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Notice To Readers

This Background Paper is part of a series of Backgournd Papers that are intended to provide a concise
overview of the status of the nearshore conditions in the Great Lakes.  The information they present has
been selected as representative of the much greater volume of data.  They therefore do not present all
research or monitoring information available.  The Papers were prepared with input from many
individuals representing diverse sectors of society.

The Papers provided the basis for discussions at SOLEC ‘96.  Participants were encouraged to provide
specific information and references for use in preparing the final post-conference versions of the Papers. 
Together with the information provided by SOLEC discussants, the Papers will be incorporated into the
1997 State of the Great Lakes report, which provides key information required by managers to make
better environmental decisions.
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Nearshore Waters
of the Great Lakes

1.0  Introduction

In October 1994, the governments of the United States and Canada convened the first State of the Lakes
Ecosystem Conference (SOLEC ’94). The conference was designed to further the purpose of the Great
Lakes Water Quality Agreement between the United States and Canada, which aims to restore and
maintain the chemical, physical, and biological integrity of the waters of the Great Lakes basin ecosystem.
Background papers prepared for the conference and discussions that occurred at SOLEC ’94 are
summarized in a document prepared by the U.S. and Canadian governments titled “State of the Great
Lakes 1995” (EC and EPA 1995). A second, follow-up conference (SOLEC ’96) scheduled for fall 1996 is
designed to focus more intensively on the status of the Great Lakes coastal ecosystem, which includes the
coastal shorelands, coastal wetlands, and coastal or nearshore waters. A major objective of SOLEC ’96 is
to examine the effects of human activity—and particularly land-use practices—on the coastal ecosystem.
The present paper is designed to provide background information that will facilitate discussion of the status
of the nearshore waters element of Great Lakes coastal ecosystems.

2.0  The Nearshore Waters as a Significant Natural Element
of the Great Lakes Basin Ecosystem

The Great Lakes basin ecosystem covers about 760,000 km  (USEPA and GC 1995), spans 9 of latitude2 o 

and 19  of longitude, and lies halfway between the equator and the North Pole in a lowland corridor thato

extends from the Gulf of Mexico to the Arctic Ocean (Figure 1).  The Great Lakes, which are the most
prominent feature of this system, have a combined surface area of about 244,000 km , a volume of 22,7002

km , and are the largest single collection of fresh water on the surface of the earth, excluding the polar ice3

caps (TNC 1994). The Great Lakes basin ecosystem has been divided into major elements by TNC (1994),
Dodge and Kavetsky (1995), and Edsall (1996). These elements basically include open lake (including
nearshore and offshore waters); connecting channel; wetland (including coastal and inland wetland);
tributary; coastal shore; lakeplain; and terrestrial inland. This paper focuses on the Nearshore Waters as a
significant element of the Great Lakes basin ecosystem.

2.1  A Definition of Nearshore Waters

The nearshore waters largely occupy a band of varying width around the perimeter of each lake between
the land and the deeper offshore waters of the lake (Figure 2). The band is narrowest where the slope of the
lake bed is steep and continuous. More specifically, as we define them for this paper, the nearshore waters
begin at the shoreline or the lakeward edge of the coastal wetlands and extend offshore to the deepest lake-
bed depth contour, where the thermocline typically intersects with the lake bed in late summer or early fall.
In Lake Superior, the boundary between the nearshore and offshore waters typically
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Figure 1  The Great Lakes Basin Ecosystem

Figure 2  Nearshore Waters
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occurs at about the 10-m depth contour (Bennett 1978). In the other four Great Lakes, which are farther
south and display a wider range of temperatures seasonally, the boundary between the nearshore and
offshore waters may occur as deep as the 30-m depth contour (Schertzer et al. 1987). In the central basin of
Lake Erie, the lower limit of the thermocline is highly variable and responds to meteorological events. A
detailed set of records collected in 1979 (Schertzer et al. 1987) shows that the thermocline depth in central
Lake Erie increased in the May-to-September period and that the bottom of the thermocline extended to 24
m in mid-September immediately before thermal stratification ended. Thus, virtually all of Lake Erie's
central basin would have been considered to be nearshore waters in 1979. The temperature of the nearshore
waters at the lake bed in summer in all five lakes exceeds 15 C and may reach 25 C in portions of Lakeo o

Erie. In winter, the nearshore waters are typically covered with ice, and the water temperature approaches
0 C from surface to bottom (Assel 1986; Assel et al. 1983).o

Physical processes such as the lake’s thermal cycle and circulation can have a pronounced influence on
water-quality conditions in the Great Lakes. The major features of the thermal cycle that affect water
quality include stratification characteristics such as the timing of spring and fall overturn and the
temperatures of the epilimnion and hypolimnion waters, the thermal bar, the thermocline depth, and
upwelling and downwelling dynamics. These thermal characteristics govern the unique circulation patterns,
especially within the nearshore zone. What follows is a brief synopsis of some of the relevant
characteristics of the seasonal physical processes and how they affect water-quality concerns for large lake
systems. 

The interaction of meteorological and hydrological factors is responsible for the seasonal thermal response
of the lakes. The basic processes include radiative and turbulent heat exchanges at the air–water interface,
energy storage within the lake, and net energy flowing into or out of the lake (Schertzer and Sawchuk
1990). Meteorological factors such as radiation, air temperature, precipitation, and evaporation affect the
surface temperature, while winds provide the mechanical energy required to mix the heat downwards.
Hydrological factors such as inflow and outflow cause local temperature changes by inducing horizontal
movement and mixing of the lake waters. Solar radiation penetrates into the water column, affecting the
heating of the uppermost layers. 

At the temperate latitudes, the Great Lakes are subject to major seasonal changes in net heat input resulting
in their going through an annual thermal cycle. The Great Lakes are dimictic—that is, they mix from top to
bottom (a process called overturn) twice yearly, in the spring and in the fall. The timing of the overturn is
closely related to the time when the surface water temperatures fluctuate through the temperature of
maximum density of fresh water (i.e., 4 C).o

As a result of increased surface heating in the early spring, the nearshore littoral regions begin warming
more rapidly than do the lake's deeper regions. Progressive warming results in nearshore water
temperatures above 4 C while deeper regions remain below the temperature of maximum density. Theo

region of convergence between the two horizontal thermal regimes is referred to as the thermal bar. The
thermal bar has been studied extensively in large lakes (Rodgers 1965; Tikhomirov 1963) to determine the
physical dynamics and also to investigate its impact on water-quality conditions during the spring.
Measurements of the thermal bar have included satellite images and detailed observation of temperature,
current velocity, and optical characteristics, as well as biological and chemical characteristics. Satellite
images have clearly indicated that the thermal bar is a zone of convergence not only for water masses of
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different temperature but also for floating debris. Of practical significance for water-quality concerns is
that the sharp density front across the thermal bar effectively limits nearshore/offshore exchange of
pollutants and thus affects the nearshore water quality. The proximity of the thermal bar needs to be
recognized when discharge points are designed and located.  Meteorological conditions such as heating and
wind mixing affect the rate at which the thermal bar progresses offshore to the midlake. In the Great Lakes,
this process can take as long as six weeks (Schertzer and Murthy 1994). 

Figure 3 illustrates the thermal stratification cycle in Lake Ontario based on measurements made on a
midlake cross-section (Simons and Schertzer 1987a). Figure 3a is a time-series of eastward wind stress.
The wind stress plays a dominant role in the stratification process. Figure 3b shows isotherms along the
cross-lake transect. The isotherms for May 17–18 clearly show isothermal conditions in the midlake (T less
than 4 C) and the development of the thermal bar on both shores. Due to topographic effects (i.e., the deptho

of the water and the configuration of the bottom and shoreline influence both the temperature and the
circulation), the thermal bar is more developed along the shallower north shore compared to the deeper
south shore. It is of interest to note the progression of the thermal bar towards the centre of the lake as the
heating intensifies towards the midsummer period. Typical summer stratification occurs when the surface
water temperature reaches 4 C over the entire lake and the thermal bar disappears.o

Summer stratification is characterized by warmer, less dense water at the surface layers and cooler, denser
water in the lower layer. Progressive heating results in the development of a stable stratification and a well-
defined epilimnion (warm water), mesolimnion (transition temperatures), and hypolimnion (cool water)
layer. It is also interesting to note (from Figure 3b, July 16–17) that the thermocline depth is not uniform
over the whole lake. The 10 C isotherm is highlighted to mark the approximate depth of the thermocline ino

Lake Ontario. 

Dynamic processes that have an impact on the temperature distribution in large lakes include upwelling and
downwelling, internal waves (along the thermocline), and Kelvin waves (coastally trapped waves that
propagate along the shoreline, particularly after large storms) (Simons and Schertzer 1987b). With respect
to upwelling and downwelling processes, strong easterly winds along the axis of Lake Ontario will cause a
surface drift to the right, which can result in tilting the thermocline. Satellite digital temperature data, along
with surveillance data, has demonstrated large-scale upwelling along the north shore and downwelling
along the south shore of the Lake Ontario. Figure 4 illustrates an upwelling event in Lake Ontario along the
north shore, with corresponding longshore (easterly) velocity distribution. In this case, the thermocline
tilting along the nearshore zone is so intense that a major “outbreak” of cold hypolimnion water has
upwelled to the surface; 4 C water extends 2 km from the shore. Between 2 km and 3 km offshore, there iso

a very intense temperature gradient, from 6 C to 12 C. The velocity distribution clearly shows that theo o

upwelling event has resulted in weaker longshore 
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Figure 3.  Thermal Stratification Cycle in Lake Ontario
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Figure 4.  Upwelling in Lake Ontario with Longshore Velocity Distribution. (a) Temperature isotherms.
(b) Longshore velocity contours along the coastal zone of Oshawa, Lake Ontario, following a major storm
(October 1972), indicating episodes of upwelling and downwelling and the location of a coastal
 jet.
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currents in the upwelled region closer to shore and in the formation of a “coastal jet,” with velocities
ranging from 35 cm s  to 60 cm s  (Csanady and Scott 1974). The higher current speeds within the region-1 -1

of the coastal jet are highly effective in transporting and dispersing pollutants along the nearshore zone.
The persistence of upwelling events depends on the duration of the strong wind event. During an upwelling
episode, the nearshore waters are replenished with nutrient-rich hypolimnetic waters; thus, upwelling
affects the nearshore water quality. Periodic upwellings can supply nutrients to the nearshore nuisance
attached alga Cladophora.

Hydrological factors also have a significant effect on a lake’s dynamic processes and water quality.
Whereas pollutants can be introduced to lakes through loading from precipitation, tributaries, and land
runoff, inputs from connecting channels can play a significant role in introducing and redistributing
substances in a large lake. Connecting channels among the Great Lakes include the St. Marys River, the
Straits of Mackinac, the Detroit River, the Niagara River, and the St. Lawrence River. Lake Ontario, being
at the downstream end of the Great Lakes, receives large inflows from the Niagara River. Water-quality
analyses of the Niagara River, in the past, have shown high concentrations of toxic chemicals that are
introduced into Lake Ontario.  The number of toxic waste disposal sites in the area are still thought to
represent a threat.  Much research has been conducted to investigate the dynamics of the Niagara River
inflow into Lake Ontario (Murthy and Miners 1989). The nearshore thermal structure is altered
significantly by the inflow: the warmer Niagara River plume extends beyond the river mouth in excess of
10 km, after which it eventually mixes with the ambient lake water. The vertical extent of the Niagara
River plume can be 8 m to 10 m, with the warmer inflowing water developing a frontal structure as it
enters the lake (Murthy et al. 1986). The gradient across the thermal front depends on the time of year and
therefore on the difference between the temperature of the inflowing water and the ambient lake
temperatures. 

Prevailing wind conditions and lake circulation patterns determine the spread of the Niagara River plume in
Lake Ontario (Murthy and Schertzer 1994). In most circumstances, a plume develops from the Niagara
River mouth and tends to extend eastward along the south shore of the lake. Figure 5 illustrates an example
of the spatial extent of the Niagara River plume, as determined by progressively tracking the position of
drifters within the current. In this example, inflowing water (bearing its load of pollutants, sediment,
nutrients, plankton, exotic species, and other materials) generally flows out of the mouth to a distance of
approximately 10 km. In the initial phase, horizontal velocities from the Niagara River mouth are reduced
significantly, and the river water is vertically well mixed over the shallow bar area. Beyond this initial
phase, the river plume is bent over in response to lakewide circulation and the prevailing winds. In most
cases, the river plume is diverted to the east, and the weakly buoyant plume responds to the prevailing
winds and lakewide circulation forces. Figure 5 shows that in the transition phase, a large clockwise eddy
of between 10 km and 12 km in diameter is formed to the east of the Niagara River mouth. The eddy
appears often and last for a few days. From a water-quality standpoint, river outflow that is entrained into
this zone of low net transport is effectively isolated from the mixing effects of the main shore-parallel
currents. Consequently, this nearshore area can be a zone in which fine particulate material is deposited. As
shown in the inset of Figure 5, the Niagara River plume continues eastward along the south shore and
around to the north shore of the lake. Considering the dynamics and characteristics of large inflows from
connecting channels such as the Niagara River is significant from a water-quality standpoint, since such
inflows are responsible for transporting and distributing contaminants and other pollutants over the lake.
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Figure 5  Niagara River Plume

Coastal boundary layer characteristics during the lake's thermally stratified period are shown in Figure 6
(from Murthy and Schertzer 1994). The alongshore component dominates the flow field, peaking at a
distance of between 2 km and 3 km from the shore. This peak divides the flow field into two distinct zones.
Closer to the shore, an inner boundary layer flow develops, with bottom friction gradually bringing the flow
to a halt at the shoreline (frictional boundary layer). Beyond this, an outer boundary layer develops as a
consequence of the adjustment of inertial oscillations to the shore-parallel flow (inertial boundary layer).
Water movements within this coastal boundary layer are complex, as indicated in some of the discussion
above. Knowing the extent of the coastal boundary layer is critical for understanding the impact of such
activities as waste disposal through sewage outfalls, large-scale dumping operations, shore erosion,
sediment transport, installation of coastal structures, land reclamation, and recreation (Murthy and
Schertzer 1994). Since the dilution capability of the nearshore current regime increases in the first few
kilometres of the coastal boundary layer, effective dispersal of effluents depends on the distance of the
discharge from shore.

During the summer stratified period, the thermocline largely prevents the transfer of heat and particles from
the epilimnion to the lower layers and thus has natural water-quality implications. A strong thermocline
acts as a “diffusion floor,” suppressing vertical mixing and inhibiting the transport of mass, momentum,
and heat into the hypolimnion. For a shallow lake, such as the central basin of Lake Erie, a deep
thermocline with a high temperature gradient has been observed to severely limit the transfer of oxygen and
materials between the upper and lower
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Figure 6.  Coastal boundary layer for (a) summer stratified conditions at Douglas Point, Lake Huron, and
(b) winter homogenous conditions at Pickering, Lake Ontario.  (Murthy and Dunbar 1981)
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 layers, often leading to anoxia (Schertzer et al. 1987). Vertical entrainment across thermal interfaces has
also been observed after high-wind events (Boyce et al. 1989). 

Towards the late summer, large lakes such as Lake Ontario attain their highest temperatures and heat
storage. After the period of maximum heat storage, surface heat losses to the atmosphere occur through
radiative and turbulent exchange processes (Schertzer and Sawchuk 1990). Since the heat losses are not
uniform over the entire lake volume, there can be significant lags in the seasonal vertical temperature
distribution. Surface heat losses and mixing processes in the fall result in decreasing the lake's mean heat
content. With strong storm episodes, the depth of the mixed layer increases until the entire water column is
mixed around 4 C to 5 C. The breakdown of thermal stratification is commonly referred to as the annualo o

fall overturn. The period of thermal stratification varies for each Great Lake according to its latitudinal
location and bathymetry. For Lake Ontario, thermal stratification generally extends from late June to
October. 

As a consequence of cooling coupled with wind mixing, the temperature of the main water mass continues
to become more uniform, eventually attaining the temperature of maximum density. Because the rate of
cooling is higher in the shallower nearshore regions, horizontal surface temperature gradients can occur and
persist in winter months. During the late fall and early winter, mixing of cold inshore water with warmer
offshore water may set up a thermal bar phenomenon similar to the one described earlier. 

Towards the end of winter, the entire water mass cools down to below 4 C, with the coldest watero

remaining close to the shore. During winter, ice begins to form in the nearshore waters of the Great Lakes
in December and January and in the deeper offshore waters in February and March, reaching its greatest
extent in late February or early March. Expected maximum ice covers are as follows: for Lake Erie, 90
percent; for Lake Superior, 75 percent; for Lake Huron, 68 percent; for Lake Michigan, 45 percent; and for
Lake Ontario, 24 percent (Assel et al. 1983). During a severe winter, maximum ice cover can exceed 90
percent on all the Great Lakes (Assel et al. 1996); during a mild winter, maximum ice cover is usually
limited to the nearshore waters (Assel 1985). The type of ice that forms in the nearshore waters includes
flat shorefast ice (which forms under calm conditions); brash ice, which consists of a matrix of ice of
various sizes and shapes (and which forms over several days or weeks as episodes of ice formation and
breakup occur in the more exposed nearshore areas in response to high winds followed by calm); and
icefoot complex (which forms as waves of freezing spray build up mounds of ice and ice ridges along lee
lake shores—usually adjacent to deep waters that do not freeze until later in the winter) (Evenson and Cohn
1979; Marsh et al. 1973; O’Hara and Ayers 1972). Ice cover is an important climatic variable that affects
the winter ecosystem (Vanderploeg et al. 1992), the fishery (Taylor et al. 1987), the economy (Niimi 1982),
and the weather of the Great Lakes (Peace and Sykes 1966; Petterssen and Calabrese 1959). An extensive
ice cover can also affect lake temperature and the length of the stratification period, since ice cover can
decrease heat losses from the surface and can also affect the initial period of heating of the lake in early
spring months.
 
Recently, there has been growing consensus among climate modelers that global air temperatures will rise
with increasing concentrations of atmospheric greenhouse gases, particularly carbon dioxide, methane,
nitrous oxide, and freons. There is less agreement about the magnitude of estimated temperature change,
although most estimates range from 2 C to 4 C. Observation of thermal stratification characteristics foro o

warm years has implied that warmer conditions may result in higher lake temperatures, lengthened
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stratification periods and significantly reduced ice cover (Rodgers 1987; Schertzer and Sawchuk 1990).
Preliminary modelling investigations incorporating GCM model projections under steady-state, transient,
and transposition scenarios have indicated that climatic warming may alter basin hydrological conditions
and lake surface heat exchanges. Such changes can be expected to have an impact on the mainlake and
nearshore thermal regimes of the Great Lakes. Further integrated research is required to quantify the
potential physical, chemical, biological, and water-quality ramifications of climatic warming for the Great
Lakes. 

2.2  Areas and Volumes of the Nearshore Waters

The amount of nearshore water in each lake varies with the size and shape of the lake basin and the
maximum thermocline depth (Table 1). Large, shallow embayments add substantially to the amount of
nearshore water in Lakes Michigan, Huron, and Ontario, and almost all of Lake Erie is shallower than 27
m. The percentages of the total surface area and volume of each Great Lake that are considered nearshore
waters vary widely (Table 1). The percentages are lowest in Lake Superior (4.7 percent of the area and 0.1
percent of the volume at the 10-m depth contour) and highest in Lake Erie (90.2 percent of the area and
60.3 percent of the volume at the 27-m depth contour). In the other three lakes, the percentages of total lake
surface area and volume that occur as nearshore waters are remarkably similar to each other and are closer
to the values for LakeSuperior than to those for Lake Erie.

In this paper, we also treat the Great Lakes connecting channels, which are the large rivers carrying the
surface-water outflow from one Great Lake to the next (Table 2), as nearshore waters. Lake St. Clair
(1,114 km ; Bolsenga and Herdendorf 1993) is considered to be nearshore waters because it receives its2

inflow from Lake Huron via the St. Clair River and is so shallow (mean depth 4.4 m) that it does not
develop vertical thermal stratification. Finally, we also include as nearshore waters the lower reaches of all
Great Lakes tributaries, where the flow is affected by water levels in the Great Lakes, and the thermally
unstratified waters reaching to the lake bed around islands and offshore shoals. The amount of nearshore
water defined by these last three categories is relatively small and may not be accurately reflected in Tables
1 and 2.
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Table 1. Surface Areas (km ) and Volumes (km ) of Great Lakes Waters between the Shoreline and2 3

the 9- and 27-m Depth Contoursa, b

Lake Area Volume

Whole lake 0- to 9-m 0- to 27-m Whole lake 0- to 9-m 0- to 27-m
depth depth depth depth

contour contour contour contour

Superior 82,329 3,845 8,789 12,287 17.3 118.6
(4.7) (10.7) (0.1) (1.0)

Michigan 57,937 4,443 15,063  4,840 20.0 203.4
(7.7) (26.0) (0.4) (4.2)

Huron 59,652 5,764 15,308  3,539 25.9 206.7
(9.7) (25.7) (0.7) (4.2)

Erie 25,633 4,335 23,121   457 19.5 312.1
(16.9) (90.2) (4.3) (60.3)

Ontario 19,309 1,731 4,440  1,652  7.7 59.9
(9.0) (23.0) (0.5) (3.6)

Sources: Risti  1989;Risti  and Risti  1981, 1985a, 1985b, 1989.
Values in parentheses are areas and volumes of nearshore waters as a percentage of whole lake’s area anda 

volume.
In Lake Superior, the nearshore waters are between the shoreline and the 9-m depth contour; in the otherb 

four Great Lakes, the nearshore waters are between the shoreline and the 27-m depth contour. See text for
further explanation.

Table 2. Characteristics of the Great Lakes Connecting Channels

Characteristic River

St. Marys St. Clair Detroit Niagara St. Lawrence a

Length (km) 121 63 41 58 150

Elevation drop 6.7 1.5 1.0 99.3 1.6
(m)

Mean annual 2,100 5,097 5,210 5,692 7,739
discharge (m /s)3

Total phosphorus 3.6 5.5 9.0 9.4 13.2
(ppb)

Chloride (ppm) 1.3 5.9 6.9 15.3 24.2

Sources: Edwards et al. 1989; NYSDEC 1978.
 International section.a
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3.0  The Nearshore Waters as an Element of the Surface-
Water Continuum

The nearshore waters are part of a “surface-water continuum” that begins in inland terrestrial settings in
the basin when precipitation and groundwater collect to form surface water that discharges through
tributaries into the nearshore waters of the Great Lakes. For this paper, the continuum extends downstream
to the Moses-Saunders Dam at the lower end of the International section of the St. Lawrence River. This
surface-water continuum provides a major pathway that allows materials and energy from the terrestrial
and aquatic inland components of the ecosystem to passively enter the nearshore waters. When these
resources reach the nearshore waters, they are diluted or dispersed, and then cycled through the biota. Some
reach the offshore waters, where they are cycled further and where a portion may be more or less
permanently buried in lake-bed sediments. Eventually some are transported downstream and out of the
basin. Most of the naturally occurring materials and energy, excluding sunlight, that are needed to support
food webs in the Great Lakes enter the lakes from the land via this surface-water inflow to the nearshore
waters.

Material and energy incorporated into plants and animals can also be transported throughout the Great
Lakes system by that biota. Plankton drift with the current, as do uprooted mats of aquatic vegetation.
Strongly swimming fishes and some aquatic invertebrates can migrate upstream or downstream from one
Great Lake to the next via the connecting channels. Anadromous fishes that enter Great Lakes tributaries to
spawn can carry materials and energy from the nearshore waters to upstream inland areas. Birds that feed
in the nearshore waters can also transport materials widely to other parts of the system, including land.
Thus, the nearshore waters are physically and biologically linked with other ecosystem elements in the
basin and can directly or indirectly exchange materials and energy with those elements across the basin.

4.0  The Nearshore Waters as Fish and Wildlife Habitat

Before European settlement of the basin, Great Lakes nearshore waters served primarily as habitat for fish
and wildlife and for the aquatic organisms that supported fish and wildlife production. Where habitat
quality has not been seriously degraded, that is still the primary natural use of Great Lakes nearshore
waters. Virtually all species of Great Lakes fish use the nearshore waters for one or more critical life stages
or functions. The nearshore waters are areas of permanent residence for some fishes, migratory pathways
for anadromous fishes, and temporary feeding or nursery grounds for other species from the offshore
waters. Only the deepwater ciscoes (members of the whitefish family) and the deepwater sculpin avoid and
are rarely found in the nearshore waters. Fish species diversity and production in the nearshore waters are
higher than in offshore waters; they also vary from lake to lake and are generally highest in the shallower,
more enriched embayments with large tributary systems. 

During the summer, the nearshore waters are occupied by aquatic plant and animal communities that are
adapted to the summer thermal regime there. This adaptation, which has been studied most extensively in
fish, reveals that each species has a narrow and relatively unique range of summer temperatures at which
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 it grows best. Fish are highly mobile and actively seek that “preferred” range in summer. As a result,
species with similar preferred temperature ranges generally have similar spatial distributions in summer.
Three major thermal groupings or fish communities—warmwater, coolwater, and coldwater—occur in the
Great Lakes. Preferred summer temperatures range from 27 C to 31 C range for warmwater fish (e.g.,o o

catfishes, basses, and sunfishes) and from 21 C to 25 C range for coolwater fish (yellow perch, walleye,o o

and pikes); coldwater fish (trout, salmon, whitefishes, deepwater sculpin) are usually found at temperatures
below 15 C (Magnuson et al. 1979).o

The nearshore waters are also habitat for many other species. Great Lakes nearshore waters are critical
feeding and resting habitat for ducks, geese, and swans and water birds (Herdendorf et al. 1981; Prince et
al. 1992), especially during the fall and spring migrations. Aquatic mammals including muskrat, beaver,
otter, and mink are common in some undisturbed, sheltered waters in the lower reaches of tributaries and
near coastal wetlands (Herdendorf et al. 1981). Great Lakes nearshore waters are critical habitat for
threatened or endangered species or species of special concern, including the bald eagle, osprey, and
freshwater mussels (Edsall 1996; USFWS 1994). Introduced and invading (exotic) aquatic plants and
animals have become established in the Great Lakes (Edsall et al. 1995; Leach 1995; Mills et al. 1993),
and most are more abundant in the nearshore waters than in the deeper offshore waters.

5.0  Human Use of the Nearshore Waters

Human activities have substantially altered the Great Lakes basin landscape and the nearshore waters
element of the basin ecosystem (Edsall 1996). The conversion of forests, savannahs, and wetlands to
farming and agriculture was followed by industrialization and rapid human population growth. This
population growth, in turn, led to the development of cities and suburban areas with high population
density. Patterns of settlement, development, and population growth in the basin were influenced by climate
and the distribution of natural resources in the basin. Climate and soil fertility favoured agricultural
settlement in the southern portion of the basin. Surface water that could be used for drinking,
manufacturing, power production, and waste disposal was also an especially important resource
consideration in the settlement and development of the region. Sheltered areas where deepwater ports could
be developed were important for transportation. As a result, the largest cities and areas of highest
population density are clustered in the southern portion of the basin on or near Great Lakes shorelines or on
the connecting channels and major tributaries. In general, the areas of high population density are the
locations and sources of greatest human-mediated ecosystem stress in the basin. Thorp et al. (1996) present
a more detailed discussion of the settlement and development of the Great Lakes basin and the effects of
these processes on the landscape.

The nearshore waters of the Great Lakes basin are used directly by humans in a variety of ways. Some of
the most common uses are process water, drinking water and, the disposal of pollutants. Most pollutants
that reach Great Lakes nearshore waters enter from the land via tributaries, via shoreline discharges, or as
surface runoff. These pollutants are then distributed in the surface-water continuum by processes similar to
those that distribute energy and materials from natural sources. Concentrations of pollutants can be higher
near tributary mouths and discharge sites until the pollutants are diluted by mixing with the nearshore
waters and ultimately with the larger volumes of cleaner offshore water. 
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The nearshore waters are also used extensively for navigation and power production. The construction of
canals, locks, hydro dams, and water-level control structures to support these uses has altered levels and
flows in the Great Lakes and in their connecting channels and tributaries and has permanently converted
substantial amounts of lake and river bed to other use. The dams have also fragmented the natural surface-
water continuum in the St. Marys and St. Lawrence Rivers and in many tributaries, and the canals have
created artificial connections between the Great Lakes drainage basin and the Hudson Bay, Mississippi
River, and Hudson River drainages. Substantial volumes of nearshore water are temporarily diverted for
industrial and municipal use and returned, while some is diverted and not returned. The nearshore waters
were historically important for the production of fish and wildlife for use as food and to support
recreational fishing and hunting. Recreational boating and bathing also occur in the nearshore waters, as do
bird-watching and other non-consumptive uses. The stresses that these and other human uses place on the
nearshore waters ecosystem are described in the next section of this report.

6.0  Stressors Operating in the Nearshore Waters

6.1  Definition of Stressor

Stressors are natural or human-mediated agents of stress that disturb ecosystems and favour ecosystem
change. The stress can be applied directly to an individual organism—for example, by an introduced
predator, pathogen, or pollutant—or indirectly to a population or community through habitat modification
or loss. Human-mediated stress has markedly changed both the terrestrial and the aquatic elements of the
Great Lakes basin ecosystem since settlement of the region began in the 1700s. Most major human-
mediated stress that has contributed to changes in the nearshore waters has reflected use-conflicts that arose
incidentally as land and water resources of the basin were developed and converted from the natural state.
For example, the removal of natural vegetation to grow row crops accelerated erosion and increased
turbidity in tributaries and nearshore waters. Stress was also introduced deliberately to improve or augment
natural resources for human benefit. For example, Pacific salmon were introduced in Lake Michigan to
produce a better recreational fishery and to prey on and thus stress the alewife population. The introduction
accomplished both objectives, but also stressed native and introduced trout species that lived in tributaries
and were forced to compete with the larger salmon for spawning habitat. The salmon also preyed on native
fishes, stressing their populations.

The major stressors that act on Great Lakes nearshore waters fall into the following categories. Some of
these stressors have obvious and direct links with observed changes in the nearshore waters ecosystem;
others have less clear or less well-understood links and effects.

6.2  Power Production
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The effects of power production on fish and wildlife resources are of significant concern to resource
managers in the Great Lakes basin. Power is produced in thermal-electric plants (which use fossil or
nuclear fuel to create steam that turns turbines and generators) and in hydropower plants (which use water
to turn the turbines and generators).

6.2.1  Thermal-electric

Most of the power in the Great Lakes basin is produced in thermal-electric plants that are located either on
Great Lakes shorelines or on the connecting channels and lower reaches of major tributaries. These sites
were selected because the large volumes of water needed for cooling and condensing steam in the generation
cycle were available there, and because coal (the fuel used in most of these thermal-electric plants) could be
delivered there at low cost by boat.

About 90 thermal-electric plants draw their cooling water directly from the nearshore waters of the Great
Lakes and use once-through cooling (Kelso and Milburn 1979). Water used for once-through cooling in
these plants is drawn from the lake, passed through 9.5-mm (0.375-inch) screens, and then passed through
the plant's heat exchangers. A temperature increase of between 4 C and 20 C occurs before the water iso o

discharged into the lake. Fish are drawn into the plant with the cooling water. Fish that are too large to pass
through the screens are caught (or impinged) on the screens and killed; smaller fish that pass through the
screens (i.e., that experience entrainment) are killed either by collision with the screens and other surfaces
in the system or by heat shock. Kelso and Milburn (1979) estimate that more than 100 million fish were
killed by impingement and more than 1.28 billion by entrainment annually in the 1970s in the Great Lakes
and connecting channels. More recent summaries, which include all power plants sited on the Great Lakes
and connecting channels, indicate even larger fish losses. In Lake Michigan, for example, thermal-electric
plants killed more than 75 billion fish eggs and larvae; a single pumped-storage hydro plant on the lake's
eastern shore killed more than 400 million fish larvae and more than 100 million juvenile alewives, yellow
perch, and salmon (Jensen et al. 1982; Liston et al. 1981). These losses of young fish in Lake Michigan and
western Lake Erie are significant, representing between 3 percent and 10 percent of the total annual
production (Manny 1984).  As mitigation for the fish kills at the Lake Michigan Ludington Pumped-
Storage Project, the company recently agreed to permanently operate a barrier net to reduce the entrainment
mortality of fish larger than about 13 cm. They also agreed to deed about 10,000 ha of company-owned
land with about 118 km of lake and river frontage to the state of Michigan. The settlement is estimated to
be worth U.S. $172 million to the state of Michigan.

Advances in the development of techniques and systems to reduce the entrainment and impingement of
fishes at thermal-electric plants (and at hydro-electric facilities) have been reported in publications of
various government agencies and the electric power industry, and in the scientific literature. A recent
publication (Ross et al. 1996) presents evidence that under certain conditions, the use of high-frequency
sound drove adult alewives away from the cooling water intake of a large power plant in the New York
State waters of Lake Ontario, thus significantly reducing impingement at the plant in April-July 1993.
However, a permanent, fully functional system has not yet been installed at the plant. Concern has been
raised by Hastings et al. (1996) about the potential damaging effects of high sound levels on the inner ear
and lateral-line system of alewives, and the effect of these sound levels on other elements of the lake’s biota
has not yet been reported. Systems (e.g., porous dykes) that can significantly reduce or prevent entrainment
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of plankton and small fish, including juvenile alewives, have not been installed on power plants in the Great
Lakes, and the most effective technology employed to date seems to be the use of closed-cycle cooling,
which greatly reduces the amount of lake water taken into the plants. The entrainment loss of juvenile
alewives can be as serious a problem as the impingement loss of adults because the biomass of the juveniles
can exceed that of the adults and because the juvenile--like the adults--are a major food of trout and
salmon.

Disposal of coal ash produced in power plants sited on Great Lakes shorelines and connecting channels is a
growing problem. In the 1970s, about half the coal used annually in the United States was burned in the
Great Lakes basin; about 95 percent of the coal that was burned in the basin was used to produce
electricity in plants sited in Great Lakes coastal areas (GLBC 1980). The ash and related solids produced
in these Great Lakes coastal plants can be equal to about 50 percent by volume of the coal that they burn.
The ash from this coal is typically disposed of in Great Lakes coastal areas adjacent to the facility where
the coal is burned. This practice has sometimes led to the filling of coastal wetlands and adjacent nearshore
waters. Leaching and aerial transport of coal ash can also result in deposition of this material in the
nearshore waters. The composition of coal ash varies with the source of the coal, but metals (including
selenium and mercury) are common in some ash, while radioactivity in some ash exceeds background levels
in the basin. Proposals have been made to dispose of concrete-stabilized blocks of coal ash in the Great
Lakes to create new fish habitat, but tests have shown that the blocks disintegrate in a relatively short time,
releasing the ash to the lake. A coal ash disposal policy needs to be developed for the basin, especially for
plants sited in the coastal zone or on basin tributaries, to protect nearshore waters from ash and leachate.

6.2.2  Hydropower

In the United States, hydropower production creates significant problems in many of the larger stream and
river ecosystems in the region. Most of the hydropower dams were built early in the 20th century; few have
fish ladders or other devices that allow fish to pass over or through the dams unharmed. Recent evaluations
show that these dams fragment and substantially degrade the stream ecosystem, as well as limiting the use
of the stream system by resident fishes and by anadromous fishes that migrate up Great Lakes tributaries to
spawn. Most of the hydropower dams in the region were built in high-gradient stream reaches, which were
areas of permanent residence for some species of fish and spawning areas for other migratory species.
These high-gradient reaches were also generally sites of the groundwater inflow that was required to
support coolwater and coldwater fish species. Stream fishes in the flooded areas above the dams were
replaced by species better suited to a warm lake environment. Stream fishes below the dams were also
adversely affected. The dams were usually operated in a daily peaking mode to supply power when it was
in greatest demand, usually in the morning or evening or both. As a result, exceptionally high flows
occurred once or twice a day when power was needed. Water was held back at other times. The high flows
eroded the stream bed below the dam; the intervening low flows drained it. Temperatures on the exposed
stream bed fell below freezing in winter and rose above air temperature on sunny days in summer, creating
conditions that were lethal for aquatic bottom-dwelling organisms that occupied that portion of the stream
bed. 
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In Michigan, there are 113 operating hydropower plants (Whelan and Houghton 1991). These plants
produce only about 1.5 percent of the existing power demand, while impounding about 750 km of river
bed, adversely affecting another 1,200 km of river, and blocking anadromous fish from 3,300 km of
mainstream river habitat. In Wisconsin, there are 120 non–federally owned hydropower projects (Johnson
1996). In New York state, more than 322 km of the tributaries to Lake Ontario are blocked or otherwise
adversely affected by hydropower production (USFWS 1995a). Although some new projects are proposed
from time to time in the Great Lakes basin, they are few in number and are typically associated with
developing the hydro-electric generation potential of existing dams.

Most non–federally owned hydropower dams on U.S. tributaries in the Great Lakes region are currently in
the process of being relicensed by the Federal Energy Regulatory Commission. Relicensing takes place only
once every 30 to 50 years on each dam. Relicensing agreements recently reached in Michigan between
resource advocates and the power companies will greatly lessen the dams’ adverse effects and should help
set an environmentally beneficial precedent for relicensing in other states. Under these agreements, the
water release patterns from the dams will closely mimic the inflow pattern to the reservoirs above the dams.
In addition, effective upstream and downstream fish passage facilities will be installed in each dam,
consistent with fishery management plans for the area. These changes will significantly improve habitat
quality below the dams and reduce the fragmentation effect that the dams have had on the river ecosystem.
The relicensing agreements also provide for dam removal when the dams are declared obsolete.

Hydropower plants are also located in the U.S. and Canadian waters of the St. Marys River between Lakes
Superior and Huron, on the Niagara River between Lakes Erie and Ontario, and on the Moses-Saunders
Dam on the St. Lawrence River. The effects of these plants on fish have not been fully assessed, but some
loss of fish through collision with turbine blades and other internal surfaces is probably inevitable. New
techniques are being developed for assessing fish mortality at hydropower dams. The results of a field test
with one of these more promising new techniques (Mathur et al. 1993) indicate that mortality of juvenile
American shad (Alosa sapidissima) at a low-head hydropower dam on the Connecticut River was less than
estimated by previously by other techniques.

The hydropower dams on the St. Marys and St. Lawrence Rivers are obstacles to the upstream movement
of fish. The Moses-Saunders Dam has a fish ladder designed to pass American eels. The number of eels
recorded using the ladder fell from about 1.3 million in 1983 to less than 50,000 in 1990–91 and the cause
of the decline is unknown  (Castonguay et al. 1994). In the St. Marys River, the areal extent of the St.
Marys Rapids is substantially reduced because most of the flow is diverted for power production.
Historically the rapids supported a productive fishery for lake whitefish; the remaining rapids now support
a valuable recreational fishery for stocked trout and salmon.

The peaking system used in some hydro generating facilities results in a low river stage, followed by a
rapid increase in discharge and a subsequent return to a low river stage (Curry et al. 1994). The fluctuating
water levels and velocities can create unstable habitats, which can in turn reduce the reproductive success,
survival, and growth of biota. As part of the Remedial Action Plan (RAP) of the north shore of Lake
Superior, a Water Management Plan that accommodates the needs both of the fish community and of
Ontario Hydro has been developed for the Nipigon River and Lake Nipigon (Atria Engineering Hydraulics
Inc. 1994).
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6.3  Marine Transportation and Recreational Boating

Marine transportation and recreational boating interests in the basin are supported by a wide variety of
activities and developments, all of which can act as stressors in the nearshore waters. Some of these
activities and developments also serve power production interests. Recreational boating is an important and
growing industry; about 1 million boats operate each year, with a direct spending impact of about U.S. $2
billion (EC and EPA 1995). Recreational boating activities can stress migrating waterfowl; fishing and
hunting from recreational boats remove fish and wildlife from the system and, if not properly regulated,
both activities can significantly stress fish and wildlife populations (see Section 6.7).

6.3.1  Vessel Passage Effects

The effect of passage of large commercial vessels on Great Lakes nearshore water habitat and biota has not
been extensively studied, but the areas of greatest concern are sections of the connecting channels where the
vessels follow a dredged channel that occupies a large portion of the cross-sectional area of the connecting
channel. In these areas, the larger vessels fill much of the channel; as they pass, they sharply disrupt the
normal water level and flow conditions. The change can be easily seen by watching the movement of water
at the shoreline while a vessel passes. As the vessel approaches, its propellers cause a drawdown, pulling
water towards the channel and dewatering shallow shoreline areas; then as the vessel passes, it creates a
shoreward surge of water that floods the shoreline. During this drawdown and surge process, the direction
of water flow at the shoreline rotates 360  (Alger 1979). This water movement is believed to uproot oro

fragment submersed aquatic plants and to erode the low-density substrates that provide attachment for
these plants (Haslam 1978; Schloesser and Manny 1989; Westlake 1975). A study in the St. Clair and
Detroit Rivers (Schloesser and Manny 1989) revealed that the density and diversity of submersed aquatic
plants was lower in the channels used by large commercial vessels than in the adjacent channels that were
not used by such vessels. 

Vessel passage in the connecting channels during the period of solid ice cover creates stronger drawdown
and surge effects and stronger rotation of flow direction than during the ice-free period and can
substantially increase the amount of living plants, decaying plants, and benthic invertebrates that are swept
from the shallow nearshore portions of the river bed into the main channel and then moved rapidly
downstream as “drift” (Jude et al. 1986; Poe and Edsall 1982; Poe et al. 1980). The accelerated transport
of this material through the connecting channels in winter, when natural production of aquatic plants and
animals approaches the annual minimum, represents a considerable loss of materials and energy that would
otherwise be recycled in summer to produce useful plants and animals in these portions of the ecosystem.

Vessel passage in winter also destroys ice bridges used by mammals, including wolves and moose, to cross
the St. Marys River from Ontario to Michigan; it also closes natural open pools in the ice field where bald
eagles capture fish in winter (Duffy et al. 1987). The effects of vessel passage in winter on the incubation
and survival of lake herring eggs spawned in the river just before ice cover forms in early winter may be
less than feared (Savino et al. 1994).
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Lake St. Clair, portions of the connecting channels, and certain other sheltered portions of the Great Lakes
nearshore waters are important resting and feeding areas for migrating waterfowl (Duffy et al. 1987; Edsall
et al. 1988; Manny et al. 1988; Prince et al. 1992). Recreational boaters can flush and otherwise disturb
flocks of resting and feeding birds, causing them to unnecessarily expend energy needed for migration,
survival, and reproduction. They can also force them to seek less favourable feeding and resting habitat or
to alter their migratory schedules. To help relieve this stress, recreational boating is restricted seasonally in
substantial portions of Lake St. Clair, which have been declared refuges for migrating waterfowl.

6.3.2  Level and Flow Regulation

Water levels and flows in the Great Lakes and connecting channels are of considerable importance to
hydropower, commercial navigation, and recreational boating interests, as well as to owners of residential
or commercial property in low-lying coastal areas. Water levels and outflows are regulated in Lakes
Superior and Ontario, respectively, by dams in the St. Marys and St. Lawrence Rivers. Recent proposals to
further regulate levels and flows in the system to benefit navigation and hydropower interests and to reduce
flooding and shoreline erosion in commercial and residential areas during high-water years have been
rejected. The decision not to further regulate the system expressly recognized the ecological importance of
retaining the natural fluctuations in levels and flows in the system.

The most adverse direct ecological effect of level and flow regulation would be felt in coastal wetlands.
These wetlands are adapted to short-term flooding and draining by storm tides (seiches) and to seasonal and
longer-term changes (i.e., changes that occur over years or decades) in lake level, which limit the invasion
of woody vegetation and rejuvenate the wetland vegetation. A more detailed description of this process is
presented in the Coastal Wetlands report (Maynard and Wilcox 1996).

The impoundment of the International section of the St. Lawrence River, which was completed with the
closing of the Moses-Saunders Dam in 1958, provides a relatively recent case history and database from
which to evaluate the effects of dams and altered water levels and flows on fish habitat and on the fish
community in Great Lakes connecting channels. An intensive mapping project completed on the river
before and after flooding (Patch and Busch 1984) revealed that the greatest effects of impoundment on
habitat were in the section between the Iroquois Dam and the Moses-Saunders Dam, where the fall of the
river had been greatest and the narrow, rapidly flowing river was transformed into a lake. The largest
quantified change in habitat observed in 1962, four years after impoundment, was a nearly 20 percent
increase in nearshore water habitat and a 2 percent increase in coastal wetland habitat. In 1979, 20 years
after impoundment, the amount of nearshore water habitat was unchanged, but the coastal wetland habitat
had decreased by about 7 percent.

The significance of these habitat changes is difficult to assess because of a lack of pre- and post-
impoundment data on the fish community. However, it is clear that northern pike, sunfish and bass, and
brown bullhead still spawn successfully and thrive in the St. Lawrence River above the dams, while
muskellunge may have declined (Patch and Busch 1984). Catches of muskellunge in trapnets declined in
the early to middle 1950s and have remained low since then; however, no current measure exists to quantify
trends in the status of the population (LaPan and Penney 1991).
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Lake sturgeon have declined, probably due to loss of spawning habitat, blockage of migration routes, or
both (GLFC 1994; Patch and Busch 1984). The historical range of lake sturgeon in New York state waters
of the Great Lakes basin is poorly understood because exploitation and population decline occurred before
1950 (Carlson 1995). Joliff and Eckert (1971) found few lake sturgeon remained in the St. Lawrence
River’s Thousand Islands region; the only self-sustaining population occurred below the Moses-Saunders
Dam. There are no fish passage facilities at the Iroquois Dam, which remains open most of the year; the
fish ladder on the Moses-Saunders Dam is not designed to pass lake sturgeon. There are also older dams on
all of the major tributaries to the International section of the St. Lawrence River; these dams may have
contributed to the early decline of the area’s lake sturgeon. Efforts are under way to re-establish lake
sturgeon in the U.S. tributaries to the St. Lawrence River and to assess the potential for restoring the
population in the St. Lawrence River above and below the Moses-Saunders Dam (LaPan et al. 1994).

Walleye were historically common in the St. Lawrence River (Greeley and Greene 1931), but their numbers
declined sharply following the construction of the St. Lawrence Seaway and Power Project in 1958,
probably due to the inundation of the rapids and rocky whitewater areas that were their preferred spawning
habitat (LaPan and Klindt 1994; Patch and Busch 1984). The population is showing signs of recovery
(LaPan and Klindt 1994), and index netting indicates that abundance has increased irregularly from 1983
to 1993 (Bendig 1994).

6.3.3  Dredging and Disposal of Dredged Material

Navigation-related dredging and dredge material disposal in the U.S. nearshore waters of the Great Lakes
probably began soon after European settlement of the basin, but early records of quantities dredged and
disposed of are fragmentary or non-existent (Raphael et al. 1974). In Lake Michigan, removal of sediments
from public harbours began in the middle 1800s, but dredging records kept by the U.S. Army Corps of
Engineers extend back only to 1918. In Lake Superior, dredging activity dates from the early 1900s;
records are available from 1937. Dredging has occurred for decades in the other Great Lakes: quantitative
records are available from 1930 for Lake Huron and Lake St. Clair and from 1951 for Lakes Erie and
Ontario (Table 3). The total recorded amount of material dredged from all five lakes through 1972 was
357.2 million m  (Table 3). In the 1970s and 1980s, navigation-related dredging and dredged material3

disposal in the Great Lakes were the subjects of intensive deliberation by both the U.S. and the Canadian
governments. The revised Water Quality Agreement signed by the two governments in 1978 called for the
establishment of a Dredging Subcommittee under the auspices of the International Joint Commission’s
(IJC) Water Quality Board; it also required the maintenance of a register of significant dredging projects
being undertaken in the Great Lakes system, together with information needed for the assessment of the
environmental effects of the projects (IJC 1982). The register, which is maintained at the IJC Regional
Office in Windsor, Ontario, contains information on about 95 percent of the dredging in the Great Lakes
basin during the 1975 through 1979 period (IJC 1982). Records provided by the U.S. Army Corps of
Engineers (D. Raven, North Central District, personal communication) revealed that total volume dredged
in 1983 was about 4.0 million m , while the estimated volume for 1984 was 4.3 million m . These volumes3 3

were slightly lower than the historical annual average for Lake Erie alone (4.9 million m ; see Table 3), but3

were similar to the 1975–79 annual average for all lakes combined (3.5 million m ) as described by the IJC3

(1982).
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Table 3. Historical Dredging Quantities (millions of m ) in U.S. Waters of the Great Lakes3

Lake Period Total by Lake for Annual Average for
Period Period

Superior 1937–72 68.7 2

Michigan 1918–72 90.8 1.7

Huron and St. Clair 1930–72 88.2 2

Erie 1951–72 102.8 4.9

Ontario 1951–72 6.7 0.3

Total all lakes 1918–72 357.2

Source: Raphael et al. 1974.

In 1985–1989, more than 15.8 million m  of sediment were dredged from the Great Lakes (IJC 1991a).3

About 87 percent of the total was from Lake Erie. The United States removed 13.7 million m , and Canada3

about 2.0 million m . Most of the dredging projects were either very small (less than 25,000 m ) or very3 3

large (more than 100,000 m ). Dredging activities were dominated by small projects in Lakes Michigan and3

Ontario and by large projects in Lake Erie.

The disposal methods for dredged material include upland disposal, confined disposal, open-water disposal,
beach disposal, and reuse disposal (IJC 1990). Upland sites are terrestrial areas that are situated away from
the lakeshore. Confined disposal facilities (CDFs) are extensions of the shoreline or artificial islands
created by diking portions of the nearshore waters; the dredged material is deposited inside the diked area.
Open-water disposal occurs largely in the nearshore waters. Beach disposal usually occurs on beaches near
the dredging site. Reuse involves depositing dredged materials to create revetments, to stabilize shoreline
structures, and for similar uses.

Confined disposal was the dominant disposal method by volume in all but Lake Ontario. No confined
disposal occurred in the U.S. portion of Lake Ontario. Beach disposal accounted for little of the total
quantity of material. The greatest use of beach disposal was in Lake Michigan, where most dredging
projects involved fewer than 25,000 m . Open-water disposal occurred in all lakes except Lake Michigan.3

Most of the open-water disposal occurred in Lake Erie. Open-water disposal accounted for the greatest
volume of material disposed of in Canadian projects in Lake Ontario and was the only method practised on
the U.S. side of the lake. Upland and reuse disposal accounted for minor portions of the total. Upland
disposal occurred in each of the lakes and reuse occurred only in Lake Huron.

Quantitative comparison of the 1985–1989 and 1975–1979 (IJC 1982) information is problematic due to
inconsistencies in reporting (IJC 1991b). However, a qualitative comparison of the 1985–1989 and the
1980–1984 (IJC 1990) data reveals that the most significant difference between the two periods is the
substantial decrease both in the number of projects and in the quantity of dredged and disposed-of material
(IJC 1991b). There was also a consistent decrease in the total volume and number of projects during the
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1980–1989 period. This decrease probably reflects (1) reduced sediment delivered to harbour and
navigational channel areas; (2) higher water levels, temporarily creating deeper navigational channels; (3)
reduced shipping activity and the closing of some ports; and (4) a higher incidence of contaminated
sediments. The contaminated sediments limit disposal options, increase disposal costs, cause more selective
use of dredging, and contribute to closing some ports or areas of harbours.

Due to high costs, difficulties in disposing of contaminated sediments, and the limitation of available space,
few CDFs are being constructed; a decrease in the use of confined disposal has been predicted (IJC 1990).
There was a substantial decline in the overall number of projects (43 in 1980; 12 in 1989) and in the
volume of material (4 million m  in 1980; 712,998 m  in 1989) disposed of in CDFs over the 10-year3 3

period. This decline exceeded the total decrease in dredged quantities and projects: confined disposal
accounted for 52 percent of all disposal projects in the 1980–1984 period but for only 34 percent of all
disposal projects in 1985–1989. Such projects accounted for 72 percent of the volume in the 1980–1984
period, but represented only percent of the volume in the 1985–1989 period.

The major dredging-related concerns focus on contaminated sediments and on the precautionary measures
needed for excavating and disposing of them safely without adversely affecting water quality or the biota.
When the dredged sediment contains high contaminant concentrations, it must usually be placed into a
confined disposal facility (CDF) to prevent more widespread contamination of the environment. Dredging
restrictions occur at many of the 43 Areas of Concern in the Great Lakes. Although CDFs remove the
contaminated sediments from the water, they still can pose significant hazards to fish and wildlife unless
they are properly managed (USFWS 1994). For example, the federally owned CDF in lower Saginaw Bay,
Lake Huron, hosts significant concentrations of nesting terns, gulls, and other birds, and requires
continuing Service coordination to ensure that the provisions of the Migratory Bird Treaty Act are upheld.
To date, attempts to prevent birds from using the CDF have been unsuccessful. The U.S. Fish and Wildlife
Service, the U.S. Army Detroit District Corps of Engineers, the Michigan Department of Natural
Resources, and local counties are working together to develop a 20-year Dredged Material Management
Plan to deal with maintenance dredging on the Saginaw River and in Saginaw Bay. The plan investigates
disposal options on uplands, in a new or expanded CDF, and in open water (USFWS 1995b).

Studies by the U.S. Army Corps of Engineers and others address the physical effects of dredging, and of
the open-lake disposal of clean dredge spoils, on fish and wildlife and their habitat in the Great Lakes (IJC
1982; USACE 1979). The available evidence suggests that dredging of uncontaminated sediments and the
open-lake disposal of these sediments may have only temporary or minor adverse impacts on fish and
wildlife habitat. Concerns addressed in such an evaluation should include the loss of benthic organisms in
the dredged area during dredging operations, as well as the possibility that future use of the dredged area
may be prevented if the remaining substrates are unsuitable for habitation; similar concerns should be
addressed regarding open-lake disposal areas where uncontaminated materials are deposited. Care should
be taken to avoid depositing this material on or near fish spawning grounds or in areas and at times that
would interfere with spawning migrations. Disposal of dredged materials on a reef used for spawning by
lake trout in Thunder Bay, Lake Huron, was recently documented (Edsall and Kennedy 1995).

Dredging activities can also interfere with habitat use by avian wildlife. The U.S. Fish and Wildlife
Service, the U.S. Army Corps of Engineers, the Michigan Department of Natural Resources, the Holland
Township Planning Commission, and the public worked together for several years to ensure that the



SOLEC 96 - Nearshore Waters of the Great Lakes 25

channel dredging and disposal plan for Holland Harbor on Lake Michigan did not interfere with the use of
the area by bald eagles. Of major concern was the proximity of the navigation channel to a bald eagle nest.
The problem was resolved by scheduling dredging to occur outside the nesting season. Similar conflicts can
be expected between dredging activities and use of the Great Lakes nearshore waters by other water-
oriented birds, including ospreys, double-crested cormorants, Canada geese, and the white pelican, a new
arrival to Green Bay (Dave Best, personal communication). Research is needed to assess the effects of
dredging activities on these species so that adverse effects can be avoided or minimized by better
implementation and enforcement of existing authorities. Adverse effects of dredging could be further
minimized if (1) heavily polluted sediments were dredged with no overflow, decontaminated, and disposed
of appropriately in acceptable CDFs on land; and (2) CDFs shown not to be toxic to plants and animals
were managed as fish and wildlife habitat.

6.4  Shoreline Modification

Urban, commercial, and recreational developments in Great Lakes coastal areas have resulted in significant
losses of valuable wetland habitat (Jaworski and Raphael 1978; Herdendorf et al. 1981). The magnitude of
these losses relative to specific land-use practices or developments is not well documented, but they are
apparently most severe near urban centres. In Michigan, coastal wetland losses are relatively well
documented, and the impact of urban, commercial, and recreational development has been examined.
Losses that occurred between the earliest period of record (from the middle 1800s to the early 1900s) and
in the relatively recent past (1958 to 1973) exceeded 16,500 ha (41,000 acres)—or about 70 percent of the
total wetlands present—during the earliest period of record. Most of the losses in Michigan occurred in
major coastal wetland areas along the Lake Erie and Detroit Rivers, Lake St. Clair, Saginaw Bay, and Bay
de Noc. These losses were attributed to urban, commercial, or recreational developments; however, in some
areas wetlands were converted to agricultural use first, and then later the same lands were converted to the
other uses. A more detailed accounting of Great Lakes coastal wetland losses is presented by Maynard and
Wilcox (1996).

Associated with these wetland losses, and even less well documented, is the loss of shallow nearshore water
habitat because of dredging, bulkheading, and filling. For example, much of the Detroit River shoreline has
been permanently altered by dredging, bulkheading, and backfilling, but the amount of shallow nearshore
water habitat lost in the process probably cannot be easily quantified because reliable early records
showing the unmodified shoreline are lacking. Most of these losses of shallow nearshore water habitat
occurred near human population centres in the sheltered coastal areas—including tributary mouths, bays,
and the connecting channels, where development was most intense.

6.5  Sand and Gravel Mining

Mining of underwater deposits of sand and gravel occurs at a number of locations throughout the Great
Lakes (IJC 1982). More than 1 million m  were mined in 1975, the last year for which records were3

published. This practice is not generally viewed as an important stress on the ecosystem, and we were
unable to find published reports describing its effects on fish habitat in the Great Lakes. However, it is
clear that removal of gravel would affect some species. For example, lake whitefish require gravelly
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substrates for spawning and fry production, and lake sturgeon require gravel and coarser rocky materials
(Goodyear et al. 1982); extraction of these substrate materials would render sites unattractive for spawning
by these important species. A mined area at the head of the St. Clair River was historically a spawning area
for lake sturgeon (Goodyear et al. 1982). Major deposits of sand and gravel have been identified in Lake
Ontario near Niagara, Hamilton, Toronto, and Wellington, and mining has occurred on the Niagara Bar at
the mouth of the Niagara River, a nursery area for at least one species of fish (Goodyear et al. 1982).
Interest was expressed recently in extracting gravel from the Canadian waters of the upper St. Marys
River, in an area identified by Goodyear et al. (1982) as a spawning ground for lake whitefish.

The most far-reaching physical effect of underwater mining in the Great Lakes occurred as a result of sand
and gravel extraction at the head of the St. Clair River between 1908 and 1925, followed by channel
dredging there in 1939 and 1962. Together these actions lowered the outlet of Lake Huron by about 0.3 m,
with a corresponding lowering of the water level in Lakes Michigan and Huron (Derecki 1982). The
volume of water lost by a 0.3-m fall in lake levels was probably about 35 km , which is the equivalent of3

about 0.04 percent of the present combined volume of both lakes. This lowering of lake levels was
probably most sharply registered in the shallow, productive nearshore waters, whose volume was
proportionally reduced more than that of the deeper offshore waters. The permanent lowering of lake level
must also have adversely affected coastal wetlands, displacing them lakeward from their historical
locations. Increased channel and harbour dredging to accommodate commercial vessels in Lakes Michigan
and Huron was also undoubtedly required as a result of the lower lake level. A closer examination of the
local and lakewide effects of underwater sand and gravel mining on aquatic habitat and on adjacent
elements of the ecosystem is needed to more adequately evaluate and regulate the practice.

6.6  Pollution

6.6.1  Discharges and Spills

Pollution has severely degraded portions of the Great Lakes system. While treatment systems now in place
have resulted in improvements, and most municipal and industrial dischargers have operated within their
permit limits, in some cases, major embayments and other portions of the system have become overly
enriched or impacted. These discharges—together with spills and frequent discharges of raw sewage into
storm-water drains that flush into tributaries or directly into the Great Lakes—are still problems in many
municipal areas. Aerial inputs of some contaminants are also significant. Organochlorine compounds have
reached unacceptably high levels in Lakes Michigan and Ontario; these and other industrial pollutants,
including oils and metals, are also at high levels in sediments in some areas in the connecting channels and
in certain harbours throughout the system (EC and EPA 1988). The IJC has identified 43 such Areas of
Concern in the Great Lakes system—each is an area where the beneficial uses of the system have been
substantially degraded by pollution. Remedial Action Plans are being developed to reduce the amount of
incoming pollutants and restore the affected areas to good ecological health.

6.6.2  Agricultural Runoff
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Sediment input to the Great Lakes nearshore waters has occurred since the lakes were formed. Inputs occur
from shoreline erosion and tributaries. Tributary inputs increased in the 19th century when the forest cover
in the basin was removed for lumber or to permit farming. Agricultural activities and construction in urban
areas continue to facilitate soil erosion and cause accelerated sediment input to Great Lakes nearshore
waters. Sediment inputs are of concern because they decrease water clarity and light penetration into the
water, thereby limiting the growth of the aquatic plants that form the base of the food chain in the Great
Lakes. High turbidity can also limit feeding by desirable sight-feeding fishes and favour introduced species
like common carp, which can feed by taste and smell in highly turbid water. Sedimentation can also bury
fish spawning areas and other critical bottom habitat in nearshore waters. Sediment is also of concern
because of its ability to bind with and transport phosphorus, heavy metals, pesticides, and other organic
compounds. Sediment can also act as a “sink” for some pollutants, carrying them to offshore deepwater
areas of the Great Lakes, where they are permanently buried. In Lake Erie, for example, the deep eastern
basin acts as a sink for sediments from the rest of the lake. The zebra mussel, which has recently invaded
the Great Lakes, has been shown to reduce the amount of suspended solids in the water (see Section 7.2.2)
and may create sediment sinks in the shallow nearshore waters where none existed before. The effect of
such shallow-water sediment, nutrient, and contaminant sinks on the nearshore ecosystem is unknown.

Annual loadings of suspended solids and sediments to the Great Lakes total 60 million metric tons; about
80 percent of that amount is derived from erosion of Great Lakes shorelines, and the rest comes from
tributary inputs (IJC 1978). Total loadings vary from about 2.8 million metric tons in Lake Huron to about
22.5 million metric tons in Lake Michigan. Annual tributary loadings (suspended solids) are about 707,000
metric tons in Lake Michigan; 1.1 million to 1.6 million metric tons for Lakes Superior, Huron, and
Ontario; and 6.5 million metric tons for Lake Erie.

Annual tributary loadings vary widely among tributaries, depending on their land use and soil type.
Loading data for the periods 1975–78 and 1982–94 (WQL 1995) indicates that the Maumee River
contributes 20 percent of the tributary sediment that enters Lake Erie each year.

Monitoring-based estimates of loading rates of pesticides into the Great Lakes are virtually absent from the
published literature (Richards 1996). Knowledge of these loads in the Great Lakes is needed for (1)
developing and refining lakewide management plans (LAMPs), (2) predicting equilibrium concentrations of
herbicides in the Great Lakes and interpreting their effects on human and ecosystem health, and (3)
providing a basis for assessing the status of agricultural pollution on regional and national scales.

Annual loadings of the herbicides atrazine, alachlor, cyanazine, metolachlor, and metribuzin were
calculated for the period 1983–93 for the Raisin, Maumee, Sandusky, Cuyahoga, and Grand Rivers
(Richards 1996). Variability in the annual loads of these U.S. tributaries to Lake Erie was large and was
linked to annual differences in rainfall and river discharge, particularly for the several months following
herbicide application in the spring. The highest annual loads exceeded the lowest by up to 60-fold. The
Sandusky and Maumee Rivers had the highest unit area loads, due to row crop agriculture and fine-grained
soils, which favoured greater surface runoff. In these two rivers, atrazine and metolachlor loads were
typically 2 g/yr and 5 g/yr, but occasionally reached the 9 g/yr to 12 g/yr range; alachlor loads were
generally 1 g/yr to 2 g/yr and did not exceed 4 g/yr; and cyanazine and metribuzin loads were typically less
than 1.5 g/yr and did not exceed 2 g/yr.
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In the Cuyahoga and Raisin Rivers, loads were typically less than 1 g/yr. Atrazine loads were
highest—typically about 1 g/yr, sometimes reaching 3 g/yr. Herbicides were infrequently detected in the
Grand River; loads there were low, and estimates had considerable error. These loadings from U.S.
tributaries to Lake Erie were comparable to those reported elsewhere for basins of similar size and land
use. These herbicides must be present in high concentrations to be toxic to animals, but can affect aquatic
plants at lower levels (Richards and Baker 1993). Direct toxicity due to short exposures at high
concentration would be more likely to occur in headwater reaches; effects due to chronic exposure would be
more likely in the lower reaches and in the nearshore waters.

6.7  Extraction of Renewable Resources

Commercial fishing has significantly changed the fish community in the Great Lakes. Blue pike and several
species of deepwater ciscoes or whitefishes (coregonines) that were once abundant in portions of the Great
Lakes ecosystem and were selectively fished by the commercial fishery are now extinct. The abundance of
other species of high commercial value has been severely depressed (e.g., lake whitefish) by the intensive
fishing; local extinctions have occurred (e.g., lake trout). Some of these changes in abundance are detailed
in Section 7.2.3.

Separating the effects of overfishing from those of habitat degradation and the introduction of exotic
species is difficult or impossible in many cases, because all three factors often operated simultaneously in
the environment. However, the effect of overfishing on the walleye in Lake Erie is clear. Commercial
catches declined from between 2.3 million kg and 2.8 million kg in the late 1950s to about 25,000 kg in
1971. Commercial fishing interests blamed the decline on deteriorated habitat. However, when high
mercury levels were detected in walleye and the fishery was closed to protect human consumers, walleye
abundance almost immediately rebounded to near historic levels. With more stringent catch regulations in
place, the walleye now supports a valuable, self-sustaining fishery that is shared by recreational and
commercial interests.

A detailed and interesting case for the effects of overfishing in the collapse of the economically important
fish community in Lake Huron is presented by Spangler and Peters (1995). They argue that commercial
fishing of lake trout, whitefishes, and percids (e.g., walleye) in the 19th century greatly exceeded the
sustainable capacity of the stocks and that improvements in fishing technology in the 20th century
permitted overfishing of many of the remaining native species. This overfishing destabilized the native
community and permitted introduced species like the alewife and rainbow smelt, which arrived later and are
only marginally suited to living in the Great Lakes, to become rapidly established and further contribute to
the decline of the native fish community. This argument for the destabilizing effect of overfishing on the
native fish community and the subsequent establishment of nuisance or destructive exotic fish species could
apply throughout the Great Lakes ecosystem. Additional discussion of the effects of exotic species follows
in Section 6.8.

Waterfowl that nested in the Great Lakes region—or migrated through it and used the nearshore waters for
feeding and resting areas—were sharply reduced by market hunting and habitat destruction (Prince et al.
1992). Hunting regulations are currently designed to ensure the sustainability of the waterfowl community.
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6.8  Exotic Species

Global transfer of exotic organisms is one of the most pervasive and perhaps least recognized effects of
humans on the world’s aquatic ecosystems (Edsall et al. 1995; Leach 1995; Mills et al. 1993). Such
transfers to new environments may lead to loss of species diversity and to the extensive alteration of the
native (or pre-invasion) community. These changes may in turn have broad economic and social effects on
the human communities that rely on the system for food, as a water supply, or for recreation.

Since the early 1800s, at least 139 new aquatic organisms have become established in the Great Lakes
(Mills et al. 1993). Most of these species are plants (42 percent), fishes (18 percent), and algae (17
percent). Introduced species of molluscs, oligochaetes, crustaceans, flatworms, bryozoans, cnidarians, and
disease pathogens combined represent 22 percent of the total. These organisms entered the Great Lakes
basin by five major mechanisms or routes. Shipping activities alone brought 41 exotic species to the Great
Lakes, of which 63 percent arrived in ballast water, 31 percent with solid ballast, and 6 percent on ship
hulls. Unintentional releases established 40 new species in the Great Lakes: 30 percent of these were
plants that escaped from cultivation. Unintentional releases also include accidental releases from fish
culture activities (19 percent) and aquarium holdings (17 percent). Seventeen organisms entered the Great
Lakes through human-made canals, along railroads or highways, or as deliberate releases. Entry vectors are
unknown for 14 species, and multiple entry mechanisms are suspected for 27. The exact locations of most
of these introductions are unknown, but most probably occurred in Great Lakes tributaries, canals, and
nearshore waters.

The rate of introduction of exotic species increased markedly after the 1800s, as human activity in the
Great Lakes basin increased. Almost one-third of the introductions to the Great Lakes have been reported
in the past 30 years. The first introductions of aquatic plants occurred when ships discharged solid ballast
in the late 1800s. The opening of the St. Lawrence Seaway in 1959 greatly increased the number of
oceangoing vessels entering the Great Lakes and dramatically increased the entry of exotic species via
ships. Deliberate releases declined after the 1800s; entry by canal increased slightly through 1959; entry by
railroad and highway occurred mostly in the 1800s; and unintentional releases have been consistently high
since the late 1800s.

At least 25 non-native fishes have become established in the Great Lakes since European settlement of the
region; nearly half of them have had substantial ecological and economic effects on the region (Bailey and
Smith 1981; Edsall et al. 1995; Leach 1995; Mills et al. 1993). The sea lamprey, a marine species,
contributed to the loss of native Atlantic salmon and lake trout in Lake Ontario. The sea lamprey probably
entered Lake Ontario from the Hudson River via the Erie Canal. The canal, which was opened to barge
traffic in 1819, connects the Hudson River and Lake Ontario drainages via Lake Oneida. The sea lamprey
later moved into the upper four Great Lakes, probably through the Welland Canal, which carries shipping
around Niagara Falls, or through the Erie Canal, which connects the Hudson River and Lake Erie
drainages. In the upper four Great Lakes, the sea lamprey contributed directly to the decline of the lake
trout and to that of several other large species of fish that had supported the sport and commercial fisheries
of those lakes. Millions of dollars are now spent annually on sea lamprey control in an effort to restore the
damaged fish populations.
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The alewife is another marine species that has become established in the Great Lakes. It was present in
Lake Ontario in 1873, having probably entered the lake and spread throughout the rest of the basin
following the same route used by the sea lamprey. It reached Lake Michigan in 1949 (Smith 1972) and by
the 1960s had caused major changes in the plankton community (Wells 1970). The alewife may also have
suppressed several native fishes, including whitefishes, yellow perch, emerald shiner, deepwater sculpin,
and spoonhead sculpin, probably through preying on the youngest life stages and competing with all life
stages (Potter and Fleischer 1992). The alewife also may have suppressed the rainbow smelt, a marine
forage species that had been deliberately introduced into the Great Lakes system in the early 1900s to
provide forage for trout and salmon. It is generally believed that the alewife would not have reached such
high levels of abundance and dominated the fish community in any of the Great Lakes if large, predatory
native fish had not been destroyed by overfishing and by the sea lamprey’s predation on them. Eventually
the alewife became a major prey for trout and Pacific salmon; it came to be considered a beneficial addition
to the forage base. However, recent information (Fisher et al. 1995a, 1995b, 1996) shows that an enzyme
carried by the alewife destroys vitamin B  in Atlantic salmon that eat alewives. Female Atlantic salmon that1

feed extensively on alewives become B  deficient; as a result, the fry that hatch from their eggs die when1

they are only a few weeks old. Thus, the invasion of the Lake Ontario drainage by the alewife is implicated
in the extinction of the remnant native populations of Atlantic salmon in the drainage in the late 1800s. The
alewife can also cause B  deficiency in lake trout and may therefore have contributed to the general failure1

of stocked lake trout to reproduce in Lakes Michigan, Erie, and Ontario, where the alewife is a major food
source for lake trout. 

The blueback herring, a marine species closely related to the alewife, is one of the newest additions to the
fish fauna of the Great Lakes. This species was recently documented entering the Lake Ontario drainage
from the Hudson River via the Erie Canal (L.R. Wedge, New York Department of Environmental
Conservation, personal communication)—the same entry route postulated for the sea lamprey and the
alewife. Its effect on the Great Lakes fishes and ecosystems is expected to be similar to that of the alewife,
which it closely resembles.

The ruffe, a small perch-like fish from Eurasia, is another recent addition the Great Lakes. It reached the
St. Louis River estuary in Lake Superior in ballast water in the early to middle 1980s (Pratt et al. 1992;
Simon and Vondruska 1991). Ruffe abundance increased sharply in 1993, and the species spread to other
parts of the lake. Yellow perch numbers in the St. Louis River estuary declined markedly between 1988 and
1991 as ruffe abundance increased; there is concern that similar declines could occur elsewhere in the Great
Lakes if the ruffe expands its range and competes with yellow perch for thermal habitat (Edsall et al. 1993)
and food (Ogle et al. 1995). The ruffe has the potential to occupy nearly 7 million ha of habitat in the Great
Lakes that is currently suitable for use by yellow perch (Edsall et al. 1993). Two ruffe were captured in
August 1995 in Thunder Bay, Lake Huron, near Alpena, Michigan; there are also unconfirmed sightings
from the Detroit River (“Ruffe spreads...” 1995).

Round and tubenosed gobies are also among the recent ballast-water additions to the Great Lakes. They
were first reported from the St. Clair River in 1990 (Jude et al. 1995). They are expected to compete
strongly with native sculpins and other small bottom-feeding fishes and are considered highly undesirable
additions to the region. A round goby was found in the Duluth–Superior harbour in July 1995 (“First
goby...” 1995).
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The successful stockings of Pacific salmon, rainbow trout, and brown trout in the Great Lakes during the
20th century have had profound and largely beneficial economic effects on the region. These species are
large predators that feed extensively on the introduced alewife and rainbow smelt. They also support
popular fisheries that contribute significantly to the total Great Lakes fishery, which is valued at more than
$4 billion annually. There are self-sustaining populations of these fish in some areas, but in most areas
stocking substantially augments the naturally produced fish.

Of the fish pathogens introduced into the Great Lakes, Glugea, a protozoan, caused extensive mortality in
rainbow smelt in Lakes Erie and Ontario in the 1960s and 1970s. A second pathogen, which causes
bacterial kidney disease, has been implicated in the massive mortalities of Pacific salmon in Lake Michigan
in the 1988–1994 period. Other introduced pathogens cause salmon whirling disease and furunculosis,
mainly in fish hatcheries, where crowding makes fish vulnerable to outbreaks of disease. A more detailed
accounting of the fish pathogens in the Great Lakes is contained in the records of the Fish Health
Committee, Great Lakes Fishery Commission, Ann Arbor, MI, and in Hnath (1993).

The arrival of the zebra mussel in Lake Erie in 1986 set the stage for long-term changes in the structure of
pelagic and benthic communities in the Great Lakes and in the economic and social future of lake users.
The zebra mussel, which feeds by filtering particles from the water, may cause substantial changes in the
food chain by removing most of the phytoplankton and the smaller zooplankton, along with other suspended
materials, from the water and depositing them on the bottom. This process greatly reduces the plankton
community and the amount of food available to planktivorous fish that feed above the bottom, and greatly
increases the food supply for benthic communities and bottom-feeding fish. As a result, the overall
production of fish in the Great Lakes will probably be reduced. There is concern that the zebra mussel may
change the nitrogen-to-phosphorus ratio in Great Lakes nearshore waters so much that the production of
noxious blue-green algae will be favoured over that of the more desirable species of green algae, which are
an important component of the food chain. Zebra mussel fouling on vessel hulls and the deposition of zebra
mussel shells on beaches may also negatively affect those who boat or swim in the Great Lakes. The zebra
mussel is also the major fouling organism of water intakes and navigation structures in the Great Lakes;
$120 million was spent in the 1989–1994 period to maintain these structures in operating condition (ZMU
1996). The zebra mussel has already spread—presumably from populations established in the Great
Lakes—to Southern Ontario in Canada. Its westward range extension in 1995 included the Mississippi
River (intermittently from its headwaters near St. Paul, Minnesota, to its mouth at New Orleans,
Louisiana) and westward into the lower and middle reaches of the Arkansas River. The environmental
tolerances and requirements of zebra mussel larvae (Table 4) and adults (Table 5) suggest that it will do
well in Great Lakes nearshore waters, except perhaps in Lake Superior. Additional discussion of the zebra
mussel is presented in Section 7.2.2.



32 SOLEC 96 - Nearshore Waters of the Great Lakes

Table 4. Environmental Conditions Affecting Survival of Zebra Mussel Larvae

Condition Range Optimum

Water temperature 12–24 C 18 C

pH 7.4–9.4 8.5

Dissolved calcium > 40 mg/L unknown

Salinity 0–3 ppt 0

Colonization substrates Soft mud, rocks, wood, aquatic Hard, calcareous
plants, etc.

Source: Adapted from Sprung 1993. 

Introduced plant species outnumber all other groups of introduced organisms, but the effect of only a few
of these are known (Mills et al. 1993). Purple loosestrife has spread throughout the Great Lakes basin; it is
replacing the cattail and other native wetland plants and is making wetlands less suitable as wildlife habitat.
Eurasian water milfoil is also increasing its range in the Lake St. Clair ecosystem (Schloesser et al. 1996).
Massive beds of the plant can make boating and swimming impossible and can reduce fish and invertebrate
populations. Some introduced species of algae have become dominant members of the algal community of
the Great Lakes. Their ecological impacts are generally unknown, but one, Stephanodiscus, has caused
water-quality problems on several occasions.

Table 5. Colonization Potential of Zebra Mussels under Various Environmental Conditions

Variable High Moderate Low Very low

Calcium (mg/L) 25–125 20–25 9–20 < 9

Dissolved oxygen 8–10 6–8 4–6 < 4
(ppm)

pH 7.4–8.5 7.0–7.4 6.5–7.0 < 6.5
8.5–9.0 > 9.0

Salinity 0–1 1–4 4–10 10–35

Turbidity (cm 40–200 20–30 10–20 < 10
secchi disk) 200–250 > 250

Water velocity 0.5–0.7 0.1–0.5 1–2 > 2
(m/sec) 0.7–1.0

Source: C. O’Neill, New York Sea Grant.
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The ecological effects of the introduced crustaceans, oligochaetes, bryozoans, cnidarians, and flatworms
are largely unknown. Historically, the ecological and economic risks associated with these groups have not
been as high as those posed by other plants and animals. The recently introduced spiny water flea, a
predatory zooplankter, has undergone rapid expansion in the Great Lakes. Its ecological effect may not be
great, but its establishment in Lake Michigan coincided with changes in the zooplankton community
characteristic of those caused by an invertebrate predator.

In summary, the collective ecological, social, and economic effects of exotic species in the Great Lakes are
enormous. Most introduced species have not been thoroughly studied to determine their effects on the
ecosystem, but some have clearly had serious adverse effects. Introduced species exist at almost every level
in the food chain, and their effects must certainly pervade the entire Great Lakes aquatic community. We
conclude that as long as human-mediated transfer mechanisms persist, and as long as habitat alterations
and other factors that stress native aquatic communities are allowed to occur, the Great Lakes ecosystem
will be at substantial risk from new, undesirable, exotic species. Clearly, guidelines to prevent introductions
should be enforced and efforts to reverse and remediate habitat damage should continue.

7.0  Status and Trends

7.1  Fish and Wildlife Habitat

The nearshore areas of the Great Lakes are diverse physical habitats, exhibiting a range of morphometric
features, current velocities, substrates, and aquatic vegetation. These features, combined with seasonal
fluctuations in temperature, provide conditions optimum to most species of fish in the Great Lakes for at
least a portion of their life cycle. Of 139 Great Lakes fish species reviewed by Lane et al. (1996a), all but
five species—the deepwater ciscoes (Coregonus hoyi, C. johannae, C. nigripinnis, C. reighardi, C.
zenithicus) and deepwater sculpin (Myxocephalus thompsoni)—typically use waters less than 10 m deep as
nursery habitat; and even the latter has been captured from shallows in the St. Clair River delta (Leslie and
Timmins 1991a). Adults of many species occur over a range of depths, but 80 percent of fish species in the
Great Lakes use nearshore areas for at least part of the year (Lane et al. 1996b). It is therefore not
surprising that species diversity and biomass of fish are higher in the nearshore than in the offshore and
profundal areas of the Great Lakes. Steedman and Regier (1987) noted that areas that provide the essential
conditions for specific activities, such as reproduction, are far more ecologically significant than their small
size would suggest. In addition, a disproportionately large number of these critical areas, which they term
“centres of organization,” occur in shallow nearshore areas.

Nearshore areas are also locations of greatest human interaction with the Lakes. This concentrated activity
has resulted in the degradation of water quality and also in a significant loss of nearshore habitat around
the Great Lakes. Loss of fish and wildlife habitat has been identified as a beneficial-use impairment at 11
of the 17 Areas of Concern identified on the Canadian side of the Great Lakes, and has also occurred at
many locations outside of Areas of Concern (Kelso and Minns 1996). In most locations the habitat losses
are primarily, if not exclusively, in nearshore habitats. Randall et al. (1993) have correlated degradation of
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nearshore habitats with reductions in the proportion of fish biomass contributed by piscivores and with
increased spatial variability in species richness and biomass.

7.1.1  Fish Habitat Features of the Nearshore

7.1.1.1  Depth

By definition, shallow habitats are found only in the nearshore waters. Depth has direct effects on fish
distributions; smaller individuals can occupy shallower depths. Thus, the shallows provide a refuge for
small fish, including young-of-the-year. In addition to depth per se, fish distributions are influenced by
other factors, individually or in combination, which are related to depth. The most significant of
these—water temperature, substrate, and aquatic vegetation—are discussed below.

7.1.1.2  Temperature

Temperature influences physiological processes, which affect the growth, reproduction, and survival of
fishes, and can also act as a proximate factor through its influence on food supply, competition, and
predation (Reynolds 1977). Preferred and/or optimum temperatures differ between species, with younger
individuals of some species, such as alewife (Alosa pseudoharengus), preferring higher temperatures than
the adults of those species do (Brandt 1980). Consequently, habitat partitioning among and within species
is affected by temperature, and the amount of habitat available at different temperatures has a profound
influence on fish community composition.

In the spring, solar radiation causes water temperatures in the Great Lakes to increase. Water temperature
increases most rapidly in sheltered, shallow habitats, where wind-induced mixing is least. As the warming
continues, a band of warmer water forms along the shore; this “thermal bar” gradually expands towards the
centre of the lake until the lake becomes thermally stratified. During the spring, many coldwater species
(such as lake trout) inhabit shallow, warmer water where temperatures are closer to their thermal optimum.
As water temperature increases, these species migrate to deeper water. In Hamilton Harbour, Lake Ontario,
gill net catches have indicated that warmwater species such as carp (Cyprinus carpio) and brown bullheads
(Ameiurus nebulosus) are concentrated in the shallow, sheltered inner harbour (Cootes Paradise) during
early spring, when water temperatures there were higher than in the outer harbour. As temperatures in the
outer harbour increased, these species dispersed (Portt et al. unpublished). For species that are near the
northern limit of their range, such as largemouth bass (Micropterus salmoides), the availability of shallow,
sheltered habitats that warm early in the spring is probably essential for survival. For other species, such as
lake trout, using  warmer nearshore areas effectively increases the growing season and may significantly
increase production.

7.1.1.3  Vegetation

Of the 133 species examined by Lane et al. (1996a), the young-of-the-year of 77 are moderately to strongly
associated with aquatic vegetation; more species are associated with submergent than with emergent
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vegetation (Table 6). Wetlands provide critical spawning and nursery habitats for many Great Lakes fish
species, and several authors have reported high species richness of young fishes from wetland habitats.
Chubb and Liston (1986) identified larvae of 18 fish species in Pentwater Marsh, a coastal wetland on
Lake Michigan. Stephenson (1990) found juveniles of 31 fish species in one or more of five coastal
marshes in the Toronto area of Lake Ontario, with the number of species at individual sites ranging from
12 to 25. Young-of-the-year of 19 species were present in Second Marsh, Lake Ontario (OMNR 1980).

Table 6. Numbers of Great Lakes Fish Species Exhibiting Various Strengths of Association with
Submergent and Emergent Aquatic Vegetation as Young-of-the-year and as Adults

Life Stage Vegetation Type Strength of Association

Strong Moderate Low None

adult submergent 42 21 21 49

emergent 33 9 18 73

young-of-the- submergent 36 27 22 42
year

emergent 27 14 15 71

Sources: Lane et al. 1996a, 1996b.

The abundance of young-of-the-year fishes is also often higher in vegetated than in non-vegetated habitats
(Chubb and Liston 1986; Holland and Huston 1984; Leslie and Timmins 1994; Keast et al. 1978). Chubb
and Liston (1986) reported that larval fish densities were usually 10 times to 100 times more abundant in
the vegetated bayou of Pentwater Marsh, Lake Michigan, than in adjacent unvegetated bayou mouths or
river channels.

Vegetation is also an important component of adult habitat. Adults of nearly one-third of the fish species in
the Great Lakes are strongly associated with submergent vegetation, while adults of one-quarter of the
species are strongly associated with emergent vegetation (Table 6).

7.1.1.4  Substrate

Table 7 indicates the wide diversity of substrates used by both adult and young-of-the-year fish species of
the Great Lakes. Gravel, sand, and silt are the most preferred materials, with more than three-quarters of
young-of-the-year fish species and two-thirds of adult species using at least one of them. These substrate
types are often found within vegetated habitat, and the strong association is certainly related. Coarse
substrates such as rubble and cobble also provide important nursery and adult habitat (Lane et al. 1996a,
1996b). In addition, many species of Great Lakes fishes—such as lake trout, lake whitefish, walleye, bass,
and most sunfish—spawn on gravel, cobble, and rubble. In the nearshore, many features are actively
forming at present lake levels, the continued extension of Long Point, Lake Erie, being one example.
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Glacial, glaciolacustrine, and lag or relict beach deposits have been described over a wide range of depths
at many locations in the Great Lakes (Sly and Prior 1974; Sly and Sandilands 1988; Thomas et al. 1976).
These deposits can be subject to degradation due to infilling and/or burial by finer sediments and/or
particulate organic material. In the nearshore, wind-generated currents determine the size distribution of
particles that are transported. In some areas, accretion of fine sediments occurs; in others, these materials
accumulate. This accumulation leads to a diversity of substrates that is not found in the deeper portions of
the Lakes.

Table 7. Numbers of Great Lakes Fish Species Exhibiting Various Strengths of Association with
Substrate Types as Young-of-the-year and as Adults

Life Stage Substrate Strength of Association
Type

Strong Moderate Low None

Adult boulder 8 12 5 108

cobble 12 13 3 105

rubble 24 24 7 78

gravel 68 26 12 27

sand 90 18 6 19

silt 71 16 6 40

clay 6 9 8 110

Young-of-the- boulder 11 2 1 113
year

cobble 12 2 3 110

rubble 19 9 5 94

gravel 43 25 2 57

sand 84 17 3 23

silt 65 15 5 42

clay 10 14 2 101

Sources: Lane et al. 1996a, 1996b.

7.1.2  The Significance of Water-level Fluctuations

Variation in Great Lakes water levels is generally identified at three temporal scales, which we define here
as short-term, seasonal, and year-to-year. Short-term cyclical fluctuations—with periods measured in
hours, and amplitudes typically measured in centimetres or tens of centimetres—occur due to seiche
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activity. Occasionally, larger short-term fluctuations—with amplitudes in excess of 1 m—occur as a result
of cells of low barometric pressure and/or high winds. Seasonal changes in water levels occur largely in
response to seasonal patterns of precipitation and temperature in the drainage basin. The amplitude of these
seasonal fluctuations varies between the lakes, as does the time of maximum and minimum levels. On
average, water levels rise during a five-month period in the spring and early summer and recede during the
remaining seven months of the year. The annual minimum and maximum occur approximately  two months
earlier in Lake Ontario (where they occur in late January and mid-June, respectively) than in Lake Superior
(where they occur in mid-March and late August, respectively).

Superimposed on the seasonal cycles are year-to-year fluctuations in water levels, which occur primarily as
a result of year-to-year variation in precipitation within the drainage basin. These fluctuations can cause
substantial deviations from the “normal” seasonal pattern. The amplitude of the year-to-year variations
differs between the lakes. The extreme highs and lows for the period of record differ by approximately 2.0
m in Lake Ontario and Lake St. Clair; 1.8 m for Lakes Michigan, Huron, and Erie; and 1.2 m for Lake
Superior. The locations of the “shoreline,” depth contours, and the thermocline vary over time because of
these water-level fluctuations. Where bottom slopes are gentle, the migrations can be large. Such changes
illustrate the dynamics of nearshore habitats and the direct influence they have on the fish community.

Maynard and Wilcox (1996) discuss the well-documented importance of water-level fluctuations for
healthy wetlands. Effects on other fish habitats has not been researched as extensively; however, Henderson
(1985) showed that yellow perch reproduction improved in high-water years in South Bay, Lake Huron. He
attributed this improvement to the increased availability of vegetation along the shoreline. Strong year
classes of northern pike have been attributed to rising water levels that have flooded vegetation in
impoundments (Bodaly and Lesack 1984; Nelson 1978). Similar effects would be expected in Great Lakes
wetlands.

7.1.3  Types of Nearshore Habitats

The nearshore waters have been defined as including the portion of the lakes from the shore, or the outer
edge of coastal wetlands where these are present, to the intersection of the late-summer thermocline with the
bottom. Also included are the connecting channels, as well as tributaries upstream to the point where lake
levels affect flow. These habitats can be divided into five general categories: wetlands, embayments,
connecting channels, tributaries, and exposed coastline and offshore shoals.

7.1.3.1  Wetlands

Wetlands are defined as areas that are covered by shallow water, either seasonally or permanently, as well
as areas where the water table is at or near the surface (OMNR 1992). Wetlands comprise different types
of ecosystems and serve a number of functions, including maintaining and improving water quality,
providing erosion and flood protection, and providing fish and wildlife habitat (Maynard and Wilcox
unpublished). Along the Great Lakes shoreline, coastal wetlands provide an important link between aquatic
and terrestrial systems. These wetlands differ from inland wetlands in a number ways. Water levels in
coastal wetlands are dependent on lake water levels, which fluctuate over a period of years. Because of this
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long-term fluctuation, coastal wetlands do not exhibit the gradual senescence that occurs with inland
wetlands (Herdendorf et al. 1986).

Coastal wetlands are formed by a diversity of landforms, including barrier bars, deltas, lagoons, and
natural levees (Jude and Pappas 1992). These characteristics provide the extensive zonation that results in
diverse habitat structures. These areas, in turn, promote the formation of complex food webs and diverse
community structure.

The role of coastal wetlands in fish production relates primarily to providing both nursery and spawning
habitat (Stephenson 1990). The fundamental prerequisites for nursery habitat of virtually all larval fish
species are abundant food supply and protection from predators. The proliferation of aquatic macrophytes
in coastal wetlands provides microhabitat for both eggs and larvae, the necessary cover from predator
species, and the storage and release of nutrients (Petering and Johnson 1991). In addition, higher water
temperatures promote higher growth rates for larvae, as well as providing favourable conditions for all life
phases of certain warmwater fish species. 

Another result of the profile of favourable characteristics common to wetlands is the species diversity found
in both pristine and degraded areas. Stephenson (1990) found 31 species of juvenile fish in the combined
sampling sites of marshes around the Toronto area. Individual marshes supported 18 taxa, a similar
number to that found by Chubb and Liston (1986) in their study of Pentwater Marsh on Lake Michigan.
Species abundance, however, tends to be lower in degraded wetlands, with one species—often carp—being
dominant (Chubb and Liston 1986).

7.1.3.2  Embayments

Embayments represent another diverse array of sheltered habitats for fish species in the nearshore areas of
the Great Lakes. Although many embayments contain wetlands (abundant submergent and emergent
vegetation are typically present), they also include areas of open water. Often they represent a transition
between open water and riverine habitats. The Bay of Quinte (Lake Ontario), Long Point Bay (Lake Erie),
and Saginaw Bay (Lake Michigan) are examples of embayments. Field studies in Muscote Bay, Bay of
Quinte (Leslie and Moore 1985), and Hog Bay, Severn Sound (Leslie and Timmins 1995), both Areas of
Concern, showed 24 and 31 taxa, respectively.

7.1.3.3  Connecting Channels

The Great Lakes connecting channels are also important spawning and nursery habitats. Leslie and
Timmins (1991a) captured 21 species of fish larvae in the St. Clair River proper, but captured more than
60 species in waters connected to and adjacent to the river. Young-of-the-year of 48 species were captured
in tributaries of the St. Clair River (Leslie and Timmins 1991b). Liston and McNabb (1986) reported
larvae of 33 species and juveniles of 27 from Munuscong Bay on the St. Marys River. The St. Marys
River, downstream from the dam at Sault Ste. Marie, and the Niagara River provide spawning habitat for
Pacific salmon and for rainbow trout, which also spawn in many of the tributaries of the Great Lakes.
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Connecting channels also have an important role in the transport of water, sediments, nutrients, and
contaminants (Sparks 1995).

7.1.3.4  Tributaries

The principal spawning and nursery habitats for one-third of the fishes in the Great Lakes are located in the
tributaries (Lane et al. 1996a). Many of these species spawn further upstream than the area that has been
defined as nearshore habitat (the furthest distance upstream that water levels are affected by lake levels).
Other species, however, spawn within the lower reaches of the tributaries. Temperatures sufficiently high to
trigger spawning often occur in streams before they occur in lakes, thus providing a longer growing season.
For example, spottail shiners spawned one month earlier in a tributary to Lake Michigan than they did in
the lake (Mansfield 1984). Productivity also tends to be higher in streams than in pelagic lake areas,
probably as a result of the allochthonous input from terrestrial areas (Mansfield 1984).

Floodplains also enhance productivity and maintain diversity. At drawdown, nutrients are mineralized and
accumulation occurs; during flooding, the nutrients are dissolved and high primary production and
decomposition rates occur (Bayley 1995). The result is a high turnover rate and optimum conditions for
spawning and nursery grounds for many species of fish. 

7.1.3.5  Exposed Coastline and Offshore Shoals

Exposed coastline and offshore shoals have been the subject of less sampling effort in the Great Lakes than
have the other nearshore habitats. This neglect is probably due both to the fact that such areas are
perceived as being less important in terms of fish habitat than are most other nearshore habitats and to the
fact that they are more difficult to sample. Macrophytes are typically not present, with the exception of
deeper beds in some locations. Wave-induced mixing inhibits thermal stratification, and upwelling of water
from the hypolimnion occurs in many areas. Although total fish numbers are generally lower than in
sheltered habitats, these areas present unique features that are optimum for certain species, particularly
those adapted to turbulent environments. Upwelling also affords coldwater species with periodic access to
shallow littoral habitats.

7.1.4  Problems and Issues

Fish habitat problems related to power production, dredging, transportation, and boating have been
mentioned earlier in this report. This section covers problems associated with other types of activities.

7.1.4.1  Shoreline Modification

Portions of the Great Lakes shoreline have been modified during the course of industrial, commercial, and
residential development. Except where diking of coastal areas for agricultural purposes has occurred
(primarily along the shores of Lakes Erie and St. Clair), the extent of these modifications is roughly
proportional to the population along the shoreline. Shoreline modifications range from simply infilling the
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shallows to erecting sheet steel and concrete walls. In Hamilton Harbour, a major industrial port, filling the
nearshore areas, along with straightening and hardening the shoreline, reduced the shoreline’s length by 36
percent between 1808 and 1992. Only about 6 percent of the original shoreline remains in an unaltered
state. In Severn Sound, which represents an intermediate case, 15 percent of the 325 km of shoreline that
has been inventoried has been altered. The alterations include nearly 9.7 km of concrete walls and 3.4 km
of sheet steel piling. Not surprisingly, the modifications are concentrated in sheltered embayments that are
surrounded by the most intense development. Along the north shore of Lake Superior, where there are
relatively few communities, most of the shoreline is still in its natural state.

Hardening the shoreline eliminates the migration of the nearshore with changing water levels. Indeed, such
modifications are often motivated by the desire to eliminate such migration. Their effect, however, is to
reduce the amount of fish habitat available, especially in relation to what would be available during high-
water years. Usually, such modifications also straighten the shoreline. Because irregularities in the
shoreline cause local variations in alongshore currents, which in turn cause local variation in substrate,
straightening results in a loss of habitat diversity.

Other examples of shoreline modification are accumulations of wood fibre and bark near some pulp mills
and accumulations of wood scraps from lumber operations in Penetang Harbour.

7.1.4.2  Water-quality Degradation

The impaired beneficial uses of many of the 17 Areas of Concern in the Canadian waters of the Great
Lakes all relate in some way to eutrophication. The cycle of eutrophication begins with the enrichment of
water as a result of nutrient loading and, subsequently, increased algal blooms. Eutrophication causes a
shift in community to a species profile that can better tolerate the conditions of impaired visibility and
variations in dissolved oxygen (Severn Sound RAP Team 1993). Often these species are less desirable—for
example, carp (Cyprinus carpio), alewife (Alosa pseudoharengus) and brown bullhead (Ameiurus
nebulosus). Sewage plants, septic systems, urban storm water, and agricultural sources—both livestock
and crops—all contribute to the eutrophication problem in the Severn Sound AOC (Severn Sound RAP
Team 1993). In the Bay of Quinte AOC, six municipal sewage treatment plants bordering the area are
mainly responsible for phosphorus loadings (Bay of Quinte RAP 1996). Discharges from the Domtar liner-
board mill on Nipigon Bay and from the two local sewage treatment plants are responsible for
eutrophication problems in that AOC (Nipigon Bay RAP Team 1995).

7.1.5  Fish Habitat Policy and Current Initiatives

7.1.5.1 Department of Fisheries and Oceans (Canada) Policy for the Management of Fish Habitat

The habitat protection provision of the Canadian Fisheries Act provides the legislative mandate for the
management of fish habitat in Canada. This Act prohibits any work or undertaking that is likely to result in
the harmful alteration, disruption, or destruction (HADD) of fish habitat without the implementation of
compensatory measures. The Department of Fisheries and Oceans (DFO) policy for the management of
fish habitat establishes an overall objective: to “increase the natural productive capacity of habitats for the
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nation’s fisheries resources, to benefit present and future generations of Canadians” (DFO 1986). The first
goal of this policy is to maintain the current productive capacity of fish habitats. The guiding principle for
achieving this objective is no net loss of the productive capacity of habitats. Simply stated, the DFO will
seek to balance any unavoidable habitat loss with habitat replacement on a project-by-project basis (DFO
1986). Other goals include rehabilitating the productive capacity of fish habitats in selected areas where
economic or social benefits can be achieved through the fisheries resource, and improving and creating fish
habitats in selected areas where the production of fisheries resources can be increased for the social or
economic benefit of Canadians.

In Ontario, the DFO and the Ontario Ministry of Natural Resources (OMNR) work together to protect fish
habitat. The provincial agency is responsible for enforcing the habitat protection provisions of the Fisheries
Act. Applications for activities that will affect fish habitat are reviewed by OMNR field offices. If a
HADD is anticipated, the project is normally referred to the DFO for authorization. The major decision
criteria for the authorization of a HADD are the significance of the habitat and the possibility of
compensation. Typically, the creation of new habitat or the modification of existing habitat that will
increase fish productive capacity is considered acceptable. Table 8 provides information on some projects
assessed by the DFO under the “no net loss” policy. Less than 5 percent of the shoreline referrals were
dedicated to restoration. Close to 50 percent of the projects affect between 0 m and 1,000 m of shoreline
each, yet the cumulative effect of these projects is significant. The development of long-range habitat
management plans that deal effectively with these issues is essential.
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Table 8. Summary of 127 Shoreline Projects Referred to the Canadian Department of Fisheries and
Oceans, Central Region

Variable Count (Number of Percent
Projects)

Project Marina 27 21.2

Dock 9 7.0

Water Intake 3 2.3

Industrial Wastewater 9 7.0

Storm Sewer 3 2.3

Sewage Treatment 4 3.1

Water Course Diversion 3 2.3

Armourment 16 12.5

Restoration/Cleanup 5 3.9

Infilling 16 12.5

Dredging 11 8.6

Other 21 16.2

Shore Affected (m) 0 16 12.5

> 0–10 9 7.0

10–100 29 22.8

100–1,000 27 21.2

1,000–10,000 15 11.8

> 10,000 2 1.5

Unknown 29 22.8

Area Affected (m ) 0 10 7.82

> 0–10 1 0.7

10–100 8 6.2

100–1000 37 29.1

1000–10,000 20 15.7

> 10,000 25 19.6

Unknown 26 20.4

Effects Construction 7 5.5

Permanent 13 10.2

Both 90 70.8

None 7 5.5

Unknown 10 7.8
Source: Minns et al. 1995. 
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7.1.5.2  Current Initiatives

The ecosystem approach to nearshore fish habitat management has been adopted for the Canadian
waters of the Great Lakes. In this approach, which recognizes the link between the natural
ecosystem and human activity, the effects of shoreline development are assessed with respect to
their impact on fish habitat (Minns et al. 1995). A problem exists based on the lack of a protocol
that would allow the consistent and quantitative assessment of fish habitat in its pre- and post-
development stages. Current methods do not consider cumulative impacts, the direct and indirect
effects of development, or the habitat needs of fish (e.g., individuals, communities, proximity of
spawning, and nursery habitats). There is a need for a common approach to evaluating the effects
of habitat modification on fish productive capacity. 

Development of Methods for Pre- and Post-Development Assessment of Fish Habitat

A prototype methodology has been developed for use with nearshore fish habitat of the Great
Lakes that provides the ability to assess fish community objectives with respect to proposed
development (Minns et al. 1995). The proposed methodology estimates (1) total habitat area that
will be affected, either directly or indirectly, by the development; (2) pre- and post-development
fish community productivity area; and (3) suitable area for special habitat (e.g., spawning habitat
for coldwater piscivores) for pre- and post-development. These estimations are based on
information compiled regarding life history, life stage, ecology, and fish community objectives.
The result is a pair of scores—one each for pre-development status and post-development status.
The difference between the two scores is an estimate of the net change in fish productivity that
will result from the proposed development. Refinements to the methodology are ongoing.

Incorporating Fish Habitat Concerns into Land-use Planning

It is increasingly recognized that fish habitat protection must be incorporated into traditional land-
use planning to be effective. In Ontario, recent amendments to the Land Use Planning and
Protection Act require that fish habitat be addressed with other natural features in a Natural
Heritage Policy. Management agencies require ways of providing ecologically sound information,
in a form that can be readily used by planners and other non-fisheries professionals, for effective
habitat management planning.

Initiatives aimed at developing habitat classification systems for littoral habitats are under way in
two Great Lakes Areas of Concern, the Bay of Quinte (Lake Ontario) and Severn Sound (Lake
Huron), as part of their Remedial Action Plans. Both use Geographical Information System (GIS)
software to integrate habitat data (substrate, depth, vegetation) with biological information. In the
Bay of Quinte, fish sampling data have been used to calculate an Index of Biotic Integrity or IBI
(Minns et al. 1994) for the various littoral habitats. The IBI scores, in combination with a rating of
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spawning suitability, were used to calculate a community habitat suitability score for each
identified habitat type (MacLeod et al. 1995). In Severn Sound, knowledge of the habitat
requirements of Great Lakes fishes is being used to predict fish utilization of different littoral
habitats. These results will subsequently be evaluated by comparing them to field collection data.
Making this information available to planners, developers, and other agencies will ensure a
proactive rather than a reactive approach to development. Projects will be redirected away from
sensitive habitats before damage occurs and before large amounts of time and money are invested.

Integration of Coastal Processes and Fish Habitat Management

Nearshore areas of the Great Lakes are highly diverse and are subject to constant change with
respect to both natural and human forces. Wave action, sediment transport, deposition, and
erosion are some of the factors that induce changes in surficial substrate, macrophytes, and water
depth. Changes in the amount and quality of fish habitat result. Modelling techniques are currently
being developed that will enable the prediction of wave action and circulation patterns, along with
prediction of the changes in habitat that may occur as a result (W.F. Baird and Associates 1996).
These techniques are based on documentation of existing morphology, evaluation of wave
dynamics, and current models. Once the techniques have been applied, the findings can be
interpreted to determine changes in key habitat characteristics (W.F. Baird and Associates 1996).
These advancements clear the way for Coastal Zone Management planning to expand from its
traditional area of flood/erosion control towards the Fish Habitat Management Planning process
envisioned in the Department of Fisheries and Oceans policy.

Canadian Airborne Spectral Imagery Project (CASI)

The purpose of the CASI project is to develop a digital inventory of habitat types for Lake Erie.
An atlas of digital maps will be compiled using data collected with CASI along with digital
georeferenced data from other sources. The maps will show nearshore aquatic and terrestrial
habitat components on Long Point Bay, Lake Erie. The atlas will provide an improved technique
for assessing aquatic habitat suitability and influences of terrestrial activity on aquatic habitats in a
consistent and reliable manner. Such a tool will be key in helping the agencies responsible for
making land-use and resource management decisions.

7.1.5.3  New Initiatives for Improving Management

The Lake Superior Bi-national Program provides a more broad-scale approach to restoration and
management planning. The overall objective of this program is to achieve the designation of Lake
Superior as a zero-discharge area for nine designated pollutants. The need to inventory existing
habitat and to initiate activities aimed at protecting or restoring habitat resources is also included
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in the broader program to restore and protect the Lake Superior ecosystem. More specifically, the
Habitat Committee was established to address issues that relate directly to wetland, aquatic, and
terrestrial habitat. Its direct responsibilities include (1) developing criteria for identifying areas of
important habitat and identifying sites that meet those criteria; (2) promoting partnerships aimed
at integrating the inventory, restoration, and maintenance of habitat; (3) developing a system of
ranking habitat restoration and maintenance—a system that involves all potentially affected
individuals at all levels; (4) integrating long-term habitat inventory, assessment, and restoration
efforts (Lake Superior RAP unpublished). 
7.1.5.4  Restoration Examples

In recent years, numerous projects aimed at restoring fish and wildlife habitat have been
undertaken in nearshore areas of the Great Lakes. Currently, approximately 58 habitat restoration
projects are being supported, in part, by the Great Lakes 2000 Cleanup Fund. Some examples are
discussed below.

Hamilton Harbour and Cootes Paradise Habitat Restoration

This fish and wildlife project, currently the most ambitious on the Canadian side of the Great
Lakes, is coordinated by the Department of Fisheries and Oceans and is supported by a broad
partnership of government and private organizations. Project activities include the creation of
islands, shoals, and reefs; the naturalization of shoreline; and the restoration of wetlands. The
project’s overall aim is to restructure the fish community so that instead of being dominated by
carp (as it is now), it becomes a more diverse community dominated by top-order predators. The
projected total cost of this project is more than Cdn $31 million.

Penetang Harbour

About 63 percent of Penetang Bay wetland has been lost through development (filling). Wood
debris from lumber operations along a portion of the shoreline at the bay’s south end prevented
the growth of aquatic plants; in doing so, it impaired habitat for water-based wildlife. Removal of
wood debris from the bottom (4 ha) has allowed colonization by aquatic vegetation. Two hectares
of parkland, which had been created by filling the bay, were recontoured to create two wetlands
containing small, spring-fed watercourses. Steel half-culverts that had contained two other small
streams were removed to allow these channels to revert to a more natural condition. The
projected total cost of this project is Cdn $260,000.

Restorations of Natural Habitat Structure, Toronto Waterfront
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Underwater structural complexity was re-created along the Toronto waterfront, reducing the
extent of habitat impairment caused by shoreline modifications. This activity will help restore self-
sustaining fish and wildlife populations to the area.

In summary, the nearshore habitats of the Great Lakes have been significantly affected since 1800,
when colonization of North America expanded. The rate and magnitude of change accelerated
greatly with the increases in population and the increases in agricultural and industrial
development that followed. No comprehensive documentation of the recent changes in the
amount and quality of nearshore habitats is available, but it is clear that with the adoption of the
“no net loss” policy and with the efforts directed at habitat restoration, a net gain in the amount
and quality of nearshore habitats has been realized in recent years. Though the current restoration
efforts are improving aquatic habitat, much of the damage is irreversible. For example, restoration
estimates for northern pike (Esox lucius) habitat in Hamilton Harbour indicate that 20 percent of
the harbour will provide suitable habitat. In its original state, nearly 50 percent of Hamilton
Harbour provided some degree of pike habitat (Minns et al. 1993). In addition, the degradation in
one area significantly affects our ability to improve fish and wildlife populations in adjacent areas.
Pressures on nearshore habitat will continue as the population of the Great Lakes basin increases.
Subsequently, demand for water increases as well, along with demand for sewage disposal, food,
housing, recreation, transportation, and a range of other human needs and wants that threaten
aquatic habitats, especially the nearshore. Recognizing the unfortunate history of habitat
destruction and degradation and the lost opportunities that have resulted, and recognizing the high
cost of restoration, inspires a commitment to anticipate future human-induced stressors and to
develop strategies to prevent us from repeating the mistakes of the past.

7.1.6  Nutrient Enrichment and Algae

Nutrient trends and Great Lakes ecosystem responses to nutrient loadings and concentrations
were reviewed for SOLEC ’94 (Neilson et al. 1995). Targeted phosphorus loading reductions
were exceeded in Lakes Superior, Huron, and Michigan and were reached or nearly reached in
Lakes Erie and Ontario (Neilson et al. 1995). Phosphorus concentrations in lake water followed
trends in nutrient loadings and reached expected levels except in western Lake Erie, where the
expected level was sometimes exceeded. Trends in soluble reactive phosphorus (the biologically
available form, abbreviated SRP) generally followed those of total phosphorus. As a result, the
growth of Cladophora, a filamentous alga, was reduced in nearshore waters, and chlorophyll a
was reduced in offshore waters. Nitrogen (nitrate–nitrite) levels seem to be increasing, particularly
in Lake Ontario. This increase, coupled with a reduction in phosphorus levels, has reduced the
total quantity of algae in the water and has shifted the species composition away from nuisance
blue-green algae and towards the more desirable diatoms, which were historically dominant.
These changes indicate that the open waters of the three upper lakes have remained oligotrophic
and that Lake Ontario is tending in that direction. Phosphorus loading reductions have not been
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sufficient to permit re-establishing year-round aerobic conditions in the hypolimnion in central
Lake Erie.

The return of the Great Lakes to a more oligotrophic condition—as evidenced by a reduction in
the abundance of blue-green algae and by a reduction in the annual occurrence of anoxic
conditions in the bottom waters of central Lake Erie—is certainly desirable from a water-quality
management perspective and is also desirable from a fisheries management perspective, as long as
increasing oligotrophy does not result in a substantial reduction in fish production. Fisheries and
water-quality management strategies for the Great Lakes have evolved more or less
independently; although the two types of management strategies have generally benefited the
environment, they do not have identical goals or approaches. In the future, a more ecologically
oriented approach that considers both fisheries and water-quality management goals and that
better integrates management activities should be aimed for.

7.1.7  Nearshore Nutrients

Nutrients important to algal growth (phosphorus and nitrogen) are added to the lakes in the
nearshore zone through combined sewer overflows (CSOs), sewage treatment plants (STPs), and
rivers. The Ecosystem Health Division of the Environmental Conservation Branch of Environment
Canada’s Ontario Region is responsible for conducting the Great Lakes Surveillance Program.
Since 1967, open-lake cruises have been conducted on the Great Lakes to assess transboundary
pollution, and to fulfil Canada’s obligations under the Canada–U.S. Great Lakes Water Quality
Agreement. The surveillance program now focuses on one lake each year (except Michigan),
conducting multiple water sampling cruises for organics, nutrients, and physical parameters. The
program’s objectives are to ensure compliance with water-quality objectives, evaluate trends,
identify emerging issues, and support the development of LAMPs.

Although the surveillance program is an offshore monitoring program, some of the stations
routinely sampled fall within the SOLEC definition of “nearshore” (i.e., less than 10 m in Lake
Superior, less than 30 m in all other Great Lakes).  None of the Great Lakes Surveillance stations
on Lake Superior meet the criteria. Conversely, almost all the Surveillance stations on Lake Erie
are within the 90 percent of the lake classified as “nearshore” according to the criteria used in
Table 1. For Lakes Huron and Ontario, only the stations closest to the shoreline are within the 30-
m contour.

Using the most recent surveillance data (1991 for Lake Superior; 1994 for Lake Huron; 1995 for
Lake Erie; 1993 for Lake Ontario), surface distribution maps of spring total phosphorus (Figure
7), spring soluble reactive phosphorus (Figure 8), spring filtered nitrate-plus-nitrite (Figure 9),
and summer chlorophyll a (Figure 10) were constructed to illustrate nearshore–offshore gradients.
Although the stations that fall within the SOLEC definition of “nearshore” are still, in general, 1
km to 2 km from shore, elevated concentrations of phosphorus and nitrate-plus-nitrite, as well as
the highest concentrations of chlorophyll a, are observed. In Lake Ontario, where the spring
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phosphorus guideline is 0.010 ppm, exceedances are observed within these “nearshore” stations.
Similarly, in Lake Erie, where the total phosphorus guideline is basin-specific (0.015 ppm for the
Western basin, 0.010 ppm for the Central and Eastern basins), exceedances are also observed,
both at stations that meet the “nearshore” criteria and offshore. Algae and macrophytes require
nutrients for growth. 

An overabundance of nutrients leads to nuisance algal populations in the water and also leads to
algae attaching themselves to rocks and structures. Nutrients stored in sediment stimulate
macrophytes, which may cause navigation problems for recreational boaters in shallow-water
areas. Figure 10 shows that chlorophyll, the algal indicator in this case, tends to follow the total
phosphorus concentrations in the nearshore of the lower lakes. Thus, the nutrient sources are
bioavailable. This is consistent with STP sources of nutrients rather than less available nutrient
forms in natural soils, which may be in suspension nearshore.

Clearly, the ubiquitous STP outfalls and CSOs still influence nearshore water quality near
population centres. Though sewage plants reduce the phosphorus in sewage, they do not eliminate
phosphorus. Many STPs operate with effluents in the range of 1000  g P/L, which is 100 times
the desired concentration in Lake Ontario. Thus, nearshore–offshore gradients are to be expected.
Experiments conducted in 1991 by M.N. Charlton (unpublished data) between Burlington and
Toronto are typified by the results shown in Figure 11 (Charlton Nearshore TP Gradient). The
nutrients are introduced to the lake at the shore side of the shore boundary layer both by sewage
sources and by rivers. Thus, relatively high concentrations can occur locally even though control
programs have caused low concentrations generally in the lake.

In the late 1960s, the Ontario Water Resources Commission began monitoring planktonic algae in
samples collected weekly from a number of municipal water-supply intakes in the province,
including several on the Great Lakes. The program was expanded in 1976, when the (then) Water
Resources
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Figure 7  Surface Distribution of Phosphorus Concentrations

Figure 8  Surface Distribution of Soluble Reactive Phosphorus Concentrations
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Figure 9  Surface Distribution of Spring Filtered Nitrate-plus-nitrite

Figure 10 Surface Distribution of Chlorophyll a Concentrations
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Figure 11  Phosphorus Gradient in Lake Ontario

Branch of the Ontario Ministry of the Environment increased the number of Great Lakes sampling
locations to 13 and began measuring several trophic state variables, including nitrogen,
phosphorus, silica, and chlorophyll. Five additional intake sampling locations were added between
1978 and 1985. Data from this program have been useful for measuring the response of the
nearshore Great Lakes to the international phosphorus control program (Nicholls et al. 1980) and
are essential for the fulfilment of terms of the Great Lakes Water Quality Agreement (IJC 1988).
More recently, the data have proven useful in demonstrating some water-quality effects of the
zebra/quagga mussel invasion relative to phosphorus management (Holland 1993; Holland et al.
1995; Johengen et al. 1995; Nicholls 1996; Nicholls and Hopkins 1993; Nicholls and Standke
1996). The following is a brief synopsis of some of the recent Ontario findings.
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Figure 12  Total Phosphorus (TP) and Chlorophyll a Concentrations

Total phosphorus (TP) and chlorophyll concentrations ranged from the lower limits of analytical
detection (0.001 mg P/L or 1  g P/L, and 0.2  g chl/L) in many of the Lake Superior samples to
maximum concentrations two orders of magnitude higher in the Bay of Quinte. For the May
through November periods of all years, the relationship between monthly mean TP and
chlorophyll a was well defined for the pre–zebra/quagga mussel years (Figure 12). The invading
mussels remove chlorophyll at a higher rate than they remove total phosphorus; this removal-rate
difference has led to a decrease in the summer chlorophyll-to-TP ratio of more than 60 percent
(Nicholls and Standke 1996; Figure 12).
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Long-term declines in total phosphorus are evident in all of the Great Lakes, but considerable
variability has characterized many of the sampling locations. It is apparent that many years of data
are needed to identify trends, which are best defined in western Lake Erie and eastern Lake
Ontario (Figure 13).  At the Union location in western Lake Erie, TP concentrations rose steadily
from 1976 to 1983 and then declined at a rate of about 0.003 mg/L per year through 1994. The
rate of decline of TP at the Kingston and Brockville locations was about three times higher,
averaging about 0.010 mg/L per year between the middle 1970s and the middle to late 1980s. No
further declines have been apparent so far during the 1990s at any of the Lake Ontario locations
(Figure 13).

Long-term chlorophyll data from all locations are highly variable; only after 1988–89 in Lake Erie
is there a major reduction (Figure 14),  which is attributed to the establishment of zebra/quagga
mussels. A reduction of between 30 percent and 50 percent at the Grand Bend location in
1993–94 (Figure 14) is consistent with the delayed establishment of mussels in parts of Lake
Huron (Johengen et al. 1995). Similarly, large recent reductions in chlorophyll at Kingston and
Brockville are consistent with the establishment of invading mussels in eastern Lake Ontario and
the Bay of Quinte in 1992–94.
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Figure 15  Algal Response to Phosphorus Loading in Western Basin of Lake Erie

In the short term (10 years), the zebra mussel affected Lake Erie planktonic algae dramatically in
all three basins of the lake (Figures 15 and 16a).  In the western basin, however, a longer-term
view of the data (30 years) provides a very different perspective relative to the phosphorus
loading control effects. Over a three-decade period, the declines in chlorophyte plankton
(including several “weedy” species of the genera Pediastrum and Scenedesmus) that occurred
during the 1970s and 1980s were of much greater importance  than the decline experienced in
1988 attributable to zebra mussels (Figure 16b).  By the late 1980s (before the mussel invasion),
total chlorophyte density was only 6 percent of late 1960s–early 1970s levels, so further
reductions brought about by invading mussels were relatively minor. This was not the case in the
lake’s central and eastern basins, where phosphorus loading controls have apparently been less
effective (as evidenced by relatively unimportant declines in algae before the mussels invaded
during the 1988–90 period). The decline in western Lake Erie phytoplankton was well under way
by the time the chlorophyll sampling started in 1976. As well, the phytoplankton data demonstrate
a continuing decline through the 1980s, apparently in response to decreasing phosphorus loads
(Figure 16), while chlorophyll levels remained fairly constant at about 5  g/L  (Figure 15, Union
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data). This apparent discrepancy may relate to the changing chlorophyll contents of algal cells—a
change that would result from a shift from N limitation to P limitation brought on by phosphorus
loading controls and by rising nitrate concentrations through the 1970s and 1980s (Figure 18). 
Because cells’ chlorophyll contents depend on the availability of inorganic nitrogen as well as on
other factors, greater care may be needed in interpreting long-term chlorophyll data than in
interpreting data on phytoplankton biovolume and density.
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Figure 16  Cumulative Decline of Algal Populations in Western Lake Erie
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Figure 17  Phytoplankton Density in Lake Erie

Figure 18  Nitrate Trend in Central Basin of Lake Erie
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The Bay of Quinte Remedial Action Plan (RAP) has set an interim phosphorus concentration
objective of 0.030 mg P/L for the upper Bay of Quinte. Significant declines in phosphorus
concentrations have occurred in the Bay of Quinte since 1977 (Figure 19a), mainly in response to
optimized secondary sewage treatment and phosphorus removal at municipal sewage treatment
plants discharging to the Bay of Quinte. A few more years of data will likely be required to be
certain that concentrations at Station B in the upper bay are (after 1995) consistently below this
target concentration. Declines in phytoplankton biomass have generally followed the decreasing
phosphorus concentrations (Figure 19b) and have been reflected in improved water quality in the
upper bay for drinking-water supply and recreational uses.

Nutrient loads to the lakes have been reduced, not eliminated. The problems caused by nutrients,
therefore, may be reduced but are still present. For example, the attached alga Cladophora grows
on rocky bottom areas in shallow water. Formerly, the growths, when they broke off and drifted
to shore, created widespread problems by their unsightliness and unpleasant odour. During July
1995, a survey of Lake Erie’s east basin that was conducted by the Ontario Ministry of
Environment and Energy found shoreline fouling at four areas. In addition, growth still attached
to the bottom was abundant at 16 locations between Fort Erie and Port Dover. The reason for the
widespread abundance of Cladophora in the shallow littoral zone in July 1995 is unclear. The
minimum phosphorus concentrations predicted to sustain growth are relatively low (Jackson and
Hamdy 1982). Neilson et al. (1995) predicted that SRP concentrations in Lake Erie’s nearshore
were sufficient to sustain Cladophora growth. Several studies have shown that Cladophora
growth responds to phosphorus concentration variations in the range of concentrations now found
in the lakes. Thus, intermittent loads or even small sources can stimulate this nuisance. Local
shoreline or tributary inputs of nutrients to the littoral zone probably contributed to the greater-
than-average abundance of Cladophora in some areas. But the extent to which local sources of
nutrients were a factor in the overall abundance of Cladophora is not known. Increased water
clarity in the eastern basin may also contribute to the observed abundance of Cladophora by
reducing the degree of light limitation on growth. A more speculative question is whether
Cladophora benefits from the presence of dreissenid mussels by scavenging nutrients released
from the mussels’ waste products (faeces and pseudofaeces). 
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Figure 19  Phosphorus Concentrations in the Bay of Quinte

To identify areas of concern and monitor contaminant trends over time, the Ontario Ministry of
Environment and Energy initiated a contaminant surveillance program using juvenile fish as
biomonitors in the nearshore waters of the Great Lakes in 1975. This program’s findings have
been widely reported (Suns et al. 1991).

A variety of organochlorine contaminants and metals are known to bioaccumulate in fish.
Contaminants that are often undetectable in ambient water samples may be detected in young-of-
the-year forage fish. Because fish integrate spatial and temporal changes in water quality and in
contaminant availability, body burdens provide a good basis for assessing environmental change.
A common forage fish, the spottail shiner (Notropis hudsonius), was selected as the principal
biomonitor (Suns and Rees 1978) for assessing temporal trends in contaminant levels in nearshore
waters, determining the spatial extent of pollution throughout the Great Lakes, identifying sources
of contamination, and assessing the effectiveness of pollution control. Among the criteria used in
selecting spottail shiners were its limited range in its first year of life, its undifferentiated food
habits in early life stages, its importance as a forage fish (Scott and Crossman 1973), and its
presence throughout the Great Lakes. Forage fish also provide an important link in assessing
contaminant transfer to higher trophic levels (e.g., fish-eating birds, mammals).

The significance of the contaminant levels in the forage fish is assessed using wildlife protection
guidelines. Specifically, the Forage Fish Contaminant Index (FFCI) developed by Suns et al.
(1991) assesses risk to piscivorous wildlife for 7 organochlorine compounds. The FFCI is
calculated as the sum of individual contaminant concentrations divided by individual wildlife
protection guidelines or objectives. The concept of additivity inherent in the FFCI has been used
by the USEPA (1989) to establish risk factors for chlorinated dibenzo-p-dioxins and
dibenzofurans. Bishop (1989) has shown that the sum of total organochlorine body burdens,
rather than specific compounds, was related to biological effects.
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Guidelines used for calculating the FFCI were the most stringent available and included the IJC
Aquatic Life Guideline (GLWQA 1978) and the NYSDEC Fish Flesh Criteria (Newell et al. 1987)
for the protection of piscivorous wildlife. Contaminants and guidelines used were polychlorinated
biphenyls (PCBs) (100 ng/g), dichlorodiphenyl trichloroethane (DDT) (200 ng/g),
hexachlorocyclohexane (BHC) (100 ng/g), hexachlorobenzene (HCB) (330 ng/g),
octachlorostyrene (OCS) (20 ng/g), and chlordane (500 ng/g). Because the mirex guideline is
below detection limits, a value of 1 ng/g was used in calculations.

7.1.8   Persistant Toxic Contaminants in Water, Sediment, and Biota

7.1.8.1   Status

Spottail shiners were collected at 44 sites throughout the Great Lakes in September 1993 or
1994. Five to seven 10-fish composites were measured for total length (mm), wrapped in hexane
rinsed aluminum foil, and frozen at –20 C until analysed for PCBs and organochlorines at the
MOEE Laboratory (Ontario Ministry of Environment and Energy 1994a).

Calculated FFCI values, concentrations of total PCBs, and DDT are shown in Figure 20. An index
value of 1 is designated as the Wildlife Risk Level. Higher values represent greater risk for
piscivorous wildlife. Higher index values were generally more frequent in the lower Great Lakes,
with the maximum observed values noted at the Grass R and Reynolds Aluminum sites in the St.
Lawrence River and at the Welland Canal.

PCB contributions to the index were generally high at most of the sampled sites. PCB residues
were present in spottail shiners at 31 of the 44 sites sampled in 1993 or 1994 (70 percent),
exceeding the IJC Aquatic Life Guideline of 100 ng/g at 13 sites (30 percent) (Figure 22). PCBs
generally accounted for the largest component of the FFCI at most locations, with the exception
of octachlorostyrene in the St. Clair River at Lambton Generating Station (15 ± 2 ng/g) and in
Lake St. Clair (less than 5 ng/g), where a localized source contributed to the index. PCBs at
Lambton Generating Station were below detection limits in 1994, a significant decrease from
1992 and 1993 (when the levels ranged from 131 ng/g to 168 ng/g). Unusually high localized
PCB residues in forage fish on the U.S. side of the St. Lawrence River—in the Grass River and at
Reynolds Aluminum—remain above 2500 ng/g. PCB residues in the Welland River just west of
the Chippawa Power Canal (220 ± 39 ng/g) reflect upstream impacts. PCBs remain elevated on
the U.S. side of the Niagara River downstream of the 102nd Street waste site (158 ± 20 ng/g). It
is not known whether the continued declines at the Search and Rescue Station (244 ± 53 ng/g) are
related to remedial measures (sediment removal) at Gill Creek in 1992. While PCB bioavailability
at several sites in the Humber River watershed continue to fluctuate above the IJC guideline,
concentrations remain elevated at the mouth of the river (174 ± 17 ng/g).
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Total DDT concentrations in young-of-the-year spottail shiners were well below established
guidelines (200 ng/g) at all sites.

BHC (Hexachlorocyclohexane) was elevated to 1985 levels at Cayuga Creek in 1994 (33 ± 11
ng/g). Four other occurrences in the Niagara River and Lake Ontario were less than 6 ng/g.

Chlordane was present at four sites—one at Fort Erie and three in Lake Ontario. Concentrations
in spottail shiners did not exceed 12 ng/g.

HCB (hexachlorobenzene) residues have declined since the middle 1980s at Lambton Generating
Station (the 1985 levels were 60 ± 13 ng/g; those in 1994 were 3 ± 1 ng/g). HCB did not exceed
1 ng/g in Lake St. Clair or the Detroit River in 1993 or 1994.

OCS (octachlorostyrene) was generally confined to the St. Clair River, Lake St. Clair, and the
Detroit River. Levels have declined since the middle 1980s at Lambton Generating Station
(having once been as high as 104 ng/g), but still persist in 1994 (15 ± 2 ng/g). OCS residues in
juvenile fish declined downstream (less than 5 ng/g) to the mouth of the Detroit River (where
none were detected).

Chemical industry activities in Sarnia were identified in the mid 1980's as the source of HCB and
OCS releases (DOE/MOE 1986).  Process changes and abatement measures instituted by the
major contributor had actually been started in the 1970's.  These changes significantly reduced
releases. In 1994, the processes responsible for the production of most of these byproduct
chemicals were permenently shut down.  As a result, the releases from this source ended.
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Figure 20  Forage Fish Contamination Index (FFCI) for young-of-the-year spottail shiners in the Great
Lakes in 1993 or 1994, with relative contributions from PCBs and DDT.
Wildlife Risk Level =1.
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Elevated concentrations of trichlorobenzene (89 ± 49 ng/g), tetrachlorobenzene (681 ± 338 ng/g),
pentachlorobenzene (232 ± 95 ng/g), hexachlorobenzene (34 ± 6 ng/g), and BHC (51 ± 28 ng/g)
were found in sand shiners just downstream of 102nd Street in the Niagara River. Although sand
shiners may not be directly comparable to spottail shiners (for which comparable data are
unavailable), these results indicate that leachate from several chemical disposal sites in the area,
and contaminated river sediments near 102nd Street, may still be influencing contaminant levels in
juvenile fish downstream.

Mirex was present only at the mouth of the Welland Canal (5 ± 3 ng/g).

Raw, log-transformed, and lipid-normalized contaminant values were used for temporal trend
analysis. Since results were similar, only raw wet-weight–based values are shown graphically. 

Temporal trends of PCBs are illustrated in Figure 21. Values are means with ± 95 percent
confidence limits. Lines indicate significant correlations with time (p < 0.05). Total PCB
concentrations in spottail shiners were negatively correlated with time at 12 of the 16 long-term
sampling sites. Trend data indicate that PCB availability in the nearshore waters of the Great
Lakes continues to decrease at most sites where contaminant inputs are low. Further containment
of watershed inputs and point-sources of PCBs are required to reduce contaminant levels to
acceptable levels at all sites.

7.2  Fish and Wildlife

7.2.1  Zooplankton 

Zooplankton are the secondary producers of the aquatic food chain. They filter and eat the algae;
their growth provides energy and nutrients in a form usable by fish. Populations of zooplankton
cycle up and down seasonally in response to temperature and food availability as well as to
predation by fish. The degree of predation can be related to fish stocking: predatory fish consume
the smaller fish, which feed on zooplankton. Some introduced fish species, such as alewives, are
subject to population variations due to temperature fluctuations; these variations may be reflected
in zooplankton numbers. Zooplankton studies are difficult, because sampling must be frequent and
identification and taxonomy are tedious and demanding specialties.

Studies in Lake Erie since the late 1920s have shown that  zooplankton increase with
eutrophication and then decline as nutrient pollution is controlled. Most studies have been
conducted in the west basin. Two additional exotic species were noticed in the 1960s. In the
1980s, the spiny water flea Bythotrephes appeared; this is cause for concern.

Bythotrephes is more abundant in the offshore than in the nearshore, probably due to temperature
preference or perhaps predation by alewife and gizzard shad. When alewife abundances are
particularly low in Lake Ontario—as has been true in 1987, 1994, and 1995 (O. Johannsson,
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Department of Fisheries and Oceans Canada, personal communication)—Bythotrephes is able to
increase its numbers. Bythotrephes eats other zooplankton and therefore competes directly against
young-of-the-year fish. Preliminary studies indicate that between 10 percent and 40 percent of
zooplankton production can be consumed by Bythotrephes. Bythotrephes is not a preferred prey
for many fish. Thus, this new addition to
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the fauna is at best an extra trophic level between algae and fish; this means more inefficiency on
energy transfer. At worst, Bythotrephes is an energy sink from the standpoint of fish production.

Zebra mussels seem to have affected zooplankton. The mussels, which spend most of their life
attached to the lake bottom, divert energy to the benthic system and away from the plankton
system that many fish have depended on. The mussels’ immature planktonic stages can at times be
as abundant as native zooplankton once were. Zooplankton abundance has decreased in Lake
Erie’s east basin, where there is the most extensive shallow-water substrate for zebra mussels.
Changes in the biomass of zooplankton in the lake’s west and central basins are less clear.

To some extent, the challenges to the zooplankton community seen in the lower lakes are present
in all the lakes. In the last 13 years, the introduced species have changed the trophic relations in
the lakes. Expectations of fish yield based on previous trophic structure may therefore not be
realized.

7.2.2  Benthic Invertebrates

The benthic habitats in Great Lakes nearshore waters are complex and diverse. These habitats
include bays, harbours, shallow basins, connecting channels, tributary mouths, and coastal
wetlands. Benthic invertebrate communities in these habitats are often highly variable, diverse, and
patchy by nature. Yet for similar substrates and water depths, assemblages can also be remarkably
consistent between habitats, making recognizable patterns in community structure. Thus, if the
historical changes in benthic community structure relative to anthropogenic stresses and if the
tolerances of individual species to those stresses are known, an assessment of the present status of
the nearshore benthic community can provide a consistent, precise indicator of environmental
quality in the nearshore region.

Extensive surveys and subsequent assessments of benthic invertebrate communities within the
nearshore zone of the Great Lakes have been rather limited over the past several decades. Most
recent surveys that have compared past and present communities, however, have shown that
dramatic changes in community structure have occurred over broad areas in the nearshore zone.
These changes have been attributed to changes in water quality and in sediment quality resulting
from nutrient and other pollution abatement programs, and to ecological changes induced by the
zebra mussel.

Studies of benthic communities in Lake Erie, the Bay of Quinte, and the Detroit and St. Clair
Rivers conducted in the early 1980s (before the establishment of the zebra mussel) found changes
in community structure consistent with improved water quality when compared to communities in
the 1960s. One index often used to assess the relative health of the benthic community is the
abundance and composition of oligochaete worms. Oligochaete abundances vary directly with the
degree of organic enrichment. In areas of western Lake Erie nearest major river mouths, and in
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the Bay of Quinte, a significant decline in oligochaete numbers suggests that a decline in organic
enrichment occurred over the period (Johnson and McNeil 1986; Schloesser et al. 1995). Also,
declines in numbers were accompanied by shifts in species composition: species that tolerate
polluted conditions gave way to species that are more pollution-sensitive. In areas farther offshore
in the western basin, however, changes in community structure were not as readily discerned,
indicating perhaps that the community was in the state of transition in the early 1980s. Another
recent study in the nearshore waters of Lake Erie similarly indicated improved conditions (Kreiger
and Ross 1993). Near Cleveland Harbor, there was an increase in number of taxa, a reduction in
the proportion of oligochaetes, and widespread distribution of pollution-sensitive forms not
observed the 1970s. In the Detroit and St. Clair Rivers, pollution-sensitive species other than
oligochaetes (e.g., mayflies and caddisflies) increased over a two-decade period, with most of the
changes occurring along the Canadian shoreline (Davis et al. 1991; Thornley 1985).

The increase in abundance and distribution of the burrowing mayfly provides dramatic evidence of
improved conditions in Lake Erie western basin. This organism was historically abundant in the
western basin, but a gradual increase in productivity of the basin over time, along with a period of
calm weather in the middle 1950s, resulted in a severe decline in oxygen concentrations that
virtually eliminated the population. A small increase in the population was noted near the mouth
of the Detroit River in 1980 (Thornley 1985), but it was not until 1991 that the population
increased to any extent. By 1995, burrowing mayflies were found throughout the western half of
the basin and in much of the eastern half (Kreiger et al. 1996). Not all studies that examined
changes in the benthic community between the 1960s and 1980s indicated improved conditions in
the nearshore zone. In the southern end of Lake Michigan, oligochaete abundances actually
increased twofold over the period (Nalepa 1987). However, the increase in abundance was not
accompanied by the usual shift from pollution-sensitive species to pollution-tolerant ones,
indicating perhaps that only mild enrichment occurred. Also, studies have shown that a severely
degraded community is evident in many local harbours and bays, including the U.S. side of the
Detroit River (Day et al. 1995; Rosiu et al. 1989). Other studies of the burrowing mayfly in the
upper Great Lakes connecting channels (the St. Marys, St. Clair, and Detroit Rivers and Lake St.
Clair) in 1985–86 revealed areas of exceptionally high abundance and production in clean habitats
and other areas of low production where burrowing mayfly populations had apparently been
stressed or extirpated by contamination of the lake-bed and river-bed sediments with oil, grease,
and heavy metals (Edsall et al. 1991; Schloesser et al. 1991). In other areas, historical records of
the benthic community exist, but recent information is not available with which to assess
community status. Important areas that need to be reassessed are Green Bay, the St. Marys River,
and Lake Ontario’s southern shoreline, particularly near the Niagara River mouth.

MOEE sampled Lake Ontario to compare benthos populations between 1981 and 1991. In 1981,
benthic invertebrates were collected from 25 areas along Lake Ontario’s north shore. The
collections were used to make biologically based inferences about environmental conditions and
to examine the relationships between natural environmental factors and the composition of benthic
invertebrate communities. Benthic communities described at the time suggested that areas near
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the mouths of the Niagara and Humber Rivers, along with areas at the lake’s far eastern part (near
Prince Edward Point), were eutrophic (Barton 1986). In the lake’s central and northeastern parts
(from eastern Scarborough to Ostrander Point), the results suggested that the effects of exposure
and upwelling caused low standing stocks of chironomids and other insects. The majority of
stations were located in areas away from major point-sources of pollutants and outside of
locations known to be heavily affected by anthropogenic activity. The stations, on the whole,
represented background conditions along the nearshore of Lake Ontario’s Canadian shoreline.

Since the early 1980s, there have been improvements in a variety of aspects of Lake Ontario's
water quality (e.g., De Vault et al. 1994; Neilson et al. 1995). In 1991, parts of the 1981 survey
of benthic invertebrates were duplicated to determine whether changes in benthic invertebrate
communities suggested improvement in water quality over the 10-year period. The 1981 survey
included sampling at multiple depths (2 m, 5 m, 10 m, and 20 m) over the prevailing types of lake
bottom. The 1981 data suggested that most of the substrate and depth-related variation in
composition could be represented by results from the 5-m and 20-m depths alone. The original 5-
m and 20-m stations were revisited in the late summer of 1991.

The differences in the composition of benthic invertebrates observed between 1981 and 1991
suggested that changes in water quality had occurred. Changes were more obvious from the 5-m
communities than from the 20-m communities. At 5 m, changes suggestive of improvements in
water quality were generally widespread and demonstrated by increases in taxonomic richness and
by increased numbers of insects (Ephemeroptera, Chironomidae) and gastropods. At 20 m,
communities along the lake's north shore exhibited changes that also suggested improvements in
water quality, with increased numbers of lumbriculid worms, gastropods, and sphaeriid clams.
Along the Niagara–Hamilton corridor, a reduction in the numbers of chironomids at 20 m was
observed. There was no obvious explanation for the change. Because of subtle differences in the
methods and timing of surveys between 1981 and 1991, however, interpreting the results is
subject to a degree of uncertainty.

Of those habitat factors studied, depth had the most obvious effects on community structure. In
general, 5-m communities were characterized by epibenthic fauna such as gastropods and insects
(chironomids, Ephemeroptera, Trichoptera). In contrast, 20-m communities were characterized by
infaunal groups such as sphaeriid clams and oligochaete worms. During 1981, the 5-m community
was more similar to the 20-m community because of a higher proportion of worms, which was
attributed to the more nutrient-enriched conditions at that time. In 1991, after improvements in
water quality, gastropods and insects were more abundant at 5 m.

As of 1991, the presence of zebra mussels at 5 m between Niagara and Hamilton did not appear
to cause changes in community composition at the level of major taxonomic groups. But there
was some suggestion that the abundance of several gastropod species was related to the presence
of zebra mussels. Density of zebra mussels in Lake Ontario’s western end during 1991 varied
from 611 per m  at Bronte to more than 24,000 per m  at Niagara-on-the-Lake. Based on2 2
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knowledge of growth rates, samples indicated that zebra mussels entered and settled along the
shoreline between Stoney Creek and Oakville in the fall of 1990, and between Niagara-on-the-
Lake and Beamsville during the spring of 1991. Quagga mussels (Dreissena bugensis) were found
between Niagara-on-the-Lake and Beamsville, and at Oakville. The presence of large mussels at
Beamsville suggested that settlement occurred sometime in 1990.

In the late 1980s and early 1990s, the zebra mussel became widespread and abundant in almost all
nearshore regions in the Great Lakes except those in Lake Superior, particularly in areas with
hard substrates. Because of their filter-feeding activities and because they occur in dense clumps,
zebra mussels have generally benefited most benthic taxa. Material filtered from the water and
biodeposited on the bottom as waste is used as food by many other benthic forms. Zebra mussel
clumps also increase substrate complexity and structure. In nearshore regions with hard substrates
in both Lakes Erie and Ontario, the abundance of all benthic taxa increased, and more taxa were
collected after zebra mussels became established (Dermott et al. 1993; Stewart and Haynes 1994).
In Lake St. Clair, the benthic community in the portion of the lake with an established zebra
mussel population changed to a community more indicative of improved water quality; that is,
pollution-sensitive forms became more abundant after the zebra mussel became established
(Griffiths 1993). The implications of these zebra mussel–induced changes in the nearshore zone
are clear: we can no longer assume that changes in the abundance and diversity of the benthic
invertebrate community are directly related to human-induced changes in water quality. This is
true not only for areas with high zebra mussel abundances, but also for areas without high
abundances that are located in well-mixed, partially confined regions in close proximity to zebra
mussel–infested areas. For example, in Saginaw Bay, zebra mussels are abundant on hard
substrates but not on soft substrates. Yet the number of oligochaetes in soft-substrate areas have
declined dramatically since the zebra mussel became established (T. Nalepa, NOAA, Michigan,
personal communication). Although the zebra mussel has had a mostly positive impact on benthic
community diversity in the nearshore zone, one native taxonomic group, the Unionidae (large
freshwater clams), has declined substantially and has been virtually extirpated from large regions.
The Lake St. Clair–western Lake Erie corridor once had the richest and most diverse assemblages
of unionids in North America (Goodrich and van der Schalie 1932). The relatively shallow depth
and high flushing rate (river–lake habitat) in this region provided conditions that were highly
favourable to unionid populations. Within 6 years after the discovery of the zebra mussel in this
region, unionid populations in the region declined to almost zero (Nalepa 1994; Schloesser and
Nalepa 1994). The population in western Lake Erie had been steadily declining before the zebra
mussel became established, but the population in Lake St. Clair had remained virtually unchanged
since the turn of the century. While the unionid population declined, the zebra mussel population
continued to expand. Biodiversity has declined sharply as the functional community has basically
shifted from a stable, slow-growing, multispecies unionid community with minor influence on the
ecosystem to a single-taxon population of zebra mussels with a relatively high turnover rate that
strongly affects ecosystem dynamics.
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There is considerable variability in the status of zebra mussel populations in the Great Lakes, and
predicting the future of zebra mussel populations is difficult. In some areas, particularly eastern
Lake Erie, zebra mussel populations have declined dramatically in recent years, perhaps due to a
reduced food supply (S.J. Nichols, NBS–Great Lakes Science Center, personal communication).
In other areas where food supplies have not been depleted, populations either have remained
stable or are increasing. Areas with stable or increasing populations of zebra mussels include those
near river mouths in Thunder Bay on Lake Huron (D. Reid, GLERL, NOAA, unpublished data),
and near the mouth of the Raisin River in western Lake Erie (W. Kovalak, Detroit Edison
Company, unpublished data). The discovery in Lake Erie of the quagga mussel, a second species
closely related to and resembling the zebra mussel, further complicates monitoring and predicting
this exotic group’s future status of in the Great Lakes.

In summary, benthic community structure has generally improved over broad areas in the
nearshore zone within the past few decades. Diversity has increased, and forms considered to be
pollution-sensitive have become more dominant. Degraded communities are still evident,
however, in many local harbours and bays. Broad changes in communities reflect an improved
trophic status resulting from anthropogenic abatement programs that were in place before the
establishment of the zebra mussel. Large numbers of zebra mussels now present in the nearshore
zone have also brought about broad changes in benthic community structure. Many of these
changes resemble those resulting from abatement programs. The challenge for the future is to
interpret benthic community changes relative to the appropriate causative agent.

7.2.2.1  Nearshore Benthic Communities of the Great Lakes

From 1991 to 1993, reference nearshore locations were visited in the Great Lakes to establish a
reference database describing natural invertebrate community assemblages. The primary purpose
of this database was to establish benthic invertebrate community targets for fine-grained sediment
for the nearshore. Such targets are proposed as an objective method for assessing degraded
conditions—specifically, impairment of benthic communities.

As far as possible, sites were evenly stratified throughout the lakes based on ecodistricts (24). A
total of 345 sites were visited. The actual number of sites per lake was as follows:

Ontario Erie St Clair Huron Georgian North Michigan Superior
Bay Channel

30 47 1 17 71 44 38 36

The database comprises site location information, invertebrate community structure data (162
species or genera from 40 families), sediment chemistry data (30 variables) and water chemistry
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data (4 variables). A subset of sites were visited annually for two years (17 sites) or three years (a
further 17 sites), and four sites were visited monthly for two years. The total number of site visits
was 429. Based on the biological data, 252 sites are initially considered as acceptable reference
sites, each representing an area in the lakes that is relatively unaffected by pollution.

To describe natural community assemblages, the matrix of 252 sites and 162 taxa was classified
using mathematical techniques into six distinguishable community types. Of the 162 taxa, 12 are
significantly correlated with the structure observed in the data (Table 9).

Table 9. Mean Number (s.d.) per 35 cm  of 12 Taxa in Great Lakes Community2

Assemblages

Taxa Comm. Comm. 2 Comm. Comm. 4 Comm. 5 Comm. 6
1 3

Chironomus spp. 5.7 (5.8) (3.1) (1.3) (1.8) 0.0 (0.4)

Heterotrissocladius 0.2 (1.1) 0.8 (2.5) 0.0 (0.7) (1.7) (1.8)
spp.

Procladius spp. (1.9) (2.3) (2.7) (1.4) (0.3) (0.6)

Diaporeia hoyi 0.0 (6.2) (0.9) 0.0 (41.8) (5.1)

Amnicola limosa (0.3) (1.2) 0.0 (0.7) 0.0 0.0

Valvata tricarinata (0.4) 0.7 (1.9) (0.2) (2.0) 0.0 0.0

Dreissenia (7.7) (1.0) (0.6) (78.1) 0.0 (0.7)
polymorpha

Dreissenia bugensis (7.2) 0.0 0.0 (181.2) 0.0 0.0

Pisisdium casertanum (2.8) (8.7) (1.8) (0.8) (8.4) (1.1)

Stylodrilus 0.0 (1.8) 0.0 0.0 (8.9) (3.8)
heringianus

Aulodrilus pigueti (0.7) 0.2 (0.6) (0.7) (0.4) 0.0 0.0

Helobdella stagnalis 0.2 (0.3) 0.0 0.0 0.3 (0.3) 0.0 0.0

Communities 1 and 4 largely represent sites in Lake Erie. Community 1 is characterized by
chironomid midges, primarily Chironomus, and by the presence of Dreissenia. Community 4,
which is represented by only nine Lake Erie sites, is dominated by zebra mussels (Dreissenia
spp.). 

Communities 2 and 3 are characterized by the sphaerid (fingernail) clam Pisidium; in Community
2, it is associated with the amphipod Diaporeia hoyi, and in Community 3 with the predatory
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midge Procladius. Communities 2 and 3 include the majority of Georgian Bay sites, together with
sites from the North Channel, Lake Ontario, and Lake Erie. Communities 5 and 6 are both
Diaporeia hoyi and Stylodrilus heringianus dominated. The primary difference between the two
is quantitative: much larger numbers are found in Community 5 (which characterizes Lake
Michigan) than in Community 6 (largely represents Lake Superior sites). These data show a
strong spatial signal in the occurrence of communities at a large scale; however, each community
occurs in a number of the lakes (Table 10), and there is no certainty of determining the
assemblage of organisms expected at a site based on the lake. The overall correlation of habitat
variables with community structure showed the following variables to relate to community
structure: depth, latitude, longitude, alkalinity (overlying water), calcium oxide (sediment), total
nitrogen (sediment), and total organic carbon (sediment). From these relationships, it is possible
to develop models to predict the community expected at a site based on the site’s environmental
attributes.

Table 10. Occurrence of Six Community Types among 252 Great Lakes Reference Sites,
and Number of Sites Representing Each Community

Lake Communit Communit Communit Communit Communit Communit
y 1 y 2 y 3 y 4 y 5 y 6

Erie 17 3 11 9 1 0

Ontario 7 6 9 0 2 4

St Clair 1 0 0 0 0 0

Huron 2 4 1 0 6 4

Georgian 0 11 32 0 0 18
Bay

North 2 8 11 0 1 14
Channel

Michigan 0 7 0 0 22 8

Superior 0 0 0 0 2 29

To use these data to establish impairment, it is necessary to know what type of community would
be expected to occur at any site. This expected community type, based on the reference sites, can
then be compared with the actual species occurring at a site to establish whether the predicted
group of organisms is actually present. Because it is important to know what organisms would
occur at a site if it were unaffected, it is necessary to use only certain environmental
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variables—those that would not be modified by anthropogenic activity. Accordingly, although
they were measured at each site, we have not included nutrients, metals, or organic contaminants
as potential predictors. A total of 26 variables have been examined for their ability to predict
community assemblages, including major elements, particle size and organic content of the
sediment, water depth and alkalinity, and site location (latitude and longitude).

Stepwise discriminant analysis shows that 11 variables can discriminate sites between the six
community types with an error rate of 32.4 percent, predicting 162 of the 252 sites correctly. To
verify this predictive model, 20 sites were removed from the reference data set; the model was
then rebuilt using the 232 remaining sites. Using the 11 predictor variables identified by
discriminant analysis, 16 of the 20 sites (80 percent) were correctly predicted (Table 11).

Table 11. Accuracy of Predicting Community Types at 20 Sites

Site Predicted to
membershi
p Comm. Comm. 2 Comm. 3 Comm. 4 Comm. 5 Comm. 6

1

Comm 1 2 0 0 0 0 0

Comm 2 0 3 0 0 0 0

Comm 3 1 2 3 0 0 0

Comm 4 0 0 0 1 0 0

Comm 5 0 0 0 0 3 0

Comm 6 0 0 0 1 1 4

7.2.3  Fish

The native fish fauna of the Great Lakes basin comprise 153 species—in 64 genera and 25
families—and is relatively large and diverse (Bailey and Smith 1981). Status and trend information
are available for a number of fishes commonly found in the Great Lakes. The longest set of
records is for fish species that were of commercial value and that entered the commercial catch.
The commercial fishery in the Great Lakes dates back to the 1700s in some areas; regular
reporting of the fishery began in 1867 in Canada and in 1879 in the United States (Baldwin et al.
1979). Because the records do not report the amount of fishing effort expended to catch the fish,
or the amounts of some fish species that were caught but not brought to land for sale, they must
be interpreted carefully. The records for the high-value, intensively fished species such as lake
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whitefish probably do reflect the trends in abundance, whereas records for low-value species such
as freshwater drum do not. Freshwater drum were often taken incidentally in large numbers in
nets set for other high-value species such as yellow perch and walleye. The market price for
freshwater drum and the size of the catch of high-value species made by the individual fisherman
on any given day probably determined how many freshwater drum were brought ashore for sale
and how many were simply dumped back into the lake. Thus, the records for freshwater drum and
other low-value species are generally not good indicators of trends in abundance. However, if the
catch data are interpreted carefully, the history of the early commercial fishery in the Great Lakes
can be seen to be one of intensive, selective fishing that eventually caused stocks of high-value
species to decline and in some cases to become extinct. A more detailed discussion of the use of
commercial catch data to examine the dynamics of commercially harvested Great Lakes fish is
available elsewhere (USFWS 1995b).

Catch records for the lake sturgeon, blue pike, and walleye that inhabited the nearshore waters
illustrate the effects of overfishing on coolwater species. The lake sturgeon, which does not
reproduce until it is about 25 years old, was one of the first species to approach extinction in the
Great Lakes. Annual catches in Lake Erie’s U.S. waters fell from an all-time high of 2.1 million kg
in 1885 to about 13,000 kg in 1917. Thereafter, reported catches never exceeded 10,000 kg, and
after 1966 the catch fell to zero. Early in the fishery, the lake sturgeon was considered a nuisance
species: it destroyed nets set for other smaller fish. Later, as markets developed, it became a
sought-after species. The construction of dams that denied the lake sturgeon access to its
spawning grounds in Great Lakes tributaries also helped accelerate its decline. The blue pike, a
high-value species that reproduced at about age 4, became extinct because of overfishing. Annual
catches as high as 9 million kg were made in the middle 1930s in Lake Erie’s U.S. waters, but by
the early 1960s the species had been fished to extinction. The walleye, a closely related species,
was also severely overfished in Lake Erie. Catches declined from highs of about 2.3 million kg to
2.8 million kg annually in the late 1940s through the late 1950s, and to about 25,000 kg in 1971.
Commercial fishing interests generally attributed the decline to deteriorated environmental
conditions. However, closure of the fishery due to mercury contamination in the early 1970s
followed by the imposition of more stringent catch regulations allowed walleye numbers to rapidly
increase; now, the species again supports a healthy, self-sustaining, high-value fishery.

High-value coldwater fishes that use the nearshore waters during the colder months of the year
declined to virtual extinction in all or some of the Great Lakes; these species include the lake
trout, lake whitefish, and lake herring. Native populations of lake trout were nearly extinguished
in the Great Lakes as a combined result of overfishing and predation by the introduced sea
lamprey. The native lake trout populations in Lakes Michigan, Erie, and Ontario were lost; only a
small population survived in a remote area of Lake Huron’s Georgian Bay. In Lake Superior, the
nearshore populations of native fish were sharply reduced by the late 1950s, when commercial
fishing ended and the sea lamprey was controlled. Lake whitefish populations reached record lows
in the 1950 and 1960s in Lake Huron, and in the 1950s in Lake Michigan, but have since
recovered. In Lake Erie, for example, the U.S. catch fell gradually from a high of 17.8 million kg
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in the late 1800s to zero in the early 1960s, but a recovery may have begun in the late 1980s.
Catches also fell to record lows in Lake Superior in the 1970s. These declines in the lake herring
populations have been attributed to overfishing and to predation on young lake herring by
rainbow smelt.

Overfishing has also contributed to a loss in the genetic diversity of the native fish fauna of the
Great Lakes. This shift includes the loss associated with the extinction of several native species,
including the blue pike and some deepwater ciscoes (whitefishes), as well as the loss of genetic
diversity resulting from the extirpation of local stocks of native fishes by overfishing, together
with habitat loss and the introduction of exotic species. Although the loss due to species
extinctions is relatively obvious and unequivocal, the loss due to the extirpation of local stocks is
less so. Perhaps the best examples can be seen among the whitefishes and lake trout, which were
major elements of the native coldwater fish fauna of the Great Lakes.

At the time of European settlement, whitefishes were abundant and ecologically important as food
for lake trout and burbot and as human food. As many as 40 species and subspecies of ciscoes
(whitefishes most closely related to the lake herring) were identified by biologists working in the
basin. Most of the group probably evolved locally, because there are no records for any of them,
other than the lake herring, from outside the basin. Bailey and Smith (1981) present evidence that
the reproductive isolation (absence of interbreeding) that had developed among these species and
subspecies over a 10,000-year period was unstable and that it broke down as populations were
reduced by commercial fishing and predation by the sea lamprey. Interbreeding among the
survivors then caused their offspring to become more alike genetically. Today the ciscoes are
represented only by the lake herring and by one to three other closely related species or
subspecies that are extinct, are approaching extinction, or are simply merging their genetic
identities by interbreeding.

Differences were historically recognized among stocks of native lake trout by aboriginal people,
explorers, and missionaries, and later by naturalists and biologists (Krueger and Ihssen 1995); the
evolution of subspecies was postulated for lake trout in the Finger Lakes in the Lake Ontario
drainage of New York State (Royce 1951) and in the Great Lakes proper (Brown et al. 1981; 
Goodier 1981; Goodyear et al. 1982). Most of the native stocks recognized historically in Lake
Superior and all of those in the four lower Great Lakes, except for two small relict native stocks
in Lake Huron, were lost before they could be examined for genetic differences. However, genetic
differences have been demonstrated among the native lean, humper, and siscowet lake trout
groups that survive in Lake Superior (Krueger and Ihssen 1995);  similar differences must have
occurred in the other Great Lakes, where lake trout occupied a diversity of habitats.

The loss of native genetic diversity affects the status of the Great Lakes ecosystem irreversibly.
Left unoccupied were habitats, particularly those in deep water, that were occupied productively
by native species and stocks that had become adapted to them following the retreat of the glaciers
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from the basin about 10,000 years ago. Other vacated habitats in shallower water were left open
to invasion by undesirable exotic species that had gained access to the basin as a result of human
activities. The full and productive use of the diverse array of habitats in the Great Lakes nearshore
waters requires that the genetic diversity of the remaining native species be protected by actions
taken to perpetuate all recognized stocks of these species.

Contemporary information on the status and trends of Great Lakes fish populations is now
compiled annually for each of the lakes by committees that comprise biologists and managers
from the Great Lakes states, the province of Ontario, Canada’s Department of Fisheries and
Oceans, the National Biological Service, and the Indian tribes that have treaty fishing rights.
These reports reveal the following major trends.

In Lake Superior, the lake trout fishery is currently maintained by stocking and by natural
reproduction from wild fish (Hansen 1994). Introduced species of trout and salmon support a
stable fishery, whereas brook trout and lake sturgeon populations have not recovered from earlier
declines and are still at low levels. Lake herring numbers are recovering strongly, and rainbow
smelt are reduced from earlier levels of peak abundance. Lake whitefish are abundant and support
a productive fishery. The sea lamprey is reduced to about 10 percent of its former peak
abundance, and the ruffe is increasing in abundance.

In Lake Huron, the fish community is recovering, but remains unstable after decades of
overharvest and the effects of introduced species (Ebener et al. 1995). Modest numbers of
stocked lake trout are once again reproducing in the lake, and populations of whitefish are more
abundant than at any other time in the century. Walleye and yellow perch are once again
abundant. Rainbow smelt and alewife populations are stable but have been reduced compared to
former peak levels in the 1970s. In the 1980s, the sea lamprey increased in abundance in the
northern end of the lake, imposing high mortality on lake trout and reversing recent gains in lake
trout restoration in that area. 

In Lake Michigan, substantial numbers of stocked, breeding-age lake trout are present in lake
trout refuges at several locations throughout the lake (Holey et al. 1995). Spawning and fry
production by stocked fish have been recorded at several locations in the lake; wild yearling and
older lake trout have also been found in the lake, but substantial numbers of adult wild fish have
not been produced. Pacific salmon abundance is sharply reduced compared to the peak levels
reached in the 1970s to the middle 1980s. The causes for that decline are complex and not fully
understood. Mortality of coho salmon fry soon after hatching has been observed. This mortality
can be alleviated by treatment with vitamin B , suggesting that there is a vitamin B  deficiency in1 1

the female parent that causes mortality in the fry. Mortality of adult Pacific salmon in the lake is
correlated with an incidence of bacterial kidney disease, a pathogen that has been introduced to
the Lake Michigan basin. A linkage between the pathogen’s virulence and the salmon’s nutritional
status is being investigated. The biomass (a measure of abundance expressed as weight) of each of
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the three major prey fishes in Lake Michigan has changed significantly since the early 1970s
(National Biological Service, unpublished data). Alewives constituted more than 80 percent of the
biomass in catches in the 1970s but declined to about 10 percent in the middle 1980s through the
1990s. The biomass of rainbow smelt decreased from between 15 percent and 20 percent in the
1970s and early 1980s to less than 10 percent in the middle 1980s and 1990s. Slimy sculpin
abundance peaked in the late 1970s, but declined in the 1980s and 1990s to less than 20 percent
of peak 1970s levels, probably in response to predation by trout, salmon, and burbot.

In Lake Erie, lake trout restoration goals are being met, and lake whitefish are showing signs of a
recovery (GLFC 1995a). Walleye and yellow perch are intensively managed to provide productive
recreational and commercial fisheries in the United States and Canada (GLFC 1995b). The
abundance of the major forage fish species in Lake Erie—rainbow smelt, spottail shiners, emerald
shiners, gizzard shad, and alewives—may be declining.

In Lake Ontario, the fish community has improved considerably from a low point in the 1960s
(Kerr and LeTendre 1991; OMNR and NYSDEC 1994). Alewife and rainbow smelt abundance
declined in the 1980s in response to (a) trout and salmon predation and (b) reduced nutrient input
to the lake; in the 1990s, stocking of trout and salmon was reduced to bring them into better
balance with their food supply. Some native fishes are recovering from low levels observed in the
1960s. For example, lake whitefish, which typically were most abundant in the eastern end of the
lake, were nearly absent there in the catch in the 1970s, began increasing in 1980s, and were 30-
to 40-fold more abundant there in the 1990s.

Fish from Great Lakes nearshore waters in areas where the sediment is contaminated sometimes
exhibit tumours (Baumann et al. 1996). These tumours fall into two general classes: benign (or
harmless) and malignant (or cancerous). It is generally believed that tumour production may be a
response to degraded habitat. Tumour outbreaks in the Great Lakes have been found in
populations of benthic species, including brown bullhead, white sucker, common carp, bowfin,
and freshwater drum. Common carp—and particularly common carp × goldfish
hybrids—primarily exhibit gonadal tumours; freshwater drum primarily have neural
(chromatophore) tumours that are externally visible. Bowfin liver neoplasms (newly formed
tumours that may or may not become cancerous and that are not readily seen as a lump or bump)
have been documented in fish taken from the Detroit River. White sucker and brown bullhead
both exhibit skin and liver neoplasms. These species have been more studied than the others in the
Great Lakes. The white sucker has been used as an indicator organism for a series of contaminant
studies in Canada. Similarly, the brown bullhead has been used as an indicator organism for a
variety of studies in the United States. Many of the locations in which tumour outbreaks in these
species were documented have subsequently been designated as Areas of Concern by the
International Joint Commission.
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Epidermal (skin) papillomas (tumours that appear as raised lumps or bumps and will become
cancerous), particularly on the lips, are the most commonly observed neoplasm in white sucker.
Recent experimental work by Premdas and Metcalf (1996) has proven that papillomas can be
induced in white suckers by exposing them to a cell-free filtrate obtained from enlarging
papillomas. This result indicates that a virus is involved in producing these tumours. Widespread
surveys in Canada (Figure 22 and Table 12) revealed the presence of skin neoplasms in white
sucker populations throughout the Great Lakes. However, a high prevalence (more than 20
percent) of lip papillomas occurred only in populations from the lower Great Lakes, and an
especially high prevalence of oral papillomas was found only in such locations as Hamilton
Harbour and Oakville Creek, Ontario, where the sediment was polluted with industrial wastes.
Thus, epidermal papillomas may result from both virus and chemical carcinogens in the sediment.

Epidermal papillomas are also found on brown bullhead in a number of Great Lakes locations
(Figure 23 and Table 13). The greatest incidence of such tumours was in populations from
Hamilton Harbour and Presque Isle Bay, where frequencies exceeded 50 percent—more than
double the next highest values (Obert 1994; Smith et al. 1989). Populations in the Buffalo and
Black Rivers formed a second cluster, with papilloma prevalence of about 25 percent. The four
sites just mentioned are all locations with elevated levels of PAH in the sediment; all have also
been designated as Areas of Concern. Other Great Lakes locations surveyed had bullhead
populations with papilloma incidence ranging from 2 percent to 16 percent. These included a
mixture of contaminated sites (e.g., Ohio’s Ashtabula River, at 16 percent) and uncontaminated
sites (e.g., Ontario’s Long Point Bay, at 15 percent). The percentage of squamous carcinomas
(malignant skin cancers) was seldom determined; Presque Isle Bay, however, had an extremely
high prevalence of these, with fish from the Cuyahoga River and Hamilton Harbour also having
elevated frequencies. Though a virus may be involved in producing these cancers, no experimental
evidence supports such a conclusion at this time. Sediment carcinogens do seem to have a role in
producing these cancers.
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Table 12. Prevalence of Lip and Body Papillomas Reported in White Sucker Populations in
Ontario Waters of the Great Lakes and in Surrounding Areas

Location Collection N Neoplasms (%) Reference
Date

a

Hamilton Harbour 1972–75 — 30 1b

1981–83 168 39 2

1986 225 43 3

Oakville Ck. 1982-83 612 62 2b

1986 482 46 3

Bay of Quinte 1982–83 148 5 2b

Keefers Ck. 1986  81 11 3b, c

Whites Ck.., L. 1986  71 16 3b, c

Thunder Bay 1986 199 2.5 4

Jackfish Bay 1987 300 7.6 4

St. Marys River 1988 185 9.1 4

Black Bay 1986 232 3.4 4c

Mountain Bay 1987 304 3.6 4c

Batchawana Bay 1988 231 8.6 4c

Ganaraska River 1992–93 356 46 5b

Squaw River 1992–93 239 5 5b, c

Source: Adapted from Baumann et al. 1996.

 Key to References in Column 5: (1) Sonstegard et al. 1977; (2) Cairns and Fitzsimons 1988; (3)a

Smith et al. 1989a; (4) Smith, unpublished; (5) Premdas et al. 1995.

 Only data for lip papillomas are reported.b

 Reference site from a relatively pristine area.c
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Table 13. Prevalence of External Tumours Reported in Brown Bullhead Populations in U.S.
and Canadian Waters of the Great Lakes Basin

Location Collectio N Neoplasm Malignancie Reference
n Date s (%) s(%)

a

Ashtabula River, OH 1991  97 16.0 NA 1b

Black River, OH 1993 104 25.0 NA 2

Buffalo River, NY 1988 100 23.0 NA 2

Plum Creek, MI 1985  57 7.0 NA 2

Cuyahoga River, OH 1984  90 8.9 5.5 3

Menominee R., WI and MI 1984  47 2.1 NA 3

Fox River, WI 1984  52 7.7 1.9 3

Detroit River, MI 1985–87 449 10.0 NA 4

Hamilton Harbour, ON 1985 176 55.0 7.0 5

Presque Isle Bay, PA 1992 102 56.0 33.0 6

Long Point Bay, ON 1985  53 15.0 NA 5c

Munuscong Bay, MI 1984  63 3.2 NA 3c

Old Woman Ck., OH 1984–85 120 2.5 NA 2c

Source: Adapted from Baumann et al. 1996.

 Key to References in Column 5: (1) Mueller and Mac 1994; (2) Baumann, unpublished; (3)a

Baumann et al. 1991; (4) Maccubbin and Ersing 1991; (5) Smith et al. 1989a; (6) Obert 1994.

 “NA” means that brown bullheads from that site have not been analysed histologically forb

malignancies.

 Reference site in relatively pristine area.c

 

Though white suckers from 19 different locations in Canada were examined for liver tumours, no
population had an incidence as great as 10 percent (Table 14 and Figure 22). White suckers in five
of seven relatively pristine reference sites had a liver tumour prevalence of less than 0.5 percent.
However, white suckers from nine Areas of Concern sampled had an average prevalence of 5.3
percent. Lake Superior’s Batchawana Bay (Ontario) was the only relatively pristine reference
location where bullhead had a tumour prevalence (8.6 percent) that exceeded 3 percent; this high
prevalence may reflect the advanced age (up to 26 years) of the suckers that were examined from
the bay. A high incidence of liver tumours occurred among suckers older than age 15 (23 percent)
from this location. The cause of liver tumours in white sucker is probably associated with
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exposure to carcinogenic contaminants; tumour prevalence of 5 percent or greater should be
viewed as an indication of such exposure.
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Figure 22  Brown Bullhead Tumour Surveys

Figure 23  White Sucker Tumour Surveys
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Table 14. Prevalence of Combined Cholangiocytic (Bile-duct) and Hepatocytic (Liver-cell)
Liver Tumours Reported in White Sucker Populations at Remedial Action Plan (RAP)
Sites and Reference Sites in Canadian Waters of the Great Lakes, and from Sites in
Surrounding Areas

Location Collection N Neoplasms (%) Reference
Date

a

Hamilton Harbour 1982–83 168 1.2 1,2,4b

(Grindstone Ck.) 1985–90 119 5.8 3,4

Oakville Ck. 1982–83 612 7.4 1,2,4

1985–90 306 8.1 3,4

Spencer Ck. 1982–83 174 3.4 2,4b

Forty Mile Ck. 1982–83 133 0 2,4

Rouge River 1982–83 199 3.5 2,4

Humber River 1982–83 192 4.7 2,4b

Bay of Quinte 1982–83 148 0.7 1,2,4b

1985–90  91 0 4

Ganaraska River 1982–83 116 6.0 2,4b

Cornwall 1985–90 178 6.1 4b

South Bay 1982–83 228 0 1,2,4c

Lake Nipissing 1985–90 231 0.4 4c

Whites Ck. 1985–90  24 0 3,4c

Keefers Ck. 1985–90  37 0 3,4.c

Jackfish Bay 1985–90 194 7.1 4 b

Kaministiquia 1985–90 112 7.1 4b

St. Marys River 1985–90 184 9.2 4b

Black Bay 1985–90 231 0 4c

Mountain Bay 1985–90 75 2.4 4c

Batchawana Bay 1985–90 230 8.6 4c

Source: Adapted from Baumann et al. 1996.

 Key to References in Column 5: (1) Cairns and Fitzsimons 1988; (2) Canada 1991; (3) Hayes eta

al. 1990; (4) Smith et al. 1995.

 RAP site on Great Lakes.b

 Reference site from a relatively pristine area.c
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Brown bullhead collected from a series of locations with industrial contamination had liver
tumours (Table 15 and Figure 23). Bullhead from two relatively uncontaminated sites had a liver
tumour prevalence that was greater than 5 percent, though these populations had a greater
percentage of older fish(age 5 and up) than the industrial sites (Baumann et al. 1996). Bullhead
from the Cuyahoga and Detroit Rivers had tumour prevalence of between 8 percent and 10
percent, while those from the Buffalo River and Presque Isle Bay had about 20 percent. All four
of these river systems have elevated levels of polynuclear aromatic hydrocarbons (PAH) in at least
some portions of their sediment. In 1982, when a coking facility associated with a steel plant on
Ohio’s Black River was operational, the bullhead population had a liver cancer prevalence of 38.5
percent (Table 14). The coking facility closed in l983, and by l987 PAH concentrations in surficial
river sediment had declined to 0.4 percent of the concentration in 1980 (Baumann and
Harshbarger 1995). By 1987, the cancer frequency in the bullhead population had also
declined—to about one-fourth of that seen in l982. Areas of sediment most contaminated with
PAH were subsequently dredged from the river in 1990, and two years later the cancer incidence
in bullhead exceeded that in 1982 (Table 14). This Black River case history indicates that natural,
unassisted remediation can be effective in reducing the incidence of cancer in bullheads in some
systems; it also shows that dredging using traditional methodology can result in at least a
temporary increase in cancer incidence and degradation of the health of native species (Baumann
and Harshbarger 1995). Collectively, these data show that bullhead liver tumours track PAH
levels in natural systems, making them a good biomarker for exposure of benthic fish to
carcinogens in sediment.

Joint Canada–U.S. studies of benthic fishes in a gradient of polluted to pristine Great Lakes
locations using standardized methodology would greatly enhance our knowledge of the etiology
of tumours and their usefulness as indicators.

Table 15. Prevalences of Liver Tumours Reported in Brown Bullhead Populations in U.S.
and Canadian Waters of the Great Lakes Basin

Location Collection N Neoplasms Malignancies Reference
Date (%) (%)

a

Ashtabula River, OH 1991  97 6.2 3.1     1

Black River, OH 1982 124 60.0    38.5     2

1987  80 32.5 10.0     2

1992  97 58.0 48.0     3

Buffalo River, NY 1988 100 19.0 5.0     3

Cuyahoga River, OH 1984  85 9.4   NA     4b

Detroit River, MI 1985–87 306 8.8 NA     5

Hamilton Harbour, ON 1984 124 1.6 1.6     6

Presque Isle Bay, PA 1992 102 22.0 6.9     7

Old Woman Ck., OH 1992–93 125 5.6 3.2     3c
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Munuscong Bay, Mi 1984  63 5.9 2.9     4c

Source: Adapted from Baumann et al. 1996.

 Key to References in Column 5: (1) Mueller and Mac 1994; (2) Baumann and Harshbargera

1995; (3) Baumann, unpublished; (4) Baumann et al. 1991; (5) Maccubbin and Ersing 1991; (6)
Smith et al. 1989a; (7) Obert 1994.

 Conservative value based on a combination of gross observations and a limited histopathologicalb

survey.

 Reference site in relatively pristine area.c
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7.2.4  Birds

Nearshore waters are used periodically by a variety of waterfowl species from late summer until
migratory flights the following spring are complete. Groups of dabbling ducks begin to use areas
adjacent to coastal wetlands as resting and refuge sites in August and September. Sites with open
water in the winter can become important to wintering flocks of mallards as resting areas (Reed
1971).

Major use of nearshore waters for feeding and resting is done by five species of diving ducks
(lesser scaup, canvasback, redhead, ring-necked duck, and greater scaup, listed in order of
importance) and by six species of sea ducks (common goldeneye, bufflehead, oldsquaw, hooded
merganser, red-breasted merganser, and common merganser). Seeds, tubers, rootstocks, and
vegetative parts of submersed plants, benthic organisms, and fish are eaten in accordance with
availability and with each duck species’ food preferences. Diving ducks are most abundant group
of waterfowl: flocks of hundreds and even thousands of birds are associated with the 15 major
waterfowl habitat complexes in the Great Lakes that have been identified by Prince et al. (1992).

Documented responses of migrating ducks, especially lesser scaup, to abundant supplies of zebra
mussels are beginning to appear in the literature. If this trend continues, an increased use of
nearshore waters during the October–November and March–April periods can be expected.
Evaluation of the dynamics of waterfowl use of zebra mussels should be monitored. Diving ducks
(common goldeneye and common merganser) are often attracted for feeding and resting to
ice-free nearshore waters kept open by heated water discharges or by mechanical means in the
winter (Padding 1993). Each new ice-free area resulting from expanded human activity needs an
ecological evaluation in this context.

7.2.4.1  The Importance of the Nearshore Aquatic Zone for Wildlife on the Canadian
waters of the Great Lakes

The Canadian Nearshore Aquatic Zone (NAZ) does not provide a great variety of habitat to non-
fish wildlife species. Birds are the main wildlife species in this area, but amphibians and reptiles, as
well as selected species of mammals, do make heavy use of wetlands.

This section poses three questions to guide the reader through a consideration of the NAZ’s 
importance. Each question is discussed in the light of colonial waterbirds, aquatic raptors, and
waterfowl. All references to the Great Lakes in this section refer to the Canadian waters of the
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Great Lakes (unless otherwise stated); no attempt is made here to evaluate the NAZ’s importance
for wildlife in the U.S. waters of the Great Lakes.

Why Is the Nearshore Aquatic Zone So Important for Wildlife? What Are We Trying to
Protect beyond Wetlands?

Importance for nesting and feeding during the breeding season: In addition to wetlands, the
other habitat that is exceedingly important to wildlife in the NAZ is islands. Most of the islands in
the Great Lakes occur in the NAZ—i.e., in water that is less than 30 m deep. On the Canadian
Great Lakes, islands provide nesting habitat for more than 105 species of aquatic birds—including
colonially nesting gulls, terns, herons, cormorants, etc.; waterfowl; and aquatic raptors—as well
as several species of reptiles and amphibians.

The colonial waterbirds that breed on the Great Lakes include the following: ring-billed gulls,
herring gulls, great black-backed gulls, and little gulls (see Appendix A for Latin names); common
terns, caspian terns, black terns, and forster’s terns; double-crested cormorants; black-crowned
night-herons; great blue herons; and great egrets.

The first three gull species are generalists when it comes to nesting habitat. They will nest on
barren, rocky, grassy, or treed islands that are either close to shore (less than 100 m) or at much
greater distances offshore (12 km to 60 km). In Southern Ontario, they will also nest at mainland
sites where access is restricted—e.g., Toronto’s Tommy Thompson Park, Hamilton’s Eastport
facility, or Port Colborne’s Canada Furnace property. Common and caspian terns often nest in
association with herring and ring-billed gulls but usually in areas of specific microhabitat—e.g.,
places with gravel of a specific size, etc. Their breeding areas are therefore often unique to
specific sites. Great blue herons and great egrets require tall trees and often nest at the same site.
The night-herons nest at low elevations in mature trees or in shrubs and bushes of various species.
Cormorants nests in trees at mainland sites and in trees or on the ground on insular sites. Little
gulls, black terns, and forster’s terns are marsh or wetland nesters; they will nest in wetlands that
are located on islands. Of the above-mentioned species, great egrets, little gulls, black terns, and
forster’s terns are quite restricted in their nesting range on the Great Lakes: forster’s terns are
known to nest at only one site, and little gulls are not known to have nested since the late 1980s
or early 1990s.

A census in 1980 of all nesting sites of five predominant species of colonial waterbirds estimated
that more than 300,000 pairs of birds (600,000 individual birds) were nesting on the Canadian
Great Lakes at that time. Approximately 40 percent of these birds occurred on the lower Great
Lakes, where all islands are within the NAZ; most of the remaining birds occurred in Lake Huron
(where most, though not all, islands occur in the NAZ). Hence, the Nearshore Aquatic Zone—and
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particularly its islands—serves as home to nearly all the colonial waterbirds that occur on the
Great Lakes.

The waterfowl species that breed regularly on the Great Lakes and that would use the NAZ
include the following: mute swan; Canada goose; wood duck; green-winged teal; American black
duck; mallard; northern pintail; blue-winged teal; northern shoveller; gadwall; American wigeon;
canvasback; redhead; ring-necked duck; lesser scaup; goldeneye; hooded merganser, common
merganser, and red-breasted merganser; and ruddy duck. Common loons also breed on the Great
Lakes and are included here, but are not considered a waterfowl species.

The shoreline and NAZ of the Great Lakes are not great areas for breeding waterfowl. There are
no large concentrated breeding areas; water-level fluctuations may cause problems for breeding
waterfowl; and isolated pairs of most of the above species can be found on some islands or near
wetlands. Red-breasted mergansers breed on some, and maybe most, of the islands in the northern
lakes, and their total numbers may be considerable. Loons and diving ducks breed in specific and
well-known areas, but their overall populations are probably small.

Ospreys and bald eagles are the two aquatic raptors that breed on the Great Lakes. Historically,
both these species nested along the shoreline of the Great Lakes and on offshore islands. On Lake
Erie, only the eagle has recolonized the shoreline (mainland) sites. Neither species has returned to
nest on islands there, nor are any eagles or ospreys nesting on Lake Ontario, though suitable
habitat exists on both the mainland and the islands. In Lakes Huron and Superior, eagles are
making a slow recovery, primarily on island sites, while ospreys have responded very well to
artificial nesting platforms and other human-made structures. There are good numbers of ospreys
in Lake Huron’s Georgian Bay and in the St. Marys River.

Importance for feeding and resting during migrational staging: The migrational staging areas of
most colonial waterbirds on the Great Lakes are not very well known. Western Lake Erie is a known
area for common terns (Courtney and Blokpoel 1983) and cormorants (D.V. Weseloh, personal
observation) in autumn. Cormorants also gather on islands in eastern Lake Ontario at that time of year.
Long Point Bay, on Lake Erie’s north shore, may be an important staging area for little gulls: more
than 300 have been observed at one time there. The Long Point peninsula is certainly an important area
for summering immature gulls and may also be important for migrational staging. The Niagara River is
an important area for gulls from late autumn through the winter, when there are huge daily movements
up and down the river (D.V. Weseloh, personal observation), and may also be important for migrant
gulls. The St. Clair River (at Sarnia) is known to be a migrational route for several species of resident
and transient colonial waterbirds, but they do not appear to do any staging in the area. Except for this
information on specific sites, however, very little species-specific information is known on a Great
Lakes–wide basis. For example, nothing is known about staging areas for the other three species of
terns, for any herons, or for night-herons. There is virtually no information on staging during spring



82 SOLEC 96 - Nearshore Waters of the Great Lakes

migration for colonial nesters. Presumably, the Great Lakes are important areas for these birds as they
move north, waiting for those areas to “open up” (i.e., thaw).

The Great Lakes, particularly the NAZ, are an extremely important area for migrating and staging
waterfowl, especially the diving and sea ducks. In spring and autumn, sites such as Lake St. Clair,
Long Point (Lake Erie), Presqu’Ile Provincial Park (Lake Ontario), and Prince Edward County
and Wolfe Island (at Lake Ontario’s eastern end) are of international importance for tundra
swans, canvasbacks, redheads, greater scaups, lesser scaups, common goldeneyes, common
mergansers, and red-breasted mergansers. Use of the NAZ, which is greatest in the autumn, is
more concentrated in the spring because of the limited amount of open water that is available.
These sites, where ice thaws first and, presumably, food is first available, may be more critical or
limiting in the spring.

Raptors do not generally migrate over large or even moderately sized expanses of water; in fact,
they avoid them. Migration of raptors, including aquatic raptors, in Ontario is very structured so
that they can avoid travelling over open water. The main avenue of migration in the spring is
westward along the Niagara Escarpment between Lakes Erie and Ontario, and then northward. In
the autumn, raptors migrate southwestward along the north shores of Lakes Ontario and Erie,
crossing into the United States over the very narrow Detroit River. In the north, raptors move
westward along the north shore of Lake Superior, passing south at the lake’s west end, at Duluth,
Minnesota.

Importance for feeding while overwintering: Most species of colonial waterbirds are absent
from the Great Lakes during winter, having migrated in September and October. Adult herring
gulls remain in the Great Lakes: they do not migrate. Great black-backed gulls migrate into the
Great Lakes from the Atlantic; several species of Arctic nesting gulls migrate to the Great Lakes
in small numbers; most ring-billed gulls also migrate out of the Great Lakes. For those gulls that
occur on the Great Lakes in winter, the Niagara River is the major staging and congregating area.
Observations suggest that the large number of fish that go through the hydro turbines and then
back into the River and the abundant shallow water above the Falls provide excellent feeding
habitat for gulls in this area.

Gulls need open water to feed in the winter, so any such areas have the potential to attract them.
Gaps between otherwise frozen expanses of water in Lake Erie and ice edges in Lake Ontario are
known to attract gulls (D.V. Weseloh, personal observation); the same may be true for the upper
lakes. These areas may usually be outside the NAZ.

Among waterfowl, there are overwintering populations of canvasback, scaup, common
goldeneye, and common merganser in the Detroit, St. Clair, Niagara, and St. Lawrence Rivers.
Lake Ontario and Lake Erie provide overwintering habitat for sea-ducks such as white-winged
scoters and oldsquaw; for example, as many as 40,000 oldsquaw ducks have been recorded in the
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Kingston basin on a single survey. Recently, the invasion of zebra mussels has affected the
migratory and wintering distribution of scaup and other molluscivorous ducks in Lake Erie
(Wormington and Leach 1992) and Lake Ontario.

The only known overwintering population of aquatic raptors occurs along the St. Lawrence
River, from Gananoque to Mallorytown, Ontario. This portion of the river is mostly open all
winter; the bald eagles feed on ducks and deer carcasses, most of the latter being intentionally
provided by humans (Ewins and Andress 1995).

What needs protection: For colonial waterbirds, the most critical factor is breeding habitat.
Preservation of traditional sites that have large and varied nesting populations is a must if the
diversity is to be protected, especially in the lower lakes, where demand for developmental lands
is high. Preservation of such sites as Pigeon Island, the islands of Presqu’Ile Provincial Park (Gull
and High Bluff Islands), Tommy Thompson Park, and Eastport and its associated islands in Lake
Ontario, and of Middle, East Sister, and Middle Sister Islands and Port Colborne in Lake Erie, is
essential. In the upper lakes, where there are many more islands and nesting colonies, specific
sites may not be as critical; however, the Limestone Islands, the Cousin Islands, the Watcher
Islands in Lake Huron ,and other islands with Caspian Terns on them (these islands always have
other colonials nesting on them) are good candidates for protection.

For colonial waterbirds, an adequate population of small to medium-sized fish as a food supply is
also essential, but at present that does not seem to be a problem.

For waterfowl, it is more a question of protected sites for unique feeding opportunities during
migration that is critical. Large underwater beds of vegetation, such as those found at Long Point
Bay, are essential for Canvasbacks and Redheads. Areas with high densities of snails are crucial
for several waterfowl species (e.g., scaup at Wolfe Island and in Prince Edward County). The
recent introduction of zebra mussels may have provided a gala winter boost for the duck species
that feed on molluscs.

Aquatic raptors require the maintenance (or creation) of nesting sites (super-canopy trees and
artificial platforms) and accessible open water in winter at nearshore situations. For example, if
the St. Lawrence River froze over at Gananoque–Mallorytown, the overwintering eagles there
would almost certainly leave.

What Is the Population Status of Wildlife in the Nearshore Aquatic Zone? (Bad and
increasing? Bad and getting worse? Stable?)
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Colonial waterbirds can be grouped into four categories for the purpose of evaluating their status.
The categories and the species that occur in each category are listed below.

Common to abundant, populations stable or increasing

Ring-billed and herring gulls

Double-crested cormorant

Caspian tern

Great blue heron

Uncommon, populations stable or increasing, species at edge of range

Great egret

Great black-backed gull

Common but populations under some pressure from various sources

Common tern

Black-crowned night-heron

Uncommon, populations declining (or, where marked by an asterisk, at edge of range)

Black tern

Forster’s tern

Little gull*

Waterfowl are more easily grouped according to species and then evaluated. They are listed by
species group below.

Dabblers and geese: Stable

Bay ducks (scaup, redhead, canvasback, ring-necked duck): Numbers are stable but
variable; availability of zebra mussels may cause redistribution of bay duck numbers in
some areas.

Mergansers and goldeneye: Reasonably stable.

Sea ducks: Increased numbers overwintering because of zebra mussels.
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Aquatic raptors are dealt with on a species-by-species basis below:

 

Osprey: Relatively common in eastern Georgian Bay and the St. Marys River; slowly
returning and increasing in other areas because of the placement of artificial nesting
platforms.

Bald eagle: Well-established and reasonably numerous breeding population present on
western Lake Erie; smaller numbers in northern Lake Huron and Lake Superior. Not yet
breeding on the shores of Lake Ontario, but did breed within that lake’s basin in 1996.

What Are the Problems for the Various Species and What Management Actions Are
Needed?

Colonials:

Double-crested cormorant: No problems other than perhaps excessive numbers. Controls
may be needed now or in the near future to safeguard rare trees and to reduce competition
with black-crowned night-herons.

Black-crowned night-heron: Competition for nest sites with and fouling by cormorants;
protection of colonies of more than 100 nests is required.

Herring gull, great black-backed gull, and great blue heron: No problems; no
management actions required.

Ring-billed gull: Excessive numbers in some areas. Control needed to help common terns
(e.g., in Port Colborne).

Great egret: Few nesting sites; protection of the few existing colonies is required.

Black tern and forster’s tern: Deterioration of nesting habitat due to disturbance and
unknown other factors; surveys are needed to determine trends. If populations are
declining, ecological studies are needed to find out why and to arrive at conservation
options. Meanwhile, protection of all important colonies (for black terns, colonies of more
than 50 nests; for forster’s terns,  all nesting sites) is required.
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Little gull: Marginal nesting habitat; protect any colony if found nesting again.

Caspian tern: Few problems (perhaps disturbance); protect all long-standing colonies of
more than 100 nests.

Common tern: Competition and predation from ring-billed and herring gulls, as well as
disturbance from humans; protect all colonies of more than 100 nests.

Waterfowl:

Dabblers and geese: Disturbance at roosting sites; protection at and/or of roosting sites.

Divers—Bay Ducks: Quiet shallow water is needed for feeding; bay ducks are more
susceptible to disturbance than are other ducks; protected areas are needed.

Divers—Sea Ducks: Few problems, because they use more offshore waters than do other
ducks.

Aquatic Raptors:

Osprey: Lack of suitable natural nesting habitat and absence of local nesting population;
erect nesting platforms.

Bald eagles: Lack of suitable natural nesting habitat; contaminants may be a problem in
some areas (e.g., Lake Ontario); disturbance by humans. Erect platforms in specific areas
for specific pairs; continue current restrictions (and impose new ones if needed) on
contaminants; and restrict access to all nest sites, especially any new ones.

7.2.5  Mammals

Few species of mammals use the nearshore waters. River otters, minks, beavers, muskrats, and
raccoons occur in sheltered parts of the system, including embayments, tributaries, and the
connecting channels. Larger mammals, including deer and moose, and carnivores, including
wolves and coyotes, use the ice bridges in nearshore waters as migration routes.

8.0  Human Health

8.1  Infectious Organisms as Health Hazards



SOLEC 96 - Nearshore Waters of the Great Lakes 87

During the 20th century, waterborne infectious illnesses have become rare in the Great Lakes
basin (Health Canada 1995a, 1995b, 1995c; Health and Welfare Canada 1980) because of
effective environmental hygiene measures, especially drinking-water and sewage disinfection, and
because of vaccinations. But some major Ontario cities introduced drinking-water filtration and
disinfection only in the early 1930s; until then, a single outbreak of waterborne typhoid fever
could affect nearly 1,000 people and kill nearly 100 in a population of 100,000 (Calamai 1995).
Great Lakes waters of the nearshore zone, like wilderness waters, cannot be considered safe for
recreational use unless their microbial quality is carefully monitored, and should not be used for
human consumption without treatment (Health and Welfare Canada and Environment Canada
1991). Even modern water treatment plants have weaknesses. In 1993, human error in operating a
water treatment plant led about 400,000 inhabitants of Milwaukee to become infected by a
protozoan parasite (Cryptosporidium); about 4,000 of those who were affected had to be
hospitalized (MMWR SS 93). This outbreak attracted the attention of news media (Beil 1995), as
well as that of public health and water treatment professionals (Blair 1994; Otterholm 1994;
Robertson and Sullivan 1994). A smaller outbreak of cryptosporidiosis occurred in the Ontario
city of Kitchener–Waterloo, with more than 200 confirmed cases and perhaps as many as one-
third of all households experiencing diarrheal illness (Welker 1995). In 1996, another outbreak of
illnesses associated with Cryptosporidium occurred in Collingwood, Ontario (“Parasites invade...”
1996). Drinking water contaminated with this parasite (or with bacteria) can be rendered safe by
boiling it (“Is the public getting...?” 1996).

Many people who bathe in the lakes and streams of the Great Lakes basin suffer the discomfort of
“swimmer’s itch,” a condition caused by tiny worm larvae that normally infect waterfowl but that
will also burrow into the skin of humans (Chandler and Read 1961; Ontario Ministry of
Environment 1986). A water-quality problem that has received little attention in the Great Lakes
region but that is common in the Prairie region is the growth of certain cyanobacteria (blue-green
algae) in sources of drinking water. These algae can contain or secrete toxic chemicals and may
thus affect water quality (Kotak et al. 1993).

Table 16 contains a list of some of the pathogenic viruses, bacteria, protozoa, and other parasites
commonly found in North America, including in the nearshore waters of the Great Lakes,
especially in areas polluted by agricultural runoff, sewage discharges, and wildlife excrement. The
types of microbes identified as causing recent waterborne diseases in Canada in the 1990–94
period were summarized in a Canadian Public Health Association survey report commissioned by
Health Canada’s Environmental Health Directorate (CPHA 1995); however, often the causative
agent was not identified. These statistics indicate that the trend observed in the data for 1974–87
continued through 1990–94 (Health Canada 1995b).   Most of the people who became sick
(cases) were infected by a kind of bacterium that had received little attention until
recently—namely, Campylobacter jejuni (Robertson 1995). Thus, both Cryptosporidium and
Campylobacter seem to be “emerging pathogens.”

Table 16: Organisms That Cause Waterborne Diseases
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Viruses Bacteria Protozoa Algae Yeasts, Worms 
Fungi

Hepatitis A Escherichia Entamoeba Cyclospora Candida Schistosomes 
coli 

Norwalk Leptospira Cryptosporidiu Microcystis
m

Rota Legionella Giardia

Adeno Coliforms Naegleria

Entero Salmonella Toxoplasma

Reo Aeromonas

Pseudomonas

Shigella

Staphylococcu
s

Sources: Baker 1995; Burns and Reffle 1995; Health and Welfare Canada 1980, 1983a, 1983b;
Jekel 1995; Stotts et al. 1993.

In many locations within and beyond the official Areas of Concern, the nearshore waters have
become so polluted that they can no longer be used safely without special precautions. In addition
to natural pollutants, which are found everywhere and which are not attributable to humans, the
nearshore waters of the Great Lakes basin contain some disease-causing organisms—such as
viruses, bacteria, protozoa, and worms—that use humans as their “home environment.” Many of
these organisms can also thrive in wild and domestic animals  such as amphibians, reptiles, aquatic
birds, and mammals (including beaver, moose, and cattle) that live, forage, or swim in lakes and
streams or that otherwise frequently come into contact with water. The parasites or their cysts or
eggs are then discharged into the nearshore waters in excreta or sewage. Although encountered
only sporadically, some potentially fatal waterborne diseases (such as amoebiasis, hepatitis,
salmonellosis, shigellosis, and Norwalk virus), as well as infectious “nuisance diseases” (such as
swimmer’s itch), occur in the Great Lakes basin (Health Canada 1995b).

The large human population in the Great Lakes basin produces a large amount of liquid wastes
(sewage), which must be rendered harmless by mechanical, physical, and chemical processes in
sewage treatment plants. In 1989, about 400 sewage treatment plants discharged effluents into
surface waters in Ontario; about a quarter of these plants exceeded Ontario’s effluent-quality
guidelines. Fifty plants had failed to meet the guidelines for three successive years, but most of
them had improvements planned or under way. In 1992, 120 of the 490 treatment plants did not
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comply with Ontario guidelines. In the late 1980s, the Ontario waste treatment plants discharged
about 8 million m  of untreated (bypass) wastes annually—that is, about 3 percent of the total3

annual effluent volume (which is about 230 million m ). Some sewage treatment plant discharges3

are not disinfected before release, and thus contribute to the nearshore waters’ pathogen load
(Ontario Ministry of Environment 1991; Payne and Sumi 1994). In addition, some sewage plant
effluents, especially those carrying industrial wastes, are toxic to algae and probably also to other
aquatic organisms (Wong et al. 1995). Other effluents, such as urban storm water and agricultural
runoff, also contain toxic chemicals (Pitt et al. 1995). The chemical disinfectants used to kill
pathogens in sewage and in drinking water also can create toxic by-products (Cotruvo 1985;
Dunnick and Melnick 1993). These toxins are in addition to those found naturally in surface
waters. In densely settled and heavily used areas, such as the St. Clair–Detroit River channel, the
numbers and kinds of toxic chemicals found even in treated waters can be considerable (Roberts
et al. 1986). The leaching of components of the materials used for water distribution and storage
systems can further contribute to the mix of chemicals in the water (Health and Welfare Canada
1983a).

Recreational use of nearshore waters for purposes such as bathing, boating, windsurfing, and
fishing may result in exposure to microbial pathogens. The pathogens in Canadian recreational
waters and the health concerns associated with them, as well as relevant epidemiological data,
were reviewed by Health Canada in 1978 and 1980 (Health and Welfare Canada 1978, 1980). A
preliminary and now outdated Canadian study of illnesses among 479 swimmers and 39 non-
swimmers at public beaches on Lakes Erie, Huron, and Ontario found only an insignificant
difference in the incidence of illnesses (18.6 percent vs. 12.8 percent) between these two
groups—mainly eye, ear, nose, respiratory, and gastrointestinal ailments. Illnesses in the last two
categories were more common among non-swimmers (Health and Welfare Canada 1980). A more
recent study was carried out by Seyfried et al. (1985a, 1985b). There is a need for more studies of
this kind.

One of the most important microbial and chemical stressors of the Great Lakes nearshore waters
is sewage. The population in the Great Lakes basin and the recreational use of nearshore waters
have increased considerably during the past 15 years; at the same time, the construction and
maintenance of wastewater and drinking-water treatment plants has been adversely affected by the
continuing economic crisis in this region (Payne and Sumi 1994). The public therefore needs to be
better educated about the potential hazards of using polluted waters for recreation. Health Canada
reviewed the problems of municipal wastewater disinfection in Canada more than 10 years ago
(Health and Welfare Canada 1984).

It is still difficult and costly to reliably identify pathogenic bacteria, viruses, and other pathogens
in water samples (Baker 1995; Bitton et al. 1995); this fact probably explains in part the scarcity
of statistics on the occurrence of pathogens in Great Lakes basin waters. Similarly, very little
information exists about the relationship between (a) the presence of pathogens in recreational
and drinking water and (b) illnesses caused by those pathogens. It is thus not possible to cite
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appropriate health effects indicators in the form of adequate epidemiological studies, as
recommended by the Council of Great Lakes Research Managers (IJC 1991a). In Canada, the
prevalence of some waterborne diseases, such as toxoplasmosis, is still unknown, though one
Canadian study found antibodies to this parasite in more than a quarter of adults tested
(“Outbreak...” 1995). But some indirect indicators related to the microbial quality of nearshore
waters are available—for example, counts of E. coli or of faecal coliform bacteria (both of which
are thermotolerant) in recreational waters and counts of concomitant beach closures.

8.2  Beach Closures

Many Great Lakes beaches are used extensively for bathing from June through August. But the
water along some stretches of shoreline has become polluted, rendering beaches there unfit for
bathing. In Canada, the microbial quality of public Great Lakes beaches is regularly assessed
during the bathing season by public health authorities, who determine the numbers of the
bacterium Escherichia coli (E. coli) or of similar (faecal coliform) bacteria in the waters near
public beaches. Beach closures can therefore serve as an indirect indicator of excessive bacterial
contamination of nearshore waters near beaches. But water sampling and microbiological testing
procedures have not yet been standardized across the Great Lakes. There are many different kinds
of beaches, and the kinds and levels of microbes found at a given beach vary with local sources of
contamination (e.g., storm-sewer outfalls, agricultural wastes), with the water currents and water
temperature, with nutrient levels, with the numbers of beach users, and with other factors. It is
therefore not yet possible to be sure of patterns or trends in the microbial quality of nearshore
waters at public beaches across the Great Lakes, or even at any given beach. In addition, the
“safe” (guideline) levels for microbially “safe” recreational water have changed over the years;
these guidelines may also vary among different jurisdictions. Therefore, the methods used to
assess the microbial quality of public beaches need to be standardized.

In Canada, the microbiological and chemical requirements for ensuring safe recreational and
drinking water are laid down in Guidelines for Canadian Recreational Water Quality (Health and
Welfare Canada 1992) and in Guidelines for Canadian Drinking Water Quality (Health Canada
1996). Corresponding federal guidelines apply in the U.S. portion of the Great Lakes basin.

Public health units in Ontario now use a mean level of 100 E. coli per 100 mL of water as a
guideline for determining whether recreational water is “safe.” The Canadian federal guideline
uses a level of 200 E. coli per 100 mL. Counts at both federal and provincial levels are mean
values based on at least five samples. There are no guidelines for viruses. If the guideline level is
exceeded at a beach, warnings are posted and the affected beach is considered “closed” until the
water quality improves. The terms beach posting, beach closing, and beach advisory are often
used interchangeably; each indicates that an advisory sign has been posted at a beach to inform
users that a microbial or chemical hazard exists. At some beaches, such warnings are posted
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permanently—for example, when it is not feasible to determine when the water-quality
impairments will no longer exist.

New procedures are needed to decrease the time required to assess the quality of beach water,
improve public health protection and minimize unnecessary beach closures.  The Rapid Beach
Detection Study for the Greater Grand Bend Region (Ontario) is field testing a rapid (1-6 hr.) E.
coli detection method.  Health Canada has a major funding role in the partnership which includes
the Village of Grand Bend, Town of Bosanquet, Township of Stephen, Ausable Bayfield
Conservation Authority, Environmental Youth Corps, Ontario Ministry of Environment and
Energy, and the Greater Grand Band Economic Development Office.

 

The numbers in Table 17 suggest that the use of recreational waters at public beaches on the north
shores of Lakes Erie and Ontario—and, to a lesser extent, on the north shore of Lake Huron—has
been significantly impaired by bacterial contamination in recent years.

Table 17: Closures of Great Lakes Beaches in Ontario (Chiefly Because of Microbial
Contamination), 1986–1994

Lake Total Number of Number of Beaches Percentage of
Beaches on the on the Lake with Beaches on the

Lake “Closure Notices” Lake with “Closure
Notices”

1986–1994

Superior 15 1 7

Huron 156 33 21

Erie 86 38 44

Ontario 112 89 79

Total 369 161 44

Public beaches on rivers that empty into the Great Lakes are also affected. A 1993 study of 18
beaches on the Thames River that were used by residents of London, Ontario, showed that 10 of
the 18 sites studied exceeded geometric mean counts of 100 E. coli per 100 mL up to fivefold;
levels at 3 of the sites were grossly above this standard, with counts of up to 3,330 E. coli per
100 mL (Burns and Reffle 1995). The authors concluded that none of the 8 locations within the
London city limits were suitable for sustained public recreation, given the presence of 250 sanitary
and storm-sewer outfalls directing wastes into the Thames River system.
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In the United States, each of the states monitors a portion of the bathing beaches within its
jurisdiction to help ensure that bathers are protected from contact with polluted water. In
1981–94, the U.S. Environmental Protection Agency’s Great Lakes National Program Office
(USEPA-GLNPO 1995) collected information about Great Lakes bathing beaches from state,
county, and city health departments that were responsible for overseeing beaches. This
information, which covered most of the beaches used by the public for bathing both now and in
the past, forms the basis for this discussion.

The total number of recognized U.S. Great Lakes bathing beaches rose gradually over the period
in question, from 491 in 1981 to 585 in 1994. The increase reflects the reporting authorities’
recognition that bathing occurs at beaches other than those officially designated as bathing
beaches. Part of the increase can also be attributed to the subdividing of large beaches into
smaller, named sections for operational purposes. The number of recognized bathing beaches that
were monitored to determine their

 suitability for use by the public was 300 in 1981, averaged about 336 in 1982–87, rose to 395 in
1988, and then declined irregularly to 276 in 1994. The number of monitored beaches that were
closed or use-restricted one or more times a year averaged 76 in 1981–83, dropped to 16 in 1984,
and then varied without trend (averaging about 55) in 1984–94. In some cases, the changes reflect
the cessation of monitoring at beaches that consistently showed no pollution problems. In other
cases, some beaches that were continuously polluted were permanently closed and no longer
monitored.

There are 83 U.S. counties represented in the USEPA-GLNPO survey. In 1981–94, 42 of these
counties reported that they had had no beach closings due to pollution. Beach closings in the
other 41 counties varied widely (Table 18). Only 2 of the 15 counties bordering Lake Superior
reported pollution problems; similarly, 17 of the 33 counties bordering Lake Michigan, 6 of the 13
counties bordering Lake Huron, 2 of the 2 bordering Lake St. Clair, 11 of the 13 bordering Lake
Erie, and 4 of the 8 bordering Lake Ontario reported closings. Closings were generally fewer in
northern counties, where human population density was low and there was little industrial
development; conversely, more closings occurred in southern counties, where the shoreline was
more intensively developed, population density was high, and there was extensive industrial
development.
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Table 18: Status of Bathing Beaches in U.S. Waters of the Great Lakes, 1981–1994

Lake State County
Present condition

CommentGoo Restore Improvi Deteriorat
d Mixed Poor d ng ing

Superior MI Alger x CSO; one of five beaches closed 1981-84; no closings
1985-89; no beaches now monitored.

WI Ashland x Two of six beaches monitored; both monitored beaches closed
by pollution in 1994.

Michigan IL Cook x x Thirty-six beaches; CSOs; Chicago sanitary canal lock opening
to Lake Michigan; remediated. 

Lake x AOC (Waukegan Harbor); Chicago sanitary canal locks
opening to Lake Michigan; industrial area.

IN Lake x AOC (Gd. Calumet River-Indiana Harbor Ship Cana);
industrial pollution and permanent closings.

La Porte x x Both beaches relatively free of pollution; no closings in
1992-1994.

Porter x x Four of eight beaches frequently closed; frequency of closing
increasing. 

MI Berrien x x Sewage lagoon discharge closed 1 of 26 beaches in 1986.

Charlevoix x x Bunker oil closed only beach for two days in 1985. 

Gd. x x
Traverse One of 14 beaches closed in 1992-93 due to pollution.

Oceana x x Medical waste; all six beaches closed one day in 1988; no
monitoring.

Ottawa x x CSOs in Grand Rapids; retention basin built in 1991; four CSO
overflows and closings in 1994.

Van Buren x One of two beaches closed for one day in 1993 and 1994;
cause unknown; no monitoring.
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WI Brown x AOC (lower Green Bay and Fox River); only beach closed
since 1944 by pollution; no monitoring after 1992.

Kenosha x CSOs; all five  beaches closed for 48 hours after heavy rain for
13 of 14 years.

Milwaukee x x AOC (Milwaukee estuary); eight beaches; pollution closed
beaches in early 1980s and in 1992-94.

Oconto x No monitoring; one beach closed in 1989.

Racine x All beaches closed annually by pollution in 1990-94.

Mi-Huron MI Mackinac x One of six beaches closed since 1990 due to ruptured sewer
line.

Huron MI Alpena x x Algae on one of five beaches in 1981-82.

Bay x x AOC (Saginaw River and Bay); three of six beaches closed by
pollution in 1989; some algae.

Cheboyga x x
n No monitoring after 1987; one beach closed in 1994.

St. Clair x x AOC (St.Clair and Clinton rivers); two of five beaches closed
for high fecal coliform levels in 1982.

Sanilac x x Sewage lagoon dumping; major spill of cow manure; no
monitoring.

St. Clair MI Macomb x x AOC (Clinton River); all four beaches frequently closed by
industrial pollution in St. Clair River.

Wayne x x AOC (Rouge and Detroit rivers); high fecal coliform; two or
three of four beaches closed in 1992-94.

Erie MI Monroe x x AOC (Raisin River); one of eight beaches closed in 1988;
limited monitoring.

NY Chatauqua x x One of 18 beaches closed in 1983.
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Erie x AOC (Buffalo and Niagara rivers); closings for high (storm)
turbidity; medical wastes in 1988-89.

OH Ashtabula x x AOC (Ashtabula River);  all five beaches closed following
heavy rains in 1992-93; three closed in 1994.

Cuyahoga x x One of four beaches closed for six years in 1980s; all four
closed by pollution in 1993-94.

Erie x x Thirteen of 29 beaches closed in 1983; problems at 16 in 1984;
no closings reported  in 1989-94.

Lake x x All five beaches closed in 1992-94.

Lorain x AOC (Black River basin); pollution problems at all beaches in
1992-94.

Lucas x AOC (Maumee River); pollution closed both beaches several
times in 1992-94.

Ottawa x x Pollution from waste water treatment plant closed one beach;
other sources affect other beaches.

PA Erie x x AOC (Presque Isle Bay); 18 of 24 beaches have had pollution
problems and closings in 1981-94.

Ontario NY Jefferson x One of four beaches closed once due to waste discharge from
ship.

Monroe x AOC (Rochester embayment); the one beach is closed
periodically by storm runoff or algae blooms.

Oswego x AOC (Oswego River Harbor); one of seven beaches closed
once in 14 years.

St. x Sewer eruption closed one of seven beaches in 1987.
Lawrence
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Source: W. Jacobson, USEPA-GLNPO, Chicago, Illinios
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Present conditions at U.S. bathing beaches that have records of closings range from good to poor;
some beaches have been restored from earlier polluted conditions, some are improving, and others
are deteriorating (Table 18). On Lake Superior, conditions in two counties were mixed. On Lake
Michigan, beach conditions were good in seven counties, mixed in seven, and poor in five; four
had been restored, three were improving, and two were deteriorating. On Lake Huron, four were
good and two were mixed; four were restored and one was deteriorating. On Lake St. Clair, two
were mixed and deteriorating. On Lake Erie, four were good, five were mixed, and two were
poor; three had been restored and five were deteriorating. On Lake Ontario, three were good and
one was poor.

Sewage and industrial pollution are the most common causes of beach closings (Table 18).
Combined sewer overflows (CSOs) are a common source of sewage. High faecal coliform levels
were reported as a problem in some areas. Spills or discharges from ships occurred infrequently,
as did dumping of medical wastes. High turbidity following storms was responsible for closings in
one county. Closings occurred frequently in Areas of Concern (AOCs). These areas are under
scrutiny; plans are being developed and actions taken to remediate or restore them.

An unusual and reasonably well-documented beach closing occurred at Metropolitan Beach on
Lake St. Clair in 1994. The beach was closed for much of the summer in 1994 because large
amounts of submersed aquatic vegetation had become stranded there and on adjacent portions of
the Michigan shoreline in late spring and early summer. The stranded and floating mats of plants
reduced circulation in the nearshore areas, and coliform bacteria reached high levels in these
areas. Waterweed was the principal plant stranded on the Michigan shoreline. A similar plant-
stranding problem occurred on Lake Ontario’s shoreline in summer 1994. There, naiad was the
main problem plant. Waterweed and naiad were among the most abundant plants in the lake in
1995 (Edsall et al. 1996; Schloesser et al. 1996). The Michigan strandings were attributed to
higher-than-normal water clarity and to an excess of nutrients; both conditions promoted greater-
than-normal plant growth. The higher water clarity was attributed to the recent colonization of the
lake by the zebra mussel, which feeds by filtering particles from the water; this process makes the
water clearer and lets light penetrate to greater depths, thus promoting more widespread plant
growth. A recent lakewide survey (Schloesser et al. 1996) shows that water clarity is high and
that submersed plants are now more abundant in Lake St. Clair than in 1978; plants are now
present almost everywhere in the lake where light reaches the lake bed. Nitrogen and phosphorus
were higher near Metropolitan Beach and the adjacent mouth of the Clinton River Cutoff channel
than elsewhere in Michigan waters of the lake (Edsall et al. 1996). The Clinton River is an IJC
Area of Concern. Leaking septic tanks and CSOs in the river basin contribute nutrients to the
river. No major plant strandings or beach closings occurred in Michigan waters of the lake in
1995, and plant biomass in April-July 1996 was low—probably due to cold spring weather (T.
Edsall, unpublished data).

8.3  Drinking Water
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This section will focus on problems related to toxic contaminants created during drinking-water
disinfection, especially as a result of chlorination.

A comprehensive survey of the status of Great Lakes drinking water was carried out in 1984 and
published by the Canadian Public Health Association two years later (CPHA 1986). The authors
concluded that treated and tap waters met microbial standards and objectives, and that while
chlorination

 led to increased concentrations of chloroform and other chlorination by-products in tap water, it
also reduced the numbers of bacteria essentially to zero for Escherichia coli and coliform
bacteria. Noting that there were significant data gaps for radiological and organic water-quality
parameters, the report recommended that these data gaps should be filled; it also stated that there
was a need to ensure a consistent level of water-quality testing effort (CPHA 1986).

Sewage water and drinking water are usually disinfected through the use of such chemicals as
chlorine (as Cl  gas or chloramine, alone or in combination with ozone). These chemicals, which2

are very reactive, will attack not only microbes but also any other organic materials in the water
(Bunce 1990). The resulting chemical reactions can produce a great variety of toxic chemicals
from naturally occurring precursors such as humic and fulvic acids; the products vary with the
types and amounts of organic materials present, as well as with the water temperature and with
other seasonal factors. It is therefore very difficult to predict the kinds and amounts of by-
products (Thomas et al. 1995). Small amounts of some of these chemicals can also be formed in
nature; in some groundwaters, they may persist for many years (Asplund et al. 1989). The best-
known of these by-products are chloroform, other halomethanes, and haloacetic acids. Though
some of the disinfection by-products may occur only in minute quantities, even those tiny amounts
may be very toxic. For instance, 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone may
account for only 0.01 percent of the by-products, but may be responsible for 50 percent of the
mutagenic activity (Kronberg et al. 1990; Thomas et al. 1995).

Health Canada carried out its first comprehensive survey of halomethanes in drinking water in
1977 (Health and Welfare Canada 1977). The survey showed that the concentration of these
chemicals increased within the drinking-water distribution system from the treatment plant to the
consumers and that chloroform concentrations reached up to 121  g/L. Since then, several other
such surveys have been performed with similar results.

Chloroform is the most common trihalomethane; it can cause cancer and possibly also slows fetal
growth (Dunnick and Melnick 1993; Kramer et al. 1992). The World Health Organization has set
its guideline for chloroform at 200  g/L, which still ensures proper disinfection of the water
(WHO 1993). The U.S. Environmental Protection Agency set a standard of 100  g/L, based on
animal studies (Henshaw et al. 1993). The latest Canadian drinking-water guidelines (Health
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Canada 1996) set an interim maximum acceptable concentration of 100  g/L for total
trihalomethanes (THMs).

A list of chlorination by-products found in 1993 in Canadian drinking water that had been
disinfected with chlorine or with chlorine-releasing chemicals is shown in Table 19 (Williams et al.
1996). Chloroform, dichloroacetic acid, and trichloroacetic acid—the major contaminants
found—generally occurred in the highest concentrations and were found in all treated-water
samples; haloacetic acid concentrations often equalled or exceeded total trihalomethane
concentrations. In addition, trihalomethane concentrations were higher during the summer than
during the winter regardless of the chlorination process used, and tended to increase as the water
moved along the distribution system. Until recently, only trihalomethanes and related compounds
were thought to be of concern among the by-products of water disinfection. But these and other
recent findings point out the need for further studies to clarify regional and seasonal variations in
the levels of water disinfection by-products.

Maximum acceptable concentrations (MACs) for some of these contaminants in drinking water
have been published by the World Health Organization (WHO 1993), and updated Canadian
national

 guidelines will be published soon (Health Canada 1996). Water disinfection by-products are also
addressed in the 1994 Ontario Drinking Water Objectives (Ontario Ministry of Environment and
Energy 1994b). The effects of drinking-water disinfection on disease outbreaks, and the complex
issues involved in regulating drinking-water disinfectants and disinfection by-products, have been
reviewed by Orme et al. (1991) and by Sonich-Mullen and Papa (1991).

Some of the by-products of drinking-water chlorination are mutagenic and carcinogenic 
(Koivusalo et al. 1995; Wigle et al. 1986). For this reason, the organic by-products of chlorination
are the chemicals of greatest concern in the assessment of the carcinogenic potential of
chlorinated water (Dunnick and Melnick 1993; U.S. Department of Health and Human Services
1994). Velema (1987) reviews the possible carcinogenic effects of a wide range of drinking-water
contaminants.

More than a dozen epidemiological studies have been carried out in North America and Europe to
determine whether the consumption of water that contains chlorination by-products, especially
trihalomethanes, might lead to an increased risk of cancer. The most recent of these was a case-
control study carried out in Ontario; this study found that long-term consumption of chlorinated
surface water with trihalomethane concentrations above 50  g/L was associated with an
increased risk of bladder cancer and possibly also with an increased risk of colon cancer (Health
Canada 1995c; Marrett and King 1995). The results suggest that up to 15 percent of bladder
cancers that occur in Ontario may be due to chlorination by-products in drinking water. This
proportion would amount to about 200 cases and about 70 deaths per year. In addition, about 350
cases of—and about 70 deaths from—colon cancer may occur annually in Ontario due to the by-
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products of drinking-water chlorination. Combining the estimates for the two types of cancer
produces about 550 cases and about 140 deaths per year (Marrett and King 1995). Reduction of
trihalomethane levels in Ontario’s drinking water might therefore help reduce the incidence both
of bladder cancer and of colon cancer in the province. Consumption of groundwater appears to
result in lower rates of bladder cancer than does consumption of surface water. Consumers’ use
of carbon filters (a relatively recent phenomenon) did not appear to affect the results. Water
treatment processes would therefore have to be altered at the treatment plants in order to reduce
the levels of chlorination by-products and the risk of bladder and colon cancer. Some water
treatment plants in Ontario have apparently already changed their treatment procedures in order
to reduce trihalomethane levels in drinking water (Williams et al. 1996).

Many people living in the Great Lakes basin do not seem to think that municipal water treatment
plants provide sufficiently pure drinking water: a recent study found that 18.7 percent of Ontario
households surveyed used drinking-water filters or purifiers (Statistics Canada 1992). The odours
and discolouration present in some public drinking-water supplies may be partly responsible for a
lack of confidence in the quality of the drinking water and for the widespread use of domestic
water filters. But Lévesque et al. (1994) found that three types of pathogenic bacteria
(Staphylococcus aureus, Pseudomonas aeruginosa, and Aeromonas spp.) occurred significantly
more often  in water dispensers than in tap water. Unless they are properly maintained, water
coolers and water filters may thus actually worsen the microbial and chemical quality of tap water.
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Table 19: Chlorination By-products Found in Canadian Drinking Water

Chemical Concentration Percentage of Guideline 

 g/L (= ppb)  g/LSamples That
Were Positive

Halomethanes

Bromodichloromethane 0.5–3.9 – 60 (WHO)

Bromoform < 0.1–3.3 – 100 (WHO)

Chloral hydrate < 0.1–22.5 94 10 (WHO)

Chlorodibromomethane < 0.1–2.9 – 100 (WHO)

Chloroform 0.5–15.5 100 200 (WHO)

Haloacetic acids

Bromoacetic acid < 0.01–9.2 31

Chloroacetic acid 0.3–9.7 100

Dibromoacetic acid < 0.01–1.9 62

Dichloroacetic acid 0.2–163.3 100 50 (WHO)

Trichloroacetic acid 0.1–273.2 100 100 (WHO)

Haloacetonitriles

Bromochloroacetonitrile < 0.1–0.9 92

Dibromoacetonitrile < 0.1–1.2 57

Dichloroacetonitrile < 0.1–12.6 97 90 (WHO)

Trichloroacetonitrile < 0.1 9

Other

Dichloropropanone < 0.1–3.7 93

Trichloronitromethane < 0.1–2.5 73

Trichloropropanone < 0.1–10.4 91

Source: Williams et al. 1996.
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8.4  Fish Consumption Advisories

Fish from contaminated sites may contain high levels of toxic bioaccumulating contaminants, and
may show elevated levels of abnormalities, including tumours (see Tables 12 through 15 of this
paper, and Dawe et al. 1991). These levels of toxins and abnormalities, along with a variety of
striking abnormalities that have been observed in fish-eating birds and mammals, have raised
concerns that eating Great Lakes fish may lead to health effects in people who eat large amounts
of such fish. Provincial governments and state governments in the Great Lakes region have
therefore issued sportfish consumption guidelines such as the 1995–96 Guide to Eating Ontario
Sport Fish (Ontario Ministry of Environment and Energy 1995).

The human health studies that have looked at the levels of exposure of anglers and other people
who eat Great Lakes fish to toxic bioaccumulating contaminants found in such fish or in game
were reviewed in a recent report (USEPA-GLNPO 1995). This report points out that populations
in the Great Lakes basin rely on the nearshore waters for numerous residential, commercial, and
recreational uses, and that most of the data available on human exposure to toxic substances in
the Great Lakes come from analyses of contaminant levels in drinking water and in sport fish.
Only very limited information is available about the health risks associated with exposure to such
contaminants. 

There is sufficient evidence that consumption of contaminated sport fish and wildlife can
significantly increase human exposure to Great Lakes pollutants. A spectrum of major
contaminants have been identified in cooked Great Lakes fish, and methods have been
recommended for reducing the amounts of contaminants by judiciously preparing and cooking the
fish (Skea et al. 1979; Voiland et al. 1991; Zabik and Zabik 1995; Zabik et al. 1995). Investigators
have demonstrated that blood serum levels of these contaminants are significantly increased in
consumers of Great Lakes sport fish as compared with the levels in non-fisheaters (Humphrey
1983a, 1983b; Jacobson et al. 1989; Kearney et al. 1995). Also, several investigators have shown
that exposure from fish far outweighs exposure from atmospheric, terrestrial, or water-column
sources (Humphrey 1983b; Swain 1983). The exposure patterns associated with the different
pathways may vary for different populations, especially those living in the vicinity of industrial
sites, such as refineries or smelters.

Several epidemiological studies have investigated the association between water pollutants in the
Great Lakes and the health of residents who live on or near the lakes. The following studies have
demonstrated increased tissue levels of toxic substances (body burdens) that may be associated
with reproductive, developmental, behavioural, neurological, endocrinological, and immunological
effects:
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 Michigan Maternal and Infant Study (Fein et al. 1983)

 Michigan Sports Fisherman Study (Humphrey 1976)

 Minnesota Ecologic Epidemiologic Study (Schuman et al. 1982)

 New York Ecologic Epidemiologic Study (Kagey and Stark 1992)

 Dar’s Wisconsin Maternal and Infant Study (Dar et al. 1992)

 Wisconsin Sports Fish-Consumers Study (Fiore et al. 1989; Sonzongni et al. 1991)

 Smith’s Wisconsin Maternal and Infant Study (Smith 1984)

Other epidemiological studies of mothers exposed to toxic substances similar to those identified in
Great Lakes fish showed either reproductive and developmental or neurobehavioural effects in
their children. These studies include the following:

 Japan and Taiwan PCBs Studies (Hsu et al. 1985)

 The North Carolina Breast Milk and Formula Project (Rogan et al. 1986)

 Occupationally Exposed Female Capacitor Workers (Taylor et al. 1989)

The limitations of these human health studies have been documented. They include concerns
about laboratory techniques and sensitivity in some studies; concerns about sample size, non-
random sampling techniques, recall bias, and uncontrolled confounders were noted in other
studies. Despite such limitations, epidemiological studies of exposed human populations provide
the most convincing evidence of human health effects.

The most direct evidence for adverse human health effects from environmental pollution is found
in a series of studies linking PCB exposure to consumption of contaminated fish (Fein et al. 1984;
Jacobson and Jacobson 1988; Jacobson et al. 1984a, 1984b, 1984c). Replicating and continuing
these types of epidemiological studies should provide the most relevant and convincing evidence
regarding the status of human health following exposure to Great Lakes pollutants.

More recent ongoing human health studies in the United States and Canada were designed to
build on and extend these earlier studies. Further, the later studies were designed to control
various limitations that had hampered the previous health studies in the Great Lakes. Most of
these studies were begun just a few years ago and are not yet complete. Preliminary findings do
support earlier reports of an association between the consumption of contaminated Great Lakes
fish and body burdens of persistent toxic substances, including PCBs, other organochlorines,
heavy metals such as mercury and lead, and PAHs. The body burdens for such substances that
have been identified in the fluids and tissues of fish consumers are three- to fourfold higher than
those in the general population. Additionally, some preliminary data support the earlier
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observations of both neurobehavioural and developmental deficits associated with the
consumption of contaminated fish.

Most of these more recent human health studies target populations that are presumed to be
particularly susceptible—that is, Native North Americans, sport anglers, the urban poor, pregnant
women, and fetuses and nursing infants of mothers who consume contaminated Great Lakes fish.
Focusing our efforts on such at-risk populations offers the best opportunity to address the
important public health questions that remain unanswered regarding exposure to chemical
contaminants in the basin. Results from the following studies are not yet available:

 An Assessment of a Human Population at Risk: The Impact of Consuming Contaminated
Great Lakes Fish on Native American Communities (University of Wisconsin–Superior &
Milwaukee) 

 Cognitive and Motor Effects of PCB Exposure in Older People from the Michigan
Fisheater Cohort: Emphasis on the Role of Ortho-Substituted Congeners (University of
Illinois at Urbana-Champaign)

 Consortium for the Health Assessment of Great Lakes Sport Fish Consumption
(Wisconsin Department of Health and Social Services)

 Contribution of Nursing to Behavioral Changes in Children of Mothers Who Consumed
Lake Ontario Fish: Two Methodological Approaches (State University of New York at
Oswego)

 Great Lakes Fish as a Source of Maternal and Fetal Exposure to Chlorinated
Hydrocarbons (University of Illinois at Chicago)

 Health Risks from Consumption of Great Lakes Fish (Michigan State University)

 The New York State Angler Study: Exposure Characterization and Reproductive and
Developmental Effects (State University of New York at Buffalo)

 PCB and DDE Exposure among Native American Men from Contaminated Great Lakes
Fish and Wildlife (New York State Department of Health)

In 1992–93, Health Canada carried out an exposure study on 176 adult men and women from
Mississauga, Ontario, and Cornwall, Ontario. Many of these people had been eating fish from
Lake Ontario or from the St. Lawrence River for many years. They were compared to 56 men and
women who ate no Great Lakes fish (the controls) (Kearney et al. 1995). Analysis of blood
samples showed that most of the fisheaters had PCB levels in blood plasma that were well below
those seen in other fisheater studies; only four participants slightly exceeded Health Canada
guidance levels of 20  g/L. Mean blood plasma levels of organochlorine pesticides were lower
than mean levels seen in other studies of fisheaters. Levels of chlorinated dibenzofurans and
dibenzodioxins were also low, and appeared to be strongly correlated with age—that is, older
people generally had higher blood plasma levels than did younger people. Total blood mercury
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and methylmercury levels were also low and below Health Canada’s guideline value. Blood
cadmium levels reflected mainly tobacco consumption levels. No relationships were found
between fish consumption and liver plasma enzyme levels, thyroid hormones, urinary porphyrins,
or urinary d-glucaric acid levels. Urinary cotinine was an effective biomarker for tobacco-smoking
status. The small differences between fisheaters and controls did not warrant further health studies
of fisheaters in the study areas.

Health Canada is currently conducting a pilot dietary and fish consumption study on Asian
immigrants in the Toronto area (a group thought to have a high level of fish consumption), as well
as a shoreline angler survey in the Toronto–Hamilton, Niagara, and Windsor areas. These studies
may provide further insight into the fish consumption habits of various population groups and into
the possible benefits and risks of eating fish from the Great Lakes.

In Canada, the Ontario Ministry of the Environment and Energy’s Sport Fish Contaminant
Monitoring Program has measured contaminant concentrations in fish from the Ontario nearshore
waters of the Great Lakes for more than 20 years. The results have been used to provide
consumption advice to the public.

Most fish are collected by the Ministry of Natural Resources. When possible, researchers catch 20
fish of each species with lengths and weights representative of the size range of the species in the
location being tested. The length, weight, and sex of each fish are recorded and a skinless,
boneless fillet of the dorsal muscle is removed from the fish, packaged, and frozen for shipment to
MOEE laboratories for analysis. This sample portion provides the most consistent test results and
is also the best edible portion of the sport fish.

All fish are analysed for mercury. Depending on the location being studied, analyses may also be
done for PCBs; pesticides (including DDT and toxaphene); mirex; dioxins and furans; metals
(such as lead); PAHs; chlorinated phenols; and chlorinated benzenes.

The consumption advice provided to the public in the Guide to Eating Ontario Sport Fish 
(Ontario Ministry of Environment and Energy 1995) is based on the health protection guidelines
developed by Health Canada. The advice is phrased as a maximum number of recommended
meals per month; consumption categories are eight meals, four meals, two meals, one meal, and
no meals per month. Consumption advice specifies the species of the fish, the length of the fish,
and the location where the fish is caught.

The Guide’s advice is designed to apply to anglers who consume moderate amounts of fish. The
consumption advice will protect individuals who follow the Guide’s advice and consume no more
than eight sportfish meals per month. Health Canada guidelines have been developed to protect
the health of the most sensitive individuals, generally considered to be children and pregnant
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women. But as an added precaution, the Guide recommends that women of childbearing age and
children under 15 avoid consuming any fish that falls into the one-meal-per-month category as
well as any fish in the restricted category.

For the Great Lakes, consumption advice is provided for blocks or regions of each lake.
Contaminant levels for all fish of a given size and species should be similar throughout a block.
The blocks’ boundaries were established in consultation with fisheries biologists who are familiar
with local fish populations and after comparing contaminant levels in fish from several adjacent
locations.

Consumption advice is provided on a wide variety of sport fish species. For the purposes of this
paper, lake trout were chosen as an indicator species for the coldwater fishery because of their
distribution across all Great Lakes. Additionally, because of their high fat levels, lake trout are
particularly useful as monitors of organic contaminants such as PCBs, mirex, and toxaphene. Lake
trout in a size class (55–65 cm) that would typically be kept and consumed by anglers were
selected for this assessment.

A summary of the 1995–96 consumption advisories for 55-cm to 65-cm lake trout in the
Canadian waters of the Great Lakes is given in Figure 24. The consumption categories of four
meals, two meals, and one meal per month are shown as “limited” consumption. The eight-meal-
per-month category is shown as “not restricted.” Table 20 identifies the contaminant or
contaminants causing the consumption restrictions.

In Lake Superior, lake trout in the 55-cm to 65-cm size class are safe to consume in limited
amounts in the western end of the lake. In the eastern end of the lake, in the open waters from
Sewell Point to Batchawana Bay, as well as in the waters of Thunder Bay’s outer harbour,
consumption of 55-cm to 65-cm lake trout is not advised. The principal contaminant causing these
consumption restrictions is toxaphene. Dioxins are a concern in specific locations, such as Jackfish
Bay, as well (Table 20).

In Lake Huron, 55-cm to 65-cm lake trout are not restricted for consumption in the North
Channel, in the open waters south of Manitoulin Island, and in Georgian Bay. Where data exist,
“limited” consumption restrictions are in place for lake trout down the length of the eastern shore
of Lake Huron, from Fitzwilliam Island to north of Grand Bend (blocks H2 and H4 in Figure 24).
PCB is the principal contaminant of concern causing these consumption restrictions.

In Lake Erie, information on contaminants in lake trout is limited to the eastern end of the lake. A
“limited” consumption advisory is in place for lake trout from Long Point Bay and in Lake Erie
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east of Long Point Bay (Figure 24). Again, PCB is the contaminant causing the consumption
restrictions.

At all locations in Lake Ontario and the Niagara River for which information is available, a
“limited” consumption advisory is in effect for 55-cm to 65-cm lake trout (Figure 24). PCB is the
principal contaminant of concern causing the consumption advisories, with levels of mirex and
dioxin also of concern in certain locations (Table 20).

No single species of fish is suitable as an indicator of the warmwater/coolwater fishery because
none are distributed across all locations in the Great Lakes. Consequently, for the purposes of this
paper, smallmouth bass (30 cm to 35 cm), walleye (35 cm to 45 cm), and yellow perch (20 cm to
25 cm) were chosen as indicators. Fish from these size classes were chosen for assessment as
being representative of sizes of fish that would typically be kept and consumed by an angler.

A summary of the 1995–96 consumption advisories for 30-cm to 35-cm smallmouth bass, 35-cm
to 45-cm walleye, and 20-cm to 25-cm yellow perch in the Canadian waters of the Great Lakes is
given in Figure 25. Where information on more than one of the species is available, the most
restrictive consumption advisory is given. In this figure, the consumption categories of four meals,
two meals, and one meal per month are shown as “limited” consumption. The eight-meal-per-
month category is shown as “not restricted.” Table 20 identifies the contaminant or contaminants
causing the consumption restrictions.
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Table 20. Consumption Advisories for Selected Great Lakes Fish

Lake Zone Consumption Consumption for1

Coldwater Warmwater Reason

Advisory Advisory Advisory2

Reason for
Advisory 3

L. Superior 1 limited toxaphene not restricted —

2 not advised toxaphene not restricted —

3 no data — not restricted —

4 no data — no data —

5 limited toxaphene no data —

6 limited toxaphene not restricted —

7 limited toxaphene limited Hg

8 limited dioxin no data —

8a limited toxaphene no data —

9 not advised toxaphene no data —

10 not advised toxaphene no data —

11 no data — not restricted —

St. Marys R. no data — not restricted —

L. Huron NC1 not restricted — not restricted —

NC2 not restricted — not restricted —

GB1 no data — no data —

GB2 no data — no data —

GB3 not restricted — not restricted —

GB4 no data — not restricted —

H1 not restricted — not restricted —

H2 limited PCB no data —

H3 no data — limited Hg

H4 limited PCB no data —

H5 not restricted — not restricted —

St. Clair R. 7a no data — not restricted —

7b no data — not restricted —

7c no data — not restricted —

Lake St. Clair 6 no data — not restricted —

Detroit R. 5a no data — limited PCB

5b no data — not restricted —

L. Erie 1 no data — not restricted —

2 no data — not restricted —
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Advisory 3
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2a no data — not restricted —

3 limited PCB not restricted —

4 limited PCB not restricted —

Niagara R. 1a no data — not restricted —

1b limited PCB not restricted —

L. Ontario 2 limited PCB not restricted —

3 no data — not restricted —

4 limited PCB/mirex/dioxin not restricted —

4a no data — not restricted —

5 no data — no data —

6 limited mirex limited Hg

6a no data — no data —

6b no data — no data —

7 limited PCB no data —

8 limited mirex not restricted —

9 no data — not restricted —

10 no data — not restricted —

11 limited PCB not restricted —

St. Lawrence
R.

12 N/A — not restricted —

13 N/A — not restricted —

14 N/A — not restricted —

15 N/A — not restricted —

16 N/A — not restricted —
Zones refer to Figure 24 and Figure 25.1

55-cm to 65-cm lake trout, 30-cm to 35-cm smallmouth bass, 35-cm to 45-cm walleye2

20-cm to 25-cm yellow perch, 35-cm to 45-cm walleye, 30-cm to 35-cm smallmouth bass3

N/A   Not Applicable
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Figure 24  Fish Consumption Advisories for Coldwater Species

Figure 25  Fish Consumption Advisories for Warmwater Species
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For Lake Superior, information on contaminants in these warmwater/coolwater indicator species
exists for limited sites only. In the waters around Pie Island, Thunder Bay harbour, Nipigon Bay,
and Goulais Bay, no consumption restrictions are in place for these fish species at the sizes noted.
“Limited” consumption of 35-cm to 45-cm walleye in the waters from Shreiber Point to Sewell
Point is advised. The contaminant of concern causing the consumption restriction is mercury
(Hg).

In Lake Huron, no consumption restrictions on the indicator species in the sizes noted are in
effect for the North Channel, Georgian Bay, the waters south of Manitoulin Island, or from Grand
Bend to Pt. Edward. Only smallmouth bass in the waters from Stokes Bay to Point Clark (H3 in
Figure 25) have a “limited” consumption advisory in place. The advisory is due to mercury.

No consumption restrictions are in effect for any of the warmwater/coolwater indicator fish
species/sizes in Lake St. Clair or Lake Erie. A “limited” consumption advisory is in effect for 20-
cm to 25-cm yellow perch from the upper Detroit River due to PCB.

In Lake Ontario and the St. Lawrence River, there are no consumption restrictions in effect for
any of the warmwater/coolwater indicator species/sizes, except for 30-cm to 35-cm smallmouth
bass caught in waters east of the Scarborough Bluffs to Colborne (Block 6 in Figure 25). The
principal contaminant of concern causing the consumption restriction is mercury.

Trends in contaminant concentrations vs. time are plotted in Figure 26, focusing in each lake on
the contaminants causing the current consumption restrictions in the coldwater and warmwater
indicator species. Data plotted are mean measured concentrations of a contaminant for a given
species across all size classes collected in a specific location vs. year of collection.

Trend information on toxaphene in Lake Superior lake trout is limited, with four observations
from 1986 to 1992. No temporal trend can be identified from this information. No information is
available to identify trends in mercury, the principal contaminant of concern in the warmwater
indicator species.

Concentrations of PCBs in lake trout from southern Lake Huron declined from 2.6 ppm in 1976
to 0.67 ppm in 1994. Mean mercury levels in walleye in southern Lake Huron varied from 0.26 to
0.47 ppm over the period 1981 to 1992 but show no trend vs. time.

No trend information is available for the contaminant of concern (PCB) in either the coldwater or
warmwater indicator species for Lake St. Clair or Lake Erie.
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In Lake Ontario, good long-term trend information is available for both PCB and mirex in
rainbow trout at the Ganaraska River. In both cases, concentrations declined between 1976 and
the middle to late 1980s and have shown no clear trend since then. PCBs declined from 3.9 ppm
in 1976 to 0.65 ppm in 1994, and mirex concentrations dropped from 0.26 ppm in 1976 to 0.06
ppm in 1994. Mean mercury concentrations in walleye in eastern Lake Ontario varied between
0.19 ppm and 0.43 ppm over the period 1981 to 1994, with no clear trend over time.
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Figure 26.  Trends in Contaminant Concentrations
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In the United States, most Great Lakes states have been monitoring contaminants in fish and
issuing fish consumption advisories since the middle 1970s. At one time, the FDA (Food and
Drug Administration) action levels were the most common criteria by which the advisories were
issued. As programs expanded and risk analysis became more common, the states began to re-
evaluate their advisory criteria and, at times, to deviate from the FDA–action-level approach.

Because of the differences among states in criteria for issuing advice (Table 21), the states created
a group known as the Great Lakes Fish Advisory Task Force. This group, which comprised health
and environmental officials from each of the Great Lakes states, was charged with creating a
uniform fish advisory protocol for the region. The group delivered a proposed protocol to the
Council of Great Lakes Governors in September 1993. The protocol has undergone considerable
debate since that time. Minnesota and Indiana have adopted the protocol for their Great Lakes
waters, and Ohio has adopted a version of the protocol. The other five states continue to debate
the issue.

Polychlorinated biphenyls (PCBs) are by far the most common reason for the issuance of
advisories for U.S. Great Lakes fish. Several states have also issued advisories for other
contaminants, including chlordane, dioxin, and mirex.

The advisories have changed with time, so that an exact basinwide accounting is not available.
But more sites and species have probably been added to the fish advisories over the years than
have been taken off. For example, Wisconsin has not removed any sites from the advisory;
Michigan has removed some but added others—particularly near harbours or tributaries where
contaminant concentrations are higher than in the associated lake as a whole. Indeed, if there has
been an increase in the listings, it probably reflects more intensive monitoring over time rather
than further degradation of the environment. The 80 percent decrease in contaminant levels
(primarily PCBs) observed in Great Lakes fish since 1980 supports this interpretation.
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Table 21. Summary of Existing Sport Fish Consumption Advisory Programs and Criteria Related to the Great Lakes Basin, 1989

State or Lead Lead Apply Have Apply Risk Compens Concentra Concentration Concentratio
Province Agency Agency Federal Trigger Assessment ate for tion Resulting in n Resulting

for for Action Levels as Basis for Multiple Allowed Restricted in “Do Not
Advisory Advisory Levels Different Advisories Contami for Consumption Eat”
Criteria Issuance from U.S. nants Unlimited Advisory Advisory

Federal Consumpt
Govt. ion

New NYS NYS DOH YES TCDD 10 TCDD, Cd YES Generic—1 > 3 × AL
York DOH ppt m/wk

PCDD/PCD 1.0 × AL —
F Eq.

Tumours

N.A
.a

b

1 m/mo using
ACGIH Model
(exc. metals)

Pennsylv Pa DOH Pa DER YES NO NO NO  x < AL N.A.  x   AL
ania

Ohio ODH ODH YES YES YES NO  x < AL >0.05ppm PCB  x  
Tumours/PC 0.05ppm AL>1.9ppm

B PCB PCB

Indiana ISBH ISBH YES YES NO NO 0–10% > 11–49% > AL 50%   AL
AL

Illinois IDPH IDPH YES NO NO NO 0–10% > 11–49% > AL 50%   AL
c

AL

Michigan MDPH MDPH YES Tumours Hg, TCDD NO 0–10% > 11–49% > AL, 50%   AL

Hg - 0.5 ppm Hg   1.5

TCDD - 10
ppt

AL 1 m/wk

Hg - 0.5–1.49 ppm
ppm



State or Lead Lead Apply Have Apply Risk Compens Concentra Concentration Concentratio
Province Agency Agency Federal Trigger Assessment ate for tion Resulting in n Resulting

for for Action Levels as Basis for Multiple Allowed Restricted in “Do Not
Advisory Advisory Levels Different Advisories Contami for Consumption Eat”
Criteria Issuance from U.S. nants Unlimited Advisory Advisory

Federal Consumpt
Govt. ion
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Wisconsi WI DOH WI DNR YES Hg - 0.5 ppm Hg only NO 0–10% > 11–49% > AL 50%   AL
n ALWI DOH Hg (3 groups) Hg > 1 ppm

Minnesot MnDPH MnDPH NO Hg - 0.16 Hg only NO Hg < 0.16 Hg - 0.16–0.65 Hg > 2.81
a ppm ppm ppm, 1 m/wk; ppm

PCB-LOD PCB/TCD
d

(0.05 ppm)

TCDD-LOD

(0.6 ppt)

D

<LOD

0.66–2.81 ppm,
1 m/mo.

PCB/TCDD >
LOD, 1 m/mo.

Ontario H&W-C OMOE YES Hg - 0.5 ppm Hg, PCB, NO <AL Hg - 0.5–1.49 Hg   1.5

TCDD-20
ppt Organics > AL

TCDD ppm ppm
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Table 21 (continued): Summary of Existing Sport Fish Consumption Advisory Programs and Criteria Related to the Great Lakes
Basin, 1989

State or Special Advice on How Published Advisory Comments
Province Cautions Preparation Update

for Women and Cooking Date(s)
and

Children

New YES YES Pamphlet, fishing Yearly, Will issue mid-year advisories if significant conditions are
York guide, news release May–June detected; “significant” not defined. Start reviewing data in

January for April deadline.

Pennsylv YES YES News releases No specific Interagency agreement between DOH, DER, Fishery
ania date Commission; no designated budget for fish monitoring. Uses

composite samples of skin-on fillets rather than individual
fillets.

Ohio YES YES News Releases, Site- Interagency fish tissue monitoring group.  Uses composite
Pamphlet Fishing specific, samples of skin-on fillets rather than individual fillets.
Guide when data

available

Indiana YES YES Pamphlet, fishing Yearly, Yearly sampling, but not of all waters.
guide March–Apri

l

Illinois YES YES Pamphlet, fishing Yearly Interagency agreement within Illinois; now coordinating with
guide states to south and southwest. Uses composite samples of

skin-on fillets rather than individual fillets. Half of Mississippi
River stations collected every year.
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Michigan YES YES Fishing guide, news Yearly, late Interagency agreement between MDPH, MDA, MDNR; draft
releases January policy awaiting Great Lakes Fish Advisory Task Force

decisions.

Wisconsi YES YES Pamphlet, news Twice Has not released an advisory since April 1994, pending a
n releases, fishing yearly, April decision regarding Great Lakes protocol.

guide and October

Minnesot YES YES Fishing guide, news Every two Interagency program. Analyses routinely only for Hg, PCB,
a releases, booklet years and TCDD. Uses composite samples of skin-on fillets rather

than individual fillets.

Ontario YES YES Large guidebook, Yearly, May Sample type different from other jurisdictions—uses a
news releases, skinless dorsal section of the fillet, rather than untrimmed
bulletins skin-on fillets.

Sources: After Hesse 1990; updated in 1996 by J. Amrhein, Wisconsin DNR.

 N.A. = Not Applicable a

 AL = Action Levelb

If several contaminants present just below guideline threshold, list species.c 

 LOD = Analytical level of detection (value in parentheses, when specified, applies to row).d
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9.0  Emerging Challenges

9.1  Sewage Treatment

The recognition of cultural eutrophication as a threat to the lakes resulted in the Great Lakes
Water Quality Agreement between Canada and the United States of America. The agreed-upon
method for reducing nutrient loads was to limit phosphorus in detergents and to limit phosphorus
in effluent at most of the STPs to no more than 1 mg/L. Eventually, the nutrient loads decreased
by about 50 percent in Lakes Ontario and Erie (SOLEC 1994). Concentrations of phosphorus
declined about 50 percent in the west basin of Lake Erie and in Lake Ontario. The decreased
phosphorus load was brought about both by building STPs and by using phosphorus precipitation
chemistry at the STPs. As the human population continues to grow, the 1 mg P/L limit will allow
the nutrient load to grow. Thus, to maintain the low loads now in place and to avoid reversing
hard-won progress, sewage treatment will have to become more and more stringent. In addition,
the problem of untreated sewage discharges by combined sewer overflows is being and must be
addressed in many large cities. There is a tendency to perceive eutrophication as a “mature issue”
that requires no further effort. In reality, control of sewage effluents has just begun. Human
sewage effluent in the lakes will be a management issue for the foreseeable future. Optimization of
existing infrastructure and construction of the necessary technologies at STPs are needed steadily
if a trend to worsening conditions is to be avoided.

9.2  Aquaculture

The use of cages in open waters has emerged recently as a fish culture technology that meets the
needs of the industry for large-volume water supplies at temperatures appropriate to the needs of
coldwater-loving species. Because the cages’ structure makes them vulnerable to storm damage,
many concerns have been expressed about the impact of escaped fish on natural biodiversity and
on the integrity of the wild gene pools. Further, unlike the relatively sterile groundwaters used for
most fish hatcheries, the cages’ natural environments expose the fish to natural pathogens that
must be routinely treated with therapeutants and prophylactics—which in turn are harmful to
other elements of the natural biota. But the most worrisome potential effect of cage aquaculture
on wild fish production is the nutrient enrichment of the surrounding waters via faeces and surplus
food. Unlike wastes produced by onshore feedlots and hatcheries (and cities), these wastes cannot
be harvested from the effluents. The conversion efficiency of fish food to fish is roughly 50
percent. Thus for every tonne of fish produced, there will be about a tonne of waste. If the caged
fish are fed on netted lake fish, there may be an effect on natural populations. If the caged fish are
fed on prepared food, the waste produced represents a new nutrient load to the system. The
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phosphorus output from a salmonid cage facility producing 100 tonnes of fish in the most efficient
way is the equivalent of the raw sewage effluent from a community of 850 people. Since the
industry will seek out relatively sheltered sites, the list of concerns includes losses of aesthetic and
recreational values, contamination of bottom sediments, and the potential for rising drinking-
water costs.

10.0  Summary and Conclusions

There is little doubt that the nearshore environment of the Great Lakes has been altered
physically, chemically, and biotically by anthropogenic effects. Beginning about 25 years ago,
however, the trend to worsening conditions began to slow down and reverse. This shift was
largely due to the Great Lakes Water Quality Agreement (GLWQA) between the two sharing
nations. On a lakewide basis, the GLWQA resulted in massive reductions in nutrient
loads—reductions that in turn are the foundation for future protection initiatives. Toxic chemical
loadings were reduced, resulting in decreased concentrations in biota. The GLWQA’s ecosystem
concept has brought about a more comprehensive view of environmental management, along with
increased public awareness and participation. For example, the Great Lakes Action Plan and the
Great Lakes 2000 Cleanup Fund have begun remediation of sediment contamination and habitat
damage at more than 50 sites. Funding has been almost evenly distributed between projects on
habitat, contaminated sediment, sewage treatment, urban drainage, and non-point sources. These
remedial actions—which are occurring in both Canada and the United States—were agreed to in
principle during the most recent iterations of the GLWQA, which named the 43 remaining worst
polluted areas and instigated Remedial Action Plans to begin remedial activities. Similarly, the
binational Lakewide Management Plan process seeks to develop a consensus and plan for the
future restoration, maintenance, and use of the lake ecosystems. The progress is largely built on
scientific capital accumulated over the last 20 years. Development and maintenance of this
scientific capital has been slowing in the recent economic climate. Maintenance of scientific
expertise is needed to efficiently delineate what can be expected from remediation. For example, a
recent report (Fox et al. 1996) showed that contrary to expectations, the pollution of Lake
Ontario by PCBs and PAHs from the Hamilton Harbour AOC was small relative to loadings from
the atmosphere and the Niagara River. Thus, though there is a locally significant sediment PAH
hotspot in Hamilton Harbour, the research points elsewhere for major gains in Lake Ontario’s
status. Further research of this type seems necessary to ensure that reasonable expectations
prevail and that problems can be prioritized.

In conclusion, the nearshore waters face continued challenges from the effects of human
population growth. Much of the damage to physical habitat is permanent, but means of prevention
and mitigation are now in place. Water- and sediment-quality problems, which are mostly
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reversible, are under control. Continued vigilance is needed to prevent repetition of past
problems.
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12.0  Glossary

Species—The species is the fundamental unit of biological organization. Members of a species are
genetically similar and normally mate only with other members of the same species, thus
preserving that genetic similarity.

Community—The community is a more complex level of organization. Typically, the geographic
distributions or ranges of many species overlap. This overlapping suggests either that these
species are competing with each other for the space, food, and other resources needed for them to
grow and reproduce, or that each is using the resources differently in the area of overlap. Plant or
animal species with overlapping ranges that are tolerant of each other and derive some mutual
benefit from associating with each other generally occur in assemblages called communities.

Ecosystem—The most complex level of organization is the ecosystem. An ecosystem includes the
plant and animal communities in an area together with the non-living physical environment that
supports them. Ecosystems have physically defined boundaries, but they are also dynamic: their
boundaries and constituents can change over time. They can import and export materials and
energy and thus can interact with and influence other ecosystems. They can also vary widely in
size. A small pond or patch of woodland can be an ecosystem, as can the entire Great Lakes
region, or the biosphere of the earth with its human component.
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Appendix A:  Common and Scientific Names of Plants and Animals Mentioned in This
Report

Common name Scientific name

Algae Stephanodiscus Stephanodiscus
binderanus

Vascular plants Common cattail Typha latifolia

Eurasian watermilfoil Myriophyllum spicatum

Naiad Najas flexilis

Purple loosestrife Lythrum salicaria

Waterweed Elodea canadensis

Protozoans Glugea Glugea hertwigi

Zooplankton Spiny water flea Bythrotrephes
cederstroemi

Mussels Quagga mussel Dreissena bugensis

Zebra mussel Dreissena polymorpha

Benthic
invertebrates

Burrowing mayfly Hexagenia spp.

Fish Alewife Alosa pseudoharengus

American eel Anguilla rostrata

Blueback herring Alosa aestivalis

Blue pike Stizostedion v. glaucum
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Bowfin Amia calva 

Brown bullhead Ameiurus nebulosus

Burbot Lota lota

Common carp Cyprinus carpio 

Catfishes Ictaluridae

Coho salmon Oncorhynchus kisutch

Deepwater ciscoes Coregonus spp.

Deepwater sculpin Myxocephalus thompsoni 

Emerald shiners Notropis atherinoides

Freshwater drum Aplodinotus grunniens

Goldfish Carassius auratus

Gizzard shad Dorosoma cepedianum

Lake herring Coregonus artedi

Lake sturgeon Acipenser fulvescens

Lake trout Salvelinus namaycush

Lake whitefish Coregonus clupeaformis

Largemouth bass Micropterus salmoides

Pacific salmon Oncorhynchus spp.

Pikes Esocidae

Rainbow smelt Osmerus mordax

Round goby Neogobious
melanostomus 

Ruffe Gymnocephalus cernus

Sea lamprey Petromyzon marinus

Slimy sculpin Cottus cognatus

Spottail shiners Notropis hudsonius

Sunfishes Centrarchidae

Tubenose goby Proterorhinus
marmoratus
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Walleye Stizostedion vitreum

White sucker Catostomus commersoni

Yellow perch Perca flavescens

Birds American black duck Anas rubripes

American wigeon Anas americana

Bald eagle Haliaeetus leucocephalus

Black-crowned night- Nycticorax nycticorax
heron

Black tern Childonias niger

Blue-winged teal Anas discors

Bufflehead Bucephala albeola

Canada goose Branta canadensis

Canvasback Athaya valisneria

Caspian tern Sterna caspia

Common goldeneye Bucephala clangula 

Common loon Gavia immer

Common merganser Mergus merganser

Common tern Sterna hirundo

Double-crested cormorant Phalacrocorax auritus

Forster’s tern Sterna forsteri

Gadwall Anas strepera

Great black-backed gull Larus marinus

Great blue heron Ardea herodias

Great egret Casmerodius albus

Greater scaup Athaya marila

Green-winged teal Anas crecca

Herring gull Larus argentatus
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Hooded merganser Lyphodytes cucullatus

Lesser scaup Athaya affinis

Little gull Larus minutus

Mallard Anas platyrhynchos

Mute swan Cygnus olor

Northern pintail Anas acuta

Northern shoveler Anas clypeata

Oldsquaw Clangula hyemalis

Osprey Pandion haliaetus

Red-breasted merganser Mergus serrator

Redhead Athaya americana

Ring-billed gull Larus delawarensis

Ring-necked duck Athaya collaris

Ruddy duck Oxyura jamaicensis

Tundra swan Cygnus columbianus

White pelican Pelecanus
erythrorhynchos

White-winged scoter Melanitta fusca

Wood duck Aix sponsa

Aquatic mammals Beaver Castor canadensis

Mink Mustela vision

Muskrat Ondatra zibethica

Raccoon Procyon lotor

River otter Lutra canadensis


