements along with utilizing Fourier transform infrared spectroscopy to measure the ammonia emissions. They also performed additional testing on five vehicles using the US06, the New York City Cycle (NYCC), and a high-speed freeway cycle in order to determine effects of driving patterns on ammonia emissions. Finally, two vehicles were tested using gasoline with 30 and then 330 ppmw sulfur levels to investigate the effects of fuel sulfur levels.

| Manufacturer | LDV (car) | LDT |
|--------------|-----------|-----|
| GM           | 3         | 9   |
| Ford         | 4         | 5   |
| Chrysler     | 3         | 1   |
| Honda        | 6         | 0   |
| Toyota       | 2         | 2   |
| Nissan       | 2         | 0   |
| Other        | 1         | 1   |

#### Table 3-21: Vehicles Used In Ammonia Study

#### Documentation rating: Undetermined

At the time this report was written CE-CERT was still in the process of submitting their data. A final determination will be made once the data has been transferred and reviewed. The above discussion was taken from the following reports:

1. Thomas D. Durbin, Ryan D. Wilson, Joseph M. Norbeck, J. Wayne Miller, Tao Huai, Sam H. Rhee, *Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles*. Atmospheric Environment 36 (2002) 1475 1482. Accepted December 2 2001

#### Completeness rating: Undetermined

A full determination of the completeness of the data could not be made because the actual data had not been received by the time this report was written.

<u>Contacts:</u> Dr. Matthew Barth Director of Transportation Systems & Vehicle Technology Research Laboratory Phone: 909-781-5782 E-mail : barth@cert.ucr.edu

#### 3.8 West Virginia University

In 1992 West Virginia University (WVU) developed two transportable chassis dynamometer laboratories for testing heavy duty vehicles. Each dynamometer is set up on a flatbed trailer and is designed to allow a heavy duty truck or bus to be driven onto it and tested. The rollers of the dynamometer are free rotating and are not used to absorb any load. Instead, power is taken directly from the drive wheels through an adapter which couples it to a flywheel, which simulates inertial load, and eddy current power absorbers, which simulate road load. The exhaust gas is ducted to a dilution tunnel and from there sample pipes bring the exhaust into the analyzers [1, 2].

WVU has used this equipment to conduct numerous studies for both private and public organizations. At the time that this report was written EPA was in the process of procuring part of this data from three testing sites for inclusion into the MSOD and only summary information was available for this data. The following tables show a review of the type of testing performed at the three different sites. The remainder of the data collected from WVU is either confidential or outside the time frame of this project to procure and is summarized in Section 4.4.

Summary statistics for WVU data appear in the tables below.

| Site                                              | Abbreviatio<br>n | Vehicles | Tests |
|---------------------------------------------------|------------------|----------|-------|
| Ralph's Grocery                                   | RAGRO            | 85       | 1098  |
| Washington Metropolitan Area<br>Transit Authority | WMA              | 10       | 97    |
| West Virginia University                          | WVU              | 35       | 933   |
| Grand Total                                       | 130              | 2128     |       |

## Table 3–22: Testing Activity at Each Site

## Table 3–23: Number of Tests for Each Vehicle Type Tested

|                         |       | Facility |     |             |
|-------------------------|-------|----------|-----|-------------|
| Vehicle Type            | RAGRO | WMATA    | WVU | Grand Total |
| Beverage Truck          | 6     |          |     | 6           |
| box truck               | 62    |          | 43  | 105         |
| Chassis Bus             |       |          | 118 | 118         |
| Flat Bed                | 4     |          |     | 4           |
| Fuel Cell Bus           |       |          | 42  | 42          |
| Fuel Truck              | 65    |          |     | 65          |
| Hybrid Elec Transit Bus | 16    |          |     | 16          |
| Pick-Up Truck           |       |          | 68  | 68          |
| Refuse Truck            | 284   |          | 128 | 412         |
| School Bus              | 57    |          |     | 57          |
| Suburban                |       |          | 70  | 70          |
| Tractor                 | 40    |          |     | 40          |
| Tractor Truck           | 469   |          | 239 | 708         |
| Transit Bus             | 91    | 97       | 219 | 407         |
| truck                   |       |          | 2   | 2           |
| VAN                     | 4     |          |     | 4           |
| Missing                 |       |          | 4   | 4           |
| Grand Tota              | 1098  | 97       | 933 | 2128        |

|                 |       | Facility |     |             |
|-----------------|-------|----------|-----|-------------|
| Primary Fuel ID | RAGRO | WMATA    | WVU | Grand Total |
| CARB            | 479   |          |     | 479         |
| CECD1           | 119   |          | 8   | 127         |
| CNG             | 35    |          | 122 | 157         |
| D1 Diesel       |       | 14       |     | 14          |
| D2 Diesel       | 11    |          | 525 | 536         |
| ecd             | 402   |          |     | 402         |
| FT              | 10    |          | 25  | 35          |
| GSLN            | 16    |          | 10  | 26          |
| lng             | 26    |          | 103 | 129         |
| M100            |       |          | 42  | 42          |
| MG              |       |          | 44  | 44          |
| MG50D250        |       |          | 54  | 54          |
| ULSD1           |       | 83       |     | 83          |
| Grand Total     | 1098  | 97       | 933 | 2128        |

# Table 3–24: Number of Tests for Each Fuel Type Used

| ActiveWAAWVU14 Peak Cycle1214 Peak Route24Alternative 11Alternative 21Arterial Cycle27CARB HHDDT Transient Mode15Central Business District Cycle5CARB HHDDT Transient Mode15Central Business District Route5City Cycle1City Suburban Cycle5City Suburban Route314Cold Start Extended CBD Cycle8Cold Start Kulliam H. Martin Cycle5D Cycle143Double CSHVR Route143Double CSHVR Route143Double Length 5Miles Cycle6Double New York Garbage Truck Cycle4Double Washington DC Metro Transit Bus2Cycle11Federal Test Procedure4Hiway Cycle34Hiway Cycle36If GE1FIP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle34Hiway Cycle34Cold Statte Cycle34Gorgetown University TS4Hiway Cycle34Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                  |                                  | Facility |     |     |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------|-----|-----|-------------|
| 14 Peak Route       24         Alternative 1       1         Alternative 2       1         Arterial Cycle       27         CARB HHDDT Transient Mode       15         Central Business District Cycle       5         Cantral Business District Route       5         City Cycle       1         City Suburban Route       314         City Suburban Route       314         Cod Start Extended CBD Cycle       8         Cold Start William H. Martin Cycle       5         D Cycle       29         Oable CSHVR Route       103         Double CSHVR Route       103         Double Length SMiles Cycle       6         Double New York Garbage Truck Cycle       48         Double Ithan Dynamometer Driving Schedule       5         Double WHM Warmup       18         Double WHM Cycle       24         Federal Test Procedure       4         FIGE       1         FIP-75       59         Georgetown University TS       4         Hiway Cycle       34       3         Idle State Cycle       34       3         Idle State Cycle       34       3         Idle State Cycl                      | Cycle full name                  | RAGRO    | WMA | WVU | Grand Total |
| 14 Peak Route       24         Alternative 1       1         Alternative 2       1         Arterial Cycle       27         CARB HHDDI Transient Mode       15         Central Business District Cycle       5         Central Business District Route       5         City Cycle       1         City Suburban Route       314         Coast Down       2         Cold Start Extended CBD Cycle       8         Cold Start William H. Martin Cycle       5         Cold Start William H. Martin Cycle       103         Double CSHVR Route       103         Double CSHVR Route       103         Double Length 5Miles Cycle       4         Double New York Garbage Truck Cycle       4         Double Itst D with Warmup       18         Double Whan Dynamometer Driving Schedule       5         Double Whandtan Cycle       24         Double WHM Cycle       11         Federal Test Procedure       4         HGE       34       3         Idle State Cycle       < | 14 Peak Cycle                    |          |     | 12  | 12          |
| Alternative 2       1         Arterial Cycle       27         CARB HHDDT Transient Mode       15         Central Business District Cycle       5         Cartal Business District Route       5         City Cycle       1         City Suburban Cycle       5         City Suburban Route       314         Coast Down       2         Cold Start Extended CBD Cycle       8         Cold Start William H. Martin Cycle       5         D Cycle       29         Double CSHVR Route       113         Double CSHVR Route       113         Double CSHVR Route       143         Double CSHVR Route       143         Double New York Garbage Truck Cycle       48         Double New York Garbage Truck Cycle       48         Double Isst D with Warmup       18         Double Washington DC Metro Transit Bus       24         Double WHM Cycle       11         Fideral Test Procedure       4         FIGE       1         FIP-75       59         Georgetown University TS       4         Hiway Cycle       34         Ug Down       2         Quobule WHM Cycle       19                        |                                  |          |     | 24  | 24          |
| Arterial Cycle       27         CARB HHDDI Transient Mode       15         Central Business District Cycle       5         Central Business District Route       5         City Cycle       1         City Suburban Route       314         Coast Down       2         Cold Start Extended CBD Cycle       8         Cold Start Extended CBD Cycle       8         Cold Start Extended CBD Cycle       103         Double CSHVR Route       143         Double CSHVR Route       143         Double Manhattan Cycle       6         Double Manhattan Cycle       6         Double New York Garbage Truck Cycle       48         Double Inst Dynamometer Driving Schedule       5         Double Washington DC Metro Transit Bus       24         Cycle       24         Double WHM Cycle       11         FtP-75       59         Georgetown University TS       4         Hiway Cycle       36       19         Uig Down       2       2         Manhattan       12       12         Modified WVU Truck Cycle (Route)       34       34         Morgantown On-road Cycle       2       2         Or     | Alternative 1                    |          |     | 1   | 1           |
| CARB HHDDT Transient Mode15Central Business District Cycle5City Cycle1City Suburban Cycle5City Suburban Route314Coast Down2Cold Start Extended CBD Cycle8Cold Start Extended CBD Cycle5D Cycle29Od Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double CSHVR Route4Double CSHVR Route143Double Length 5Miles Cycle6Double New York Garbage Truck Cycle4Double Vashington DC Metro Transit Bus24Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4HIGE11FIP-7559Georgetown University TS4Hiway Cycle34Jale State Cycle34Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                           | Alternative 2                    |          |     | 1   | 1           |
| CARB HHDDT Transient Mode15Central Business District Cycle5City Cycle1City Suburban Cycle5City Suburban Route314Coast Down2Cold Start Extended CBD Cycle8Cold Start Extended CBD Cycle5D Cycle29Od Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double CSHVR Route4Double CSHVR Route143Double Length 5Miles Cycle6Double New York Garbage Truck Cycle4Double Vashington DC Metro Transit Bus24Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4HIGE11FIP-7559Georgetown University TS4Hiway Cycle34Jale State Cycle34Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                           | Arterial Cycle                   |          |     | 27  | 27          |
| Central Business District Route5City Cycle1City Suburban Route314City Suburban Route314Coast Down2Cold Start Extended CBD Cycle8Cold Start Extended CBD Cycle8Cold Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double With Warmup18Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Ug Down2Manhattan12Manhattan12Manhattan12Manhattan2Ouble WHM Cycle34FIGE34FIGE34FW Synce34Hiway Cycle34Ug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                     |                                  |          |     | 15  | 15          |
| Central Business District Route5City Cycle1City Suburban Route314City Suburban Route314Coast Down2Cold Start Extended CBD Cycle8Cold Start Extended CBD Cycle8Cold Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double With Warmup18Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Ug Down2Manhattan12Manhattan12Manhattan12Manhattan2Ouble WHM Cycle34FIGE34FIGE34FW Synce34Hiway Cycle34Ug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                     | Central Business District Cycle  | 5        |     | 256 | 261         |
| City Cycle1City Suburban Cycle31459City Suburban Route31459Coast Down2Cold Start Extended CBD Cycle8Cold Start Extended CBD Cycle5D Cycle29D Cycle29Double CSHVR Route143Double Length 5Miles Cycle103Double Namhattan Cycle6Double New York Garbage Truck Cycle48Double New York Garbage Truck Cycle48Double Vashington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE11FIGE1FIF-754Georgetown University TS4Hiway Cycle36Lig Down2Manhattan12Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |          |     | 5   | 5           |
| City Suburban Cycle5City Suburban Route31459Coast Down2Cold Start Extended CBD Cycle8Cold Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double Length 5Miles Cycle6Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double Test D with Warmup18Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FIP-7559Georgetown University TS4Hiway Cycle34Jale State Cycle (Route)34Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)19New York Bus Cycle22Orange County Refuse Truck Cycle22Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |          |     |     | 1           |
| City Suburban Route31459Coast Down2Cold Start Extended CBD Cycle8Cold Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double Length 5Miles Cycle103Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double Very Nork Garbage Truck Cycle48Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4FIGE11FIGE59Georgetown University TS4Hiway Cycle34Joude State Cycle34Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |          |     | 5   | 5           |
| Coast Down2Cold Start Extended CBD Cycle8Cold Start William H. Martin Cycle5D Cycle29Double CSHVR Route143Double CSHVR Route103Double Length 5Miles Cycle103Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double Test D with Warmup18Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus24Cycle4Double WHM Cycle11Federal Test Procedure4FIGE1FIFP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle34Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 314      |     | 59  | 373         |
| Cold Start William H. Martin Cycle5D Cycle2938Double CSHVR Route143143Double Length 5Miles Cycle1034Double Manhattan Cycle6103Double New York Garbage Truck Cycle48100Double Test D with Warmup18100Double Urban Dynamometer Driving Schedule5100Double Washington DC Metro Transit Bus2424Double WHM Cycle1111Federal Test Procedure4FIGE11FIP-755959Georgetown University TS4Hiway Cycle343Idle State Cycle3619Lug Down234Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |          |     | 2   | 2           |
| Cold Start William H. Martin Cycle5D Cycle2938Double CSHVR Route143143Double Length 5Miles Cycle1034Double Manhattan Cycle6103Double New York Garbage Truck Cycle48100Double Test D with Warmup18100Double Urban Dynamometer Driving Schedule5100Double Washington DC Metro Transit Bus2424Double WHM Cycle1111Federal Test Procedure4FIGE11FIP-755959Georgetown University TS4Hiway Cycle343Idle State Cycle3619Lug Down234Modified WVU Truck Cycle (Route)34Modified WVU Truck Cycle (Route)19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cold Start Extended CBD Cycle    |          | 8   |     | 8           |
| D Cycle2938Double CSHVR Route143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                |          |     | 5   | 5           |
| Double CSHVR Route143Double Length 5Miles Cycle1034Double Manhattan Cycle61Double New York Garbage Truck Cycle481Double Test D with Warmup181Double Urban Dynamometer Driving Schedule51Double Washington DC Metro Transit Bus<br>Cycle2424Double WHM Cycle111Federal Test Procedure41FIGE11FIGE5959Georgetown University TS4Hiway Cycle343Idle State Cycle3619Lug Down234Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle62Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 29       |     | -   | 67          |
| Double Length 5Miles Cycle1034Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double Test D with Warmup18Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Jale State Cycle36Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |          |     |     | 143         |
| Double Manhattan Cycle6Double New York Garbage Truck Cycle48Double Test D with Warmup18Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Jug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |          |     | 4   | 107         |
| Double New York Garbage Truck Cycle48Double Test D with Warmup18Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus24Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Ug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle27Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |          |     |     | 6           |
| Double Test D with Warmup18Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Idle State Cycle36Uug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |          |     |     | 48          |
| Double Urban Dynamometer Driving Schedule5Double Washington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Idle State Cycle36Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle22Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |          |     |     | 18          |
| Double Washington DC Metro Transit Bus<br>Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Jdle State Cycle36Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |          |     |     | 5           |
| Cycle24Double WHM Cycle11Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle36Ug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | -        |     |     |             |
| Federal Test Procedure4FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle36Ug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                |          | 24  |     | 24          |
| FIGE1FTP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle36Idle State Cycle36Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Double WHM Cycle                 |          |     | 11  | 11          |
| FTP-7559Georgetown University TS4Hiway Cycle34Hiway Cycle34Idle State Cycle36Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Federal Test Procedure           |          |     | 4   | 4           |
| Georgetown University TS4Hiway Cycle343Idle State Cycle3619Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FIGE                             |          |     | 1   | 1           |
| Hiway Cycle343Idle State Cycle3619Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FTP-75                           |          |     | 59  | 59          |
| Idle State Cycle3619Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Georgetown University TS         |          |     | 4   | 4           |
| Lug Down2Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hiway Cycle                      | 34       |     | 3   | 37          |
| Manhattan12Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Idle State Cycle                 | 36       |     | 19  | 55          |
| Modified WVU Truck Cycle (Route)34Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lug Down                         |          |     | 2   | 2           |
| Morgantown On-road Cycle19New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 12       |     |     | 12          |
| New York Bus Cycle2Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Modified WVU Truck Cycle (Route) |          |     | 34  | 34          |
| Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Morgantown On-road Cycle         |          |     | 19  | 19          |
| Orange County Refuse Truck Cycle62Orange County Transit Authority Bus Cycle27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | New York Bus Cycle               |          |     | 2   | 2           |
| Orange County Transit Authority Bus Cycle 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 62       |     |     | 62          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |          |     |     | 27          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Steady State Cycle - 20MPH       |          |     | 4   | 4           |
| Steady State Cycle - 30MPH 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |          |     | -   | 6           |
| Steady State Cycle - 40MPH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |          |     | 10  | 10          |
| TCDC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |          |     |     | 6           |

# Table 3–25: Number of Tests for Each Drive Cycle Used

Table continued on next page.

|                                       | F     | Crond Tatal |     |             |
|---------------------------------------|-------|-------------|-----|-------------|
| Cycle full name                       | RAGRO | WMA         | WVU | Grand Total |
| Test D Route                          |       |             | 2   | 2           |
| Triple CBD No Warm up                 | 12    |             |     | 12          |
| Triple Length CBD                     | 174   | 19          | 28  | 221         |
| Triple New York Bus Cycle             | 17    |             |     | 17          |
| Unknown                               | 38    |             | 197 | 235         |
| US06                                  |       |             | 4   | 4           |
| Viking Freight Adhoc Cycle            | 15    |             |     | 15          |
| Washington DC Metro Transit Bus Cycle |       | 46          |     | 46          |
| WHM Cycle                             |       |             | 35  | 35          |
| WVU 1 Peak Cycle                      |       |             | 4   | 4           |
| WVU Truck Cycle (5 Peak)              |       |             | 20  | 20          |
| Yard Cycle                            |       |             | 4   | 4           |
| Grand Total                           | 1098  | 97          | 933 | 2128        |

## Table 3–26: Drive Cycles Used During Testing (Continued)

Documentation rating: Undetermined

At the time this report was written EPA was still in final negotiations to procure the data from WVU. A final determination will be made once the data has been transferred and reviewed. The above discussion was taken from the following reports:

1. Ramamurthy, Clark, Atkinson, and Lyons. *Models for Preedicting Trnasient Heavy Duty Vehicle Emissions*, SAE Technical Paper Series number 982652, Reprinted from Diesel Emissions (SP-1397), 1998.

2. Clark, Prucz, Gautam, and Lyons. *The West Virginia University Heavy Duty Vehicle Emissions Database as a Resource for Inventory and Comparative Studies*. SAE Technical Paper Series number 2000-01-2854, Reprinted From Diesel Aftertreatment (SP-1561), 2000.

#### Completeness rating: Undetermined

The actual data had not been received by the time this report was written and so a full determination of the completeness of the data could not be made.

<u>Contacts:</u> Ralph D. Nine Program Coordinator Department of Mechanical and Aerospace Engineering Morgantown, WV 26506-6106 Phone: (304) 293-3111 ext. 2463 E-mail: Ralph.Nine@mail.wvu.edu

## 4.0 Other Possible Sources of Data for Future Collection

### 4.1 Overview

During the course of this investigation there were several collections of data that appeared highly desirable for inclusion into the MSOD but were unavailable given the time frame of this project. Several of the data sources mentioned above in this report were able to provide only a portion of their data for this project and would most likely be able to provide additional data given more time and funding. These additional data collections are briefly discussed below for possible future review and investigation.

#### 4.2 Coordinating Research Council

The Coordinating Research Council is currently conducting several studies that would most likely be highly beneficial for inclusion into the MSOD upon their conclusion. Each of these studies collects second by second data. Below is a brief summary of each study.

#### E-55 Heavy Duty Vehicle Chassis Dynamometer Testing For Emission Inventory

This study evaluated the Heavy Heavy-Duty Diesel Truck (HHDT) cycle developed by ARB for representativeness and repeatability. After the evaluation, CRC made recommendations for modifications and the creation of a new schedule. This new schedule was then used by staff from West Virginia University (WVU) to test two class 8 tractors of different model years and manufacturers (Ford and Mack). New test procedures were developed during the course of their testing and a final set of tests were performed using the finalized procedures. The emission results from the tests were then used to review and assess the accuracy of emissions factors used in mobile source inventory models [1].

#### E-60 Ammonia Emissions From Late Model Vehicles

This project will examine the effects of the use of ultra-low sulfur fuel on exhaust emissions of ammonia. The project will test 12 vehicles that have at least 10-20,000 miles of customer driving only in California. The targeted vehicles for testing are shown in table 4-1 below.

| MY   | OEM      | Model          | Certification | Displacement | <b>Engine Family</b> |
|------|----------|----------------|---------------|--------------|----------------------|
| 2000 | Chrysler | Sebring Conv.  | LEV           | 2.5 L        | ?                    |
| 1999 | Ford     | Taurus         | LEV           | 3.0 L        | XFMXV03.0VGC         |
| 1999 | Olds     | Alero          | LEV           | 2.4 L        | XGMXV02.4027         |
| 1999 | Chevy    | Silverado      | LEV           | 5.3 L        | XGMXA05.3183         |
| 1999 | Ford     | Windstar       | ULEV          | 3.8 L        | YFMXT03.82JC         |
| 2000 | Jeep     | Grand Cherokee | LEV           | 4.7L         | ?                    |
| 2000 | Buick    | Le Sabre       | ULEV          | 3.8 L        | YGMXV03.8901         |
| 2000 | Dodge    | Neon           | ULEV          | 2.0 L        | YCRXV0122V40         |
| 2000 | Acura    | 3.2 TL         | ULEV          | 3.2 L        | YHNXV03.2GL4         |
| 2000 | Toyota   | Camry          | ULEV          | 2.2 L        | YTYXV02.2JJB         |
| 2000 | Honda    | Accord         | SULEV         | 2.3 L        | YHNXV02.3NL5         |
| 2000 | Nissan   | Sentra CA      | SULEV         | 1.8 L        | YNSXV01.85BA         |

## Table 4-1: Targeted Vehicles for Testing [2]

Each vehicle will be repeatedly tested using the standard FTP and US06 test procedures, with additional steps taken to measure ammonia emissions. All testing will be performed using California Phase 2 base gasoline with sulfur levels of 1, 30 and 150 ppm [2].

## **E-61 Impact of Engine Oil Properties on Emissions**

The following excerpt was taken from the final report of this project and describes the intent of the project as well as the type of testing performed [3]. Table 4-2 below, also taken from the final report, shows the vehicles that were used in this project.

The objective of the present program was to determine whether sulfur levels in engine oil could have a measurable impact on vehicle emissions. For this study, the emissions impact of oil sulfur was evaluated for 4 ultra-low-emission vehicles (ULEVs) and 2 super-ultra-low-emission vehicles (SULEVs) using oils with sulfur contents ranging from 0.01% to 0.76% and a gasoline with a 0.2 ppmw sulfur content. Vehicles were configured with aged catalysts and tested in triplicate over the Federal Test Procedure (FTP) and at idle and 50 miles per hour (mph) cruise conditions. In addition to the regulated emissions and modal engine-out and tailpipe emissions, engine-out SO2 was measured in near real-time using a novel approach with a differential optical absorption spectrometer (DOAS) [3].

| MY   | OEM    | Model     | Certification | Displacement | Mileage | Engine Family |
|------|--------|-----------|---------------|--------------|---------|---------------|
| 2001 | Ford   | Windstar  | ULEV          | 3.8 L        | 20,407  | 1FMXT03.82JX  |
| 2001 | Buick  | LeSabre   | ULEV          | 3.8 L        | 16,308  | 1GMXV03.8044  |
| 2001 | Dodge  | Neon      | ULEV          | 2 L          | 17,769  | 1CRXV0122V40  |
| 2001 | Toyota | Camry     | ULEV          | 2.2 L        | 20,678  | 1TYXV02.2JJA  |
| 2000 | Honda  | Accord    | SULEV         | 2.3 L        | 10,548  | YHNXV02.3NL5  |
| 2001 | Nissan | Sentra CA | SULEV         | 1.8 L        | 5,237   | 1NSXV01.852A  |

## Table 4-2: Description of Test Vehicles [3]

#### References:

1. Gautam, Clark et all. *Final Report, Qualification of the Heavy Heavy-Duty Diesel Truck Schedule and Development of Test Procedures.* CRC Project No. E-55-2. Submitted by West Virginia University Research Corporation. March, 2002.

2. Draft Scope of Work, CRC Project No. E-60, Ammonia Emissions from Late Model Vehicles. August 30, 2000.

3. Dubin et all. Final Report, Impact of Engine Oil Properties on Emissions, *CRC Project No. E-61*. Prepared for the Coordinating Research Council. Submitted August 2002.

## 4.3 Environment Canada

As discussed in Section 3.4 above, we were unable to procure the majority of data that is of interest from the Environmental Technology Centre (ETC) at Environment Canada by the time this report was written. Much of the data will require additional work by the ETC staff to reformat it for public use. A list of some of the studies of interest along with the year that they were performed appears below.

- 1994 Nitrous Oxide Emissions from Light Duty Vehicles Phase 1
- 1994 The Effects of Aged Catalysts and Cold Ambient Temperatures on Nitrous Oxide Emissions
- 1995 Evaluation of Biodiesel in an Urban Transit Bus Powered by a 1988 DDC6V92 Engine
- 1995 Evaluation of Biodiesel in an Urban Transit Bus Powered by a 1981 DDC8V71 Engine
- 1995 Evaluation of Tall Oil Biodiesels on Diesel Engine Exhaust Emissions
- 1996 Study of HD Vehicle Exhaust Emissions from a Modified CNG Bus Fueled with Hythane
- 1998 Investigation of Potential exhaust emission Reductions through the use of Biodiesel used in Conventional Diesel Engines.
- 1998 Evaluation of Emissions and Fuel Economy of the Hybrid Nova Bus
- 1998 HD Diesel Engine Exhaust Emissions of Diesel Fuels Derived from Oil Sands and Conventional Crude Oil
- 1999 Evaluation of Emissions & Fuel Economy of the Hybrid Nova Bus
- 1999 Evaluation of Emissions & Fuel Economy of the Hybrid Nova Bus Phase II
- 2000 Exhaust Emissions Testing of a DDC Series 50 Urban Bus Engine Operating Diesel and PuriNOx
- 2000 Electric Hybrid Bus Exhaust Emissions Study Part 111

- 2001 Emissions Testing of an Orion Hybrid-Electric Bus installed with Emission Control Devices and Low Speed Bias
- 2001 Measurement and Evaluation of Exhaust Emissions of Urban Transit Buses with Retrofit Exhaust Aftertreatment Equipment

The first two studies on the list above are of particular interest for this project since they were directly examining the factors effecting nitrous oxide emissions from light duty vehicles. The vehicles used in the aged catalyst study appear in Table 4-3 below. Testing was performed with summer and winter grade gasoline [1].

| MY   | Model                    | <b>Displacement L</b> | Cylinders | Transmission | Mileage |
|------|--------------------------|-----------------------|-----------|--------------|---------|
| 1988 | Ford Taurus              | 3                     | 6         | A4           | 71883   |
| 1988 | Chevrolet Beretta        | 2.8                   | 6         | A5           | 75167   |
| 1989 | Honda civic Sedan        | 1.5                   | 4         | A4           | 19583   |
| 1989 | Toyota Corolla           | 1.6                   | 4         | A5           | 33016   |
| 1989 | Chevrolet Astro Van      | 4.3                   | 6         | A4           | 47152   |
| 1989 | Honda Civic Hatchback    | 1.5                   | 4         | A5           | 85420   |
| 1990 | Mazda 626                | 2.2                   | 4         | A4           | 20986   |
| 1990 | Chevrolet Cavalier       | 2.2                   | 4         | A3           | 21889   |
| 1990 | Mazda 323                | 1.6                   | 4         | A5           | 30545   |
| 1991 | Toyota Corolla           | 1.6                   | 4         | A5           | 32144   |
| 1993 | Cherolet Blazer          | 4.3                   | 6         | A4           | 2279    |
| 1993 | Dodge Dakota             | 3.9                   | 6         | A4           | 2365    |
| 1993 | Oldsmobile Cutlass Ciera | 3.3                   | 6         | A4           | 2395    |
| 1993 | Ford Probe               | 2                     | 4         | A5           | 2561    |

## Table 4-3: Vehicles Description [1]

#### References:

1. Barton and Simpson. *The Effects of Aged Catalysts and Cold Ambioent Temperatures on Nitrous Oxide Emissions*. Unpublished MSED Report #94-21, 1994.

## 4.4 West Virginia University

West Virginia University has testing data available from approximately 40 different testing sites only three of which were readily available for inclusion into the MSOD during this project. While not all of the data can be made publicly accessible due to confidentiality agreements or lost records, there still remains a large amount of valuable heavy duty vehicle testing that could be gathered and added into the MSOD. The following tables briefly summarize the different testing performed by WVU.

| Testing Site                                             | # Vehicles | # Tests |
|----------------------------------------------------------|------------|---------|
| Ag Processing, Inc. Total                                | 12         | 208     |
| Arco Total                                               | 8          | 80      |
| BI-State Development Agency Total                        | 11         | 177     |
| Brooklyn Natural Gas Union Total                         | 35         | 306     |
| Chicago Transit Authority Total                          | 7          | 66      |
| Dallas Area Rapid Transit Total                          | 16         | 122     |
| Denver Regional Transit District Total                   | 17         | 123     |
| Desert Sands Unified School District Total               | 15         | 154     |
| EEA Total                                                | 50         | 611     |
| Flint Mass Transit Authority Total                       | 9          | 57      |
| Greater Peoria Mass Transit District Agency Total        | 16         | 335     |
| Houston Metropolitan Transit Authority Total             | 4          | 30      |
| Idaho National Engineering Laboratory Total              | 11         | 176     |
| Johnson Power Systems Total                              | 17         | 258     |
| Kanawha Valley Regional Transportation Authority Total   | 12         | 67      |
| Massachusetts Bay Transportation Authority Total         | 12         | 94      |
| Mayflower Transit Total                                  | 6          | 25      |
| Metro Council Transit Operations Total                   | 27         | 394     |
| Metro Dade Transit Agency Total                          | 26         | 301     |
| Metropolitan Atlanta Rapid Transit Authority Total       | 14         | 87      |
| Metropolitan Suburban Bus Authority Total                | 20         | 140     |
| Miami Valley Regional Transit Agency Total               | 7          | 32      |
| New York City Command Bus Company Total                  | 75         | 639     |
| New York City DEP Mobile Systems Units Total             | 8          | 45      |
| Northrop Advanced Technology Transit Bus Program Total   | 2          | 22      |
| Orange County Transportation Authority Total             | 14         | 103     |
| Paul Revere Transportation LLC Massport Total            | 17         | 211     |
| Phoenix Transit System Total                             | 18         | 239     |
| Pierce County Public Transportation Total                | 24         | 192     |
| Port Authority of Allegheny County Total                 | 12         | 106     |
| Queens Surface Corp. Total                               | 2          | 37      |
| Raley's Distribution Center Total                        | 14         | 201     |
| Rhone Poulenc of Mexico, S. A. Total                     | 12         | 92      |
| Southwest Ohio Regional Transit Authority Total          | 11         | 54      |
| Tri-County Metropolitan Transit District of Oregon Total | 17         | 156     |
| Wood County Schools Bus System Total                     | 5          | 17      |
| Grand Total                                              | 583        | 5957    |

## Table 4-4: Test Sites

# Table 4-5: Number of Tests Performed on Each Vehicle Type

| Vehicle Type             | Count |
|--------------------------|-------|
| Articulating Transit Bus | 44    |
| Basin Cleaner Truck      | 11    |
| Box Truck                | 112   |
| Bus                      | 22    |
| Cable Truck              | 10    |
| Coca-Cola Truck          | 68    |
| Dump Truck               | 41    |
| Experimental Transit Bus | 37    |
| Flatbed Truck            | 12    |
| Fuel Truck               | 86    |
| Hybrid Bus               | 6     |
| Parcel Delivery Truck    | 12    |
| Pick-up Truck            | 10    |
| Pump Truck               | 9     |
| Refuse Truck             | 652   |
| Salt Truck               | 9     |
| School Bus               | 221   |
| Service Truck            | 27    |
| Sewer Cleaner Truck      | 22    |
| Snow Plow Truck          | 100   |
| Street Sweeper           | 12    |
| Tanker Truck             | 16    |
| Tire Truck               | 47    |
| Tour Bus                 | 37    |
| Tractor Truck            | 932   |
| Transit Bus              | 3317  |
| Trolley Bus              | 29    |
| Utility Truck            | 56    |
| Grand Total              | 5957  |

| Primary Fuel ID               | Count                                                                                                                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BD                            | 87                                                                                                                                                                                                  |
| BD20                          | 57                                                                                                                                                                                                  |
| BD35                          | 52                                                                                                                                                                                                  |
| BD50                          | 5                                                                                                                                                                                                   |
| CAD<br>CARB                   | 74                                                                                                                                                                                                  |
| CARB                          | 37                                                                                                                                                                                                  |
| CD                            | 6                                                                                                                                                                                                   |
| CNG                           | 1352                                                                                                                                                                                                |
| D1                            | 1370                                                                                                                                                                                                |
| D1-LS                         | 9                                                                                                                                                                                                   |
| D1<br>D1-LS<br>D2             | 1620                                                                                                                                                                                                |
| E100                          | 66                                                                                                                                                                                                  |
| E93                           | 24                                                                                                                                                                                                  |
| E95<br>ECD<br>FT-MG<br>FT-SMD | 309                                                                                                                                                                                                 |
| ecd                           | 43                                                                                                                                                                                                  |
| FT-MG                         | 13                                                                                                                                                                                                  |
| ft-smd                        | 37                                                                                                                                                                                                  |
| ft-smd50/CAD50<br>Gsln        | 21                                                                                                                                                                                                  |
| GSLN                          | 10                                                                                                                                                                                                  |
| JP4                           | 8                                                                                                                                                                                                   |
| lng                           | 377                                                                                                                                                                                                 |
| LNG<br>LPG                    | 22                                                                                                                                                                                                  |
| M100                          | 308                                                                                                                                                                                                 |
| MG                            | 13                                                                                                                                                                                                  |
| OXYD1                         | 24                                                                                                                                                                                                  |
| OXYD2                         | 57<br>52<br>5<br>74<br>37<br>6<br>1352<br>1370<br>9<br>1620<br>66<br>24<br>309<br>43<br>13<br>37<br>21<br>10<br>8<br>377<br>21<br>10<br>8<br>377<br>22<br>308<br>377<br>22<br>308<br>13<br>24<br>13 |
| Grand Total                   | 5957                                                                                                                                                                                                |

# Table 4-6: Number of Tests on Each Fuel Type

| Drive Cycle Used                    | Count |
|-------------------------------------|-------|
| 14 Peak Route                       | 19    |
| Arterial Cycle                      | 50    |
| Business Arterial Cycle             | 75    |
| Central Business District Cycle     | 3640  |
| Central Business District Route     | 1     |
| City Suburban Route                 | 88    |
| Coast Down                          | 54    |
| Commute Cycle                       | 40    |
| D Cycle                             | 79    |
| Double CSHVR Route                  | 13    |
| Double Length 5Miles Cycle          | 18    |
| Double Orange County Refuse Truck   |       |
| Cycle                               | 17    |
| Idle State Cycle                    | 10    |
| Kern Cycle                          | 3     |
| Lug Down                            | 8     |
| Manhattan                           | 27    |
| Modified WVU Truck Cycle (Route)    | 725   |
| New York Bus Cycle                  | 136   |
| New York Composite Cycle            | 38    |
| New York Garbage Truck Cycle        | 146   |
| New York Truck Cycle                | 8     |
| NYC Street Sweeper Cycle            | 12    |
| Route22                             | 20    |
| Route77                             | 11    |
| Snap Test                           | 39    |
| Steady State Cycle - 20MPH          | 110   |
| Steady State Cycle - 30MPH          | 7     |
| Steady State Cycle - 40MPH          | 34    |
| Steady State Cycle - 60MPH          | 2     |
| Test D Route                        | 143   |
| Triple Length CBD                   | 40    |
| Triple New York Garbage Truck Cycle | 16    |
| Unknown                             | 2     |
| WVU Truck Cycle (5 Peak)            | 326   |
| Grand Tota                          | 5957  |

## Table 4-7: Number of Tests for Each Drive Cycle

## 4.5 University of California CE-CERT

The University of California CE-CERT has performed numerous studies of interest that have been pursued during this project for inclusion into the MSOD. Unfortunately, none of the

data was available for review in this report. Table 4-8 below shows a listing of the studies that are of most interest and includes any pertinent references for each study that was available.

| Study Name                                                         | Date     | Cycles                          | Comments                                        | Ref. |
|--------------------------------------------------------------------|----------|---------------------------------|-------------------------------------------------|------|
| Effect of payload on emissions of light & heavy duty vehicles      | Oct-99   | FTP, ST01, CD-<br>arterial      | s-b-s CO, HC, NOx, CO2, fuel                    | 1    |
| Particulate Measurement Techniques and instrument characterization | 1-Oct    | FTP                             | s-b-s CO, HC, NOx, CO2, fuel, PM                | 2, 3 |
| OBD II evaluation study                                            | 2-Mar    | FTP, IM240, ASM                 | s-b-s CO, HC, NOx, CO2, fuel                    | 4    |
| Biodiesel blends analysis for light<br>heavy duty trucks           | 2-Aug    | FTP                             | 5 fuels                                         | 5, 6 |
| ARCO EC-D diesel particulate study                                 | 2-Jul    | FTP                             | s-b-s CO, HC, NOx, CO2, fuel, diesel<br>PM      | 7    |
| EPA NH3 Sulfur study                                               | 2-Mar    | FTP, STO1, US06                 | 2 sulfur levels, CO, HC, NOx, CO2, fuel,<br>NH3 | 8    |
| Lubricant Sulfur Analysis                                          |          |                                 | s-b-s CO, HC, NOx, CO2, fuel, SO2               | 9    |
| EPA NH3 Modeling                                                   |          |                                 | s-b-s CO, HC, NOx, CO2, fuel, NH3               |      |
| NH3 from light duty vehicles                                       | 2-Dec    | FTP, NYCC,<br>US06, highspeed   | s-b-s CO, HC, NOx, CO2, fuel, NH3               |      |
| Heavy Duty Diesel Truck Study                                      | on going | CARB HDDT<br>cycle, modal cycle | s-b-s CO, HC, NOx, CO2, fuel                    |      |
| Study for Extremely Low Emitting<br>Vehicles                       | on going | ETP US06                        | s-b-s CO, HC, NOx, CO2, fuel                    |      |

## Table 4-8: CE-CERT Studies

#### References:

1. Durbin, Norbeck, Wilson, Galdamez. Effect of Payload on Exhaust Emissions from Light Heavy-Duty Diesel and Gasoline Trucks. Environ. Sci. Technol. 2000, 34, 4708-4713.

2. MoosMuller et all. Time Resolved Characterization of Diesel Particulate Emissions. 1. Insturments for Particle Mass Measurements. Environ. Sci. Technol. 2001, 35, 781-787.

3. MoosMuller et all. Time Resolved Characterization of Diesel Particulate Emissions. 2. Insturments for Elemental and Organic Carbon MEasurements. Environ. Sci. Technol. 2001, 35, 1938-1942.

4. Durbin, Norbeck, Wilson, Smith. Final Report, Evaluation of the Effectiveness of On-Board Biagnostics II (OBDII) in Controlling Motor Vehicle Emissions. May 2001, Sponsored by South Coast Air Quality Management District Technology Advancement Office and The US EPA. 01-VE-22854/20984-001-FR.

5. Durbin, Collins, Norbeck, and Smith. Final Report, Evaluation of the Effects of alternative Diesel Fuel Formulations on Exhaust emission Rates and Reactivity. Contract No. 98102, Submitted to South Coast Air Quality Management District, April 1999. 99-VE-RT2P-001-FR.

6. Durbin, Cocker, Collins and Norbeck. Final Report, Evaluation of the Effects of Biodiesel and biodiesel Blends on Exhaust Emission Rates and Reactivity - 2. Contract No. 99120. Submitted to south Coast Air Quality Management District. August 2001. 01-VE-20998-001-FR.

7. Durbin and Norbeck. Final Report for: Comparison of Emissions for Medium-Duty Diesel Trucks Operated on California In-Use Diesel, ARCO's EC-Diesel, and ARCO EC-Diesel with a Diesel Particulate Filter. Submitted to National Renewable Energy Laboratory under contract # ACL-1-20110-01 and For Motor Company on July 2002. 02-VE-59981-03-FR.

8. Huai, Burbin, Rhee, Miller and Norbeck. The Impact of Gasoline Sulfur Levels on Vehicle NH3 and N2O Emissions. Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521.

9. Durbin, Miller, Pisano, Sauer, Rhee, Huai, MacKay. Final Report, Impact of Engine Oil Properties on Emissions, CRC Project No. E-61. Prepared for Coordinating Research Council. Submitted August 2002. 02-VE-59971-02-DFR.

## 4.6 University of Texas

The University of Texas at Austin is currently conducting a study for the Texas Department of Transportation on the use of new fuels in heavy-duty diesel vehicles. The primary purpose of the study is to evaluate new fuels with regard to changes in emissions, maximum power, and fuel economy. Particular types of vehicles being used in the study are dump trucks, wheeled loaders, and telescoping boom excavators. Data of interest to the MSOD consists of activity data and dynamometer emissions data. Second-by-second activity data has been collected on two single axle dump trucks (four weeks total), two tandem axle dump trucks (four weeks total), a telescoping boom excavator (one week), and a wheeled loader (one week) during their normal work activity. Logged quantities include vehicle speed (dump trucks only), RPM, percent torque, and accelerator position. The activity data will be used to build chassis dyno test cycles for the single axle and tandem axle dump trucks and to build engine dyno test cycles for the excavator and loader. The chassis and engine test cycles will then be used to generate second-by-second HC, CO, and NOx emissions data for eight dump trucks and for two diesel engines, respectively. Appendix A Fields for MSOD

#### Data Source Documentation EPA Contract Number 68-C-00-112 Work Assignment Number 2-06

#### Appendix B : Data Quality and Completeness Criteria Revision 1 July 18, 2002

#### Background

Mobile emission source (both engine and vehicle) measurement data collected by testing programs is often used for a variety of purposes, some not anticipated by the original program plan. Often it is critical that certain information about the sources tested or the testing procedures be known in order for the data to be used. For this reason, it is prudent that emission data collection efforts include any incremental observations and measurements that might make the data useful for purposes other than the original intentions of the testing program.

Below are the data observation and measurement fields and testing documentation that EPA OTAQ's Assessment and Standards Division (ASD) considers critical for general use in development of emission inventory modeling. While all fields are not critical for any specific analysis, the total combination of fields allows cross checking of the observation and measurement results, which can be used to identify problems in the data and improve data quality. For this reason, ASD considers the collection of these data fields and the documentation that supports this data critical in determining the quality of the data collected.

#### **Measurements and Observations**

Certain measurements and observations should be made during any collection of data for use in emission inventory development. The critical data fields are divided into four groups:

#### Source Description

- (\*)Engine/Vehicle type
- (\*)Test weight
- (\*)Curb weight (highway only)
- (\*)Gross vehicle weight rating (GVWR) (highway only)
- (\*)Vehicle identification number (VIN)/engine serial number
- (\*) A, B, C Dynamometer Coefficients
- (\*)Body style (aero-dynamic issues) (highway only)
- (\*)Number of tires (highway only)
- (\*)Emission standard (model year, engine family, evap family)
- (\*)Age (build date, model year, rebuild)
- (\*)Engine size (number of cylinders)
- (\*)Transmission type (highway only)
- (\*)Mileage/hours of operation

- (\*)Fuel type (gas, diesel, CNG, electric, hybrid, etc.)
- (\*) Test date
- Fuel delivery technology
- Catalyst technology
- EGR system (yes/no)
- Secondary air system
- Closed loop fuel control (yes/no)
- Aspirated/turbo-charged (yes/no)
- OBD parameters (e.g. A/C flag, RPM, exhaust volume flow, engine coolant temperature, air fuel ratio, etc.)

Pollutants (exhaust only; engine out and/or tailpipe - measured second-by-second, sbs)

- (\*)CO2
- (\*)CH4
- (\*)N2O
- THC/NMHC
- CO
- NOx (NO, NO2)
- SOx
- NH4
- HAPs
- PM10, 2.5, 1.0 (size and number distributions also)

## Fuel Parameters

- (\*)Diesel sulfur content
- (\*)Gasoline sulfur content
- (\*)Gasoline Reid Vapor Pressure (RVP)
- (\*)Gasoline oxygenate content/type (ETOH,MTBE,ETBE,TAME)
- Gasoline aromatic content
- Gasoline olefin content
- Gasoline Benzene content
- Gasoline vapor percentage at 200 degrees F
- Gasoline vapor percentage at 300 degrees F

## Activity

- (\*)Speed at time of measurement (highway only)
- (\*)Ambient temperature at time of measurement
- Ambient conditions (RSD and PEMS data); ie sunny or overcast, rain, snow, ice, etc
- (\*)Soak time before engine start
- Humidity during operation
- Driving/operation cycle/schedule

- Road grade at time of measurement (vertical acceleration) (highway only)
- Air conditioning status at time of measurement (on/off)
- Other high load devices (i.e., large stereo)
- Number of occupants
- Key on (engine start)/key off times
- Barometric pressure/altitude
- Variable load (cargo, passengers, auxiliary systems, road grade, etc.)
- MIL (malfunction illumination light?) (on/off) (highway only)

(\*) Indicates high priority parameters for this work assignment.

Ideally, the content and format of each data field will match precisely the content and format of the EPA Mobile Source Observation Database (MSOD) data input format. This would allow these fields to be used to directly populate the MSOD data input format and subsequently added to the MSOD itself for future analysis by EPA. Plans for future data collection efforts should consider adopting the MSOD data input format as a method of storing measurements and observations for ease in providing the data to EPA for analysis. The precise definition and content of each of these data fields is described in the MSOD data input format documentation.

Ideally, each of these fields would be available in every data source from direct observations and measurements. However, it is often possible for some information that could be obtained and recorded by direct observation (i.e., body style) that can instead be derived from other available information (i.e., VIN). This fact allows for the observations and measurements to be checked against each other to determine and improve the quality of the data. This fact can also be used to populate fields that were not directly measured or observed. Fields derived from other fields should not be considered as measurements or observations for purposes of planning future data collection efforts. Whenever possible, direct measurements and observations should be used to fulfill these data completeness criteria.

## Documentation

It is not possible to determine the quality of data based solely on the measurement values themselves. The critical test program data documentation is:

- <u>Statement of Work</u>. The objectives of the test plan must be clear. The procedures for selection of engines/vehicles must be described in enough detail to discern the representativeness of the sample.
- <u>Quality Assurance / Quality Control process</u>. The test plan must include procedures that assure proper measurement, proper maintenance of instrumentation and proper handling of data. This should include instrument calibration sheets or other evidence of proper calibration during testing.
- <u>Program reports</u>. The results of testing must be summarized and compared against the goals of the test plan. Running changes in the initial test plan must be described. Problems which occurred during testing must be documented.
- <u>Instrumentation description</u>. The instrumentation used to make measurements must be described in sufficient detail to determine the appropriateness of the tools used.
- <u>Measurement uncertainty</u>. The quality of the instrumentation must be demonstrated. Instrument minimum detection limits must be documented. Reproducibility of data should be demonstrated.

This documentation can be contained in a single document or as a series of documents. The information can be contained in summary reports and tables or exist as forms and sheets produced during testing. In any event, this information must be able to be made available to anyone intending to use the data. Without access to this documentation, the relevance of the data to a specific study cannot be fully determined.

## **EPA Data Quality and Completeness Criteria**

For purposes of evaluation of the quality and completeness of data for use in inventory model development, EPA has developed criteria for documentation and completeness. From this information it will be possible to make a determination of data quality for the purpose of inventory model development.

#### Documentation Criteria

| A) Fully documented :           | All desired documentation exists and is available upon request.                       |
|---------------------------------|---------------------------------------------------------------------------------------|
| B) Can be documented :          | All desired documentation can be derived from testing records and charts.             |
| C) Cannot be fully documented : | Some desired documentation is unavailable and necessary information was not recorded. |
| Completeness Criteria           |                                                                                       |
| A) Fully measured :             | All critical fields measured and available.                                           |

| B) Fully complete : | All critical fields are either measured or can be derived from other fields available in the data.    |
|---------------------|-------------------------------------------------------------------------------------------------------|
| C) Missing data :   | Some critical fields were not measured and cannot be derived from other fields available in the data. |

The critical list of pollutants will vary from program to program, but the list of source description, fuel and activity parameters are needed to properly characterize and cross check the data.