

## **Characterization of Dioxin Emissions From Sources That Use Ball Clays**

**Emission Test Report: Unimin Corporation, Gleason, TN** 

Final Report (Non-Confidential Version)

## CHARACTERIZATION OF DIOXIN EMISSIONS FROM SOURCES THAT USE BALL CLAYS

EMISSION TEST REPORT: UNIMIN CORPORATION, GLEASON, TN

FINAL REPORT (Non-Confidential Version)

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air Quality Planning and Standards
Sector Policies and Programs Division
Research Triangle Park, North Carolina 27711

## **Contents**

| Figures v      | vii                                                          |              |
|----------------|--------------------------------------------------------------|--------------|
| Tables v       | riii                                                         |              |
| Section 1. Int | troduction                                                   | . 1-1        |
| 1.1            | Test Summary                                                 | . 1-1        |
| 1.2            | Test Program Organization                                    | . 1-1        |
|                | ocess Description and Test Locations                         |              |
|                | Description of Processes Tested                              |              |
| 2.2            | Process Operations During Testing                            | . 2-1        |
| 2.3            | Sampling and Emission Measurement Locations                  | . 2-3        |
| 2.4            | Process Feed and Product Sampling                            | . 2-4        |
| 2.5            | Correlation of Sample Identification Numbers With Test Runs  | . 2-5        |
| Section 3. Te  | est Results                                                  | . 3-1        |
| 3.1            | Objectives                                                   | . 3-1        |
| 3.2            | Test Matrix                                                  | . 3-1        |
| 3.3            | Field Test Changes and Problems                              | . 3-1        |
| 3.4            | Summary of Test Results                                      | . 3-3        |
| Section 4. Pro | ocedures for Sampling, Analysis, and Process Data Collection |              |
| 4.1            | Sampling Methods                                             | . 4-1        |
|                | Analytical Procedures                                        |              |
| 4.3            | Process Data                                                 | <b>1</b> -12 |
| Section 5. QA  | A/QC Activities                                              | . 5-1        |
| 5.1            | QA/QC Objectives Summary                                     | . 5-1        |
| 5.2            | Surrogate Recoveries                                         | . 5-2        |
| 5.3            | Discussion                                                   | . 5-2        |
|                |                                                              |              |
|                |                                                              |              |

### **Appendices**

Appendix A—Sample Custody Records

Appendix B—Sampling Data and Field Analytical Records

Appendix C—Equipment Calibration Records

Appendix D—Analytical Reports and Data

Appendix E—Batch Control Spikes (BCS<sub>3</sub>)

Appendix F—BCS<sub>3</sub> Performance Criteria

Appendix G—Process Data and Material Sampling Log Sheets

## **Figures**

| Figure 1-1. | Test Program Organization                                              | 1-3    |
|-------------|------------------------------------------------------------------------|--------|
| Figure 2-1. | Process Flow Diagram for the Mill Process at Unimin Corporation,       |        |
| C           | Gleason, TN                                                            | 2-6    |
| Figure 2-2. | Process Flow Diagram for the Dryer Process at Unimin Corporation,      |        |
| C           | Gleason, TN.                                                           | 2-7    |
| Figure 2-3. | Mill Sampling Location                                                 |        |
| Figure 2-4. | Dryer Sampling Location                                                |        |
| Figure 4-1. | Method 23 Sampling Train for PCDDs and PCDFs                           |        |
| Figure 4-2. | Sample Recovery Scheme                                                 |        |
| Figure 4-3. | Instrumental Measurement System for CO <sub>2</sub> and O <sub>2</sub> |        |
| Figure 4-4. | Schematic of EPA Method 23 and SW846 8290 Emission                     |        |
| C           | Samples Analysis Path                                                  | . 4-10 |
| Figure 4-5. | ±                                                                      |        |

## **Tables**

| Summary of Process Operating Parameters Monitored During Testing | 2.2          |
|------------------------------------------------------------------|--------------|
|                                                                  | 2-2          |
| Summary of Process Operating Parameters Monitored During Testing |              |
| for the Dryer                                                    | 2-3          |
| Correlation of Sample Identification Numbers With Test Runs      | 2-5          |
| Test Matrix: Summary of Emission and Process Sampling and        |              |
| Analytical Parameters and Methods                                | 3-2          |
| Summary of Total Dioxin/Furan Results for Mill Samples           | 3-5          |
| Dioxin/Furan Homolog Results for Mill Stack Samples              |              |
| Dioxin/Furan Homolog Emission Factors for Mill Stack Samples     | 3-7          |
|                                                                  |              |
| Dioxin/Furan Mill Clay Product Homolog Results <sup>a</sup>      |              |
| Mill Sampling and Stack Parameters                               | . 3-10       |
| Summary of Total Dioxin/Furan Results for Dryer Samples          | . 3-11       |
| Dioxin/Furan Homolog Results for Dryer Stack Samples             | . 3-12       |
| Dioxin/Furan Homolog Emission Factors for Dryer Stack Samples    | . 3-13       |
| Dioxin/Furan Dryer Clay Feed Homolog Results <sup>a</sup>        | . 3-14       |
| Dioxin/Furan Dryer Clay Product Homolog Results <sup>a</sup>     | . 3-15       |
| Dryer Sampling and Stack Parameters                              |              |
| Calibration QC Criteria for Sampling Equipment                   | 5-3          |
| Criteria for Emission Measurement and Data Quality               |              |
| Criteria for Assessing Data Quality of Process Sample Analyses   | 5-5          |
| Method 23 Internal Standard and Surrogate Standard Recoveries    | 5-6          |
| BCS <sub>3</sub> Surrogate Recoveries                            |              |
| Method 8290 Internal Standard Recoveries                         |              |
|                                                                  | for the Mill |

# Section 1. Introduction

### 1.1 Test Summary

#### 1.1.1 Background

The EPA has determined that certain ball clay mineral deposits contain naturally-occurring dioxins. Ball clay processing facilities use low temperature dryers and heated milling systems to process ball clay prior to shipment to customers. The purpose of this emission test was to characterize dioxin (and furan) emissions from these dryers and milling systems. The test results will be used by EPA to determine the need for gathering any additional data related to thermal processing of ball clay.

#### 1.1.2 Scope

RTI presented MRI with Work Assignment No. 1-08 to conduct the emissions test from two process lines at the selected ball clay test site. Under the work assignment MRI conducted emissions testing for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), carbon dioxide (CO<sub>2</sub>), and oxygen (O<sub>2</sub>).

Three 4-hour test runs, using EPA Method 23 to measure dioxin and furan emissions, were conducted at each of the two test stack locations within the facility. In addition, the  $CO_2$  and  $O_2$  concentrations were measured during each run using EPA Method 3 at the dryer and Method 3A at the mill.

During testing, process and pollution control equipment operating data were obtained by RTI. In addition, RTI collected process samples at two points (feed and product) within each process line during the test runs. These samples also were analyzed for PCDDs/PCDFs.

## 1.2 Test Program Organization

The following individuals were the key personnel in the management and execution of this project:

#### The EPA Work Assignment Managers (WAMs):

Ms. Mary Johnson [during the test program] U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Sector Policies and Programs Division Research Triangle Park, NC 27711

Telephone: (919) 541-5025

Mr. Brian Shrager U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Sector Policies and Programs Division Research Triangle Park, NC 27711 Telephone: (919) 541-7689

#### The EPA on-site testing WAM:

Clyde E. Riley [during the test program] U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division **Emission Measurement Center** Research Triangle Park, NC 27711

J. Kaye Whitfield [current testing WAM] U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division Source Measurement and Analysis Group Research Triangle Park, NC 27711 Telephone: (919) 541-2509

The RTI Work Assignment Leader (WAL): The MRI Task Leader for this project:

Mr. Mark Turner Mr. John Hosenfeld Research Triangle Institute Midwest Research Institute 800 Park Office 425 Volker Blvd. Highway 54 Kansas City, MO 64110-2299

Research Triangle Park, NC 27709 Telephone: (816) 753-7600, ext. 1336

Telephone: (919) 316-3743

Figure 1-1 presents the test program organization, major lines of communication, and names and phone numbers of responsible individuals.



Figure 1-1. Test Program Organization

# Section 2. **Process Description and Test Locations**

## 2.1 Description of Processes Tested

Emissions testing for PCDDs and PCDFs was conducted at the Unimin Corporation ball clay processing facility located in Gleason, Tennessee during a two week period in August 2003. Two processes were tested during the emission testing program; Mill No. 3 (mill) was tested on August 13, 14, and 15, 2003, and the Semi-Dry Dryer (dryer) was tested on August 18, 19, and 20, 2003. This section provides a brief description of the processes tested.

#### **CBI Data Removed**

This information is provided in the confidential version of this document.

## 2.2 Process Operations During Testing

This section describes process operations during testing. Summary data are presented that represent the average of the parameters monitored during each emission test run. **CBI Data Removed**: Additional information is provided in the confidential version of this document. The following sections describe process operations during testing for the mill and the dryer, respectively.

#### 2.2.1 Mill No. 3

The mill was tested on August 13, 14, and 15, 2003. Several process operating parameters were monitored to ensure that the mill was operating normally during emissions testing. These parameters included baghouse inlet temperature, baghouse pressure drop, mill operating temperature, and mill production rate. **CBI Data Removed:** Additional information is provided in the confidential version of this document. During testing, values for each of these parameters were manually recorded on data log sheets at least every 30 minutes beginning before testing began and continuing for one reading after the test was concluded. The mill operating temperature is measured at the mill outlet. **CBI Data Removed:** Additional information is provided in the confidential version of this document. The average hourly rate (for each shift during which testing occurred) was obtained from plant personnel at the conclusion of testing the mill.

#### **CBI Data Removed**

Additional information is provided in the confidential version of this document.

Table 2-1 presents a summary of the process operating parameters recorded for the mill during the testing program. **CBI Data Removed**: Additional information is provided in the confidential version of this document. Raw data sheets for these parameters are found in Appendix G.

Table 2-1. Summary of Process Operating Parameters Monitored During Testing for the Mill

| Test<br>Run<br>No. | Date<br>Tested | Ball Clay<br>Product<br>Processed | Mill Operating<br>Temperature,<br>°C (°F) | Baghouse Inlet<br>Temperature,<br>°C (°F) | Baghouse<br>Pressure Drop,<br>Inches of Water | Mill<br>Production Rate,<br>Mg/Hour<br>(Tons/Hour) |
|--------------------|----------------|-----------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 1Re <sup>a</sup>   | 8/13/03        | SB Blend                          | b                                         | b                                         | 2.5                                           | b                                                  |
| 2                  | 8/14/03        | SB Blend                          | b                                         | b                                         | 2.5                                           | b                                                  |
| 3                  | 8/15/03        | Rex                               | b                                         | b                                         | 2.5                                           | b                                                  |
| Average =          |                | b                                 | b                                         | 2.5                                       | b                                             |                                                    |

<sup>&</sup>lt;sup>a</sup>1Re refers to Run 1 retest; Run 1 was aborted due to failed leak check.

#### 2.2.2 Semi-Dry Dryer

The dryer was tested on August 18, 19, and 20, 2003. Several process operating parameters were monitored to ensure that the dryer was operating normally during emissions testing. These parameters included baghouse inlet temperature, baghouse pressure drop, dryer operating temperature, and dryer production rate. **CBI Data Removed**: Additional information is provided in the confidential version of this document. During testing, values for each of these parameters were recorded on data log sheets at least every 30 minutes beginning before testing began and continuing for one reading after the test was concluded. The dryer operating temperature is the temperature of the supply air to the dryer. **CBI Data Removed**: Additional information is provided in the confidential version of this document. The average hourly rate (for each shift during which testing occurred) was obtained from plant personnel at the conclusion of testing the dryer.

#### CBI data removed

Additional information is provided in the confidential version of this document.

Table 2-2 presents a summary of the process operating parameters recorded for the dryer during the testing program. **CBI Data Removed**: Additional information is provided in the confidential version of this document. Raw data sheets for these parameters are found in Appendix G.

<sup>&</sup>lt;sup>b</sup> **CBI data removed**: See confidential version of document.

Table 2-2. Summary of Process Operating Parameters Monitored During Testing for the Dryer

| Test<br>Run<br>No. | Date<br>Tested | Ball Clay<br>Product<br>Processed | Dryer Operating<br>Temperature,<br>°C (°F) | Baghouse Inlet<br>Temperature,<br>°C (°F) | Baghouse<br>Pressure Drop,<br>Inches of Water | Dryer<br>Production Rate,<br>Mg/Hour<br>(Tons/Hour) |
|--------------------|----------------|-----------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 4                  | 8/18/03        | SB Blend                          | а                                          | а                                         | 5.5                                           | а                                                   |
| 5                  | 8/19/03        | SB Blend                          | а                                          | а                                         | 5.6                                           | а                                                   |
| 6                  | 8/20/03        | SB Blend                          | а                                          | а                                         | 5.7                                           | а                                                   |
| Average =          |                | а                                 | а                                          | 5.6                                       | а                                             |                                                     |

<sup>&</sup>lt;sup>a</sup> CBI data removed: See confidential version of document.

## 2.3 Sampling and Emission Measurement Locations

#### 2.3.1 Location 1—Mill Baghouse

Sampling was conducted for PCDD/PCDF emissions at the mill baghouse outlet stack. The existing test platform plus an added platform section was used for the sampling trains and test personnel. The modified platform was L-shaped to allow access to both ports. The metering box (console) was located and operated approximately 5 feet away, on one section of the new platform. Gas sampling and analytical instrumentation for CO<sub>2</sub> and O<sub>2</sub> was located and operated approximately 100 feet away in the environmentally-controlled MRI mobile lab.

The sampling location was within the 28-foot-long straight vertical section of the mill baghouse outlet stack. Sampling was conducted approximately 16 feet downstream and 12 feet upstream of the nearest flow disturbances. Because a downstream flow disturbance existed at about 5 duct diameters (rather than 8) from the sample location, 40 traverse points were used during sampling. The sampling location is presented in Figure 2-3. Two 4-inch ports were installed in the stack at approximately 40 inches above the platform. The top rail of the existing platform railing was removed 9 inches on either side of the additional ports to accommodate train movement on the platform. A small 2-inch port was installed to accommodate CEMS sampling 12 inches below and offset 180 degrees from the existing ports.

The internal diameter of the cross-sectional sampling area inside the stack is approximately 36 inches. A total of 40 traverse (sampling) points were used for the Method 23 traversing sampling train, 20 on each traverse (through each port) across the internal diameter of the duct. Each traverse consisted of one pass with 6-minute readings per point at isokinetic conditions. Total sampling time for each run was 240 minutes or 4 hours for the Method 23 sampling train.

One 2-inch port with threaded plug (2-inch pipe coupling) was installed for gas sampling and instrumental analysis for  $CO_2$  and  $O_2$ . The placement of the CEM probe end in the stack was at a point of average velocity.

#### 2.3.2 Location 2—Dryer Baghouse

Sampling was also conducted for PCDD/PCDF emissions at the dryer baghouse outlet stack. A modified test platform and the existing walkway adjacent to the product screw feeder were used for the sampling trains and test personnel. The metering box (console) was located on the modified test platform. Fugitive emissions were observed in the dryer baghouse vicinity. Thus, with the concurrence of the on-site WAM, the MRI mobile lab was left at the mill to avoid potential contamination from ambient conditions. The distance from the mobile lab with the CEMS to the dryer precluded installing the CEMS sampling line. Therefore, gas sampling for CO<sub>2</sub> and O<sub>2</sub> was performed by collecting an integrated bag sample from the console during the test run.

The sampling location was in the 16.6-foot long straight vertical run of the dryer baghouse outlet stack (45 feet total height). Sampling was conducted approximately 5 feet upstream and 11 feet downstream of the nearest flow disturbances. Because a downstream flow disturbance existed at about 5 duct diameters (rather than 8) from the sample location, 40 traverse points were used during sampling. This location is presented in Figure 2-4. Two 4-inch ports were installed at approximately 40 inches above the platform. The ideal port location would have been to have one port with a traverse that is congruent to the direction of the bend prior to the ports. However, due to process obstructions interfering with the operation of the sampling equipment at the test location, the ports were positioned 45 degrees off this ideal direction. This requirement becomes less critical as the distance from the disturbance increases and is not expected to have a significant effect on data. The top rail of the existing platform railing was removed 9 inches on either side of the additional ports to accommodate train movement on the platform.

The internal diameter of the cross sectional sampling area inside the stack is approximately 24 inches. A total of 40 traverse (sampling) points were used by the Method 23 traversing sampling train, 20 on each traverse (through each port) across the internal diameter of the duct. Each traverse consisted of one pass with 6-minute readings per point at isokinetic conditions. Total sampling time for each run was 240 minutes or 4 hours for the Method 23 sampling train.

## 2.4 Process Feed and Product Sampling

An integral part of the test program was the sampling and subsequent analysis of both the ball clay feed and product from the mill and the dryer. During each test run, samples of the feed material and samples of the product were taken using aluminum foil-lined scoops at least every 30 minutes beginning before testing began and continuing for one sample after the test was concluded. The feed material and product samples were placed in separate aluminum-foil-lined trays; each tray was covered with aluminum foil after each sample was placed in the tray to protect the sample from contamination. At the end of each test run, the trays were removed to a secure location, the samples were mixed and composited, and the composited samples were placed in labeled sample bottles for

PCDD/PCDF analysis. A duplicate of each sample was provided to the Unimin representative.

Samples of the ball clay feed material to the mill were collected at the inlet to the mill using an aluminum-foil-lined scoop. Samples of the ball clay product from the mill were collected from one of the primary cyclone product collection pipes using a separate aluminum-foil-lined scoop. Material sampling logs for the ball clay feed material to the mill and the mill product are located in Appendix G.

Samples of the ball clay feed material to the dryer were collected at the inlet to the dryer using an aluminum-foil-lined scoop. Samples of the ball clay product from the dryer were collected from the sampling port for the second stage bucket elevator for the dryer using a separate aluminum-foil-lined scoop. Material sampling logs for the ball clay feed material to the dryer and the dryer product are located in Appendix G.

## 2.5 Correlation of Sample Identification Numbers With Test Runs

Table 2-3 provides a correlation of the sample identification numbers with the test runs. The data in Table 2-3 are provided to allow the reader to readily identify the relevant raw data for the test runs in the Appendices.

Table 2-3. Correlation of Sample Identification Numbers With Test Runs

| Test<br>Run<br>No. | Sample<br>Collection<br>Date | Method 23<br>Sample ID<br>Numbers | Mill Feed<br>Sample ID<br>Numbers<br>(Method 8290) | Mill Product<br>Sample ID<br>Numbers<br>(Method 8290)       | Dryer Feed<br>Sample ID<br>Numbers<br>(Method 8290) | Dryer Product<br>Sample ID<br>Numbers<br>(Method 8290) |
|--------------------|------------------------------|-----------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|
| 1Re                | 8/13/03                      | 1009                              | 1111                                               | 1121                                                        |                                                     |                                                        |
| 2                  | 8/14/03                      | 2009                              | 2111                                               | 2121                                                        |                                                     |                                                        |
| 3                  | 8/15/03                      | 3009                              | 3111                                               | 3121                                                        |                                                     |                                                        |
| 4                  | 8/18/03                      | 4004                              |                                                    | NÎN DÎN DÎN DÎN DÎN ÎN ÎN ÎN<br>NÎN DÎN DÎN DÎN DÎN DÎN DÎN | 4211                                                | 4221                                                   |
| 5                  | 8/19/03                      | 5004                              |                                                    |                                                             | 5211                                                | 5221                                                   |
| 6                  | 8/20/03                      | 6004                              |                                                    |                                                             | 6211                                                | 6221                                                   |

(CBI data removed. See confidential version of document.)

Figure 2-1. Process Flow Diagram for the Mill Process at Unimin Corporation, Gleason, TN

(CBI data removed. See confidential version of document.)

Figure 2-2. Process Flow Diagram for the Dryer Process at Unimin Corporation, Gleason, TN



Figure 2-3. Mill Sampling Location



Figure 2-4. Dryer Sampling Location

# Section 3. Test Results

### 3.1 Objectives

The purpose of this test was to assist EPA in determining the emission levels of PCDDs and PCDFs from a ball clay facility. PCDDs and PCDFs include the 2,3,7,8-congeners and their totals.

The primary objectives of this EPA-sponsored demonstration were:

- To determine if PCDDs and PCDFs are emitted from dryers at ball clay processing facilities
- To determine if PCDDs and PCDFs are emitted from heated mills at ball clay processing facilities
- To estimate potential PCDDs and PCDFs emissions from these sources.

#### 3.2 Test Matrix

Testing was conducted during periods of production that were expected to be representative of the facility's normal operations. Testing was conducted over three test runs at two sampling locations. Each test run was performed over a 4-hour period.

The test matrix, which includes the number of samples or sample component sets collected during each run is presented in Table 3-1. The emission stack and process samples (feed and product) to be analyzed for PCDDs/PCDFs were transferred to Alta Analytical Perspectives in Wilmington, North Carolina, for subsequent analysis.

## 3.3 Field Test Changes and Problems

The leak check at port change during Run 1 (mill baghouse test location) did not pass the < 0.02 cubic feet per minute criteria, and, consequently, the run was aborted; thus, the corresponding next run of the test sequence was identified as Run 1 Retest. A high pressure drop across the sampling train was observed during Runs 1 and 1 Retest, most likely due to restrictions in the XAD-2 trap. The high pressure drop was compensated for by using a smaller nozzle during subsequent test runs. The smaller nozzles were large enough to ensure an adequate sample volume collection.

The sampling time was reduced from 5.3 hours to 4 hours due to the limited work schedule at the facility. This decision was jointly made by the on-site EPA WAM, RTI, and MRI. Plant operations stopped promptly at 1:00 pm daily, leaving limited time to complete setup, make port changes, and complete a 4-hour run. A quick turnaround

Table 3-1. Test Matrix: Summary of Emission and Process Sampling and Analytical Parameters and Methods

| Sampling location               | Sampling or<br>measurement time                                                                                                  | Sampling method and sample size                                                                                         | Emission parameters                             | Number of runs/samples                                                                                                  | Preparation method                      | Analytical method                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| Mill baghouse<br>emission stack | 4 hours                                                                                                                          | 40 <i>CFR</i> 60, Appendix A, Method 23, $\geq$ 6.0 m <sup>3</sup>                                                      | PCDDs/PCDFs                                     | 3                                                                                                                       | Soxhlet extraction                      | EPA Method 23<br>HRGC/HRMS<br>(SW-846, Method 8290A)           |
|                                 |                                                                                                                                  | 40 CFR 60, Appendix A, Method 2                                                                                         | Velocity, pressure, temp., volumetric flow rate | 3                                                                                                                       | NA                                      | Pitot tube,<br>Thermocouple                                    |
|                                 |                                                                                                                                  | 40 <i>CFR</i> 60, Appendix A, Method 4, $\geq$ 6.0 m <sup>3</sup>                                                       | Moisture                                        | 3                                                                                                                       | NA                                      | Gravimetric                                                    |
|                                 |                                                                                                                                  | 40 <i>CFR</i> 60, Appendix A, Method 3A, ≥ 2L/min sampling rate                                                         | CO <sub>2</sub> and O <sub>2</sub>              | Continuous during each run for a total of 3 runs                                                                        | Particulate matter and moisture removal | NDIR for CO <sub>2</sub><br>Micro-fuel cell for O <sub>2</sub> |
| Dryer baghouse emission stack   | 4 hours                                                                                                                          | 40 <i>CFR</i> 60, Appendix A, Method 23, $\geq$ 6.0 m <sup>3</sup>                                                      | PCDDs/PCDFs                                     | 3                                                                                                                       | Soxhlet extraction                      | EPA Method 23<br>HRGC/HRMS<br>(SW-846, Method 8290A)           |
|                                 |                                                                                                                                  | 40 CFR 60, Appendix A, Method 2                                                                                         | Velocity, pressure, temp., volumetric flow rate | 3                                                                                                                       | NA                                      | Pitot tube,<br>Thermocouple                                    |
|                                 |                                                                                                                                  | 40 <i>CFR</i> 60, Appendix A, Method 4, $\geq$ 6.0 m <sup>3</sup>                                                       | Moisture                                        | 3                                                                                                                       | NA                                      | Gravimetric                                                    |
|                                 |                                                                                                                                  | 40 CFR 60, Appendix A, Methods 3 and 3B                                                                                 | CO <sub>2</sub> and O <sub>2</sub>              | One integrated bag during each run for a total of 3 runs                                                                | NA                                      | Orsat                                                          |
| Mill Feed sample                | Composite of grab<br>samples collected<br>every 30 min<br>thereafter for 4 hr<br>sterreafter for 50 min prior<br>to start of run | ASTM D6051-01, 50-g (approx) grab samples collected/composited/mixed/ quartered until two 8-oz samples obtained         | PCDDs/PCDFs                                     | 2 composite samples collected<br>and split: one sample for<br>analysis and one sample to be<br>retained by the facility | Soxhlet extraction                      | HRGC/HRMS<br>(SW-846, Method 8290A)                            |
| Dryer Feed sample               | Composite of grab<br>samples collected<br>every 30 min<br>thereafter for 4 hr<br>starting 30 min prior<br>to start of run        | ASTM D6051-01, 50-g (approx) grab samples collected/composited/mixed/ quartered until two 8-oz samples obtained         | PCDDs/PCDFs                                     | 2 composite samples collected<br>and split: one sample for<br>analysis and one sample to be<br>retained by the facility | Soxhlet extraction                      | HRGC/HRMS<br>(SW-846, Method 8290A)                            |
| Mill product sample             | Composite of grab<br>samples collected<br>every 30 min<br>thereafter for 4 hr<br>starting 30 min prior<br>to start of run        | ASTM D6051-01, 50-g (approx) grab samples collected/composited then mixed/quartered until two 8-oz samples are obtained | PCDDs/PCDFs                                     | 2 composite samples collected<br>and split: one sample for<br>analysis and one sample to be<br>retained by the facility | Soxhlet extraction                      | HRGC/HRMS<br>(SW-846, Method 8290A)                            |
| Dryer product sample            | Composite of grab<br>samples collected<br>every 30 min<br>thereafter for 4 hr<br>starting 30 min prior<br>to start of run        | ASTM D6051-01, 50-g (approx) grab samples collected/composited/mixed/ quartered until two 8-oz samples obtained         | PCDDs/PCDFs                                     | 2 composite samples collected<br>and split: one sample for<br>analysis and one sample to be<br>retained by the facility | Soxhlet extraction                      | HRGC/HRMS<br>(SW-846, Method 8290A)                            |

analysis of the first test run emission sample provided results that were above detection limits for dioxins, supporting the adequacy of using 4-hour test runs. With the shortened run time, only one traverse through a port was needed during all test runs.

Due to process obstructions at the mill, the appropriate length probe could not be used to reach the farthest two points on each traverse. Thus, with the concurrence of the on-site EPA WAM, the third to the last point on each traverse point was sampled three times for a total of 18 minutes.

Additionally, the process obstructions at the dryer created a need to use a heated sample transfer line on the first traverse (Port B), and then the second traverse (Port A) was sampled with the probe directly attached to the train hot box.

Due to concerns that ball clay dust generated during loading operations at the dryer location could cause high background contamination of samples, the mobile laboratory with CEMS was not moved to this area. Therefore, O<sub>2</sub> and CO<sub>2</sub> samples were collected using a gas bag for an integrated sample during the run. Analysis was performed by Orsat instead of CEMS.

## 3.4 Summary of Test Results

A summary of dioxin and furan testing performed is provided in Table 3-1. Since process data were collected by RTI, emissions as related to feed rates or other process parameters were calculated by RTI. Results are reported for the mill in Tables 3-2 through 3-7 and for the dryer in Tables 3-8 through 3-13. Sample custody records are given in Appendix A. Field sampling and analytical data are included in Appendix B, and field equipment calibration records are given in Appendix C. Summary analytical reports are included in Appendix D.

For each location, dioxin and furan emission results are presented first by total amount found within a given homologue with the resultant emission factor, and next by the 2,3,7,8-substituted compounds, followed by the resultant emission factor. The feed and product sample results are reported on a dry basis.

Any value below the detection limit is treated as a null value when presenting totals for dioxins and furans. The detection limit is determined as any peak with less than a  $2\frac{1}{2}$  signal-to-noise ratio and is represented in the report tables by parentheses (#). Values reported in parentheses with a less-than sign in front of them (< #) indicate that a peak was observed at greater than  $2\frac{1}{2}$  times the signal, but that it was observed at less than one-tenth the lowest point on the calibration curve.

#### 3.4.1 Mill Test Results

A summary of total PCDD/PCDF results at the mill baghouse outlet is provided in Table 3-2. PCDD/PCDF results for the mill baghouse outlet are provided in Tables 3-3 and 3-4. As noted in Table 3-3, the internal quantitation standard (IQS) recoveries (used for sample quantification) corresponding to the Run 1 Retest sample were greater than 130 percent but less than 152 percent. The internal standard recovery values are presented and discussed in Section 5.

Clay feed and product sample results for the mill process are provided in Tables 3-5 and 3-6. As noted in these tables, results for the 1,2,3,4,6,7,8-heptachloro-dioxins (HpCDD) and octochloro-dioxins (OCDDs) exceeded the upper limit of the calibration curve. Alta Analytical Perspectives has examined the data and found that these results are within the linear range of the calibration curve. Note that these results already reflect a ten-fold dilution for the OCDD samples.

Data obtained from the emission sampling trains at the mill are summarized in Table 3-7. Each sampling train provided data on gas velocity, stack temperature, stack pressure, and volumetric flow rates. The O<sub>2</sub> and CO<sub>2</sub> results reported were obtained by CEMS for the first three runs. Stack flow rates appear slightly elevated at the mill for Run 3.

#### 3.4.2 Dryer Test Results

A summary of PCDD/PCDF results at the dryer is provided in Table 3-8. PCDD/PCDF results for dryer stack emissions are provided in Tables 3-9and 3-10.

Clay feed and product sample results for the dryer process are provided in Tables 3-11 and 3-12. As noted in these tables, results for HpCDD and OCDD exceeded the upper limit of the calibration curve. Alta Analytical Perspectives has examined the data and found that these results are within the linear range of the curve with the exception of Run 4 feed and product, as well as Run 5 feed. For these three samples, the reported concentrations for OCDD may be underestimated by as much as 50 percent. Note that these results already reflect a ten-fold dilution for the OCDD sample results.

Data obtained from the emission sampling trains at the dryer are summarized in Table 3-13.

Table 3-2. Summary of Total Dioxin/Furan Results for Mill Samples

|                                 | Run 1<br>Retest | <u>Run 2</u> | <u>Run 3</u> | <u>Average</u> |
|---------------------------------|-----------------|--------------|--------------|----------------|
| Air Emissions                   |                 |              |              |                |
| Total PCDDs and PCDFs           |                 |              |              |                |
| Total PCDDs (pg/dscm)           | 117             | 167          | 119          | 135            |
| Total PCDFs (pg/dscm)           | 16.3            | 77.6         | 70.1         | 54.7           |
| Total PCDDs and PCDFs (pg/dscm) | 134             | 245          | 189          | 189            |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
| Emission Rates/Factors          |                 |              |              |                |
|                                 |                 |              |              |                |
| Dry Clay Process Rate (Mg/hr)   | b               | b            | b            | b              |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
| Material Analyses               |                 |              |              |                |
| Clay Feed <sup>a</sup>          |                 |              |              |                |
| Total PCDDs and PCDFs (pg/g)    | b               | b            | b            | b              |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
| Clay Product <sup>a</sup>       |                 |              |              |                |
| Total PCDDs and PCDFs (pg/g)    | b               | b            | b            | b              |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |
|                                 |                 |              |              |                |

<sup>&</sup>lt;sup>a</sup> Clay feed and product concentrations are calculated on a dry basis. <sup>b</sup> **CBI data removed**: See confidential version of document.

Table 3-3. Dioxin/Furan Homolog Results for Mill Stack Samples

| Analyte                            | Run 1 Retest <sup>b</sup> | Run 2       | Run 3       | Average |
|------------------------------------|---------------------------|-------------|-------------|---------|
| Dioxins (pg/dscm)                  |                           |             |             |         |
| TCDD                               | 27.1                      | 43.9        | 30.0        |         |
| PeCDD                              | 16.6                      | 30.7        | 15.7        |         |
| HxCDD                              | 10.7                      | 26.6        | 8.4         |         |
| HpCDD                              | 12.1                      | 17.8        | 15.4        |         |
| OCDD                               | <u>50.8</u>               | <u>48.3</u> | <u>49.6</u> |         |
| Total PCDDs (pg/dscm) <sup>a</sup> | 117                       | 167         | 119         | 135     |
| Furans (pg/dscm)                   |                           |             |             |         |
| TCDF                               | 4.86                      | 24.7        | 17.6        |         |
| PeCDF                              | 2.98                      | 20.5        | 17.5        |         |
| HxCDF                              | 3.55                      | 17.7        | 17.2        |         |
| HpCDF                              | 27.4                      | 11.5        | 12.4        |         |
| OCDF                               | <u>2.15</u>               | <u>3.30</u> | <u>5.39</u> |         |
| Total PCDFs (pg/dscm) <sup>a</sup> | 16.3                      | 77.6        | 70.1        | 54.7    |
| Total PCDDs and PCDFs (pg/dscm)    | 134                       | 245         | 189         | 189     |

<sup>&</sup>lt;sup>a</sup> Totals do not include values below detection limit; they are treated as zeros.

Recoveries for corresponding Internal Quantitation Standards were all above 130 percent, but less than 152 percent. See Section 5.2 for further explanation.

Table 3-4. Dioxin/Furan Homolog Emission Factors for Mill Stack Samples

|                     | Er          | Emission Rate, pg/hr |             | Proce    | Process Rate, Mg/hrb |       |          | Emission Factor, pg/Mg <sup>b</sup> |       |         |
|---------------------|-------------|----------------------|-------------|----------|----------------------|-------|----------|-------------------------------------|-------|---------|
| Homolog             | Run 1 Re    | Run 2                | Run 3       | Run 1 RE | Run 2                | Run 3 | Run 1 Re | Run 2                               | Run 3 | Average |
| Total TCDD          | 8.09E+05    | 1.32E+06             | 9.89E+05    |          |                      |       |          |                                     |       | _       |
| Total PeCDD         | 4.96E+05    | 9.18E+05             | 5.18E+05    |          |                      |       |          |                                     |       |         |
| Total HxCDD         | 3.19E+05    | 7.97E+05             | 2.79E+05    |          |                      |       |          |                                     |       |         |
| Total HpCDD         | 3.61E+05    | 5.32E+05             | 5.09E+05    |          |                      |       |          |                                     |       |         |
| Total OCDD          | 1.52E+06    | 1.45E+06             | 1.64E+06    |          |                      |       |          |                                     |       |         |
| Total CDD           | 3.50E+06    | 5.01E+06             | 3.93E+06    |          |                      |       |          |                                     |       |         |
| Total TCDF          | 1.45E+05    | 7.40E+05             | 5.82E+05    |          |                      |       |          |                                     |       |         |
| Total PeCDF         | 8.89E+04    | 6.13E+05             | 5.78E+05    |          |                      |       |          |                                     |       |         |
| Total HxCDF         | 1.06E+05    | 5.29E+05             | 5.67E+05    |          |                      |       |          |                                     |       |         |
| Total HpCDF         | 8.19E+04    | 3.43E+05             | 4.08E+05    |          |                      |       |          |                                     |       |         |
| Total OCDF          | 6.43E+04    | 9.89E+04             | 1.78E+05    |          |                      |       |          |                                     |       |         |
| Total CDF           | 4.86E+05    | 2.32E+06             | 2.31E+06    |          |                      |       |          |                                     |       |         |
| Total CDD/CDF       | 3.99E+06    | 7.33E+06             | 6.24E+06    |          |                      |       |          |                                     |       |         |
| 2,3,7,8 TCDD        | 5.83E+04    | 7.21E+04             | 6.08E+04    |          |                      |       |          |                                     |       |         |
| 1,2,3,7,8 PeCDD     | 2.89E+04    | 4.62E+04             | (<4.75E+04) |          |                      |       |          |                                     |       |         |
| 1,2,3,4,7,8 HxCDD   | (1.67E+04)  | (2.67E+04)           | (3.65E+04)  |          |                      |       |          |                                     |       |         |
| 1,2,3,6,7,8 HxCDD   | (<2.51E+04) | (<4.41E+04)          | (<4.75E+04) |          |                      |       |          |                                     |       |         |
| 1,2,3,7,8,9 HxCDD   | 2.73E+04    | 5.38E+04             | (<4.75E+04) |          |                      |       |          |                                     |       |         |
| 1,2,3,4,6,7,8 HpCDD | 1.62E+05    | 2.47E+05             | 2.27E+05    |          |                      |       |          |                                     |       |         |
| Total OCDD          | 1.52E+06    | 1.45E+06             | 1.64E+06    |          |                      |       |          |                                     |       |         |
| 2,3,7,8 TCDF        | 1.35E+04    | 3.72E+04             | 8.66E+04    |          |                      |       |          |                                     |       |         |
| 1,2,3,7,8 PeCDF     | (4.71E+04)  | {5.31E+04}           | (<4.75E+04) |          |                      |       |          |                                     |       |         |
| 2,3,4,7,8 PeCDF     | (<2.51E+04) | 7.22E+04             | 9.79E+04    |          |                      |       |          |                                     |       |         |
| 1,2,3,4,7,8 HxCDF   | (<2.51E+04) | 8.75E+04             | 9.11E+04    |          |                      |       |          |                                     |       |         |
| 1,2,3,6,7,8 HxCDF   | (<2.51E+04) | 7.85E+04             | 7.62E+04    |          |                      |       |          |                                     |       |         |
| 2,3,4,6,7,8 HxCDF   | (<2.51E+04) | {7.90E+04}           | 7.78E+04    |          |                      |       |          |                                     |       |         |
| 1,2,3,7,8,9 HxCDF   | (5.98E+03)  | (5.53E+03)           | (6.97E+03)  |          |                      |       |          |                                     |       |         |
| 1,2,3,4,6,7,8 HpCDF | 5.33E+04    | 2.35E+05             | 2.37E+05    |          |                      |       |          |                                     |       |         |
| 1,2,3,6,7,8,9 HpCDF | (7.94E+03)  | (1.12E+04)           | 4.87E+04    |          |                      |       |          |                                     |       |         |
| Total OCDF          | 6.43E+04    | 9.88E+04             | 1.78E+05    |          |                      |       |          |                                     |       |         |

<sup>&</sup>lt;sup>a</sup> Non-detect values, designated by parentheses ( ), listed are sample- and analyte-specific and are calculated as "0" in the table "subtotals and totals" results. Estimated Maximum Possible Concentration (EMPC) peak values, designated by brackets { }, listed are sample- and analyte-specific, and using the Table isomer value shown, are included in the "subtotals" results.

<sup>&</sup>lt;sup>b</sup> **CBI data removed**: See confidential version of document.

Table 3-5. Dioxin/Furan Mill Clay Feed Homolog Results<sup>a</sup>

| Analyte                                                                          | Run 1<br>Retest | Run 2    | Run 3 | Average |  |  |  |
|----------------------------------------------------------------------------------|-----------------|----------|-------|---------|--|--|--|
| Clay Feed                                                                        | SB Blend        | SB Blend | REX   |         |  |  |  |
| Dioxins (pg/g dry wt.) TCDD PeCDD HxCDD HpCDD OCDD Total PCDDs <sup>b</sup>      |                 |          |       |         |  |  |  |
| Furans (pg/g dry wt.)  TCDF  PeCDF  HxCDF  HpCDF  OCDF  Total PCDFs <sup>b</sup> |                 |          |       |         |  |  |  |
| Total PCDDs and PCDFs (pg/g, ng/kg, dry wt.)                                     |                 |          |       |         |  |  |  |
| <sup>a</sup> CBI data removed: See confidential version of                       | f document.     |          |       |         |  |  |  |

Table 3-6. Dioxin/Furan Mill Clay Product Homolog Results<sup>a</sup>

| Analyte                                                                                                            | Run 1<br>Retest | Run 2    | Run 3 | Average |
|--------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------|---------|
| Clay Product                                                                                                       | SB Blend        | SB Blend | REX   |         |
| Dioxins (pg/g dry wt.) TCDD PeCDD HxCDD HpCDD OCDD Total PCDDs <sup>b</sup>                                        |                 |          |       |         |
| Furans (pg/g dry wt.)  TCDF  PeCDF  HxCDF  HpCDF  OCDF  Total PCDFsb  Total PCDDs and PCDFs (pg/g, ng/kg, dry wt.) |                 |          |       |         |

<sup>&</sup>lt;sup>a</sup> **CBI data removed**: See confidential version of document.

**Table 3-7. Mill Sampling and Stack Parameters** 

|             |          |       |        |                   |                      |          | Average   | Stack    |              |              | Stack         |
|-------------|----------|-------|--------|-------------------|----------------------|----------|-----------|----------|--------------|--------------|---------------|
|             | Sampling | Samp  | le Gas |                   |                      | Moisture | Stack     | Static   |              | Stack        | Flow          |
|             | Time     | Vol   | ume    | CEMS A            | nalysis <sup>a</sup> | Content  | Temp.     | Pressure |              | Velocity     | Rate          |
|             | (min)    | (acm) | (dscm) | % CO <sub>2</sub> | % O <sub>2</sub>     | (%)      | ( °C)     | (mm Hg)  | % Isokinetic | (m/min)      | (dscm/hr)     |
| Mill        |          |       |        |                   |                      |          |           |          |              |              |               |
| Run 1Retest | 240      | 6.271 | 5.942  | 0.69              | 19.8                 | b        | 62        | -0.39    | 104          | 990          | 29,860        |
| Run 2       | 240      | 3.556 | 3.392  | 0.69              | 19.7                 | b        | 63        | -0.39    | 105          | 987          | 29,940        |
| Run 3       | 240      | 3.666 | 3.471  | <u>0.60</u>       | <u>19.8</u>          | <u>b</u> | <u>61</u> | -0.39    | 97.5         | <u>1,077</u> | <u>33,000</u> |
| Average =   |          |       |        | 0.66              | 19.8                 | b        | 62        |          | NA           | 1,020        | 30,930        |

 <sup>&</sup>lt;sup>a</sup> Percent CO<sub>2</sub> and O<sub>2</sub> for Runs 1 Retest through 3 were analyzed by CEMS.
 <sup>b</sup> CBI data removed: See confidential version of document.

Table 3-8. Summary of Total Dioxin/Furan Results for Dryer Samples

|                                 | <u>Run 4</u> | <u>Run 5</u> | Run 6 | <u>Average</u> |
|---------------------------------|--------------|--------------|-------|----------------|
| Air Emissions                   |              |              |       |                |
| Total PCDDs/PCDFs               |              |              |       |                |
| Total PCDDs (pg/dscm)           | 255          | 353          | 370   | 326            |
| Total PCDFs (pg/dscm)           | 48.4         | 25.0         | 5.97  | 26.5           |
| Total PCDDs and PCDFs (pg/dscm) | 304          | 378          | 376   | 353            |
|                                 |              |              |       |                |
| Emission Rates/Factors          |              |              |       |                |
| Dry Clay Process Rate (Mg/hr)   | b            | b            | b     | b              |
| <u>Material Analyses</u>        |              |              |       |                |
| Clay Feed <sup>a</sup>          |              |              |       |                |
| Total PCDDs and PCDFs (pg/g)    | b            | b            | b     | b              |
| Total 2,3,7,8-TCDD TEQ (pg/g)   | b            | b            | b     | b              |
| Clay Product <sup>a</sup>       |              |              |       |                |
| Total PCDDs and PCDFs (pg/g)    | b            | b            | b     | b              |
| Total 2,3,7,8-TCDD TEQ (pg/g)   | b            | b            | b     | b              |

<sup>&</sup>lt;sup>a</sup> Clay feed and product concentrations are calculated on a dry basis.
<sup>b</sup> **CBI data removed**: See confidential version of document.

Table 3-9. Dioxin/Furan Homolog Results for Dryer Stack Samples

| Analyte                            | Run 4        | Run 5        | Run 6        | Average |
|------------------------------------|--------------|--------------|--------------|---------|
| Dioxins (pg/dscm)                  |              |              |              |         |
| TCDD                               | 21.0         | 13.0         | 18.0         |         |
| PeCDD                              | 17.1         | 20.6         | 19.4         |         |
| HxCDD                              | 23.7         | 28.3         | 24.0         |         |
| HpCDD                              | 28.0         | 37.2         | 32.8         |         |
| OCDD                               | <u>165.7</u> | <u>253.5</u> | <u>276.4</u> |         |
| Total PCDDs (pg/dscm) <sup>a</sup> | 255          | 353          | 370          | 326     |
| urans (pg/dscm)                    |              |              |              |         |
| TCDF                               | 11.36        | 9.27         | (0.479)      |         |
| PeCDF                              | 11.83        | 7.23         | (0.997)      |         |
| HxCDF                              | 12.38        | 3.99         | 4.42         |         |
| HpCDF                              | 9.11         | 2.68         | 1.55         |         |
| OCDF                               | <u>3.78</u>  | <u>1.88</u>  | <u>1.58</u>  |         |
| Total PCDFs (pg/dscm) <sup>a</sup> | 48.4         | 25.0         | 7.55         | 27.0    |
| otal PCDDs and PCDFs (pg/dscm)     | 304          | 378          | 378          | 353     |

<sup>&</sup>lt;sup>a</sup> Non-detect values, designated by parentheses (), listed are sample- and analyte-specific and are calculated as "0" in the table "subtotals and totals" results. Estimated Maximum Possible Concentration peak values, designated by brackets {}, listed are sample- and analyte-specific, and using the Table isomer value shown, are included in the "subtotals" results.

Table 3-10. Dioxin/Furan Homolog Emission Factors for Dryer Stack Samples

|                     |             | Emission Rate, pg/hr |             |       | Process Rate, Mg/hrb |       |       | Emission Factor, pg/Mg <sup>b</sup> |       |         |  |
|---------------------|-------------|----------------------|-------------|-------|----------------------|-------|-------|-------------------------------------|-------|---------|--|
| Homolog             | Run 4       | Run 5                | Run 6       | Run 4 | Run 5                | Run 6 | Run 4 | Run 5                               | Run 6 | Average |  |
| Total TCDD          | 4.40E+05    | 2.68E+05             | 3.64E+05    |       |                      |       |       |                                     |       |         |  |
| Total PeCDD         | 3.57E+05    | 4.26E+05             | 3.91E+05    |       |                      |       |       |                                     |       |         |  |
| Total HxCDD         | 4.95E+05    | 5.83E+05             | 4.84E+05    |       |                      |       |       |                                     |       |         |  |
| Total HpCDD         | 5.85E+05    | 7.68E+05             | 6.62E+05    |       |                      |       |       |                                     |       |         |  |
| Total OCDD          | 3.46E+06    | 5.23E+06             | 5.59E+06    |       |                      |       |       |                                     |       |         |  |
| Total CDD           | 5.34E+06    | 7.28E+06             | 7.49E+06    |       |                      |       |       |                                     |       |         |  |
| Total TCDF          | 2.37E+05    | 1.91E+05             | (9.68E+03)  |       |                      |       |       |                                     |       |         |  |
| Total PeCDF         | 2.47E+05    | 1.49E+05             | (2.01E+04)  |       |                      |       |       |                                     |       |         |  |
| Total HxCDF         | 2.59E+05    | 8.24E+04             | 8.94E+04    |       |                      |       |       |                                     |       |         |  |
| Total HpCDF         | 1.90E+05    | 5.53E+04             | 3.13E+04    |       |                      |       |       |                                     |       |         |  |
| Total OCDF          | 7.90E+04    | 3.88E+04             | (<4.14E+04) |       |                      |       |       |                                     |       |         |  |
| Total CDF           | 1.01E+06    | 5.17E+05             | 1.21E+05    |       |                      |       |       |                                     |       |         |  |
| Total CDD/CDF       | 6.35E+06    | 7.80E+06             | 7.61E+06    |       |                      |       |       |                                     |       |         |  |
| 2,3,7,8 TCDD        | 2.47E+04    | {1.87E+04}           | 2.28E+04    |       |                      |       |       |                                     |       |         |  |
| 1,2,3,7,8 PeCDD     | 2.60E+04    | 2.91E+04             | 3.07E+04    |       |                      |       |       |                                     |       |         |  |
| 1,2,3,4,7,8 HxCDD   | (1.49E+04)  | (1.64E+04)           | (1.16E+04)  |       |                      |       |       |                                     |       |         |  |
| 1,2,3,6,7,8 HxCDD   | (<2.13E+04) | 3.81E+04             | 2.42E+04    |       |                      |       |       |                                     |       |         |  |
| 1,2,3,7,8,9 HxCDD   | 5.64E+04    | {6.61E+04}           | 5.09E+04    |       |                      |       |       |                                     |       |         |  |
| 1,2,3,4,6,7,8 HpCDD | 2.51E+05    | 3.31E+05             | 2.67E+05    |       |                      |       |       |                                     |       |         |  |
| Total OCDD          | 3.46E+06    | 5.23E+06             | 5.59E+06    |       |                      |       |       |                                     |       |         |  |
| 2,3,7,8 TCDF        | {1.66E+04}  | 2.27E+04             | (9.68E+04)  |       |                      |       |       |                                     |       |         |  |
| 1,2,3,7,8 PeCDF     | 2.39E+04    | (1.91E+04)           | (2.10E+04)  |       |                      |       |       |                                     |       |         |  |
| 2,3,4,7,8 PeCDF     | 3.78E+04    | 3.00E+04             | (1.94E+04)  |       |                      |       |       |                                     |       |         |  |
| 1,2,3,4,7,8 HxCDF   | 4.04E+04    | {2.71E+04}           | (<2.07E+04) |       |                      |       |       |                                     |       |         |  |
| 1,2,3,6,7,8 HxCDF   | 3.59E+04    | (<2.15E+04)          | (<2.07E+04) |       |                      |       |       |                                     |       |         |  |
| 2,3,4,6,7,8 HxCDF   | 3.58E+04    | {2.32E+04}           | (<2.07E+04) |       |                      |       |       |                                     |       |         |  |
| 1,2,3,7,8,9 HxCDF   | (<2.13E+04) | (4.98E+04)           | (6.17E+04)  |       |                      |       |       |                                     |       |         |  |
| 1,2,3,4,6,7,8 HpCDF | 1.04E+05    | 5.54E+04             | 3.13E+04    |       |                      |       |       |                                     |       |         |  |
| 1,2,3,6,7,8,9 HpCDF | 2.52E+04    | (1.19E+04)           | (5.63E+04)  |       |                      |       |       |                                     |       |         |  |
| Total OCDF          | 7.90E+04    | (<4.29E+04)          | (4.14E+04)  |       |                      |       |       |                                     |       |         |  |

a Non-detect values, designated by parentheses (), listed are sample- and analyte-specific and are calculated as "0" in the table "subtotals and totals" results. Estimated Maximum Possible Concentration peak values, designated by brackets {}, listed are sample- and analyte-specific, and using the Table isomer value shown, are included in the "subtotals" results.

b CBI data removed: See confidential version of document.

Table 3-11. Dioxin/Furan Dryer Clay Feed Homolog Results $^{\rm a}$ 

| Analyte                                                                                                    | Run 4    | Run 5    | Run 6    | Average |
|------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------|
| Product Type                                                                                               | SB Blend | SB Blend | SB Blend |         |
| Dioxins (pg/g dry wt.) TCDD PeCDD HxCDD HpCDD OCDD Total PCDDs <sup>c</sup>                                |          |          |          |         |
| Furans (pg/g dry wt.)  TCDF  PeCDF  HxCDF  HpCDF  OCDF  Total PCDFs°  Total PCDDs and PCDFs (pg/g dry wt.) |          |          |          |         |

<sup>&</sup>lt;sup>a</sup> **CBI data removed**: See confidential version of document.

 $\begin{tabular}{ll} \textbf{Table 3-12. Dioxin/Furan Dryer Clay Product Homolog Results}^a \end{tabular}$ 

| Analyte                            | Run 4    | Run 5    | Run 6    | Average |
|------------------------------------|----------|----------|----------|---------|
| Product Type                       | SB Blend | SB Blend | SB Blend | -       |
| Dioxins (pg/g dry wt.)             |          |          |          |         |
| TCDD                               |          |          |          |         |
| PeCDD                              |          |          |          |         |
| HxCDD                              |          |          |          |         |
| HpCDD                              |          |          |          |         |
| OCDD                               |          |          |          |         |
| Total PCDDs <sup>c</sup>           |          |          |          |         |
| Furans (pg/g dry wt.)              |          |          |          |         |
| TCDF                               |          |          |          |         |
| PeCDF                              |          |          |          |         |
| HxCDF                              |          |          |          |         |
| HpCDF                              |          |          |          |         |
| OCDF                               |          |          |          |         |
| Total PCDFs <sup>c</sup>           |          |          |          |         |
| Total PCDDs and PCDFs (pg/g dry wt | .)       |          |          |         |

<sup>&</sup>lt;sup>a</sup> **CBI data removed**: See confidential version of document.

 Table 3-13. Dryer Sampling and Stack Parameters

|           |          |       |        |                   |                     |          | Average     | Stack    |         |              | Stack         |
|-----------|----------|-------|--------|-------------------|---------------------|----------|-------------|----------|---------|--------------|---------------|
|           | Sampling | Samp  | le Gas |                   |                     | Moisture | Stack       | Static   |         | Stack        | Flow          |
|           | Time     | Vol   | Volume |                   | alysis <sup>a</sup> | Content  | Temp.       | Pressure | % Iso-  | Velocity     | Rate          |
|           | (min)    | (acm) | (dscm) | % CO <sub>2</sub> | % O <sub>2</sub>    | (%)      | (°C)        | (mm Hg)  | kinetic | (m/min)      | (dscm/hr)     |
| Dryer     |          |       |        |                   |                     |          |             |          |         |              |               |
| Run 4     | 240      | 5.229 | 4.896  | 0.3               | 19.7                | b        | 54.4        | -0.11    | 96.5    | 1,499        | 20,900        |
| Run 5     | 240      | 5.073 | 4.813  | 0.2               | 19.7                | b        | 55.3        | -0.11    | 96.0    | 1,476        | 20,650        |
| Run 6     | 240      | 5.139 | 4.885  | <u>0.2</u>        | <u>19.8</u>         | <u>b</u> | <u>52.1</u> | -0.11    | 99.5    | <u>1,427</u> | <u>20,210</u> |
| Average = |          |       |        | 0.2               | 19.7                | b        | 54          |          | NA      | 1,470        | 20,590        |

<sup>&</sup>lt;sup>a</sup> Percent CO<sub>2</sub> and O<sub>2</sub> for Runs 4 through 6 were analyzed by Orsat.
<sup>b</sup> **CBI data removed**: See confidential version of

document.

# Section 4. Procedures for Sampling, Analysis, and Process Data Collection

This section describes the sampling, analysis, and process data collection procedures that were used for this test project. The published methods and Standard Operating Procedures (SOPs) that were used are cited. Details providing clarification and any modifications to or deviations from the published methods are presented in this section. Otherwise, the cited methods were followed.

#### 4.1 Sampling Methods

#### 4.1.1 Emissions Sampling Procedures

The emission samples collected required the use of the sampling system(s) as shown at each test location:

#### (1) Mill Baghouse

- EPA Method 23 isokinetic sampling train for PCDDs and PCDFs.
- EPA Method 3A for CO<sub>2</sub> and O<sub>2</sub>.

#### (2) Dryer Baghouse

- EPA Method 23 isokinetic sampling train for PCDDs and PCDFs.
- EPA Method 3 for CO<sub>2</sub> and O<sub>2</sub>.

The following methods were employed in the use and operation of these sampling trains and systems.

#### 4.1.1.1 Sample and Velocity Traverses

Method 1 in Appendix A of 40 *CFR* 60 (basis for MRI SOP MRI-8401) was used to establish traverse (sampling) points at the two test locations for the traversing sampling trains. A check for absence of cyclonic flow was conducted at each location prior to the start of sampling. No cyclonic or nonparallel flow conditions were found at either location.

#### 4.1.1.2 Determination of Gas Velocity and Volumetric Flow Rates

Method 2 in Appendix A of 40 *CFR* 60 (basis for MRI SOP MRI-8402) was used to measure gas velocities and volumetric flow rates with Type S pitot tubes that are

components of the traversing sampling trains. Pitot tubes meeting the dimensional specifications in the method were used. The pitot tube coefficient was adjusted for blockage in the gas stream caused by the probe assembly used during sampling in the duct having internal an diameter of 24 inches. An average adjusted coefficient for each such pitot tube was calculated in a spreadsheet using procedures cited in Method 2. The static pressure was determined within the gas stream as indicated in Method 2.

An aneroid barometer calibrated against a mercury barometer was used to measure atmospheric pressure at the sampling locations.

#### 4.1.1.3 Determination of Moisture Content

Method 4 in Appendix A of 40 *CFR* 60 incorporated as part of Method 23 was used to determine the moisture (water vapor) content of the gas stream. Moisture collected during sampling was determined gravimetrically from the difference between the initial and final weights of all of the impingers in a train, including the resin cartridge.

#### 4.1.1.4 Sampling of PCDDs and PCDFs

Method 23 in Appendix A of 40 *CFR* 60 (basis for MRI SOP MRI-8404) was used to collect samples to be analyzed for dioxins and furans. A schematic of a sampling train is presented in Figure 4-1. The Method 23 sampling train is based upon the apparatus design normally employed for sampling conducted under USEPA Method 5 modified to include a special coiled condenser and sorbent module assembly for collection for PCDDs/PCDFs. The types and content of each impinger was as follows:

- 1. 2-L Modified Greenburg-Smith with a shortened stem (knockout), empty.
- 2. 500 mL Modified Greenburg-Smith containing 100 mL of Milli-Q grade water.
- 3. 500 mL Greenburg-Smith containing 100 mL of Milli-Q grade water.
- 4. 500 mL Modified Greenburg-Smith, empty.
- 5. 500 mL Modified Greenburg-Smith containing 200 g silica SiO<sub>2</sub>.
- 6. 500 mL Modified Greenburg-Smith containing 200 g silica SiO<sub>2</sub>.

Clarifications of and modifications to the method are included in the following discussion.

Nickel-plated stainless steel nozzles and quartz glass probe liners were used in the probes. The internal surface of the compression fittings used for connecting nozzles to probe liners are permanently coated with abrasion-resistant Teflon® to prevent sample gas contact with the stainless steel, and the connections were positioned within each probe. Due to the very limited space at the mill baghouse, a heated sample transfer line was used between the probe and sampling train.



Figure 4-1. Method 23 Sampling Train for PCDDs and PCDFs

Since no significant quantities of particulate matter were observed during the first sampling run, no cyclone/flask assembly was used in front of the filter holder thereafter. During the first sampling run a significant pressure drop across the sampling train was observed and sampling was stopped so that the filter could be recovered and replaced. Leak checks were conducted prior to replacing filters and before continuing the sampling. The large pressure drop across the sampling train was compensated for in subsequent runs by using a smaller nozzle diameter. All filters were submitted to the analytical laboratory for analysis as described below in Section 4.2.1.

Filter supports in the filter holders were Teflon<sup>®</sup> frits. Quartz fiber filters having the same specifications described in the method were used. Each cartridge (sorbent trap) was loaded with approximately 40 grams of XAD-2 resin.

Two silica gel impingers were used in each train. In addition, the first 500-mL impinger in the sampling train was replaced with a 2-L impinger to minimize any need to swap impinger components during test runs.

Sample recovery procedures used were those specified in the method with one exception: excluding methylene chloride rinses for train components as preapproved by EPA prior to the field test. Acetone and toluene were used for rinsing train components. The acetone and toluene solvents used during the test were each from one lot. The acetone and toluene rinses were collected separately in the field, but in the lab were combined for extraction and analysis of dioxins and furans. The sample recovery scheme used for the trains is presented in Figure 4-2. The condensate collected in the impingers was weighed and discarded.

Blanks were collected in the field during the test. A Method 23 sampling train (using previously recovered glassware) was charged and leak checked at one sampling location and then returned for sample recovery. This sample (blank train) was submitted for PCDDs/PCDFs analysis along with the field samples. In addition, a set of reagent blanks consisting of one filter, one XAD, 400 mL acetone, 200 mL toluene, and 200 mL Milli-Q water was collected and archived for possible future evaluation. The reagent blank samples will remain in MRI storage until approval of the final test report and will not be sent to the laboratory for analysis unless requested by the WAM.

A summary of isokinetic results from each run was provided to the on-site WAM for review before the next run was initiated.

All post-test calibrations were performed at the MRI facility.



Figure 4-2. Sample Recovery Scheme

#### 4.1.1.5 Sampling and Analysis for CO<sub>2</sub> and O<sub>2</sub>

Because of concerns with background contamination at the mill test location, Method 3 in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8406) was used to determine CO<sub>2</sub> and O<sub>2</sub> at that location. Multi-point, integrated gas bag samples were collected simultaneously with the traversing/isokinetic sampling for analysis of O<sub>2</sub> and CO<sub>2</sub> with subsequent determination of dry gas molecular weight. The integrated gas sampling apparatus used to collect the samples was a component of each traversing sampling train. Integrated gas samples were extracted at a constant rate from the exhaust of a traversing sampling train just upstream from the outlet of the dry gas meter outlet orifice.

The train was purged for one minute with stack gas then integrated gas sampling was started. Sampling was conducted at a constant rate throughout the run while the traversing/isokinetic sampling was in progress. Each integrated gas sampling apparatus was leak checked before and after each test run. The tubing at the connection to the dry gas meter outlet orifice was closed off, the integrated sampling apparatus pump was turned on, and the integrated sampling apparatus flow control valve was fully opened. No flow at the tubing outlet (i.e., where the gas sample bag would be connected during sampling), was used to indicate the apparatus was leak-free. Gas samples were analyzed with an Orsat analyzer.

At the dryer, a Continuous Emission Monitoring System (CEMS) was set up and operated according to Method 3A in Appendix A of 40 CFR 60 to sample and analyze for  $CO_2$  and  $O_2$ . Clarifications of and modifications to the methods are included in the following discussion.

All calibration gases were certified according to EPA Protocol 1. Gas concentrations that were used are shown in Table 4-1.

| Emission parameter | Zero-level gas   | Mid-level gas | High-level gas |
|--------------------|------------------|---------------|----------------|
| CO <sub>2</sub>    | Zero in nitrogen | 10% v/v       | 18% v/v        |
| $O_2$              | Zero gas         | 12% v/v       | 21% v/v        |

Table 4-1. Calibration Gases

A schematic of the sampling and analytical system used is presented in Figure 4-3. A brief description of each component follows:

**Probe**—3/8-inch outside diameter (OD) stainless steel (SS) sample line housed in a 1-inch SS heated sheath of sufficient length to reach the center of the stack. The stack end of the probe was fitted with a sintered SS 10-micron prefilter which was back-flushed after each run.

**Sample gas conditioner (for moisture removal)**—Chiller. The sample gas conditioner attaches to the back of the probe. It has a probe bracket, which is attached to



Figure 4-3. Instrumental Measurement System for CO<sub>2</sub> and O<sub>2</sub>

an ice bath. At this point the probe liner is connected to a 3/8-inch Teflon tube. The Teflon tube is coiled within the ice bath. As the hot stack gas is pulled through the chilled section of tubing in the ice bath the moisture in the gas is turned to condensate, which is collected in a moisture trap at the bottom of the coil. The conditioned gas sample is pulled out the top of the moisture trap into the sample line. The condensate is drained out the bottom of the moisture trap by a peristaltic pump.

**Sample line**—Consists of a 3/8-inch OD Teflon tube, which is attached to the exit of the sample gas conditioner and to the inlet of the sample gas distribution system at the other end. In the same nylon sheath is a 1/4-inch OD Teflon tube, or Bias line, which is used to deliver calibration gases to a tee located at the back of the probe and in front of the sample gas conditioner. Various length sections from 25 to 100 feet are available and can be jointed together to reach sampling locations.

Sample gas and calibration gas distribution manifold—Located in the sample trailer. It is capable of pulling 1 to 10 L/minute (dry gas), although normal gas delivery to the CEMS is typically 2 L/minute, and can distribute the sample gas flow to five separate analyzers simultaneously. It can also deliver EPA Protocol 1 gases directly to the analyzers or to the back of the probe for a system bias check. The gas distribution manifold is located in the sampling trailer downstream of the sample gas conditioner and upstream of the selected analyzer(s).

**Data acquisition system**—Located in the sample trailer. MRI uses LABTECH Notebook Pro for Windows 95, Version 10.12, which is an integrated system that provides data acquisition, monitoring, and control. The system is designed such that each data channel can be configured separately with different characteristics. The normal mode of operation is continuous data collection written to disk in the background, while performing foreground tasks and displaying data in real time (1-minute averages). This system is run on a Pentium laptop computer with a 1-G hard drive. MRI also uses an identical computer (which can serve as a backup) for data transfer and processing. With the use of a spreadsheet designed and developed by MRI, calibration results are instantaneous and preliminary test results are available while on-site.

 $O_2$  analyzer—Located in the sample trailer. Servomex, Model 01440CISTD uses the principle of Magneto-pneumatic technique to measure the concentration of  $O_2$  (%) in the gas stream. It has measurement ranges of 0% to 25% and 0% to 100%.

 $CO_2$  analyzer—Located in the sample trailer. Servomex, Model 01440CISTD uses a single beam, dual wavelength IR technique to measure the concentration of  $CO_2(\%)$  in the gas stream. It has measurement ranges of 0% to 20% and 0% to 25%.

#### 4.1.2 Process Sampling Procedures

During each of the test runs, raw feed and product samples were collected for PCDDs/PCDFs analysis. Sampling was conducted as during the pretest site survey. Individual, representative "grab" samples, were collected using EPA-accepted methods (ASTM D6051-96) whereby several equal, grab samples of approximately 50 g each were collected over a period of time (if possible, every 30 minutes, beginning at least 30 minutes prior to the start of each test run and ending 30 minutes after the completion of each test run) and composited/mixed/quartered until the ideal sample size became available. An aluminum scoop wrapped in disposable aluminum foil and a large mixing container was used for sample collection and mixing.

Sufficient material was taken from the composited process sample to fill an 8-ounce glass container. A second sample was collected from this composite with one each of these samples sent to the lab for analysis, and the second sample retained by the plant. Any remaining material was returned to the plant. Special precleaned glass containers provided by the laboratory were used to collect, store and ship the field samples. The sealed field samples were wrapped with aluminum foil and placed in plastic bags along with a sample traceability form. The samples were then placed in their own insulated

shipping containers (separate from the emission samples) with ice and shipped by Federal Express overnight at the conclusion of the entire sample collection period.

#### 4.2 Analytical Procedures

The analytical methodology and procedures used by Alta Analytical Perspectives for this project are standardized methods and EPA-approved procedures. Any modifications to the analytical methods used on this project are described below.

#### 4.2.1 EPA Method 23 Samples

Before the sampling event, the sampling modules were prepared by the laboratory using precleaned XAD-2 resin and spiked with a known amount of five labeled PCDD/F surrogate standards. Upon return to the laboratory, the sample components recovered from the Method 23 trains (i.e., XAD-2 resin, rinses, and filter) were combined and extracted in the laboratory using toluene Soxhlet Dean-Stark extraction. The procedure for extraction involved placing the XAD-2 resin, concentrated rinses, and filter samples in the Soxhlet apparatus, spiking with <sup>13</sup>C<sub>12</sub> PCDD/PCDF internal standards, and extracting for a minimum of 16 hours.

The extract was split, with one-half being subjected to the sample fractionation procedures and analyzed for dioxins and furans, and one-half being archived. The final extract was prepared with the addition of recovery standards and provided for analysis by HRGC/HRMS using a final volume of  $20~\mu L$ .

Extracts were analyzed for dioxins and furans based on the procedures specified in Method 8290A, "Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS)," found in "Test Methods for Evaluating Solid Waste, Physical/Chemical (SW-846)." This analytical procedure included the separation of isomers of dioxin and furan using high-resolution gas chromatography followed by high-resolution mass spectrometry. Initial and continuing calibration criteria adhered to Method 23 criteria. The target analyte amounts and surrogate and internal standard recoveries were quantitated according to Method 23. A schematic of the analytical process is presented in Figure 4-4.

Note that a more robust Batch Control Spike (BCS<sub>3</sub>) has been incorporated into the method in place of the Laboratory Control Spike. Information on BCS<sub>3</sub> matrix spiking is provided in Appendix E. Specifically, Batch Control Spikes (BCS<sub>3</sub>):

• Were prepared in stages at the same time as the batch of field samples; i.e., at each phase involving the addition to the samples of the extraction, cleanup, and injection standards. For air matrices, the Batch CS<sub>3</sub> was initiated at the same point as when the XAD cartridges were prepared for sampling.



Figure 4-4. Schematic of EPA Method 23 and SW846 8290 Emission Samples Analysis Path



Figure 4-4. Schematic of EPA Method 23 and SW846 8290 Emission Samples Analysis Path (Continued)

- Consisted of one Batch CS<sub>3</sub> per batch of 20 samples or less—regardless of the matrix type—processed through the same spiking scheme with the same spiking solutions, same analyst, same delivery system, and at the same time as the field samples. The laboratory ensured that sufficient Batch CS<sub>3</sub>s was prepared to provide front- and back-end calibration verifications for all the samples as well as re-injections, when necessary.
- Were then analyzed at the beginning and at the end of each 12-hour analytical sequence during which samples are analyzed.

In order to use the front- and back-end Batch CS<sub>3</sub>s averaged RRFs to process the samples, the individual front- and back-end RRFs needed to meet a number of requirements (independent verification, RPD, and PD or bias). This information is provided in Appendix F, BCS<sub>3</sub> Performance Criteria. Details on performance criteria associated with the BCS<sub>3</sub> are also available from the laboratory SOPs.

#### 4.2.2 Process Samples

EPA Method 8290A was used to analyze the process samples. Method 8290A is a high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) analytical procedure capable of measuring low parts per trillion levels (picograms per g). Each process sample was thoroughly mixed and a 10-gram sample was removed, weighed, extracted, and analyzed for 17 PCDD/F congeners. The extracts were reanalyzed following a ten-fold dilution due to OCDD detector saturation. Reported concentrations have been adjusted. Even though HpCDD and OCDD results were above the highest point on the calibration curve, only OCDD was reanalyzed because review of HpCDD data suggested results were within the linear range of the curve. A separate aliquot is mixed, oven-dried at 125°C for 16 hours, and percent moisture is determined to calculate an equivalent 10-gram sample. A schematic of the analytical process is presented in Figure 4-5.

#### 4.3 Process Data

In order to ensure that the processes were operating in a manner that was representative of normal operating conditions during testing, close contact was maintained with the facility operators and specific process data were collected. As the data were collected, process and control device operating parameters were monitored to ensure that they were within the normal ranges, as specified by the facility. In addition, at the beginning of each test day, a schedule was obtained of any planned process changes, product changeovers, or other process-related information that could impact the test program. Any abnormal process conditions were discussed with the facility operators to determine if testing should be suspended.



Figure 4-5. Schematic of Process Samples Analysis Path

# Section 5. QA/QC Activities

This section summarizes the QA/QC activities associated with this project. The QA/QC requirements and emission measurement and data quality objectives for this project were presented in the Quality Assurance Project Plan (QAPP). Major components of QC procedures included: (1) sampling equipment calibrations, (2) procedural elements of the methods such as leak checks, proper traversing, placement of sampling probes, verification of the integrity of metering systems prior to the start of sampling, etc., and (3) the use of QC samples in the analytical approach such as reagent blanks, run-used train blank, method blanks, batch control spikes, duplicate injections of the BCS<sub>3</sub>, and internal standard and surrogate standard spiking. Data quality objectives, as specified in the project QA plan, are evaluated in Section 5.1. Internal standard and surrogate standard recoveries are presented in Section 5.2. Based on the QA activities, a discussion of data quality is presented in Section 5.3.

#### 5.1 QA/QC Objectives Summary

Data quality criteria along with an evaluation results based on the QC criteria are provided in Tables 5-4 through 5-6.

Results for blank samples associated with this test are summarized in Table 5-4. All blank sample results were well below the lowest point on the calibration curve.

Clay feed and product sample results for the 1,2,3,4,6,7,8-Hepta-Dioxins and OCDDs exceeded the upper limit of the calibration curve. Alta Analytical Perspectives has examined the data and found that these results are within the range of the curve for the clay samples except for the Run 5 product, and Run 6 feed and product samples, which may be underestimated by as much as 50 percent. Note that these results already reflect a ten-fold dilution for the OCDD samples.

For one emission sampling train sample, the recoveries for the internal standards exceeded the Method 23 specification of 130 percent. This is addressed in more detail in Section 5.2 below.

All sample transfers were documented on Chain-of-Custody sheets. Samples were maintained in the field at temperatures between 1.0 and 7.5°C; after shipping they arrived at the lab at temperatures between 8 and 23°C. All samples were analyzed within the specified holding times (sampled < 28 days after XAD preparation, extracted < 30 days after sample collection, and analyzed < 45 days after extraction).

#### 5.2 Internal Standard and Surrogate Standard Recoveries

Internal standard and surrogate standard recovery results are summarized in Tables 5-4 and 5-5. Additional standard recovery data are included in Appendix D of this report.

As noted in Table 5-4, the internal standard recoveries corresponding to the Run 1 Retest sample were above the 130 percent requirement of Method 23, but beneath 152 percent. Because the internal standard recoveries were all consistently high for Run 1 Retest, and the surrogate standard recoveries for the same run were all consistently lower (70 to 76 percent) than those for the other two runs at the mill (97 to 106 percent), it is reasonable to conclude that the amount of the internal standard solution added to the Run 1 Retest sample slightly exceeded that specified. This, in turn, could have resulted in a low bias in the sample results. Since the surrogate standard recoveries for Run 1 are within the method objectives of 70 to 130 percent, the sample data are reasonable to use. Results could be corrected for the apparent low bias, but MRI has selected not to do this since the collection efficiency results indicated by the surrogate standard recoveries are within the QA limits, and the accompanying method blank, sampling standard, and BCS<sub>3</sub> results are all within the QA objectives.

Internal standard recoveries corresponding to Run 4 Product and Run 5 Feed were also greater than 130 percent for <sup>13</sup>C-OCDD. No attributable cause is discernable considering the recoveries for the remaining labeled congeners were within limits. The fact that the accompanying method blank, sampling standard, and BCS<sub>3</sub> results are all within the QA objectives suggests that the results are acceptable.

#### 5.3 Discussion

As part of the QA review process to ensure accurate reporting the report and supporting records were audited. One run was traced from the field measurement records to original analytical data through the derived test results. Based on the data review, the test results were found to be correctly reported, traceable, and met the quality assurance objectives of the test program. Any exceptions from data quality criteria are discussed in the report and associated results have been flagged in the data tables.

Table 5-1. Calibration QC Criteria for Sampling Equipment

|                                                                     |                                                                                                                     | Reference                                                |                                                                                                                                       |                                                                   | Criteria   |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------|
| Parameter                                                           | Calibration technique                                                                                               | standard                                                 | Acceptance limit                                                                                                                      | Frequency                                                         | met? (Y/N) |
| Sampling<br>nozzle                                                  | Measure 3 diameters<br>to nearest 0.001 in and<br>average<br>measurements                                           | Micrometer                                               | Difference between high and low measurements, ≤ 0.004 in                                                                              | Prior to sampling                                                 | Yes        |
| Dry gas<br>metering<br>system—<br>volume                            | Compare with calibrated critical orifices, 40 <i>CFR</i> 60, Appendix A, Method 5, Section 16.2                     | Calibrated critical orifice                              | Difference between individual calibration factor values and average value, ≤ ±0.02                                                    | Prior to test<br>series, and in<br>the field after<br>test series | Yes        |
|                                                                     | Use field test data to<br>compute a calibration<br>check value, EPA<br>Method ALT-009                               | NA                                                       | Difference between calibration check value must be ≤ ±5% of initial calibration factor                                                | After test series                                                 | Yes        |
| Dry gas meter thermocouples                                         | Compare to mercury-<br>in-glass thermometer                                                                         | ASTM thermometer                                         | ≤ ±5.4°F difference from reference                                                                                                    | Before and after test series                                      | Yes        |
| Stack Gas<br>stream<br>thermocouple                                 | Compare to value generated by dry well monitored with potentiometer thermocouple system                             | Hart Model<br>9100A dry<br>well<br>calibration<br>system | Difference of ≤ ±1.5% of<br>minimum absolute stack<br>temperature from absolute<br>reference temperature<br>(unsaturated gas streams) | Before and after test series                                      | Yes        |
| Final impinger<br>outlet<br>temperature<br>sensor<br>(thermocouple) | Compare to mercury-<br>in-glass thermometer                                                                         | ASTM<br>thermometer                                      | ≤ ±2°F difference from reference                                                                                                      | Before and after<br>test series                                   | Yes        |
| Filter<br>temperature<br>sensor<br>(thermocouple)                   | Compare to mercury-<br>in-glass thermometer                                                                         | ASTM<br>thermometer                                      | ≤ ±5.4°F difference from reference                                                                                                    | Before and after test series                                      | Yes        |
| Aneroid<br>barometer                                                | Compare to calibrated mercury barometer                                                                             | Mercury<br>column<br>barometer                           | ≤ ±0.1 in Hg difference from reference                                                                                                | Before and after test series                                      | Yes        |
| Type S pitot tube                                                   | Measure dimensions<br>according to 40 <i>CFR</i><br>60, Appendix A,<br>Method 2 for baseline<br>coefficient of 0.84 | Micrometer<br>and angle<br>finder                        | Meets dimensional criteria<br>specified in Method 2,<br>Section 6.1 and<br>Figures 2-2 and 2-3                                        | Before and after<br>test series                                   | Yes        |

Table 5-2. Criteria for Emission Measurement and Data Quality

| Test parameters                                                     | Matrix                    | Method of determination                                                                                                    | Frequency                                                          | Accuracy objective                                                                                                                                                                                | Precision objective                                                | Objective met? (Y/N)        |
|---------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|
| Dioxin/ Furan                                                       | Method 23 train samples   | Surrogate standards<br>(spiked in lab during<br>preparation of XAD for<br>sampling trains)                                 | Each field sample and blank                                        | 70% to 130% recovery                                                                                                                                                                              | NA                                                                 | Yes                         |
|                                                                     |                           | Internal standards                                                                                                         | Each field sample and blank                                        | 40 - 130% recovery (tetra-hexa)<br>25 - 130% rec. (hepta-octa)                                                                                                                                    | NA                                                                 | see Note 1                  |
|                                                                     |                           | BCS <sub>3</sub> standards                                                                                                 | Each analytical batch                                              | 80 - 120% recovery                                                                                                                                                                                | NA                                                                 | Yes                         |
|                                                                     |                           | Laboratory reagent blank                                                                                                   | One XAD/filter                                                     | Levels less than lowest calibration standard                                                                                                                                                      | NA                                                                 | Yes                         |
| Moisture (water vapor)                                              | Impinger contents         | Balance calibration check with calibration weight                                                                          | Prior to initial and final gravimetric determinations              | ± 0.1g                                                                                                                                                                                            | NA                                                                 | RPD < 0.1% of check weight. |
| Moisture,<br>Pressure, temp.,<br>and velocity                       | Gas stream being measured | Secondary technical<br>review of field test data<br>and equipment<br>calibration records<br>relative to EPA<br>Methods 1-5 | Ongoing during testing                                             | Validated by meeting posttest equipment calibration tolerances                                                                                                                                    | NA                                                                 | Yes                         |
| CO <sub>2</sub> and O <sub>2</sub> , by Orsat                       | Stack Gas                 | Single analysis of ambient air                                                                                             | Prior to sample analysis                                           | 98% to 102% (assuming air at 20.9% O <sub>2</sub> )                                                                                                                                               | 2% RPD                                                             | Yes                         |
|                                                                     |                           | Triplicate analysis of test samples                                                                                        | Each sample                                                        | NA                                                                                                                                                                                                | 2% RPD                                                             | Yes                         |
| CO <sub>2</sub> and O <sub>2</sub> , by instrument analyzer on site | Stack gas                 | Analyzer calibration error<br>check with zero, mid-<br>range, and high-range<br>calibration gases                          | After system setup each day and more often when needed             | ≤ ±2% of span for the difference between<br>system response and calibration gas value<br>for any of the calibration gases                                                                         | NA                                                                 | Yes                         |
|                                                                     |                           | Sampling system bias check with zero and either of the upscale calibration gases                                           | After the calibration error check, during calibration drift tests  | ≤ ±5% of span for the difference between<br>analyzer response for the initial calibration<br>error check and system response for the<br>initial bias check for either of the calibration<br>gases | NA                                                                 | Yes                         |
|                                                                     |                           | Response time determination                                                                                                | During the initial bias check each day                             | NA                                                                                                                                                                                                | NA                                                                 | Yes                         |
|                                                                     |                           | Zero and calibration drift tests                                                                                           | Repeat the bias check<br>after each run or more<br>often if needed | ±5% of span for the difference between<br>analyzer response for the initial calibration<br>error check and system response for the<br>final bias check for either of the calibration<br>gases     | ≤ ±3% of span for the difference between final and initial system. | Yes                         |

NA = Not Applicable.

Note 1: Method 23 internal standard recoveries corresponding to Run 1 Retest were >130%. A likely cause is discussed in the text and may have resulted in a low bias for this sample. The accompanying method blank, sampling standard, and BCS<sub>3</sub> results are all within the QA objectives.

Table 5-3. Criteria for Assessing Data Quality of Process Sample Analyses

| Test parameters                  | Matrix        | Method of determination           | Frequency                          | Accuracy objective                                                  | Precision objective                                                   | Objective<br>met? (Y/N) |
|----------------------------------|---------------|-----------------------------------|------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|
| Dioxin/ Furan<br>Raw Feed, and F | Final Product | Clean-up standards                | Each sample                        | 40% to 135% recovery for all 2,3,7,8-substituted internal standards | NA                                                                    | Yes                     |
|                                  |               | Duplicate extraction and analysis | One sample per matrix for the test | NA                                                                  | 25% RPD<br>for analytes<br>present<br>above the<br>reporting<br>limit | NA<br>See Note 2.       |
|                                  |               | Laboratory reagent blank          | One sample per matrix for the test | Levels less than<br>lowest calibration<br>standard                  | NA                                                                    | Yes                     |

Note 2: Duplicate extraction and analysis was not intended to be included in the test plan.

Table 5-4. Method 23 Internal Standard and Surrogate Standard Recoveries

|                                     | Method                                                                                            | Method        | Field |              | Mill  |       |       | Dryer |       |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------|---------------|-------|--------------|-------|-------|-------|-------|-------|--|--|--|
|                                     | blank                                                                                             | blank         | blank |              |       |       |       |       |       |  |  |  |
| Analyte                             | Run 1 Retest                                                                                      | Runs 2-6      | train | Run 1 Retest | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 |  |  |  |
| Internal Standard (IQS) % Re        | Internal Standard (IQS) % Recoveries: QA objective 40-130% for tetra-hexa; 25-130% for hepta-octa |               |       |              |       |       |       |       |       |  |  |  |
| <sup>13</sup> C-2,3,7,8-TCDD        | 106                                                                                               | 74.1          | 82.2  | 139          | 84.7  | 82.4  | 87.0  | 60.8  | 51.9  |  |  |  |
| <sup>13</sup> C-1,2,3,7,8-PeCDD     | 109                                                                                               | 75.4          | 85.8  | 143          | 87.5  | 82.9  | 90.0  | 63.5  | 53.8  |  |  |  |
| <sup>13</sup> C-1,2,3,6,7,8-HxCDD   | 95.6                                                                                              | 79.2          | 88.7  | 138          | 88.6  | 86.9  | 92.2  | 64.5  | 54.4  |  |  |  |
| <sup>13</sup> C-1,2,3,4,6,7,8-HpCDD | 106                                                                                               | 82.3          | 88.3  | 147          | 90.9  | 91.9  | 96.3  | 67.6  | 57.8  |  |  |  |
| <sup>13</sup> C-1,2-OCDD            | 89.2                                                                                              | 79.6          | 87.7  | 133          | 90.6  | 90.9  | 99.9  | 68.0  | 57.4  |  |  |  |
| <sup>13</sup> C-2,3,7,8-TCDF        | 116                                                                                               | 87.2          | 82.1  | 152          | 86.2  | 83.9  | 87.6  | 62.2  | 49.9  |  |  |  |
| <sup>13</sup> C-1,2,3,7,8-PeCDF     | 111                                                                                               | 76.2          | 86.1  | 146          | 86.3  | 83.6  | 89.1  | 63.7  | 52.0  |  |  |  |
| <sup>13</sup> C-1,2,3,6,7,8-HxCDF   | 90.9                                                                                              | 76.7          | 88.4  | 132          | 88.2  | 84.7  | 92.2  | 62.9  | 52.3  |  |  |  |
| <sup>13</sup> C-1,2,3,4,6,7,8-HpCDF | 105                                                                                               | 81.7          | 87.2  | 147          | 89.6  | 90.3  | 95.5  | 66.9  | 56.6  |  |  |  |
| <sup>13</sup> C-OCDF                | 79.3                                                                                              | 80.8          | 88.6  | 127          | 89.3  | 90.1  | 98.9  | 67.4  | 56.2  |  |  |  |
| Surrogate Standard % Recov          | veries: QA object                                                                                 | tive 70-130%  |       |              |       |       |       |       |       |  |  |  |
| <sup>37</sup> Cl-2,3,7,8-TCDD       | Note 1                                                                                            | 98.8          | 99.1  | 75.7         | 97.9  | 102   | 97.9  | 100   | 103   |  |  |  |
| <sup>13</sup> C-1,2,3,4,7,8-HxCDD   | Note 1                                                                                            | 101           | 100   | 73.4         | 99.7  | 106   | 99.4  | 102   | 102   |  |  |  |
| <sup>13</sup> C-2,3,4,7,8-PeCDF     | Note 1                                                                                            | 98.2          | 96.7  | 75.0         | 97.0  | 100   | 98.9  | 102   | 103   |  |  |  |
| <sup>13</sup> C-1,2,3,4,7,8-HxCDF   | Note 1                                                                                            | 102           | 98.9  | 75.8         | 98.7  | 104   | 99.4  | 104   | 106   |  |  |  |
| <sup>13</sup> C-1,2,3,4,7,8,9-HpCDF | Note 1                                                                                            | 98.0          | 97.7  | 70.3         | 98.1  | 103   | 97.7  | 99    | 104   |  |  |  |
| Independent Laboratory Che          | ck Spike, %: QA                                                                                   | objective 40- | 130%  |              |       |       |       |       |       |  |  |  |
| <sup>13</sup> C-1,2,3,7,8,9-HxCDF   | 107                                                                                               | 79.9          | 87.8  | 112          | 90.3  | 87.3  | 91.8  | 65.8  | 51.7  |  |  |  |

Recoveries outside of the QA objectives are highlighted; see Section 5.2 for further explanation.

Note 1: This lab method blank was prepared with sand in lieu of XAD-2 resin in order to save the resin for Runs 2-6.

Table 5-5. BCS<sub>3</sub> Surrogate Recoveries

|                                     | Run 1             | Retest | Run   | s 2-6 |
|-------------------------------------|-------------------|--------|-------|-------|
| Analyte                             | BCS3A             | BCS3B  | BCS3A | BCS3B |
| Extraction Standard, ES, %: QA      | objective 80-120° | %      |       |       |
| <sup>13</sup> C-2,3,7,8-TCDD        | 100               | 96.5   | 108   | 109   |
| <sup>13</sup> C-1,2,3,7,8-PeCDD     | 108               | 109    | 108   | 107   |
| <sup>13</sup> C-1,2,3,6,7,8-HxCDD   | 96.8              | 96     | 102   | 107   |
| <sup>13</sup> C-1,2,3,4,6,7,8-HpCDD | 101               | 104    | 108   | 106   |
| <sup>13</sup> C-OCDD                | 93.4              | 101    | 109   | 107   |
| <sup>13</sup> C-2,3,7,8-TCDF        | 102               | 103    | 109   | 110   |
| <sup>13</sup> C-1,2,3,7,8-PeCDF     | 105               | 108    | 106   | 106   |
| <sup>13</sup> C-1,2,3,6,7,8-HxCDF   | 110               | 107    | 102   | 100   |
| <sup>13</sup> C-1,2,3,4,6,7,8-HpCDF | 109               | 111    | 107   | 102   |
| <sup>13</sup> C-OCDF                | 106               | 112    | 103   | 106   |
| Surrogate Spike, SS, %: QA ob       | jective 80-120%   |        |       |       |
| <sup>37</sup> Cl-2,3,7,8-TCDD       | 96.6              | 97.2   | 86.6  | 88    |
| <sup>13</sup> C-1,2,3,4,7,8-HxCDD   | 90.3              | 92     | 92.6  | 87.2  |
| <sup>13</sup> C-2,3,4,7,8-PeCDF     | 101               | 100    | 92.3  | 92.8  |
| <sup>13</sup> C-1,2,3,4,7,8-HxCDF   | 90.1              | 92.8   | 89.8  | 87.2  |
| <sup>13</sup> C-1,2,3,4,7,8,9-HpCDF | 94.7              | 93.1   | 84.9  | 87.6  |
| Alternate Standard, AS, %: QA       | objective 80-120% |        |       |       |
| <sup>13</sup> C-1,2,3,7,8,9-HxCDF   | 90.4              | 91     | 94.7  | 92.6  |

Table 5-6. Method 8290 Internal Standard Recoveries

|                       | Method |              | Mill  |       |                   | Dryer |       |
|-----------------------|--------|--------------|-------|-------|-------------------|-------|-------|
| Analyte               | blank  | Run 1        | Run 2 | Run 3 | Run 4             | Run 5 | Run 6 |
| Clay Feed             |        |              |       |       |                   |       |       |
| Dioxins               |        |              |       |       |                   |       |       |
| <sup>13</sup> C-TCDD  | 90.6   | 92.3         | 90.8  | 92.2  | 97.2              | 101   | 77.4  |
| <sup>13</sup> C-PeCDD | 86.2   | 91.5         | 87.5  | 88.4  | 93.5              | 97.1  | 76.8  |
| <sup>13</sup> C-HxCDD | 90.5   | 84.6         | 90.6  | 86.5  | 88.9              | 92.3  | 73.6  |
| <sup>13</sup> C-HxCDD | 89.1   | 85.8         | 86.9  | 84.4  | 87.3              | 91.5  | 72.9  |
| <sup>13</sup> C-HxCDD | 91.4   | 83.3         | 89.9  | 83.9  | 90.4              | 97    | 73    |
| <sup>13</sup> C-HpCDD | 90.4   | 82.8         | 94.5  | 86.6  | 93.7              | 97.1  | 79.2  |
| <sup>13</sup> C-OCDD  | 85     | 74.2         | 105   | 98.4  | 136               | 145   | 107   |
| Furans                |        |              |       |       |                   |       |       |
| <sup>13</sup> C-TCDF  | 98.1   | 92.9         | 88.1  | 92.7  | 96.5              | 98.6  | 77.4  |
| <sup>13</sup> C-PeCDF | 86.8   | 90           | 85.3  | 90    | 97.5              | 97.7  | 76.5  |
| <sup>13</sup> C-PeCDF | 87.1   | 92.4         | 87.6  | 89.3  | 96.5              | 101   | 77.8  |
| <sup>13</sup> C-HxCDF | 90.5   | 95.8         | 98    | 89.6  | 90.4              | 93.3  | 76.5  |
| <sup>13</sup> C-HxCDF | 89     | 94.7         | 98.5  | 91.9  | 94.8              | 94.1  | 75.9  |
| <sup>13</sup> C-HxCDF | 91.7   | 91.1         | 97.2  | 89.3  | 92.9              | 97.2  | 76.4  |
| <sup>13</sup> C-HxCDF | 90.2   | 92           | 91.2  | 83.3  | 91.4              | 92.8  | 73.2  |
| <sup>13</sup> C-HpCDF | 89.6   | 80.2         | 86.4  | 82.1  | 84.4              | 85.8  | 70    |
| <sup>13</sup> C-HpCDF | 90.6   | 85.8         | 87.2  | 79.5  | 87                | 85.6  | 68    |
| <sup>13</sup> C-OCDF  | 84.4   | 86.2         | 90.7  | 83.9  | 91.4              | 95.8  | 75.5  |
| Clay Product          |        |              |       |       |                   |       |       |
| Dioxins               |        |              |       |       |                   |       |       |
| <sup>13</sup> C-TCDD  | 90.6   | 87.5         | 89.8  | 92.6  | 93.3              | 102   | 89.7  |
| <sup>13</sup> C-PeCDD | 86.2   | 86.6         | 84.8  | 87.9  | 95.8              | 97.1  | 89.2  |
| <sup>13</sup> C-HxCDD | 90.5   | 82.5         | 87.7  | 85.2  | 94.9              | 98.1  | 81.3  |
| <sup>13</sup> C-HxCDD | 89.1   | 80.5         | 89.6  | 83.5  | 95.2              | 98.1  | 80.2  |
| <sup>13</sup> C-HxCDD | 91.4   | 81.6         | 87.2  | 83.3  | 97.3              | 94.3  | 79.7  |
| <sup>13</sup> C-HpCDD | 90.4   | 76.5         | 90.4  | 87.1  | 105               | 80.7  | 76    |
| <sup>13</sup> C-OCDD  | 85     | 70.3<br>72.7 | 97.6  | 100   | 157               | 82.2  | 84.3  |
| C-OCDD                | 0.5    | 12.1         | 91.0  | 100   | 137               | 02.2  | 04.5  |
| Furans                |        |              |       |       |                   |       |       |
| <sup>13</sup> C-TCDF  | 98.1   | 91.2         | 91    | 91    | 97.4              | 99.7  | 97.2  |
| <sup>13</sup> C-PeCDF | 86.8   | 85.4         | 86.9  | 87.4  | 95.2              | 96.8  | 90.1  |
| <sup>13</sup> C-PeCDF | 87.1   | 86.8         | 86.3  | 87.6  | 97.3              | 98.9  | 88.6  |
| <sup>13</sup> C-HxCDF | 90.5   | 90           | 97.7  | 86.7  | 101               | 107   | 92.1  |
| <sup>13</sup> C-HxCDF | 89     | 90.1         | 103   | 86.9  | 102               | 108   | 92.7  |
| <sup>13</sup> C-HxCDF | 91.7   | 87.7         | 91.8  | 86.4  | 99.3              | 109   | 91.4  |
| <sup>13</sup> C-HxCDF | 90.2   | 89.7         | 89.3  | 85.3  | 97.9              | 106   | 89.1  |
| <sup>13</sup> C-HpCDF | 89.6   | 78.2         | 82.5  | 81.6  | 92.4              | 91.7  | 82.9  |
| <sup>13</sup> C-HpCDF | 90.6   | 80.9         | 85.5  | 77.3  | 96.6              | 95.7  | 82.6  |
| <sup>13</sup> C-OCDF  | 84.4   | 81.5         | 87.1  | 81.9  | 101               | 94    | 87    |
|                       |        |              |       |       | lugge Coation F 2 |       |       |

Recoveries outside of the QA objectives (40% to 135%) are highlighted; see Section 5.2 for further explanation.

## Appendix A

### **Sample Custody Records**

| Date Samples Arrived: 8.14.03 Initials Initials                                                                                                                                                                                         | Yes D | r | ALTA ANALYTICAL PERSPECTIVES                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|--------------------------------------------------------------------------------------|
| Time / Date logged in: 10:40 8-14-03 Refrigerator: F.C                                                                                                                                                                                  | Emery |   | Client Project:  AAP Project No.: P326.5                                             |
| Samples Arrived By: (circle one) Airborne Express Federal Express Or S  Freezer Truck Company Courier DHL Other  Shipping Preservation: (circle) Ice / Blue Ice Dry Ice / None Temp °C 17                                               | 16°   |   | CHAIN OF CUSTODY ANOMALY  Upon receipt of your samples, we found the                 |
| Shipping Documentation Present? (circle one) Shipping Label  821436005942  Airbill Tracking Number 821436005953                                                                                                                         |       |   | following items omitted from the crame of the (COC). Check as appropriate.  Sampler: |
| Shipping Container(s) Intact? If no, describe condition below.  Container Custody Seals Present and Intact? If not intact, describe condition below.  Sample Custody Seals Present and Intact? If not intact, describe condition below. |       | / | Relinquished by:  Date: Time:  Sample ID:                                            |
| No. of Seals — or Seal No.  Sample Container Intact? If no, indicate sample condition below.                                                                                                                                            |       |   | Sample Date: 5  Sample Description:  Analysis(es) Requested:                         |
| Chain of Custody (COC) or other Sample Documentation Present?      COC/Documentation Acceptable? If no, complete COC Anomaly Form.                                                                                                      |       |   | Turnaround Time Requested:  Containers Oty:  Type:                                   |
| 12. Shipping Container: (circle) ALTA ANALYTICAL PERSPECTIVES  Client Return or Retain or Dispose                                                                                                                                       |       |   | Matrix Type:  Preservative:  Drinking Water Requirement:                             |
| 13. Container and/or Bottles Requested?                                                                                                                                                                                                 |       | / | Other Comments:                                                                      |
| <ul><li>14. Sample Control Check In/Out Log Completed?</li><li>15. Drinking Water Sample? If yes, Acceptable Preservation? (circle) Y or N</li></ul>                                                                                    |       | 1 |                                                                                      |
| Drinking Water Sample? If yos, 765-765     Imported Soil? If yes, apply appropriate label.                                                                                                                                              |       |   | Please note these omissions for future reference.                                    |

|     |                                                                       |       |               |          |          |         |                                   | P32                | 65     | 2                  |  |
|-----|-----------------------------------------------------------------------|-------|---------------|----------|----------|---------|-----------------------------------|--------------------|--------|--------------------|--|
| _   | 77 PEOODD                                                             | Field | Sam           | ple Cust | odia     | an:     | Stora                             | age Requice water, | ireme  | nts:               |  |
| 1   | CHAIN OF CUSTODY RECORD                                               | Δ     | <b>C</b> .    | le CS    |          | 1       | ☐ Dry ice<br>☐ Room Temp., ≤ 26°C |                    |        |                    |  |
| ١   | ☐ SAMPLE TRACEABILITY RECORD                                          | 17.   | A. Scholers   |          |          | - 1     |                                   | Other:             |        |                    |  |
| - 1 | Container (Cooler) No. XAD SU 2                                       | 753   | <del>. </del> | 2        | T        |         |                                   |                    |        |                    |  |
|     | Page of Transfer No. Checked by (Initials)/Date                       | A     |               | FX/9A    |          |         |                                   |                    |        |                    |  |
|     | Lock or Seal Intact (Yes)or No)/Time                                  | Ye    |               | 755      | 1        |         |                                   |                    |        |                    |  |
|     | 1009                                                                  |       | ]∂            | 171700 0 |          |         |                                   |                    |        |                    |  |
| *   | M23 XAD CARTRIDGE #1 2700 00 1                                        |       |               | 1        | $\top$   |         |                                   |                    |        |                    |  |
|     | 110249.2.001.04                                                       | Rema  | ırks:         |          |          |         |                                   |                    |        |                    |  |
| ,   | M23 FILTER                                                            | _     |               | T        | I        |         |                                   |                    |        |                    |  |
| *   | For disposal call: Hosenfeld MIDWEST RESEARCH INSTITUTE               | Rema  | arks:         |          |          |         |                                   |                    |        | -                  |  |
|     | MIDWES: MILE                                                          |       |               |          |          |         |                                   |                    |        |                    |  |
|     |                                                                       | Rem   | narks:        |          |          |         |                                   |                    |        |                    |  |
|     |                                                                       | 7.0   | marks:        |          | -        |         |                                   |                    |        |                    |  |
|     |                                                                       | Hei   | TIGIKS.       |          |          |         |                                   |                    |        |                    |  |
|     |                                                                       | Re    | marks:        |          |          | L       |                                   |                    |        |                    |  |
|     |                                                                       | _     |               |          |          | T       |                                   |                    |        |                    |  |
|     |                                                                       | Re    | emarks:       |          |          |         |                                   |                    |        |                    |  |
|     | ·                                                                     | -     |               |          | _        |         | $\Box$                            |                    |        |                    |  |
|     |                                                                       | R     | lemarks:      |          |          |         |                                   |                    |        |                    |  |
|     |                                                                       | -     |               |          | _        |         |                                   |                    |        |                    |  |
|     |                                                                       | F     | Remarks:      |          |          |         |                                   |                    |        |                    |  |
|     | W                                                                     | _     | D dec         |          |          |         |                                   |                    | L      |                    |  |
|     | as pur Dave Alexty                                                    |       | Remarks       |          |          |         |                                   |                    |        |                    |  |
|     | THE ACTION TOWN                                                       | +     | Remarks       | - Usi~a  | ×        | AD ID   | 45 5                              | AMPLE              | ID !   | 35                 |  |
|     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                               |       |               |          | 105 DIS  | 20H     | -3004                             | 102                |        |                    |  |
|     | Totals To John Mail if here on voice mail if he corsen townser to HAM | e.    | Sam           | ple Tran | ste      |         | No                                | Rea                | son fo | r Transfer:        |  |
|     | Relinquished By: Received B                                           |       |               | Date     | +        | Time    | No.                               | 1100               | . / -  | N. soins           |  |
|     | A Lander D. Albert                                                    |       |               | 3/03     | +        | 12:20   |                                   | 1.1ana             | 2- 1-  | 20-7               |  |
|     | Dalbuty FEDEX                                                         |       | 8/            | 13/03    | -        | .~17: 4 | 3                                 | Ship h             | Las    |                    |  |
|     | 3000                                                                  | سلا   | 8-            | 14-67    | $\dashv$ | 10:00   | 4                                 |                    |        |                    |  |
|     |                                                                       |       |               |          |          |         | 4                                 |                    | 93-4   | SEV surm wksht 020 |  |

|     |                                                                  |                   |            |             |        |       |                                                                      | T32     | 265                       | 12            |           |
|-----|------------------------------------------------------------------|-------------------|------------|-------------|--------|-------|----------------------------------------------------------------------|---------|---------------------------|---------------|-----------|
| Γ   | CHAIN OF CUSTODY RECORD                                          |                   | San        | nple C      | ustoc  | lian: |                                                                      | age Req | uiremei<br>, <u>≤</u> 4°C | nts:          |           |
| - 1 |                                                                  | ; <del>-</del>  - | Ja.√0      | -2.75       |        | 1     | ☐ Room Temp., ≤ 26°C  ☐ Other: B==================================== |         |                           |               |           |
| ١   | Container (Cooler) No. N/A                                       |                   |            |             |        |       |                                                                      |         |                           |               |           |
| 1   | Page of Transfer No.                                             |                   |            | Pad         | 3/1    |       |                                                                      |         |                           |               |           |
| 1   | Checked by (Initials)/Date  Lock or Seal Intact (Yes or No)/Time | ٠,                | <i>US</i>  | 7.          |        |       |                                                                      |         |                           |               |           |
|     | Lock of Seal Hillast (1997)                                      | 123               |            | 170         | 0/     |       |                                                                      |         |                           |               |           |
| ¥Ł  | 110249.2.001.04 1006<br>M23 AND RINSES<br>Emission Sample - Mill | Rema              | rks:       |             |        |       | τ-                                                                   |         |                           |               |           |
| T   | 110249.2.001.04 1010                                             | Rema              | arks:      |             |        |       |                                                                      |         |                           |               |           |
| *   | M23 TOLUENE WA RINSE                                             |                   |            |             |        | T     | T                                                                    |         |                           |               | 1         |
| 7   | For disposal call:Hosenfeld<br>MIDWEST RESEARCH INSTITUTE        | Rem               | arks:      |             |        |       |                                                                      |         |                           |               |           |
|     | MIDWEST RESEARCH INSTITUTE                                       | +                 |            | _           |        |       |                                                                      |         |                           |               | 4         |
|     |                                                                  | Rem               | narks:     |             |        |       |                                                                      |         |                           |               | 1         |
|     |                                                                  | +                 |            | $\top$      |        |       | Ĺ                                                                    |         |                           |               | -         |
|     |                                                                  | Ren               | marks:     |             |        |       |                                                                      |         |                           |               | -1.       |
|     |                                                                  | +                 |            |             |        |       |                                                                      |         |                           |               | -         |
|     |                                                                  | Яє                | .marks:    |             |        |       | <u>.</u>                                                             |         |                           |               | $\dashv$  |
|     |                                                                  | 士                 |            |             |        |       |                                                                      |         |                           |               | 7         |
|     | 1                                                                | Re                | emarks:    |             |        |       |                                                                      |         |                           |               | $\exists$ |
|     |                                                                  |                   | temarks:   |             |        |       |                                                                      |         |                           |               |           |
|     |                                                                  |                   | - Contains |             |        |       |                                                                      |         | T                         |               | $\exists$ |
|     |                                                                  | F                 | Remarks:   |             |        |       |                                                                      |         |                           |               |           |
|     |                                                                  | -                 |            |             |        |       | $\neg \tau$                                                          |         |                           |               | $\exists$ |
|     |                                                                  | h                 | Remarks    | :           |        |       |                                                                      |         |                           |               | $\dashv$  |
|     |                                                                  |                   |            | $\neg \tau$ |        |       |                                                                      |         |                           |               | $\dashv$  |
|     |                                                                  |                   | Remarks    | حنه         | عمند   | dates | <b>Φ</b> Λ                                                           | both    | sampl                     | 30            |           |
|     |                                                                  |                   | San        | nple T      | ransfe |       |                                                                      |         |                           | Transfer:     | $\neg$    |
|     | Relinquished By: Received B                                      | y:                |            | Date        |        | Time  | No.                                                                  | Hea     | 15011 101                 | 1             |           |
|     | I Lander Didwarty                                                | 37                |            |             | 12:20  | 1     | Tiana                                                                | U       | ariagin                   | 7             |           |
|     | Quality FEREX                                                    | 8/13/03 ~11:0     |            |             | ~17:00 | 2     | Ship to                                                              | e Leiso | 7                         |               |           |
|     | Bar Sade                                                         |                   | 8-1        | 4.0         | 3      | 10:00 | 3                                                                    | -       |                           |               |           |
|     |                                                                  |                   |            |             |        |       | 4                                                                    |         | 93-4                      | SEV surm wksh | nt 020293 |

# Alta Analytical Perspectives - Sample Receiving Picture



Project ID: P3265

File: V:\Pictures\_Samples\P3265-2.JPG

Created: 14 August 2003 10:42 am

|     | Sample Log-In Checklist                                                                                                            | Yes                              | No | <b>D</b>                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----|---------------------------------------------------------------------------------------------------------------------------|
| 1.  | Date Samples Arrived: 8:22.03 Initials: The Samples Arrived:                                                                       | <b>B</b>                         |    | ALTA ANALYTICAL PERSPECTIVES                                                                                              |
| 2.  | Time / Date logged in: 10:45 8-22-03 Refrigerator: F-6 Ini                                                                         | Client Project: 110249, 2.001.04 |    |                                                                                                                           |
| 3.  | Samples Arrived By: (circle one) Airborne Express Freezer Truck Company Courier DHL Other                                          | Emery                            |    | AAP Project No.: <u>P3290</u>                                                                                             |
| 4.  | Shipping Preservation: (circle) Ice Blue Ice Dry Ice / None Temp oc 8 21                                                           | 23 <sub>,</sub> 19               |    | CHAIN OF CUSTODY ANOMALY                                                                                                  |
|     | Shipping Documentation Present? (circle one) Shipping Label 82/4 3600 5806  82/4 3600 579/  Airbill Tracking Number 82/4 3600 58/7 | ~                                |    | Upon receipt of your samples, we found the following items omitted from the chain-of-custody (COC). Check as appropriate. |
| 6.  | Shipping Container(s) Intact? If no, describe condition below.                                                                     | ~                                |    | Sampler:                                                                                                                  |
| 7.  | Container Custody Seals Present and Intact? If not intact, describe condition below.                                               |                                  | ~  | Relinquished by:  Date: Time:                                                                                             |
| 8.  | Sample Custody Seals Present and Intact? If not intact, describe condition below.                                                  |                                  |    | Sample ID:                                                                                                                |
|     | No. of Seals or Seal No.                                                                                                           |                                  | _  | Sample Date:                                                                                                              |
| 9.  | Sample Container Intact? If no, indicate sample condition below.                                                                   | /                                |    | Sample Description:                                                                                                       |
| 10. | Chain of Custody (COC) or other Sample Documentation Present?                                                                      | /                                |    | ♣Analysis(es) Requested:  ★Turnaround Time Requested:                                                                     |
| 11. | COC/Documentation Acceptable? If no, complete COC Anomaly Form.                                                                    |                                  | _  | Containers Oty:                                                                                                           |
| 12. | Shipping Container: (circle) ALTA ANALYTICAL PERSPECTIVES                                                                          |                                  |    | Туре:                                                                                                                     |
|     | Client Return or Retain or Dispose                                                                                                 |                                  |    | Matrix Type:                                                                                                              |
| 13. | . Container and/or Bottles Requested?                                                                                              |                                  |    | Preservative:  Drinking Water Requirement:                                                                                |
| 14. | Sample Control Check In/Out Log Completed?                                                                                         | /                                |    | Other Comments:                                                                                                           |
| 15  | . Drinking Water Sample? If yes, Acceptable Preservation? (circle) Y or N                                                          |                                  | /  | as per John Hamfeld                                                                                                       |
| 16  | . Imported Soil? If yes, apply appropriate label.                                                                                  |                                  |    | Please note these omissions for future reference.                                                                         |

| Sample Log-In Checklist  1. Date Samples Arrived: 8-22-03 Initials: Initials: Pordun                                                                                                           | Yes             | No       | ALTA ANALYTICAL PERSPECTIVES                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|---------------------------------------------------------------------------------------------------------------------------|
| 2. Time / Date logged in: 10:45 8:22-03 Refrigerator: F-6 In                                                                                                                                   | nitials:34      | _        | Cijent Project: 10#40249.1.003<br>Lsame as 73014-asper John H                                                             |
| Samples Arrived By: (circle one) Airborne Express Federal Express UPS     Freezer Truck Company Courier DHL Other                                                                              | Emery           |          | AAP Project No.: P3289                                                                                                    |
| 4. Shipping Preservation: (circle) (ce) Blue Ice) Dry Ice / None Temp ∘C 8                                                                                                                     | 26, 26<br>23° ; | 23,0 190 | CHAIN OF CUSTODY ANOMALY                                                                                                  |
| 5. Shipping Documentation Present? (circle one) Shipping Label <b>8214 3600 586 8214 3600 5817</b> Airbill Tracking Number <b>8214 3600 5817</b> Airbill Tracking Number <b>8214 3600 5817</b> |                 |          | Upon receipt of your samples, we found the following items omitted from the chain-of-custody (COC). Check as appropriate. |
| 6. Shipping Container(s) Intact? If no, describe condition below.                                                                                                                              | 1               |          | Sampler:                                                                                                                  |
| 7. Container Custody Seals Present and Intact? If not intact, describe condition below.                                                                                                        |                 | 1        | Relinquished by:  Date: Time:                                                                                             |
| Sample Custody Seals Present and Intact? If not intact, describe condition below.  No. of Seals or Seal No.                                                                                    |                 | ~        | Sample ID: Sample Dates                                                                                                   |
| 9. Sample Container Intact? If no, indicate sample condition below.                                                                                                                            | /               |          | Sample Description:                                                                                                       |
| 10. Chain of Custody (COC) or other Sample Documentation Present?                                                                                                                              | /               |          | Analysis(es) Requested:                                                                                                   |
| 11. COC/Documentation Acceptable? If no, complete COC Anomaly Form.                                                                                                                            |                 |          | Containers City:                                                                                                          |
| 12. Shipping Container: (circle) ALTA ANALYTICAL PERSPECTIVES                                                                                                                                  |                 |          | Туре:                                                                                                                     |
| Client Return of Retain or Dispose                                                                                                                                                             |                 |          | Matrix Type:                                                                                                              |
| 13. Container and/or Bottles Requested?                                                                                                                                                        |                 | 1        | Drinking Water Requirement:                                                                                               |
| 14. Sample Control Check In/Out Log Completed?                                                                                                                                                 |                 |          | Other Comments:                                                                                                           |
| 15. Drinking Water Sample? If yes, Acceptable Preservation? (circle) Y or N                                                                                                                    |                 | /        |                                                                                                                           |
| 16. Imported Soil? If yes, apply appropriate label.                                                                                                                                            |                 | /        | Please note these omissions for future reference.                                                                         |

#### SAMPLE CONDITION AT RECEIVING LABORATORY

| Sample T             | testing<br>using Method           | artridges, train rin<br>23 sampling trair | ns.               |                | ank samples from emi       |   |
|----------------------|-----------------------------------|-------------------------------------------|-------------------|----------------|----------------------------|---|
| Target Analy         | ytes: PCDD/PCDF                   | by 40 <i>CFR</i> 60, Ap                   | ppendix A, Method | 1 23 according | to project test protocol   |   |
| Blac<br>Field Sample | k Train<br>Condition Informati    | on Documented E                           | sy A Sa           | den            | Date: 8/21/07              | > |
| Sample<br>No.        | Field Weight (g),<br>or Condition | Lab Weight (g),<br>or Condition           | Commen            | its            | Received and<br>Checked By |   |
| 1011                 | 492.2                             | ,                                         | Sample D          | rate:          |                            |   |
| 1012                 | 958.8                             | J/A                                       | 20 A U G 03       | ŀ              | 1-                         |   |
| 1014                 | intact                            | $T_{L}$                                   | as per            |                | 100                        |   |
| 1015                 | intact                            |                                           | John H.           |                |                            |   |
| 1016<br>1017         |                                   | -                                         | ~ ZEAVED          | 3              |                            |   |
| 1018                 |                                   |                                           | - 227102          | •              |                            |   |
| 1019                 |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
| <del></del>          |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |
|                      |                                   |                                           |                   |                |                            |   |

The purpose of this form is to document the condition and to verify the integrity of samples received by the analytical laboratory. The Field Laboratory Leader completes the first two columns with sample numbers and final gross field sample weights of liquid samples or the condition of other samples as applicable. The analytical laboratory sample custodian, the analytical coordinator, the analyst, or a designee observes all samples received, reweighs liquid samples that do not have contents level marks or that are suspect, notes the condition of other samples, and documents all observations on this form.

#### SAMPLE CONDITION AT RECEIVING LABORATORY

MRI Project No. 110249.2.001.04

Sample Type: Filters, XAD cartridges, train rinse samples, and field reagent blank samples from emissions

testing using Method 23 sampling trains.

Target Analytes: PCDD/PCDF by 40 CFR 60, Appendix A, Method 23 according to project test protocol.

| Field Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le Condition Informat                 | ion Documented B | y A. Sanders      | Date: 8/15/03 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|-------------------|---------------|
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field Weight (g),                     | Lab Weight (g),  |                   | Received and  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or Condition                          | or Condition     | Comments          | Checked By    |
| TOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     |                  |                   |               |
| 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s                                     |                  | as pur John H.    |               |
| 1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | •                | - to ZZAVECE      | 5             |
| 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | 7                 |               |
| 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | & Sample Dates:   | 1             |
| 1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 691.0                                 |                  | 1-300 Miles 2453: | 1             |
| 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | intact                                |                  | *DID NOT          |               |
| 1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                    |                  | RECIEVE           |               |
| 1009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | intact                                | NV               | WITH THIS         |               |
| 121010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 959.7                                 |                  | PROJECT Fast      |               |
| 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | 73265.            |               |
| 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                     |                  | T 3245.           |               |
| 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | 26AV60            |               |
| 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | 22,100.2          |               |
| 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |                   |               |
| 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 098547.9245.5                         |                  |                   | Et .          |
| 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | intact                                | 7                | E14AU603          |               |
| 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                   | -11              |                   |               |
| 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | intact                                | NA               |                   |               |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ys <del>808.9</del> 579.4             |                  |                   |               |
| 3001<br>3002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                     |                  |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ζ                                     |                  |                   |               |
| 3003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                              |                  |                   |               |
| 3004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |                   |               |
| 3005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 1                | 1                 |               |
| 3006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 <sub>00</sub> <del>740+0</del> 513. | 5                | ISAUGO3           |               |
| 3007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tintact_                              |                  |                   |               |
| 3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                   | <del></del>      |                   |               |
| 3009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 357.7/wtact                           |                  |                   |               |
| 3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 904,3                                 |                  |                   |               |
| - Contraction of the contraction | to on                                 |                  |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |                   |               |

The purpose of this form is to document the condition and to verify the integrity of samples received by the analytical laboratory. The Field Laboratory Leader completes the first two columns with sample numbers and final gross field sample weights of liquid samples or the condition of other samples as applicable. The analytical laboratory sample custodian, the analytical coordinator, the analyst, or a designee observes all samples received, reweighs liquid samples that do not have contents level marks or that are suspect, notes the condition of other samples, and documents all observations on this form.

With Transferral to smaller sample fifth

#### SAMPLE CONDITION AT RECEIVING LABORATORY

MRI Project No. 110249.2.001.04

Sample Type: Filters, XAD cartridges, train rinse samples, and field reagent blank samples from emissions

testing

using Method 23 sampling trains.

Target Analytes: PCDD/PCDF by 40 CFR 60, Appendix A, Method 23 according to project test protocol.

| Field Samp                      | ele Condition Informat | ion Documented By | a Sando     | n:          | ate: 8/21/03                            |   |
|---------------------------------|------------------------|-------------------|-------------|-------------|-----------------------------------------|---|
| Sample                          | Field Weight (g),      | Lab Weight (g),   | <u> </u>    |             | Received and                            |   |
| No.                             | or Condition           | or Condition      | Comments    |             | Checked By                              |   |
|                                 |                        |                   | somple Date | 23:         |                                         |   |
| 4001                            | 614.5                  |                   | as per John | 平 ~         |                                         | _ |
| 4002                            | intact                 |                   | #ISAUGO3    | 2194663     | 10                                      | _ |
| 4003                            | N/A                    |                   | <u> </u>    |             |                                         |   |
| 4004                            | intact                 |                   |             |             |                                         |   |
| 4005                            | 10/6/8                 |                   |             |             |                                         | _ |
| 4005<br>4006 //<br>4007<br>4008 |                        |                   |             |             |                                         | _ |
| 4007                            | 2×                     |                   |             |             |                                         |   |
| 4008                            | QLe                    |                   |             |             |                                         |   |
| 4009                            | ~                      |                   |             |             |                                         |   |
| 4010                            |                        |                   |             |             |                                         |   |
| 5001                            | 622,0                  |                   |             |             |                                         |   |
| 5002                            | intact                 |                   | - MAUBO     | 3           | ^                                       |   |
| 5003                            | N)/A                   |                   |             |             | Tel                                     |   |
| 5004                            | intact                 |                   |             | <del></del> |                                         |   |
| 5005                            | 1076.3                 |                   |             |             |                                         |   |
|                                 | 14 14.                 |                   |             |             |                                         |   |
| 5007<br>5008                    | 7                      |                   |             |             |                                         |   |
| 5008                            | 4 <del>2</del>         |                   |             |             |                                         |   |
| 5009*                           | 200                    |                   |             |             |                                         |   |
| 5010                            | <del>- %4</del>        |                   |             |             |                                         |   |
|                                 | 615.2                  |                   |             |             |                                         |   |
| 6001                            | 412.4 -                |                   | 1 - 0 10 -0 |             |                                         |   |
| 6002                            | Intag .                |                   | \$20AVGO    | <b></b> .   | -h                                      |   |
| 6003                            | N/A _                  |                   |             |             |                                         |   |
| 6004                            | 5534-2 W               |                   |             |             |                                         |   |
| 6005                            | Joseph .               |                   |             |             |                                         |   |
| 6007                            |                        |                   |             |             |                                         |   |
| 6007                            | Rete                   |                   |             |             |                                         |   |
|                                 | Q <sub>1</sub> ·       |                   |             |             |                                         |   |
| 6009                            | <del></del>            |                   |             |             |                                         |   |
| 6010                            |                        |                   |             |             |                                         |   |
|                                 |                        |                   |             | •           |                                         |   |
|                                 |                        |                   |             |             | *************************************** |   |

The purpose of this form is to document the condition and to verify the integrity of samples received by the analytical laboratory. The Field Laboratory Leader completes the first two columns with sample numbers and final gross field sample weights of liquid samples or the condition of other samples as applicable. The analytical laboratory sample custodian, the analytical coordinator, the analyst, or a designee observes all samples received, reweighs liquid samples that do not have contents level marks or that are suspect, notes the condition of other samples, and documents all observations on this form.

43290 1/2

| SAMPLE ID                     | 1015-BLANK | Z00 9      | 300 9     | 4004        |
|-------------------------------|------------|------------|-----------|-------------|
| TRAP ID                       | P316005    | P3164-001  | P3166-004 | P3166 - 012 |
| DATE SAMPLED                  | 20AUG03    | 14A0G03    | 15 AUG03  | 18AUG03     |
| FILTER                        | 1          | ✓          | <b>√</b>  | ✓           |
| XAD                           | /          | <b>√</b> . | V         | J           |
| ACEMC                         | ✓          | /          | <b>√</b>  | <b>V</b>    |
| TOLUENE                       | <b>/</b>   | <b>√</b>   | /         |             |
| ACE/MC<br>BACK HALF<br>RINSE  | XEE        |            |           |             |
| TOLUENE<br>BACK HALF<br>RINSE |            |            |           |             |
| IMPINGER<br>CATCH             |            | ·          |           |             |
| NOTES & OBSERVATIONS          |            |            | ę.        |             |

|                               |           |            |   | 13290 %        |
|-------------------------------|-----------|------------|---|----------------|
| SAMPLE ID                     | 5004      | 6004       |   |                |
| TRAP ID                       | P3166-010 | P316 - 603 |   |                |
| DATE SAMPLED                  | 19AUG 03  | ZOAUGOS    |   |                |
| FILTER                        | ✓.        | )          |   |                |
| XAD                           | <b>√</b>  |            |   |                |
| ACEMC                         | 7         | <b>✓</b>   |   | 0k<br>52AV6 #3 |
| TOLUENE                       | S         |            |   |                |
| ACE/MC<br>BACK HALF<br>RINSE  | ·         |            |   |                |
| TOLUENE<br>BACK HALF<br>RINSE |           |            |   |                |
| IMPINGER<br>CATCH             |           |            |   |                |
| NOTES & OBSERVATIONS          |           |            | · |                |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                         | 23290      | > 14    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|---------|
|   | CHAIN OF CUSTODY RECORD  SAMPLE TRACEABILITY RECORD  Container (Cooler) No. BL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Sample Custodian:  A. Sanders |        |        | Storage Requirements:  Storage Requirements:  Comparison of the storage of the s |                           |            |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # 0 mon. <u>19200 720</u> |            |         |
|   | Page of Transfer No.  Checked by (Initials)/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                   |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | Lock or Seal Intact (Yes or No)/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | 110249, 2.001.04 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8)                                 |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del>              |            |         |
| * | M23 XAD CARTRIDGE # 23166-005 Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks:                            | ce to  | مده سی | BA6- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OALNO CA                  | RTRIOOF    | الم     |
|   | 110249, 2.001.04 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                   |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
| K | Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks:                            | m L*   | Rom    | OVOD F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erom con                  | Box 8/2    | HIPP OD |
| K | 110249, 2. 001. 04 1013<br>M23 TOLUENE Train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks:                            |        | Rom    | deres (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erom coo                  | 1.572.00 5 | u Agurd |
| ٢ | Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~530                                | m L "  | 120    | an 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ens coop                  | 80x 8/     | 21 204  |
| * | 110249, 2.001.04 1014<br>M23 FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | Reagent Blank Samples For disposal call:Hosenfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                         |            |         |
|   | MIDWEST RESEARCH INSTITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                         |            |         |
|   | K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | l <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | The state of the s | Flemarks:                           |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
| i | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riellarks.                          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | \\ \alpha_{\alpha}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
| 1 | Te l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:                            |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Tr                           | ransfe | rs:    | K Pon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B/21/03 A                 | 200-5      |         |
|   | Relinquished By: Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                                |        | Time   | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | n for Tran | sfer:   |
|   | a Sanders D. allowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/21/                              | 03     | 0807   | ①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TO LAB                    | FOR AMAL   | . TS15  |
|   | D. a. FEDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08/21/0                             | 3      | ~ 1708 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHIPPUS                   | n_         |         |
|   | 5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8, 20.02                            |        | 10 111 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |            |         |

\* missing dates on all samples. Br

93-4 SEV surm wkshl 020293

|          |                                                                 |              |             |          | <u>P3290 74</u>                           |            |  |
|----------|-----------------------------------------------------------------|--------------|-------------|----------|-------------------------------------------|------------|--|
|          | ☑ CHAIN OF CUSTODY RECORD                                       | Field Sampl  | e Custodi   | an:      | Storage Requirements:                     |            |  |
|          | ☐ SAMPLE TRACEABILITY RECORD                                    |              |             |          | lce water, ≤ 4°C<br>Dry ice               |            |  |
|          | Container (Cooler) No. XAD -                                    | A. Sande     | ヷ           |          | ☐ Room Temp., ≤ 26°C<br>A Other: BLUE 166 |            |  |
|          | Page of Transfer No.                                            |              |             |          | +                                         |            |  |
|          | Checked by (Initials)/Date                                      | An ala       |             |          | +                                         |            |  |
|          | Lock or Seal Intact (Yes or No)/Time                            | (9)          |             |          |                                           |            |  |
| ,        | 110249.2.001.04 2009                                            |              |             |          | +                                         |            |  |
| *        | M23 XAD CARTRIDGE # 23166-00  <br>Emission Sample - Mill        | Remarks:     |             |          |                                           |            |  |
| ×        | 110249.2.001.04 3009                                            |              |             |          |                                           |            |  |
| Ì        | M23 XAD CARTRIDGE # <u>23/66-</u> 004<br>Emission Sample - Mill | Remarks:     |             |          |                                           |            |  |
| ×        | 110249.2.001.04                                                 |              |             |          |                                           |            |  |
|          | M23 XAD CARTRIDGE #P3166-012<br>Emission Sample - Dryer         | Remarks:     |             |          | ·                                         |            |  |
| *        | 110249. 2. 001. 04 5004                                         |              |             |          | T                                         |            |  |
| T        | M23 XAD CARTRIDGE # 3166-010                                    | Remarks:     |             |          |                                           |            |  |
| اير      | Emission Sample - Dryer<br>110249.2.001.04 6004                 |              | <del></del> |          |                                           |            |  |
| *        | M23 XAD CARTRIDGE # 13/66-003                                   | Remarks:     |             |          |                                           |            |  |
| -        | Emission Sample - Dryer<br>For disposal call:Hosenfeld          |              |             |          |                                           |            |  |
| -1       | MIDWEST RESEARCH INSTITUTE                                      |              |             |          |                                           |            |  |
| - [      |                                                                 | Aemarks:     |             |          |                                           |            |  |
| Γ        | 4.                                                              |              |             |          |                                           |            |  |
| -        | <b>X</b> ~ .                                                    | Remarks:     |             |          |                                           |            |  |
| t        | Vie.                                                            |              |             |          |                                           |            |  |
| 1        | V. K. Te.                                                       | Remarks:     |             |          | <u> </u>                                  |            |  |
| ſ        |                                                                 |              |             | •        |                                           |            |  |
|          |                                                                 | Remarks:     |             |          |                                           |            |  |
| ŀ        |                                                                 |              |             |          |                                           |            |  |
|          | E.                                                              | Remarks:     |             |          |                                           |            |  |
| $\vdash$ | E E                                                             |              |             |          | <u> </u>                                  |            |  |
|          |                                                                 | Remarks:     |             | <u> </u> |                                           |            |  |
| ł        | \ \ \                                                           |              |             |          |                                           |            |  |
| -        |                                                                 | Sample Trans | fers:       |          |                                           |            |  |
| L        | Relinquished By: Received By:                                   | Date         | Time        | No.      | Reason for Transfe                        | er:        |  |
| -        |                                                                 | 8/21/03      | 0805        | 1        | TO LAB FOR ANALYSIS                       |            |  |
| L        | D. Albarta FEOEX                                                | 8/21/03      | ~170°       | @        | SHIPPER                                   | ĺ          |  |
| L        | Bulkeyer                                                        | 8-22-02      | 10:45       | 3        |                                           |            |  |
| L        |                                                                 |              |             | 4        |                                           |            |  |
| ¥        | & Missis                                                        | 1 .          |             |          | 93-4 SEV surm who                         | shi 020203 |  |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |          |                       | <u> </u>                                | 3290                     | 74     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----------|-----------------------|-----------------------------------------|--------------------------|--------|
|     | ☑ CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Sa  | mple  | Custodia | n:                    | _                                       | Requirem<br>water, ≤ 4°C |        |
|     | SAMPLE TRACEABILITY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A. Sa     | nder  | <b>T</b> |                       | ☐ Dry                                   | ice                      |        |
|     | Container (Cooler) No. F. Iters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |          | ₩ Othe                | ☐ Room Temp., ≤ 26°C  ☐ Other: Burn com |                          |        |
|     | Page of Transfer No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,         |       |          |                       |                                         |                          |        |
|     | Checked by (Initials)/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PA 8/21   |       |          |                       |                                         | ]                        |        |
|     | Lock or Seal Intact (Yes or No)/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |       |          |                       |                                         |                          |        |
| *   | 110249. 2. 001. 04 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |       |          |                       |                                         |                          |        |
| ~   | M23 FILTER<br>Emission Sample - Mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:  |       |          |                       |                                         |                          |        |
|     | 110249.2.001.04 3007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |       |          |                       |                                         |                          |        |
| *   | M23 FILTER<br>Emission Sample - Mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:  |       |          |                       |                                         |                          |        |
|     | 110249.2.001.04 4002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V         |       |          |                       |                                         |                          |        |
| *   | M23 FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:  |       |          |                       |                                         |                          |        |
| . } | Emission Sample - Dryer<br>110249.2.001.04 5002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/        |       |          |                       |                                         | <u> </u>                 |        |
| *   | M23 FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:  |       |          |                       |                                         | L                        |        |
| - 1 | Emission Sample - Dryer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |       |          |                       |                                         |                          |        |
| ×   | 110249.2.001.04 6002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |       |          |                       |                                         |                          |        |
| ٦]  | M23 FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:  |       |          |                       |                                         |                          |        |
|     | Emission Sample - Dryer<br>For disposal call:Hosenfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         |       |          |                       |                                         | 1                        |        |
| - 1 | MIDWEST RESEARCH INSTITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |       |          |                       |                                         | l                        |        |
| ı   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :Remarks: |       |          |                       |                                         |                          |        |
| ı   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       |          |                       |                                         |                          |        |
| }   | To the state of th | Remarks:  |       |          |                       |                                         | 1                        |        |
| ١   | Æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       |          |                       |                                         |                          |        |
| ł   | The state of the s |           |       |          |                       |                                         | <u> </u>                 |        |
| - ( | Te.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks:  |       |          |                       |                                         |                          |        |
| ł   | <b>V</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |       |          |                       |                                         |                          |        |
| - { |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  |       |          |                       |                                         |                          |        |
| - [ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |          |                       |                                         |                          |        |
| -   | $\prec$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |       |          |                       |                                         |                          |        |
|     | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remarks:  |       |          |                       |                                         |                          |        |
| ı   | Rea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |       |          |                       |                                         |                          |        |
|     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks:  | -     |          |                       |                                         |                          |        |
|     | /3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |       |          |                       |                                         |                          |        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample 1  | ransf | ers:     |                       |                                         |                          |        |
| ١   | Relinquished By: Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date      |       | Time     | No.                   | Reas                                    | on for Trai              | nsfer: |
|     | a. Sanders D. albuty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/21/0    | 3     | 0.500    | $\mathcal{O}_{\perp}$ | 54,000.20                               | - re AB                  |        |
|     | D. albaty FEDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/21/0    | 7     | ~1760 (  | 3                     | SHIPPE                                  | R                        |        |
|     | c Ray Danday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 - 22-05 | ,     | 10145    | 3                     |                                         |                          |        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |          | 4                     |                                         |                          |        |

\* Missing date on all sample of

|     |                                                                        |                                         |            |          |                                         |                                        | P3           | 3290                                               | 4/4                    |  |
|-----|------------------------------------------------------------------------|-----------------------------------------|------------|----------|-----------------------------------------|----------------------------------------|--------------|----------------------------------------------------|------------------------|--|
|     | ☐ CHAIN OF CUSTODY RECORD ☐ SAMPLE TRACEABILITY RECORD                 | Field Sa                                |            |          | odiar                                   | 1:                                     | <b>⊠</b> ice | Storage Requirements:<br>Let water, ≤ 4°C  Dry ice |                        |  |
|     | Container (Cooler) No. Rinses                                          | H- 54                                   | A- Sanders |          |                                         | ☐ Room Temp., ≤ 26°C ☐ Other: Beug 1cg |              |                                                    |                        |  |
| ĺ   | Page of Transfer No.                                                   | /                                       | T          |          | • • • • • • • • • • • • • • • • • • • • |                                        |              |                                                    |                        |  |
|     | Checked by (Initials)/Date                                             | QA 8/21                                 |            |          |                                         |                                        |              |                                                    |                        |  |
| 1   | Lock or Seal Intact (Yes or No)/Time                                   |                                         |            |          |                                         |                                        |              |                                                    |                        |  |
|     | 110249.2.001.04 2006                                                   | <i>V</i>                                |            |          |                                         |                                        |              |                                                    |                        |  |
| ٤   | M23 TREAT TRUE RINSES                                                  | Remarks:                                | , '        | Nors     | - 1                                     | tue s                                  | AMPUS        | word                                               | conormy &              |  |
|     | Emission Sample - Mill 110249.2.001.04 2010                            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1          | 420      | 54                                      | PPVA                                   | IN DANG      | warens over                                        | OS BIKOS               |  |
|     | 110249.2.001.04 2010<br>M23 TOLUENE QA RINSE<br>Emission Sample - Mill | emarks: .~ 360                          | m L        |          | (1                                      |                                        |              |                                                    |                        |  |
| Ι,  | 110249.2.001.04 3006                                                   | 1                                       | <u> </u>   |          |                                         |                                        |              |                                                    |                        |  |
| ۱   | M23 FRONT THEF RINSES<br>Emission Sample - Mill                        | itemarks:                               | mL         | ٠,       |                                         |                                        |              | T                                                  |                        |  |
| Ł   | 110249.2.001.04 3010                                                   | Remarks:                                | <u> </u>   |          |                                         |                                        |              |                                                    |                        |  |
|     | M23 TOLUENE QA RINSE<br>. Emission Sample - Mill                       | ~470 ~                                  | ıL         | ر.       |                                         |                                        |              |                                                    |                        |  |
| '   | 110249.2.001.04                                                        | V                                       |            |          |                                         |                                        |              |                                                    |                        |  |
|     | M23 FRONT-HALF RINSES Acetone<br>Emission Sample - Dryer               | Remarks: ~450 A                         |            | ~        |                                         |                                        |              |                                                    |                        |  |
|     | 110249.2.001.04 4005                                                   | Remarks:                                |            |          |                                         |                                        |              |                                                    | <u> </u>               |  |
| 1   | M23 TOLUENE QA RINSE<br>Emission Sample - Dryer                        | ~ 600 M                                 | L          | c/       |                                         |                                        |              |                                                    |                        |  |
| Ī   | 110249.2.001.04 5001                                                   |                                         |            |          |                                         |                                        |              |                                                    |                        |  |
|     | M23 PRONT HALF RINSES                                                  | Remarks: ~ 460 m                        | . 1        | • (      |                                         |                                        |              |                                                    |                        |  |
| ł   | Emission Sample - Dryer<br>110249.2.001.04 5005\                       | 1001                                    |            |          |                                         | •                                      |              | <u> </u>                                           |                        |  |
|     | M23 TOLUENE QA RINSE<br>Emission Sample - Dryer                        | Remarks:                                | m L        | "        |                                         |                                        |              |                                                    | <u> </u>               |  |
| ı   | 110249.2.001.04 6001                                                   | V                                       |            |          |                                         |                                        |              |                                                    |                        |  |
| -   | M23 <b>/366/2</b> HALF RINSES<br>Emission Sample - Dryer               | Remarks:                                |            | "        |                                         |                                        |              |                                                    | ***                    |  |
| ŀ   | 110249.2.001.04 6005                                                   |                                         |            | <u> </u> |                                         |                                        |              | 1                                                  | Т                      |  |
|     | M23 TOLUENE QA RINSE                                                   | /Remarks:                               |            |          |                                         |                                        |              | !                                                  | J                      |  |
|     | Emission Sample - Dryer<br>For disposal call:Hosenfeld                 |                                         |            | "        |                                         |                                        |              |                                                    |                        |  |
|     | MIDWEST RESEARCH INSTITUTE                                             |                                         |            |          |                                         |                                        |              |                                                    |                        |  |
| 1   | No further data. 98 8/20/03                                            | Remarks:                                |            |          |                                         |                                        |              |                                                    |                        |  |
|     | No further dates. 928 8/2003                                           | Sample 7                                | ransf      | ers:     | æ                                       | Brow                                   | LEDS UP      | INTO 3                                             | DANG, LOCAS<br>BIZI BA |  |
| ſ   | Relinquished By: Received By:                                          | Date                                    | ,          | Tin      |                                         | No.                                    |              | on for Tra                                         |                        |  |
| t   | a Sanders D. awarty                                                    | 8/21/03                                 |            | 081      |                                         | 0                                      |              | U 70 48                                            |                        |  |
|     | D. albut FEDEX                                                         | 8/21/0                                  | 3          | ~17      | 00                                      | 0                                      | SHIPPE       | CR.                                                |                        |  |
| Ì   | Burgadur                                                               | 8-22-0                                  |            | 101      | 45                                      | 3                                      |              |                                                    |                        |  |
| - 1 | 1                                                                      | l                                       |            | ı        |                                         |                                        |              |                                                    |                        |  |

\* Missing dates on all samples or

| ☐ CHAIN OF CUSTODY RECORD ☐ SAMPLE TRACEABILITY RECORD Container (Cooler) No. RGBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field Sample Custodian:  A. Sanders |                                                  |          |          | Storage Requirements:  ☐ Ice water, ≤ 4°C ☐ Dity ice ☑ Room Temp., ≤ 26°C ☐ Other: |                                                   |             |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|----------|----------|------------------------------------------------------------------------------------|---------------------------------------------------|-------------|----------|
| Page of Transfer No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f                                   | 2                                                |          |          |                                                                                    |                                                   |             |          |
| Checked by (Initials)/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 100                                              |          |          |                                                                                    |                                                   |             |          |
| Lock or Seal Intact (Yes or No)/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                                  | -+       |          |                                                                                    |                                                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \.                                | <del>                                     </del> | $\dashv$ |          |                                                                                    |                                                   |             |          |
| 110249.2.001.04 2011<br>M23 ACETONE<br>Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks:                            | LV                                               |          |          |                                                                                    | <b></b> ,                                         |             |          |
| 110249.2.001.04 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | W                                                | , I      |          |                                                                                    |                                                   |             | ,        |
| M23 TOLUENE<br>Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             | <u> </u> |
| 110249.2.001.04 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                                   | 1                                                |          |          |                                                                                    |                                                   |             |          |
| M23 FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
| Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                  |          |          |                                                                                    | Т                                                 |             |          |
| 110249.2.001.04 2015<br>M23 XAD CARTRIDGE #P316-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks:                            | V                                                |          |          |                                                                                    |                                                   |             |          |
| Reagent Blank Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                  |          |          |                                                                                    |                                                   |             |          |
| 110249.2.001.04 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >                                   | كسم                                              |          |          |                                                                                    |                                                   |             |          |
| M23 MILLI-Q WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
| Reagent Blank Samples<br>For disposal call:Hosenfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                                  |          |          |                                                                                    | T I                                               |             | -        |
| MIDWEST RESEARCH INSTITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                  |          |          |                                                                                    |                                                   |             |          |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                  |          |          |                                                                                    |                                                   |             |          |
| K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:                            |                                                  |          |          |                                                                                    | <u> </u>                                          |             |          |
| Te.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nemarks.                            |                                                  |          |          |                                                                                    |                                                   |             |          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Domonius:                           |                                                  |          |          |                                                                                    |                                                   |             |          |
| V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                  |          |          |                                                                                    |                                                   |             |          |
| La Carrier de la | Remarks:                            |                                                  |          |          |                                                                                    |                                                   |             |          |
| Es .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:                            |                                                  |          |          | -                                                                                  |                                                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample T                            | ransfe                                           | ers:     |          |                                                                                    |                                                   |             |          |
| Relinquished By: Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                                |                                                  | Tim      | е        | No.                                                                                | Reaso                                             | on for Tran | sfer:    |
| a Sander D. New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/21/0                              | 3                                                | 075      | ٥        | 1                                                                                  | Transfer                                          | to MRI      |          |
| O. Ny a la Sandera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/25/0                              | 3                                                | 10:0     | 00       | 2                                                                                  | Archive                                           | of MR       | エコ       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                  | , ,      | -        | 3                                                                                  | <del>/                                     </del> | 1- (1 V     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | -                                                |          | $\dashv$ | -                                                                                  |                                                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                  |          |          | 4                                                                                  |                                                   |             |          |

P3289 1/2

| CHAIN OF CUST SAMPLE TRACE Container (Cooler) | Field Sample Custodian:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |       |       | Storage Requirements:  Storage Requirements:  Control Control Control  Storage Requirements:  Control Control  Storage Requirements:  Control Control  Storage Requirements:  Control  Storag |     |                   |             |        |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|-------------|--------|
| Page _/_ of                                   | Ze 1974<br>Ze 1974/03 Transfer No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /         |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               | necked by (Initials)/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| Lock or Seal                                  | Intact (Yes or No)/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y         |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| (Sample Container Label)                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| /111                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | LAY   | 51    | ami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | کی۔ |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 1121                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flemarks: |       | ч     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Domarko   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 2111                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | (     | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 2121                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | t.    | ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | -                 |             |        |
| <b></b>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 3111                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riema ka. | t,    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 7.2.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 3/2/                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | t.    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   | _           |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 4211                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | 11    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 10                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 422/                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riemarks. | 1,    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| _                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 5211                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | (1    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| _                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| 5221                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  | c,    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks:  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample T  | ransf | ers:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |
| Relinquished By:                              | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date      |       | Tir   | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. | Reas              | on for Tran | nsfer: |
| MInn                                          | Dealbart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/21/03   |       | 09    | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | SHIPPIN<br>FOR AN | C TO LAR    | 3      |
| D. alle                                       | FEDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/21/0    |       | _     | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | @   | SH IPPOT          |             |        |
| , <u>, , , , , , , , , , , , , , , , , , </u> | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.22-01   |       | /0:4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3   | - "               |             |        |
|                                               | The Continue of the Continue o | 5.42.03   |       | יוויק | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   |                   |             |        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       | L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |             |        |

| M8290        | 93-4 SEV surm wksht 020293 |
|--------------|----------------------------|
| Same DO as   | Danks (ma,                 |
| as per Johnt | P3014 (mades)              |

P3289 3/2

| CHAIN OF CUSTODY RECORD SAMPLE TRACEABILITY RECORD Container (Cooler) No. | Field Sample Custodian: |                                              |        |     | Storage Requirements:      Description   Storage Requirements: |   |            |             |
|---------------------------------------------------------------------------|-------------------------|----------------------------------------------|--------|-----|----------------------------------------------------------------|---|------------|-------------|
| Page 2 of 2 Transfer No.                                                  | /                       |                                              |        |     |                                                                |   |            |             |
| Checked by (Initials)/Date                                                | DA 8/21                 | T                                            | $\neg$ |     |                                                                |   |            |             |
| Lock or Seal Intact (Yes or No)/Time                                      | Y                       |                                              |        |     |                                                                |   |            |             |
| (Sample Container Labet)                                                  |                         |                                              |        |     |                                                                |   |            |             |
| 6211                                                                      | Remarks:                | CLA                                          | و ب    | MAN | APU                                                            | N |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            | L           |
| 622(                                                                      | Remarks:                |                                              | *      |     | ,                                                              |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   | <u> </u>   |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                | Remarks:                                     |        |     |                                                                |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           |                         | <u> </u>                                     |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                | Remarks:                                     |        |     |                                                                |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           | Demarks                 | <u>.                                    </u> |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   | Y          | <b>7</b> -1 |
|                                                                           |                         |                                              |        |     |                                                                |   |            |             |
|                                                                           | Remarks:                |                                              |        |     |                                                                |   |            |             |
|                                                                           | Sample                  | Transf                                       | ers:   |     |                                                                |   |            |             |
| Relinquished By: Received By:                                             | Date                    | 9                                            | Tin    | ne  | No.                                                            |   | on for Tra |             |
| M. Time D. albuts                                                         | 8/21/03                 | 1                                            | 090    | 6   | <b>(1)</b>                                                     |   | NALYSIJ    |             |
| D. alberta FEOEX                                                          | 0/21/0                  |                                              | ~17    | oo  | 3                                                              |   | SHIPPOTE   |             |
| Baston                                                                    | 8.22.0                  | 7                                            | 10:4   | 15  | 3                                                              |   |            |             |
|                                                                           |                         |                                              |        |     | 4                                                              |   |            |             |

## Alta Analytical Perspectives - Sample Receiving Picture



Project ID: P3290

File: V:\Pictures\_Samples\P3290-1.JPG

Created: 22 August 2003 3:18 pm

## Alta Analytical Perspectives - Sample Receiving Picture



Project ID: P3289

File: V:\Pictures\_Samples\P3289-1.JPG

Created: 22 August 2003 2:19 pm

## Appendix B

## **Sampling Data and Field Analytical Records**

## **Appendix B-1**

# **Emissions Sample Collection**

| er en        | $i_{oldsymbol{eta}}$          |
|--------------------------------------------------|-------------------------------|
| VELOCITY TRA                                     | VERSE DATA 🔥                  |
| Project No. 1102 49.2.001.05                     | A                             |
| Plant Date \$-13-03                              |                               |
| Sampling Location Ball Glas Diner                |                               |
| Operator(s) tozenfeld (mylle)                    | g /   \                       |
| Barometric Pressure, in. Hg 721.87               |                               |
| Site to Barometer Elevationft.                   |                               |
| Corrected Barometric Pressure                    | \ \J <sub>a</sub> \ \         |
| Pitot No. Pitot Cp                               | \ <b>V</b> /                  |
| T/C No Temp. Meter No. $43917$ Stack Area, sq.ft | $ $ $\sim \sim$ $ $           |
| Static Pressure, in. H <sub>2</sub> O            |                               |
| Assumed Moisture, %                              |                               |
| Assumed %CO <sub>2</sub> Assumed %O <sub>2</sub> | Traverse Point Layout         |
| Initial Pitot Leak Check Pass                    |                               |
| Final Pitot Leak Check                           | Start Time 1113 End Time 1700 |
| Comments:                                        |                               |

| TRAVERSE        | VELOCITY                         | STACK  | ROTATION   | 78  |
|-----------------|----------------------------------|--------|------------|-----|
| POINT<br>NUMBER | HEAD, Δp<br>in. H <sub>2</sub> 0 | TEMP.  | ANGLE<br>α | ′′  |
|                 |                                  | 128.8  | ı er       |     |
| A 1             | .95                              |        | - II       |     |
| ٧ ٧             | 140                              | 10.7   | +2         |     |
| *               | 1.60                             | 131.6  | 4.         |     |
| 4               | 125                              | 131.8  | +1         |     |
| 7               | 1.25                             | 131.9  | 4-1        |     |
| ٠6              | 1.80                             | 131.6  | 0.         |     |
| 7               | 1.90                             | 131.2  | -2         |     |
| ð               | 1.80                             | 131.2  | -4         |     |
| 9               | 1.96                             | 132.1  | -¥         | 1.2 |
| 10              | 1.90                             | 1218   | -4         |     |
| 11              | 1.90                             | 1312   | -4         |     |
| 12              | 2,0                              | 1312   | -7         |     |
| 13              | 1.95                             | 131.7  | -6         |     |
| 14              | 1.95                             | 1314   | -6         |     |
| 15              | 195                              | 131.1. | -6         |     |
| 1/2             | 2.0                              | 131.7  | -5         |     |
| 17              | 2.0                              | 131.4  | -7         |     |
| 18              | 2.6                              | 131.2  | -5         |     |
| 19              | 2.0                              | 1361   | -1         |     |
| 20              | 1.90                             | 13/1   | -5         |     |
|                 |                                  | 1111   |            |     |
|                 |                                  |        |            |     |
|                 |                                  |        |            |     |
|                 |                                  |        |            |     |
|                 |                                  |        |            |     |
|                 |                                  |        |            |     |
|                 | l                                |        |            |     |

| TRAVERSE<br>POINT<br>NUMBER | VELOCITY<br>HEAD, Δp<br>in. H <sub>2</sub> 0 | STACK<br>TEMP.<br>°F | ROTATION<br>ANGLE<br>a |                 |
|-----------------------------|----------------------------------------------|----------------------|------------------------|-----------------|
| B-1                         | 0.76                                         | 129.4                | -5                     |                 |
| B2                          | 0.99                                         | 130.4                | +3                     |                 |
| 3                           | 1.5                                          | 131.0                | 15                     |                 |
| 4                           | 1.6                                          | 131.1                | +7                     |                 |
|                             | <i>i-</i> 7                                  | 131,0                | +6                     |                 |
| 6                           | 1.7                                          | 130,9                | <del>+</del> 5         |                 |
| 7                           | 1.8                                          | 131,0                | 0                      |                 |
| 8                           | 1.8                                          | 131.1                | 0                      |                 |
| 9                           | 1.8                                          | 131.8                | 0                      |                 |
| 10                          | 18                                           | 131.9                | -+-1                   |                 |
| 11                          | 1.85                                         | 132.2                | <u>-Z</u>              |                 |
| 12                          | 1.85                                         | 132.1                | -2                     |                 |
| 13                          | 1.9                                          | 132.0                |                        |                 |
|                             | 1.95                                         | 131.7                | -4                     |                 |
|                             | 1.95                                         | 131-8                | -2                     |                 |
| 16                          | 1.95                                         | 132.1                | -Z                     |                 |
| 17                          | 2.0                                          | 132.5                | - 2                    |                 |
| 18                          | 2.0                                          | 132.7                | -4                     |                 |
| 19                          | 2.0                                          | 133.1                | -4                     |                 |
| 20                          | 20                                           | 133.2                | -2                     |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              |                      |                        |                 |
|                             |                                              | BA                   | 93-3 SE                | V surfrm 020393 |
|                             |                                              | 791                  | 11/03 93-3 SE          |                 |

|                                        |                                  |                  | VELC       | OCITY TE | RAVERSE (       | ATAC                             | Ņ             |                   |                     |
|----------------------------------------|----------------------------------|------------------|------------|----------|-----------------|----------------------------------|---------------|-------------------|---------------------|
| Project No                             | ). //0                           | 249              |            |          |                 |                                  | lack          |                   |                     |
| Project No.                            | Pie 1                            | Da               | te 8-1:    | 7-03     |                 |                                  | ,             | a                 |                     |
| Plant 4                                |                                  |                  | 1          |          |                 |                                  |               | $\overline{\sim}$ |                     |
| Sampling Location M. II Stock Outlet   |                                  |                  |            |          |                 | 1/2                              | _             | $\sim$            |                     |
| Operator(s                             | s) Neal                          | 162 5            |            |          |                 | / '                              | `~ /          | 7 \               |                     |
| Operator(s<br>Barometric<br>Site to Ba | Pressure                         | , in. Ha         |            |          |                 | Y                                | '\/           | V                 |                     |
| Site to Ba                             | rometer E                        | levation         | 20         | ft.      |                 |                                  |               | 1                 |                     |
| Corrected                              | Barometr                         | ic Pressur       | e          |          |                 | 1                                | <b>∠</b> \    | Å                 |                     |
| Pitot No.                              |                                  | Pitot Cp         |            |          |                 | [\ \pi_o;                        | `             | <b>\</b> . /      |                     |
| Pitot No                               |                                  | Temp. Me         | eter No.   | NT       |                 | 1 /3                             |               |                   | ^                   |
| Stack Area                             | a, sq.ft.                        |                  |            |          |                 |                                  |               | $\sim$            | TP                  |
| Static Pres                            | ssure, in. I                     | H <sub>2</sub> O |            |          |                 |                                  |               |                   | 1 CLL DI            |
|                                        |                                  |                  |            |          |                 |                                  |               | 130               | 1 7131659           |
| Assumed<br>Assumed<br>Initial Pitor    | %CO <sub>o</sub>                 | Ass              | sumed %C   | )_       |                 | Trove                            | erse Point La | want (á           | 7 Status<br>2 13 10 |
| Initial Dita                           | Look Ch                          | pole Po          | 34GG 76G   | 2        |                 | Have                             | erse Point La | yout 🐷            |                     |
| Final Pitot                            | Leak Chi                         | ok Pa            | <u>ac</u>  |          | Start Tim       | ~ KI W                           | 5 En          | d Time _6         | 1770                |
| Comment                                |                                  | - To             | <u> </u>   | ····     | Start Tim       | e 6/61                           | En            | a rime            | 124                 |
| Comment                                | ٥.                               |                  |            |          |                 |                                  |               |                   |                     |
|                                        |                                  |                  |            |          |                 | Ι                                | 1             | ,                 |                     |
| TRAVERSE                               | VELOCITY                         | STACK            | ROTATION   |          | TRAVERSE        | VELOCITY                         | STACK         | ROTATION          |                     |
| POINT<br>NUMBER                        | HEAD, Δp<br>in. H <sub>2</sub> 0 | TEMP.            | ANGLE<br>α |          | POINT<br>NUMBER | HEAD, Δp<br>in. H <sub>2</sub> 0 | TEMP.<br>∘F   | ANGLE<br>a        |                     |
| NOWIDER                                | 117. 1120                        |                  | ۵.         |          | NOMBER          | III. H <sub>2</sub> U            |               |                   |                     |
| A-1                                    | .52                              | 135              | 0          |          | 13-1            | 162                              | 138           | 5                 |                     |
| 2                                      | ,53                              | 139              | 1/         |          | 13,1            | .97                              | 141           | 0                 |                     |
| 3                                      | <u>(3)</u>                       | 141              | -3         |          | 18-3            | 23/3                             | 140           | 0                 |                     |
| 4                                      | 166                              | 141              | 8          |          | 13-4            | ,60                              | 140           | 1                 |                     |
| 5                                      | 74                               | 142              | -11        |          | 3-5             | .60                              | 141           | 3                 |                     |
| Ĺ                                      | 12                               | 142              | 5          |          | 13-6            | .62                              | 141           | 5                 |                     |
| 7                                      | .60                              | 141              | 2          |          | B-7             | .70                              | 140           | 6                 |                     |
| Ŷ                                      | iv                               | 141              | 2          |          | 3-8             | 160                              | 140           | 4                 |                     |
| a                                      | 151                              | 140              | 2          |          | B-9             | .57                              | 142           | 3                 |                     |
| 10                                     | 50                               | 142              | 4          |          | B-10            | .57                              | 141           | 6                 |                     |
| li                                     | 12                               | 142              | 14         |          | B-11            | 175                              | 141           | 18                |                     |
| 12                                     | ,01                              | 142              | 16         |          | 13-12           | .91                              | 142           | 2                 |                     |
| 13                                     | 1/1                              | 142              | ناا        |          | B-13            | , 98                             | 142 -         | 6                 |                     |
| 14                                     | 1.2                              | 141              | 20         |          | 3-14            | 1.1                              | 142           | 8                 |                     |
| 15                                     | 1.4                              | 141              | 14         |          | 12-15           | 1.3                              | 140           | 2                 |                     |
| 16                                     | 14                               | 141/             | 16         |          | 13-16           | 1.3                              | 141           | 4                 |                     |
| n                                      | 1-3                              | 142              | 18         |          | B17             | 1.3                              | 141           | 9                 |                     |

93-3 SEV sur frm 020393

## Emission Measurements Data Summary Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI Facility CBI

Facility Control Facility Incation

Source tested Mill

Emission measurement location Stack Outlet

Test run no. 1-Retest Sampling train no. M23-1

Operator(s) Dave Griffin

Test run date(s) August 13, 2003 Run start time 05:30 AM Run stop time 10:48 AM

10

Signature/Date

#### Measurement Equipment Identification and Specifications

Metering console no. N7

Dry gas meter (DGM) calibration factor (Y) 1.002

Orifice meter factor ( $\Delta$ H@) 1.794 in. H<sub>2</sub>O stor ( $Y_{qa}$ ) from sampling data 1.029

DGM calibration factor ( $Y_{qa}$ ) from sampling data 1.029 Comparison of  $Y_{qa}$  to Y (must be within ±5% of Y) within ±5%

Temperature controller\* no. N/A
Temperature meter\* no. N/A
Additional thermocouple no. N/A
Sample transfer line no. N/A

Umbilical cable no(s). N-16-2
Sample box no. 10288
Impinger outlet connector no. UH-1

Filter no(s). 23-1RE Probe no. 3-2

Effective probe length 3.0 feet 0.91 m

-20 feet

-6.1 m

Probe liner Heated glass tubing

Gas stream temperature thermocouple no. 36-2
Pitot tube no. M-126

Pitot tube coefficient 0.840 Sampling nozzle no. N7

Sampling nozzle type Nichol button-hook

Sampling nozzle inside diameter at inlet tip 0.249 inches 6.32 mm

Barometer no. X-4029

Altitude difference from emission measurement location

to barometer or reference point at the test site  $\,$  -29 feet  $\,$  -8.8 m Altitude difference from metering console location

to barometer or reference point at the test site

' Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

| Gas stream p<br>measurement | 1      | Sampling system -<br><u>Leak check from nozzle</u> |          |                   |               |  |  |  |
|-----------------------------|--------|----------------------------------------------------|----------|-------------------|---------------|--|--|--|
| Leak check from             |        |                                                    | Pump     | Leak              |               |  |  |  |
| <u>Time</u>                 | Result |                                                    | Time     | Vacuum,<br>in. Hq | Rate,<br>dcfm |  |  |  |
| Initial 05:20 Al            | M Pass | Initial                                            | 05:30 AM | 15.0              | 0.003         |  |  |  |
| Final 10:55 AN              | M PASS | Final                                              | 07:35 AM | 20.0              | 0.001         |  |  |  |
|                             |        | Initial                                            | 08:00 AM | 15.0              | 0.002         |  |  |  |
|                             |        | Final                                              | 09:40 AM | 21.0              | 0.001         |  |  |  |
|                             |        | Initial                                            | 09:50 AM | 15.0              | 0.003         |  |  |  |
|                             |        | Final                                              | 10:00 AM | 21.0              | 0.001         |  |  |  |
|                             |        | Initial                                            | 10:05 AM | 15.0              | 0.002         |  |  |  |
|                             |        | Final                                              | 10:55 AM | 21.0              | 0.001         |  |  |  |

87/11/03

# Emission Measurements Data Summary Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI Facility CBI

Facility location Source tested Mill

Emission measurement location Stack Outlet

Test run no. 1-Retest T
Sampling train no. M23-1
Total sampling time 240.00 minutes

Test run date(s) August 13, 2003 Run start time 05:30 AM Run stop time 10:48 AM

#### Gas Stream Measurement Results

| Gas Stream Med                                  | asul Cilici | it iveanit                          | .2        |                                      |
|-------------------------------------------------|-------------|-------------------------------------|-----------|--------------------------------------|
| Volumetric flow rate at dry standard conditions | 17,574      | dscfm                               | 497.65    | dscm/min.                            |
| Volumetric flow rate at dry standard conditions | 1,054,451   | dscf/hr                             | 29,858.7  | dscm/hr                              |
| Volumetric flow rate at standard conditions     | 19,856      | scfm                                | 562.26    | scm/min.                             |
| Standard Conditions are                         | 68          | °F a                                | and 760   | mm Hg                                |
| Volumetric flow rate at actual conditions       | 22,957      | acfm                                | 650.06    | acm/min.                             |
| Volumetric flow rate at actual conditions       | 1,377,390   | acf/hr                              | 39,003.4  | acm/hr                               |
| Average velocity                                | 54.13       | ft./sec.                            | 16.498    | m/sec.                               |
| Average velocity                                | 3,248       | ft./min.                            | 989.9     | m/min.                               |
| Square root of velocity head                    | 0.9104      | (in. H <sub>2</sub> O) <sup>∨</sup> | 4.588     | (mm H <sub>2</sub> O) <sup>0.5</sup> |
| Velocity head                                   | 0.829       | in. H <sub>2</sub> O                | 21.05     | mm H₂O                               |
| Absolute temperature                            | 603.1       | °R                                  | 335.1     | K                                    |
| Temperature                                     | 143.4       | °F                                  | 61.9      | °C                                   |
| Absolute pressure                               | 29.58       | in. Hg                              | 751.3     | mm Hg                                |
| Static pressure                                 | 0.00        | in. H₂O                             | 0.0       | mm H₂O                               |
| Barometric pressure at start of run             | 29.58       | in. Hg                              | 751.3     | mm Hg                                |
| Barometric pressure at end of run               | N/A         | in. Hg                              | N/A       | mm Hg                                |
| Moisture (as water vapor) content               | 11.49       | % by vol                            | ume 11.49 | % by volume                          |
| Wet gas molecular weight                        | 29.74       | lb/lb-mole                          | 29.74     | g/g-mole                             |
| Dry gas molecular weight                        | 31.27       | lb/lb-mole                          | 31.27     | g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 19.5        | % by vol                            | ume 19.5  | % by volume                          |
| Oxygen concentration, dry-basis                 | 0.5         | % by vol                            | ume 0.5   | % by volume                          |
| Carbon monoxide concentration, dry-basis        |             | % by vol                            | ume       | % by volume                          |
|                                                 |             |                                     |           |                                      |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| Stack or duct type              | Circular      |                        |
|---------------------------------|---------------|------------------------|
| First diameter                  | 36.000 inches | 0.9144 m               |
| Second diameter                 | 36.000 inches | 0.9144 m               |
| Gas stream cross-sectional area | 7.0686 ft.2   | 0.65669 m <sup>2</sup> |

#### **Gas Sampling Results**

| Gas sample volume, corrected, at standard conditions | 209.840 dscf               | 5.9420 dscm               |
|------------------------------------------------------|----------------------------|---------------------------|
| Gas sample volume as read on dry gas meter           | 221.453 ft.3               | 6.2709 m³                 |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m³                 |
| Gas sample volume corrected for leakage              | 221.453 ft.3               | 6.2709 m³                 |
| Absolute dry gas meter temperature                   | 555.7 °R                   | 308.7 K                   |
| Dry gas meter temperature                            | 96.0 °F                    | 35.6 °C                   |
| Absolute dry gas meter pressure                      | 29.80 in. Hg               | 756.9 mm Hg               |
| Orifice meter differential pressure (AH)             | 2,977 in. H <sub>2</sub> O | 75.63 mm H <sub>2</sub> O |
| Barometric pressure at start of run                  | 29.59 in. Hg               | 751.6 mm Hg               |
| Barometric pressure at end of run                    | N/A in. Hg                 | N/A mm Hg                 |
| Condensate collected in sampling train               | 577.8 grams                | 577.8 grams               |
| Isokinetic sampling variation                        | 103.99 %                   |                           |

#### Other Supporting Data

| Barometric pressure at test site at start of run | 29.61 in. Hg   | 752.1 mm Hg              |
|--------------------------------------------------|----------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in. Hg     | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    | 3.382E-04 ft.2 | 3.142E-05 m <sup>2</sup> |
| Pitot tube coefficient                           | 0.840          |                          |

Dry gas meter calibration factor (Y) 1.002
Dry gas meter calibration factor  $(Y_{qa})$  from sampling data 1.029
Comparison of  $Y_{qa}$  to Y (difference must be within ±5% of Y) within ±5%
Orifice meter factor ( $\Delta H@$ ) 1.794 in.  $H_2O$ ture (as water vapor) content based on condensate collected 11.49 % by volume

Potential moisture (as water vapor) content based on condensate collected 11.49 % by volume Potential moisture (as water vapor) content based on gas stream parameters N/A % by volume

87/11/03

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportB] 8/26/2003 2:12 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Project no. 110249.2.001.05 Emission measurement location: Stack Outlet |           |            |              |                    |           |             |              |                       |                   |         |          |          |        |        |          |               |            |
|-------------------------------------------------------------------------|-----------|------------|--------------|--------------------|-----------|-------------|--------------|-----------------------|-------------------|---------|----------|----------|--------|--------|----------|---------------|------------|
| Test run no.                                                            |           |            | August 13, 2 |                    | leasureme | Train no.   |              | et                    |                   |         |          |          |        | P      | age 1 of | 2             |            |
| restrainio.                                                             | 1 110.001 | Cumulative |              | eter Reading.      | Orifice F | Pressure    | Velocity     | Gas                   | Dry Ga            | s Meter |          | Impinger | Probe  | Filter | XAD      | STL           | Isokinetic |
| Traverse                                                                | Cłock     | Sampling   | 1 '          | (V <sub>m</sub> ), | Differ    | rential     | Head,        | Stream                | 1 '               | erature | Pump     | Outlet   | Outlet | Holder | Inlet    | Outlet        | Sampling   |
| Port-Point                                                              | Time      | Time,      |              | ft.º               | (ΔH), inc | hes H₂O     | (∆p),        | Temp.,                | (t <sub>m</sub> ) | ), °F   | Vacuum,  | Temp.,   | Temp., | Temp., | Temp.,   | Temp.,        | Variation, |
| Number                                                                  | 24-hr     | minutes    | Desired      | Actual             | Desired   | Actual      | inches H₂O   | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg   | °F       | °F     | °F     | °F       | °F            | percent    |
| STRT                                                                    | 5:30:00   | 0.00       |              | 839.211            |           |             |              |                       |                   |         |          |          |        |        |          |               |            |
| A1                                                                      | 5:36:00   | 6.00       | 843.689      | 843.480            | 1.734     | 1.800       | 0.560        | 135                   | 77                | 77      | 8.0      | 58       | 248    | 260    | 44       |               | 100.0      |
| A2                                                                      | 5:42:00   | 12.00      | 848.099      | 848.000            | 1.676     | 1.800       | 0.540        | 136                   | 80                | 78      | 11.0     | 53       | 252    | 259    | 42       |               | 107.6      |
| A3                                                                      | 5:48:00   | 18.00      | 852.641      | 852.820            | 1.774     | 1.900       | 0.570        | 136                   | 82                | 79      | 12.0     | 53       | 253    | 258    | 42       |               | 111.4      |
| A4                                                                      | 5:54:00   | 24.00      | 857.401      | 857.600            | 1.938     | 2.100       | 0.620        | 136                   | 86                | 81      | 12.0     | 55       | 248    | 257    | 42       |               | 105.4      |
| A5                                                                      | 6:00:00   | 30.00      | 862.367      | 862.470            | 2.101     | 2.100       | 0.670        | 136                   | 89                | 82      | 12.0     | 57       | 249    | 257    | 43       |               | 102.9      |
| A6                                                                      | 6:06:00   | 36.00      | 867.351      | 867.450            | 2.108     | 2.200       | 0.670        | 136                   | 91                | 84      | 12.0     | 54       | 251    | 257    | 43       |               | 104.8      |
| A7                                                                      | 6:12:00   | 42.00      | 872.570      | 872.700            | 2.303     | 2.400       | 0.730        | 136                   | 93                | 86      | 13.0     | 53       | 250    | 257    | 44       |               | 105.6      |
| A8                                                                      | 6:18:00   | 48.00      | 877.543      | 877.850            | 2.087     | 2.300       | 0.660        | 137                   | 95                | 87      | 13.0     | 53       | 248    | 256    | 44       |               | 108.7      |
| A9                                                                      | 6:24:00   | 54.00      | 882.487      | 882.990            | 2.056     | 2.300       | 0.650        | 139                   | 97                | 89      | 13.0     | 53       | 252    | 255    | 44       |               | 109.1      |
| A10                                                                     | 6:30:00   | 60.00      | 887.212      | 888.050            | 1.875     | 2.100       | 0.590        | 138                   | 98                | 90      | 12.0     | 52       | 248    | 257    | 43       |               | 112.3      |
| A11                                                                     | 6:36:00   | 66.00      | 892.641      | 893.370            | 2.469     | 2.500       | 0.780        | 139                   | 98                | 91      | 13.0     | 52       | 249    | 258    | 44       |               | 102.8      |
| A12                                                                     | 6:42:00   | 72.00      | 898.310      | 898.950            | 2.686     | 2.700       | 0.850        | 141                   | 100               | 92      | 14.0     | 52       | 248    | 257    | 44       |               | 103.3      |
| A13                                                                     | 6:48:00   | 78.00      | 904.598      | 904.900            | 3.300     | 3.300       | 1.050        | 143                   | 100               | 93      | 18.0     | 54       | 252    | 257    | 45       |               | 99.3       |
| A14                                                                     | 6:54:00   | 84.00      | 911.322      | 911.260            | 3.763     | 3.600       | 1.200        | 144                   | 101               | 94      | 19.0     | 57       | 251    | 257    | 46       |               | 99.3       |
| A15                                                                     | 7:00:00   | 90.00      | 918.046      | 917.710            | 3.760     | 3.600       | 1.200        | 145                   | 101               | 95      | 20.0     | 58       | 249    | 257    | 47       |               | 100.6      |
| A16                                                                     | 7:06:00   | 96.00      | 924.770      | 924.200            | 3.758     | 3.700       | 1.200        | 146                   | 101               | 96      | 20.0     | 56       | 252    | 256    | 48       |               | 101.3      |
| A17                                                                     | 7:12:00   | 102.00     | 931.499      | 930.700            | 3.764     | 3.700       | 1.200        | 145                   | 101               | 96      | 20.0     | 54       | 251    | 257    | 50       |               | 101.4      |
| A18                                                                     | 7:18:00   | 108.00     | 938.228      | 937.200            | 3.761     | 3.700       | 1.200        | 146                   | 101               | 97      | 20.0     | 54       | 251    | 257    | 52       |               | 101.4      |
| A18                                                                     | 7:24:00   | 114.00     | 944.963      | 943.700            | 3.767     | 3.700       | 1.200        | 145                   | 101               | 97      | 20.0     | 54       | 248    | 257    | 50       |               | 101.3      |
| A18                                                                     | 7:30:00   | 120.00     | 951.693      | 950.200            | 3.761     | 3.700       | 1.200        | 146                   | 101               | 97      | 20.0     | 54       | 250    | 257    | 49       |               | 101.4      |
|                                                                         | 8:00:00   | 120.00     |              | 950.564            |           |             |              |                       |                   |         |          |          |        |        |          |               |            |
| B1                                                                      | 8:06:00   | 126.00     | 955.299      | 953.900            | 0.884     | 1.000       | 0.280        | 145                   | 94                | 94      | 7.0      | 65       | 252    | 259    | 59       |               | 107.9      |
| B2                                                                      | 8:12:00   | 132.00     | 959.539      | 957.970            | 1.510     | 1.700       | 0.480        | 145                   | 94                | 94      | 10.0     | 43       | 251    | 261    | 50       |               | 100.7      |
| В3                                                                      | 8:18:00   | 138.00     | 964.354      | 962.950            | 1.945     | 2.200       | 0.620        | 146                   | 96                | 93      | 13.0     | 44       | 249    | 260    | 47       |               | 108.5      |
| B4                                                                      | 8:24:00   | 144.00     | 969.501      | 968.210            | 2.205     | 2.500       | 0.700        | 146                   | 100               | 95      | 15.0     | 50       | 253    | 258    | 46       |               | 107.4      |
| B5                                                                      | 8:30:00   | 150.00     | 974.271      | 973.330            | 1.895     | 2.200       | 0.600        | 146                   | 101               | 95      | 14.0     | 53       | 249    | 258    | 46       |               | 112.7      |
| B6                                                                      | 8:36:00   | 156.00     | 978.968      | 978.460            | 1.835     | 2.200       | 0.580        | 146                   | 102               | 96      | 14.0     | 55       | 252    | 257    | 46       |               | 114.6      |
| B7                                                                      | 8:42:00   | 162.00     | 983.833      | 983.630            | 1.964     | 2.200       | 0.620        | 146                   | 103               | 97      | 14.0     | 56       | 249    | 257    | 46       |               | 111.5      |
| B8                                                                      | 8:48:00   | 168.00     | 988.887      | 988.800            | 2.121     | 2.300       | 0.670        | 146                   | 103               | 97      | 14.0     | 55       | 252    | 257    | 47       |               | 107.3      |
| B9                                                                      | 8:54:00   | 174.00     | 993.559      | 993.970            | 1.810     | 2.200       | 0.570        | 146                   | 104               | 98      | 14.0     | 55       | 252    | 257    | 47       |               | 116.1      |
| B10                                                                     | 9:00:00   | 180.00     | 998.702      | 999.220            | 2.188     | 2.300       | 0.690        | 147                   | 105               | 99      | 14.0     | 55       | 248    | 257    | 47       |               | 107.1      |
| B11                                                                     | 9:06:00   | 186.00     | 1,004.135    | 1,004.730          | 2.442     | 2.700       | 0.770        | 146                   | 105               | 99      | 16.0     | 55       | 253    | 257    | 48       |               | 106.4      |
| B12                                                                     | 9:12:00   | 192.00     | 1,010.008    | 1,010.700          | 2.851     | 3.100       | 0.900        | 146                   | 105               | 100     | 18.0     | 52       | 252    | 257    | 48       |               | 106.7      |
| Damarkar                                                                | Note: A D | CM roadin  |              | is flagged with    |           | ale supp po | t taken et i | ba pracia             | - time            |         | rator(s) |          |        |        |          | $\overline{}$ |            |

Operator(s): Dave Griffin

Signature/Date 106.7

#### Test Run Field Data Sheet - PCDD/PCDF

|              |             |            | , 001 / (01) | i i icia Bata      |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | _   |
|--------------|-------------|------------|--------------|--------------------|-----------|-----------------------|-------------|-----------------------|-------------------|---------|---------|----------|--------|--------|----------|--------|------------|-----|
| Project no.  | 110249.2.00 |            |              |                    | neasureme | nt location:          | Stack Outle | et                    |                   |         |         |          |        |        |          |        |            | 1   |
| Test run no. | 1-Retest    | Date(s):   | August 13, 2 |                    |           | Train no.             | M23-1       |                       |                   |         |         |          |        | P      | age 2 of | 2      |            |     |
|              |             | Cumulative |              | eter Reading,      |           | Pressure              | Velocity    | Gas                   | Dry Ga            | s Meter |         | Impinger | Probe  | Filter | XAD      | STL    | Isokinetic |     |
| Traverse     | Clock       | Sampling   | 1            | (V <sub>m</sub> ), |           | rential               | Head,       | Stream                |                   | erature | Pump    | Outlet   | Outlet | Holder | Inlet    | Outlet | Sampling   |     |
| Port-Point   | Time        | Time,      |              | ft.3               |           | ches H <sub>2</sub> O | (Δp),       | Temp.,                | (t <sub>m</sub> ) | , °F    | Vacuum, | Temp.,   | Temp., | Temp., | Temp.,   | Temp., | Variation, |     |
| Number       | 24-hr       | minutes    | Desired      | Actual             | Desired   | Actual                | inches H₂O  | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg  | °F       | °F     | °F     | °F.      | °F     | percent    |     |
| B13          | 9:18:00     | 198.00     | 1,015.885    | 1,016.670          | 2.854     | 3.200                 | 0.900       | 146                   | 106               | 100     | 19.0    | 48       | 249    | 256    | 48       |        | 106.6      | 4   |
| B14          | 9:24:00     | 204.00     | 1,022.384    | 1,022.900          | 3.480     | 3.400                 | 1.100       | 146                   | 106               | 101     | 21.0    | 47       | 248    | 257    | 49       |        | 100.6      |     |
| B15          | 9:30:00     | 210.00     | 1,029.161    | 1,029.120          | 3.781     | 3.400                 | 1.200       | 147                   | 105               | 101     | 21.0    | 48       | 250    | 257    | 49       |        | 96.3       |     |
| B16          | 9:36:00     | 216.00     | 1,035.943    | 1,035.293          | 3.787     | 3.400                 | 1.200       | 146                   | 105               | 101     | 21.0    | 48       | 250    | 256    | 50       |        | 95.5       |     |
|              | 9:54:00     | 216.00     |              | 1,035.592          |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | L   |
|              | 9:55:00     | 217.00     | 1,037.406    | 1,036.700          | 4.068     | 3.400                 | 1.300       | 146                   | 99                | 99      | 21.0    | 48       | 250    | 256    | 50       |        | 99.5       |     |
| B17          | 10:25:00    | 217.00     |              | 1,037.247          |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | ر [ |
|              | 10:30:00    | 222.00     | 1,043.787    | 1,042.530          | 4.068     | 3.800                 | 1.300       | 146                   | 99                | 99      | 21.0    | 53       | 251    | 258    | 66       |        | 95.0       |     |
| B18          | 10:36:00    | 228.00     | 1,050.747    | 1,048.950          | 4.047     | 3.700                 | 1.300       | 146                   | 96                | 96      | 21.0    | 47       | 253    | 257    | 67       |        | 96.7       |     |
| B18          | 10:42:00    | 234.00     | 1,057.163    | 1,055.420          | 3.438     | 3.700                 | 1.100       | 146                   | 97                | 96      | 21.0    | 59       | 249    | 257    | 64       |        | 105.8      |     |
| B18          | 10:48:00    | 240.00     | 1,063.872    | 1,061.874          | 3.745     | 3.700                 | 1.200       | 147                   | 99                | 96      | 21.0    | 61       | 251    | 257    | 59       |        | 101.0      | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             | _                     |                   |         |         |          |        |        |          |        |            | ۱ [ |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         | Ĭ       |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            |     |
|              |             |            |              |                    |           | <b></b>               | -           |                       |                   |         |         |          |        |        |          |        |            | 1   |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        | -      |          |        | -          |     |
|              |             |            |              |                    | _         |                       |             |                       |                   |         |         |          |        |        |          |        |            |     |
|              |             |            |              |                    |           |                       |             |                       |                   |         |         |          |        |        |          |        |            | 1   |

Remarks: Note: Any DGM reading above that is flagged with an asterisk was not taken at the precise time.

Operator(s): Dave Griffin

Knus Net 8-26-03

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:12 PM)

# Emission Measurements Data Summary Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location Source tested Mill

Source tested William

Emission measurement location Stack Outlet

Test run no. 2

Sampling train no. M23-2 Operator(s) Dave Griffin Test run date(s) August 14, 2003 Run start time 05:50 AM Run stop time 10:05 AM

Anus Ved 8-26-0

Measurement Equipment Identification and Specifications

Metering console no. N7

Dry gas meter (DGM) calibration factor (Y) 1.002

Orifice meter factor ( $\Delta$ H@) 1.794 in. H<sub>2</sub>O

DGM calibration factor  $(Y_{qa})$  from sampling data 1.002 Comparison of  $Y_{qa}$  to Y (must be within ±5% of Y) within ±5%

Temperature controller\* no. N/A
Temperature meter\* no. N/A
Additional thermocouple no. N/A
Sample transfer line no. N/A
Umbilical cable no(s). N-16-2
Sample box no. 012003

Impinger outlet connector no. UH-12 Filter no(s). 23-2

Probe no. 3-2

Effective probe length 3.0 feet 0.91 m

Probe liner Heated glass tubing

Gas stream temperature thermocouple no. 36-2

Pitot tube no. M-126 Pitot tube coefficient 0.840 Sampling nozzle no. N12

Sampling nozzle type Nichol button-hook

Sampling nozzle inside diameter at inlet tip 0.187 inches 4.75 mm

Barometer no. X-4029

Altitude difference from emission measurement location

to barometer or reference point at the test site -29 feet -8.8 m

Altitude difference from metering console location

to barometer or reference point at the test site -20 feet -6.1 m

\* Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

|          | stream pres<br>urement sys |             | !       |             | system -<br>from nozzle |               |
|----------|----------------------------|-------------|---------|-------------|-------------------------|---------------|
| Leak che | ck from pito               | ot tube tip |         |             | Pump<br>Vacuum,         | Leak<br>Rate, |
|          | <u>Time</u>                | Result      |         | <u>Time</u> | in. Hg                  | dcfm          |
| Initial  | 05:25 AM                   | Pass        | Initial | 05:30 AM    | 15.0                    | 0.001         |
| Final    | 10:07 AM                   | PASS        | Initial | 07:53 AM    | 9.0                     | 0.001         |
|          |                            |             | Initial | 07:57 AM    | 15.0                    | 0.001         |
|          |                            |             | Initial | 10:08 AM    | 9.0                     | 0.006         |

89/11/03

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportA] 8/26/2003 2:09 PM)

## Emission Measurements Data Summary Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05
Client EPA/ESD/RTI
Facility CBI
Facility location
Source tested Mill

Emission measurement location Stack Outlet

Test run no. 2 Test run date(s) August 14, 2003
Sampling train no. M23-2 Run start time 05:50 AM
Total sampling time 240.00 minutes Run stop time 10:05 AM

**Gas Stream Measurement Results** 

| Cus Ott culli met                               | addiction troducts                           |                                            |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Volumetric flow rate at dry standard conditions | 17,620 dscfm                                 | 498.94 dscm/min.                           |
| Volumetric flow rate at dry standard conditions | 1,057,189 dscf/hr                            | 29,936.3 dscm/hr                           |
| Volumetric flow rate at standard conditions     | 19,900 scfm                                  | 563.52 scm/min.                            |
| Standard Conditions are                         | 68 °F and                                    | 760 mm Hg                                  |
| Volumetric flow rate at actual conditions       | 22,899 acfm                                  | 648.42 acm/min.                            |
| Volumetric flow rate at actual conditions       | 1,373,919 acf/hr                             | 38,905.0 acm/hr                            |
| Average velocity                                | 53.99 ft./sec.                               | 16.457 m/sec.                              |
| Average velocity                                | 3,239 ft./min.                               | 987.4 m/min.                               |
| Square root of velocity head                    | 0.9103 (in. H <sub>2</sub> O) <sup>0.5</sup> | 4.588 (mm H <sub>2</sub> O) <sup>0.5</sup> |
| Velocity head                                   | 0.829 in. H <sub>2</sub> O                   | 21.05 mm H₂O                               |
| Absolute temperature                            | 605.7 °R                                     | 336.5 K                                    |
| Temperature                                     | 146.1 °F                                     | 63.4 °C                                    |
| Absolute pressure                               | 29.85 in. Hg                                 | 758.2 mm Hg                                |
| Static pressure                                 | 0.00 in. H <sub>2</sub> O                    | 0.0 mm H₂O                                 |
| Barometric pressure at start of run             | 29.85 in. Hg                                 | 758.2 mm Hg                                |
| Barometric pressure at end of run               | N/A in. Hg                                   | N/A mm Hg                                  |
| Moisture (as water vapor) content               | 11.46 % by volume                            | 11.46 % by volume                          |
| Wet gas molecular weight                        | 29.75 lb/lb-mole                             | 29.75 g/g-mole                             |
| Dry gas molecular weight                        | 31.27 lb/lb-mole                             | 31.27 g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 19.5 % by volume                             | 19.5 % by volume                           |
| Oxygen concentration, dry-basis                 | 0.5 % by volume                              | 0.5 % by volume                            |
| Carbon monoxide concentration, dry-basis        | % by volume                                  | % by volume                                |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| Stack or duct type              | Circular      |                        |
|---------------------------------|---------------|------------------------|
| First diameter                  | 36.000 inches | 0.9144 m               |
| Second diameter                 | 36.000 inches | 0.9144 m               |
| Gas stream cross-sectional area | 7.0686 ft.2   | 0.65669 m <sup>2</sup> |

#### **Gas Sampling Results**

| Ous Ourip                                            | iiiiq ixesuits             |                           |
|------------------------------------------------------|----------------------------|---------------------------|
| Gas sample volume, corrected, at standard conditions | 119.788 dscf               | 3.3920 dscm               |
| Gas sample volume as read on dry gas meter           | 125.574 ft.3               | 3.5559 m³                 |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m <sup>3</sup>     |
| Gas sample volume corrected for leakage              | 125.574 ft.3               | 3.5559 m³                 |
| Absolute dry gas meter temperature                   | 554.5 °R                   | 308.0 K                   |
| Dry gas meter temperature                            | 94.8 °F                    | 34.9 °C                   |
| Absolute dry gas meter pressure                      | 29.93 in. Hg               | 760.3 mm Hg               |
| Orifice meter differential pressure (△H)             | 1.101 in. H <sub>2</sub> O | 27.96 mm H <sub>2</sub> O |
| Barometric pressure at start of run                  | 29.86 in. Hg               | 758.4 mm Hg               |
| Barometric pressure at end of run                    | N/A in. Hg                 | N/A mm Hg                 |
| Condensate collected in sampling train               | 328.8 grams                | 328.8 grams               |
| Isokinetic sampling variation                        | 104.98 %                   |                           |
|                                                      |                            |                           |

#### **Other Supporting Data**

| Barometric pressure at test site at start of run | 29.88 in. Hg   | 759.0 mm Hg              |
|--------------------------------------------------|----------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in. Hg     | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    | 1.907E-04 ft.2 | 1.772E-05 m <sup>2</sup> |
| Pitot tube coefficient                           | 0.840          |                          |

Dry gas meter calibration factor (Y) 1.002
Dry gas meter calibration factor (Y<sub>qa</sub>) from sampling data 1.002
Comparison of Y<sub>qa</sub> to Y (difference must be within ±5% of Y) within ±5%
Orifice meter factor (ΔH@) 1.794 in. H

Orifice meter factor (ΔΗ@) 1.794 in. H<sub>2</sub>O
Potential moisture (as water vapor) content based on condensate collected
Potential moisture (as water vapor) content based on gas stream parameters
N/A % by volume

Test Run Field Data Sheet - PCDD/PCDF

| Project no. 110249.2.001.05 Emission measurement location: Stack Outlet |         |            |               |                   |                    |           |             |                       |                   |         |           |          |        |        |          |          |            |
|-------------------------------------------------------------------------|---------|------------|---------------|-------------------|--------------------|-----------|-------------|-----------------------|-------------------|---------|-----------|----------|--------|--------|----------|----------|------------|
| Test run no.                                                            |         |            | August 14, 20 |                   | casarcinci         | Train no. |             |                       |                   |         |           |          |        | Pa     | age 1 of | 2        |            |
| Tour tall the                                                           |         | Cumulative |               | eter Reading,     | Orifice F          | Pressure  | Velocity    | Gas                   | Dry Ga            | s Meter |           | Impinger | Probe  | Filter | XAD      | STL      | Isokinetic |
| Traverse                                                                | Clock   | Sampling   | (             | V <sub>m</sub> ), | Differ             | rential   | Head,       | Stream                | Temp              | erature | Pump      | Outlet   | Outlet | Holder | Inlet    | Outlet   | Sampling   |
| Port-Point                                                              | Time    | Time,      |               | ft.3              | (Δ <b>H</b> ), inc | hes H₂O   | (∆p),       | Temp.,                | (t <sub>m</sub> ) | ,°F     | Vacuum,   | Temp.,   | Temp., | Temp., | Temp.,   | Temp.,   | Variation, |
| Number                                                                  | 24-hr   | minutes    | Desired       | Actual            | Desired            | Actual    | inches H₂O  | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg    | °F       | °F     | °F     | °F       | °F       | percent    |
| STRT                                                                    | 5:50:00 | 0.00       |               | 62.445            |                    |           |             |                       |                   |         |           |          |        |        |          |          |            |
| A18                                                                     | 5:56:00 | 6.00       | 66.418        | 66.450            | 1.372              | 1.500     | 1.400       | 142                   | 80                | 79      | 8.0       | 60       | 248    | 257    | 66       |          | 105.7      |
| A18                                                                     | 6:02:00 | 12.00      | 70.403        | 70.450            | 1.375              | 1.500     | 1.400       | 143                   | 83                | 80      | 8.0       | 54       | 248    | 258    | 61       |          | 105.3      |
| A18                                                                     | 6:08:00 | 18.00      | 74.257        | 74.400            | 1.282              | 1.400     | 1.300       | 143                   | 86                | 81      | 9.0       | 53       | 254    | 257    | 60       |          | 107.5      |
| A17                                                                     | 6:14:00 | 24.00      | 78.267        | 78.450            | 1.383              | 1.500     | 1.400       | 144                   | 88                | 83      | 9.0       | 52       | 249    | 257    | 43       |          | 105.9      |
| A16                                                                     | 6:20:00 | 30.00      | 82.285        | 82.430            | 1.385              | 1.500     | 1.400       | 144                   | 90                | 83      | 9.0       | 52       | 249    | 257    | 43       |          | 103.9      |
| A15                                                                     | 6:26:00 | 36.00      | 86.169        | 86.500            | 1.290              | 1.400     | 1.300       | 145                   | 92                | 85      | 9.0       | 53       | 251    | 257    | 44       |          | 109.9      |
| A14                                                                     | 6:32:00 | 42.00      | 90.062        | 90.460            | 1.293              | 1.400     | 1.300       | 145                   | 94                | 86      | 9.0       | 54       | 250    | 257    | 45       |          | 106.7      |
| A13                                                                     | 6:38:00 | 48.00      | 93.567        | 94.150            | 1.047              | 1.100     | 1.050       | 144                   | 94                | 86      | 8.0       | 54       | 251    | 257    | 45       |          | 110.4      |
| A12                                                                     | 6:44:00 | 54.00      | 96.850        | 97.440            | 0.918              | 0.920     | 0.920       | 145                   | 94                | 87      | 7.0       | 55       | 254    | 256    | 46       |          | 105.1      |
| A11                                                                     | 6:50:00 | 60.00      | 99.839        | 100.320           | 0.759              | 0.690     | 0.760       | 146                   | 95                | 89      | 6.0       | 56       | 250    | 256    | 47       |          | 101.0      |
| A10                                                                     | 6:56:00 | 66.00      | 102.585       | 102.870           | 0.640              | 0.550     | 0.640       | 145                   | 94                | 89      | 6.0       | 60       | 252    | 257    | 49       |          | 97.4       |
| A9                                                                      | 7:02:00 | 72.00      | 105.226       | 105.440           | 0.592              | 0.520     | 0.590       | 145                   | 95                | 90      | 5.0       | 57       | 252    | 257    | 50       |          | 102.1      |
| A8                                                                      | 7:08:00 | 78.00      | 107.993       | 108.040           | 0.650              | 0.570     | 0.650       | 146                   | 94                | 90      | 6.0       | 54       | 252    | 257    | 50       |          | 98.6       |
| A7                                                                      | 7:14:00 | 84.00      | 110.765       | 110.820           | 0.651              | 0.650     | 0.650       | 146                   | 95                | 91      | 6.0       | 53       | 248    | 257    | 50       |          | 105.2      |
| A6                                                                      | 7:20:00 | 90.00      | 113.543       | 113.590           | 0.653              | 0.650     | 0.650       | 145                   | 96                | 92      | 6.0       | 53       | 249    | 257    | 50       |          | 104.6      |
| A5                                                                      | 7:26:00 | 96.00      | 116.171       | 116.290           | 0.584              | 0.580     | 0.580       | 145                   | 97                | 92      | 6.0       | 53       | 248    | 257    | 50       |          | 107.8      |
| A4                                                                      | 7:32:00 | 102.00     | 118.801       | 118.950           | 0.584              | 0.580     | 0.580       | 145                   | 97                | 93      | 6.0       | 54       | 253    | 257    | 50       |          | 106.1      |
| А3                                                                      | 7:38:00 | 108.00     | 121.545       | 121.750           | 0.635              | 0.630     | 0.630       | 145                   | 98                | 93      | 6.0       | 54       | 253    | 257    | 50       |          | 107.1      |
| A2                                                                      | 7:44:00 | 114.00     | 124.040       | 124.270           | 0.525              | 0.522     | 0.520       | 145                   | 98                | 94      | 6.0       | 55       | 251    | 257    | 51       |          | 105.9      |
| A1                                                                      | 7:50:00 | 120.00     | 126.464       | 126.700           | 0.495              | 0.470     | 0.490       | 145                   | 98                | 95      | 5.0       | 56       | 250    | 258    | 51       |          | 105.1      |
|                                                                         | 8:05:00 | 120.00     |               | 126.956           |                    |           |             |                       |                   |         |           |          |        |        |          |          |            |
| B18                                                                     | 8:11:00 | 126.00     | 130.652       | 130.850           | 1.304              | 1.400     | 1.300       | 146                   | 96                | 95      | 9.0       | 65       | 251    | 257    | 59       | <u> </u> | 103.9      |
| B18                                                                     | 8:17:00 | 132.00     | 134.585       | 134.730           | 1.304              | 1.400     | 1.300       | 147                   | 98                | 95      | 9.0       | 58       | 249    | 258    | 50       |          | 103.5      |
| B18                                                                     | 8:23:00 | 138.00     | 138.681       | 139.110           | 1.409              | 1.500     | 1.400       | 147                   | 101               | 96      | 9.0       | 61       | 250    | 257    | 50       |          | 112.2      |
| B17                                                                     | 8:29:00 | 144.00     | 142.623       | 143.030           | 1.304              | 1.400     | 1.300       | 149                   | 101               | 96      | 9.0       | 57       | 249    | 257    | 49       |          | 104.3      |
| B16                                                                     | 8:35:00 | 150.00     | 146.571       | 146.950           | 1.308              | 1.400     | 1.300       | 148                   | 102               | 96      | 9.0       | 55       | 249    | 257    | 49       |          | 104.1      |
| B15                                                                     | 8:41:00 | 156.00     | 150.377       | 150.780           | 1.213              | 1.300     | 1.200       | 147                   | 104               | 97      | 8.0       | 55       | 248    | 257    | 50       |          | 105.5      |
| B14                                                                     | 8:47:00 | 162.00     | 154.021       | 154.580           | 1.111              | 1.200     | 1.100       | 148                   | 104               | 97      | 8.0       | 55       | 249    | 257    | 50       |          | 109.4      |
| B13                                                                     | 8:53:00 | 168.00     | 157.465       | 157.940           | 0.991              | 0.910     | 0.980       | 148                   | 104               | 98      | 7.0       | 56       | 253    | 257    | 50       |          | 102.3      |
| B12                                                                     | 8:59:00 | 174.00     | 160.769       | 161.040           | 0.911              | 0.790     | 0.900       | 148                   | 104               | 99      | 7.0       | 55       | 249    | 257    | 50       |          | 98.4       |
| B11                                                                     | 9:05:00 | 180.00     | 163.807       | 163.900           | 0.770              | 0.680     | 0.760       | 148                   | 104               | 99      | 7.0       | 54       | 249    | 257    | 50       |          | 98.8       |
| B10                                                                     | 9:11:00 | 186.00     | 166.622       | 166.700           | 0.661              | 0.560     | 0.650       | 147                   | 104               | 100     | 6.0       | 54       | 249    | 257    | 50       |          | 104.3      |
| B9                                                                      | 9:17:00 | 192.00     | 169.203       | 169.230           | 0.556              | 0.510     | 0.550       | 149                   | 103               | 99      | 6.0       | 54       | 250    | 257    | 50       |          | 102.8      |
|                                                                         | Made A  | C14        |               | is flanged with   |                    | ak waa ne | at taken et | the procie            | o time            | On      | erator(s) | Dave G   | riffin |        |          |          |            |

Operator(s): Dave Griffin

Chances Jul 8-26.0

8/11/03

Test Run Field Data Sheet - PCDD/PCDF

|                   | 110040 2 004 | 05         |               | Emissies          | ADDITION -   | at location               | Stack Outle  | n#                    |        |              |             |              |          |                                                  |                                                  |              |                                                  |
|-------------------|--------------|------------|---------------|-------------------|--------------|---------------------------|--------------|-----------------------|--------|--------------|-------------|--------------|----------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| est run no. :     | 110249.2.001 |            | August 14, 20 |                   | easureme     | ntilocation:<br>Train no. | Stack Outle  | SL.                   |        |              |             |              |          | P.                                               | age 2 of                                         | 2            |                                                  |
| est run no.       |              | Cumulative |               | eter Reading,     | Orifice F    | Pressure                  | Velocity     | Gas                   | Dry Ga | s Meter      |             | Impinger     | Probe    | Filter                                           | XAD                                              | STL          | Isokinetic                                       |
| Traverse          | Clock        | Sampling   |               | V <sub>m</sub> ), | l .          | rential                   | Head,        | Stream                |        | erature      | Pump        | Outlet       | Outlet   | Holder                                           | Inlet                                            | Outlet       | Sampling                                         |
| Port-Point        | Time         | Time,      |               | ft.³              | 1            | hes H₂O                   | (∆p),        | Temp.,                |        | ), °F        | Vacuum,     | Temp.,       | Temp.,   | Temp.,                                           | Temp.,                                           | Temp.,       | Variation,                                       |
| Number            | 24-hr        | minutes    | Desired       | Actual            | Desired      | Actual                    | inches H₂O   | (t <sub>s</sub> ), °F | Inlet  | Outlet       | in. Hg      | °F           | °F       | °F                                               | °F                                               | °F           | percent                                          |
| B8                | 9:23:00      | 198.00     | 171.947       | 171.970           | 0.628        | 0.620                     | 0.620        | 149                   | 104    | 100          | 6.0         | 54           | 248      | 257                                              | 51                                               |              | 104.7                                            |
| В7                | 9:29:00      | 204.00     | 174.652       | 174.730           | 0.610        | 0.610                     | 0.600        | 147                   | 104    | 100          | 6.0         | 55           | 249      | 257                                              | 51                                               |              | 107.1                                            |
| В6                | 9:35:00      | 210.00     | 177.286       | 177.360           | 0.579        | 0.550                     | 0.570        | 148                   | 104    | 100          | 6.0         | 54           | 248      | 257                                              | 51                                               |              | 104.7                                            |
| B5                | 9:41:00      | 216.00     | 179.920       | 179.990           | 0.579        | 0.550                     | 0.570        | 148                   | 104    | 100          | 6.0         | 55           | 252      | 257                                              | 51                                               |              | 104.7                                            |
| B4                | 9:47:00      | 222.00     | 182.263       | 182.480           | 0.457        | 0.450                     | 0.450        | 148                   | 104    | 101          | 6.0         | 56           | 254      | 258                                              | 51                                               |              | 111.5                                            |
| В3                | 9:53:00      | 228.00     | 184.503       | 184.690           | 0.418        | 0.370                     | 0.410        | 148                   | 105    | 102          | 5.0         | 56           | 250      | 258                                              | 53                                               |              | 103.5                                            |
| B2                | 9:59:00      | 234.00     | 186.354       | 186,540           | 0.285        | 0.250                     | 0.280        | 148                   | 105    | 101          | 5.0         | 55           | 250      | 258                                              | 53                                               |              | 104.9                                            |
| B1                | 10:05:00     | 240.00     | 188.175       | 188.275           | 0.276        | 0.230                     | 0.270        | 147                   | 105    | 102          | 5.0         | 56           | 252      | 257                                              | 52                                               |              | 100.0                                            |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  |                                                  |              | ļ                                                |
|                   |              |            |               |                   |              |                           | ļ            |                       |        | -            |             |              | <u> </u> |                                                  |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             | <u> </u>     |          |                                                  |                                                  |              | -                                                |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  | ļ                                                |              |                                                  |
| $\longrightarrow$ |              |            |               |                   |              |                           |              |                       |        | -            |             |              |          |                                                  |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              | -           |              |          | _                                                |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  |                                                  |              |                                                  |
|                   |              | _          |               |                   |              |                           |              |                       |        |              |             |              |          |                                                  | -                                                | -            |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        | <del> </del> |             |              |          |                                                  |                                                  | <del> </del> | <u> </u>                                         |
|                   |              |            |               |                   |              |                           |              |                       |        | -            |             |              |          |                                                  |                                                  | -            | <del>                                     </del> |
|                   |              |            |               |                   |              |                           |              |                       | -      |              | _           |              |          |                                                  |                                                  | _            |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              | -        |                                                  |                                                  | <b></b>      |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              | -        |                                                  |                                                  |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             |              | -        |                                                  |                                                  | <del> </del> | -                                                |
| $\overline{}$     |              |            |               |                   |              |                           |              |                       |        | -            |             |              |          | <del>                                     </del> | -                                                |              | <del>                                     </del> |
|                   |              |            |               |                   | <del> </del> |                           |              |                       |        |              |             |              |          |                                                  |                                                  |              |                                                  |
| +                 |              |            |               |                   |              |                           |              |                       |        | -            |             |              | -        |                                                  |                                                  |              | -                                                |
| $\overline{}$     |              |            |               |                   |              |                           |              | -                     |        |              | -           | -            |          | _                                                | _                                                | -            |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              | <del></del> | -            |          |                                                  | _                                                |              |                                                  |
|                   |              |            |               |                   |              |                           |              |                       |        |              |             | <u> </u>     |          | _                                                | _                                                |              | -                                                |
| $\longrightarrow$ |              |            |               |                   |              |                           | -            |                       |        |              |             | <del> </del> |          |                                                  | <del>                                     </del> |              | <del> </del>                                     |
| +                 |              |            |               |                   |              |                           |              |                       |        | -            | -           | <del> </del> | $\vdash$ |                                                  |                                                  |              | 26-03                                            |
|                   | Matai Ami D  | CM reading |               | is flagged with   | L            | ok was =                  | t takan at t | ho proci-             | L      |              | protor(c):  | Davo C       | riffin   | L                                                | L                                                |              | L                                                |

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:17 PM)

### **Emission Measurements Data Summary** Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location

Operator(s) Dave Griffin

Source tested Mill

Emission measurement location Stack Outlet

Test run no. 3

Sampling train no. M23-1

Test run date(s) August 15, 2003 Run start time 06:10 AM Run stop time 10:20 AM

### Measurement Equipment Identification and Specifications

Metering console no.

Dry gas meter (DGM) calibration factor (Y) 1.002

1.794 in. H<sub>2</sub>O Orifice meter factor (△H@) 1.002

DGM calibration factor  $(Y_{qa})$  from sampling data within ±5%

Comparison of  $Y_{qa}$  to Y (must be within  $\pm 5\%$  of Y) N/A

Temperature controller\* no.

Temperature meter\* no. N/A

Additional thermocouple no. N/A

Sample transfer line no. N/A Umbilical cable no(s).

N-16-2 10288 Sample box no.

Impinger outlet connector no. UH-1

23-6 Filter no(s).

Probe no. 3-2

0.91 m Effective probe length 3.0 feet

Probe liner Heated glass tubing

Gas stream temperature thermocouple no.

Pitot tube no. M-126

0.840 Pitot tube coefficient N12

Sampling nozzle no. Sampling nozzle type Nichol button-hook

Sampling nozzle inside diameter at inlet tip 0.187 inches 4.75 mm

X-4029 Barometer no.

Altitude difference from emission measurement location

to barometer or reference point at the test site -29 feet -8.8 m

Altitude difference from metering console location

to barometer or reference point at the test site -20 feet -6.1 m

Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

| Gas      | stream pres  | sure       |         | Sampling system -      |               |             |  |  |  |  |  |
|----------|--------------|------------|---------|------------------------|---------------|-------------|--|--|--|--|--|
| measi    | urement sys  | stem -     |         | Leak check from nozzle |               |             |  |  |  |  |  |
| Leak che | ck from pite | t tube tip |         |                        | Pump          | Leak        |  |  |  |  |  |
|          |              |            |         |                        | Vacuum,       | Rate,       |  |  |  |  |  |
|          | Time         | Result     |         | <u>Time</u>            | <u>in. Hg</u> | <u>dcfm</u> |  |  |  |  |  |
| Initial  | 05:47 AM     | Pass       | Initial | 05:50 AM               | 15.0          | 0.001       |  |  |  |  |  |
| Final    | 10:24 AM     | PASS       |         |                        |               |             |  |  |  |  |  |
|          |              |            | Initial | 08:12 AM               | 8.0           | 0.002       |  |  |  |  |  |
|          |              |            |         |                        |               |             |  |  |  |  |  |
|          |              |            | Initial | 08:20 AM               | 15.0          | 0.002       |  |  |  |  |  |
|          |              |            |         |                        |               |             |  |  |  |  |  |
|          |              |            | Initial | 10:25 AM               | 9.0           | 0.001       |  |  |  |  |  |
|          |              |            |         |                        |               |             |  |  |  |  |  |

### Emission Measurements Data Summary Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05
Client EPA/ESD/RTI
Facility CBI
Facility location

Source tested Mill 
Emission measurement location Stack Outlet

Test run no. 3
Sampling train no. M23-1
Total sampling time 240.00 minutes

Test run date(s)
Run start time 06:10 AM
Run stop time 10:20 AM

**Gas Stream Measurement Results** 

| Ous Otteum mee                                  | Dai Ciliotte i Coodito                       |                                            |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Volumetric flow rate at dry standard conditions | 19,421 dscfm                                 | 549.95 dscm/min.                           |
| Volumetric flow rate at dry standard conditions | 1,165,279 dscf/hr                            | 32,997.0 dscm/hr                           |
| Volumetric flow rate at standard conditions     | 21,828 scfm                                  | 618.10 scm/min.                            |
| Standard Conditions are                         | 68 °F and                                    | 760 mm Hg                                  |
| Volumetric flow rate at actual conditions       | 24,976 acfm                                  | 707.25 acm/min.                            |
| Volumetric flow rate at actual conditions       | 1,498,578 acf/hr                             | 42,435.0 acm/hr                            |
| Average velocity                                | 58.89 ft./sec.                               | 17.950 m/sec.                              |
| Average velocity                                | 3,533 ft./min.                               | 1,077.0 m/min.                             |
| Square root of velocity head                    | 0.9621 (in. H <sub>2</sub> O) <sup>0.5</sup> | 4.849 (mm H <sub>2</sub> O) <sup>0.5</sup> |
| Velocity head                                   | 0.926 in. H <sub>2</sub> O                   | 23.51 mm H₂O                               |
| Absolute temperature                            | 602.1 °R                                     | 334.5 K                                    |
| Temperature                                     | 1 <b>42</b> .5 °F                            | 61.4 °C                                    |
| Absolute pressure                               | 29.84 in. Hg                                 | 757.9 mm Hg                                |
| Static pressure                                 | 0.00 in. H <sub>2</sub> O                    | 0.0 mm H₂O                                 |
| Barometric pressure at start of run             | 29.84 in. Hg                                 | 757.9 mm Hg                                |
| Barometric pressure at end of run               | N/A in. Hg                                   | N/A mm Hg                                  |
| Moisture (as water vapor) content               | 11.03 % by volume                            | 11.03 % by volume                          |
| Wet gas molecular weight                        | 27.77 lb/lb-mole                             | 27.77 g/g-mole                             |
| Dry gas molecular weight                        | 28.98 lb/lb-mole                             | 28.98 g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 0.5 % by volume                              | 0.5 % by volume                            |
| Oxygen concentration, dry-basis                 | 19.5 % by volume                             | 19.5 % by volume                           |
| Carbon monoxide concentration, dry-basis        | % by volume                                  | % by volume                                |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| Stack or duct type              | Circular      |                        |
|---------------------------------|---------------|------------------------|
| First diameter                  | 36.000 inches | 0.9144 m               |
| Second diameter                 | 36.000 inches | 0.9144 m               |
| Gas stream cross-sectional area | 7.0686 ft.2   | 0.65669 m <sup>2</sup> |

#### Gas Sampling Results

| Ous Camp                                             | illig ittouito             |              |
|------------------------------------------------------|----------------------------|--------------|
| Gas sample volume, corrected, at standard conditions | 122.564 dscf               | 3.4706 dscm  |
| Gas sample volume as read on dry gas meter           | 129.465 ft.3               | 3.6660 m³    |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m³    |
| Gas sample volume corrected for leakage              | 129.465 ft.3               | 3.6660 m³    |
| Absolute dry gas meter temperature                   | 558.5 °R                   | 310.3 K      |
| Dry gas meter temperature                            | 98.8 °F                    | 37.1 °C      |
| Absolute dry gas meter pressure                      | 29.92 in. Hg               | 760.0 mm Hg  |
| Orifice meter differential pressure (AH)             | 1.080 in. H <sub>2</sub> O | 27.44 mm H₂O |
| Barometric pressure at start of run                  | 29.85 in. Hg               | 758.2 mm Hg  |
| Barometric pressure at end of run                    | N/A in. Hg                 | N/A mm Hg    |
| Condensate collected in sampling train               | 322.1 grams                | 322.1 grams  |
| Isokinetic sampling variation                        | 97.45 %                    |              |
|                                                      |                            |              |

#### Other Supporting Data

| Barometric pressure at test site at start of run | 29.87 in. Hg   | 758.7 mm Hg              |
|--------------------------------------------------|----------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in. Hg     | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    | 1.907E-04 ft.2 | 1.772E-05 m <sup>2</sup> |
| Pitot tube coefficient                           | 0.840          |                          |

Dry gas meter calibration factor (Y)

Dry gas meter calibration factor ( $Y_{qa}$ ) from sampling data 1.002 Comparison of  $Y_{qa}$  to Y (difference must be within ±5% of Y) within ±5% 0.794 in.  $H_2O$ 

Potential moisture (as water vapor) content based on condensate collected
Potential moisture (as water vapor) content based on gas stream parameters

11.03 % by volume
N/A % by volume

2/11/03

1.002

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportB] 8/26/2003 2:25 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Project no.  | 110249.2.001 | .05        |               | Emission m                   | easuremer | t location: | Stack Outle | et       |                   |         |         |          |        |        |          |          |            |
|--------------|--------------|------------|---------------|------------------------------|-----------|-------------|-------------|----------|-------------------|---------|---------|----------|--------|--------|----------|----------|------------|
| Test run no. |              | Date(s):   | August 15, 20 |                              |           | Train no.   |             |          |                   |         |         |          |        |        | ge 1 of  |          |            |
|              |              | Cumulative | Dry Gas M     | eter Reading,                | Orifice F | ressure     | Velocity    | Gas      | Dry Gas           |         |         | Impinger | Probe  | Filter | XAD      | STL      | Isokinetic |
| Traverse     | Clock        | Sampling   |               | V <sub>m</sub> ).            | Differ    |             | Head,       | Stream   |                   | erature | Pump    | Outlet   | Outlet | Holder | Inlet    | Outlet   | Sampling   |
| Port-Point   | Time         | Time,      |               | ft.º                         | (ΔH), inc |             | (∆p),       | Temp.,   | (t <sub>m</sub> ) |         | Vacuum, | Temp.,   | Temp., | Temp., | Temp.,   | Temp.,   | Variation, |
| Number       | 24-hr        | minutes    | Desired       | Actual                       | Desired   | Actual      | inches H₂O  | (t,), °F | Inlet             | Outlet  | in. Hg  | °F       | °F     | °F     | 7-       |          | percent    |
| INITIAL      | 6:10:00      | 0.00       |               | 189.752                      |           |             |             |          |                   | 2.4     | 4.0     | CC       | 254    | 258    | 66       |          | 97.4       |
| A1           | 6:16:00      | 6.00       | 192.442       | 192.440                      | 0.623     | 0.630       | 0.670       | 140      | 85                | 84      | 4.0     | 66       | 251    |        | _        |          | 98.0       |
| A2           | 6:22:00      | 12.00      | 195.175       | 195.190                      | 0.641     | 0.650       | 0.690       | 142      | 87                | 85      | 5.0     | 56       | 248    | 261    | 58<br>57 | _        | 98.2       |
| A3           | 6:28:00      | 18.00      | 197.933       | 197.970                      | 0.651     | 0.660       | 0.700       | 143      | 89                | 86      | 5.0     | 52       | 254    | 260    |          |          |            |
| A4           | 6:34:00      | 24.00      | 200.698       | 200.790                      | 0.653     | 0.660       | 0.700       | 143_     | 91                | 87      | 5.0     | 51       | 251    | 257    | 57       |          | 99.4       |
| A5           | 6:40:00      | 30.00      | 203.582       | 203.690                      | 0.708     | 0.700       | 0.760       | 144      | 92                | 88      | 5.0     | 50       | 251    | 256    | 46       |          | 98.0       |
| A6           | 6:46:00      | 36.00      | 206.548       | 206.710                      | 0.749     | 0.740       | 0.800       | 142      | 93                | 88      | 6.0     | 49       | 254    | 257    | 45       |          | 99.2       |
| A7           | 6:52:00      | 42.00      | 209.442       | 209.650                      | 0.712     | 0.710       | 0.760       | 143      | 94                | 89      | 6.0     | 49       | 253    | 257    | 45       | <u> </u> | 99.0       |
| A8           | 6:58:00      | 48.00      | 212.341       | 212.580                      | 0.713     | 0.710       | 0.760       | 143      | 95                | 90      | 6.0     | 48       | 251    | 257    | 46       |          | 98.5       |
| A9           | 7:04:00      | 54.00      | 215.168       | 215.250                      | 0.677     | 0.650       | 0.720       | 143      | 96                | 91      | 6.0     | 47       | 249    | 257    | 45       |          | 92.0       |
| A10          | 7:10:00      | 60.00      | 217.919       | 218.200                      | 0.639     | 0.590       | 0.680       | 144      | 97                | 92      | 6.0     | 47       | 254    | 256    | 46       | ļ        | 104.5      |
| A11          | 7:16:00      | 66.00      | 220.957       | 221.210                      | 0.780     | 0.750       | 0.830       | 144      | 97                | 92      | 6.0     | 48       | 251    | 258    | 46       | _        | 96.5       |
| A12          | 7:22:00      | 72.00      | 224.262       | 224.510                      | 0.922     | 0.890       | 0.980       | 144      | 98                | 93      | 6.0     | 48       | 249    | 258    | 46       |          | 97.2       |
| A13          | 7:28:00      | 78.00      | 227.684       | 227.920                      | 0.987     | 0.950       | 1.050       | 144      | 98                | 93      | 7.0     | 48       | 249    | 257    | 46       |          | 97.1       |
| A14          | 7:34:00      | 84.00      | 231.350       | 231.450                      | 1.130     | 1.050       | 1.200       | 144      | 100               | 94      | 7.0     | 47       | 254    | 257    | 46       |          | 93.8       |
| A15          | 7:40:00      | 90.00      | 235.170       | 235.100                      | 1.224     | 1.150       | 1.300       | 145      | 101               | 95      | 7.0     | 47       | 248    | 257    | 45       |          | 93.1       |
| A16          | 7:46:00      | 96.00      | 238.987       | 238.960                      | 1.224     | 1.300       | 1.300       | 145      | 101               | 95      | 8.0     | 47       | 249    | 257    | 46       |          | 98.5       |
| A17          | 7:52:00      | 102.00     | 242.966       | 242,960                      | 1.327     | 1.400       | 1.400       | 142      | 102               | 96      | 8.0     | 47       | 253    | 257    | 46       |          | 98.0       |
| A18          | 7:58:00      | 108.00     | 246.944       | 246.940                      | 1.326     | 1.400       | 1.400       | 143      | 103               | 96      | 8.0     | 47       | 249    | 257    | 46       |          | 97.5       |
| A18          | 8:04:00      | 114.00     | 250.933       | 251.050                      | 1.330     | 1.400       | 1.400       | 142      | 104               | 97      | 8.0     | 46       | 248    | 257    | 46       |          | 100.4      |
| A18          | 8:10:00      | 120.00     | 254.921       | 255.097                      | 1.330     | 1.400       | 1.400       | 142      | 104               | 97      | 8.0     | 47       | 250    | 257    | 45       |          | 98.8       |
| INITIAL      | 8:20:00      | 120.00     |               | 255.301                      |           |             |             |          |                   |         |         |          |        |        |          | <u> </u> |            |
| B1           | 8:26:00      | 126.00     | 257.409       | 257.500                      | 0.438     | 0.440       | 0.460       | 141      | 99                | 97      | 4.0     | 59       | 250    | 258    | 55       |          | 93.8       |
| B2           | 8:32:00      | 132.00     | 260.168       | 260.200                      | 0.639     | 0.640       | 0.670       | 140      | 100               | 97      | 5.0     | 48       | 253    | 257    | 47       |          | 95.3       |
| B3           | 8:38:00      | 138.00     | 262.804       | 262.940                      | 0.582     | 0.580       | 0.610       | 141      | 101               | 98      | 5.0     | 47       | 254    | 257    | 48       |          | 101.3      |
| B4           | 8:44:00      | 144.00     | 265.564       | 265.770                      | 0.638     | 0.640       | 0.670       | 142      | 101               | 98      | 6.0     | 48       | 251    | 257    | 48       |          | 99.9       |
| B5           | 8:50:00      | 150.00     | 268.287       | 268.520                      | 0.620     | 0,600       | 0.650       | 142      | 102               | 99      | 6.0     | 49       | 248    | 257    | 48       |          | 98.4       |
| B6           | 8:56:00      | 156.00     | 271,175       | 271.300                      | 0.697     | 0.620       | 0.730       | 141      | 102               | 99      | 6.0     | 50       | 251    | 257    | 48       |          | 93.8       |
| B7           | 9:02:00      | 162.00     | 273.942       | 274.050                      | 0.639     | 0.620       | 0.670       | 142      | 103               | 99      | 6.0     | 51       | 254    | 257    | 49       |          | 96.8       |
| _            |              | 168.00     | 276.672       | 276.800                      | 0.622     | 0.620       | 0.650       | 140      | 103               | 99      | 6.0     | 52       | 250    | 257    | 49       |          | 98.1       |
| B8           | 9:08:00      | 174.00     | 279.423       | 279.590                      | 0.631     | 0.620       | 0,660       | 141      | 103               | 100     | 6.0     | 52       | 252    | 257    | 49       |          | 98.8       |
| B9           | 9:14:00      |            |               | 282.270                      | 0.631     | 0.620       | 0.660       | 142      | 104               | 100     | 6.0     | 52       | 251    | 257    | 50       |          | 94.9       |
| B10          | 9:20:00      | 180.00     | 282.174       | 285.470                      | 0.850     | 0.850       | 0.890       | 142      | 104               | 100     | 7.0     | 49       | 254    | 257    | 49       |          | 97.6       |
| B11          | 9:26:00      | 186.00     | 285.367       |                              | 0.850     | 0.850       | 0.950       | 141      | 105               | 101     | 7.0     | 47       | 252    | 257    | 49       | 1        | 100.8      |
| B12          | 9:32:00      | 192.00     | 288.674       | 288,890<br>t is flagged with |           |             |             | 1        |                   |         |         | : Dave C |        | 1      | 1        |          | 1          |

Test Run Field Data Sheet - PCDD/PCDF

| Project no.  | 110249.2.001                           | .05        |               | Emission m        | easuremer | nt location: | Stack Outle | et     |          |         |           |          |        |        |          |        |            |
|--------------|----------------------------------------|------------|---------------|-------------------|-----------|--------------|-------------|--------|----------|---------|-----------|----------|--------|--------|----------|--------|------------|
| Test run no. | 3                                      | Date(s):   | August 15, 20 |                   |           | Train no.    | M23-1       |        |          |         |           |          |        | Pa     | age 2 of | 2      |            |
|              |                                        | Cumulative |               | eter Reading,     | l         | ressure      | Velocity    | Gas    | 1 -      | s Meter |           | Impinger | Probe  | Filter | XAD      | STL    | Isokinetic |
| Traverse     | Clock                                  | Sampling   |               | V <sub>m</sub> ), | Differ    |              | Head,       | Stream |          | erature | Pump      | Outlet   | Outlet | Holder | Inlet    | Outlet | Sampling   |
| Port-Point   | Time                                   | Time,      |               | ft.³              | (ΔH), inc |              | (Δp),       | Temp., | -        | , °F    | Vacuum,   | Temp.,   | Temp., | Temp., | Temp.,   | Temp., | Variation, |
| Number       | 24-hr                                  | minutes    | Desired       | Actual            | Desired   | Actual       | inches H₂O  |        | Inlet    | Outlet  | in. Hg    | °F       | °F     | °F     | °F       | °F     | percent    |
| B13          | 9:38:00                                | 198.00     | 292.019       | 292.200           | 0.929     | 0.930        | 0.970       | 142    | 106      | 102     | 7.0       | 47       | 254    | 259    | 49       |        | 96.4       |
| B14          | 9:44:00                                | 204.00     | 295.501       | 295.690           | 1.006     | 1.000        | 1.050       | 142    | 107      | 102     | 7.0       | 48       | 253    | 257    | 49       |        | 97.6       |
| B15          | 9:50:00                                | 210.00     | 299.229       | 299.410           | 1.151     | 1.100        | 1.200       | 142    | 108      | 103     | 8.0       | 48       | 252    | 257    | 49       |        | 97.2       |
| B16          | 9:56:00                                | 216.00     | 303.108       | 303.240           | 1.247     | 1.300        | 1.300       | 142    | 108      | 103     | 8.0       | 49       | 253    | 257    | 49       |        | 96.2       |
| B17          | 10:02:00                               | 222.00     | 307.136       | 307.240           | 1.342     | 1.400        | 1.400       | 143    | 109      | 104     | 9.0       | 50       | 248    | 257    | 50       |        | 96.7       |
| B18          | 10:08:00                               | 228.00     | 311.168       | 311.270           | 1.343     | 1.400        | 1.400       | 143    | 110      | 104     | 9.0       | 50       | 251    | 257    | 51       |        | 97.4       |
| B18          | 10:14:00                               | 234.00     | 315.203       | 315.310           | 1.345     | 1.400        | 1.400       | 143    | 111      | 104     | 9.0       | 51       | 249    | 257    | 55       |        | 97.5       |
| B18          | 10:20:00                               | 240.00     | 319.386       | 319.421           | 1.444     | 1.500        | 1.500       | 142    | 111      | 105     | 9.0       | 51       | 251    | 257    | 43       |        | 95.8       |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        | _        |         |           | -        |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              |                                        |            |               | -                 |           |              |             |        |          |         |           |          |        |        |          |        |            |
| <u> </u>     |                                        |            |               |                   |           |              |             |        |          |         |           |          | -      | -      |          |        |            |
|              |                                        | -          | -             |                   |           |              |             |        |          |         |           |          |        |        |          |        |            |
|              | -                                      |            |               |                   | -         |              |             |        |          |         |           |          |        |        |          |        |            |
| <u> </u>     | ــــــــــــــــــــــــــــــــــــــ |            | L             | is flagged with   |           |              |             |        | لــــــا |         | rator(a): | ليسي     |        |        |          |        |            |

Operator(s): Dave Griffin

Auctivated 8-26-03

Signature/Date



### **Emission Measurements Data Summary** Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location

Source tested Dryer Stack

Emission measurement location Stack Outlet

Test run no. 4

Sampling train no. M23-1 Operator(s) Dave Griffin

Test run date(s) August 18, 2003 Run start time 07:50 AM Run stop time 12:20 PM

#### Measurement Equipment Identification and Specifications

Metering console no. Dry gas meter (DGM) calibration factor (Y) 1.002

> Orifice meter factor (△H@) 1.794 in. H<sub>2</sub>O

DGM calibration factor (Yqa) from sampling data 1.021 within ±5%

Comparison of Y<sub>qa</sub> to Y (must be within ±5% of Y)

Temperature controller\* no. N/A Temperature meter\* no. N/A Additional thermocouple no. N/A

Sample transfer line no. N/A Umbilical cable no(s), N-16-2

Sample box no. 10288 Impinger outlet connector no. UH-1

Filter no(s). 23-6 Probe no. 3-5

Effective probe length 3.0 feet 0.91 m

Probe liner Heated glass tubing

Gas stream temperature thermocouple no. 36-12

Pitot tube no. M-104 Pitot tube coefficient 0.840 Sampling nozzle no.

Sampling nozzle type Nichol button-hook

Sampling nozzle inside diameter at inlet tip 0.187 inches 4.75 mm

Barometer no. X-4029

Altitude difference from emission measurement location

to barometer or reference point at the test site -29 feet -8.8 m Altitude difference from metering console location

to barometer or reference point at the test site -20 feet -6.1 m

\* Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

| Gas stream p<br>measurement |                | •               | Sampling system -<br><u>Leak check from nozzle</u> |       |  |  |  |  |  |
|-----------------------------|----------------|-----------------|----------------------------------------------------|-------|--|--|--|--|--|
| Leak check from             | pitot tube tip |                 | Pump                                               | Leak  |  |  |  |  |  |
|                             |                |                 | Vacuum,                                            | Rate, |  |  |  |  |  |
| <u>Time</u>                 | Result         | <u>Time</u>     | in. Hq                                             | dcfm  |  |  |  |  |  |
| Initial 07:25 A             | M Pass         | Initial 07:30 A | M 15.0                                             | 0.001 |  |  |  |  |  |
| Final 09:55 A               | M PASS         | Final 10:00 A   | M 12.0                                             | 0.002 |  |  |  |  |  |
| Initial 10:15 A             | M PASS         | Initial 10:16 A | M 15.0                                             | 0.001 |  |  |  |  |  |
| Final 12:25 P               | M PASS         | Final 12:26 F   | PM 12.0                                            | 0.002 |  |  |  |  |  |

### **Emission Measurements Data Summary** Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI Facility CBI

Facility location
Source tested Dryer Stack

Emission measurement location Stack Outlet Test run no. 4

Sampling train no. M23-1 Total sampling time 240.00 minutes Test run date(s) August 18, 2003 Run start time 07:50 AM Run stop time 12:20 PM

#### **Gas Stream Measurement Results**

| Volumetric flow rate at dry standard conditions | 12,303 dscfm                                 | 348.39 dscm/min.                           |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Volumetric flow rate at dry standard conditions | 738,195 dscf/hr                              | 20,903.4 dscm/hr                           |
| Volumetric flow rate at standard conditions     | 13,664 scfm                                  | 386.93 scm/min.                            |
| Standard Conditions are                         | 68 °F and                                    | 760 mm Hg                                  |
| Volumetric flow rate at actual conditions       | 15,448 acfm                                  | 437.44 acm/min.                            |
| Volumetric flow rate at actual conditions       | 926,881 acf/hr                               | 26,246.4 acm/hr                            |
| Average velocity                                | 81.95 ft./sec.                               | 24.980 m/sec.                              |
| Average velocity                                | 4,917 ft./min.                               | 1,498.8 m/min.                             |
| Square root of velocity head                    | 1.3493 (in. H <sub>2</sub> O) <sup>0.5</sup> | 6.800 (mm H <sub>2</sub> O) <sup>0.0</sup> |
| Velocity head                                   | 1.821 in. H <sub>2</sub> O                   | 46.24 mm H₂O                               |
| Absolute temperature                            | 589.6 °R                                     | 327.5 K                                    |
| Temperature                                     | 129.9 °F                                     | 54.4 °C                                    |
| Absolute pressure                               | 29.57 in. Hg                                 | 751.1 mm Hg                                |
| Static pressure                                 | 0.00 in. H <sub>2</sub> O                    | 0.0 mm H <sub>2</sub> O                    |
| Barometric pressure at start of run             | 29.57 in. Hg                                 | 751.1 mm Hg                                |
| Barometric pressure at end of run               | N/A in Hg                                    | N/A mm Hg                                  |
| Moisture (as water vapor) content               | 9.96 % by volume                             | 9.96 % by volume                           |
| Wet gas molecular weight                        | 27.87 lb/lb-mole                             | 27.87 g/g-mole                             |
| Dry gas molecular weight                        | 28.96 lb/lb-mole                             | 28.96 g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 0.3 % by volume                              | 0.3 % by volume                            |
| Oxygen concentration, dry-basis                 | 19.7 % by volume                             | 19.7 % by volume                           |
| Carbon monoxide concentration, dry-basis        | % by volume                                  | % by volume                                |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| S Oli Calli Ci OSS-Sectional Alea | at Elmssion weast | mement Locatio         |
|-----------------------------------|-------------------|------------------------|
| Stack or duct type                | Circular          |                        |
| First diameter                    | 24.000 inches     | 0.6096 m               |
| Second diameter                   | 24.000 inches     | 0.6096 m               |
| Gas stream cross-sectional area   | 3.1416 ft.2       | 0.29186 m <sup>2</sup> |

#### Gas Sampling Results

| Gas sample volume, corrected, at standard conditions | 172.892 dscf               | 4.8958 dscm               |
|------------------------------------------------------|----------------------------|---------------------------|
| Gas sample volume as read on dry gas meter           | 184.670 ft.3               | 5.2293 m <sup>3</sup>     |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m <sup>3</sup>     |
| Gas sample volume corrected for leakage              | 184.670 ft.3               | 5.2293 m <sup>3</sup>     |
| Absolute dry gas meter temperature                   | 560.9 °R                   | 311.6 K                   |
| Dry gas meter temperature                            | 101.2 °F                   | 38.5 °C                   |
| Absolute dry gas meter pressure                      | 29.72 in. Hg               | 754.8 mm Hg               |
| Orifice meter differential pressure (△H)             | 2.009 in. H <sub>2</sub> O | 51.04 mm H <sub>2</sub> O |
| Barometric pressure at start of run                  | 29.58 in. Hg               | 751.3 mm Ha               |
| Barometric pressure at end of run                    | N/A in. Hg                 | N/A mm Hg                 |
| Condensate collected in sampling train               | 405.6 grams                | 405.6 grams               |
| Isokinetic sampling variation                        | 96.45 %                    | •                         |
|                                                      |                            |                           |

#### Other Supporting Data

| Barometric pressure at test site at start of run | 29.60 in. Hg   | 751.8 mm Hg              |
|--------------------------------------------------|----------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in. Hg     | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    | 1.907E-04 ft.2 | 1.772E-05 m <sup>2</sup> |
| Pitot tube coefficient                           | 0.840          |                          |

Dry gas meter calibration factor (Y) Dry gas meter calibration factor (Yqa) from sampling data

Comparison of  $Y_{qa}$  to Y (difference must be within  $\pm 5\%$  of Y) Orifice meter factor (△H@)

Potential moisture (as water vapor) content based on condensate collected Potential moisture (as water vapor) content based on gas stream parameters

within ±5% 1.794 in. H<sub>2</sub>O 9.96 % by volume N/A % by volume

1.002

1.021

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportB] 9/10/2003 11:17 AM)

Test Run Field Data Sheet - PCDD/PCDF

| Project no  | 110249 2 001                                                                                                                               | 05         |         | Emission m        |           |                      |            | ·+                    |                   |         |           |          |        |        |        |           |            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------------------|-----------|----------------------|------------|-----------------------|-------------------|---------|-----------|----------|--------|--------|--------|-----------|------------|
| 1 '         | Project no. 110249.2.001.05 Emission measurement location: Stack Outlet est run no. 4 Date(s): August 18, 2003 Train no. M23-1 Page 1 of 2 |            |         |                   |           |                      |            |                       |                   |         |           |          |        |        |        |           |            |
| 10011011101 | i –                                                                                                                                        | Cumulative |         | eter Reading,     | Orifice I | Pressure             | Velocity   | Gas                   | Dry Ga            | s Meter |           | Impinger | Probe  | Filter | XAD    | STL       | Isokinetic |
| Traverse    | Clock                                                                                                                                      | Sampling   | . (     | V <sub>m</sub> ), | Diffe     | rential              | Head,      | Stream                | Temp              | erature | Pump      | Outlet   | Outlet | Holder | Inlet  | Outlet    | Sampling   |
| Port-Point  | Time                                                                                                                                       | Time,      |         | ft.°              | (∆H), inc | hes H <sub>2</sub> O | (∆p),      | Temp.,                | (t <sub>m</sub> ) | ), °F   | Vacuum,   | Temp.,   | Temp., | Temp., | Temp., | Temp.,    | Variation, |
| Number      | 24-hr                                                                                                                                      | minutes    | Desired | Actual            | Desired   | Actual               | inches H₂O | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg    | °F       | °F     | °F     | °F     | °F        | percent    |
| INITIAL     | 7:50:00                                                                                                                                    | 0.00       |         | 320.295           |           |                      |            |                       |                   |         |           |          |        |        |        |           |            |
| B1          | 7:56:00                                                                                                                                    | 6.00       | 322.933 | 322.970           | 0.591     | 0.590                | 0.620      | 127                   | 86                | 87      | 5.0       | 53       | 250    | 257    | 49     | 250       | 97.8       |
| B2          | 8:02:00                                                                                                                                    | 12.00      | 326,266 | 326.400           | 0.941     | 0.940                | 0.990      | 129                   | 88                | 88      | 8.0       | 51       | 249    | 256    | 43     | 250       | 99.2       |
| В3          | 8:08:00                                                                                                                                    | 18.00      | 330,368 | 330.150           | 1.422     | 1.500                | 1.500      | 131                   | 90                | 89      | 9.0       | 50       | 250    | 257    | 44     | 250       | 88.1       |
| B4          | 8:14:00                                                                                                                                    | 24.00      | 334.736 | 334.500           | 1.613     | 1.700                | 1.700      | 130                   | 91                | 88      | 10.0      | 51       | 250    | 257    | 44     | 250       | 96.0       |
| INITIAL     | 8:17:00                                                                                                                                    | 24.00      |         | 334.500           |           |                      |            |                       |                   |         |           |          |        |        |        |           |            |
| B5          | 8:23:00                                                                                                                                    | 30.00      | 339.184 | 338.950           | 1.667     | 1.700                | 1.750      | 129                   | 92                | 90      | 11.0      | 52       | 250    | 247    | 45     | 248       | 96.5       |
| B6          | 8:29:00                                                                                                                                    | 36.00      | 343.707 | 343.410           | 1.719     | 1.800                | 1.800      | 129                   | 94                | 91      | 11.0      | 54       | 250    | 254    | 45     | 250       | 95.1       |
| B7          | 8:35:00                                                                                                                                    | 42.00      | 348.295 | 348.070           | 1.767     | 1.900                | 1.850      | 130                   | 95                | 92      | 12.0      | 56       | 249    | 256    | 46     | 250       | 97.9       |
| B8          | 8:41:00                                                                                                                                    | 48.00      | 352.888 | 352.780           | 1.765     | 1.900                | 1.850      | 132                   | 97                | 93      | 12.0      | 56       | 250    | 257    | 46     | 248       | 98.9       |
| B9          | 8:47:00                                                                                                                                    | 54.00      | 357.555 | 357.510           | 1.820     | 1.900                | 1.900      | 130                   | 98                | 93      | 12.0      | 59       | 250    | 257    | 47     | 250       | 97.7       |
| B10         | 8:53:00                                                                                                                                    | 60.00      | 362.242 | 362.280           | 1.830     | 1.900                | 1.900      | 129                   | 100               | 95      | 12.0      | 54       | 250    | 257    | 45     | 250       | 98.1       |
| B11         | 8:59:00                                                                                                                                    | 66.00      | 366,990 | 367.090           | 1.878     | 1.950                | 1.950      | 129                   | 100               | 95      | 12.0      | 54       | 251    | 257    | 45     | 250       | 97.7       |
| B12         | 9:05:00                                                                                                                                    | 72.00      | 371.746 | 371.950           | 1.881     | 1.950                | 1.950      | 129                   | 101               | 96      | 12.0      | 55       | 250    | 257    | 46     | 250       | 98.5       |
| B13         | 9:11:00                                                                                                                                    | 78.00      | 376.574 | 376.790           | 1.936     | 2.000                | 2.000      | 128                   | 102               | 97      | 12.0      | 56       | 249    | 257    | 46     | 250       | 96.6       |
| B14         | 9:17:00                                                                                                                                    | 84.00      | 381.399 | 381.650           | 1.931     | 2.000                | 2.000      | 130                   | 102               | 98      | 12.0      | 57       | 249    | 257    | 47     | 250       | 97.1       |
| B15         | 9:23:00                                                                                                                                    | 90.00      | 386.359 | 386.520           | 2.038     | 2.050                | 2.100      | 127                   | 103               | 98      | 12.0      | 54       | 249    | 256    | 47     | 250       | 94.7       |
| B16         | 9:29:00                                                                                                                                    | 96.00      | 391.324 | 391.420           | 2.040     | 2.050                | 2.100      | 127                   | 103               | 99      | 12.0      | 54       | 251    | 257    | 47     | 250       | - 95.2     |
| B17         | 9:35:00                                                                                                                                    | 102.00     | 396.298 | 396.320           | 2.045     | 2.050                | 2.100      | 126                   | 103               | 100     | 12.0      | 55       | 248    | 256    | 47     | 250       | 95.0       |
| B18         | 9:41:00                                                                                                                                    | 108.00     | 401.326 | 401.280           | 2.090     | 2.100                | 2.150      | 127                   | 103               | 100     | 12.0      | 56       | 250    | 257    | 46     | 250       | 95.1       |
| B18         | 9:47:00                                                                                                                                    | 114.00     | 406.349 | 406.220           | 2.085     | 2.100                | 2.150      | 129                   | 104               | 100     | 12.0      | 57       | 248    | 257    | 47     | 250       | 94.8       |
| B18         | 9:53:00                                                                                                                                    | 120.00     | 411.252 | 411.082           | 1.984     | 2.000                | 2.050      | 131                   | 104               | 101     | 12.0      | 58       | 249    | 256    | 48     | 250       | 95.6       |
| INITIAL     | 10:20:00                                                                                                                                   | 120.00     |         | 411.396           |           |                      |            |                       |                   |         |           |          |        |        |        |           |            |
| A1          | 10:26:00                                                                                                                                   | 126.00     | 414.969 | 414.950           | 0.960     | 1.000                | 1.000      | 136                   | 100               | 100     | 8.0       | 67       | 250    | 261    | 57     | X         | 100.7      |
| A2          | 10:32:00                                                                                                                                   | 132.00     | 418.998 | 418.840           | 1.345     | 1.400                | 1.400      | 135                   | 101               | 100     | 9.0       | 46       | 250    | 259    | 46     |           | 93.1       |
| A3          | 10:38:00                                                                                                                                   | 138.00     | 423.443 | 423.200           | 1.637     | 1.700                | 1.700      | 133                   | 101               | 100     | 10.0      | 48       | 251    | 257    | 45     |           | 94.6       |
| A4          | 10:44:00                                                                                                                                   | 144.00     | 427.965 | 427.610           | 1.689     | 1.700                | 1.750      | 133                   | 103               | 101     | 10.0      | 51       | 248    | 257    | 45     |           | 94.0       |
| A5          | 10:50:00                                                                                                                                   | 150.00     | 432.553 | 432.200           | 1.738     | 1.800                | 1.800      | 133                   | 104               | 101     | 11.0      | 54       | 248    | 257    | 46     |           | 96.5       |
| A6          | 10:56:00                                                                                                                                   | 156.00     | 437.213 | 436.910           | 1.789     | 1.850                | 1.850      | 133                   | 105               | 102     | 11.0      | 52       | 250    | 257    | 46     |           | 97.5       |
| A7          | 11:02:00                                                                                                                                   | 162.00     | 441.938 | 441.630           | 1.840     | 1.950                | 1.900      | 132                   | 105               | 102     | 11.0      | 50       | 250    | 257    | 47     |           | 96.3       |
| A8          | 11:08:00                                                                                                                                   | 168.00     | 446.675 | 446.410           | 1.847     | 2.000                | 1.900      | 131                   | 106               | 103     | 12.0      | 50       | 251    | 257    | 46     |           | 97.3       |
| A9          | 11:14:00                                                                                                                                   | 174.00     | 451.474 | 451.210           | 1.895     | 2.000                | 1.950      | 131                   | 106               | 103     | 12.0      | 50       | 249    | 257    | 46     |           | 96.4       |
| A10         | 11:20:00                                                                                                                                   | 180.00     | 456.286 | 456.140           | 1.901     | 2.000                | 1.950      | 130                   | 107               | 104     | 12.0      | 51       | 251    | 257    | 47     |           | 98.8       |
| A11         | 11:26:00                                                                                                                                   | 186.00     | 461.161 | 461.000           | 1.951     | 2.100                | 2.000      | 130                   | 108               | 104     | 12.0      | 53       | 252    | 257    | 47     |           | 96.1       |
|             |                                                                                                                                            |            |         | is flagged with   |           |                      |            |                       |                   |         | rator(s): |          |        |        |        | لـــــــا | 55.1       |

Operator(s): Dave Griffin

Signature/Date 9/11/03

Test Run Field Data Sheet - PCDD/PCDF

| Project no   | 110249.2.001 | .05        |              | Emission m        |           |           |            | et .                  |                   |         |           |          |        |        |          |        |            |
|--------------|--------------|------------|--------------|-------------------|-----------|-----------|------------|-----------------------|-------------------|---------|-----------|----------|--------|--------|----------|--------|------------|
| Test run no. |              |            | August 18, 2 |                   |           | Train no. |            |                       |                   |         |           |          |        | Pa     | age 2 of | 2      |            |
|              |              | Cumulative |              | eter Reading,     | Orifice I | Pressure  | Velocity   | Gas                   | Dry Ga            | s Meter |           | Impinger | Probe  | Filter | XAD      | STL    | Isokinetio |
| Traverse     | Clock        | Sampling   | 1            | V <sub>m</sub> ), |           | rential   | Head,      | Stream                |                   | erature | Pump      | Outlet   | Outlet | Holder | Inlet    | Outlet | Sampling   |
| Port-Point   | Time         | Time,      |              | ft.º              | (∆H), inc | hes H₂O   | (Δp),      | Temp.,                | (t <sub>m</sub> ) | , °F    | Vacuum,   | Temp.,   | Temp., | Temp., | Temp.,   | Temp., | Variation, |
| Number       | 24-hr        | minutes    | Desired      | Actual            | Desired   | Actual    | inches H₂O | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg    | _^F      | °F     | °F     | °F       | °F     | percent    |
| A12          | 11:32:00     | 192.00     | 466.045      | 465.950           | 1.956     | 2.100     | 2.000      | 129                   | 108               | 105     | 12.0      | 53       | 251    | 257    | 47       |        | 97.7       |
| A13          | 11:38:00     | 198.00     | 470.934      | 470.930           | 1.960     | 2.100     | 2.000      | 128                   | 108               | 105     | 12.0      | 53       | 249    | 257    | 48       |        | 98.2       |
| A14          | 11:44:00     | 204.00     | 475.826      | 475.900           | 1.960     | 2.100     | 2.000      | 129                   | 109               | 106     | 12.0      | 55       | 249    | 257    | 48       |        | 97.9       |
| A15          | 11:50:00     | 210.00     | 480.719      | 480.860           | 1.960     | 2.100     | 2.000      | 129                   | 109               | 106     | 12.0      | 55       | 252    | 258    | 49       |        | 97.7       |
| A16          | 11:56:00     | 216.00     | 485.620      | 485.830           | 1.961     | 2.100     | 2.000      | 130                   | 111               | 107     | 12.0      | 57       | 250    | 257    | 51       |        | 97.8       |
| A17          | 12:02:00     | 222.00     | 490.526      | 490.790           | 1.963     | 2.050     | 2.000      | 130                   | 111               | 108     | 12.0      | 57       | 249    | 257    | 52       |        | 97.5       |
| A18          | 12:08:00     | 228.00     | 495.441      | 495.680           | 1.968     | 2.000     | 2.000      | 129                   | 112               | 108     | 12.0      | 53       | 248    | 258    | 50       |        | 95.9       |
| A19          | 12:14:00     | 234.00     | 500.365      | 500.550           | 1.972     | 2.000     | 2.000      | 129                   | 113               | 109     | 12.0      | 54       | 248    | 257    | 49       |        | 95.4       |
| A20          | 12:20:00     | 240.00     | 505.228      | 505.279           | 1.923     | 1.900     | 1.950      | 129                   | 113               | 109     | 11.0      | 53       | 248    | 257    | 51       |        | 93.8       |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        | _          |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              | -                 |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            | _                     |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
|              |              |            |              |                   |           |           |            |                       |                   |         |           |          |        |        |          |        |            |
| D            | 11 1 5       | 014        |              | is flagged with   | an antari |           | 44-1       | ha neasia             | a Alman           | 0       | rotor/ol: | D        | .: cr  |        |          |        |            |

Operator(s): Dave Griffin

Auce Med 8-26-03

Signature/Date

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:28 PM)

# Emission Measurements Data Summary Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location

Source tested Dryer Stack

Emission measurement location Stack Outlet

Test run no. 5 Sampling train no. M23-1 Test run date(s) August 19, 2003 Run start time 06:05 AM Run stop time 10:30 AM

Operator(s) Dave Griffin

/ anux Med

#### Measurement Equipment Identification and Specifications

Metering console no. N7

Dry gas meter (DGM) calibration factor (Y) 1.002

Orifice meter factor ( $\Delta$ H@) 1.794 in. H<sub>2</sub>O

DGM calibration factor ( $Y_{qa}$ ) from sampling data 1.022 Comparison of  $Y_{qa}$  to Y (must be within ±5% of Y) within ±5%

Temperature controller\* no. N/A
Temperature meter\* no. N/A
Additional thermocouple no. N/A
Sample transfer line no. N/A
Umbilical cable no(s). N-16-2

Sample box no. 10288 Impinger outlet connector no. UH-1 Filter no(s). 23-9 Probe no. 3-5

Effective probe length 3.0 feet 0.91 m
Probe liner Heated glass tubing

Gas stream temperature thermocouple no. 36-12
Pitot tube no. M-104

Pitot tube no. M-104
Pitot tube coefficient 0.840
Sampling nozzle no. N12

Sampling nozzle type Nichol button-hook
Sampling nozzle inside diameter at inlet tip 0.187 inches

Barometer no. X-4029

Altitude difference from emission measurement location

to barometer or reference point at the test site -29 feet -8.8 m
Altitude difference from metering console location

to barometer or reference point at the test site -20 feet -6.1 m

\* Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

| Gas stream pr     | essure        | Sampling         | Sampling system - |       |  |  |  |  |  |  |  |  |
|-------------------|---------------|------------------|-------------------|-------|--|--|--|--|--|--|--|--|
| measurement s     | system -      | Leak check       |                   |       |  |  |  |  |  |  |  |  |
| Leak check from p | itot tube tip |                  | Pump              | Leak  |  |  |  |  |  |  |  |  |
|                   |               |                  | Vacuum,           | Rate, |  |  |  |  |  |  |  |  |
| <u>Time</u>       | Result        | <u>Time</u>      | in. Hg            | dcfm  |  |  |  |  |  |  |  |  |
| Initial 05:55 AM  | Pass          | Initial 06:00 AM | 15.0              | 0.003 |  |  |  |  |  |  |  |  |
| Final 08:08 AM    | I PASS        | Final 08:10 AM   | 11.0              | 0.002 |  |  |  |  |  |  |  |  |
| Initial 08:25 AM  | PASS          | Initial 08:26 AM | 15.0              | 0.003 |  |  |  |  |  |  |  |  |
| Final 10:35 AM    | I PASS        | Final 10:33 AM   | 11.0              | 0.001 |  |  |  |  |  |  |  |  |

5t/11/03

4.75 mm

### **Emission Measurements Data Summary** Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location

Source tested Dryer Stack Emission measurement location Stack Outlet

Test run no. 5 Sampling train no. M23-1 Total sampling time

240.00 minutes

Test run date(s) August 19, 2003 Run start time 06:05 AM

Run stop time 10:30 AM

| Gas Stream | Measurement Results |  |
|------------|---------------------|--|
| Gas Gueani | Measurement Results |  |

| Volumetric flow rate at dry standard conditions | 12,155 dscfm                                 | 344.20 dscm/min.                           |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Volumetric flow rate at dry standard conditions | 729,325 dscf/hr                              | 20,652.2 dscm/hr                           |
| Volumetric flow rate at standard conditions     | 13,434 scfm                                  | 380.42 scm/min.                            |
| Standard Conditions are                         | 68 °F and                                    | 760 mm Hg                                  |
| Volumetric flow rate at actual conditions       | 15,212 acfm                                  | 430.74 acm/min.                            |
| Volumetric flow rate at actual conditions       | 912,690 acf/hr                               | 25,844.5 acm/hr                            |
| Average velocity                                | 80.70 ft./sec.                               | 24.597 m/sec.                              |
| Average velocity                                | 4,842 ft./min.                               | 1,475.8 m/min.                             |
| Square root of velocity head                    | 1.3284 (in. H <sub>2</sub> O) <sup>0.0</sup> | 6.695 (mm H <sub>2</sub> O) <sup>0.0</sup> |
| Velocity head                                   | 1.765 in. H₂O                                | 44.82 mm H₂O                               |
| Absolute temperature                            | 591.3 °R                                     | 328.5 K                                    |
| Temperature                                     | 131.6 °F                                     | 55.3 °C                                    |
| Absolute pressure                               | 29.61 in. Hg                                 | 752.1 mm Hg                                |
| Static pressure                                 | 0.00 in. H <sub>2</sub> O                    | 0.0 mm H₂O                                 |
| Barometric pressure at start of run             | 29.61 in. Hg                                 | 752.1 mm Hg                                |
| Barometric pressure at end of run               | N/A in Hg                                    | N/A mm Hg                                  |
| Moisture (as water vapor) content               | 9.52 % by volume                             | 9.52 % by volume                           |
| Wet gas molecular weight                        | 27.90 lb/lb-mole                             | 27.90 g/g-mole                             |
| Dry gas molecular weight                        | 28.94 lb/lb-mole                             | 28.94 g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 0.2 % by volume                              | 0.2 % by volume                            |
| Oxygen concentration, dry-basis                 | 19.7 % by volume                             | 19.7 % by volume                           |
| Carbon monoxide concentration, dry-basis        | % by volume                                  | % by volume                                |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| Circular      |                                            |
|---------------|--------------------------------------------|
| 24.000 inches | 0.6096 m                                   |
| 24.000 inches | 0.6096 m                                   |
| 3.1416 ft.2   | 0.29186 m <sup>2</sup>                     |
|               | Circular<br>24.000 inches<br>24.000 inches |

Gae Sampling Poculte

| Gas Samp                                             | iiiig Results              |                           |
|------------------------------------------------------|----------------------------|---------------------------|
| Gas sample volume, corrected, at standard conditions | 169.974 dscf               | 4.8131 dscm               |
| Gas sample volume as read on dry gas meter           | 179.155 ft.3               | 5.0731 m³                 |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m <sup>3</sup>     |
| Gas sample volume corrected for leakage              | 179.155 ft.3               | 5.0731 m³                 |
| Absolute dry gas meter temperature                   | 554.2 °R                   | 307.9 K                   |
| Dry gas meter temperature                            | 94.5 °F                    | 34.7 °C                   |
| Absolute dry gas meter pressure                      | 29.75 in. Hg               | 755.7 mm Hg               |
| Orifice meter differential pressure (AH)             | 1,938 in. H <sub>2</sub> O | 49.23 mm H <sub>2</sub> O |
| Barometric pressure at start of run                  | 29.62 in. Hg               | 752.3 mm Hg               |
| Barometric pressure at end of run                    | N/A in Hg                  | N/A mm Hg                 |
| Condensate collected in sampling train               | 379.3 grams                | 379.3 grams               |
| Isokinetic sampling variation                        | 95.97 %                    | ·                         |
|                                                      |                            |                           |

#### Other Supporting Data

| Barometric pressure at test site at start of run | 29.64 in. Hg   | 752.9 mm Hg              |
|--------------------------------------------------|----------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in Hg      | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    | 1.907E-04 ft.2 | 1.772E-05 m <sup>2</sup> |
| Pitot tube coefficient                           | 0.840          |                          |

Dry gas meter calibration factor (Y) Dry gas meter calibration factor (Y<sub>ga</sub>) from sampling data Comparison of  $Y_{qa}$  to Y (difference must be within  $\pm 5\%$  of Y)

Orifice meter factor (\( \Delta H@ \)

Potential moisture (as water vapor) content based on condensate collected Potential moisture (as water vapor) content based on gas stream parameters

1.002 1.022

within ±5%

1.794 in. H<sub>2</sub>O 9.52 % by volume N/A % by volume

8 st a/11/03

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportB] 8/26/2003 2:30 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Project no. 110249.2.001.05 Emission measurement location: Stack Outlet |          |            |         |                   |           |         |            |                       |                   |         |         |          |         |        |          |          |            |
|-------------------------------------------------------------------------|----------|------------|---------|-------------------|-----------|---------|------------|-----------------------|-------------------|---------|---------|----------|---------|--------|----------|----------|------------|
| Test run no. 5 Date(s): August 19, 2003 Train no. M23-1 Page 1 of 2     |          |            |         |                   |           |         |            |                       |                   |         |         |          |         |        |          |          |            |
| Tool full flo.                                                          | <u> </u> | Cumulative |         | eter Reading,     | Orifice F |         | Velocity   | Gas                   | Dry Gas           | s Meter |         | Impinger | Probe   | Filter | XAD      | STL      | Isokinetic |
| Traverse                                                                | Clock    | Sampling   | (       | √ <sub>m</sub> ), | Differ    | ential  | Head,      | Stream                | Tempe             | erature | Pump    | Outlet   | Outlet  | Holder | Inlet    | Outlet   | Sampling   |
| Port-Point                                                              | Time     | Time,      |         | ft.º              | (∆H), inc | hes H₂O | (Δp),      | Temp.,                | (t <sub>m</sub> ) | ,°F     | Vacuum, | Temp.,   | Temp.,  | Temp., | Temp.,   | Temp.,   | Variation, |
| Number                                                                  | 24-hr    | minutes    | Desired | Actual            | Desired   | Actual  | inches H₂O | (t <sub>s</sub> ), °F | Inlet             | Outlet  | in. Hg  | °F       | °F      | °F     | °F       | °F       | percent    |
| INITIAL                                                                 | 6:05:00  | 0.00       |         | 505.489           |           |         |            |                       |                   |         |         |          |         |        |          |          |            |
| B1                                                                      | 6:11:00  | 6.00       | 507.345 | 507.430           | 0.295     | 0.310   | 0.320      | 143                   | 82                | 83      | 3.0     | 58       | 249     | 255    | 54       | 250      | 100.4      |
| B2                                                                      | 6:17:00  | 12.00      | 510.727 | 510.890           | 0.979     | 1.000   | 1.050      | 135                   | 83                | 83      | 7.0     | 48       | 250     | 256    | 44       | 250      | 98.2       |
| В3                                                                      | 6:23:00  | 18.00      | 514.710 | 514.850           | 1.358     | 1.400   | 1.450      | 132                   | 84                | 83      | 9.0     | 44       | 251     | 257    | 42       | 250      | 95.4       |
| B4                                                                      | 6:29:00  | 24.00      | 518.904 | 519.070           | 1.501     | 1.600   | 1.600      | 132                   | 86                | 84      | 9.0     | 43       | 251     | 248    | 43       | 250      | 96.6       |
| B5                                                                      | 6:35:00  | 30.00      | 523.242 | 523.380           | 1.601     | 1.700   | 1.700      | 131                   | 88                | 85      | 10.0    | 44       | 250     | 253    | 44       | 250      | 95.4       |
| В6                                                                      | 6:41:00  | 36.00      | 527.555 | 527.700           | 1.580     | 1.700   | 1.700      | 140                   | 89                | 86      | 10.0    | 45       | 251     | 256    | 44       | 250      | 96.2       |
| B7                                                                      | 6:47:00  | 42.00      | 531.949 | 532.060           | 1.639     | 1.700   | 1.750      | 136                   | 90                | 86      | 10.0    | 46       | 250     | 257    | 45       | 250      | 95.3       |
| B8                                                                      | 6:53:00  | 48.00      | 536.417 | 536.520           | 1.691     | 1.750   | 1.800      | 135                   | 91                | 87      | 10.0    | 47       | 250     | 258    | 46       | 250      | 95.8       |
| B9                                                                      | 6:59:00  | 54.00      | 540.966 | 541.060           | 1.751     | 1.800   | 1.850      | 131                   | 91                | 88      | 11.0    | 47       | 250     | 257    | 47       | 250      | 95.8       |
| B10                                                                     | 7:05:00  | 60.00      | 545.511 | 545.580           | 1.748     | 1.800   | 1.850      | 132                   | 91                | 88      | 11.0    | 48       | 250     | 257    | 48       | 250      | 95.5       |
| B11                                                                     | 7:11:00  | 66.00      | 550.121 | 550.190           | 1.797     | 1.850   | 1.900      | 132                   | 92                | 88      | 11.0    | 49       | 247     | 257    | 49       | 250      | 96.0       |
| B12                                                                     | 7:17:00  | 72.00      | 554.806 | 554.830           | 1.853     | 1.900   | 1.950      | 130                   | 93                | 89      | 11.0    | 49       | 250     | 257    | 52       | 250      | 95.1       |
| B13                                                                     | 7:23:00  | 78.00      | 559.492 | 559.510           | 1.852     | 1.900   | 1.950      | 131                   | 93                | 90      | 11.0    | 46       | 250     | 257    | 48       | 250      | 95.9       |
| B14                                                                     | 7:29:004 | 84.00      | 564.241 | 564.220           | 1.902     | 1.950   | 2.000      | 130                   | 93                | 90      | 11.0    | 44       | 250     | 257    | 43       | 250      | 95.2       |
| B15                                                                     | 7:35:00  | 90.00      | 568.998 | 568.980           | 1.907     | 2.000   | 2.000      | 129                   | 94                | 90      | 11.0    | 45       | 248     | 257    | 43       | 250      | 96.1       |
| B16                                                                     | 7:41:00  | 96.00      | 573.755 | 573.750           | 1.907     | 2.000   | 2.000      | 129                   | 94                | 90      | 11.0    | 46       | 250     | 257    | 43       | 250      | 96.3       |
| B17                                                                     | 7:47:00  | 102.00     | 578.637 | 578.580           | 2.006     | 2.100   | 2.100      | 128                   | 94                | 91      | 11.0    | 47       | 248     | 257    | 43       | 250      | 95.0       |
| B18                                                                     | 7:53:00  | 108.00     | 583.461 | 583.440           | 1.957     | 2.050   | 2.050      | 129                   | 95                | 91      | 11.0    | 49       | 249     | 258    | 43       | 250      | 96.7       |
| B19                                                                     | 7:59:00  | 114.00     | 588.274 | 588.220           | 1.948     | 2.000   | 2.050      | 132                   | 95                | 91      | 11.0    | 49       | 248     | 257    | 44       | 250      | 95.4       |
| B20                                                                     | 8:05:00  | 120.00     | 593.103 | 593.031           | 1.958     | 2.000   | 2.050      | 130                   | 96                | 92      | 11.0    | 51       | 251     | 257    | 44       | 250      | 95.6       |
| INITIAL                                                                 | 8:30:00  | 120.00     |         | 593.246           |           |         |            |                       |                   |         |         |          | <u></u> |        | <u> </u> | L.,      |            |
| A1                                                                      | 8:36:00  | 126.00     | 596.857 | 596.830           | 1.055     | 1.100   | 1.100      | 128                   | 92                | 92      | 8.0     | 59       | 250     | 264    | 53       | <u>*</u> | 97.2       |
| A2                                                                      | 8:42:00  | 132.00     | 600,518 | 600.570           | 1.130     | 1.200   | 1.200      | 138                   | 92                | 91      | 8.0     | 42_      | 250     | 263    | 45       | <u> </u> | 98.1       |
| A3                                                                      | 8:48:00  | 138.00     | 604.690 | 604.710           | 1.464     | 1.500   | 1.550      | 137                   | 94                | 92      | 9.0     | 43_      | 250     | 257    | 45       | L        | 95.3       |
| A4                                                                      | 8:54:00  | 144.00     | 609.076 | 609.130           | 1.616     | 1.700   | 1.700      | 133                   | 95                | 92      | 10.0    | 46_      | 249     | 257    | 45       |          | 96.8       |
| A5                                                                      | 9:00:00  | 150.00     | 613.611 | 613.670           | 1.723     | 1.800   | 1.800      | 131                   | 97                | 94      | 10.0    | 48       | 250     | 256    | 45       |          | 96.1       |
| A6                                                                      | 9:06:00  | 156.00     | 618.217 | 618.270           | 1.775     | 1.850   | 1.850      | 130                   | 98                | 94      | 10.0    | 51       | 251     | 257    | 46       |          | 95.9       |
| A7                                                                      | 9:12:00  | 162.00     | 622.897 | 622.950           | 1.828     | 1.900   | 1.900      | 129                   | 99                | 95      | 11.0    | 53       | 250     | 257    | 46       |          | 96.0       |
| A8                                                                      | 9:18:00  | 168.00     | 627.581 | 627.630           | 1.832     | 1.900   | 1.900      | 128                   | 99                | 95      | 11.0    | 49       | 249     | 257    | 46       |          | 95.9       |
| A9                                                                      | 9:24:00  | 174.00     | 632.269 | 632.330           | 1.832     | 1.900   | 1.900      | 129                   | 100               | 96      | 11.0    | 48       | 249     | 257    | 45       |          | 96.3       |
| A10                                                                     | 9:30:00  | 180.00     | 637.026 | 637.070           | 1.883     | 1.950   | 1.950      | 129                   | 101               | 97      | 11.0    | 49       | 250     | 257    | 45       |          | 95.7       |
| A11                                                                     | 9:36:00  | 186.00     | 641.792 | 641.820           | 1.886     | 1.950   | 1.950      | 129                   | 102               | 98      | 11.0    | 49       | 250     | 257    | 45       |          | 95.7       |
| A12                                                                     | 9:42:00  | 192.00     | 646.557 | 646.570           | 1.886     | 1.950   | 1.950      | 129                   | 102               | 98      | 11.0    | 49       | 248     | 257    | 45       |          | 95.7       |
|                                                                         |          |            |         |                   |           |         | -          |                       | •                 | 0.5     | t(a)    | Dave     | riffin  |        |          |          |            |

Operator(s): Dave Griffin

Danis 1 Sen 3-26-03

lot or

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:29 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Project no. | 110249,2.001 | .05        |               | Emission m        | easuremer | nt location:                                     | Stack Outle             | et                                               |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|-------------|--------------|------------|---------------|-------------------|-----------|--------------------------------------------------|-------------------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------|--------------------------------------------------|--------------------------------------------------|----------|
| est run no. |              |            | August 19, 20 | 003               |           | Train no.                                        | M23-1                   |                                                  |              |              |                                                  |                                                  |                                                  |        | ge 2 of                                          |                                                  |          |
|             |              | Cumulative | Dry Gas M     | eter Reading,     | Orifice F | ressure                                          | Velocity                | Gas                                              | Dry Ga       |              |                                                  | Impinger                                         | Probe                                            | Filter | XAD                                              | STL                                              | Isokinet |
| Traverse    | Clock        | Sampling   |               | V <sub>m</sub> ), | l         | ential                                           | Head,                   | Stream                                           |              | erature      | Pump                                             | Outlet                                           | Outlet                                           | Holder | Inlet                                            | Outlet                                           | Sampli   |
| Port-Point  | Time         | Time,      |               | ft.º              | (ΔH), inc | hes H₂O                                          | (∆p),                   | Temp.,                                           |              | , °F         | Vacuum,                                          | Temp.,                                           | Temp.,                                           | Temp., | Temp.,                                           | Temp.,                                           | Variatio |
| Number      | 24-hr        | minutes    | Desired       | Actual            | Desired   | Actual                                           | inches H <sub>2</sub> O | (t <sub>s</sub> ), °F                            | Inlet        | Outlet       | in. Hg                                           | °F                                               | °F                                               | °F     | °F                                               | °F                                               | percer   |
| A13         | 9:48:00      | 198.00     | 651.392       | 651.350           | 1.937     | 2.000                                            | 2.000                   | 129                                              | 103          | 99           | 11.0                                             | 49                                               | 250                                              | 257    | 46                                               |                                                  | 94       |
| A14         | 9:54:00      | 204.00     | 656.235       | 656,160           | 1.941     | 2.000                                            | 2.000                   | 129                                              | 104          | 100          | 11.0                                             | 51                                               | 250                                              | 257    | 46                                               |                                                  | 9        |
| A15         | 10:00:00     | 210.00     | 661.010       | 660.940           | 1.886     | 1.950                                            | 1.950                   | 131                                              | 104          | 100          | 11.0                                             | 52                                               | 250                                              | 257    | 46                                               |                                                  | 9        |
| A16         | 10:06:00     | 216.00     | 665.853       | 665.750           | 1.938     | 2.000                                            | 2.000                   | 131                                              | 105          | 101          | 11.0                                             | 53                                               | 251                                              | 257    | 46                                               |                                                  | 9        |
| A17         | 10:12:00     | 222.00     | 670.628       | 670.580           | 1.882     | 2.000                                            | 1.950                   | 134                                              | 106          | 101          | 11.0                                             | 52                                               | 249                                              | 257    | 46                                               |                                                  | 9        |
| A18         | 10:18:00     | 228.00     | 675.408       | 675.370           | 1.882     | 1.950                                            | 1.950                   | 135                                              | 107          | 102          | 11.0                                             | 53                                               | 250                                              | 257    | 46                                               |                                                  | 96       |
| A19         | 10:24:00     | 234.00     | 680.200       | 680.140           | 1.890     | 1.950                                            | 1.950                   | 133                                              | 107          | 103          | 11.0                                             | 53                                               | 251                                              | 257    | 47                                               |                                                  | 9        |
| A20         | 10:30:00     | 240.00     | 684.932       | 684.859           | 1.839     | 1.900                                            | 1.900                   | 135                                              | 108          | 104          | 11.0                                             | 53                                               | 251                                              | 257    | 48                                               |                                                  | 98       |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  | _                                                | <u> </u> |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         | <del>                                     </del> |              |              |                                                  |                                                  |                                                  |        | <u> </u>                                         | <del>                                     </del> |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              | -            |                                                  | <b>-</b>                                         | <b>-</b>                                         |        | <del>                                     </del> |                                                  |          |
|             |              |            |               |                   |           |                                                  |                         |                                                  |              |              |                                                  | 1                                                | $\vdash$                                         |        |                                                  |                                                  |          |
|             |              | -          |               |                   |           |                                                  |                         |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  | <del>                                     </del> |          |
|             | -            |            |               |                   |           | <del> </del> -                                   | <del> </del>            | <del> </del>                                     | <del> </del> | <del> </del> |                                                  | -                                                |                                                  | _      | _                                                | <del> </del>                                     |          |
|             |              |            |               |                   |           |                                                  | <del> </del>            | <del>                                     </del> | -            |              |                                                  | -                                                |                                                  | _      | -                                                | _                                                | _        |
|             |              |            |               | _                 |           | <del>                                     </del> | -                       |                                                  |              |              | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |        | $\vdash$                                         |                                                  |          |
|             |              | -          |               |                   |           | <del>                                     </del> | -                       |                                                  | -            |              |                                                  | <del>                                     </del> |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           |                                                  | -                       | -                                                |              | <del></del>  | <del> </del>                                     | -                                                |                                                  |        | <del>                                     </del> |                                                  |          |
|             |              |            |               |                   |           | -                                                | -                       | -                                                |              |              |                                                  | +                                                |                                                  |        |                                                  |                                                  |          |
|             |              |            |               |                   |           | -                                                | -                       |                                                  |              |              |                                                  |                                                  | _                                                |        |                                                  | -                                                |          |
|             |              |            |               |                   |           | -                                                |                         |                                                  |              | -            |                                                  | <del> </del>                                     |                                                  | -      |                                                  |                                                  |          |
|             |              |            |               | ļ                 |           |                                                  |                         | _                                                |              | -            |                                                  | <del> </del>                                     |                                                  |        |                                                  |                                                  | _        |
|             |              | ļ          |               | <u> </u>          |           |                                                  | -                       |                                                  |              |              | ļ                                                | ļ                                                |                                                  |        |                                                  |                                                  |          |
|             |              |            |               | is flagged with   |           |                                                  | I                       |                                                  |              |              |                                                  |                                                  |                                                  |        |                                                  |                                                  |          |

Planus New 8-26-03 Signature/Date

## **Emission Measurements Data Summary** Measurement Equipment Information and Leak Check Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI

Facility CBI

Facility location Source tested Dryer Stack

Emission measurement location Stack Outlet

Test run no. 6

Sampling train no. M23-2 Operator(s) Dave Griffin

Test run date(s) August 20, 2003 Run start time 06:10 AM Run stop time 10:35 AM

#### Measurement Equipment Identification and Specifications

Metering console no. Dry gas meter (DGM) calibration factor (Y) 1.002

Orifice meter factor (△H@) 1.794 in. H<sub>2</sub>O

DGM calibration factor (Yqa) from sampling data 1.023 Comparison of Y<sub>qa</sub> to Y (must be within ±5% of Y) within ±5%

> Temperature controller\* no. N/A Temperature meter\* no. N/A Additional thermocouple no. N/A Sample transfer line no. N/A Umbilical cable no(s). N-16-2

Sample box no. 012003 Impinger outlet connector no. UH-12 Filter no(s). 23-8

> Effective probe length 3.0 feet 0.91 m

Probe liner Heated glass tubing

Gas stream temperature thermocouple no. 36-12 Pitot tube no. M-104 Pitot tube coefficient 0.840

Sampling nozzle no. N12

Probe no.

Sampling nozzle type Nichol button-hook

Sampling nozzle inside diameter at inlet tip 0.187 inches 4.75 mm Barometer no.

Altitude difference from emission measurement location

Gas stream prossure

to barometer or reference point at the test site -29 feet -8.8 m Altitude difference from metering console location

to barometer or reference point at the test site -20 feet Not part of console; or used with peripheral equipment.

#### Sampling Train Leak Check Data

| Gas      | stream pres  | sure          |           | Sampling    | system -      |       |
|----------|--------------|---------------|-----------|-------------|---------------|-------|
| meas     | urement sys  | stem -        | <u>Le</u> | ak check    | from nozzle   |       |
| Leak che | ck from pite | ot tube tip   |           |             | Pump          | Leak  |
|          |              |               |           |             | Vacuum,       | Rate, |
|          | <u>Time</u>  | <u>Result</u> |           | <u>Time</u> | <u>in. Hg</u> | dcfm  |
| Initial  | 05:25 AM     | Pass          | Initial 0 | 5:27 AM     | 15.0          | 0.003 |
| Final    | 08:13 AM     | PASS          | Final 0   | 8:12 AM     | 12.0          | 0.007 |
| Initial  | 08:30 AM     | PASS          | Initial 0 | 6:05 AM     | 15.0          | 0.001 |
| Final    | 10:39 AM     | PASS          | Final 1   | 0:37 AM     | 12.0          | 0.005 |
|          |              |               | Initial 0 | 8:29 AM     | 15.0          | 0.006 |

-6.1 m

## Emission Measurements Data Summary Source and Sampling Data

#### PCDD/PCDF

Project no. 110249.2.001.05 Client EPA/ESD/RTI Facility CBI

Facility location

Source tested Dryer Stack Emission measurement location Stack Outlet
Test run no. 6

Sampling train no. M23-2 Total sampling time 240.00 minutes Test run date(s) August 20, 2003 Run start time 06:10 AM Run stop time 10:35 AM

| Gas Stream | Measurement | Results |
|------------|-------------|---------|
|------------|-------------|---------|

| Out official files                              |                                              |                                            |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Volumetric flow rate at dry standard conditions | 11,898 dscfm                                 | 336,90 dscm/min.                           |
| Volumetric flow rate at dry standard conditions | 713,855 dscf/hr                              | 20,214.1 dscm/hr                           |
| Volumetric flow rate at standard conditions     | 13,125 scfm                                  | 371.67 scm/min.                            |
| Standard Conditions are                         | 68 °F and                                    | 760 mm Hg                                  |
| Volumetric flow rate at actual conditions       | 14,709 acfm                                  | 416.51 acm/min.                            |
| Volumetric flow rate at actual conditions       | 882,526 acf/hr                               | 24,990.4 acm/hr                            |
| Average velocity                                | 78.03 ft./sec.                               | 23.784 m/sec.                              |
| Average velocity                                | 4,682 ft./min.                               | 1,427.1 m/min.                             |
| Square root of velocity head                    | 1.3401 (in. H <sub>2</sub> O) <sup>0.5</sup> | 6.754 (mm H <sub>2</sub> O) <sup>∪.∪</sup> |
| Velocity head                                   | 1.796 in. H <sub>2</sub> O                   | 45.62 mm H₂O                               |
| Absolute temperature                            | 585.4 °R                                     | 325.2 K                                    |
| Temperature                                     | 125.7 °F                                     | 52.1 °C                                    |
| Absolute pressure                               | 29.62 in. Hg                                 | 752.4 mm Hg                                |
| Static pressure                                 | 0.00 in. H <sub>2</sub> O                    | 0.0 mm H₂O                                 |
| Barometric pressure at start of run             | 29.62 in. Hg                                 | 752.4 mm Hg                                |
| Barometric pressure at end of run               | N/A in. Hg                                   | N/A mm Hg                                  |
| Moisture (as water vapor) content               | 9.35 % by volume                             | 9.35 % by volume                           |
| Wet gas molecular weight                        | 30.06 lb/lb-mole                             | 30.06 g/g-mole                             |
| Dry gas molecular weight                        | 31.30 lb/lb-mole                             | 31.30 g/g-mole                             |
| Carbon dioxide concentration, dry-basis         | 19.8 % by volume                             | 19.8 % by volume                           |
| Oxygen concentration, dry-basis                 | 0.2 % by volume                              | 0.2 % by volume                            |
| Carbon monoxide concentration, dry-basis        | % by volume                                  | % by volume                                |
|                                                 |                                              |                                            |

#### Gas Stream Cross-Sectional Area at Emission Measurement Location

| 3 Circuit Cross Continui Area . | at milliodidit illioddd | HOLLIGHT HOUSE         |
|---------------------------------|-------------------------|------------------------|
| Stack or duct type              | Circular                |                        |
| First diameter                  | 24.000 inches           | 0.6096 m               |
| Second diameter                 | 24.000 inches           | 0.6096 m               |
| Gas stream cross-sectional area | 3.1416 ft.2             | 0.29186 m <sup>2</sup> |

#### Gas Sampling Results

| Gas Samp                                             | iing Results               |                           |
|------------------------------------------------------|----------------------------|---------------------------|
| Gas sample volume, corrected, at standard conditions | 172.515 dscf               | 4.8851 dscm               |
| Gas sample volume as read on dry gas meter           | 181.473 ft.3               | 5.1387 m³                 |
| Volume correction for failed leak checks             | 0.000 ft.3                 | 0.0000 m <sup>3</sup>     |
| Gas sample volume corrected for leakage              | 181.473 ft.3               | 5,1387 m³                 |
| Absolute dry gas meter temperature                   | 553.3 °R                   | 307.4 K                   |
| Dry gas meter temperature                            | 93.6 °F                    | 34.2 °C                   |
| Absolute dry gas meter pressure                      | 29.77 in. Hg               | 756.0 mm Hg               |
| Orifice meter differential pressure (△H)             | 1.973 in. H <sub>2</sub> O | 50.12 mm H <sub>2</sub> O |
| Barometric pressure at start of run                  | 29.63 in. Hg               | 752.6 mm Hg               |
| Barometric pressure at end of run                    | N/A in. Hg                 | N/A mm Hg                 |
| Condensate collected in sampling train               | 377.5 grams                | 377.5 grams               |
| Isokinetic sampling variation                        | 99.52 %                    |                           |
|                                                      |                            |                           |

#### Other Supporting Data

| Barometric pressure at test site at start of run | 29.65 in. Hg | 753.1 mm Hg              |
|--------------------------------------------------|--------------|--------------------------|
| Barometric pressure at test site at end of run   | N/A in Hg    | N/A mm Hg                |
| Cross-sectional area of sampling nozzle inlet    |              | 1.772E-05 m <sup>2</sup> |
| Ditat tube coefficient                           | 0.940        |                          |

Pitot tube coefficient 0.840

Dry gas meter calibration factor (Y) 1.002 1.023 Dry gas meter calibration factor ( $Y_{qa}$ ) from sampling data 1.023 Comparison of  $Y_{qa}$  to Y (difference must be within ±5% of Y) within ±5% 0.794 in. H<sub>2</sub>O

Potential moisture (as water vapor) content based on condensate collected Potential moisture (as water vapor) content based on gas stream parameters

Jr 8/11/03

9.35 % by volume

N/A % by volume

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [ReportB] 8/26/2003 2:32 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Project                                                                                                                                      | 110010 2 001 | 1.05       |           | Eminale           |           | nt longtion | Stools Out |                       |                       |         | · · ·   |          |        |        |        |        |            |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------|-------------------|-----------|-------------|------------|-----------------------|-----------------------|---------|---------|----------|--------|--------|--------|--------|------------|
| Project no. 110249.2.001.05 Emission measurement location: Stack Outlet  Test run no. 6 Date(s): August 20, 2003 Train no. M23-2 Page 1 of 2 |              |            |           |                   |           |             |            |                       |                       |         |         |          |        |        |        |        |            |
|                                                                                                                                              |              | Cumulative | Dry Gas M | eter Reading.     | Orifice I | Pressure    | Velocity   | Gas                   | Dry Ga                | s Meter |         | Impinger | Probe  | Filter | XAD    | STL    | Isokinetic |
| Traverse                                                                                                                                     | Clock        | Sampling   | (         | V <sub>m</sub> ), | Diffe     | 1 1         |            | Stream                | Temperature           |         | Pump    | Outlet   | Outlet | Holder | Inlet  | Outlet | Sampling   |
| Port-Point                                                                                                                                   | Time         | Time,      |           | ft.³              | (∆H), inc | hes H₂O     | (∆p),      | Temp.,                | (t <sub>m</sub> ), °F |         | Vacuum, | Temp.,   | Temp., | Temp., | Temp., | Temp., | Variation, |
| Number                                                                                                                                       | 24-hr        | minutes    | Desired   | Actual            | Desired   | Actual      | inches H₂O | (t <sub>s</sub> ), °F | Inlet                 | Outlet  | in. Hg  | °F       | °F     | °F     | °F     | °F     | percent    |
| STRT                                                                                                                                         | 6:10:00      | 0.00       |           | 685.232           |           |             |            |                       |                       |         |         |          |        |        |        |        |            |
| B1                                                                                                                                           | 6:16:00      | 6.00       | 687.954   | 688.030           | 0.637     | 0.640       | 0.690      | 139                   | 80                    | 81      | 6.0     | 59       | 251    | 257    | 48     | 250    | 102.3      |
| B2                                                                                                                                           | 6:22:00      | 12.00      | 691.253   | 691.290           | 0.935     | 0.940       | 1.000      | 132                   | 81                    | 82      | 8.0     | 51       | 249    | 256    | 41     | 250    | 98.3       |
| B3                                                                                                                                           | 6:28:00      | 18.00      | 695.242   | 695.190           | 1.364     | 1.400       | 1.450      | 128                   | 83                    | 82      | 9.0     | 50       | 250    | 256    | 49     | 250    | 97.2       |
| B4                                                                                                                                           | 6:34:00      | 24.00      | 699.442   | 699.400           | 1.510     | 1.600       | 1.600      | 127                   | 85                    | 82      | 10.0    | 51       | 250    | 257    | 40     | 250    | 99.7       |
| B5                                                                                                                                           | 6:40:00      | 30.00      | 703.782   | 703.720           | 1.609     | 1.700       | 1.700      | 126                   | 86                    | 83      | 10.0    | 52       | 251    | 257    | 41     | 250    | 99.0       |
| B6                                                                                                                                           | 6:46:00      | 36,00      | 708.122   | 708.100           | 1.608     | 1.700       | 1.700      | 127                   | 87                    | 83      | 10.0    | 53       | 251    | 257    | 41     | 250    | 100.4      |
| B7                                                                                                                                           | 6:52:00      | 42.00      | 712.536   | 712.530           | 1.661     | 1.750       | 1.750      | 126                   | 88                    | 84      | 11.0    | 54       | 250    | 257    | 41     | 250    | 99.8       |
| B8                                                                                                                                           | 6:58:00      | 48.00      | 717.086   | 717.090           | 1.761     | 1.850       | 1.850      | 125                   | 89                    | 85      | 11.0    | 54       | 249    | 256    | 41     | 250    | 99.7       |
| B9                                                                                                                                           | 7:04:00      | 54.00      | 721.701   | 721.700           | 1.811     | 1.900       | 1.900      | 124                   | 89                    | 85      | 11.0    | 55       | 251    | 257    | 41     | 250    | 99.4       |
| B10                                                                                                                                          | 7:10:00      | 60.00      | 726.323   | 726.320           | 1.814     | 1.900       | 1.900      | 124                   | 90                    | 86      | 11.0    | 56       | 247    | 257    | 42     | 250    | 99.4       |
| B11                                                                                                                                          | 7:16:00      | 66.00      | 730.942   | 730.960           | 1.813     | 1.900       | 1.900      | 124                   | 89                    | 86      | 11.0    | 44       | 248    | 257    | 42     | 250    | 99.9       |
| B12                                                                                                                                          | 7:22:00      | 72.00      | 735.629   | 735.700           | 1.863     | 1.950       | 1.950      | 124                   | 90                    | 87      | 11.0    | 44       | 247    | 257    | 43     | 250    | 100.6      |
| B13                                                                                                                                          | 7:28:00      | 78.00      | 740.375   | 740.450           | 1.912     | 2.000       | 2.000      | 123                   | 90                    | 86      | 12.0    | 44       | 251    | 257    | 43     | 250    | 99.6       |
| B14                                                                                                                                          | 7:34:00      | 84.00      | 745.125   | 745.220           | 1.914     | 2.000       | 2.000      | 123                   | 90                    | 87      | 12.0    | 47       | 250    | 257    | 44     | 250    | 99.9       |
| B15                                                                                                                                          | 7:40:00      | 90.00      | 749.880   | 749.980           | 1.916     | 2.000       | 2.000      | 123                   | 91                    | 87      | 12.0    | 48       | 248    | 257    | 44     | 250    | 99.6       |
| B16                                                                                                                                          | 7:46:00      | 96.00      | 754.701   | 754.820           | 1.968     | 2.050       | 2.050      | 122                   | 91                    | 88      | 12.0    | 51       | 249    | 257    | 44     | 250    | 99.8       |
| B17                                                                                                                                          | 7:52:00      | 102.00     | 759.581   | 759.630           | 2.016     | 2.050       | 2.100      | 122                   | 91                    | 88      | 12.0    | 55       | 251    | 258    | 45     | 250    | 98.0       |
| B18                                                                                                                                          | 7:58:00      | 108.00     | 764.407   | 764.460           | 1.968     | 2.050       | 2.050      | 123                   | 92                    | 89      | 12.0    | 56       | 248    | 257    | 46     | 250    | 99.5       |
| B19                                                                                                                                          | 8:04:00      | 114.00     | 769.225   | 769.290           | 1.962     | 2.050       | 2.050      | 125                   | 92                    | 89      | 12.0    | 57       | 250    | 257    | 47     | 250    | 99.7       |
| B20                                                                                                                                          | 8:10:00      | 120.00     | 774.048   | 774.053           | 1.960     | 2.050       | 2.050      | 127                   | 94                    | 90      | 12.0    | 58       | 250    | 257    | 48     | 250    | 98.2       |
| INITIAL                                                                                                                                      | 8:35:00      | 120.00     |           | 774.286           |           |             |            |                       |                       |         |         |          |        |        |        |        |            |
| A1                                                                                                                                           | 8:41:00      | 126.00     | 777.900   | 778.030           | 1.108     | 1.150       | 1.150      | 123                   | 90                    | 90      | 9.0     | 57       | 250    | 261    | 48     | ×      | 102.9      |
| A2                                                                                                                                           | 8:47:00      | 132.00     | 781.962   | 781.990           | 1.394     | 1.450       | 1.450      | 124                   | 91                    | 90      | 9.0     | 55       | 249    | 259    | 45     | 7      | 97.0       |
| А3                                                                                                                                           | 8:53:00      | 138.00     | 786.297   | 786.310           | 1.584     | 1.650       | 1.650      | 126                   | 93                    | 91      | 10.0    | 56       | 250    | 257    | 44     |        | 99.1       |
| A4                                                                                                                                           | 8:59:00      | 144.00     | 790.776   | 790.770           | 1.686     | 1.750       | 1.750      | 125                   | 95                    | 92      | 11.0    | 56       | 250    | 257    | 44     |        | 99.0       |
| <b>A</b> 5                                                                                                                                   | 9:05:00      | 150.00     | 795.330   | 795.300           | 1.739     | 1.800       | 1.800      | 125                   | 97                    | 93      | 11.0    | 57       | 251    | 257    | 44     |        | 98.9       |
| A6                                                                                                                                           | 9:11:00      | 156.00     | 799.955   | 799.880           | 1.790     | 1.850       | 1.850      | 125                   | 98                    | 94      | 11.0    | 57       | 252    | 258    | 45     |        | 98.5       |
| A7                                                                                                                                           | 9:17:00      | 162.00     | 804.646   | 804.500           | 1.839     | 1.900       | 1.900      | 125                   | 99                    | 94      | 11.0    | 57       | 250    | 257    | 46     |        | 98.0       |
| A8                                                                                                                                           | 9:23:00      | 168.00     | 809.341   | 809.180           | 1.839     | 1.900       | 1.900      | 126                   | 100                   | 95      | 11.0    | 57       | 251    | 257    | 47     |        | 99.1       |
| A9                                                                                                                                           | 9:29:00      | 174.00     | 814.043   | 813.920           | 1.843     | 2.000       | 1.900      | 126                   | 101                   | 96      | 11.0    | 58       | 250    | 258    | 49     |        | 100.3      |
| A10                                                                                                                                          | 9:35:00      | 180.00     | 818.754   | 818.670           | 1.846     | 2.000       | 1.900      | 126                   | 102                   | 97      | 11.0    | 58       | 250    | 257    | 51     |        | 100.3      |
| A11                                                                                                                                          | 9:41:00      | 186.00     | 823.535   | 823.480           | 1.897     | 2.000       | 1.950      | 126                   | 103                   | 98      | 12.0    | 57       | 250    | 257    | 49     |        | 100.1      |
| A12                                                                                                                                          | 9:47:00      | 192.00     | 828.255   | 828.320           | 1.848     | 2.000       | 1.900      | 127                   | 103                   | 99      | 12.0    | 59       | 248    | 257    | 47     |        | 102.0      |
|                                                                                                                                              |              |            |           |                   |           |             |            |                       |                       |         |         |          |        |        |        |        |            |

Remarks: Note: Any DGM reading above that is flagged with an asterisk was not taken at the precise time. Operator(s): Dave Griffin

Christ September 8-26-03 Signature/Date XX / 1/3 3

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:31 PM)

Test Run Field Data Sheet - PCDD/PCDF

| Test run no. |             |            | August 20, 2 | Emission m<br>003 |           | Train no.  |            |                       |         |         |           |          |        | _      |          |        |            |
|--------------|-------------|------------|--------------|-------------------|-----------|------------|------------|-----------------------|---------|---------|-----------|----------|--------|--------|----------|--------|------------|
|              |             |            |              |                   |           | Haili IIO. | WIZ 5-2    |                       |         |         |           |          |        | Pi     | age 2 of | 2      |            |
| Traverse     | Clock       | Cumulative | Dry Gas M    | eter Reading,     | Orifice F | Pressure   | Velocity   | Gas                   | Dry Ga  | s Meter |           | Impinger | Probe  | Filter | XAD      | STL    | Isokinetic |
|              | Clock       | Sampling   |              | V <sub>m</sub> ), | Differ    |            | Head,      | Stream                |         | erature | Pump      | Outlet   | Outlet | Holder | Inlet    | Outlet | Sampling   |
| Port-Point   | Time        | Time,      |              | ft.º              | (∆H), inc | hes H₂O    | (∆p),      | Temp.,                |         | , °F    | Vacuum,   | Temp.,   | Temp., | Temp., | Temp.,   | Temp., | Variation  |
| Number       | 24-hr       | minutes    | Desired      | Actual            | Desired   | Actual     | inches H₂O | (t <sub>s</sub> ), °F | Inlet   | Outlet  | in. Hg    | ۴F       | °F     | °F     | °F       | °F     | percent    |
| A13          | 9:53:00     | 198.00     | 833.044      | 833.170           | 1.899     | 2.000      | 1.950      | 127                   | 104     | 100     | 12.0      | 57       | 249    | 257    | 48       |        | 100.7      |
| A14          | 9:59:00     | 204.00     | 837.838      | 837.990           | 1.899     | 2.000      | 1.950      | 128                   | 105     | 101     | 12.0      | 57       | 251    | 257    | 47       |        | 100.0      |
| A15          | 10:05:00    | 210.00     | 842.706      | 842.860           | 1.954     | 2.000      | 2.000      | 127                   | 106     | 102     | 12.0      | 58       | 251    | 257    | 46       |        | 99.5       |
| A16          | 10:11:00    | 216.00     | 847.521      | 847.690           | 1.909     | 1.950      | 1.950      | 127                   | 107     | 103     | 12.0      | 58       | 29     | 257    | 46       |        | 99.8       |
| A17          | 10:17:00    | 222.00     | 852.406      | 852.490           | 1.961     | 2.000      | 2.000      | 127                   | 108     | 104     | 12.0      | 57       | 251    | 257    | 45       |        | 97.7       |
| A18          | 10:23:00    | 228.00     | 857.234      | 857.330           | 1.914     | 2.000      | 1.950      | 127                   | 109     | 104     | 12.0      | 56       | 250    | 257    | 45       |        | 99.7       |
| A19          | 10:29:00    | 234.00     | 862.070      | 862.170           | 1.918     | 2.000      | 1.950      | 127                   | 110     | 105     | 12.0      | 56       | 249    | 257    | 45       |        | 99.5       |
| A20          | 10:35:00    | 240.00     | 866.841      | 866.938           | 1.866     | 1.900      | 1.900      | 128                   | 110     | 105     | 11.0      | 59       | 251    | 257    | 45       |        | 99.4       |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              | -           |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              | _           |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
|              |             |            |              |                   |           |            |            |                       |         |         |           |          |        |        |          |        |            |
| Remarks:     | Note: Any D | GM reading | above that   | is flagged with   | an asteri | sk was no  | t taken at | he precis             | e time. | Оре     | rator(s): | Dave G   | riffin |        |          | •      |            |

Dave Griffin

Value Se 26-03

Signature/Date

Nomorept.xls 10/31/2001 (rev. M5 Final Data Report.xls [DataSheet] 8/26/2003 2:31 PM)

## Appendix B-2

## **Emissions Sample Recovery**

| MRI Project No.: 110249.2.001  Client/Source: EPA / Ball Clay  Source Location: CBI  Sampling Location: Mill |                           |                                          |
|--------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|
| Run No. 1 Retest Sampling Train No. Mag 3-1 Set-up person(s): A. Seen 2015                                   | Sample Box No. Date:      | 10788<br>413103                          |
| Transfer to Sampler A. Sandris Received By M.T.                                                              | usnes/J. Musenfeld        | Date/Time <u>8/13/05 /04;4</u> ()        |
| TRAIN COMPONENT*                                                                                             | L                         | OADING DATA                              |
| Sampling Nozzle (Quartz/Nicke)                                                                               | ν                         |                                          |
| Heated Coupling and Teflon STL**                                                                             |                           | . 1                                      |
| Filter Type No. Whatman QM-A                                                                                 | 123-1RE and               | 23-4 and 23-7                            |
| Condenser Thermocouple Nox40 -                                                                               |                           | ,                                        |
| XAD-2 Resin Cartridge spike date                                                                             | _                         |                                          |
| XAD-2 Resin Cartridge Lab ID*** P316 007                                                                     |                           |                                          |
| Impinger Outlet Connector Ul-1-1                                                                             |                           |                                          |
|                                                                                                              | <u>Initial \</u><br>Empty | <u>Weights (grams)****</u><br>Loaded     |
| 1st Impinger (500-mL of 2-L) KO), Empty                                                                      | 1237.6                    | x10 413.7                                |
| 1st Impinger Replacement** (KO), Empty                                                                       | NIA                       |                                          |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                                                              | 484.6                     | 592.9                                    |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                                                               | 473.9                     | 530.3                                    |
| 4th Impinger (MGBS), Empty                                                                                   | 4665                      | N/A                                      |
| 5th Impinger (MGBS), Si Gel                                                                                  | 485.2                     | 671.                                     |
| 6th Impinger** (MGBS), Si Gel                                                                                | 510.2                     | 714.4                                    |
| COMMENTS:                                                                                                    |                           | 1913 (24 00)                             |
| Init Cal Wes Boot Cal                                                                                        | Live                      | 6011 J (3 3: Ge)                         |
| 400 @ 400 2 5000500                                                                                          |                           | 681, 3 (3rd si Gel)<br>692.9 (44 si Gel) |
| 506 8 500 4                                                                                                  | .[                        |                                          |
| 80 B Q n O 4                                                                                                 |                           |                                          |

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

<sup>\*\*</sup> Optional for moisture gas streams and/or special situations as applicable.

| MRI Project No.: 110249.2.001                                    |                 |                                |
|------------------------------------------------------------------|-----------------|--------------------------------|
| Client/Source: EPA / Ball Clay                                   |                 |                                |
| Source Location: CBI                                             |                 |                                |
| Sampling Location: Mill                                          |                 |                                |
| Run No. 2 Sampling Train No. M23-2                               | Sample Box No.  | 012003                         |
| Set-up person(s): A . Secreta (S                                 |                 | 8/14/03                        |
|                                                                  | _               | <u> </u>                       |
| Transfer to Sampler: Relinquished By J. Hosenfeld Received By D. | Griffin/D. Neal | Date/Time 8/14/03 05:00        |
| The initial street by S. The served by B.                        | BANKINDIVEAL    | Date/Time <b>3/17/03</b> 05.00 |
| TRAIN COMPONENT*                                                 | μo              | ADING DATA                     |
| Sampling Nozzle (Quartz/Nickel) N 13 C.J. D                      | 12 0,183 83     | 107                            |
| Heated Coupling and Teflon STL** D/k                             | L& 5.100        | 2.187                          |
| Filter Type/N <sub>2</sub> , Whatman QM-A                        | 1/12-2          |                                |
| Condenser Thermocouple No. X h D - 2                             | 2, ~            |                                |
| XAD-2 Resin Cartridge spike date 8/8/03                          | _               |                                |
| XAD-2 Resin Cartridge Lab ID*** P3166 - 001                      | _               |                                |
| Impinger Outlet Connector () 1/-/2                               |                 |                                |
| impinger odder connector 1772                                    | <br>Initial W   | /eights (grams)****            |
| XAD Cartridge                                                    | Empty           | Loaded                         |
| 1st Impinger (500-mL or(2-L) KO), Empty                          | 979.3           | MD 406, 9                      |
| 1st Impinger Replacement** (KO), Empty                           | N/A             |                                |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                  | 454.2           | 557.7                          |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                   | 483.8           | 593.4                          |
| 4th Impinger (MGBS), Empty                                       | 472.3           | N/A                            |
| 5th Impinger (MGBS), Si Gel                                      | 4866            | 98-676-9 682.0                 |
| 6th Impinger** (MGBS), Si Gel                                    | 488.4           | 676.9                          |
| COMMENTS:                                                        |                 |                                |
| Init Cal Wit Post Cal                                            | Wr              |                                |
|                                                                  |                 |                                |
| 500 0 500.5 500 10<br>400 0 400, 4 400 0                         | 500.4           |                                |
|                                                                  | 1000-8          |                                |

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

<sup>\*\*</sup> Optional for moisture gas streams and/or special situations as applicable.

Optional for moisture gas streams and/or special situations as applicable.

\*\*\*\* Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

\*\*\*\*\*\* Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

<sup>\*\*\*\*</sup> Initial weights of additional components exchanged during the run also entered here. All exchange component openings

| MRI Project No.: 110249.2.001  Client/Source: EPA / Ball Clay  Source Location: CBI  Sampling Location: |                          |                         |
|---------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
| Run No. Sampling Train No. M 23-/ Set-up person(s):                                                     | Sample Box No<br>Date: _ | 8/14/03 ×8/15/03        |
| Transfer to Sampler: Relinquished By Received By                                                        | fpin/Neal                | Date/Time 8/15/03 05 30 |
| TRAIN COMPONENT*                                                                                        | LO                       | ADING DATA              |
| Sampling Nozzle (Quartz/Mickel) N/2 6.76  Heated Coupling and Teflon STL**                              | 3 0.189                  |                         |
| Filter Type Whatman QM-A                                                                                | 23-6                     |                         |
| Condenser Thermocouple No. X4D                                                                          |                          |                         |
| XAD-2 Resin Cartridge spike date 8/8/83                                                                 | A./                      |                         |
| XAD-2 Resin Cartridge Lab ID*** P3/66 ~ ©                                                               | 04                       |                         |
| Impinger Outlet Connector UH-/                                                                          | Initial W                | /eights (grams)****     |
| XAD contridge                                                                                           | Empty                    | Loaded 9                |
| 1st Impinger (500-mL or 2-L)* KO), Empty                                                                | 12463                    | VIID 77 0.1             |
| 1st Impinger Replacement** (KO), Empty                                                                  | NA                       |                         |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                                                         | 484.6                    | 594.3                   |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                                                          | 473.8                    | 587.6                   |
| 4th Impinger (MGBS), Empty                                                                              | 469.8                    | NIA                     |
| 5th Impinger (MGBS), Si Gel                                                                             | 485.2                    | 680.4                   |
| 6th Impinger** (MGBS), Si Gel                                                                           | 4900                     | 703.7                   |
| COMMENTS:  Init Cal Ck  8/15                                                                            | 103 casa                 |                         |
| 2 500.3                                                                                                 |                          | 100.49                  |
| 500 @ 500.3<br>400 @ 400.3                                                                              | 4000                     | 400.39                  |
| 1000@ 1000.7                                                                                            | 2006                     | 200.16                  |

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

<sup>\*\*</sup> Optional for moisture gas streams and/or special situations as applicable.

<sup>\*\*\*</sup> Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

\*\*\*\* Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

| MRI Project No.: 110249.2.001  Client/Source: EPA / Ball Clay  Source Location: CBI  Sampling Location: Dryer  Run No. Sampling Train No. 23 - 1  Set-up person(s): A, Sanders  Transfer to Sampler: Relinquished By A. Sanders  Received By | Sample Box No. 102 & 8  Date:  Date:  Date/Time \$\frac{\frac{1}{3}}{05.40} |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| TRAIN COMPONENT*                                                                                                                                                                                                                             | LOADING DATA                                                                |
| Sampling Nozzle (Quartz/Nickel) N 12 o                                                                                                                                                                                                       | .187"                                                                       |
| Heated Coupling and Teflon STL**                                                                                                                                                                                                             | 1104                                                                        |
| Filter Type Whatman QN                                                                                                                                                                                                                       | M-A 23-10                                                                   |
| Condenser Thermocouple No. XAD-/                                                                                                                                                                                                             |                                                                             |
| XAD-2 Resin Cartridge spike date 8/8/63                                                                                                                                                                                                      |                                                                             |
| XAD-2 Resin Cartridge Lab ID*** P3166-01                                                                                                                                                                                                     | 2                                                                           |
| Impinger Outlet Connector UH- I                                                                                                                                                                                                              |                                                                             |
|                                                                                                                                                                                                                                              | <u>Initial Weights (grams)****</u><br>Empty Loaded                          |
| XAD Cautifice<br>1st Impinger (500-mL or 2-L) KO), Empty                                                                                                                                                                                     | 1246.3                                                                      |
| 1st Impinger Replacement** (KO), Empty                                                                                                                                                                                                       | _N/A                                                                        |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                                                                                                                                                                                              | 484,6 5964                                                                  |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                                                                                                                                                                                               | 473.8 582.4                                                                 |
| 4th Impinger (MGBS), Empty                                                                                                                                                                                                                   | <u>469.8</u> <u>v/A</u>                                                     |
| 5th Impinger (MGBS), Si Gel                                                                                                                                                                                                                  | 485.2 106.3                                                                 |
| 6th Impinger** (MGBS), Si Gel                                                                                                                                                                                                                | 490.0 690.9                                                                 |
| Int Cal Wisig) Post Cal W<br>400 @ 400.3 400.3<br>500 @ 500.3 500.4                                                                                                                                                                          | Pt.5 (g)                                                                    |
| 400 0 400.3 400.3                                                                                                                                                                                                                            |                                                                             |
| 500 @ 500.3 500.4                                                                                                                                                                                                                            | •                                                                           |
| 1000 @ 1000.6                                                                                                                                                                                                                                |                                                                             |

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

<sup>\*\*</sup> Optional for moisture gas streams and/or special situations as applicable.

<sup>\*\*\*</sup> Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

<sup>\*\*\*\*</sup> Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

| MRI Project No.: 110249.2.001  Client/Source: EPA / Ball Clay  Source Location: CBI  Sampling Location: Dryer |                                                 |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Run No. 5 Sampling Train No. 23-1 Set-up person(s): A. Sandors                                                | Sample Box No. 10288  Date: 3/19/63             |
| Transfer to Sampler: A Sandars Received By                                                                    | D. Griffin Date/Time 8/19/03 05:00              |
| TRAIN COMPONENT*                                                                                              | LOADING DATA                                    |
| Sampling Nozzle (Quartz/Nicke) 112 0;                                                                         | 187"                                            |
| Heated Coupling and Teflon STL** 1104                                                                         |                                                 |
| Filter Type Whatman Q                                                                                         | M-A/23-9                                        |
| Condenser Thermocouple No. XAD - /                                                                            |                                                 |
| XAD-2 Resin Cartridge spike date 8/8/03                                                                       |                                                 |
| XAD-2 Resin Cartridge Lab ID*** P3/66-C                                                                       | 0                                               |
| Impinger Outlet Connector UH-                                                                                 | Initial Maighte (gross a)****                   |
| VI = 0 # 11                                                                                                   | <u>Initial Weights (grams)****</u> Empty Loaded |
| 1st Impinger (500-mL or 2-L) KO), Empty                                                                       | 1246.3 346.8                                    |
| 1st Impinger Replacement** (KO), Empty                                                                        | N/A                                             |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                                                               | 484.6 596.3                                     |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                                                                | <u>473.8</u> <u>58/.9</u>                       |
| 4th Impinger (MGBS), Empty                                                                                    | 468.2 N/A                                       |
| 5th Impinger (MGBS), Si Gel                                                                                   | 485.2 711.4                                     |
| 6th Impinger** (MGBS), Si Gel                                                                                 | 484.4 693.6                                     |
| Int Cal Wisig) Post Cal W. 400 @ 400.3                                                                        | rs (g)                                          |
| 400 0 4003 4003                                                                                               |                                                 |
| 500 @ 500.4 500.3<br>1,000@ 1000.8 1000.7                                                                     |                                                 |

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

Optional for moisture gas streams and/or special situations as applicable.

<sup>\*\*\*</sup> Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

<sup>\*\*\*\*</sup> Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

| ,                                               |                    |                                      |
|-------------------------------------------------|--------------------|--------------------------------------|
| MRI Project No.: 110249.2.001                   |                    |                                      |
| Client/Source: EPA / Ball Clay                  |                    |                                      |
| Sampling Location: Dryer ###                    |                    |                                      |
|                                                 |                    | _                                    |
| Run No. 6 Sampling Train No. 23-2               | _ Sample Box No    | 012003                               |
| Set-up person(s): A. Sanders                    | Date: _            | 8/20/03                              |
| Transfer to Sampler:                            | c                  | <b>2</b> / (                         |
| Relinquished By A Sandols Received By D.        | Grittin            | Date/Time 05:40 8/24/03              |
|                                                 |                    |                                      |
| TRAIN COMPONENT*                                |                    | DADING DATA                          |
| Sampling Nozzle (Quartz/Nickel) N12 0.187       | <b>,</b><br>_      |                                      |
| Heated Coupling and Teflon STL** 1104           |                    |                                      |
| Filter Type Whatman QM-A                        | 23-8               |                                      |
| Condenser Thermocouple No. XA D ~               | _                  |                                      |
| XAD-2 Resin Cartridge spike date 8/8/03         | _                  |                                      |
| XAD-2 Resin Cartridge Lab ID*** £3/66-003       | _                  |                                      |
| Impinger Outlet Connector <u>OH-12</u>          | _                  |                                      |
|                                                 | Initial W<br>Empty | <u>/eights (grams)****</u><br>Loaded |
| XAO Cartialge                                   | -                  | 351.0                                |
| 1st Impinger (500-mL or 2-L KO), Empty          | 379.8              |                                      |
| 1st Impinger Replacement** (KO), Empty          | N/A                |                                      |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water | 471.8              | 57/,9                                |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water  | 483,9              | 583,5                                |
| 4th Impinger (MGBS), Empty                      | 483.8              | N/A                                  |
| 5th Impinger (MGBS), Si Gel                     | 480.6              | 697.5                                |
| 6th Impinger** (MGBS), Si Gel                   | 486.1              | 712.6                                |
| COMMENTS:                                       | ,                  |                                      |
| Int cal Wis (g) Post Cal Wis                    | <i>(</i> g)        |                                      |
| 400 0 400 1 400 3                               |                    |                                      |
| 200,                                            |                    |                                      |
| 1,000 @ 1000.5 1000.7                           |                    |                                      |

Optional for moisture gas streams and/or special situations as applicable.

\*\*\* Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

\*\*\*\* Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

<sup>\*</sup> Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

| MRI Project No.: 110249.2.001                                         |                    |                                 |
|-----------------------------------------------------------------------|--------------------|---------------------------------|
| Client/Source: EPA / Ball Clay                                        |                    |                                 |
| Source Location: CBI Sampling Location:                               |                    |                                 |
|                                                                       |                    | * / -                           |
| Run No. 45 × Blank Sampling Train No. M 23 -2                         | _ Sample Box No.   | 0/2003                          |
| Set-up person(s):                                                     | _ Date:            | 5//3/03                         |
| Transfer to Sampler:  Relinquished By  A. Sanders  Received By  D. 6. | riffin             | Date/Time <u>8/18/63 o 5:10</u> |
| TRAIN COMPONENT*                                                      | Lo                 | DADING DATA                     |
| Sampling Nozzle (Quartz/Nicke)                                        |                    |                                 |
| Heated Coupling and Teflon STL**                                      | _                  |                                 |
| Filter Type/No Whatman QM-A/-                                         | 23-7               |                                 |
| Condenser Thermocouple No. XAD - 2                                    | -                  |                                 |
| XAD-2 Resin Cartridge spike date 3/8/03                               |                    |                                 |
| XAD-2 Resin Cartridge Lab ID*** P3166 - 005                           |                    |                                 |
| Impinger Outlet Connector UH-12                                       |                    |                                 |
|                                                                       | Initial V<br>Empty | Veights (grams)****<br>Loaded   |
| XAD cartridge                                                         |                    | XAD 347.4                       |
| 1st Impinger (500-mL or 2-L+ KO), Empty                               | 879.8              | 210 111                         |
| 1st Impinger Replacement** (KO), Empty                                | NA                 |                                 |
| 2nd Impinger (MGBS), 100 mLs ASTM Type II Water                       | 471.8              | <u>√7/.9</u>                    |
| 3rd Impinger (GBS), 100 mLs ASTM Type II Water                        | <u> 483.9</u>      | JP3.6                           |
| 4th Impinger (MGBS), Empty                                            | 454.1              | NIA                             |
| 5th Impinger (MGBS), Si Gel                                           | 480.6              | 697.2                           |
| 6th Impinger** (MGBS), Si Gel                                         | 486.1              | 7/2.7                           |
| Takal Cal WY Post                                                     | callet             |                                 |
| 500g@ 500.4 500                                                       | 2 4                |                                 |
| 4009 Q 400.3 400                                                      | -                  |                                 |
| 100g@ 1000.7 1000                                                     | o.7                |                                 |

Before and after sampling: Nozzle openings covered with Teflon or pre-rinsed aluminum foil, and nozzle placed in Ziploc bag. Probe liner outlet sealed with glass female blank-off, and union sealed with Teflon plug. Cyclone/Bypass inlet covered (not sealed) with Teflon or pre-rinsed aluminum foil. Vertical traverse adapter (VTA) openings, filter holder outlet, and condenser inlet sealed with Teflon or glass blank-offs. Sample transfer line (STL) openings joined with glass/Teflon coupling used at filter holder outlet during sampling.

<sup>\*\*</sup> Optional for moisture gas streams and/or special situations as applicable.

<sup>\*\*\*</sup> Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and sampling. Documentation of standards injection is separate. Cartridges are maintained at near 4° until use.

<sup>\*\*\*\*</sup> Initial weights of additional components exchanged during the run also entered here. All exchange component openings covered with Teflon or pre-rinsed aluminum foil or as described above.

| MRI Project No. 110249. Client/Source: EPA EMC Source Location: CBI Sampling Location: | 2.001<br>C OAQPS/EMAD/ Ball Clay Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer for Recovery: Relinquished By DALLOCTY Sample hox recovery person             | Received By A. Sanders Date/Time 8/3/03 11:09 s): A. Sanders Date: 8/13/03 s): D. Griffin D. Hiborty Date: 8/13/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Impinger: XAD-2<br>Cartridge<br>Final Wt. 419,1<br>Initial Wt. 47,3,7<br>Net Wt. 5,4   | RESIN CARTRIDGE AND IMPINGERS RECOVERY  Replacement 3 rd 4 rd 5 rd 6 rd Replacement  1 st 2 rd 2 rd 2 s 3 rd 2 s 4 rd 6 rd Replacement  1 1 1 2 rd 4 rd 5 rd 6 rd Replacement  1 1 2 7 3 1 8 6 rd 7 8 |
| Description and/or color:                                                              | clear clear clear clear sold 10% 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cartridge* Sample Number: _                                                            | FILTER RECOVERY AND TRAIN RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CYCLONE/FLASK ASSEMBLY Description/Color:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FILTER: Sample Number: 1007                                                            | Description/Color: intact/white 3 Filter recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRAIN RINSES: A                                                                        | CETONE RINSES QA RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Number:                                                                         | 498, 3<br>691.0<br>959, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COMMENTS:  Int Colored 400 8 500 8                                                     | lus Post Callet<br>5009 Sou.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100€ € 1                                                                               | 000-5 1000.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

- \* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.
- \*\* If the particulate matter catch in the cyclone/flask assembly is large, transfer particulate matter to the filter container before performing rinses.
- \*\*\* For ACETONE RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean, and acetone rinses of back components 3 times, and include 5-minute-seaks of underlined components 3 times.

  For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.

M23RCV.WD, December 8, 1999 (rev. August 8, 2003)

| MRI Project No. 110249.2.001 Client/Source: EPA EMC OAQPS/EMAD/ Ball Clay Emissions Source Location: CBI Sampling Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run No. 2 Sampling Train No. M23-2 Sample Box No. 0/2003  Transfer for Recovery: Relinquished By New York Received By Activided Date/Time 1/14/03 /030  Sample box recovery person(s): Probe/STL recovery person(s): Weights below are in grams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Impinger: XAD-2 Replacement Cartridge* 1st 1st 2nd 3rd 4th 5th 6th Final Wt. $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ |
| Cartridge* Sample Number: 2009  FILTER RECOVERY AND TRAIN RINSES  CYCLONE/FLASK ASSEMBLY: / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample Number: 2006 Sample Bottle Tare W. 50031618 Sample Bottle Final W. 47. Low Land Land Land Land Land Land Land Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COMMENTS:  (al Wty (suited) Post Cal Cleck  5009 @ 500.49 500.59  4009 @ 400.39 4009 @ 400.49  10009 @ 1000.8 ** Transferred samples to smaller latter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.  ** If the particulate matter catch in the cyclone/flask assembly is large, transfer particulate matter to the filter container before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

\*\*\* For ACETONE RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean, and acetone rinses of back components 3 times, and include 5-minute soaks of underlined components 3 times.

For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.

performing rinses.

M23RCV.WD, December 8, 1999 (rev. August 8, 2003)

| MRI Project No. Client/Source: Source Location: Sampling Location:  M/U ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Run No. 3 Sampling Train No. M23 / Sample Box No. 10288  Transfer for Recovery in / Nec. State of Received By Received By Sample box recovery person(s): A. Sandars Date: 8  Probe/STL recovery person(s): 6r. ffin / Nea Date: Weights below are in grams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11:20<br>05:30<br>(115/63<br>V115/63                       |
| RESIN CARTRIDGE AND IMPINGERS RECOVERY   Impinger: XAD-2   Replacement   Cartridge*   1st   1st   2nd   3rd   4th   5th   5t   | 6th<br>7/5.0<br>20 <b>3.7</b><br>11.3<br>grams)            |
| and/or color: Clear Clear Clear Clear Clear 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _50%                                                       |
| Sample Recovery: Cartridge* Sample Number: 3009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blue                                                       |
| FILTER RECOVERY AND TRAIN DINICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
| FILTER RECOVERY AND TRAIN RINSES  CYCLONE/FLASK ASSEMBLY:  Sample Number: NA Description/Color: NA Gross Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A **                                                     |
| FILTER: Sample Number: 3007 Description/Color: Light yey/intect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| TRAIN RINSES: FRONT/BACK QA RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| Sample Number: 306 Sample Bottle Tare Wt. 255.7 Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder Back filter support, filter holder back, 45/90° connector or short 90° connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r front;<br>or, condenser                                  |
| Sample Bottle Final Wt. 242.   357.8 @ 406,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the the second of the particulate matter catch in the cyclone/flask assembly is large, the sample may be left intact for analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before the second of the field, weight the assembly before the for TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more unclean, and acetone rinses of back components 3 times, and include 5-minute soaks of underlined components of the field, weight the assembly before the formal field of the field, weight the assembly before the field, weight the assembly is large, the sample may be left intact for analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before the field, weight the sample may be left intact for analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before the field, weight the sample may be left intact for analytical laboratory for recovery. If the sample may be left intact for analytical laboratory for recovery. If the sample may be left intact for analytical laboratory for recovery. If the sample may be left intact for analytical laboratory for recovery. If the sample may be left intact for analytical laboratory for analytical laboratory for recovery. If the sample may be left intact for analytical laboratory for analytical laboratory for recovery for analytical laboratory for analytical laboratory f | transfer to the shipment. intil perceivably neats 3 times. |
| SOO @ 500.4 Fost Cal D 469.8  500 @ 500.4 500.4  700 @ 700.5 700.5 (##) Transferred to semaller sample bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Da/11/03                                                   |

M23RCV.WD, December 8, 1999 (rev. August 7, 2003)

| MRI Project No.  Client/Source: EPA EMC /R T I /Ball Clay Facility  Source Location: CBI  Sampling Location: Dryer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run No. 4 Sampling Train No. 23 -1 Sample Box No. 102 88  Transfer for Recovery: Relinquished By D. 6 riffin Received By A. Sanders Date/Time \$/18/63 13:00  Sample box recovery person(s): A. Sanders Date: \$/18/63  Probe/STL recovery person(s): D. New (1), 6 riffin Date: \$/18/63                                                                                                                                                                                                                                                                                                                                                                    |
| Probe/STL recovery person(s): D. New ( T), Gr. f(, N)  Weights below are in grams.  Date: \$\frac{8/18/\omega}{\text{0}}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RESIN CARTRIDGE AND IMPINGERS RECOVERY Impinger: XAD-2 Replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cartridge* 1st 1st 2nd 3rd 4th 5th 6th 6th 6 1st 1st 1st 1st 2nd 581.9 470.6 736.5 707.6 1nitial Wt. 344.8 1246.3 N/A 596.4 582.4 469.8 766.3 690.9 Net Wt. 4.5 348.7 N/A 5.2 -0.5 0.8 30.2 16.7 [Total Condensate Collected: 405.6 grams                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and/or color: clear clear clear clear clear clear clear Sortd(02) 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Recovery: Cartridge*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample Number: 4004 (Lab 10 13166-012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FILTER RECOVERY AND TRAIN RINSES  CYCLONE/FLASK ASSEMBLY: Sample Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FILTER: 4002<br>Sample Number: 4002 Description/Color: intact/white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TRAIN RINSES: FRONT/BACK QA RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Number: 4001 4005 Sample Bottle Tare Wt. 261.3 498.3 Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder front; Back filter support, filter holder back, 45/90° connector or short 90° connector, condenser                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Bottle Final Wt. 6/3.8       1015.0         Net Sample Wt. 352.5       5/6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge</li> <li>** If the particulate matter catch in the cyclone/flask assembly is large, the sample may be left intact for transfer to the analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before shipment.</li> <li>*** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean, and acetone rinses of back components 3 times, and include 5-minute soaks of underlined components 3 times.</li> </ul> |
| For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| smill Collect (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 500 @ 500.3<br>400 @ 400.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,000 @ 1,000.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M23RCV.WD, December 8, 1999 (rev. August 7, 2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| MRI Project No.  Client/Source: EFA EMC/RTI/Bull Clay Facility  Source Location: CBI  Sampling Location: Dryer Tolerand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run No. 5 Sampling Train No. 33-1 Sample Box No. 10288  Transfer for Recovery: Relinquished By Distriction Received By A. Sanders Date/Time 8/19/03 10:55  Sample box recovery person(s): A. Sanders Date: 8/19/03  Probe/STL recovery person(s): D. Griffin/D. Nea Date: 8/19/03  Weights below are in grams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RESIN CARTRIDGE AND IMPINGERS RECOVERY   SAD-2   Cartridge*   1st   2nd   3rd   4th   5th   6th   559.4   528.4   471.   740.9   709.8   1246.3   N/1   596.3   581.9   468.2   711.4   693.6   Net Wt.   5.0   416.1   N/1   -36.9   -53.5   2.9   29.5   16.2   Grams   Total Condensate Collected: 379.3   Grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description and/or color: Clear clea |
| Sample Recovery: Cartridge* % Blue  Sample Number: 500 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FILTER RECOVERY AND TRAIN RINSES  CYCLONE/FLASK ASSEMBLY: Sample Number: N/A Description/Color: N/A Gross Wt. N/A **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FILTER: Sample Number: 5002 Description/Color: Intact/white wfew black spees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TRAIN RINSES: FRONT/BACK QA RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Number: 5001 5005 Sample Bottle Tare Wt. 257.3 500-5 Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder front; Back filter support, filter holder back, 45/90° connector or short 90° connector, condenser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Bottle Final Wt. 620.1 [075.0]  Net Sample Wt. 360.8 574.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.  ** If the particulate matter catch in the cyclone/flask assembly is large, the sample may be left intact for transfer to the analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before shipment.  *** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean, and acetone rinses of back components 3 times, and include 5 minute soaks of underlined components 3 times.  For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.  COMMENTS:  That Cal Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COMMENTS: Init Cil Wt Decomposed in 2nd Imp as 73 ml and in 3nd Imp as 54 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| MRI Project No. 110249.2.001 Client/Source: EPA EMC/RTI/Ball Clay Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Location: CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampling Location: Dryer Dryer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Run No. 6 Sampling Train No. 23-2 Sample Box No. 012003  Transfer for Recovery: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relinquished By D. Grittin Received By A. Sandys Date/Time 6/2003 10:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample box recovery person(s): A. Sandys  Date: 8/20/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample box recovery person(s): A. Sanders  Probe/STL recovery person(s): Deriffin / G. Riley  Weights below are in grams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Impinger: XAD-2 Replacement RESIN CARTRIDGE AND IMPINGERS RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Impinger: XAD-2 Replacement Cartridge* 1st 1st 2nd 3rd 4th 5th 6th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Final Wt. 354.9 12025 N/A 571.1 586,0 487.6 128.5 127.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Initial Wt. 351.0 879.8 N/4 571.9 583.5 483.8 697.5 7/2.6 Net Wt. 3-9 322.7 N/1 -0.8 8.5 3.8 31.0 74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Net Wt. 3.9 32.7 N/1 -0.8 3.5 3.8 31.0 14.4 [Total Condensate Collected: 377.5 grams]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Description and/or color: clear clear clear clear clear or 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sample Recovery: Cartridge* >>>>> Dispose of properly % Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample Number: 6004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cample Number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FILTER RECOVERY AND TRAIN RINSES  CYCLONE/FLASK ASSEMBLY: Sample Number: \( \( \rangle |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FILTER: Sample Number: 6002 Description/Color: interfushite wife black appears                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TRAIN RINSES: FRONT/BACK QA RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Number: 6001 6005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Bottle Tare Wt. 259.3 500.0  Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder front;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Back filter support, filter holder back, 45/90° connector or short 90° connector, condenser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Bottle Final Wt. 613.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Net Sample Wt. 359 603-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ** If the particulate matter catch in the cyclone/flask assembly is large, the sample may be left intact for transfer to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before shipment.  *** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| clean, and acetone rinses of back components 3 times, an <del>d include 5-minute soaks of underlined components 3 times 9</del> For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00111171170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COMMENTS: + Cal Ck Post CalCk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 10 Mil Yat Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 400 500.3 500.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $u_0 a_0 = u_0 a_1 a_0 a_0 a_1 a_0 a_0 a_0 a_0 a_0 a_0 a_0 a_0 a_0 a_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| MRI Project No. 110249.2.001 Client/Source: EPA EMC/RTI/Ball Clay Facility Source Location: CBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Run No. Blank Sampling Train No. 23-2 Sample Box No. 012003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Transfer for Recovery:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| Relinquished By D. Griffin Received By A. Sander Date/Time 8/18/03 05:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| Sample box recovery person(s): A. Sandis Date: 8/18/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ?                                                      |
| Probe/STL recovery person(s): N/A Date: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Weights below are in grams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| RESIN CARTRIDGE AND IMPINGERS RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| Impinger: XAD-2 Replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Cartridge* 1st 1st 2nd 3rd 4th 5th 6t<br>Final Wt. 347.4 879.8 N/A 571.9 583.5 454.1 697.5 7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h<br>. 6                                               |
| Initial Wt. 347.4 879.8 N/A 571.9 583-6 454.1 697.2 7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7                                                     |
| Net Wt. 0.0 0.0 N/A 0.0 -0.1 0.0 0.3 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                      |
| [ Total Condensate Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | grams]                                                 |
| Description and/or color: Clear clear clear clear clear 100% 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                      |
| Sample Recovery: Cartridge* Sample Recovery: Cartridge Sample Sample Recovery: Cartridge Sample Recovery: Cartridge Sample Recovery: Cartridge Sample  |                                                        |
| Sample Number: 1015<br>(P3166-005) FILTER RECOVERY AND TRAIN RINSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| CYCLONE/FLASK ASSEMBLY: Sample Number: W/A Description/Color: W/A Gross Wt. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| FILTER: Sample Number: 10/4 Description/Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
| FILTER: Sample Number: 10/4 Description/Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
| Sample Number: 10/4 Description/Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | denser                                                 |
| Sample Number: 1014 Description/Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | denser                                                 |
| Sample Number: 1014 Description/Color: 1014 Descriptio | artridge.<br>er to the<br>ent.<br>rceivably            |
| Sample Number: Description/Color: Later Justice  TRAIN RINSES: FRONT/BACK QA RINSES  Sample Number: 1011 258.3 499.9 Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder front; Back filter support, filter holder back, 45/90° connector or short 90° connector, cond  Sample Bottle Final Wt. 188.6 230.3 45.76  * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire of analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before shipm the clean, and acetone rinses of back components 3 times, and include 5 minute soaks of underlined components 3 For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.  Lint Cal CF (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | artridge.<br>er to the<br>ent.<br>receivably<br>times. |
| Sample Number: Description/Color: Later Justice  TRAIN RINSES: FRONT/BACK QA RINSES  Sample Number: 1011 258.3 499.9 Components Rinsed***: Front nozzle, union, probe liner, cyclone/flask assembly or bypass, filter holder front; Back filter support, filter holder back, 45/90° connector or short 90° connector, cond  Sample Bottle Final Wt. 188.6 230.3 45.76  * Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire of analytical laboratory for recovery. If the sample is not recovered in the field, weight the assembly before shipm the clean, and acetone rinses of back components 3 times, and include 5 minute soaks of underlined components 3 For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the acetone rinses.  Lint Cal CF (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | artridge.<br>er to the<br>ent.<br>receivably<br>times. |
| Sample Number:   Description/Color:   Description/C | artridge.<br>er to the<br>ent.<br>receivably<br>times. |

# 40 CFR 60, APPENDIX A-7, METHOD 23 MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs FIELD REAGENT BLANK PREPARATION DATA

| MRI Project No. 110349.3.001 Client/Source: EPA Ball Clay                                                                                                                       |                                              |                       |                              |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|------------------------------|----------------------|
| Source Location: (BI Sampling Location:                                                                                                                                         |                                              |                       |                              |                      |
| Blank(s) Prepared By: A. Sanders                                                                                                                                                |                                              |                       | Date: <u><b>8/18/6</b>3</u>  | ,                    |
| Weights below are in grams.                                                                                                                                                     |                                              |                       |                              |                      |
| Reagent Blank Description                                                                                                                                                       | Sample<br>Number                             | Bottle Tare<br>Weight | Bottle Gross<br>Weight       | Net Sample<br>Weight |
| Acetone to be archived Volume needed: 400 mLs Lot Number: BV (13                                                                                                                | 2011                                         | 2609                  | 551,8<br><del>450,0</del> 08 | 290.9<br>189. 198    |
| Methylene chloride to be archived  Volume needed: N/A mLs  Lot Number: N/A                                                                                                      | <i>N/A</i>                                   | _N/A                  | N/A_                         | N/A                  |
| Volume needed: 200 mLs  Lot Number: BN 253                                                                                                                                      | 2013                                         | 260.3                 | 495.0                        | 234,7                |
| Filter to be archived (150) Type: Whatman QM-A Lot Number:                                                                                                                      | 2014                                         |                       |                              |                      |
| XAD Cartridge to be archived (1 をん) Cartridge Number: #3166-008                                                                                                                 | 2015<br>251.6                                | 2                     |                              |                      |
| Milli-Q Water<br>HALC LLB 7/8/03                                                                                                                                                | 2016                                         | 260.                  | 5/3,0                        | 252,9                |
| NOTE: Lots may be identified above by a manu-<br>particular reagent are used, indicate the<br>loaded and/or recovered with that reage<br>and/or run number(s) and sampling loca | applicable test and/ont are used (i.e., list | or run number(s) and  | sampling location(s) v       | where the train(s)   |
| Sample Number For Test and/or Run                                                                                                                                               | Number(s)                                    | For S                 | Sampling Location(s)         | l<br>                |
| COMMENTS: Samples are to be an                                                                                                                                                  | chined                                       |                       |                              | X<br>1/11/03         |

M23BLK.WPD December 9, 1999 (rev. August 5, 2003)

### SAMPLE CONDITION AT FIELD LABORATORY

MRI Project No. :110249.2.001

| ſ   |          | Cooler          |                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|-----|----------|-----------------|--------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| İ   | Cooler   | Temperature     |                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     | Number   | (°C)            | Comments or Observations | Date                              | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked By: |
| Ì   | XAD SUL  | 4.5             | - intact                 | 8/11/03                           | 0900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanders   |
|     | XAD SU 2 | 4.4 .           | - intact                 | 8/11/03                           | 0905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a. Saden    |
|     | XAD S UI | 4.7             | ok .                     | 8/11/03                           | 1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a sangen    |
|     | XAD SUZ  | 4.6             | oK                       | 8/11/03                           | 1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
|     | XAD SUI  | 5,2             | oK                       | 8/2/03                            | 0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | asadn       |
|     | XAD SUZ  | 6.5             | ok                       |                                   | 0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sadur     |
|     | KADSU I  | 4.4             | 0/2                      | 8/12/03                           | 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | asander     |
| Į   | X40 502  | 5.1             | oK                       | 8/12/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sandan    |
|     | XAD SUL  | 5.2             | OL                       | 8/13/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sanden    |
|     | XAD SUZ  | 5.2<br>98 x 4.2 | ok                       | 8/13/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sanders   |
|     | XAD SUS  | 4.4             | 014                      | 8/13/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O. Sander   |
|     | XADSUL   | 4.3             | OK                       | 8/13/63                           | Management and Company of the Compan | a sarder    |
|     | XADSU3   | 4.1             | OK                       | 8/13/3                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J. Horagola |
|     | KADSUS   | 4.9             | OK                       | 201 NASSERIO VINCENSION ASSER     | 0740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A STORY     |
|     | X40 501  | 4, 3            | OK                       | 8114/03                           | 0750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J. Hopicald |
|     | XXDSU    | 6.7             | OK                       | 1/4/23                            | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Torong See  |
|     | XAD SU3  | 6.8             | OK                       | GMF 105/40/100/100/100 ARM 900865 | 1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )- ropoles  |
| (m) | XAD SUI  | 7.0             | OK                       | Vinc. 101                         | 305/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Jaroxila  |
| **  | XAD 503  | 3.5             | olc                      | 8/15/63                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sandera   |
|     | Rinses   | 2.4             | ak                       | 8/15/03                           | 16:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a sanden    |
|     | F. Iterr | 1.6             | ok                       | 8/15/03                           | 16:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sander      |
|     | XAD-1    | 5.7             | οκ                       | 8/15/2                            | 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a sorden    |
|     | XADSU 3  | 5.3             | ojc                      | 8/15/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sander    |
|     | FIHE/S   | 5,9             | OK.                      | 8/16/63                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a sanden    |
|     | X40503   | 4, 8            | OK.                      |                                   | 10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 Sander    |
|     | XAD-1    | 3.6             | OK                       | 8/16/0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y gade      |
|     |          | 3. 4.9          | oK                       | 8/16/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 touther  |
|     | Rinses   | 4.1             | aK                       | \$16/0                            | 16:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a Sada      |
|     | EUS GAX  | 5.3             | OK                       | 8/16/03                           | 1640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|     | XAD 30   | 4,7             | o K                      | 8/14/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sander    |
|     | FIFECS   | 4,3             | eic.                     | 8/16/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | & Sanden    |
|     | Rinses   | 5.2             | OK.                      | 8/17/03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C Sanders   |
|     | XA05U3   | 3.4             |                          |                                   | 0935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
|     | XADI     | 4.6             |                          |                                   | 0940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C. Sandr    |

(P) Transferred 4 remaining XAD Contriduces from XAD SUZ To

New cooler, XAD SUZ 8/13/03 of 0630

(E) Transferred all remaining contriduces from XAD SUI to XAD SUZ

(A)

243

### SAMPLE CONDITION AT FIELD LABORATORY

MRI Project No. :110249.2.001

|          | Cooler      |                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|----------|-------------|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Cooler   | Temperature |                          | Ì       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Number   | (°C)        | Comments or Observations | Date    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked By: |
| F. Tros  | 5.9         | oK-                      | 8/17/03 | 0950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanker    |
| Filiters | 3.6         | 0×                       | 8/17/03 | 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanden    |
| JAD-1    | 4,6         | 014                      | 8/17/03 | 1436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a sanders   |
| XADSV3   | 3.5         | OK                       | 8/17/03 | 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander-   |
| Ruises   | 4.3         | 014                      | 8/17/53 | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| B41      | 5.5         | old                      | 8/18/03 | 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Sanders   |
| Filters  | 5.8         | 0K                       | 8/18/03 | 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| XAD-1    | 7.5         | 0 <                      | 8/18/03 | 0810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| XADSU3   | 3,9         | ok                       | 8/18/03 | 0815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanders   |
| Rinses   | 5,7         | OK                       | 8/18/03 | 0820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sarden    |
| RGBLI    | 17,2        | CK                       | 8/18/03 | 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a Jandons   |
| FILLES   | 2.9         | 6K                       | 8/18/03 | 1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanders   |
| XAD-1    | 4.2         | OK                       | 8/19/03 | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sankers   |
| XADS 03  | 3,4         | CK                       | 8/18/03 | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanders   |
| BLI      | 5.1         | OIS 1                    | 8/19/63 | M. Mariana, I. Mariana, Chang Chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a Sanders   |
| RINSES   | 4,4         | oK                       | 8/18/03 | 1515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q ganters   |
| RGB11    | 25,1        | ok                       | 8/18/03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Sandon    |
| RGBLI    | 21.6        | OL                       | 8/19/03 | Control of the Contro | a Sander    |
| Filters  | 4.8         | 0K                       | 8/19/03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Sanders   |
| I CAX    | 2.8         | oK                       | 8/19/03 | 0615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sandera   |
| XADSU3   | 3.6,35.7    | oK                       | 8/19/03 | 6620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| BLI      | 4.4         | 01<                      | 8/19/03 | 0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q Sanders   |
| RIASES   | 4,2         | 6K                       | 8/19/03 | 0630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanders   |
| Filter   | 5,6         | oK                       | 8/19/03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a sandan    |
| XAD-1    | 1,7         | OI C                     | 8/19/3  | 1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U Sander    |
| XAD SU3  | 5.6         | ok                       | 8/19/03 | 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| BLI      | 49          | 014                      | 8/19/03 | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G Sanders   |
| Rinses   | 2,3         | ole                      | 8/19/03 | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanden    |
| RGBLF    | 20.5        | 0K                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charde      |
| RGBLI    | 22.1        | ok_                      | 8/20/03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Sander    |
| Filters  | 4.3         | ok                       | 8/20/03 | 0905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sanden    |
| XAD-1    | 2. 1        | OK                       | 8/2010  | 0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | & Sandra    |
| XAD S U3 | 100         | 014                      | 8/20/0  | 0925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |
| 13L1     | 4,0         | 614                      | 8/2403  | 0935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a Sander    |



|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0 0 0-1               | d 7 -0 | 01   | 343                       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|------|---------------------------|
|            | Annual An | emple Condition         | in tel | d de | l //                      |
| Cother No. | Cooler<br>Temp (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments or Observation | Dete   | Time | Checked By:               |
| Rinses     | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OLL                     | 8/200  |      | a Sanders                 |
| N/A        | NIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P/A                     | N/A    | NA   | NA                        |
| BLI        | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IOK                     |        |      | a Sarden                  |
| RINSES     | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OK                      |        | 1550 |                           |
| XAD-1      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OK                      |        | 1555 |                           |
| FILTERS    | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ak                      | 8/2/03 | 1600 | usadus                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1      |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |        |      |                           |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                       | '      |      |                           |
| 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1      |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      | ,                         |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |        |      | gg <sup>97</sup> (# ya 14 |

Palulas

### **Appendix B-3**

## **Ball Clay Sample Collection**

Ball Clay Sample Collection Data Sheet Process Sampling During Emission Test MRI Project 110249.1.003

Source:



Process: 1 = Mill

2 =

Sampling Location(s):

1= Feed

2 = feoderet

3 =

#### Sample collection person(s):

| SAMPLE NUMBER | Collection      | COMMENTS |
|---------------|-----------------|----------|
| 1((1          | Date Time 11:25 |          |
| 1112          | 8/13/03 11:25   |          |
| 1121          | 8/13/03 11:45   |          |
| 1122          | 8 (13 03 11:45  |          |
| 2111          | 8/14/03 10:40   |          |
| 2112          | 8/14/03 10:40   |          |
| 2121          | 8/14/03 10:53   |          |
| 2122          | 8/14/03 10:53   |          |
| 3111          | 8 15 03 10:55   |          |
| 3112          | 8/15/03 10:55   |          |
| 3121          | 8/15/03 11:05   |          |
| 3122          | 8 15 03 11:05   |          |
|               |                 |          |

Duplicate Samples were taken. Samples ording in "1" were retained by MRI, Samples ending in "2" were given to Markers Cooke. Mark B. Turner

NOV-24-2003 14:18

919 541 7155

97%

P.03

Ball Clay Sample Collection Data Sheet Process Sampling During Emission Test MRI Project 110249.1.003

Source:



Process: 1 =

2 = Bryer

Sampling Location(s):

1 = (Fee

2 = Product

3 =

Sample collection person(s):

| SAMPLE NUMBER | Collection                   | COMMENTS |
|---------------|------------------------------|----------|
| 4211          | Date Time<br>8/18/03 1:00 pm |          |
| 4212          | 8/18/03 1:00 pm              |          |
| 4221          | 8/18/03 1:05 pm              |          |
| 4222          | 8/18/03 1:05 pm              |          |
| 5211          | 8/19/03 11:10 cm             |          |
| 52/2          | 8 19 03 11:10 pm             |          |
| 5221          | 8/19/03 11:15am              |          |
| 5222          | 8/19/03 11:15am              |          |
| 6211          | 8/20/03 11:10am              |          |
| 6212          | 8/20/03 11:10 am             |          |
| 6221          | 8/20/03 11:17 am.            |          |
| 6222          | 8 20 03 11:17 am             |          |
|               |                              |          |
|               |                              |          |

Suplicate samples were taker. Samples ending in "1" were retained by MRI, samples ending in "2" were given to Marcus Cooke. Mark B. Turner

NOV-24-2003 14:18

919 541 7155

97%

P.02

### Type & No. of Apparatus

No. XAD Module: 12 Resin Batch No.: 680

No. PUF:

N/A

**PUF Batch No.:** N/A

Filter Size:

4.9 in.

No. Filters:

sending box

Filter Batch No.: MRI Filters

### **Spike Profile**

Vol. PCDD/F: 20 μL (4 ng Solution ID: 5.2.2.3); 200 pg/μL **20** μL (4 ng) [2402K-SS exp 04/13/15

Vol. HR PAH:

N/A

**Solution ID:** 

N/A

Vol. HR PCB:

N/A

**Solution ID:** 

N/A

Vol. LR PAH:

N/A

**Solution ID:** 

N/A

Vol. SVOST:

N/A

**Solution ID:** 

N/A



### Air Apparatus Shipping Request

### AAP Project ID: P3166

Following sample recovery, please return this form with the field samples to:



2714 Exchange Drive Wilmington, NC 28405

Ph.: 910-794-1613

Fax: 910-794-3919

Spiked by: Witnessed by:

#### **Client Information**

Name: MRI

Contact Name: John Hosenfeld Date Requested: 16 JUL 2003 Project No.: 110249.2.001.04

#### Date Required: 11 AUG 2003

Ship to:

Attn: John Hosenfeld

Briarwood Inn.

16180 Highland Drive McKenzie, TN 38201

Ph.: 731-352-1083 Fax: 816-531-0315

Carrier:



**UPS** 

### **Special Requirements**

HR D/Fs \*ALSO SEND 30-8 OUNCE JARS\* \*for Saturday delivery\* \*add blue ice\*

| Air Bill No.: _ | <br>- |
|-----------------|-------|
| Date Shipped:   |       |

Note: 40 g of the same resin is spiked and stored at 4°C at Alta. This sample will serve as the method blank upon return of the field samples.

### **Appendix B-4**

## O<sub>2</sub> and CO<sub>2</sub> Analysis

#### O<sub>2</sub> Measurement System Calibration Data By Method 3A

Job No. 110249.2.001.04 Operator: Daniel Neal
Client: EPA / Ball clay Date: August 13, 2003
Plant: CBI
Location: Mill

Signature/Da

Analyzer Type: Magnetopneumatic Analyzer Mfgr.: Servomex

Analyzer Span: 25 %O<sub>2</sub> by volume Model No. 01440CISTD

 Zero Gas:
 Prepurified nitrogen
 Serial No. 1391

 Cal. Gas Mixture:
 Oxygen in nitrogen

|             | Analyzer Ca   | libration E     | rror Determi | nation            | Run Time:   | Start      | <u>End</u>          |
|-------------|---------------|-----------------|--------------|-------------------|-------------|------------|---------------------|
| Run No.     | 1-RE Test     | Condition:      |              |                   |             | 5:30       | 10:48               |
| Calibration | Cal           | ibration Ga     | S            | Analyzer Response | Gas Value - | Analyzer   | Cal. Error          |
| Ending      | Concentration | Value,          | Cylinder     | Value Following   | Response D  | Difference | Check               |
| Time        | Level         | %O <sub>2</sub> | ID Number    | Calibration, %O₂  | As % of     | Span       | Result <sup>a</sup> |
| 4:36        | Zero Gas      | 0.00            | 3AA2400      | -0.03             | -0.12       | 2%         | Pass                |
| 4:39        | High-range    | 21.13           | 1L2234       | 21.24             | 0.44        | %          | Pass                |
| 4:42        | Mid-range     | 12.02           | ALM036712    | 12.04             | 0.08        | %          | Pass                |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

| Initial Bias and Response Time Determinations |                                                                              |                 |                 |                     |            |                     |  |  |  |
|-----------------------------------------------|------------------------------------------------------------------------------|-----------------|-----------------|---------------------|------------|---------------------|--|--|--|
| Calibration                                   | Calibration   Calibration Gas   Analyzer   System   Response   System   Bias |                 |                 |                     |            |                     |  |  |  |
| Ending                                        | Concentration                                                                | Response,       | Response,       | Time <sup>b</sup> , | Cal. Bias, | Check               |  |  |  |
| Time                                          | Level                                                                        | %O <sub>2</sub> | %O <sub>2</sub> | seconds             | % of Span  | Result <sup>c</sup> |  |  |  |
| 4:46                                          | Zero Gas                                                                     | -0.03           | -0.02           | 24                  | 0.04%      | Pass                |  |  |  |
| 4:49                                          | Mid-range                                                                    | 12.04           | 12.07           | 24                  | 0.12%      | Pass                |  |  |  |

|                                                      | Final Bias and Drift Determinations                          |                 |           |                     |           |                     |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------|-----------------|-----------|---------------------|-----------|---------------------|--|--|--|
| Calibration Calibration Gas System System Bias Drift |                                                              |                 |           |                     |           |                     |  |  |  |
| Ending                                               | Ending Concentration Response, Cal. Bias, Check Drift, Check |                 |           |                     |           |                     |  |  |  |
| Time                                                 | Level                                                        | %O <sub>2</sub> | % of Span | Result <sup>c</sup> | % of Span | Result <sup>d</sup> |  |  |  |
| 11:14                                                | Zero Gas                                                     | -0.02           | 0.04%     | Pass                | 0.00%     | Pass                |  |  |  |
| 11:17                                                | Mid-range                                                    | 11.86           | -0.72%    | Pass                | -0.84%    | Pass                |  |  |  |

b. Response time check according to Method 3A. The longer time is used.

8 111/03

Instrmds.xls [3A O2] 03/26/2001 (rev. Ball Clay Run 1Data Workbook.xls [3A O2] 9/9/2003 3:15 PM)

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

#### CO<sub>2</sub> Measurement System Calibration Data By Method 3A

Job No. 110249.2.001.04 Operator: Daniel Neal Client: Date: EPA / Ball clay Plant: CBI Location: Mill

Analyzer Type: single beam, dual wavelength IR Analyzer Span: %CO<sub>2</sub> by volume Zero Gas: Prepurified nitrogen

Cal. Gas Mixture: Carbon dioxide in nitrogen August 13, 2003

Analyzer Mfgr.: Servomex Model No. 01440CISTD

Serial No. 1382

|             | Analyzer Ca   | libration E  | rror Determi | nation            | Run Time: Start      | <u>End</u> |
|-------------|---------------|--------------|--------------|-------------------|----------------------|------------|
| Run No.     | 1-RE Test     | Condition:   |              |                   | 5:30                 | 10:48      |
| Calibration | Cal           | libration Ga | s            | Analyzer Response | Gas Value - Analyzer | Cal. Error |
| Ending      | Concentration | Value,       | Cylinder     | Value Following   | Response Difference  | Check      |
| Time        | Level         | %CO₂         | ID Number    | Calibration, %CO₂ | As % of Span         | Result     |
| 4:36        | Zero Gas      | 0.00         | 3AA2400      | -0.10             | -0.50%               | Pass       |
| 4:39        | High-range    | 18.04        | 1L2234       | 17.81             | -1.15%               | Pass       |
| 4:42        | Mid-range     | 10.05        | ALM036712    | 10.29             | 1.20%                | Pass       |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

|             | Initial Bias and Response Time Determinations |                  |                  |                     |            |                     |  |
|-------------|-----------------------------------------------|------------------|------------------|---------------------|------------|---------------------|--|
| Calibration | Calibration Gas                               | Analyzer         | System           | Response            | System     | Bias                |  |
| Ending      | Concentration                                 | Response,        | Response,        | Time <sup>b</sup> , | Cal. Bias, | Check               |  |
| Time        | Level                                         | %CO <sub>2</sub> | %CO <sub>2</sub> | seconds             | % of Span  | Result <sup>c</sup> |  |
| 4:46        | Zero Gas                                      | -0.10            | 0.13             | 21                  | 1.15%      | Pass                |  |
| 4:49        | Mid-range                                     | 10.29            | 10.05            | 20                  | -1.20%     | Pass                |  |

|             |                 | Fina      | l Bias and Dr | ift Determi         | nations   |                     |  |
|-------------|-----------------|-----------|---------------|---------------------|-----------|---------------------|--|
| Calibration | Calibration Gas | System    | System        | Bias                |           | Drift               |  |
| Ending      | Concentration   | Response, | Cal. Bias,    | Check               | Drift,    | Check               |  |
| Time        | Level           | %CO₂      | % of Span     | Result <sup>c</sup> | % of Span | Result <sup>d</sup> |  |
| 11:14       | Zero Gas        | 0.15      | 1.25%         | Pass                | 0.10%     | Pass                |  |
| 11:17       | Mid-range       | 10.20     | -0.45%        | Pass                | 0.75%     | Pass                |  |

b. Response time check according to Method 3A. The longer time is used.



Instrmds.xls [3A CO2] 03/26/2001 (rev. Ball Clay Run 1 Data Workbook.xls [3A CO2] 9/9/2003 3:27 PM)

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

| Job No.   | 110249.1.0 | 01.04                                   | Operator: | Daniel Neal  | D.N. | 9-9-03 |
|-----------|------------|-----------------------------------------|-----------|--------------|------|--------|
| Client:   | EPA / Ball |                                         | Date:     | August 13, 2 | 003  | , , -  |
| Plant:    | CBI        | J                                       | Run No.   | 1-RE         |      |        |
| Location: | Mill #     |                                         |           | 1-ILL        |      |        |
|           |            | 6 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |              |      |        |
| Time      | O2         | CO2                                     | Time      | O2           | CO2  |        |
|           | %          | %                                       |           | %            | %    |        |
| 5:31      | 19.98      | 0.54                                    | 6:15      | 19.86        | 0.76 |        |
| 5:32      | 19.90      | 0.75                                    | 6:16      | 19.87        | 0.61 |        |
| 5:33      | 19.84      | 0.76                                    | 6:17      | 19.84        | 0.57 |        |
| 5:34      | 19.85      | 0.73                                    | 6:18      | 19.33        | 0.83 |        |
| 5:35      | 19.83      | 0.73                                    | 6:19      | 19.26        | 0.85 |        |
| 5:36      | 19.78      | 0.82                                    | 6:20      | 19.61        | 0.65 |        |
| 5:37      | 19.81      | 0.79                                    | 6:21      | 19.96        | 0.50 |        |
| 5:38      | 19.88      | 0.58                                    | 6:22      | 20.04        | 0.55 |        |
| 5:39      | 19.89      | 0.55                                    | 6:23      | 20.06        | 0.66 |        |
| 5:40      | 19.89      | 0.55                                    | 6:24      | 19.94        | 0.72 |        |
| 5:41      | 19.89      | 0.52                                    | 6:25      | 19.55        | 0.90 |        |
| 5:42      | 19.90      | 0.53                                    | 6:26      | 19.47        | 0.97 |        |
| 5:43      | 19.88      | 0.54                                    | 6:27      | 19.77        | 0.81 |        |
| 5:44      | 19.87      | 0.66                                    | 6:28      | 19.94        | 0.71 |        |
| 5:45      | 19.90      | 0.72                                    | 6:29      | 20.07        | 0.48 |        |
| 5:46      | 19.88      | 0.71                                    | 6:30      | 19.86        | 0.60 |        |
| 5:47      | 19.82      | 0.74                                    | 6:31      | 19.72        | 0.63 |        |
| 5:48      | 19.79      | 0.81                                    | 6:32      | 19.82        | 0.58 |        |
| 5:49      | 19.81      | 0.79                                    | 6:33      | 20.08        | 0.46 |        |
| 5:50      | 19.91      | 0.70                                    | 6:34      | 20.02        | 0.51 |        |
| 5:51      | 19.98      | 0.51                                    | 6:35      | 19.67        | 0.77 |        |
| 5:52      | 19.96      | 0.55                                    | 6:36      | 19.57        | 0.86 |        |
| 5:53      | 19.91      | 0.52                                    | 6:37      | 19.54        | 0.90 |        |
| 5:54      | 19.96      | 0.52                                    | 6:38      | 19.44        | 0.97 |        |
| 5:55      | 19.96      | 0.55                                    | 6:39      | 19.60        | 0.89 |        |
| 5:56      | 19.97      | 0.55                                    | 6:40      | 19.91        | 0.74 |        |
| 5:57      | 19.89      | 0.68                                    | 6:41      | 19.95        | 0.64 |        |
| 5:58      | 19.88      | 0.72                                    | 6:42      | 19.92        | 0.53 |        |
| 5:59      | 19.87      | 0.74                                    | 6:43      | 19.78        | 0.62 |        |
| 6:00      | 19.87      | 0.77                                    | 6:44      | 19.62        | 0.68 |        |
| 6:01      | 19.86      | 0.76                                    | 6:45      | 19.64        | 0.68 |        |
| 6:02      | 19.85      | 0.76                                    | 6:46      | 19.71        | 0.61 |        |
| 6:03      | 19.85      | 0.68                                    | 6:47      | 19.94        | 0.51 |        |
| 6:04      | 19.91      | 0.54                                    | 6:48      | 19.92        | 0.74 |        |
| 6:05      | 19.89      | 0.53                                    | 6:49      | 19.70        | 0.87 |        |
| 6:06      | 19.90      | 0.54                                    | 6:50      | 19.65        | 0.85 |        |
| 6:07      | 19.89      | 0.57                                    | 6:51      | 19.69        | 0.83 |        |
| 6:08      | 19.90      | 0.52                                    | 6:52      | 19.73        | 0.84 |        |
| 6:09      | 19.89      | 0.53                                    | 6:53      | 19.77        | 0.83 |        |
| 6:10      | 19.83      | 0.75                                    | 6:54      | 19.87        | 0.63 |        |
| 6:11      | 19.85      | 0.78                                    | 6:55      | 19.84        | 0.58 |        |
| 6:12      | 19.90      | 0.75                                    | 6:56      | 19.74        | 0.65 |        |
| 6:13      | 19.87      | 0.74                                    | 6:57      | 19.75        | 0.61 |        |
| 6:14      | 19.88      | 0.74                                    | 6:58      | 19.76        | 0.59 |        |
|           |            |                                         |           |              |      | 70     |

09/11/03

1

| Client: Plant: CB         EPA / Ball Clay         Date: Run No.         August 13, 2003           Time         O2 CO2           %         %         %         %           6:59         19.79         0.58         8:13         19.85         0.53           7:00         19.74         0.76         8:14         19.79         0.56           7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.81           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.68         0.75           7:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. 9-9-03 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Plant:         CBI         Run No.         1-RE           Location:         Mill ■         CO2         Time         O2         CO2           %         %         %         %         %         %           6:59         19.79         0.58         8:13         19.85         0.53           7:00         19.74         0.76         8:14         19.79         0.56           7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Time O2 CO2 % % % % % % % % % % % % % % % % % % %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Time O2 CO2 % % % % 6:59 19.79 0.58 8:13 19.85 0.53 7:00 19.74 0.76 8:14 19.79 0.56 8:15 19.73 0.61 7:01 19.77 0.80 8:15 19.73 0.61 7:02 19.73 0.80 8:16 19.62 0.74 7:03 19.71 0.83 8:17 19.68 0.80 7:04 19.68 0.86 8:18 19.70 0.82 7:05 19.69 0.83 8:19 19.70 0.83 7:06 19.70 0.81 8:20 19.70 0.83 7:07 19.65 0.65 8:21 19.63 0.82 7:08 19.72 0.63 8:22 19.68 0.74 7:09 19.74 0.61 8:23 19.84 0.55 7:10 19.76 0.61 8:24 19.90 0.48 7:11 19.76 0.61 8:24 19.90 0.48 7:11 19.78 0.62 8:25 19.87 0.52 7:14 19.75 0.81 8:26 19.69 0.60 7:13 19.76 0.81 8:27 19.59 0.63 7:14 19.75 0.81 8:28 19.59 0.62 7:15 19.74 0.85 8:29 19.51 0.84 7:16 19.75 0.81 8:29 19.51 0.84 7:16 19.75 0.81 8:29 19.51 0.84 7:16 19.75 0.82 8:25 19.77 0.74 7:19 19.68 0.75 8:29 19.51 0.84 7:19 19.76 0.80 0.75 8:29 19.51 0.84 7:16 19.72 0.84 8:30 19.66 0.82 7:17 19.69 0.83 8:31 19.78 0.75 8:29 19.51 0.84 7:18 19.67 0.82 8:33 19.61 0.78 7:22 19.71 0.64 8:36 19.50 0.61 7:22 19.71 0.64 8:36 19.50 0.71 7:22 19.71 0.60 8:34 19.55 0.72 7:24 19.71 0.60 8:38 19.70 0.56 7:25 19.77 0.59 8:39 19.75 0.51 7:26 19.74 0.83 8:44 19.60 0.55 8:45 19.87 0.55 7:27 19.76 0.80 8:44 19.60 0.55 7:27 19.76 0.80 8:44 19.61 0.66 7:28 19.68 0.82 8:42 19.54 0.83 7:29 19.70 0.81 8:44 19.61 0.66 7:28 19.68 0.82 8:44 19.60 0.55 8:44 19.60 0.55 8:44 19.60 0.55 8:44 19.50 0.55 8:44 19.60 0.55 8:44 19.50 0.56 0.57 7:24 19.71 0.60 8:38 19.70 0.56 0.57 7:24 19.71 0.60 8:38 19.70 0.56 0.57 7:25 19.77 0.59 8:39 19.75 0.51 0.84 7:29 19.70 0.81 8:44 19.61 0.66 8:44 19.60 0.55 8:45 19.60 0.55 8:45 19.42 0.88 8:02 19.82 0.55 8:46 19.47 0.88 8:02 19.82 0.55 8:46 19.47 0.88 8:02 19.82 0.55 8:46 19.47 0.88 8:02 19.82 0.55 8:46 19.47 0.88 8:02 19.82 0.55 8:46 19.47 0.88 8:03 19.75 0.68 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8:04 19.75 0.86 8 | 13 100    |
| %         %         %           6:59         19.79         0.58         8:13         19.85         0.53           7:00         19.74         0.76         8:14         19.79         0.56           7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.87           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87 <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 6.59         19.79         0.58         8:13         19.85         0.53           7:00         19.74         0.76         8:14         19.79         0.56           7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.82           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:00         19.74         0.76         8:14         19.79         0.56           7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.87           7:08         19.72         0.63         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:01         19.77         0.80         8:15         19.73         0.61           7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.69         0.83         8:19         19.70         0.87           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:02         19.73         0.80         8:16         19.62         0.74           7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.69         0.83         8:19         19.70         0.87           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:03         19.71         0.83         8:17         19.68         0.80           7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.83           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:04         19.68         0.86         8:18         19.70         0.82           7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:18         19.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:05         19.69         0.83         8:19         19.70         0.87           7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.63           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:06         19.70         0.81         8:20         19.70         0.83           7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:07         19.65         0.65         8:21         19.63         0.82           7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68         0.75         8:33         19.61         0.78           7:20         19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:08         19.72         0.63         8:22         19.68         0.74           7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68         0.75         8:33         19.61         0.78           7:20         19.75         0.60         8:34         19.53         0.86           7:21         19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:09         19.74         0.61         8:23         19.84         0.55           7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.63           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68         0.75         8:33         19.61         0.78           7:20         19.75         0.60         8:34         19.53         0.86           7:21         19.75         0.57         8:35         19.50         0.71           7:22         19.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:10         19.76         0.61         8:24         19.90         0.48           7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68         0.75         8:33         19.61         0.78           7:20         19.75         0.60         8:34         19.53         0.86           7:21         19.75         0.60         8:34         19.53         0.86           7:21         19.75         0.61         8:35         19.50         0.71           7:22         19.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:11         19.78         0.62         8:25         19.87         0.52           7:12         19.81         0.58         8:26         19.69         0.60           7:13         19.78         0.75         8:27         19.59         0.63           7:14         19.75         0.81         8:28         19.59         0.62           7:15         19.74         0.85         8:29         19.51         0.84           7:16         19.72         0.84         8:30         19.66         0.82           7:17         19.69         0.83         8:31         19.78         0.72           7:18         19.67         0.82         8:32         19.71         0.74           7:19         19.68         0.75         8:33         19.61         0.78           7:20         19.75         0.60         8:34         19.53         0.86           7:21         19.75         0.60         8:34         19.53         0.86           7:21         19.75         0.57         8:35         19.50         0.71           7:22         19.71         0.64         8:36         19.56         0.62           7:23         19.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7:12       19.81       0.58       8:26       19.69       0.60         7:13       19.78       0.75       8:27       19.59       0.63         7:14       19.75       0.81       8:28       19.59       0.62         7:15       19.74       0.85       8:29       19.51       0.84         7:16       19.72       0.84       8:30       19.66       0.82         7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:13       19.78       0.75       8:27       19.59       0.63         7:14       19.75       0.81       8:28       19.59       0.62         7:15       19.74       0.85       8:29       19.51       0.84         7:16       19.72       0.84       8:30       19.66       0.82         7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:14       19.75       0.81       8:28       19.59       0.62         7:15       19.74       0.85       8:29       19.51       0.84         7:16       19.72       0.84       8:30       19.66       0.82         7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:15       19.74       0.85       8:29       19.51       0.84         7:16       19.72       0.84       8:30       19.66       0.82         7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:16       19.72       0.84       8:30       19.66       0.82         7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:17       19.69       0.83       8:31       19.78       0.72         7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:18       19.67       0.82       8:32       19.71       0.74         7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:19       19.68       0.75       8:33       19.61       0.78         7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:20       19.75       0.60       8:34       19.53       0.86         7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:21       19.75       0.57       8:35       19.50       0.71         7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 7:22       19.71       0.64       8:36       19.56       0.62         7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 7:23       19.73       0.61       8:37       19.65       0.57         7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 7:24       19.71       0.60       8:38       19.70       0.56         7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 7:25       19.77       0.59       8:39       19.75       0.51         7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 7:26       19.74       0.83       8:40       19.69       0.55         7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 7:27       19.76       0.80       8:41       19.61       0.66         7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 7:28       19.68       0.82       8:42       19.54       0.83         7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 7:29       19.70       0.81       8:43       19.51       0.82         7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 7:30       19.64       0.86       8:44       19.42       0.86         8:01       19.80       0.55       8:45       19.42       0.89         8:02       19.82       0.55       8:46       19.47       0.86         8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 8:01     19.80     0.55     8:45     19.42     0.89       8:02     19.82     0.55     8:46     19.47     0.86       8:03     19.75     0.68     8:47     19.76     0.68       8:04     19.74     0.83     8:48     19.85     0.46       8:05     19.85     0.70     8:49     19.74     0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 8:02     19.82     0.55     8:46     19.47     0.86       8:03     19.75     0.68     8:47     19.76     0.68       8:04     19.74     0.83     8:48     19.85     0.46       8:05     19.85     0.70     8:49     19.74     0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 8:03       19.75       0.68       8:47       19.76       0.68         8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 8:04       19.74       0.83       8:48       19.85       0.46         8:05       19.85       0.70       8:49       19.74       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 8:05 19.85 0.70 8:49 19.74 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:05 19.85 0.70 8:49 19.74 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:06 19.77 0.78 8:50 19.70 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:07 19.77 0.81 8:51 19.61 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:08 19.74 0.84 8:52 19.65 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:09 19.74 0.81 8:53 19.60 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:10 19.74 0.59 8:54 19.63 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:11 19.77 0.59 8:55 19.65 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 8:12 19.86 0.53 8:56 19.84 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 5.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |

2

| Job No.           | 110249.1.0 |      |    | erator: | Daniel Neal   |      | 9-9-03 |
|-------------------|------------|------|----|---------|---------------|------|--------|
| Client:<br>Plant: | EPA / Ball | Clay |    | te:     | August 13, 20 | 003  |        |
|                   | CBI        |      | Ru | n No.   | 1-RE          |      |        |
| Location:         | Mill 🗰     |      |    |         |               |      |        |
| Time              | 02         | CO2  |    | Time    | O2            | CO2  |        |
|                   | %          | %    |    |         | %             | %    |        |
| 8:57              | 19.80      | 0.75 |    | 10:29   | 19.76         | 0.66 |        |
| 8:58              | 19.67      | 0.77 |    | 10:30   | 19.94         | 0.51 |        |
| 8:59              | 19.54      | 0.82 |    | 10:31   | 19.91         | 0.54 |        |
| 9:00              | 19.52      | 0.76 |    | 10:32   | 19.88         | 0.56 |        |
| 9:01              | 19.49      | 0.66 |    | 10:33   | 19.69         | 0.60 |        |
| 9:02              | 19.53      | 0.64 |    | 10:34   | 19.59         | 0.63 |        |
| 9:03              | 19.53      | 0.63 |    | 10:35   | 19.65         | 0.70 |        |
| 9:04              | 19.61      | 0.62 |    | 10:36   | 19.65         | 0.86 |        |
| 9:05              | 19.75      | 0.55 |    | 10:37   | 19.71         | 0.82 |        |
| 9:06              | 19.77      | 0.55 |    | 10:38   | 19.72         | 0.81 |        |
| 9:07              | 19.70      | 0.81 |    | 10:39   | 19.74         | 0.81 |        |
| 9:08              | 19.72      | 0.87 |    | 10:40   | 19.72         | 0.83 |        |
| 9:09              | 19.73      | 0.83 |    | 10:41   | 19.70         | 0.83 |        |
| 9:10              | 19.68      | 0.82 |    | 10:42   | 19.69         | 0.64 |        |
| 9:11              | 19.69      | 0.82 |    | 10:43   | 19.80         | 0.60 |        |
| 9:12              | 19.68      | 0.86 |    | 10:44   | 20.03         | 0.43 |        |
| 9:13              | 19.83      | 0.67 |    | 10:45   | 20.02         | 0.43 |        |
| 9:14              | 19.88      | 0.56 |    | 10:46   | 19.90         | 0.53 |        |
| 9:15              | 19.87      | 0.57 |    | 10:47   | 19.86         | 0.59 |        |
| 9:16              | 19.92      | 0.55 |    | 10:48   | 19.78         | 0.74 |        |
| 9:17              | 19.92      | 0.52 |    |         |               |      |        |
| 9:18              | 19.88      | 0.54 | A  | verage: | 19.77         | 0.69 |        |
| 9:19              | 19.86      | 0.66 | Mi | nimum:  | 19.26         | 0.43 |        |
| 9:20              | 19.89      | 0.77 | Ma | ximum:  | 20.08         | 0.97 |        |
| 9:21              | 19.86      | 0.75 |    |         |               |      |        |
| 9:22              | 19.77      | 0.81 |    |         |               |      |        |
| 9:23              | 19.78      | 0.83 |    |         |               |      |        |
| 9:24              | 19.91      | 0.77 |    |         |               |      |        |
| 9:25              | 20.01      | 0.71 |    |         |               |      |        |
| 9:26              | 20.01      | 0.51 |    |         |               |      |        |
| 9:27              | 19.98      | 0.53 |    |         |               |      |        |
| 9:28              | 19.79      | 0.59 |    |         |               |      |        |
| 9:29              | 19.81      | 0.58 |    |         |               |      |        |
| 9:30              | 19.83      | 0.58 |    |         |               |      |        |
| 9:31              | 19.89      | 0.60 |    |         |               |      |        |
| 9:32              | 19.94      | 0.66 |    |         |               |      |        |
| 9:33              | 19.89      | 0.72 |    |         |               |      |        |
| 9:34              | 19.87      | 0.76 |    |         |               |      |        |
| 9:35              | 19.84      | 0.82 | ,  |         |               |      |        |
| 9:36              | 19.80      | 0.82 |    |         |               |      |        |
| 9:55              | 19.77      | 0.57 |    |         |               |      |        |
| 10:26             | 19.81      | 0.80 |    |         |               |      | -      |
| 10:27             | 19.80      | 0.77 |    |         |               |      |        |

8 9/11/03

10:28

19.65

0.87

#### O<sub>2</sub> Measurement System Calibration Data By Method 3A

Job No. 110249.2.001.04 Operator: Daniel Neal Client: EPA / Ball clay Date: August 14, 2003 Plant: Location: Mill 🗰 Analyzer Type: Analyzer Mfgr.: Servomex Magnetopneumatic Analyzer Span: %O<sub>2</sub> by volume Model No. 01440CISTD

Serial No. 1391

Zero Gas: Prepurified nitrogen
Cal. Gas Mixture: Oxygen in nitrogen

|             | Analyzer Ca   | libration E | rror Determi | nation            | Run Time:   | Start     | End        |
|-------------|---------------|-------------|--------------|-------------------|-------------|-----------|------------|
| Run No.     | 2 Test (      | Condition:  |              |                   |             | 5:50      | 10:05      |
| Calibration | Cal           | ibration Ga | s            | Analyzer Response | Gas Value - | Analyzer  | Cal. Error |
| Ending      | Concentration | Value,      | Cylinder     | Value Following   | Response D  | ifference | Check      |
| Time        | Level         | %O₂         | ID Number    | Calibration, %O₂  | As % of     | Span      | Resulta    |
| 4:23        | Zero Gas      | 0.00        | 3AA2400      | -0.04             | -0.16       | %         | Pass       |
| 4:28        | High-range    | 21.13       | 1L2234       | 21.12             | -0.04       | %         | Pass       |
| 4:31        | Mid-range     | 12.02       | ALM036712    | 12.05             | 0.12        | %         | Pass       |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

|             | Initial Bias and Response Time Determinations |                 |                 |                     |            |                     |  |  |
|-------------|-----------------------------------------------|-----------------|-----------------|---------------------|------------|---------------------|--|--|
| Calibration | Calibration Gas                               | Analyzer        | System          | Response            | System     | Bias                |  |  |
| Ending      | Concentration                                 | Response,       | Response,       | Time <sup>b</sup> , | Cal. Bias, | Check               |  |  |
| Time        | Level                                         | %O <sub>2</sub> | %O <sub>2</sub> | seconds             | % of Span  | Result <sup>c</sup> |  |  |
| 4:34        | Zero Gas                                      | -0.04           | 0.03            | 24                  | 0.28%      | Pass                |  |  |
| 4:37        | Mid-range                                     | 12.05           | 12.26           | 24                  | 0.84%      | Pass                |  |  |

|             | Final Bias and Drift Determinations |           |            |                     |           |                     |  |
|-------------|-------------------------------------|-----------|------------|---------------------|-----------|---------------------|--|
| Calibration | Calibration Gas                     | System    | System     | Bias                |           | Drift               |  |
| Ending      | Concentration                       | Response, | Cal. Bias, | Check               | Drift,    | Check               |  |
| Time        | Level                               | %O₂       | % of Span  | Result <sup>c</sup> | % of Span | Result <sup>d</sup> |  |
| 10:36       | Zero Gas                            | -0.03     | 0.04%      | Pass                | -0.24%    | Pass                |  |
| 10:39       | Mid-range                           | 12.10     | 0.20%      | Pass                | -0.64%    | Pass                |  |

b. Response time check according to Method 3A. The longer time is used.

PH 9/11/03

Instrmds.xls [3A O2] 03/26/2001 (rev. Ball Clay Run 2 Data Workbook.xls [3A O2] 9/9/2003 3:26 PM)

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

#### CO<sub>2</sub> Measurement System Calibration Data By Method 3A

110249.2.001.04 Job No.

Client: EPA / Ball clay Plant: CBI

Location: Mill 🚒

Analyzer Type: single beam, dual wavelength IR Analyzer Span: %CO<sub>2</sub> by volume

Zero Gas: Prepurified nitrogen Cal. Gas Mixture: Carbon dioxide in nitrogen Operator: Daniel Neal

Date: August 14, 2003

Analyzer Mfgr.: Servomex

Model No. 01440CISTD

Serial No. 1382

| Analyzer | Calibration | Error [ | Determination |
|----------|-------------|---------|---------------|
|          |             |         |               |

|             | Allalyzer Ca  | IIDI ALIUN E | Thor Defetting | nation            | Kun Time:   | Start    | End                 |
|-------------|---------------|--------------|----------------|-------------------|-------------|----------|---------------------|
| Run No.     | 2 Test 0      | Condition:   |                |                   | <u> </u>    | 5:50     | 10:05               |
| Calibration | Cal           | ibration Ga  | s              | Analyzer Response | Gas Value - | Analyzer | Cal. Error          |
| Ending      | Concentration | Value,       | Cylinder       | Value Following   | Response Di | fference | Check               |
| Time        | Level         | %CO₂         | ID Number      | Calibration, %CO2 | As % of 8   | Span     | Result <sup>a</sup> |
| 4:23        | Zero Gas      | 0.00         | 3AA2400        | -0.02             | -0.109      | %        | Pass                |
| 4:28        | High-range    | 18.04        | 1L2234         | 17.93             | -0.559      | %        | Pass                |
| 4:31        | Mid-range     | 10.05        | ALM036712      | 10.00             | -0.259      | %        | Pass                |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

|             | Initial Bias and Response Time Determinations |           |           |                     |            |                     |  |
|-------------|-----------------------------------------------|-----------|-----------|---------------------|------------|---------------------|--|
| Calibration | Calibration Gas                               | Analyzer  | System    | Response            | System     | Bias                |  |
| Ending      | Concentration                                 | Response, | Response, | Time <sup>b</sup> , | Cal. Bias, | Check               |  |
| Time        | Level                                         | %CO₂      | %CO₂      | seconds             | % of Span  | Result <sup>c</sup> |  |
| 4:34        | Zero Gas                                      | -0.02     | -0.15     | 21                  | -0.65%     | Pass                |  |
| 4:37        | Mid-range                                     | 10.00     | 9.82      | 20                  | -0.90%     | Pass                |  |

|             | Final Bias and Drift Determinations |           |            |                     |           |                     |  |  |  |
|-------------|-------------------------------------|-----------|------------|---------------------|-----------|---------------------|--|--|--|
| Calibration | Calibration Gas                     | System    | System     | Bias                |           | Drift               |  |  |  |
| Ending      | Concentration                       | Response, | Cal. Bias, | Check               | Drift,    | Check               |  |  |  |
| Time        | Level                               | %CO₂      | % of Span  | Result <sup>c</sup> | % of Span | Result <sup>d</sup> |  |  |  |
| 10:36       | Zero Gas                            | 0.14      | 0.80%      | Pass                | 1.45%     | Pass                |  |  |  |
| 10:39       | Mid-range                           | 9.89      | -0.55%     | Pass                | 0.35%     | Pass                |  |  |  |

b. Response time check according to Method 3A. The longer time is used.

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

| Job No.<br>Client: | 110249.1.<br>EPA / Ball |              | Operator:                | Daniel Neal<br>August 14, 2 |              | V. 9-9-03                    |
|--------------------|-------------------------|--------------|--------------------------|-----------------------------|--------------|------------------------------|
| Plant:             | CBI                     |              | Run No.                  | 2                           |              |                              |
| Location:          | Mill 🗰                  |              |                          |                             |              |                              |
|                    |                         |              |                          |                             |              |                              |
| Time               | 02                      | CO2          | Time                     | O2                          | CO2          |                              |
|                    | %                       | %            |                          | %                           | %            |                              |
| 5:51               | 19.64                   | 0.63         | 6:35                     | 19.59                       | 0.83         |                              |
| 5:52               | 19.61                   | 0.63         | 6:36                     | 19.60                       | 0.83         |                              |
| 5:53               | 19.56                   | 0.69         | 6:37                     | 19.74                       | 0.80         |                              |
| 5:54               | 19.51                   | 0.87         | 6:38                     | 19.78                       | 0.65         |                              |
| 5:55               | 19.55                   | 0.88         | 6:39                     | 19.84                       | 0.54         |                              |
| 5:56               | 19.67                   | 0.81         | 6:40                     | 19.79                       | 0.55         |                              |
| 5:57               | 19.74                   | 0.78         | 6:41                     | 19.75                       | 0.61         |                              |
| 5:58               | 19.78                   | 0.75         | 6:42                     | 19.59                       | 0.62         |                              |
| 5:59               | 19.72                   | 0.84         | 6:43                     | 19.61                       | 0.61         |                              |
| 6:00               | 19.73                   | 0.63         | 6:44                     | 19.62                       | 0.66         |                              |
| 6:01               | 19.65                   | 0.61         | 6:45                     | 19.69                       | 0.83         |                              |
| 6:02               | 19.58                   | 0.63         | 6:46                     | 19.78                       | 0.77         |                              |
| 6:03               | 19.65                   | 0.61         | 6:47                     | 19.81                       | 0.74         |                              |
| 6:04               | 19.70                   | 0.59         | 6:48                     | 19.81                       | 0.72         |                              |
| 6:05               | 19.84                   | 0.54         | 6:49                     | 19.65                       | 0.84         |                              |
| 6:06               | 19.83                   | 0.64         | 6:50                     | 19.40                       | 0.93         |                              |
| 6:07               | 19.75                   | 0.75         | 6:51                     | 19.59                       | 0.69         |                              |
| 6:08               | 19.70                   | 0.78         | 6:52                     | 19.71                       | 0.62         |                              |
| 6:09               | 19.56                   | 0.82         | 6:53                     | 19.77                       | 0.59         |                              |
| 6:10               | 19.54                   | 0.87         | 6:54                     | 19.79                       | 0.54         |                              |
| 6:11               | 19.57                   | 0.85         | 6:55                     | 19.73                       | 0.57         |                              |
| 6:12               | 19.66                   | 0.80         | 6:56                     | 19.69                       | 0.60         |                              |
| 6:13               | 19.83                   | 0.54         | 6:57                     | 19.58                       | 0.77         |                              |
| 6:14               | 19.81                   | 0.54         | 6:58                     | 19.54                       | 0.86         |                              |
| 6:15               | 19.79                   | 0.52         | 6:59                     | 19.50                       | 0.88         |                              |
| 6:16               | 19.77                   | 0.55         | 7:00                     | 19.60                       | 0.84         |                              |
| 6:17               | 19.74                   | 0.56         | 7:01                     | 19.63                       | 0.83         |                              |
| 6:18               | 19.67                   | 0.64         | 7:02                     | 19.68                       | 0.82         |                              |
| 6:19<br>6:20       | 19.63                   | 0.74         | 7:03                     | 19.73                       | 0.77         |                              |
| 6:21               | 19.62<br>19.74          | 0.81<br>0.79 | 7:04                     | 19.76                       | 0.59         |                              |
| 6:22               |                         |              | 7:05                     | 19.74                       | 0.57         |                              |
| 6:23               | 19.80<br>19.82          | 0.79<br>0.74 | 7:06<br>7:07             | 19.70                       | 0.58         |                              |
| 6:24               | 19.73                   | 0.74         | 7:07<br>7:08             | 19.63                       | 0.61         |                              |
| 6:25               | 19.73                   | 0.78         | 7:09                     | 19.62<br>19.67              | 0.65         |                              |
| 6:26               | 19.63                   | 0.73         | 7:10                     | 19.69                       | 0.64<br>0.77 |                              |
| 6:27               | 19.65                   | 0.62         | 7:10<br>7:11             | 19.64                       | 0.77         |                              |
| 6:28               | 19.77                   | 0.56         | 7:11<br>7:12             | 19.66                       | 0.82         |                              |
| 6:29               | 19.77                   | 0.57         | 7:12                     | 19.69                       | 0.82         |                              |
| 6:30               | 19.85                   | 0.54         | 7:14                     | 19.70                       | 0.82         |                              |
| 6:31               | 19.90                   | 0.50         | 7:1 <del>4</del><br>7:15 | 19.64                       | 0.84         |                              |
| 6:32               | 19.72                   | 0.76         | 7:15<br>7:16             | 19.67                       | 0.76         | <b>\</b>                     |
| 6:33               | 19.62                   | 0.83         | 7:17                     | 19.69                       | 0.60         | $\mathcal{P}_{\mathbf{J}}$ . |
| 6:34               | 19.49                   | 0.93         | 7:17                     | 19.70                       | 0.59         | V9/11/12                     |
|                    |                         |              | 7.10                     | 10.70                       | 0.00         |                              |

1

| Job No.   | 110249.1.0 |      | Operator: |              |      | 1. 9-9-03 |
|-----------|------------|------|-----------|--------------|------|-----------|
| Client:   | EPA / Ball | Clay | Date:     | August 14, 2 | 2003 |           |
| Plant:    | CBI        |      | Run No.   | 2            |      |           |
| Location: | Mill 🗰     |      |           |              |      |           |
|           |            |      |           |              |      |           |
| Time      | O2         | CO2  | Time      | O2           | CO2  |           |
|           | %          | %    |           | %            | %    |           |
| 7:19      | 19.74      | 0.56 | 8:18      | 19.95        | 0.73 |           |
| 7:20      | 19.69      | 0.64 | 8:19      | 19.90        | 0.73 |           |
| 7:21      | 19.72      | 0.59 | 8:20      | 19.81        | 0.57 |           |
| 7:22      | 19.73      | 0.60 | 8:21      | 19.39        | 0.74 |           |
| 7:23      | 19.66      | 0.80 | 8:22      | 19.55        | 0.66 |           |
| 7:24      | 19.64      | 0.83 | 8:23      | 19.83        | 0.52 |           |
| 7:25      | 19.71      | 0.79 | 8:24      | 19.94        | 0.47 |           |
| 7:26      | 19.71      | 0.80 | 8:25      | 20.03        | 0.45 |           |
| 7:27      | 19.68      | 0.84 | 8:26      | 19.93        | 0.61 |           |
| 7:28      | 19.66      | 0.84 | 8:27      | 19.79        | 0.75 |           |
| 7:29      | 19.71      | 0.62 | 8:28      | 19.33        | 0.96 |           |
| 7:30      | 19.74      | 0.57 | 8:29      | 19.53        | 0.90 |           |
| 7:31      | 19.67      | 0.61 | 8:30      | 19.68        | 0.87 |           |
| 7:32      | 19.72      | 0.60 | 8:31      | 19.85        | 0.74 |           |
| 7:33      | 19.77      | 0.54 | 8:32      | 19.88        | 0.69 |           |
| 7:34      | 19.80      | 0.52 | 8:33      | 19.91        | 0.50 |           |
| 7:35      | 19.80      | 0.61 | 8:34      | 19.79        | 0.56 |           |
| 7:36      | 19.70      | 0.76 | 8:35      | 19.70        | 0.59 |           |
| 7:37      | 19.74      | 0.77 | 8:36      | 19.64        | 0.63 |           |
| 7:38      | 19.65      | 0.82 | 8:37      | 19.60        | 0.65 |           |
| 7:39      | 19.48      | 0.89 | 8:38      | 19.68        | 0.59 |           |
| 7:40      | 19.61      | 0.83 | 8:39      | 19.78        | 0.68 |           |
| 7:41      | 19.65      | 0.80 | 8:40      | 19.79        | 0.72 |           |
| 7:42      | 19.78      | 0.53 | 8:41      | 19.79        | 0.76 |           |
| 7:43      | 19.60      | 0.65 | 8:42      | 19.76        | 0.78 |           |
| 7:44      | 19.66      | 0.59 | 8:43      | 19.76        | 0.75 |           |
| 7:45      | 19.75      | 0.52 | 8:44      | 19.72        | 0.77 |           |
| 7:46      | 19.76      | 0.53 | 8:45      | 19.66        | 0.74 |           |
| 7:47      | 19.74      | 0.54 | 8:46      | 19.65        | 0.60 |           |
| 7:48      | 19.71      | 0.66 | 8:47      | 19.69        | 0.58 |           |
| 7:49      | 19.63      | 0.82 | 8:48      | 19.69        | 0.57 |           |
| 7:50      | 19.59      | 0.84 | 8:49      | 19.77        | 0.57 |           |
| 8:06      | 19.71      | 0.76 | 8:50      | 19.82        | 0.51 |           |
| 8:07      | 19.51      | 0.75 | 8:51      | 19.74        | 0.53 |           |
| 8:08      | 19.24      | 0.76 | 8:52      | 19.65        | 0.76 |           |
| 8:09      | 19.57      | 0.60 | 8:53      | 19.66        | 0.82 |           |
| 8:10      | 19.78      | 0.50 | 8:54      | 19.60        | 0.85 |           |
| 8:11      | 19.92      | 0.43 | 8:55      | 19.68        | 0.82 |           |
| 8:12      | 19.92      | 0.45 | 8:56      | 19.78        | 0.73 |           |
| 8:13      | 19.81      | 0.59 | 8:57      | 19.77        | 0.77 |           |
| 8:14      | 19.30      | 0.99 | 8:58      | 19.75        | 0.61 |           |
| 8:15      | 19.52      | 0.87 | 8:59      | 19.71        | 0.58 | ( ) L     |
| 8:16      | 19.70      | 0.79 | 9:00      | 19.71        | 0.58 | Talul     |
| 8:17      | 19.86      | 0.71 | 9:01      | 19.67        | 0.63 | 17/11     |

| Job No.   | 110249.1.0 | 001 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | On         | erator: | Daniel Neal   | 1.1  | 9-9-03 |
|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------------|------|--------|
| Client:   | EPA / Ball | CONTRACTOR OF THE PARTY OF THE | Da         |         | August 14, 20 |      | , , -  |
| Plant:    | CBI        | Olay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F16 A   II | n No.   | 2             |      |        |
| Location: | Mill       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |         |               |      |        |
| Location. |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |         |               |      |        |
| Time      | 02         | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Time    | O2            | CO2  |        |
| 0.00      | %<br>40.72 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.40    | %             | %    |        |
| 9:02      | 19.73      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:46    | 19.48         | 0.82 |        |
| 9:03      | 19.66      | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:47    | 19.40         | 0.85 |        |
| 9:04      | 19.81      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:48    | 19.49         | 0.83 |        |
| 9:05      | 19.84      | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:49    | 19.49         | 0.73 |        |
| 9:06      | 19.81      | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:50    | 19.56         | 0.57 |        |
| 9:07      | 19.58      | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:51    | 19.55         | 0.59 |        |
| 9:08      | 19.22      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:52    | 19.51         | 0.61 |        |
| 9:09      | 19.57      | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:53    | 19.42         | 0.63 |        |
| 9:10      | 19.62      | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:54    | 19.52         | 0.59 |        |
| 9:11      | 19.75      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:55    | 19.53         | 0.63 |        |
| 9:12      | 19.85      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:56    | 19.62         | 0.82 |        |
| 9:13      | 19.77      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:57    | 19.67         | 0.82 |        |
| 9:14      | 19.55      | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:58    | 19.68         | 0.78 |        |
| 9:15      | 19.52      | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 9:59    | 19.61         | 0.81 |        |
| 9:16      | 19.51      | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:00   | 19.54         | 0.84 |        |
| 9:17      | 19.54      | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:01   | 19.58         | 0.85 |        |
| 9:18      | 19.57      | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:02   | 19.64         | 0.65 |        |
| 9:19      | 19.72      | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:03   | 19.66         | 0.57 |        |
| 9:20      | 19.61      | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:04   | 19.70         | 0.56 |        |
| 9:21      | 19.59      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10:05   | 19.64         | 0.57 |        |
| 9:22      | 19.70      | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:23      | 19.60      | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | verage: | 19.67         | 0.69 |        |
| 9:24      | 19.38      | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | nimum:  | 19.22         | 0.43 |        |
| 9:25      | 19.64      | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max        | ximum:  | 20.03         | 0.99 |        |
| 9:26      | 19.69      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:27      | 19.77      | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:28      | 19.69      | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:29      | 19.64      | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:30      | 19.53      | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:31      | 19.55      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:32      | 19.59      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:33      | 19.56      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:34      | 19.59      | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:35      | 19.56      | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:36      | 19.54      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:37      | 19.55      | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:38      | 19.55      | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:39      | 19.59      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:40      | 19.57      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      |        |
| 9:41      | 19.61      | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      | ~      |
| 9:42      | 19.59      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      | HE -   |
| 9:43      | 19.55      | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      | 9 1    |
| 9:44      | 19.49      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      | 911    |
| 9:45      | 19.45      | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |               |      | ή      |

9/11/03

#### O<sub>2</sub> Measurement System Calibration Data By Method 3A

Job No. 110249.2.001.04 Operator: Daniel Neal
Client: EPA / Ball clay Date: August 15, 2003
Plant: CBI
Location: Mill

Analyzer Type: Magnetopneumatic Analyzer Mfgr.: Servomex

Analyzer Span: 25 %O<sub>2</sub> by volume Model No. 01440CISTD

Zero Gas: Prepurified nitrogen Serial No. 1391

Zero Gas: Prepurified nitrogen

Cal. Gas Mixture: Oxygen in nitrogen

|             | Analyzer Ca   | libration E     | rror Determi | nation            | Run Time:   | Start      | End        |
|-------------|---------------|-----------------|--------------|-------------------|-------------|------------|------------|
| Run No.     | 3 Test        | Condition:      |              |                   |             | 6:10       | 10:20      |
| Calibration | Cal           | ibration Ga     | s            | Analyzer Response | Gas Value - | Analyzer   | Cal. Error |
| Ending      | Concentration | Value,          | Cylinder     | Value Following   | Response D  | Difference | Check      |
| Time        | Level         | %O <sub>2</sub> | ID Number    | Calibration, %O₂  | As % of     | Span       | Result     |
| 5:03        | Zero Gas      | 0.00            | 3AA2400      | -0.13             | -0.52       | 2%         | Pass       |
| 5:07        | High-range    | 21.13           | 1L2234       | 21.18             | 0.20        | %          | Pass       |
| 5:10        | Mid-range     | 12.02           | ALM036712    | 12.04             | 0.08        | %          | Pass       |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

|             | Initial Bias and Response Time Determinations |                 |           |                     |            |                     |  |  |
|-------------|-----------------------------------------------|-----------------|-----------|---------------------|------------|---------------------|--|--|
| Calibration | Calibration Gas                               | Analyzer        | System    | Response            | System     | Bias                |  |  |
| Ending      | Concentration                                 | Response,       | Response, | Time <sup>b</sup> , | Cal. Bias, | Check               |  |  |
| Time        | Level                                         | %O <sub>2</sub> | %O₂       | seconds             | % of Span  | Result <sup>c</sup> |  |  |
| 5:14        | Zero Gas                                      | -0.13           | -0.04     | 24                  | 0.36%      | Pass                |  |  |
| 5:20        | Mid-range                                     | 12.04           | 12.06     | 24                  | 0.08%      | Pass                |  |  |

|             | Final Bias and Drift Determinations |                 |            |        |           |                     |  |  |  |
|-------------|-------------------------------------|-----------------|------------|--------|-----------|---------------------|--|--|--|
| Calibration | Calibration Gas                     | System          | System     | Bias   |           | Drift               |  |  |  |
| Ending      | Concentration                       | Response,       | Cal. Bias, | Check  | Drift,    | Check               |  |  |  |
| Time        | Level                               | %O <sub>2</sub> | % of Span  | Result | % of Span | Result <sup>d</sup> |  |  |  |
| 10:44       | Zero Gas                            | -0.11           | 0.08%      | Pass   | -0.28%    | Pass                |  |  |  |
| 10:47       | Mid-range                           | 11.88           | -0.64%     | Pass   | -0.72%    | Pass                |  |  |  |

b. Response time check according to Method 3A. The longer time is used.

8 9/11/03

Instrmds.xls [3A O2] 03/26/2001 (rev. Ball Clay Runs 1-3 Data Workbook.xls [3A O2] 9/9/2003 3:32 PM)

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

#### CO<sub>2</sub> Measurement System Calibration Data By Method 3A

 Job No.
 110249.2.001.04

 Client:
 EPA / Ball clay

 Plant:
 CBI

 Location:
 Mill \*\*

Analyzer Type: single beam, dual wavelength IR
Analyzer Span: 20 %CO<sub>2</sub> by volume
Zero Gas: Prepurified nitrogen
Cal. Gas Mixture: Carbon dioxide in nitrogen

Signature/Date

Analyzer Mfgr.: Servomex

August 15, 2003

Operator: Daniel Neal

Date:

Model No. 01440CISTD

Serial No. 1382

|             | Analyzer Ca   | libration E      | rror Determi | nation            | Run Time:   | Start      | End        |
|-------------|---------------|------------------|--------------|-------------------|-------------|------------|------------|
| Run No.     | 3 Test (      | Condition:       |              |                   |             | 6:10       | 10:20      |
| Calibration | Cal           | ibration Ga      | S            | Analyzer Response | Gas Value - | Analyzer   | Cal. Error |
| Ending      | Concentration | Value,           | Cylinder     | Value Following   | Response D  | Difference | Check      |
| Time        | Level         | %CO <sub>2</sub> | ID Number    | Calibration, %CO₂ | As % of     | Span       | Resulta    |
| 5:03        | Zero Gas      | 0.00             | 3AA2400      | 0.15              | 0.75        | %          | Pass       |
| 5:07        | High-range    | 18.04            | 1L2234       | 17.80             | -1.20       | 1%         | Pass       |
| 5:10        | Mid-range     | 10.05            | ALM036712    | 10.03             | -0.10       | 1%         | Pass       |

a. Calibration error check must not exceed ±2% of the span value.

#### Measurement System Calibration Bias, Response Time, and Drift

|             |                 | Initial Bias | and Respon | se Time De          | terminatio | ns                  |  |
|-------------|-----------------|--------------|------------|---------------------|------------|---------------------|--|
| Calibration | Calibration Gas | Analyzer     | System     | Response            | System     | Bias                |  |
| Ending      | Concentration   | Response,    | Response,  | Time <sup>b</sup> , | Cal. Bias, | Check               |  |
| Time        | Level           | %CO₂         | %CO₂       | seconds             | % of Span  | Result <sup>c</sup> |  |
| 5:14        | Zero Gas        | 0.15         | 0.13       | 21                  | -0.10%     | Pass                |  |
| 5:20        | Mid-range       | 10.03        | 9.90       | 20                  | -0.65%     | Pass                |  |

| Final Bias and Drift Determinations |                 |           |            |        |           |                     |  |  |  |
|-------------------------------------|-----------------|-----------|------------|--------|-----------|---------------------|--|--|--|
| Calibration                         | Calibration Gas | System    | System     | Bias   |           | Drift               |  |  |  |
| Ending                              | Concentration   | Response, | Cal. Bias, | Check  | Drift,    | Check               |  |  |  |
| Time                                | Level           | %CO₂      | % of Span  | Result | % of Span | Result <sup>d</sup> |  |  |  |
| 10:44                               | Zero Gas        | 0.16      | 0.05%      | Pass   | 0.15%     | Pass                |  |  |  |
| 10:47                               | Mid-range       | 10.09     | 0.30%      | Pass   | 0.95%     | Pass                |  |  |  |

b. Response time check according to Method 3A. The longer time is used.

8 p/11/03

c. System bias check must not exceed ±5% of the span value.

d. Drift check must not exceed ±3% of the span value.

## **CEMS Data - Dry Basis**

| Job No.   | 110249.1.0 | 001 04 | Operator:    | Daniel Neal  | D. N. 8-9-03           |
|-----------|------------|--------|--------------|--------------|------------------------|
| Client:   | EPA / Ball |        | Date:        | August 15, 2 |                        |
| Plant:    | CBI        | Olay   | Run No.      | 3            | 003                    |
| Location: | Mill ##    |        | Kuii No.     | <u> </u>     |                        |
| Location. | IVIIII C.  |        |              |              |                        |
| Time      | O2         | CO2    | Time         | O2           | CO2                    |
|           | %          | %      |              | %            | %                      |
| 6:11      | 19.82      | 0.54   | 6:55         | 19.75        | 0.76                   |
| 6:12      | 19.56      | 0.63   | 6:56         | 19.91        | 0.69                   |
| 6:13      | 19.72      | 0.58   | 6:57         | 19.66        | 0.85                   |
| 6:14      | 20.01      | 0.44   | 6:58         | 19.64        | 0.83                   |
| 6:15      | 19.73      | 0.69   | 6:59         | 19.68        | 0.74                   |
| 6:16      | 19.50      | 0.85   | 7:00         | 19.72        | 0.59                   |
| 6:17      | 19.54      | 0.84   | 7:01         | 19.78        | 0.54                   |
| 6:18      | 20.00      | 0.63   | 7:02         | 19.98        | 0.44                   |
| 6:19      | 19.66      | 0.83   | 7:03         | 19.90        | 0.49                   |
| 6:20      | 19.50      | 0.88   | 7:04         | 19.72        | 0.58                   |
| 6:21      | 19.58      | 0.78   | 7:05         | 19.79        | 0.52                   |
| 6:22      | 19.90      | 0.52   | 7:06         | 20.01        | 0.58                   |
| 6:23      | 19.86      | 0.51   | 7:07         | 19.68        | 0.80                   |
| 6:24      | 19.63      | 0.62   | 7:08         | 19.59        | 0.86                   |
| 6:25      | 19.62      | 0.62   | 7:09         | 19.60        | 0.81                   |
| 6:26      | 19.83      | 0.53   | 7:10         | 20.03        | 0.59                   |
| 6:27      | 19.96      | 0.45   | 7:11         | 19.95        | 0.67                   |
| 6:28      | 19.65      | 0.76   | 7:12         | 19.67        | 0.72                   |
| 6:29      | 19.62      | 0.82   | 7:12         | 19.69        | 0.60                   |
| 6:30      | 19.82      | 0.02   | 7:14         | 19.66        | 0.60                   |
| 6:31      | 20.05      | 0.61   | 7:14         | 20.02        | 0.42                   |
| 6:32      | 19.76      | 0.75   | 7:16         | 20.02        | 0.37                   |
| 6:33      | 19.57      | 0.73   | 7:17         | 19.74        |                        |
| 6:34      | 19.78      | 0.67   |              |              | 0.53                   |
| 6:35      |            | 0.87   | 7:18         | 19.64        | 0.66                   |
|           | 20.09      |        | 7:19<br>7:20 | 19.69        | 0.80                   |
| 6:36      | 19.75      | 0.57   | 7:20         | 20.04        | 0.59                   |
| 6:37      | 19.66      | 0.60   | 7:21         | 19.98        | 0.61                   |
| 6:38      | 19.71      | 0.58   | 7:22         | 19.69        | 0.79                   |
| 6:39      | 20.04      | 0.40   | 7:23         | 19.75        | 0.79                   |
| 6:40      | 19.95      | 0.50   | 7:24         | 20.00        | 0.63                   |
| 6:41      | 19.66      | 0.82   | 7:25         | 20.00        | 0.43                   |
| 6:42      | 19.63      | 0.83   | 7:26         | 19.58        | 0.62                   |
| 6:43      | 19.60      | 0.82   | 7:27         | 19.91        | 0.47                   |
| 6:44      | 19.79      | 0.73   | 7:28         | 19.98        | 0.43                   |
| 6:45      | 20.00      | 0.67   | 7:29         | 19.76        | 0.54                   |
| 6:46      | 19.69      | 0.80   | 7:30         | 19.77        | 0.55                   |
| 6:47      | 19.66      | 0.63   | 7:31         | 19.84        | 0.60                   |
| 6:48      | 19.66      | 0.62   | 7:32         | 19.93        | 0.61                   |
| 6:49      | 19.61      | 0.63   | 7:33         | 19.73        | 0.73                   |
| 6:50      | 19.76      | 0.55   | 7:34         | 19.61        | 0.84                   |
| 6:51      | 20.08      | 0.40   | 7:35         | 19.59        | 0.81                   |
| 6:52      | 19.80      | 0.55   | 7:36         | 19.79        | 0.70                   |
| 6:53      | 19.63      | 0.74   | 7:37         | 20.00        | 0.56                   |
| 6:54      | 19.59      | 0.81   | 7:38         | 19.72        | 0.59                   |
|           |            |        |              |              | $\mathcal{L}_{\gamma}$ |

09/11/03

1

## CEMS Data - Dry Basis

| Job No.      | 110249.1.0 | 01.04        | Operator: | Daniel Neal  | D. N. | 9.9.03 |
|--------------|------------|--------------|-----------|--------------|-------|--------|
| Client:      | EPA / Ball |              | Date:     | August 15, 2 |       |        |
| Plant:       | CBI        |              | Run No.   | 3            |       |        |
| Location:    | Mill 💮     |              |           |              |       |        |
|              |            | M 187        |           |              |       |        |
| Time         | O2         | CO2          | Time      | O2           | CO2   |        |
| Tillic       | %          | %            | Tane      | %            | %     |        |
| 7:39         | 19.71      | 0.57         | 8:33      | 19.71        | 0.57  |        |
| 7:40         | 19.89      | 0.47         | 8:34      | 19.99        | 0.56  |        |
| 7:41         | 19.96      | 0.43         | 8:35      | 20.09        | 0.54  |        |
| 7:42         | 19.89      | 0.47         | 8:36      | 20.07        | 0.58  |        |
| 7:42         | 20.18      | 0.33         | 8:37      | 19.78        | 0.76  |        |
| 7:44         | 20.10      | 0.54         | 8:38      | 19.77        | 0.76  |        |
| 7:44<br>7:45 | 20.11      | 0.62         | 8:39      | 19.37        | 0.73  |        |
| 7:45<br>7:46 | 19.72      | 0.62         | 8:40      | 19.79        | 0.73  |        |
|              |            |              |           |              |       |        |
| 7:47         | 19.39      | 0.89         | 8:41      | 20.18        | 0.35  |        |
| 7:48         | 19.94      | 0.64         | 8:42      | 20.21        | 0.35  |        |
| 7:49         | 20.05      | 0.62         | 8:43      | 20.09        | 0.38  |        |
| 7:50         | 20.17      | 0.41         | 8:44      | 19.57        | 0.63  |        |
| 7:51         | 20.01      | 0.41         | 8:45      | 19.59        | 0.63  |        |
| 7:52         | 19.39      | 0.72         | 8:46      | 20.05        | 0.39  |        |
| 7:53         | 19.83      | 0.52         | 8:47      | 20.15        | 0.51  |        |
| 7:54         | 20.12      | 0.35         | 8:48      | 20.20        | 0.54  |        |
| 7:55         | 20.17      | 0.34         | 8:49      | 20.00        | 0.65  |        |
| 7:56         | 20.13      | 0.45         | 8:50      | 19.66        | 0.78  |        |
| 7:57         | 19.40      | 0.88         | 8:51      | 19.57        | 0.83  |        |
| 7:58         | 19.72      | 0.75         | 8:52      | 19.62        | 0.81  |        |
| 7:59         | 19.94      | 0.64         | 8:53      | 19.95        | 0.61  |        |
| 8:00         | 20.00      | 0.68         | 8:54      | 20.18        | 0.35  |        |
| 8:01         | 20.02      | 0.63         | 8:55      | 20.14        | 0.33  |        |
| 8:02         | 19.81      | 0.69         | 8:56      | 20.00        | 0.41  |        |
| 8:03         | 19.58      | 0.62         | 8:57      | 19.55        | 0.64  |        |
| 8:04         | 19.74      | 0.58         | 8:58      | 19.68        | 0.58  |        |
| 8:05         | 19.94      | 0.46         | 8:59      | 19.99        | 0.49  |        |
| 8:06         | 19.99      | 0.44         | 9:00      | 19.99        | 0.63  |        |
| 8:07         | 19.98      | 0.44         | 9:01      | 20.08        | 0.57  |        |
| 8:08         | 19.78      | 0.55         | 9:02      | 19.95        | 0.62  |        |
| 8:09         | 19.81      | 0.65         | 9:03      | 19.42        | 0.90  |        |
| 8:10         | 19.87      | 0.68         | 9:04      | 19.71        | 0.80  |        |
| 8:21         | 19.86      | 0.51         | 9:05      | 19.98        | 0.62  |        |
| 8:22         | 19.67      | 0.80         | 9:06      | 20.14        | 0.35  |        |
| 8:23         | 19.68      | 0.80         | 9:07      | 20.14        | 0.33  |        |
| 8:24         | 19.87      | 0.68         | 9:08      | 19.79        | 0.55  |        |
| 8:25         | 19.97      | 0.63         | 9:09      | 19.60        | 0.62  |        |
| 8:26         | 19.95      | 0.66         | 9:10      | 20.01        | 0.41  |        |
| 8:27         | 19.82      | 0.75         | 9:11      | 20.09        | 0.37  |        |
| 8:28         | 19.62      | 0.65         | 9:12      | 20.03        | 0.51  |        |
| 8:29         | 19.99      | 0.44         | 9:13      | 19.66        | 0.76  |        |
| 8:30         | 20.00      | 0.44         | 9:14      | 19.65        | 0.80  |        |
| 8:31         | 20.03      | 0.43         | 9:15      | 19.89        | 0.69  |        |
| 8:32         | 19.90      | 0.47         | 9:16      | 19.98        | 0.62  |        |
| 0.02         | 10.50      | <b>3.</b> 11 | 0.10      | 10.00        | 0.02  |        |

09/11/03

#### **CEMS Data - Dry Basis**

| Job No.   | 110249.1.0 |      | Operato | r: Daniel Nea | al $\emptyset$ . $\mathcal{N}$ . | 9-9-0 |
|-----------|------------|------|---------|---------------|----------------------------------|-------|
| Client:   | EPA / Ball | Clay | Date:   | August 15     | 2003                             |       |
| Plant:    | CBI        |      | Run No. | 3             |                                  |       |
| Location: | Mill       |      |         |               |                                  |       |
| Time      | O2         | CO2  | Time    | O2            | CO2                              |       |
|           | %          | %    |         | %             | %                                |       |
| 9:17      | 20.05      | 0.57 | 10:01   | 19.93         | 0.47                             |       |
| 9:18      | 19.95      | 0.59 | 10:02   | 19.76         | 0.52                             |       |
| 9:19      | 19.70      | 0.60 | 10:03   | 19.66         | 0.76                             |       |
| 9:20      | 19.94      | 0.47 | 10:04   | 19.79         | 0.72                             |       |
| 9:21      | 20.08      | 0.36 | 10:05   | 19.94         | 0.65                             |       |
| 9:22      | 20.04      | 0.40 | 10:06   | 20.00         | 0.61                             |       |
| 9:23      | 19.82      | 0.50 | 10:07   | 19.76         | 0.71                             |       |
| 9:24      | 19.75      | 0.52 | 10:08   | 19.78         | 0.73                             |       |
| 9:25      | 19.96      | 0.61 | 10:09   | 19.78         | 0.63                             |       |
| 9:26      | 20.00      | 0.61 | 10:10   | 19.92         | 0.47                             |       |
| 9:27      | 19.81      | 0.71 | 10:11   | 19.98         | 0.43                             |       |
| 9:28      | 19.53      | 0.81 | 10:12   | 19.98         | 0.44                             |       |
| 9:29      | 19.69      | 0.74 | 10:13   | 20.06         | 0.35                             |       |
| 9:30      | 19.85      | 0.68 | 10:14   | 20.03         | 0.39                             |       |
| 9:31      | 20.00      | 0.51 | 10:15   | 19.82         | 0.55                             |       |
| 9:32      | 19.96      | 0.43 | 10:16   |               | 0.76                             |       |
| 9:33      | 19.80      | 0.50 | 10:17   |               | 0.65                             |       |
| 9:34      | 19.67      | 0.57 | 10:18   |               | 0.62                             |       |
| 9:35      | 19.93      | 0.45 | 10:19   |               | 0.61                             |       |
| 9:36      | 20.00      | 0.41 | 10:20   | 19.95         | 0.64                             |       |
| 9:37      | 19.94      | 0.49 |         |               |                                  |       |
| 9:38      | 19.76      | 0.73 | Average | e: 19.84      | 0.60                             |       |
| 9:39      | 19.83      | 0.69 | Minimun |               | 0.33                             |       |
| 9:40      | 19.91      | 0.63 | Maximun |               | 0.96                             |       |
| 9:41      | 19.90      | 0.66 | a.      | 20.21         | 0.00                             |       |
| 9:42      | 19.83      | 0.74 |         |               |                                  |       |
| 9:43      | 19.79      | 0.72 |         |               |                                  |       |
| 9:44      | 19.93      | 0.45 |         |               |                                  |       |
| 9:45      | 20.03      | 0.41 |         |               |                                  |       |
| 9:46      | 20.02      | 0.43 |         |               |                                  |       |
| 9:47      | 19.80      | 0.51 |         |               |                                  |       |
| 9:48      | 19.80      | 0.53 |         |               |                                  |       |
| 9:49      | 19.93      | 0.44 |         |               |                                  |       |
| 9:50      | 19.97      | 0.54 |         |               |                                  |       |
| 9:51      | 19.90      | 0.64 |         |               |                                  |       |
| 9:52      | 19.60      | 0.82 |         |               |                                  |       |
| 9:53      | 19.70      | 0.79 |         |               |                                  |       |
| 9:54      | 19.80      | 0.73 |         |               |                                  |       |
| 9:55      | 19.85      | 0.71 |         |               |                                  |       |
| 9:56      | 19.84      | 0.62 |         |               |                                  |       |
| 9:57      | 19.84      | 0.55 |         |               |                                  |       |
| 9:58      | 19.80      | 0.53 |         |               |                                  |       |
| 9:59      | 19.80      | 0.53 |         |               |                                  |       |
| 10:00     | 19.98      | 0.44 |         |               |                                  |       |
| 10.00     | 19.90      | 0.42 |         |               |                                  |       |

3× 9/11/03

### **ORSAT ANALYSIS DATA SHEET**

(Dry Molecular Weight Determination)

| Plant         | CBI        | Sampling Location                         | DRYEZ STACK |
|---------------|------------|-------------------------------------------|-------------|
| Date          | 8-18-03    | Run Number                                | 4           |
| Operator      | DAWEL NEDE | Analytical Method (fyrite orsat monitor)  |             |
| Sampling Time | /3:06      | Sample Type (bag, integrated, continuous) | . ·         |

| Sorbing Reagents:                                                                          |                            |               | _ (CO <sub>2</sub> )       |       |                            |              | (O <sub>2</sub> )        |            | (CO)                                                                   |
|--------------------------------------------------------------------------------------------|----------------------------|---------------|----------------------------|-------|----------------------------|--------------|--------------------------|------------|------------------------------------------------------------------------|
| RUN                                                                                        | Run 1<br>Actual<br>Reading | Run I<br>Net  | Run 2<br>Actual<br>Reading | Run 2 | Run 3<br>Actual<br>Reading | Run 3<br>Net | Average<br>Net<br>Volume | Multiplier | Molecular Weight<br>Fraction of Stack Gas<br>(Dry Basis)<br>Ib/Ib-mole |
| CO <sub>2</sub>                                                                            | ۰3                         | . 3           | ,3°                        | ,3    | 3                          | , 3          | . 3                      | 0.44       | 0.132                                                                  |
| O <sub>2</sub> (Net is actual O <sub>2</sub> reading minus actual CO <sub>2</sub> reading) | 20.0                       | !9. <b>")</b> | د. مو                      | 19.7  | 20.8                       | 19.7         | 19.7                     | 0.32       | 6.304                                                                  |
| CO (Net is actual CO reading minus actual O <sub>2</sub> reading)                          |                            |               |                            |       |                            |              |                          | 0.28       |                                                                        |
| N <sub>2</sub> (Net is 100 minus actual CO reading)                                        |                            |               |                            |       |                            |              |                          | 0,28       |                                                                        |

Comments: \_\_\_\_\_\_

14/11/03

# ORSAT ANALYSIS DATA SHEET

(Dry Molecular Weight Determination)

| Plant         | CBI         | Sampling Location                         | BRYEN STACK |
|---------------|-------------|-------------------------------------------|-------------|
| Date          | 8-19-03     | Run Number                                | 5           |
| Operator      | DANIEL NEAL | Analytical Method (fyrite(orsal monitor)  |             |
| Sampling Time | 11:04       | Sample Type (bag, integrated, continuous) |             |

| Sorbing Reagents:                                                 |                            |              | (CO <sub>2</sub> )         |              |                            |              | _ (O <sub>2</sub> )      |            | (CO)                                                                   |
|-------------------------------------------------------------------|----------------------------|--------------|----------------------------|--------------|----------------------------|--------------|--------------------------|------------|------------------------------------------------------------------------|
| RUN                                                               | Run I<br>Actual<br>Reading | Run I<br>Net | Run 2<br>Actual<br>Reading | Run 2<br>Net | Run 3<br>Actual<br>Reading | Run 3<br>Net | Average<br>Net<br>Volume | Multiplier | Molecular Weight<br>Fraction of Stack Gas<br>(Dry Basis)<br>Ib/Ib-mole |
| CO <sub>2</sub>                                                   | . 2                        | . 2          | ,2                         | , 2          | . 2                        | .2           | . 2                      | 0.44       | 0.088                                                                  |
| $O_2$ (Net is actual $O_2$ reading minus actual $CO_2$ reading)   | 19.7                       | 19.7         | 19.9                       | 19.7         | 19.9                       | 19.7         | 19.7                     | 0.32       | 6.304                                                                  |
| CO (Net is actual CO reading minus actual O <sub>2</sub> reading) |                            |              |                            |              |                            |              |                          | 0.28       |                                                                        |
| N <sub>2</sub> (Net is 100 minus actual CO reading)               |                            |              |                            |              |                            |              |                          | 0.28       |                                                                        |

| Comments: | TOTAL = |                                       |  |  |
|-----------|---------|---------------------------------------|--|--|
|           |         |                                       |  |  |
|           |         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |  |  |

Da/11/03

# ORSAT ANALYSIS DATA SHEET

(Dry Molecular Weight Determination)

| Plant         | C8I         | Sampling Location                          | DRYER STACK |
|---------------|-------------|--------------------------------------------|-------------|
| Date          | 8-20-03     | Run Number                                 | 6           |
| Operator      | DANIEL NENC | Analytical Method (fyrite, orsat, monitor) |             |
| Sampling Time | 10:55       | Sample Type (bag, integrated, continuous)  | :           |

| Sorbing Reagents:                                                 |                            |              | _ (CO <sub>2</sub> )       |       |                            |       | _ (O <sub>2</sub> )      |            | (CO)                                                                   |
|-------------------------------------------------------------------|----------------------------|--------------|----------------------------|-------|----------------------------|-------|--------------------------|------------|------------------------------------------------------------------------|
| RUN                                                               | Run 1<br>Actual<br>Reading | Run I<br>Net | Run 2<br>Actual<br>Reading | Run 2 | Run 3<br>Actual<br>Reading | Run 3 | Average<br>Net<br>Volume | Multiplier | Molecular Weight<br>Fraction of Stack Gas<br>(Dry Basis)<br>lb/lb-mole |
| CO2                                                               | , 2                        | .2           | . 2                        | ,2    | .2                         | , 2   | .2                       | 0.44       | 0,088                                                                  |
| $O_2$ (Net is actual $O_2$ reading minus actual $CO_2$ reading)   | 30,0                       | 19.8         | و , ومر                    | 19.8  | 1100                       | 19,8  | 19.8                     | 0.32       | 6 336                                                                  |
| CO (Net is actual CO reading minus actual O <sub>2</sub> reading) |                            |              |                            |       |                            |       |                          | 0.28       |                                                                        |
| N <sub>2</sub> (Net is 100 minus actual<br>CO reading)            |                            |              |                            |       |                            |       |                          | 0.28       |                                                                        |

|           | TOTAL = |  |
|-----------|---------|--|
| Comments: |         |  |
|           |         |  |
|           | - Tv    |  |

0 9/11/03

#### OXYGEN AND CARBON DIOXIDE BY ORSAT

| PROJECT NO. 1/0249. 2.001,05  RUN NO. NA FIELD COUBLOTON  SAMPLE NO. N/P  DATE 8-18-03 | ORSAT LEAK CHECK BEFORE ANALYSIS: |
|----------------------------------------------------------------------------------------|-----------------------------------|
| 2                                                                                      | BURETTE CHANGE IN 4 MIN.          |
| PLANT SAMPLING LOCATION DRYEL STOCK                                                    | PIPETTES CHANGE IN 4 MIN.         |
| ANALYSIS TIME (24hr-CLOCK) 08 20                                                       | ORSAT LEAK CHECK AFTER ANALYSIS:  |
| SAMPLE TYPE (BAG, GRAB) LXB ROOM AIN                                                   | BURETTE CHANGE IN 4 MIN.          |
| OPERATOR D. New                                                                        | PIPETTES PSS CHANGE IN 4 MIN.     |

| RUN                                                                               |                            | 1    |                            | 2      |                    | 3    | AVERAGE       |
|-----------------------------------------------------------------------------------|----------------------------|------|----------------------------|--------|--------------------|------|---------------|
| GAS                                                                               | ACTUAL<br>READING          | NET  | ACTUAL<br>READING          | NET    | ACTUAL<br>READING  | NET  | NET<br>VOLUME |
| co <sub>2</sub>                                                                   | 1<br>2<br>2<br>3<br>       |      | 1<br>2<br>3                |        | 1<br>2<br>3        |      | $\rightarrow$ |
| O <sub>2</sub> (NET IS SECOND<br>READING MINUS ACTUAL<br>CO <sub>2</sub> READING) | 1 20 3<br>2 20.8<br>3 20.8 | 20,8 | 1 20.8<br>2 20.8<br>3 20.8 | .8 .סנ | 13-8 2 20 3 3 20 8 | 20.8 | 20,8          |

91-16 SEV SURMAN what 052191

#### Acceptance Criteria

CO  $_2$  > 4% .3% by Volume  $O_2$   $\geq$  15% .2% by Volume  $\leq$  4% .2% by Volume < 15% .3% by Volume

Comments:

# **Appendix C**

# **Field Sampling Equipment Calibration Records**

# Appendix C-1

# **Pre-Test Calibration Records**

#### M5 Console Pre-Calibration Checklist

| Job No.           | 110249.2.0                      | 01.04                          | Date                           | August                  | 6, 2003  |  |
|-------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------|----------|--|
| Console No.       | N7                              |                                | Performed By                   |                         |          |  |
|                   | (Place an "X" in                | the space provided after th    | ne required chacks are not     | 'ormod \                |          |  |
| 1X                |                                 | ive leak check of Delta        |                                | onnea.)                 |          |  |
|                   | Procedure for p                 | ositive leak check Delta H r   | nanometer:                     |                         |          |  |
|                   | 1. Pump must                    | not be run prior to this test. | Pump needs to be cool in ord   | der to get an accurate  | reading. |  |
|                   |                                 | are and vacuum lines must be   |                                |                         |          |  |
|                   |                                 | n console must be in the dow   | n position so solenoid valve   | is open to the sampling | ng       |  |
|                   |                                 | is during testing.             | tota forma a transfer to the   |                         |          |  |
|                   |                                 | xhaust and clamp off bottom    | tube from exhaust which go     | es to the Orsat pump.   |          |  |
|                   |                                 |                                |                                |                         |          |  |
|                   |                                 | Open fine control valve.       |                                |                         |          |  |
|                   | Disconnect r                    | ight side Delta H manometer    | tube on front of console.      |                         |          |  |
|                   | <ol><li>Blow into tub</li></ol> | ing until manometer reads 5    | to 7 inches of water, and clar | mp off.                 |          |  |
|                   |                                 | l be no change in manometer    | •                              |                         |          |  |
|                   |                                 | remove plug and clamp fr       |                                |                         |          |  |
| 2. X              |                                 | d damage to the meter pum      | p when pump is started up      | <u> </u>                |          |  |
|                   |                                 | elta P manometer.              |                                |                         |          |  |
|                   | Clean pump                      |                                |                                |                         |          |  |
| 4. X              | Clean muffler                   | ,                              |                                |                         |          |  |
| 5. X              | Inspect/refill o                | -                              |                                |                         |          |  |
| 6. X              | Calibrate DGN                   | If thermocouples:              | Reference Pyrometer            | Console Pyrome          | eter     |  |
|                   |                                 |                                | °F                             | °F                      |          |  |
|                   | eading must be                  | DGM Inlet:                     | 79.4                           | 80.0                    |          |  |
| within +/-        | 2.5°F                           | DGM Outlet:                    | 79.4                           | 80.0                    |          |  |
|                   |                                 |                                |                                |                         |          |  |
| 7. X              |                                 | mer in place and function      |                                |                         |          |  |
| 8. X              |                                 | k. (Leak check at 25 in.       | Hg. Vacuum. Leak rate          | e should be zero)       |          |  |
| 9. <u>x</u>       | Check indicate                  | or lights                      |                                |                         |          |  |
| 10. X             | Check thermo                    | couple switches.               |                                |                         |          |  |
| 11X               | Check fan.                      |                                |                                |                         |          |  |
| 12. X             | Check pump h                    | eater.                         |                                |                         |          |  |
| 13. X             | check heat co                   | ntrollers.                     |                                |                         |          |  |
| 14. X             | Check Orsat p                   | ump and rotameter.             |                                |                         |          |  |
| f any of the abov | ve items were replace           | d or repaired, please docur    | ment that information below    | w:                      |          |  |
| Signature:        | Kamb                            | roefl                          | Date: 8-6                      | -03                     |          |  |

#### **ANEROID BAROMETER CALIBRATION CHECK**

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lot 791802000

MRI Project No. 110249.2.001.04

Date: 37840

Time: 10:21

Readings Obtained By: Daniel Neal Annual New 8-7-03

Observed Barometer Reading: 29.33 in. Hg

Mercury Column Temperature: 81 °F

Correction For Temperature: -0.14 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.17 in. Hg

Aneroid Barometer I.D. No.: X-4029

Reading Before Adjustment: 29.18 in. Hg

Calibration Check Result: within 0.1 in. Hg

Reading After Adjustment: 29.18 in. Hg

Remarks:

BAROMETR.xls 10/27/99 (rev. Equipment Calibration Workbook.xls 8/7/2003 10:25 AM)

#### MERCURY BAROMETER PRESSURE READING CORRE

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lc

MRI Project No. 110249.2.001.04

Date: August 6, 2003

Time: 0.647916667

Readings Obtained By: Darrel Sprague

Observed Barometer Reading: 29.24 in. Hg

Mercury Column Temperature: 81 °F

Correction For Temperature: -0.14 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.08 in. Hg

Remarks:

Signature:

Wall grage Date: 8-6-03

#### **M5 Console Calibration Worksheet**

| Job No.   | 110249.2.001.04 |         | Metering Console No.                                | N7     |
|-----------|-----------------|---------|-----------------------------------------------------|--------|
| Date      | August 6, 2003  |         | Previous Dry Gas Meter Factor (Y):                  | 1.002  |
| Operator  | Darrel Sprague  |         | Calibrated Critical Orifice No.                     | D24    |
| Barometer | 29.08           | in. Hg. | Critical Orifice Coefficient in English Units (K'): | 0.6417 |
|           |                 |         | Ambient Temperature Meter No.                       | 81.0   |

Note: Prior to running calibration, connect mercury manometer to sample orifice. Turn on pump and bring mercury manometer up to 18.0 in. Hg. Record mercury manometer and console vacuum gauge readings below. Insert critical orifice into console sample orifice. Set console vacuum gauge at 18.0 in. Hg. +/- the console vacuum gauge correction factor calculated below.

> Mercury manometer readings: 8.4 + 8.6 = 18.00 in. Hg. Console vacuum gauge reading: 17.00 in. Hg. console vacuum gauge correction factor: 1.00 in. Hg.

|                                         |          | RUN # 1 | RUN # 2 | RUN # 3 |
|-----------------------------------------|----------|---------|---------|---------|
| DGM Initial Volume:                     | Initial: | 678.798 | 687.172 | 695.573 |
|                                         | Final:   | 687.172 | 695.573 | 703.965 |
| DGM Inlet Temperature:                  | Initial: | 83      | 84      | 87      |
|                                         | Final:   | 83      | 86      | 87      |
| DGM Outlet Temperature:                 | Initial: | 81      | 81      | 83      |
|                                         | Final:   | 81      | 82      | 82      |
| Time of run (In seconds):               | _        | 600     | 600     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O): |          | 2.15    | 2.15    | 2.15    |
| Room Temperature:                       | Initial: | 80.8    | 81.2    | 81.8    |
|                                         | Final:   | 81.4    | 81.4    | 82.4    |
| Pump Vacuum (in. Hg.):                  |          | 18.0    | 18.0    | 18.0    |

Signature:

Date: 8-6-03

Ram Garage

#### METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE

| MRI Project No. | 110249.2.001.04 | Metering Console No.               | N7    |
|-----------------|-----------------|------------------------------------|-------|
| Date:           | August 6, 2003  | Previous Dry Gas Meter Factor (Y): | 1.002 |
| Operator:       | Darrel Sprague  | Calibrated Critical Orifice No.    | D24   |
|                 | Critical        | 0.64170                            |       |
|                 |                 | Ambient Temperature Meter No.      | 81.0  |

|                                                                     | Run 1   | Run 2   | Run 3   |
|---------------------------------------------------------------------|---------|---------|---------|
| CALIBRATION GAS VOLUME DATA                                         |         |         |         |
| Initial Dry Gas Meter Gas Volume, ft.3                              | 678.798 | 687.172 | 695.573 |
| Final Dry Gas Meter Gas Volume, ft.3                                | 687.172 | 695.573 | 703.965 |
| Net Dry Gas Meter Gas Volume (\(\sigma_n\), ft.3                    | 8.374   | 8.401   | 8.392   |
| CALIBRATION CONDITIONS DATA                                         |         |         |         |
| Dry Gas Meter Temperature, °F:                                      |         |         |         |
| Initial Inlet Temperature, °F                                       | 83.0    | 84.0    | 87.0    |
| Final Inlet Temperature, °F                                         | 83.0    | 86.0    | 87.0    |
| Initial Outlet Temperature, °F                                      | 81.0    | 81.0    | 83.0    |
| Final Outlet Temperature, °F                                        | 81.0    | 82.0    | 82.0    |
| Average Dry Gas Meter Temperature (t,), °F                          | 82.0    | 83.3    | 84.8    |
| Time, seconds                                                       | 600     | 600     | 600     |
| Orifice Meter AH, inches H <sub>2</sub> O                           | 2.15    | 2.15    | 2.15    |
| Barometric Pressure, in. Hg                                         | 29.08   | 29.08   | 29.08   |
| Critical Orifice Inlet (Ambient) Temperature, °F:                   |         |         |         |
| Initial Ambient Temperature, °F                                     | 80.8    | 81.2    | 81.8    |
| Final Ambient Temperature, °F                                       | 81.4    | 81.4    | 82.4    |
| Avg. Critical Orifice Inlet Temperature (t <sub>am</sub> ), °F      | 81.1    | 81.3    | 82.1    |
| Pump Vacuum, in. Hg                                                 | 18.0    | 18.0    | 18.0    |
| COMPUTED CALIBRATION RESULTS                                        |         |         |         |
| Critical Orifice Gas Volume (V <sub>cr (std)</sub> ), standard ft.³ | 8.025   | 8.023   | 8.017   |
| Dry Gas Meter Gas Volume (V <sub>m (std)</sub> ), standard ft.³     | 7.971   | 7.979   | 7.948   |
| Dry Gas Meter Calibration Factor (Y)                                | 1.007   | 1.006   | 1.009   |
| Orifice Meter ∆H@                                                   | 1.798   | 1.794   | 1.792   |
| AVERAGE CALIBRATION RESULTS                                         |         |         |         |
| Average Dry Gas Meter Calibration Factor (Y)                        | 1.007   |         |         |
| Average Orifice Meter ∄H@                                           | 1.794   |         |         |
| CALIBRATION RESULTS COMPARISON                                      |         |         |         |
| Criterion: Y Must Be Within 2% Of Average Y                         |         |         |         |
| Percent Difference Of Y From Average Y                              | 0.03%   | 0.14%   | 0.17%   |
| Tolerance Result                                                    | PASS    | PASS    | PASS    |
| COMPARISON WITH PRETEST RESULTS                                     |         |         |         |
| Criterion: Y Must Be Within 5% Of Previous Y                        |         |         |         |
| % Difference Of Average Y From Previous Y                           | 0.50%   |         |         |
| Tolerance Result                                                    | PASS    | 1       |         |

Remarks:

Signature:

Darel Date: 8-6-03

#### M5 Console Critical Orifice Bracketing Worksheet

| MRI Project No.                   | 110249.2.001.04 | Critical Orifice Being Evaluated       | D24                  |
|-----------------------------------|-----------------|----------------------------------------|----------------------|
| Date: _                           | August 6, 2003  | First Critical Orifice No.             | D30                  |
| Operator:                         | Darrel Sprague  | Coefficient (K'):                      | 0.8202               |
| Metering Console No.              | N7              | Second Critical Orifice No.            | D21                  |
| Dry Gas Meter Factor (Y):         | 1.006970646     | Coefficient (K'):                      | 0.5693               |
| Orifice Used for the Calibration: | D24             | Note: Critical orifice coefficients as | re in English units. |
| Ambient Temperature Meter No.     | 81.0            |                                        |                      |

Note: Prior to running calibration, connect mercury manometer to sample orifice. Turn on pump and bring mercury manometer up to 18.0 in. Hg. Record mercury manometer and console vacuum gauge readings below. Insert critical orifice into console sample orifice. Set console vacuum gauge at 18.0 in. Hg. +/- the console vacuum gauge correction factor calculated below.

Mercury manometer readings: 8.4 + 8.6 = 18.00 in. Hg.

Console vacuum gauge reading: 17.00 in. Hg.

console vacuum gauge correction factor: 1.00 in. Hg.

|                                         |           | RUN # 1 | RUN # 2 |
|-----------------------------------------|-----------|---------|---------|
| DGM Initial Volume:                     | Initial:  | 709.302 | 720.400 |
|                                         | Final:    | 720.057 | 727.855 |
| DGM Inlet Temperature:                  | Initial:_ | 88      | 88      |
|                                         | Final:    | 90      | 89      |
| DGM Outlet Temperature:                 | Initial:_ | 84      | 85      |
|                                         | Final:    | 84      | 86      |
| Time of run (In seconds):               |           | 600     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O): | _         | 3.50    | 1.70    |
| Room Temperature:                       | Initial:  | 82.0    | 83.0    |
|                                         | Final:    | 82.8    | 82.6    |
| Pump Vacuum (in. Hg.):                  |           | 18.0    | 18.0    |

Signature: Way Grapul

Date: 8-6-03

#### **METHOD 5 METERING CONSOLE CALIBRATION** CRITICAL ORIFICE BRACKETING DATA

| MRI Project No.                              | 110249.2.001.04                                           | Critical Orifice Being Evaluated      |         |
|----------------------------------------------|-----------------------------------------------------------|---------------------------------------|---------|
| Date:                                        | August 6, 2003                                            | Critical Orifice No.                  | D24     |
| Operator:                                    | Darrel Sprague                                            | Critical Orifices Used For Bracketing |         |
| Metering Console No.                         | N7                                                        | First Orifice                         |         |
| Dry Gas Meter Factor (Y):                    | 1.007                                                     | Critical Orifice No.                  | D30     |
| Orifice Used for the Calibration:            | D24                                                       | Coefficient (K'):                     | 0.82020 |
| Ambient Temperature Meter No.                | 81.0                                                      | Second Orifice                        |         |
| Note: Critical orifice coefficients are in E | Note: Critical orifice coefficients are in English units. |                                       |         |
|                                              |                                                           | Coefficient (K'):                     | 0.56930 |

|                                                                                 | First Orifice | Second Orifice |
|---------------------------------------------------------------------------------|---------------|----------------|
| CALIBRATION GAS VOLUME DATA                                                     |               |                |
| Initial Dry Gas Meter Gas Volume, ft.³                                          | 709.302       | 720.400        |
| Final Dry Gas Meter Gas Volume, ft.³                                            | 720.057       | 727.855        |
| Net Dry Gas Meter Gas Volume (V <sub>m</sub> ), ft.³                            | 10.755        | 7.455          |
| CALIBRATION CONDITIONS DATA                                                     |               |                |
| Dry Gas Meter Temperature, °F:                                                  |               |                |
| Initial Inlet Temperature, °F                                                   | 88.000        | 88.000         |
| Final Inlet Temperature, °F                                                     | 90.000        | 89.000         |
| Initial Outlet Temperature, °F                                                  | 84.000        | 85.000         |
| Final Outlet Temperature, °F                                                    | 84.000        | 86.000         |
| Average Dry Gas Meter Temperature (t,), °F                                      | 86.5          | 87.0           |
| Time, seconds                                                                   | 600.000       | 600.000        |
| Orifice Meter $\Delta H$ , inches $H_2O$                                        | 3.500         | 1.700          |
| Barometric Pressure, in. Hg                                                     | 29.08         | 29.08          |
| Critical Orifice Inlet (Ambient) Temperature, °F:                               |               |                |
| Initial Ambient Temperature, °F                                                 | 82.000        | 83.000         |
| Final Ambient Temperature, °F                                                   | 82.800        | 82.600         |
| Average Critical Orifice Inlet Temperature (t <sub>amb</sub> °F                 | 82.4          | 82.8           |
| Pump Vacuum, in. Hg                                                             | 18.000        | 18.000         |
| COMPUTED CALIBRATION RESULTS                                                    |               |                |
| Critical Orifice Gas Volume (V <sub>cr (std)</sub> ), standard ft. <sup>3</sup> | 10.244        | 7.108          |
| Dry Gas Meter Gas Volume (V <sub>m (std)</sub> ), standard ft. <sup>3</sup>     | 10.188        | 7.024          |
| Factor (Y) Obtained With Bracketing Orifice                                     | 1.006         | 1.012          |
| CRITICAL ORIFICE ACCEPTABILITY                                                  |               |                |
| Criterion: All Ys Must Be Within 2% Of All Other Ys                             |               |                |
| Larger % Difference Between Dry Gas Meter Factor (Y)                            |               |                |
| And Factor (Y) Obtained With The Bracketing Orifice                             | 0.14%         | 0.50%          |
| Larger % Difference Between Factors (Ys)                                        |               |                |
| Obtained With Bracketing Orifices                                               | 0.64%         |                |
| Acceptability Result                                                            | All Orifices  | Are Acceptable |

Remarks:
Signature: Warm June Date: 8-6-83

## M5 Console Pre-Calibration Checklist

|        | Job No.    |          | 110249.2.00       | 1.04                                                                                    | Date                         |                                              | August 7, 2003       |  |
|--------|------------|----------|-------------------|-----------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|----------------------|--|
| C      | onsole No. |          | N12               |                                                                                         | Performed By                 |                                              | Darrel Sprague       |  |
| 1.     | X          |          | Perform positi    | the space provided after th<br>ve leak check of Delta h<br>ositive leak check Delta H m | H manometer.                 | ormed.)                                      |                      |  |
|        |            | 1.       |                   | not be run prior to this test. F                                                        | <del></del>                  | ler to get a                                 | an accurate reading. |  |
|        |            | 2.       |                   | re and vacuum lines must be                                                             | ·                            |                                              | •                    |  |
|        |            | 3.       | Null switch or    | n console must be in the dow                                                            | n position so solenoid valve | is open to                                   | the sampling         |  |
|        |            |          |                   | s during testing.                                                                       |                              |                                              |                      |  |
|        |            | 4.       |                   | chaust and clamp off bottom                                                             | tube from exhaust which goe  | es to the O                                  | rsat pump.           |  |
|        |            | 5.<br>6. | Plug sample       |                                                                                         |                              |                                              |                      |  |
|        |            | 7.       | Open fine cor     | ow control valve.                                                                       |                              |                                              |                      |  |
|        |            | 8.       | •                 | ght side Delta H manometer                                                              | tube on front of console.    |                                              |                      |  |
|        |            | 9.       |                   | ing until manometer reads 5 t                                                           |                              | np off.                                      |                      |  |
|        |            |          | There should      | be no change in manometer                                                               | reading.                     |                                              |                      |  |
|        |            | 10.      |                   | remove plug and clamp fr                                                                |                              |                                              | <u>this</u>          |  |
| _      |            |          |                   | damage to the meter pum                                                                 | p when pump is started up    | <u>)                                    </u> |                      |  |
| 2.     |            |          |                   | elta P manometer.                                                                       |                              |                                              |                      |  |
| 3.     |            |          | Clean pump        |                                                                                         |                              |                                              |                      |  |
| 4.     |            |          | Clean muffler     |                                                                                         |                              |                                              |                      |  |
| 5.     |            |          | Inspect/refill of | -                                                                                       |                              |                                              |                      |  |
| 6.     | X          |          | Calibrate DGM     | 1 thermocouples:                                                                        | Reference Pyrometer          | Conso                                        | ole Pyrometer        |  |
|        |            |          |                   | <b>,</b>                                                                                | °F                           |                                              | °F                   |  |
|        |            |          | ng must be        | DGM Inlet:                                                                              | 78.4                         |                                              | 78.0                 |  |
|        | within +/- | -2.5°    | F                 | DGM Outlet:                                                                             | 78.8                         |                                              | 78.0                 |  |
|        |            |          |                   |                                                                                         |                              |                                              |                      |  |
| 7.     |            |          | -                 | mer in place and function                                                               |                              |                                              |                      |  |
| 8.     | X          |          | Vacuum check      | k. (Leak check at 25 in.                                                                | Hg. Vacuum. Leak rate        | e should                                     | be zero)             |  |
| 9.     | X          |          | Check indicate    | or lights                                                                               |                              |                                              |                      |  |
| 10.    | Χ          |          | Check thermo      | couple switches.                                                                        |                              |                                              |                      |  |
| 11.    | X          |          | Check fan.        |                                                                                         |                              |                                              |                      |  |
| 12.    | X          |          | Check pump h      | eater.                                                                                  |                              |                                              |                      |  |
| 13.    | X          |          | check heat co     | ntrollers.                                                                              |                              |                                              |                      |  |
| 14.    | X          |          | Check Orsat p     | ump and rotameter.                                                                      |                              |                                              |                      |  |
| lf any | of the abo | ve ite   | ems were replace  | d or repaired, please docui                                                             | ment that information belo   | w:                                           |                      |  |
| Sign   | ature:     | 4        | Darul             | Margue                                                                                  | Date: 8-7                    | 7-0                                          | 3                    |  |

#### MERCURY BAROMETER PRESSURE READING CORRE

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lc

MRI Project No. 110249.2.001.04

Date: August 7, 2003

Time: 13:14

Readings Obtained By: Darrel Sprague

Observed Barometer Reading: 29.30 in. Hg

Mercury Column Temperature: 81 °F

Correction For Temperature: -0.14 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.14 in. Hg

Remarks:

Signature

Ram Gragul Date: 8-7-03

BAROMETR.xls 10/27/99 (rev. N12\_Console Calibration Workbook.xls 8/7/2003 3:09 PM)

#### **M5 Console Calibration Worksheet**

| Job No.   | 110249.2.001.04 |         | Metering Console No.                                | N12    |
|-----------|-----------------|---------|-----------------------------------------------------|--------|
| Date      | August 7, 2003  |         | Previous Dry Gas Meter Factor (Y):                  | 0.987  |
| Operator  | Darrel Sprague  |         | Calibrated Critical Orifice No.                     | D24    |
| Barometer | 29.14           | in. Hg. | Critical Orifice Coefficient in English Units (K'): | 0.6417 |
|           |                 |         | Ambient Temperature Meter No.                       | 81.0   |

<u>Note:</u> Prior to running calibration, connect mercury manometer to sample orifice. Turn on pump and bring mercury manometer up to 18.0 in. Hg. Record mercury manometer and console vacuum gauge readings below. Insert critical orifice into console sample orifice. Set console vacuum gauge at 18.0 in. Hg. +/- the console vacuum gauge correction factor calculated below.

Mercury manometer readings: 9.0 + 9.2 = 18.00 in. Hg.

Console vacuum gauge reading: 18.20 in. Hg.

console vacuum gauge correction factor: -0.20 in. Hg.

|                                         |          | RUN # 1 | RUN # 2 | RUN # 3 |
|-----------------------------------------|----------|---------|---------|---------|
| DGM Initial Volume:                     | Initial: | 692.500 | 701.076 | 709.459 |
|                                         | Final:   | 701.076 | 709.459 | 718.028 |
| DGM Inlet Temperature:                  | Initial: | 79      | 81      | 93      |
|                                         | Final:   | 80      | 82      | 84      |
| DGM Outlet Temperature:                 | Initial: | 78      | 82      | 79      |
|                                         | Final:   | 78      | 79      | 80      |
| Time of run (In seconds):               | -        | 600     | 600     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O): |          | 2.15    | 2.15    | 2.15    |
| Room Temperature:                       | Initial: | 80.8    | 82.1    | 82.0    |
|                                         | Final:   | 81.6    | 81.8    | 81.6    |
| Pump Vacuum (in. Hg.):                  |          | 18.0    | 18.0    | 18.0    |

Signature: Want Graye

Date: 8-7-03

#### METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE

| MRI Project No. | 110249.2.001.04                                     | Metering Console No.               | N12     |
|-----------------|-----------------------------------------------------|------------------------------------|---------|
| Date:           | August 7, 2003                                      | Previous Dry Gas Meter Factor (Y): | 0.987   |
| Operator:       | Darrel Sprague                                      | Calibrated Critical Orifice No.    | D24     |
|                 | Critical Orifice Coefficient in English Units (K'): |                                    | 0.64170 |
|                 |                                                     | Ambient Temperature Meter No.      | 81.0    |

| D 4     | D 0                                              | D 2                                                                                                                                                                                                                       |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| run 1   | Kun 2                                            | Run 3                                                                                                                                                                                                                     |
| 602 500 | 701.076                                          | 700.450                                                                                                                                                                                                                   |
|         |                                                  | 709.459<br>718.028                                                                                                                                                                                                        |
|         |                                                  | 718.028<br>8.569                                                                                                                                                                                                          |
| 6.576   | 0.383                                            | 0.009                                                                                                                                                                                                                     |
|         |                                                  |                                                                                                                                                                                                                           |
| 70 N    | 91 A                                             | 03.0                                                                                                                                                                                                                      |
|         |                                                  | 93.0                                                                                                                                                                                                                      |
|         |                                                  | 84.0                                                                                                                                                                                                                      |
|         |                                                  | 79.0                                                                                                                                                                                                                      |
|         |                                                  | 80.0                                                                                                                                                                                                                      |
|         |                                                  | 84.0                                                                                                                                                                                                                      |
|         |                                                  | 600                                                                                                                                                                                                                       |
|         |                                                  | 2.15                                                                                                                                                                                                                      |
| 29.14   | 29.14                                            | 29.14                                                                                                                                                                                                                     |
| 90.0    | 92.4                                             |                                                                                                                                                                                                                           |
|         |                                                  | 82.0                                                                                                                                                                                                                      |
|         |                                                  | 81.6                                                                                                                                                                                                                      |
|         |                                                  | 81.8                                                                                                                                                                                                                      |
| 18.0    | 18.0                                             | 18.0                                                                                                                                                                                                                      |
|         |                                                  | -                                                                                                                                                                                                                         |
|         | 8.035                                            | 8.036                                                                                                                                                                                                                     |
|         |                                                  | 8.144                                                                                                                                                                                                                     |
|         |                                                  | 0.987                                                                                                                                                                                                                     |
| 1.805   | 1.800                                            | 1.790                                                                                                                                                                                                                     |
|         |                                                  |                                                                                                                                                                                                                           |
| 0.989   |                                                  |                                                                                                                                                                                                                           |
| 1.798   |                                                  |                                                                                                                                                                                                                           |
|         |                                                  |                                                                                                                                                                                                                           |
|         |                                                  |                                                                                                                                                                                                                           |
| 1.21%   | 1.42%                                            | 0.22%                                                                                                                                                                                                                     |
| PASS    | PASS                                             | PASS                                                                                                                                                                                                                      |
|         |                                                  |                                                                                                                                                                                                                           |
|         |                                                  |                                                                                                                                                                                                                           |
| 0.19%   |                                                  |                                                                                                                                                                                                                           |
| PASS    |                                                  |                                                                                                                                                                                                                           |
| Oate:   | 8-7-07                                           | 3                                                                                                                                                                                                                         |
|         | 0.989<br>1.798<br>1.21%<br>PASS<br>0.19%<br>PASS | 692.500 701.076 701.076 709.459 8.576 8.383  79.0 81.0 80.0 82.0 78.0 79.0 78.8 81.0 600 600 2.15 2.15 29.14 29.14  80.8 82.1 81.6 81.8 81.2 82.0 18.0 18.0  8.040 8.035 8.230 8.011 0.977 1.003 1.805 1.800  0.989 1.798 |

#### M5 Console Pre-Calibration Checklist

|        | Job No.                                                                                     | 110249.2.00                                            | 1.04                                                | Date                           | August 7, 2003                 |  |
|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|--------------------------------|--------------------------------|--|
| Co     | nsole No.                                                                                   | N13                                                    |                                                     | Performed By                   | Darrel Sprague                 |  |
|        |                                                                                             |                                                        |                                                     |                                |                                |  |
|        |                                                                                             | (Place an "X" in                                       | the space provided after th                         | e required checks are perfe    | ormed.)                        |  |
| 1.     | Perform positive leak check of Delta H manometer.                                           |                                                        |                                                     |                                |                                |  |
|        |                                                                                             | Procedure for po                                       | sitive leak check Delta H m                         | nanometer:                     |                                |  |
|        |                                                                                             | 1. Pump must r                                         | not be run prior to this test. F                    | oump needs to be cool in ord   | er to get an accurate reading. |  |
|        | <ol><li>Pump pressure and vacuum lines must be connected to console.</li></ol>              |                                                        |                                                     |                                |                                |  |
|        |                                                                                             |                                                        | n console must be in the dow                        | n position so solenoid valve i | is open to the sampling        |  |
|        |                                                                                             |                                                        | s during testing.                                   | tuba from oubquet which acc    | e to the Oract numn            |  |
|        |                                                                                             | <ol> <li>Plug meter ex</li> <li>Plug sample</li> </ol> | chaust and clamp off bottom                         | tube from exhaust which goe    | is to the Orsat pump.          |  |
|        |                                                                                             |                                                        | omice.<br>ow control valve.                         |                                |                                |  |
|        |                                                                                             | <ol> <li>Open fine cor</li> </ol>                      |                                                     |                                |                                |  |
|        |                                                                                             | •                                                      | ght side Delta H manometer                          | tube on front of console.      |                                |  |
|        |                                                                                             | <ol><li>Blow into tub</li></ol>                        | ing until manometer reads 5 t                       | to 7 inches of water, and clar | np off.                        |  |
|        |                                                                                             |                                                        | be no change in manometer                           |                                |                                |  |
|        |                                                                                             |                                                        | remove plug and clamp fr<br>damage to the meter pum |                                |                                |  |
| 2.     | Х                                                                                           |                                                        | elta P manometer.                                   | p when pump is started up      | 1                              |  |
|        |                                                                                             |                                                        | ella F manometer.                                   |                                |                                |  |
| 3.     | N/A                                                                                         | Clean pump                                             | (-)                                                 |                                |                                |  |
| 4.     | X                                                                                           | Clean muffler                                          |                                                     |                                |                                |  |
| 5.     | _X_                                                                                         | Inspect/refill o                                       | •                                                   |                                |                                |  |
| 6.     | X                                                                                           | Calibrate DGN                                          | I thermocouples:                                    | Reference Pyrometer            | Console Pyrometer              |  |
|        | ,                                                                                           |                                                        |                                                     | °F                             | °F                             |  |
|        |                                                                                             | leading must be                                        | DGM Inlet:                                          | 78.8                           | 80.0                           |  |
|        | within +/                                                                                   | '-2.5 <sup>0</sup> F                                   | DGM Outlet:                                         | 78.8                           | 80.0                           |  |
|        |                                                                                             |                                                        |                                                     |                                |                                |  |
| 7.     |                                                                                             | Digital clock/ti                                       | mer in place and function                           | onal.                          |                                |  |
| 8.     | Х                                                                                           | Vacuum checl                                           | k. (Leak check at 25 in.                            | Hg. Vacuum. Leak rate          | e should be zero)              |  |
| 9.     | X                                                                                           | Check indicate                                         | or lights                                           |                                |                                |  |
| 10.    | Х                                                                                           | Check thermo                                           | couple switches.                                    |                                |                                |  |
| 11.    | Χ                                                                                           | Check fan.                                             |                                                     |                                |                                |  |
| 12.    | Х                                                                                           | Check pump h                                           | neater.                                             |                                |                                |  |
| 13.    | Х                                                                                           | check heat co                                          | ntrollers.                                          |                                |                                |  |
| 14.    | X                                                                                           |                                                        | oump and rotameter.                                 |                                |                                |  |
| if any | f any of the above items were replaced or repaired, please document that information below: |                                                        |                                                     |                                |                                |  |
| Sign   | ature:                                                                                      | Raul g                                                 | sioque                                              | Date: <u>8-7</u>               | 2-03                           |  |

#### MERCURY BAROMETER PRESSURE READING CORRE

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lc

MRI Project No. 110249.2.001.04

Date: August 7, 2003

Time: 14:53

Readings Obtained By: Darrel Sprague

Observed Barometer Reading: 29.30 in. Hg

Mercury Column Temperature: 81 °F

Correction For Temperature: -0.14 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.14 in. Hg

Remarks:

Signature:

Date: 8-07-03

BAROMETR.xls 10/27/99 (rev. N13 Pretest Calibration Workbook.xls 8/7/2003 3:07 PM)

Ram Sugar

#### M5 Console Calibration Worksheet

| Job No.   | 110249.2.001.04 |         | Metering Console No.                                | N13    |
|-----------|-----------------|---------|-----------------------------------------------------|--------|
| Date      | August 7, 2003  |         | Previous Dry Gas Meter Factor (Y):                  | 0.987  |
| Operator  | Darrel Sprague  |         | Calibrated Critical Orifice No.                     | D24    |
| Barometer | 29.14           | in. Hg. | Critical Orifice Coefficient in English Units (K'): | 0.6417 |
| ***       |                 |         | Ambient Temperature Meter No.                       | 81.0   |

<u>Note:</u> Prior to running calibration, connect mercury manometer to sample orifice. Turn on pump and bring mercury manometer up to 18.0 in. Hg. Record mercury manometer and console vacuum gauge readings below. Insert critical orifice into console sample orifice. Set console vacuum gauge at 18.0 in. Hg. +/- the console vacuum gauge correction factor calculated below.

Mercury manometer readings: 8.8 + 8.9 = 18.00 in. Hg.

Console vacuum gauge reading: 17.70 in. Hg.

console vacuum gauge correction factor: 0.30 in. Hg.

|                                         |          | RUN # 1 | RUN # 2 | RUN # 3 |
|-----------------------------------------|----------|---------|---------|---------|
| DGM Initial Volume:                     | Initial: | 337.000 | 345.523 | 353.207 |
|                                         | Final:   | 345.523 | 353.207 | 361.765 |
| DGM Inlet Temperature:                  | Initial: | 80      | 83      | 85      |
|                                         | Final:   | 82      | 84      | 87      |
| DGM Outlet Temperature:                 | Initial: | 79      | 80      | 81      |
|                                         | Final:   | 80      | 80      | 81      |
| Time of run (In seconds):               |          | 600     | 540     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O): | _        | 2.15    | 2.15    | 2.15    |
| Room Temperature:                       | Initial: | 80.6    | 82.2    | 82.8    |
|                                         | Final:   | 81.4    | 82.4    | 83.8    |
| Pump Vacuum (in. Hg.):                  |          | 18.0    | 18.0    | 18.0    |

Signature: Ram Blags

Date: 8-1-03

#### METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE

| MRI Project No. | 110249.2.001.04                                     | Metering Console No.               | N13     |
|-----------------|-----------------------------------------------------|------------------------------------|---------|
| Date:           | August 7, 2003                                      | Previous Dry Gas Meter Factor (Y): | 0.987   |
| Operator:       | Darrel Sprague                                      | Calibrated Critical Orifice No.    | D24     |
|                 | Critical Orifice Coefficient in English Units (K'): |                                    | 0.64170 |
|                 |                                                     | Ambient Temperature Meter No.      | 81.0    |

|                                                                                | Run 1   | Run 2   | Run 3   |
|--------------------------------------------------------------------------------|---------|---------|---------|
| CALIBRATION GAS VOLUME DATA                                                    |         |         |         |
| Initial Dry Gas Meter Gas Volume, ft.³                                         | 337.000 | 345.523 | 353.207 |
| Final Dry Gas Meter Gas Volume, ft.³                                           | 345.523 | 353.207 | 361.765 |
| Net Dry Gas Meter Gas Volume (V <sub>m</sub> ), ft. <sup>3</sup>               | 8.523   | 7.684   | 8.558   |
| CALIBRATION CONDITIONS DATA                                                    |         |         |         |
| Dry Gas Meter Temperature, °F:                                                 |         |         |         |
| Initial Inlet Temperature, °F                                                  | 80.0    | 83.0    | 85.0    |
| Final Inlet Temperature, °F                                                    | 82.0    | 84.0    | 87.0    |
| Initial Outlet Temperature, °F                                                 | 79.0    | 80.0    | 81.0    |
| Final Outlet Temperature, °F                                                   | 80.0    | 80.0    | 81.0    |
| Average Dry Gas Meter Temperature (էդ), °F                                     | 80.3    | 81.8    | 83.5    |
| Time, seconds                                                                  | 600     | 540     | 600     |
| Orifice Meter $\Delta$ H, inches H $_2$ O                                      | 2.15    | 2.15    | 2.15    |
| Barometric Pressure, in. Hg                                                    | 29.14   | 29.14   | 29.14   |
| Critical Orifice Inlet (Ambient) Temperature, °F:                              |         |         |         |
| Initial Ambient Temperature, °F                                                | 80.6    | 82.2    | 82.8    |
| Final Ambient Temperature, °F                                                  | 81.4    | 82.4    | 83.8    |
| Avg. Critical Orifice Inlet Temperature (t <sub>am</sub> ), °F                 | 81.0    | 82.3    | 83.3    |
| Pump Vacuum, in. Hg                                                            | 18,0    | 18.0    | 18.0    |
| COMPUTED CALIBRATION RESULTS                                                   |         |         |         |
| Critical Orifice Gas Volume (V <sub>cr(std)</sub> ), standard ft. <sup>3</sup> | 8.042   | 7.229   | 8.025   |
| Dry Gas Meter Gas Volume (V <sub>m (std)</sub> ), standard ft. <sup>3</sup>    | 8.156   | 7.333   | 8.141   |
| Dry Gas Meter Calibration Factor (Y)                                           | 0,986   | 0.986   | 0.986   |
| Orifice Meter /H@                                                              | 1.799   | 1.799   | 1.796   |
| AVERAGE CALIBRATION RESULTS                                                    |         |         |         |
| Average Dry Gas Meter Calibration Factor (Y)                                   | 0.986   |         |         |
| Average Orifice Meter ∆H@                                                      | 1.798   |         |         |
| CALIBRATION RESULTS COMPARISON                                                 |         |         |         |
| Criterion: Y Must Be Within 2% Of Average Y                                    |         |         |         |
| Percent Difference Of Y From Average Y                                         | 0.01%   | 0.00%   | 0.01%   |
| Tolerance Result                                                               | PASS    | PASS    | PASS    |
| COMPARISON WITH PRETEST RESULTS                                                |         |         |         |
| Criterion: Y Must Be Within 5% Of Previous Y                                   |         |         |         |
| % Difference Of Average Y From Previous Y                                      | 0.12%   |         |         |
| Tolerance Result                                                               | PASS    | <u></u> |         |
| Y = 0.985853517146527                                                          |         |         |         |

Remarks:

Signature:

Ramfgareer Date: 8.7-03

| Job.No:                         | 110249-2.001-04  | Stack Thermocouple No:             |        |         |
|---------------------------------|------------------|------------------------------------|--------|---------|
| Date:                           | 8-7-03           | Reference Pyrometer No:            | Y-0815 |         |
| Ambient Temp. ( <sup>O</sup> F) | 12               | Probe Number:                      |        |         |
| Performed By:                   | D. Neal DeGotton | Avg. Stack Temp. ( <sup>O</sup> F) |        |         |
| ·                               |                  | Barometer:                         | 0      | in. Hg. |
|                                 |                  |                                    |        |         |

Reference Instrument: Hart Scientific Model Number 9100A, Serial Number 84414 Dry-well, HDRC handheld Block A. This Instrument is calibrated in accordance with ITS-90 and ANSI/NCSL Z540-1.

| Reference Instrument Temp. ( <sup>O</sup> F) | Reference Pyrometer<br>Temp. ( <sup>O</sup> F) | Temperature Difference<br>( <sup>O</sup> F) | Temperature Difference<br>(%) |
|----------------------------------------------|------------------------------------------------|---------------------------------------------|-------------------------------|
| 23.930.1 (28°F)                              | 85.6<br>124.4<br>175.4<br>224.8                |                                             |                               |
| 567 (125°F)                                  | 124.4                                          | 0.4                                         |                               |
| 79.4 (M5°F)                                  | 175.4                                          | 0.4                                         |                               |
| 79.4 (175°F)<br>101.2 (225°F)                | 224.8                                          | 0.4                                         |                               |
|                                              |                                                |                                             |                               |
| -                                            |                                                |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              | - 100                                          |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              |                                                |                                             |                               |
|                                              | 1.00                                           |                                             |                               |
|                                              |                                                |                                             |                               |

| (Reference Instrument Temp. <sup>0</sup> F + 460) - (Refer                    | rence Pyrometer Temp. <sup>0</sup> F + 460) | x 100 = 1.5%</th |
|-------------------------------------------------------------------------------|---------------------------------------------|------------------|
| (Reference Instrument Tem                                                     | ъ. <sup>о</sup> F + 460)                    |                  |
| (Reference Instrument Temp. <sup>O</sup> F + 460) - (Reference Instrument Tem | Date: 8-7-03                                |                  |

| Job.No: [(024)                                        | 1.2.001.09                                                          | Stack Thermocouple No:                          |                                |
|-------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|--------------------------------|
| Date: 8-7-9                                           | 02                                                                  | Reference Pyrometer No:                         | 4-0815                         |
| Ambient Temp. (°F) 72                                 |                                                                     | Probe Number:                                   | 3-2                            |
| Performed By:                                         | D. Neal Thankin                                                     | Avg. Stack Temp. ( <sup>O</sup> F)              |                                |
|                                                       | (                                                                   | Barometer: _                                    | 0 in. Hg.                      |
|                                                       |                                                                     |                                                 |                                |
| Reference Instrument: Hart Scie is calibrated in acco | ntific Model Number 9100A, Seria<br>ordance with ITS-90 and ANSI/NC | il Number 84414 Dry-well, HDRC ha<br>SL Z540-1. | ndheld Block A. This Instrumer |
| Reference Instrument                                  | Reference Pyrometer                                                 | Temperature Difference                          | Temperature Difference         |
| Temp. (°F)                                            | Temp. ( <sup>O</sup> F)                                             | (°F)                                            | (%)                            |
| 23.9 (75°F)                                           | 79.0                                                                |                                                 |                                |
| 57-7 (125°F)                                          | 124.2                                                               | 0.8                                             |                                |
| 79.4 (175°F)                                          | 175.2                                                               | 0.8                                             |                                |
| 107.2 (225°F)                                         | 225.4                                                               | 0.4                                             | . 1100                         |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 | 1.3.4.T                        |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
|                                                       |                                                                     |                                                 |                                |
| (Reference Instrument Te                              | emp. <sup>o</sup> F + 460) - (Reference                             | Pyrometer Temp. <sup>O</sup> F + 460)           | × 100 = 1.5%</td               |
| (Ref                                                  | erence Instrument Temp. <sup>O</sup> F                              | + 460)                                          |                                |
| Signature:                                            | In-                                                                 | Date: 8-7-03                                    |                                |
| Signature.                                            |                                                                     | 0-1-00                                          |                                |
|                                                       | -                                                                   |                                                 |                                |

| Job.No:                         | 110130-004-05-03   | Stack Thermocouple No:             |       |         |
|---------------------------------|--------------------|------------------------------------|-------|---------|
| Date:                           | 8-7-03             | Reference Pyrometer No:            | 7-085 |         |
| Ambient Temp. ( <sup>O</sup> F) | 72                 | Probe Number:                      | 8-2   |         |
| Performed By:                   | D. Neal D. Griffin | Avg. Stack Temp. ( <sup>O</sup> F) | 175   |         |
| _                               | (                  | Barometer:                         | 0     | in. Hg. |
|                                 |                    |                                    |       |         |

Reference Instrument: Hart Scientific Model Number 9100A, Serial Number 84414 Dry-well, HDRC handheld Block A. This Instrument is calibrated in accordance with ITS-90 and ANSI/NCSL Z540-1.

| Reference Instrument           | Reference Pyrometer | Temperature Difference | Temperature Difference |
|--------------------------------|---------------------|------------------------|------------------------|
|                                | Temp. (°F)          | (°F)                   | (%)                    |
| Temp. (°F)                     | 65                  | ( )                    | (70)                   |
| 23.9 2. (25°F)                 | DG 76.6 78.8        |                        |                        |
| 23.9 %. (25°F)<br>51.7 (125°F) | 124.8               | 0.2                    |                        |
| 79.4 (n5°F)<br>107.2 (225°F)   | 174.8               | 0.2                    |                        |
| 107.2 (225°F)                  | 225.2               | 0.2                    |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |
|                                |                     |                        |                        |

| (Refere    | ence Instrument Temp. <sup>0</sup> F + 460) - (Reference Pyrometer | Temp. <sup>0</sup> F + 460) | <b>v</b> | 100 = 1.5%</th |
|------------|--------------------------------------------------------------------|-----------------------------|----------|----------------|
|            | (Reference Instrument Temp. °F + 460)                              |                             | ^        | 100 4 - 1.070  |
| Signature: | Date:                                                              | 8-7-03                      |          |                |

| Job.No:            | 110130, 9.004,05.03 | Stack Thermocouple No:             | $\upsilon$ |         |
|--------------------|---------------------|------------------------------------|------------|---------|
| Date:              | 8-7-03              | Reference Pyrometer No:            | 4-0815     | •       |
| Ambient Temp. (°F) | 72-                 | Probe Number:                      | 8-3        |         |
| Performed By:      | D. Neal D. Griffix  | Avg. Stack Temp. ( <sup>O</sup> F) | 175        |         |
|                    | (                   | Barometer:                         | 0          | in. Hg. |

Reference Instrument: Hart Scientific Model Number 9100A, Serial Number 84414 Dry-well, HDRC handheld Block A. This Instrument is calibrated in accordance with ITS-90 and ANSI/NCSL Z540-1.

| Reference Instrument                    | Reference Pyrometer                     | Temperature Difference | Temperature Difference |
|-----------------------------------------|-----------------------------------------|------------------------|------------------------|
| Temp. ( <sup>O</sup> F)                 | Temp. ( <sup>O</sup> F)                 | (°F)                   | (%)                    |
| 23.9° (75°F)                            | 77.4                                    |                        |                        |
| 51.7° (18°F)                            | 123.4                                   | 1.4                    |                        |
| 79.4°c (175°F)                          | 173.6                                   | 1.4                    |                        |
| 107.2°C (225°F)                         | 222,8                                   | 2.2                    |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |
| a A A P P P P P P P P P P P P P P P P P |                                         |                        |                        |
|                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                        |                        |
|                                         |                                         |                        |                        |
|                                         |                                         |                        |                        |

| (Referer   | nce Instrument Temp. <sup>0</sup> F + 460) - (Refe | erence Pyrometer Temp. <sup>0</sup> | <sup>o</sup> F + 460) | v 100 = 1.5%</th |
|------------|----------------------------------------------------|-------------------------------------|-----------------------|------------------|
|            | (Reference Instrument Ter                          | mp. <sup>0</sup> F + 460)           |                       | X 100 4- 1.070   |
| Signature: | Donald Mills                                       | Date: 8-7                           | 7-03                  |                  |

# XAD Thermocouple Calibration Data

| Job.No:                                         | 110249.2.001.04                       | Pyrometer No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-0815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:                                           | August 7, 2003                        | Reference Thermometer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASTM 63F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ambient Temp. ( <sup>○</sup> F)                 | 81                                    | Serial Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Performed By:                                   | Dave Griffin                          | Barometer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.17 in. Hg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calibration Method: Water                       | er bath with ASTM thermometer at ambi | ent temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XAD Thermocouple                                | Reference Thermometer                 | Reference Pyrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number                                          | Temp. ( <sup>O</sup> F)               | Temp. ( <sup>O</sup> F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tolerance: +/- 2 <sup>O</sup> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XAD-1                                           | 79.7                                  | 81.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| XAD-1<br>XAS-2                                  | 79.1                                  | 15 814 81.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A 70.00 MA PER COLUMN                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       | to the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | make an artist of the state of |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | 1/4                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AUT. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Comments:                                       |                                       | MAN 107-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | - 40 4 F                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Signature:

Date:

# Gooseneck Thermocouple Calibration Data

| Jo            |                      | 3.004.05.03                                      | Pyrometer No:           | Y-0815                            |
|---------------|----------------------|--------------------------------------------------|-------------------------|-----------------------------------|
|               | Date: 8-7-03         |                                                  | Reference Thermometer:  | ASTM 63F                          |
| Ambient Tem   | p. ( <sup>o</sup> F) |                                                  | Serial Number:          | 1979299                           |
| Perform       | ed By:               | ). Neal                                          | Barometer:              | 0 in. Hg.                         |
| alibration Me | thod: Water bath w   | th ASTM thermometer at ambient                   | t temperature.          |                                   |
|               | Leak Check &         | D. f The sweet state                             | Reference Pyrometer     | Temperature Difference            |
| Gooseneck     | Check Valve          | Reference Thermometer<br>Temp. ( <sup>O</sup> F) | Temp. ( <sup>O</sup> F) | Tolerance: +/- 2 <sup>O</sup> F   |
| T.C. No.      | Pass/No Pass         | nemp. (P)                                        | 76.6                    | 0.4                               |
| 246           | Pass                 | 77.0                                             | 76.4                    | 06                                |
| e#12          | Pa55                 | 77.0                                             | 76-2                    | 0.8                               |
| CH 35         | P355                 | 77.0                                             | 76-2                    | 0.8                               |
| lH 37         | P255                 | 77.0                                             | 76.0                    | 1.0                               |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  | 1.00                    | WINE PARK VENEZ FOR VENEZ FOR FOR |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
|               | 244                  |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
|               |                      |                                                  |                         |                                   |
| j             | !                    |                                                  |                         |                                   |
| omments:      | UH 12 1              | was never used OH                                | authorne                |                                   |
|               | D and                |                                                  | Date: 6.7-03            |                                   |

# Request For Post Test Calibrations

| Job No:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Date: 8-7-0                |                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|----------------------|
| Name: Haw            | thorne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rec                                     | quested By:                | D. Neal              |
| M5 Console<br>Number | Average<br>Delta H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrometer Number                        | XAD Thermocouple<br>Number | Sample Box<br>Number |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MARK MARKET                |                      |
| Oh-                  | Stock Thermosouple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average Stack                           | Pitot                      | Gooseneck            |
| Probe                | Stack Thermocouple Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temperature                             | Number                     | Number               |
| Number 2-2           | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                                     | M 120                      | UH35                 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175                                     | M 127                      | UH 37                |
| 8-3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)                                     | m (2)                      | WH /                 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-7-371                                |                            | 11/1/12              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            | 44 12                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            | UH-1                 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      | VOOT Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VOST Thermosevels                       | Doromotor                  |                      |
| VOST Console         | VOST Train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VOST Thermocouple                       | Barometer                  |                      |
| Number               | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number                                  | Number                     |                      |
|                      | The state of the s | 1.54154                                 |                            |                      |
|                      | 24 W =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                             |                            |                      |
|                      | - 16/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                            |                      |
|                      | 1.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                    |                            |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |                      |

Pitot Tube #: M-12 Date: 8-7-03 Performed By: D.Griffy

Probe #: 8-2 Job #: 110130.3.004.05.03

Pitot tube assembly level? Yes \_\_\_\_\_\_

Pitot tube openings damaged? Yes (explain below) No

 $\alpha_1 = \underline{\mathcal{O}}^{\circ} (<10^{\circ}), \qquad \alpha_2 = \underline{\mathcal{O}}^{\circ} (<10^{\circ})$ 

 $\beta_1 = 2^{\circ} (<5^{\circ}), \qquad \beta_2 = 2^{\circ} (<5^{\circ})$ 

 $\gamma = \int_{-\infty}^{\infty} {}^{\circ}, \quad \theta = \int_{-\infty}^{\infty} {}^{\circ}, \quad A = \int_{-\infty}^{\infty} \frac{146}{2}$  (in)

 $z = A \sin \gamma$  (in); (< 0.125 in)

 $w = A \sin \theta$  (in); (< 0.03125 in)

 $P_A =$  (in),  $P_B =$  (in),  $D_t =$  (in)

Calibration required? Yes No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

Pitot Tube #: M127 Date: 8-7-03 Performed By: D.Griffin

Probe #: 8-3 Job #: 110130.3, 004, 05.03

Pitot tube assembly level? Yes

Pitot tube openings damaged? Yes (explain below) No

 $\alpha_1 = \underline{\qquad}^{\circ} (<10^{\circ}), \qquad \alpha_2 = \underline{\qquad}^{\circ} (<10^{\circ})$ 

 $^{\circ}$  (<5  $^{\circ}$ ),  $\beta_2 = (5 \,^{\circ})$ 

 $\gamma = \underline{\qquad}^{\circ}, \quad \theta = \underline{\qquad}^{\circ}, \quad A = \underline{\qquad} \underline{\qquad} (in)$ 

 $z = A \sin \gamma$  (in); (< 0.125 in)

 $w = A \sin \theta$  (in); (< 0.03125 in)

 $P_A = _{,373}$  (in),  $P_B = _{,374}$  (in),  $D_t = _{,250}$  (in)

Calibration required? \_\_\_\_\_ Yes \_\_\_\_\_ No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

Pitot Tube #: M124 Date: 8-7-03 Performed By: D.Griff.

Probe #: 3-2 Job #: 110249,2,001-04

Pitot tube assembly level? Yes \_\_\_\_\_\_ No

Pitot tube openings damaged? Yes (explain below) No

 $\alpha_1 = \mathcal{C} \circ (<10^{\circ}), \qquad \alpha_2 = \mathcal{C} \circ (<10^{\circ})$ 

 $\beta_1 = O \circ (<5^\circ), \qquad \beta_2 = O \circ (<5^\circ)$ 

 $\gamma = (0, \theta = 0)$ , A = 0 (in)

 $z = A \sin \gamma$  (in); (< 0.125 in)

 $w = A \sin \theta$  (in); (< 0.03125 in)

 $P_A = 375$  (in),  $P_B = 375$  (in),  $D_t = 250$  (in)

Calibration required? Yes No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

Pitot Tube #: Mol Date: 8-7-03 Performed By: D.G.

Probe #: 3-5 Job #: 110249.2.001.04

Pitot tube assembly level? Yes \_\_\_\_\_\_ No

Pitot tube openings damaged? Yes (explain below) No

 $\alpha_1 = \underline{5}^{\circ} (<10^{\circ}), \qquad \alpha_2 = \underline{5}^{\circ} (<10^{\circ})$ 

 $\beta_1 = \underline{ \left( \begin{array}{c} \circ \\ \end{array} \right)} \circ (<5^{\circ}), \qquad \beta_2 = \underline{ \left( \begin{array}{c} \circ \\ \end{array} \right)} \circ (<5^{\circ})$ 

 $\gamma = 3$ °,  $\theta = 3$ °, A = 734 (in)

 $z = A \sin \gamma$  (in); (< 0.125 in)

 $w = A \sin \theta$  (in); (< 0.03125 in)

Calibration required? Yes No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

# Appendix C-2

# **Post-Test Calibration Records**

# **Request For Post Test Calibrations**

| Job No:        | 110249.2.001.05                         |                                    | Date: Au                   | gust 27, 2003        |
|----------------|-----------------------------------------|------------------------------------|----------------------------|----------------------|
| b Name: Charac | terization of Dioxin in E               | Ball Clay                          | Requested By:              | D. Neal              |
| M5 Console     | Average<br>Delta H                      | Pyrometer<br><b>N</b> umber        | XAD Thermocouple<br>Number | Sample Box<br>Number |
| Number<br>N7   | 1.35                                    | Y-0815                             | XAD-1                      | 10288                |
| IN /           | 1.35                                    | 1-0013                             | XAD-1                      | 12003                |
|                |                                         |                                    | AAD-2                      | 12003                |
|                |                                         | 1 - MANUTE 144 (FT - 1 V - 1 ) - 1 |                            |                      |
|                | 400 080                                 |                                    |                            | 4117                 |
|                |                                         |                                    |                            |                      |
| Probe          | Stack Thermocouple                      | Average Stack                      | Pitot                      | Gooseneck            |
| Number         | Number                                  | Temperature                        | Number                     | Number               |
| 3-2            | 36-2                                    | 144                                | M-126                      | UH-1                 |
| 3-5            | 36-12                                   | 129                                | M-104                      | UH-12                |
|                |                                         |                                    |                            |                      |
|                |                                         | 11110 100 1                        |                            |                      |
|                |                                         |                                    |                            | 11/9/12              |
| VOST Console   | VOST Train                              | VOST Thermocouple                  |                            |                      |
| Number         | Number                                  | Number                             | Number                     |                      |
|                |                                         | 18.19                              | X-4029                     |                      |
|                |                                         | 10-0                               |                            |                      |
|                |                                         |                                    |                            |                      |
|                |                                         |                                    |                            |                      |
|                |                                         |                                    | ***                        | -                    |
|                | 100000000000000000000000000000000000000 |                                    |                            |                      |
|                |                                         |                                    | _                          |                      |
|                | W. Marie Prince                         |                                    | _                          |                      |
|                |                                         |                                    |                            |                      |

8 9/11/03

### M5 Console Pre-Calibration Checklist

| Jo     | b No.   | 1                  | 10249.2.00         | 1.05                        | Date                                                   | August 27, 2003                       |
|--------|---------|--------------------|--------------------|-----------------------------|--------------------------------------------------------|---------------------------------------|
| Consol | le No.  |                    | N7                 |                             | Performed By                                           | Daniel Neal                           |
|        |         | (Plac              | e an "X" in t      | he space provided after th  | e required checks are perfe                            | ormed.)                               |
| 1.     | x       |                    |                    | e leak check of Delta I     |                                                        | J                                     |
|        |         |                    | •                  | sitive leak check Delta H n |                                                        |                                       |
|        |         |                    |                    |                             |                                                        | ler to get an accurate reading.       |
|        |         |                    |                    | e and vacuum lines must be  |                                                        | ler to get an accurate reading.       |
|        |         |                    |                    |                             | n position so solenoid valve                           | is open to the sampling               |
|        |         |                    |                    | during testing.             | The position of colonial tanto                         | io open to the bumping                |
|        |         |                    |                    |                             | tube from exhaust which goe                            | es to the Orsat pump.                 |
|        |         | 5.                 | Plug sample o      | orifice.                    |                                                        |                                       |
|        |         | 6.                 | Close main flo     | w control valve.            |                                                        |                                       |
|        |         | 7.                 | Open fine con      | trol valve.                 |                                                        |                                       |
|        |         |                    | -                  | ht side Delta H manometer   |                                                        |                                       |
|        |         |                    |                    | -                           | to 7 inches of water, and clar                         | np off.                               |
|        |         |                    |                    | be no change in manometer   | •                                                      | ataly after this                      |
|        |         |                    |                    |                             | om meter exhaust immedia<br>op when pump is started up |                                       |
| _      |         |                    |                    |                             | ib when builb is started of                            | <u>u</u>                              |
|        | X       |                    |                    | lta P manometer.            |                                                        |                                       |
| 3. N   | 1/A     | Cle                | an pump            |                             |                                                        |                                       |
| 4.     | X       | Cle                | an muffler j       | ar(s).                      |                                                        |                                       |
| 5      | x       | Insp               | ect/refill oi      | er jar.                     |                                                        |                                       |
| 6.     | X       | Cal                | brate DGM          | thermocouples:              | Reference Pyrometer                                    | Console Pyrometer                     |
|        |         |                    |                    | ·                           | °F                                                     | °F                                    |
| (No    | ote: Re | eading n           | nust be            | DGM Inlet:                  | 78.4                                                   | 79.0                                  |
| with   | hin +/- | 2.5 <sup>0</sup> F |                    | DGM Outlet:                 | 78.4                                                   | 79.0                                  |
|        |         |                    |                    |                             |                                                        |                                       |
| 7.     | Х       | Digi               | tal clock/tir      | ner in place and function   | onal.                                                  |                                       |
|        | X       | _                  |                    |                             | Hg. Vacuum. Leak rate                                  | e should be zero)                     |
| 9.     | X       |                    | ck indicato        |                             | •                                                      | · · · · · · · · · · · · · · · · · · · |
| -      | X       |                    |                    | couple switches.            |                                                        |                                       |
|        |         |                    | ck thermoteck fan. | ouple switches.             |                                                        |                                       |
|        | X       |                    |                    |                             |                                                        |                                       |
|        | X       |                    | ck pump h          |                             |                                                        |                                       |
| 3.     | X       | che                | ck heat cor        | itrollers.                  |                                                        |                                       |
| J      |         |                    |                    |                             |                                                        |                                       |

If any of the above items were replaced or repaired, please document that information below:

Signature: ( and ) et Date: 8-27-03

## **M5 Console Calibration Worksheet**

| Job No.   | 110249.2.001.05 |         | Metering Console No.                                | N7     |
|-----------|-----------------|---------|-----------------------------------------------------|--------|
| Date      | August 27, 2003 |         | Previous Dry Gas Meter Factor (Y):                  | 1.002  |
| Operator  | Daniel Neal     |         | Calibrated Critical Orifice No.                     | E15    |
| Barometer | 29.13           | in. Hg. | Critical Orifice Coefficient in English Units (K'): | 0.4146 |
|           |                 |         | Ambient Temperature Meter No.                       | Y-0815 |

Note: Prior to running calibration, connect mercury manometer to sample orifice. Turn on pump and bring mercury manometer up to 18.0 in. Hg. Record mercury manometer and console vacuum gauge readings below. Insert critical orifice into console sample orifice. Set console vacuum gauge at 18.0 in. Hg. +/- the console vacuum gauge correction factor calculated below.

> Mercury manometer readings: 8.9 + 9.1 = 18.00 in. Hg. Console vacuum gauge reading: 19.00 in. Hg. console vacuum gauge correction factor: -1.00 in. Hg.

|                                         |            | RUN # 1 | RUN # 2 | RUN # 3 |
|-----------------------------------------|------------|---------|---------|---------|
| DGM Initial Volume:                     | Initial:   | 884.700 | 890.157 | 895.607 |
|                                         | Final:     | 890.157 | 895.607 | 901.082 |
| DGM Inlet Temperature:                  | Initial: _ | 83      | 85      | 86      |
|                                         | Final:     | 84      | 85      | 87      |
| DGM Outlet Temperature:                 | Initial:   | 81      | 82      | 83      |
|                                         | Final:     | 81      | 82      | 83      |
| Time of run (In seconds):               | _          | 600     | 600     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O); |            | 0.90    | 0.90    | 0.90    |
| Room Temperature:                       | Initial:   | 80.6    | 80.0    | 82.0    |
|                                         | Final:     | 82.2    | 83.4    | 82.8    |
| Pump Vacuum (in. Hg.):                  | _          | 18.0    | 18.0    | 18.0    |

Signature: Janux Verl

Date: 8-27-03

## METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE

|   | MRI Project No. | 110249.2.001.05                                     | Metering Console No.               | N7      |
|---|-----------------|-----------------------------------------------------|------------------------------------|---------|
| Ì | Date:           | August 27, 2003                                     | Previous Dry Gas Meter Factor (Y): | 1.002   |
| L | Operator:       | Daniel Neal                                         | Calibrated Critical Orifice No.    | E15     |
|   |                 | Critical Orifice Coefficient in English Units (K'): |                                    | 0.41460 |
|   |                 |                                                     | Ambient Temperature Meter No.      | Y-0815  |

|                                                                                 | Run 1   | Run 2   | Run 3   |
|---------------------------------------------------------------------------------|---------|---------|---------|
| CALIBRATION GAS VOLUME DATA                                                     |         |         |         |
| Initial Dry Gas Meter Gas Volume, ft.³                                          | 884.700 | 890.157 | 895.607 |
| Final Dry Gas Meter Gas Volume, ft.³                                            | 890.157 | 895,607 | 901.082 |
| Net Dry Gas Meter Gas Volume (V <sub>m</sub> ), ft. <sup>3</sup>                | 5.457   | 5.450   | 5.475   |
| CALIBRATION CONDITIONS DATA                                                     |         |         |         |
| Dry Gas Meter Temperature, °F:                                                  |         |         |         |
| Initial Inlet Temperature, °F                                                   | 83.0    | 85.0    | 86.0    |
| Final Inlet Temperature, °F                                                     | 84.0    | 85.0    | 87.0    |
| Initial Outlet Temperature, °F                                                  | 81.0    | 82.0    | 83.0    |
| Final Outlet Temperature, °F                                                    | 81.0    | 82.0    | 83.0    |
| Average Dry Gas Meter Temperature (էೖ), °F                                      | 82.3    | 83.5    | 84.8    |
| Time, seconds                                                                   | 600     | 600     | 600     |
| Orifice Meter ∆H, inches H₂O                                                    | 0.90    | 0.90    | 0.90    |
| Barometric Pressure, in. Hg                                                     | 29.13   | 29.13   | 29.13   |
| Critical Orifice Inlet (Ambient) Temperature, °F:                               |         |         |         |
| Initial Ambient Temperature, °F                                                 | 80.6    | 80.0    | 82.0    |
| Final Ambient Temperature, °F                                                   | 82.2    | 83.4    | 82.8    |
| Avg. Critical Orifice Inlet Temperature (t <sub>am</sub> ), °F                  | 81.4    | 81.7    | 82.4    |
| Pump Vacuum, in. Hg                                                             | 18.0    | 18.0    | 18.0    |
| COMPUTED CALIBRATION RESULTS                                                    |         |         |         |
| Critical Orifice Gas Volume (V <sub>cr (std)</sub> ), standard ft. <sup>3</sup> | 5.192   | 5,191   | 5.187   |
| Dry Gas Meter Gas Volume (V <sub>m (std)</sub> ), standard ft.³                 | 5.185   | 5.166   | 5.178   |
| Dry Gas Meter Calibration Factor (Y)                                            | 1.001   | 1.005   | 1.002   |
| Orifice Meter ∆H@                                                               | 1.788   | 1.785   | 1.783   |
| AVERAGE CALIBRATION RESULTS                                                     |         |         |         |
| Average Dry Gas Meter Calibration Factor (Y)                                    | 1.003   |         | 4       |
| Average Orifice Meter 出@                                                        | 1.786   |         |         |
| CALIBRATION RESULTS COMPARISON                                                  |         |         |         |
| Criterion: Y Must Be Within 2% Of Average Y                                     |         |         |         |
| Percent Difference Of Y From Average Y                                          | 0.12%   | 0.21%   | 0.08%   |
| Tolerance Result                                                                | PASS    | PASS    | PASS    |
| COMPARISON WITH PRETEST RESULTS                                                 |         |         |         |
| Criterion: Y Must Be Within 5% Of Previous Y                                    |         |         |         |
| % Difference Of Average Y From Previous Y                                       | 0.07%   |         |         |
| Tolerance Result                                                                | PASS    |         |         |
| Y = 1.002651356453850                                                           |         |         |         |

Janus Nel Date: 8-27-03

| al Orifice Bracketing Workshoot                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                                             | E15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                               | E12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                               | 0.3264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                               | E21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                               | 0.5693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| d below.  _ + _ 9.1 =18.00 in. Hg.  gauge reading:19.00 in. Hg.  rrection factor:1.00 in. Hg. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RUN # 1 RUN # 2  Initial: 903.100 908.002  Final: 907.444 915.560  rure: Initial: 86 88       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 3 F C                                                                                       | First Critical Orifice No.  Coefficient (K'):  Second Critical Orifice No.  Coefficient (K'):  Note: Critical orifice coefficients are  y manometer to sample orifice. Turn on pump and ercury manometer and console vacuum gauge read rifice. Set console vacuum gauge at 18.0 in. Hg. +/d below.  + _ 9.1 =18.00 in. Hg.  y manometer to sample orifice. Turn on pump and ercury manometer and console vacuum gauge read in the process of the pr |

| DGM Initial Volume:                     | Initial:  | 903.100 | 908.002 |
|-----------------------------------------|-----------|---------|---------|
|                                         | Final:    | 907.444 | 915.560 |
| DGM Inlet Temperature:                  | Initial:  | 86      | 88      |
|                                         | Final:    | 86      | 89      |
| DGM Outlet Temperature:                 | Initial:_ | 84      | 84      |
|                                         | Final:    | 84      | 85      |
| Time of run (In seconds):               | _         | 600     | 600     |
| Orifice Delta H (in. H <sub>2</sub> O): |           | 0.55    |         |
| Room Temperature:                       | Initial:  | 82.6    | 82.6    |
|                                         | Final:    | 82.2    | 82.4    |
| Pump Vacuum (in. Hg.):                  |           | 18.0    | 18.0    |
|                                         |           |         |         |

Signature: Muss Neu

Date: 8-27-03

09/11/03

#### **METHOD 5 METERING CONSOLE CALIBRATION CRITICAL ORIFICE BRACKETING DATA**

| MRI Project No.                              | 110249.2.001.05       | Critical Orifice Being Evaluated |                    |
|----------------------------------------------|-----------------------|----------------------------------|--------------------|
| Date:                                        | August 27, 2003       | Critical Orifice No.             | E15                |
| Operator:                                    | Operator: Daniel Neal |                                  | sed For Bracketing |
| Metering Console No.                         | N7                    | First Orifice                    |                    |
| Dry Gas Meter Factor (Y):                    | 1.003                 | Critical Orifice No.             | E12                |
| Orifice Used for the Calibration:            | E15                   | Coefficient (K'):                | 0.32640            |
| Ambient Temperature Meter No.                | Y-0815                | Second Orifice                   |                    |
| Note: Critical orifice coefficients are in E | nglish units.         | Critical Orifice No.             | E21                |
|                                              |                       | Coefficient (K'):                | 0.56930            |

|                                                                                 | First Orifice  | Second Orifice                             |
|---------------------------------------------------------------------------------|----------------|--------------------------------------------|
| CALIBRATION GAS VOLUME DATA                                                     |                |                                            |
| Initial Dry Gas Meter Gas Volume, ft.³                                          | 903.100        | 908.002                                    |
| Final Dry Gas Meter Gas Volume, ft.³                                            | 907.444        | 915.560                                    |
| Net Dry Gas Meter Gas Volume (V <sub>m</sub> ), ft. <sup>3</sup>                | 4.344          | 7.558                                      |
| CALIBRATION CONDITIONS DATA                                                     |                | -612 1 122 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| Dry Gas Meter Temperature, °F:                                                  |                |                                            |
| Initial Inlet Temperature, °F                                                   | 86.000         | 88.000                                     |
| Final Inlet Temperature, °F                                                     | 86,000         | 89.000                                     |
| Initial Outlet Temperature, °F                                                  | 84.000         | 84.000                                     |
| Final Outlet Temperature, °F                                                    | 84.000         | 85.000                                     |
| Average Dry Gas Meter Temperature (է٫), °F                                      | 85.0           | 86.5                                       |
| Time, seconds                                                                   | 600.000        | 600.000                                    |
| Orifice Meter ∆H, inches H₂O                                                    | 0.550          |                                            |
| Barometric Pressure, in. Hg                                                     | 29.13          | 29.13                                      |
| Critical Orifice Inlet (Ambient) Temperature, °F:                               |                |                                            |
| Initial Ambient Temperature, °F                                                 | 82.600         | 82.600                                     |
| Final Ambient Temperature, °F                                                   | 82.200         | 82.400                                     |
| Average Critical Orifice Inlet Temperature (t <sub>am</sub> b °F                | 82.4           | 82.5                                       |
| Pump Vacuum, in. Hg                                                             | 18.000         | 18.000                                     |
| COMPUTED CALIBRATION RESULTS                                                    |                |                                            |
| Critical Orifice Gas Volume (V <sub>cr (std)</sub> ), standard ft. <sup>3</sup> | 4.084          | 7.122                                      |
| Dry Gas Meter Gas Volume (V <sub>m (std)</sub> ), standard ft. <sup>3</sup>     | 4.103          | 7.109                                      |
| Factor (Y) Obtained With Bracketing Orifice                                     | 0.995          | 1.002                                      |
| CRITICAL ORIFICE ACCEPTABILITY                                                  |                |                                            |
| Criterion: All Ys Must Be Within 2% Of All Other Ys                             |                |                                            |
| Larger % Difference Between Dry Gas Meter Factor (Y)                            |                |                                            |
| And Factor (Y) Obtained With The Bracketing Orifice                             | 0.73%          | 0.08%                                      |
| Larger % Difference Between Factors (Ys)                                        |                |                                            |
| Obtained With Bracketing Orifices                                               | 0.65%          |                                            |
| Acceptability Result                                                            | All Orifices A | e Acceptable                               |

Remarks:

Signature: Amus Nuss Date: 8-27-03

# XAD Thermocouple Calibration Data

| Job No:                         | 110249.2.001.05                         | Pyrometer No:           | Y-0815                                   |
|---------------------------------|-----------------------------------------|-------------------------|------------------------------------------|
| 4                               | August 27, 2003                         | Reference Thermometer:  |                                          |
| Ambient Temp. ( <sup>O</sup> F) |                                         | Serial Number:          | 1979299                                  |
|                                 | D. Neal                                 | Barometer:              | 29.13 in. Hg.                            |
|                                 |                                         |                         |                                          |
| Calibration Method: Water       | er bath with ASTM thermometer at ambien | t temperature.          |                                          |
| XAD Thermocouple                | e Reference Thermometer                 | Reference Pyrometer     | Temperature Difference                   |
| Number                          | Temp. ( <sup>O</sup> F)                 | Temp. ( <sup>O</sup> F) | Tolerance: +/- 2 <sup>O</sup> F          |
| XAD-1                           | 79.7                                    | 81.2                    | -1.5                                     |
| XAD-2                           | 79.7                                    | 81.4                    | -1.7                                     |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
| ·                               |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
| · <del></del>                   |                                         |                         | · · · · · · · · · · · · · · · · · · ·    |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
|                                 |                                         |                         |                                          |
| Comments:                       |                                         |                         |                                          |
|                                 |                                         | ,                       |                                          |
|                                 |                                         |                         |                                          |
| A                               |                                         |                         | AAAAA AAAA AAAAA AAAAA AAAAA AAAAA AAAAA |
| In.                             | us Nel                                  | Date: 8-27-0            | ?                                        |
| Signature:                      |                                         | Date: Draff             | not les                                  |
| •                               |                                         |                         | 89/11/0                                  |
|                                 |                                         |                         | ( )                                      |

# Sample Box Filter Thermocouple Calibration Data

| Job.No:                                 | 110249.2.001.05                                                                               | Console Pyrometer No:                                                              | N7                                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|
| Date:                                   | August 27, 2003                                                                               | Reference Pyrometer No:                                                            |                                     |
| Ambient Temp. ( <sup>O</sup> F)         | 79                                                                                            | Reference Thermocouple Number:                                                     |                                     |
| Performed By:                           | D. Neal                                                                                       | Barometer:                                                                         | 29.13 in. Hg.                       |
| Calibration Method: He                  | eat sample box to 250 <sup>0</sup> F with M5 consol<br>ring M5 console temperature meter agai | e. After temperature has stabilized, che<br>inst calibrated pyrometer and thermoco | ock filter box temperature<br>uple. |
| Sample Box                              | Console Pyrometer                                                                             | Reference Pyrometer                                                                | Temperature Difference              |
| Number                                  | Temp. ( <sup>O</sup> F)                                                                       | Temp. ( <sup>O</sup> F)                                                            | Tolerance: +/-5.4 <sup>O</sup> F    |
| 10288                                   | 245                                                                                           | 245.2                                                                              | -0.2                                |
| 12003                                   | 250                                                                                           | 251                                                                                | -1.0                                |
| 100 100 100 100 100 100 100 100 100 100 |                                                                                               |                                                                                    |                                     |
|                                         |                                                                                               |                                                                                    |                                     |
| Aug 14 (4)                              |                                                                                               |                                                                                    |                                     |
| 100 SF 7 1 1                            |                                                                                               |                                                                                    | -                                   |
|                                         |                                                                                               |                                                                                    |                                     |
|                                         |                                                                                               |                                                                                    |                                     |
|                                         |                                                                                               |                                                                                    |                                     |
|                                         |                                                                                               | 1                                                                                  |                                     |
|                                         |                                                                                               |                                                                                    |                                     |
|                                         |                                                                                               |                                                                                    |                                     |
| omments:                                |                                                                                               |                                                                                    |                                     |
| ignature: Jay                           | us Ned                                                                                        | Date: 8-ナ7-03                                                                      | Paln                                |

## **Stack Thermocouple Calibration Data**

| Job.No:                         | 110249.2.001.05                       | Stack Thermocouple No:             | 36    | -2      |
|---------------------------------|---------------------------------------|------------------------------------|-------|---------|
| Date:                           | August 27, 2003                       | Reference Pyrometer No:            | Y-0   | 815     |
| Ambient Temp. ( <sup>O</sup> F) | 79                                    | Probe Number:                      | 3-    | -2      |
| Performed By:                   | D. Neal                               | Avg. Stack Temp. ( <sup>O</sup> F) | 144   |         |
|                                 | A A A A A A A A A A A A A A A A A A A | Barometer:                         | 29.13 | in. Ha. |

Reference Instrument: Hart Scientific Model Number 9100A, Serial Number 84414 Dry-well, HDRC handheld Block A. This Instrument is calibrated in accordance with ITS-90 and ANSI/NCSL Z540-1.

|                                                  |                         | T                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Instrument                             | Reference Pyrometer     | Temperature Difference | Temperature Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Temp. ( <sup>O</sup> F)                          | Temp. ( <sup>O</sup> F) | (°F)                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81.0                                             | 80.4                    | 0.60                   | 0.11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 150.8                                            | 150.4                   | 0.40                   | 0.07%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 199.9                                            | 200.2                   | -0.30                  | -0.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. a.a.a. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |                         |                        | AAU MANA AVIII AVI |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         | 4                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         | -18-21-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| (Referer   | nce Instrument Temp. <sup>O</sup> F + 460) - (Referen | ce Pyrometer Tem | ıp. <sup>0</sup> F + 460) x | 100 = 1.5%</th <th></th>                |          |
|------------|-------------------------------------------------------|------------------|-----------------------------|-----------------------------------------|----------|
|            | (Reference Instrument Temp.                           | °F + 460)        | · ·                         | , , , , , , , , , , , , , , , , , , , , |          |
| Signature: | Janus Ned                                             | Date:            | 8-27-03                     |                                         | 89/11/03 |

## Stack Thermocouple Calibration Data

| Job.No:                         | 110249.2.001.05 | Stack Thermocouple No:             | 36-   | -12     |  |
|---------------------------------|-----------------|------------------------------------|-------|---------|--|
| Date:                           | August 27, 2003 | Reference Pyrometer No:            | Y-0   | 815     |  |
| Ambient Temp. ( <sup>O</sup> F) | 79              | Probe Number:                      | 3-    | -5      |  |
| Performed By:                   | D. Neal         | Avg. Stack Temp. ( <sup>O</sup> F) | 129   |         |  |
|                                 |                 | Barometer:                         | 29.13 | in. Ha. |  |

Reference Instrument: Hart Scientific Model Number 9100A, Serial Number 84414 Dry-well, HDRC handheld Block A. This Instrument is calibrated in accordance with ITS-90 and ANSI/NCSL Z540-1.

| Reference instrument    | Reference Pyrometer     | Temperature Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temperature Difference |
|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Temp. ( <sup>O</sup> F) | Temp. ( <sup>○</sup> F) | ( <sup>o</sup> F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)                    |
| 81.0                    | 80.6                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07%                  |
| 150.8                   | 150.4                   | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07%                  |
| 199.9                   | 200.6                   | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.11%                 |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         | According to the second |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         | -A-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |

| (Refere | ence Instrument Temp. <sup>O</sup> F + 460) - (Refere | nce Pyrometer Ter                  | mp. <sup>O</sup> F + 460) x 10 | 0 = 1.5%</th |
|---------|-------------------------------------------------------|------------------------------------|--------------------------------|--------------|
|         | (Reference Instrument Temp                            | . <sup>O</sup> F + 460)<br>Date: _ | 8-27-03                        | - 59/N/03    |

## **Gooseneck Thermocouple Calibration Data**

| Jo                      |                      |                               |                                                |                                                           |  |  |
|-------------------------|----------------------|-------------------------------|------------------------------------------------|-----------------------------------------------------------|--|--|
| Job.No: 110249.2.001.05 |                      |                               |                                                | : Y-0815                                                  |  |  |
|                         | Date: Augus          |                               | Reference Thermometer:                         |                                                           |  |  |
|                         | o. ( <sup>O</sup> F) |                               |                                                | 1979299                                                   |  |  |
| Performed By: D. Neal   |                      | . Neal                        | Barometer:                                     | 29.13 in. Hg.                                             |  |  |
| libration Me            | thod: Water bath wit | h ASTM thermometer at ambient | temperature.                                   |                                                           |  |  |
|                         | Leak Check &         |                               |                                                |                                                           |  |  |
| ooseneck                | Check Valve          | Reference Thermometer         | Reference Pyrometer<br>Temp. ( <sup>O</sup> F) | Temperature Difference<br>Tolerance: +/- 2 <sup>O</sup> F |  |  |
| T.C. No.                | Pass/No Pass         | Temp. ( <sup>O</sup> F)       | Temp. (*F)                                     | Tolerance: +/- 2 F                                        |  |  |
| UH-1                    | Pass                 | 72.6                          | 73.4                                           | -0.8                                                      |  |  |
| UH-12                   | Pass                 | 72.6                          | 73.2                                           | -0.6                                                      |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                | A1.                                                       |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               | EAWAPTO .                                      | - af-cit   1970                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      | 100                           |                                                | 1. 181                                                    |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
|                         |                      |                               |                                                |                                                           |  |  |
| - 1                     |                      |                               |                                                |                                                           |  |  |

#### MERCURY BAROMETER PRESSURE READING CORRE

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lot

MRI Project No. 110249.2.001.05

Date: August 27, 2003

Time: 8:17

Readings Obtained By: Daniel Neal

Observed Barometer Reading: 29.28 in. Hg

Mercury Column Temperature: 79 °F

Correction For Temperature: -0.13 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.13 in. Hg

Remarks:

Date: 8-27-03

Janus Nal

#### ANEROID BAROMETER CALIBRATION CHECK

Location: Kansas City, Missouri

Altitude Above Sea Level: 850 feet

Latitude: 39° 05.8' north

Meteorological Gravity: 32.1525 feet/second<sup>2</sup>

Mercury Barometer Description: Sargent Welch, Cat. S-4519, Lot 791802000

MRI Project No. 110249.2.001.05

Date: August 27, 2003

Time: 8:17

Readings Obtained By: D. Neal Church Net 8-27-03

Observed Barometer Reading: 29.28 in. Hg

Mercury Column Temperature: 79 °F

Correction For Temperature: -0.13 in. Hg

Correction For Gravity: -0.02 in. Hg

Corrected Barometric Pressure: 29.13 in. Hg

Aneroid Barometer I.D. No.: X-4029

Reading Before Adjustment: 29.14 in. Hg

Calibration Check Result: within 0.1 in. Hg

Reading After Adjustment: 29.19 in. Hg

Remarks:

B 9/11/03

#### SAMPLING NOZZLE CALIBRATION CHECK DATA

MRI Project No. 110249.2.001

Client/Source: EPA EMC OAQPS/EMAD / Ball Clay Emissions

Source Location: CBI

Sampling Location: Mil/ and Dryer and

| Nozzle I.D. Number or<br>Dedicated Sampling<br>Train Number | Nozzle Type<br>(Shape and Material<br>of Construction) | Average Three Measured Diameters, inches Diameter, D1 D2 D3 inches Me | easured By Date          |
|-------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|
| N3 (set#1)                                                  | Dicke                                                  | 0.274 0.274 0.274 A.S                                                 | Sanders 8/12/03          |
| Ni3(set#2                                                   | Nickel                                                 | 0.272 0.272 0.272 A.S                                                 |                          |
| N-7(SET#1)                                                  | NICKEL                                                 | 0,352 0,245 0.249 0.249                                               | x00000 8/12/03           |
| N-8 (SETHO)                                                 | DICKEL                                                 | 0.245 0.250 0.252 0.049                                               | Horygold 8/12/03         |
| N-12 (Specie set)                                           | Nickel                                                 | 0.187 0.187 0.187 0.187 a                                             | Bander 8/12/03           |
| N-7 (Set #1)                                                | Nickel                                                 | 0.247 0.250 0251 0.249 A. 3                                           | anders Rz Check 8/12/03  |
| N-8 (Set #2)                                                | Nickel                                                 | 0.250 0.250 0.246 0.249 4                                             | Sandera Re Check 8/12/03 |
|                                                             |                                                        |                                                                       |                          |
|                                                             |                                                        |                                                                       |                          |
|                                                             |                                                        |                                                                       |                          |
|                                                             | - Walderson                                            |                                                                       |                          |
|                                                             |                                                        |                                                                       |                          |
|                                                             |                                                        |                                                                       |                          |
|                                                             |                                                        |                                                                       |                          |
| COMMENTS:                                                   |                                                        |                                                                       | A ST.                    |
|                                                             |                                                        |                                                                       | 7/11/03                  |

NOZZLCAX.WPD April 29, 1996 (rev. NOZZLCX.WPD August 8, 2003)

## Balance Calabration Data Sheet

| MRI# 01116     | Manı          | ıfacturer 🤰 | 440                                  | l        | Model <u>F</u> X | 600 | OO S/N .      | 5405685             |             |
|----------------|---------------|-------------|--------------------------------------|----------|------------------|-----|---------------|---------------------|-------------|
| ]              | Balance Chara | cteristics  |                                      |          |                  | C   | orner Load Te | st                  |             |
| Coarse Range:  | 6000g         | Readability | y: 0.1g                              | _ Test   | : Wt.            |     | As Found      | As Left             |             |
| Fine Range:    |               | Readability | /:                                   | 20       | 0009             | 1   | 0.1 9         | i. <u>0.05</u>      | _           |
|                | Accuracy      | Test        |                                      | Tole     | rance            |     | _             | 2. 0.03             | _           |
| Test Wt.       | As Found      | i.          | As Left                              | 0        | .2g              |     | •             | 3. 0·1g             | -           |
| 5000g          | 5001.5        | ئے چا       | •••••••••••••••••••••••••••••••••••• |          | <u> </u>         |     | _             | 40.2                | - 1         |
| Tolerance      |               | Pass        | X.                                   | 4        | 1. 2             |     |               | ss 🔀                | '           |
| 0.29           | $\boxtimes$   | Fail        |                                      |          | 3                |     |               | il 🗆                |             |
|                |               | Linearity   | Test                                 |          |                  |     | Repea         | tability Test       |             |
| Test Sequence  | As I          | ound        |                                      | As       | Left             |     | Test Wt.      | 1. 2000-0           | ٩           |
| Fine Range     | Fine          | Coarse      |                                      | Fine     | Coarse           | e   | 20009         | 2. <u>2000 - 0</u>  | _           |
| <u> </u>       | Militari      | 2001        | La _                                 |          | 2000.            | عوا | Tolerance     |                     | ~           |
| Tolerance      |               | 2001        | <u> د</u> ه.                         |          | 2000.            | ٥٩  | 0.19          | 4. 2000.1           | 9           |
|                |               | 2001        | <u> 2</u> 5 _                        |          | 2000             | ~   | )             | 5. <b>_2000-</b> i  | ي د         |
| Coarse Range   |               |             |                                      |          |                  | _   |               | 6. 2000.0           | 1           |
| 2000g          |               |             |                                      | <u> </u> |                  |     |               | 7. 2000             | ر<br>ود     |
| Tolerance      |               |             |                                      |          |                  | _   |               | 8. <b>2.000·</b> 0  | ء د         |
| 0.29           | [ ]<br>       | 78          | Pass                                 |          | 2                |     | Std. Dev.     | 9. <b>2000 ·</b> 0  | 5           |
|                |               |             | Fail                                 |          | <b>Z</b>         |     | .03           | 10. <u>2000 · (</u> | روا         |
|                |               | نہا         | ran                                  |          |                  |     | Pass 🔽        | Fail                |             |
| Weight ID      | 185           |             | N                                    | otes/Rem | arks             |     |               | -                   |             |
| Wt. Cal Date   |               | ٠٥١         |                                      |          |                  |     |               |                     | _           |
| NIST#          |               |             |                                      |          |                  |     | ***           |                     |             |
|                | · ~ ^         | \1          | 40                                   |          |                  |     | _             |                     | _           |
| Calibrated by: |               | them<br>to  | حمامله                               | -        |                  | —   | /             | 7 Morch 2           | <u>00</u> 2 |
| Reviewed by:   | CDXP          | 750         |                                      |          |                  | √/  | Date:         | 3-10-07             |             |
|                | ,             |             |                                      | 20       |                  | ac. |               |                     |             |
|                |               |             |                                      |          | ĺ                | M   | حمالات        |                     |             |
|                | •             |             |                                      |          |                  | / V | 7             |                     |             |

### Type S Pitot Tube Inspection Data Form

Probe #: 3-5 Job #: 110249.2.001.05

Performed By: Daniel Neal

Output 9-16-03

Pitot tube assembly level? X Yes \_\_\_\_\_ No

Pitot tube openings damaged? Yes (explain below) X No

 $\alpha_1 = 0^{\circ} (<10^{\circ}), \qquad \alpha_2 = 2^{\circ} (<10^{\circ})$ 

 $\beta_1 = 0$  ° (<5°),  $\beta_2 = 2$  ° (<5°)

 $\gamma = 2^{\circ}, \quad \theta = 1^{\circ}, \quad A = .75$  (in)

 $z = A \sin \gamma$  0.026 (in); (< 0.125 in)

 $w = A \sin \theta$  (in); (< 0.03125 in)

 $P_A = .41$  (in),  $P_B = .34$  (in),  $D_t = .24$  (in)

Calibration required? Yes X No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

01/18/99

# Type S Pitot Tube Inspection Data Form

X Yes

Pitot Tube #: M-126 Date: 9-16-03 Performed By: Daniel Neal

Probe #: 3-2 Job #: 110249.2.001.05

No

Pitot tube assembly level? Pitot tube openings damaged?

Yes (explain below) X No

 $\alpha_1 = 0$  ° (<10°),

$$\alpha_2 = 0$$
 ° (<10°)

= 1  $^{\circ}$  (<5  $^{\circ}$ ),

$$\beta_2 = 0$$
 ° (<5°)

 $z = A \sin \gamma$  0.026 (in); (< 0.125 in)

 $w = A \sin \theta$  0.000 (in); (< 0.03125 in)

 $P_A = .37$  (in),  $P_B = .38$  (in),  $D_t = .25$  (in)

Calibration required? Yes X No

Comments:



Calibration Records\Calibration Forms\newpitot.doc

01/18/99

# Appendix D

# **Summary Analytical Reports and Data**

# **Appendix D-1**

# **Run 1 Retest Emission Samples**

16 AUG 2003

John Hosenfeld Midwest Research Institute 425 Volker Blvd. Kansas City, MO 64110

Ph.: 816-753-7600 x1336 Fax: 816-531-0315

Subject: Certificate of Results

Dear John;

Attached to this narrative are the analytical results you requested on the rapid turn-around time sample submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases.

| Project Information Summary    | When applicable, see QC Annotations for details |
|--------------------------------|-------------------------------------------------|
| Client Project No.             | 110249.2.001.4                                  |
| AAP Project No.                | P3265                                           |
| Analytical Protocol            | 23                                              |
| No. Samples Submitted          | 1                                               |
| No. Samples Analyzed           | 1                                               |
| No. Laboratory Method Blanks   | 1                                               |
| No. OPRs / Batch CS3           | 1                                               |
| No. Outstanding Samples        | 0                                               |
| Date Received                  | 14-Aug-2003                                     |
| Condition Received             | good                                            |
| Temperature upon Receipt (C)   | 16, 17                                          |
| Extraction within Holding Time | yes                                             |
| Analysis within Holding Time   | yes                                             |
| Data meet QA/QC Requirements   | yes                                             |
| Exceptions                     | high extraction standards recoveries            |
| Analytical Difficulties        | none                                            |

2714 EXCHANGE DRIVE
WILMINGTON
NORTH CAROLINA 28405
TEL: 910-794-1613 FAX 910-794-3919

#### **QC Annotations:**

- 1. The new ratio [Ra] -- for 2,3,7,8-TCDD following the <sup>37</sup>Cl<sub>4</sub>-2,3,7,8-TCDD correction is shown between squared brackets in the DL column.
- An "A" data qualifier is used for analytes with a concentration below the reporting limit.
- 3. The recoveries of the extraction standards in the field sample exceed the normal acceptance limits of 130 percent. A close examination of the data points to the addition of the extraction standards as a possible source for the observation (extremely rare). The accompanying lab method blank and BCS<sub>3</sub> are entirely normal. Using information from the BCS<sub>3</sub> and the recoveries of the sampling standards, we determined that the bias results in an underestimation of the analyte concentrations by 25 percent; i.e., within the experimental error allowed by Method 23.
- 4. The lab method blank prepared with this rapid TAT sample was obtained using purified sand in lieu of XAD-2 resin. Normally, our procedures call for the use of the resin prepared alongside the sampling modules before sampling. This substitution was necessary in order to keep the actual lab method blank for the batch of samples returning from the field. Therefore, the lab method blank does not contain the sampling standards.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Yves Tondeur, Ph.D.

President & CEO



# P3265 - TEQ

Project ID: MRI

| Sample Summary - Part 1 LLALTA ANALYTICAL PERSPECTIVES Method 23 |              |         |  |  |
|------------------------------------------------------------------|--------------|---------|--|--|
| Analyte                                                          | 0_1529_MB001 | 1009    |  |  |
|                                                                  | pg           | pg      |  |  |
| 2,3,7,8-TCDD                                                     | (0.993)      | 11.6    |  |  |
| 1,2,3,7,8-PeCDD                                                  | (0.459)      | 5.75    |  |  |
| 1,2,3,4,7,8-HxCDD                                                | (2.04)       | (3.32)  |  |  |
| 1,2,3,6,7,8-HxCDD                                                | (1.74)       | (<5)    |  |  |
| 1,2,3,7,8,9-HxCDD                                                | (1.83)       | 5.44    |  |  |
| 1,2,3,4,6,7,8-HpCDD                                              | (<5)         | 32.3    |  |  |
| OCDD                                                             | (3.2)        | 302     |  |  |
| 2,3,7,8-TCDF                                                     | (0.965)      | 2.68    |  |  |
| 1,2,3,7,8-PeCDF                                                  | (1.98)       | (0.938) |  |  |
| 2,3,4,7,8-PeCDF                                                  | (1.83)       | (<5)    |  |  |
| 1,2,3,4,7,8-HxCDF                                                | (0.581)      | (<5)    |  |  |
| 1,2,3,6,7,8-HxCDF                                                | (0.521)      | (<5)    |  |  |
| 2,3,4,6,7,8-HxCDF                                                | (0.599)      | (<5)    |  |  |
| 1,2,3,7,8,9-HxCDF                                                | (0.693)      | (1.19)  |  |  |
| 1,2,3,4,6,7,8-HpCDF                                              | (<5)         | 10.6    |  |  |
| 1,2,3,4,7,8,9-HpCDF                                              | (1.37)       | (1.58)  |  |  |
| OCDF                                                             | (6.63)       | 12.8    |  |  |
| ITEF TEQ (ND=0; EMPC=0)                                          | 0.00         | 16.1    |  |  |
| ITEF TEQ (ND=0; EMPC=EMPC)                                       | 0.00         | 16.1    |  |  |
| ITEF TEQ (ND=DL/2; EMPC=0)                                       | 1.63         | 18.6    |  |  |
| ITEF TEQ (ND=DL/2; EMPC=EMPC)                                    | 1.63         | 18.6    |  |  |
| ITEF TEQ (ND=DL; EMPC=EMPC)                                      | 3.26         | 21.1    |  |  |

() = DL [] = EMPC Reviewer GAG Date MATINGOS

# P3265 - Totals

Project ID: MRI

| Sample Summary - Par                    | t 2 LALTA ANALYTICAL PERSPECTIVES | Method 23 |
|-----------------------------------------|-----------------------------------|-----------|
| Analyte                                 | 0_1529_MB001                      | 1009      |
|                                         | pg                                | pg        |
| Totals                                  |                                   |           |
| TCDDs                                   | 0                                 | 161       |
| PeCDDs                                  | 0                                 | 98.7      |
| HxCDDs                                  | 0                                 | 63.5      |
| HpCDDs                                  | 4.71                              | 71.9      |
| OCDD                                    | 0                                 | 302       |
| TCDFs                                   | 0                                 | 28.9      |
| PeCDFs                                  | 0                                 | 17.7      |
| HxCDFs                                  | 0                                 | 21.1      |
| HpCDFs                                  | 3.91                              | 16.3      |
| OCDF                                    | 0                                 | 12.8      |
| Total PCDD/Fs (ND=0; EMPC=0)            | 8.62                              | 794       |
| Total PCDD/Fs (ND=0; EMPC=EMPC)         | 14.8                              | 823       |
| Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC) | 40.2                              | 830       |
| Total 2378s (ND=0; EMPC=0)              | 0.00                              | 383       |
| Total 2378s (ND=0.5; EMPC=0)            | 17.7                              | 399       |
| Total 2378s (ND=1; EMPC=0)              | 35.4                              | 415       |
| Total 2378s (ND=0; EMPC=1)              | 0.00                              | 383       |
| Total 2378s (ND=0.5; EMPC=1)            | 17.7                              | 399       |
| Total 2378s (ND=1; EMPC=1)              | 35.4                              | 415       |

Total 2378s = Sum of 17 2378-substituted PCDD/PCDF congeners (SARA 313)

() = DL [] = EMPC Reviewer GAG Date 16A4003

# P3265 - Others Project ID: MRI

| Sample Summary - Part 3 LL ALTA ANALYTICAL PERSPECTIVES Method |              |             |  |  |
|----------------------------------------------------------------|--------------|-------------|--|--|
| Analyte                                                        | 0_1529_MB001 | <b>1009</b> |  |  |
|                                                                | pg           |             |  |  |
| Other PCDD/Fs (ND=0, EMPC=0)                                   |              |             |  |  |
| Other TCDD                                                     | 0            | 150         |  |  |
| Other PeCDD                                                    | 0            | 92.9        |  |  |
| Other HxCDD                                                    | 0            | 55.1        |  |  |
| Other HpCDD                                                    | 0            | 39.6        |  |  |
| Other TCDF                                                     | 0            | 26.2        |  |  |
| Other PeCDF                                                    | 0            | 14.5        |  |  |
| Other HxCDF                                                    | 0            | 10.8        |  |  |
| Other HpCDF                                                    | 0            | 5.71        |  |  |
| Other PCDD/Fs (ND=0, EMPC=EMPC)                                |              |             |  |  |
| Other TCDD                                                     | 0            | 177         |  |  |
| Other PeCDD                                                    | 0            | 92.9        |  |  |
| Other HxCDD                                                    | 0            | 55.1        |  |  |
| Other HpCDD                                                    | 3.6          | 39.6        |  |  |
| Other TCDF                                                     | 0            | 26.2        |  |  |
| Other PeCDF                                                    | 0            | 14.5        |  |  |
| Other HxCDF                                                    | 2.53         | 13.1        |  |  |
| Other HpCDF                                                    | 0            | 5.71        |  |  |

( ) = DL [] = EMPC Reviewer 646 Date 1644005

ITEF-TEQ Project ID: MRI P3265

☑ ND=0; EMPC=0
☑ ND=0; EMPC=EMPC
☑ ND=DL/2; EMPC=0
☑ ND=DL/2; EMPC=EMPC
☑ ND=DL; EMPC=EMPC



Totals Project ID: MRI P3265

☐ Total PCDD/Fs (ND=0; EMPC=0)
☐ Total PCDD/Fs (ND=0; EMPC=EMPC)

■ Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC)



# Mean Recoveries of Extraction Standards (N=2) Project ID: MRI P3265





# Mean Recoveries of Sampling Standards (N=2) Project ID: MRI P3265





| Sample ID: 0_1529_MB001 Method 23 |       |                  |      |                 |                     |                     |             |  |
|-----------------------------------|-------|------------------|------|-----------------|---------------------|---------------------|-------------|--|
| Client Data                       |       | Sample Data      |      | Laboratory Data |                     |                     |             |  |
| Name:                             | MRI   | Matrix:          | Air  | Project No.:    | P3265               | Date Received:      | n/a         |  |
| Project ID:                       | MRI   | Weight/Volume:   | 1    | Sample ID:      | 0_1529_MB001        | Date Extracted:     | 14 Aug 03   |  |
| Date Collected:                   | n/a   | VVeignb voidino. | ·    | QC Batch No.:   | 1529                | Date Analyzed:      | 15 Aug 03   |  |
| Analyte                           | Conc. | DL               | EMPC | Qualifier       | Recoveries          |                     |             |  |
| Allalyto                          | pg    | pg               | pg   |                 | ES                  | SS                  | AS          |  |
|                                   | ND ND | 0.993            |      |                 | 106                 |                     | 107         |  |
| 2,3,7,8-TCDD                      |       | 0.459            |      |                 | 109                 |                     | 107         |  |
| 1,2,3,7,8-PeCDD                   | ND    |                  |      |                 | 95.6                |                     | 107         |  |
| 1,2,3,4,7,8-HxCDD                 | ND    | 2.04             |      |                 | 95.6                | 1                   | 107         |  |
| 1,2,3,6,7,8-HxCDD                 | ND    | 1.74             |      |                 | 95.6                |                     | 107         |  |
| 1,2,3,7,8,9-HxCDD                 | ND    | 1.83             |      | 1               | 106                 |                     | 107         |  |
| 1,2,3,4,6,7,8-HpCDD               | ND    | <5               |      |                 | 89.2                |                     | 107         |  |
| OCDD                              | ND    | 3.2              |      |                 | 69.2                |                     |             |  |
| 2,3,7,8-TCDF                      | ND .  | 0.965            |      | Ì               | 116                 |                     | 107         |  |
| 1,2,3,7,8-PeCDF                   | ND    | 1.98             |      | -               | 111                 |                     | 107         |  |
| 2,3,4,7,8-PeCDF                   | ND    | 1.83             |      |                 | 111                 |                     | 107         |  |
|                                   | ND    | 0.581            |      |                 | 90.9                |                     | 107         |  |
| 1,2,3,4,7,8-HxCDF                 | ND    | 0.521            |      |                 | 90.9                |                     | 107         |  |
| 1,2,3,6,7,8-HxCDF                 | ND    | 0.599            |      |                 | 90.9                |                     | 107         |  |
| 2,3,4,6,7,8-HxCDF                 | ND    | 0.693            |      |                 | 90.9                |                     | 107         |  |
| 1,2,3,7,8,9-HxCDF                 | ND    | <5               |      |                 | 105                 |                     | 107         |  |
| 1,2,3,4,6,7,8-HpCDF               | ND    | 1.37             |      |                 | 105                 | Ì                   | 107         |  |
| 1,2,3,4,7,8,9-HpCDF               | ND    | 6.63             |      |                 | 79.3                |                     | 107         |  |
| Totals & TEQs                     | I ND  | 0.03             |      |                 |                     |                     |             |  |
| TOTALS OF LEWS                    |       |                  |      |                 |                     |                     |             |  |
| TCDDs                             | ND    | 0.993            |      |                 | ALTA                | ANALYTICAL PI       | ERSPECTIVES |  |
| PeCDDs                            | ND    | 0.459            |      |                 |                     |                     |             |  |
| HxCDDs                            | ND    | 1.86             |      |                 | 2714 Exchange Drive |                     |             |  |
| HpCDDs                            | 4.71  |                  | 8.31 |                 |                     | Wilmington          |             |  |
| Inpobbs                           | 7.71  | <b> </b>         |      |                 |                     | North Carolina 284  | 05          |  |
| TCDFs                             | ND    | 0.965            | Į    |                 |                     | USA                 |             |  |
| PeCDFs                            | ND    | 1.9              |      | İ               |                     |                     |             |  |
| HxCDFs                            | ND    |                  | 2.53 |                 | Tel: 910 794-1613   |                     |             |  |
| HpCDFs                            | 3.91  |                  |      |                 | Fax: 910 794-3919   |                     |             |  |
| Total PCDD/Fs                     | 8.62  |                  | 14.8 |                 | e-                  | mail: yt@ultratrace | .com        |  |
| TEQ (ND=0)                        | 0.00  |                  | 0.00 | ITEF            | w                   | eb: www.ultratrace. | com         |  |
| TEQ (ND=0)                        | 1.63  |                  | 1.63 | ITEF            | 1                   |                     |             |  |

Checkcode: 1489

Reviewer . Date .



# **Appendix D-2**

# **Runs 2 Through 6 Emission Samples**

11 SEP 2003

John Hosenfeld Midwest Research Institute 425 Volker Blvd. Kansas City, MO 64110

Ph.: 816-753-7600 x1336 Fax: 816-531-0315

Subject: Certificate of Results

Dear John;

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases.

| Project Information Summary    | When applicable, see QC Annotations for details |  |  |  |  |
|--------------------------------|-------------------------------------------------|--|--|--|--|
| Client Project No.             | 110249.2.001.4                                  |  |  |  |  |
| AAP Project No.                | P3290                                           |  |  |  |  |
| Analytical Protocol            | 23                                              |  |  |  |  |
| No. Samples Submitted          | 6                                               |  |  |  |  |
| No. Samples Analyzed           | 6                                               |  |  |  |  |
| No. Laboratory Method Blanks   | 1                                               |  |  |  |  |
| No. OPRs / Batch CS3           | 1                                               |  |  |  |  |
| No. Outstanding Samples        | 0.                                              |  |  |  |  |
| Date Received                  | 22-Aug-2003                                     |  |  |  |  |
| Condition Received             | good                                            |  |  |  |  |
| Temperature upon Receipt (C)   | 8, 10, 11, 19, 23                               |  |  |  |  |
| Extraction within Holding Time | yes                                             |  |  |  |  |
| Analysis within Holding Time   | yes                                             |  |  |  |  |
| Data meet QA/QC Requirements   | yes                                             |  |  |  |  |
| Exceptions                     | none                                            |  |  |  |  |
| Analytical Difficulties        | none                                            |  |  |  |  |

2714 EXCHANGE DRIVE
WILMINGTON
NORTH CAROLINA 28405
TEL: 910-794-1613 FAX 910-794-3919

### QC Annotations:

- 1. The new ratio [Ra] -- for 2,3,7,8-TCDD following the  $^{37}$ Cl<sub>4</sub>-2,3,7,8-TCDD correction is shown between squared brackets in the DL column.
- 2. An "A" data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Yves Tondeur, Ph.D. President & CEO



P3290 - TEQ
Project ID: 110249.2.001.04

ALTA ANALYTICAL PERSPECTIVES Method 23 Sample Summary - Part 1 5004 6004 4004 Analyte 0\_1551\_MB001 **1015 BLANK** 2009 3009 pg pg pg pg pg pg pg 5.51 6.39 5.78 [4.36]2,3,7,8-TCDD (1.82)(1.78)8.17 7.43 5.24 (<5)6.1 6.78 1,2,3,7,8-PeCDD (4.38)(3.05)(2.81)(3.84)(3.49)(3.83)1,2,3,4,7,8-HxCDD (4.7)(3.09)(3.02)(<5) 8.89 5.86 (<5)(<5) 1,2,3,6,7,8-HxCDD (4.31)(2.83)[15.4] 12.3 1,2,3,7,8,9-HxCDD (4.3)(2.82)6.1 (<5) 13.2 64.6 58.9 77.1 1,2,3,4,6,7,8-HpCDD (2.8)11.5 28 23.9 1350 1220 OCDD 12.1 90.5 164 172 811 5.3 (2.34)(1.37)(1.59)4.21 9.11 [3.89]2,3,7,8-TCDF (2.11)(2.6)[6.02](<5)5.59 (4.45)(5.08)1,2,3,7,8-PeCDF (2.39)8.18 10.3 8.85 7 (4.68)2,3,4,7,8-PeCDF (1.95)9.91 9.58 9.47 [6.32](<5) 1,2,3,4,7,8-HxCDF (0.64)(<5)(<5) 8.89 8.01 8.41 (<5) 1,2,3,6,7,8-HxCDF (0.562)(<5)(0.591)(<5)[8.95]8.18 8.38 [5.41] (<5) 2,3,4,6,7,8-HxCDF (0.733)(<5)(1.16)(1.49)1,2,3,7,8,9-HxCDF (0.725)(0.934)(0.627)9.92 26.6 24.9 24.4 12.9 7.56 (1.02)1,2,3,4,6,7,8-HpCDF 5.12 5.91 (2.78)(1.36)(0.924)(1.27)1,2,3,4,7,8,9-HpCDF (1.27)11.2 18.7 18.5 (<10) (<10)OCDF (3.19)(<10) 19.2 10.4 13.1 18.5 15.7 ITEF TEQ (ND=0; EMPC=0) 0.0121 0.305 17.5 13.1 15.7 19.6 ITEF TEQ (ND=0; EMPC=EMPC) 0.0121 0.305 19.7 19.0 17.8 19.9 11.1 15.5 ITEF TEQ (ND=DL/2; EMPC=0) 3.44 3.94 20.3 18.1 15.5 ITEF TEQ (ND=DL/2; EMPC=EMPC) 3.94 20.1 17.8 3.44 19.9 20.9 18.8 17.9 6.88 7.58 20.6 ITEF TEQ (ND=DL; EMPC=EMPC)

() = DL [] = EMPC Reviewer Date

P3290 - Totals

Project ID: 110249.2.001.04

| Sample Summary - Part 2                 |              |            | ALTA ANALYTICAL PERSPECTIVES |      |      | Method 23 |       |  |
|-----------------------------------------|--------------|------------|------------------------------|------|------|-----------|-------|--|
| Analyte                                 | 0_1551_MB001 | 1015 BLANK | 2009                         | 3009 | 4004 | 5004      | 6004  |  |
|                                         | pg           | pg         | pg                           | pg   | pg   | pg        | pg    |  |
| Totals                                  |              |            |                              |      |      |           |       |  |
| TCDDs                                   | 0            | o          | 149                          | 104  | 103  | 62.5      | 88    |  |
| PeCDDs                                  | 0            | 0          | 104                          | 54.5 | 83.6 | 99.3      | 94.6  |  |
| HxCDDs                                  | 0            | 9.52       | 90.3                         | 29.3 | 116  | 136       | 117   |  |
| HpCDDs                                  | 0            | 23.5       | 60.3                         | 53.5 | 137  | 179       | 160   |  |
| OCDD                                    | 12.1         | 90.5       | 164                          | 172  | 811  | 1220      | 1350  |  |
| TCDFs                                   | 0            | 0          | 83.8                         | 61.2 | 55.6 | 44.6      | 0     |  |
| PeCDFs                                  | 0            | 0          | 69.5                         | 60.8 | 57.9 | 34.8      | 0     |  |
| HxCDFs                                  | 0            | 27.6       | 59.9                         | 59.6 | 60.6 | 19.2      | 21.6  |  |
| HpCDFs                                  | 0            | 9.92       | 38.9                         | 42.9 | 44.6 | 12.9      | 7.56  |  |
| OCDF                                    | 0            | 5.83       | 11.2                         | 18.7 | 18.5 | 9.05      | 7.74  |  |
| Total PCDD/Fs (ND=0; EMPC=0)            | 12.1         | 167        | 831                          | 657  | 1490 | 1820      | 1840  |  |
| Total PCDD/Fs (ND=0; EMPC=EMPC)         | 12.1         | 171        | 876                          | 728  | 1540 | 1890      | 1870  |  |
| Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC) | 47.9         | 193        | 880                          | 733  | 1540 | 1900      | 1880  |  |
| Total 2378s (ND=0; EMPC=0)              | 12.1         | 112        | 280                          | 296  | 985  | 1340      | 1450  |  |
| Total 2378s (ND=0; EMPC=0)              | 30.0         | 135        | 285                          | 309  | 991  | 1350      | 1470  |  |
| Total 2378s (ND=1; EMPC=0)              | 47.9         | 159        | 290                          | 321  | 998  | 1360      | 1490  |  |
| Total 2378s (ND=0; EMPC=1)              | 12.1         | 112        | 295                          | 296  | 988  | 1370      | 1450  |  |
| Total 2378s (ND=0.5; EMPC=1)            | 30.0         | 135        | 300                          | 309  | 995  | 1380      | 1470  |  |
| Total 2378s (ND=1; EMPC=1)              | 47.9         | 159        | 305                          | 321  | 1000 | 1400      | 1490_ |  |

Total 2378s = Sum of 17 2378-substituted PCDD/PCDF congeners (SARA 313)

() = DL [] = EMPC

**P3290 - Others** 

Project ID: 110249.2.001.04

| Sample Summary                  | ALTA ANALYTICAL PERSPECTIVES |            |      |      | Method 23 |      |      |
|---------------------------------|------------------------------|------------|------|------|-----------|------|------|
| Analyte                         | 0_1551_MB001                 | 1015 BLANK | 2009 | 3009 | 4004      | 5004 | 6004 |
|                                 | pg                           | pg         | pg   | pg   | pg        | pg   | pg   |
| Other PCDD/Fs (ND=0, EMPC=0)    |                              |            |      |      |           |      |      |
| Other TCDD                      | 0                            | 0          | 141  | 97.6 | 97.2      | 62.5 | 82.5 |
| Other PeCDD                     | 0                            | 0          | 98.8 | 50.6 | 77.5      | 92.5 | 87.2 |
| Other HxCDD                     | 0                            | 9.52       | 79.5 | 22   | 98.4      | 127  | 99.3 |
| Other HpCDD                     | 0                            | 12.1       | 32.4 | 29.6 | 78.4      | 101  | 95.2 |
| Other TCDF                      | 0                            | 0          | 79.6 | 52   | 55.6      | 39.3 | 0    |
| Other PeCDF                     | 0                            | o          | 61.3 | 50.5 | 43.4      | 27.8 | 0    |
| Other HxCDF                     | 0                            | 14.8       | 41.1 | 33.8 | 31.2      | 14.7 | 10.2 |
| Other HpCDF                     | 0                            | o .        | 12.4 | 12.9 | 14.3      | 0    | 0    |
| Other PCDD/Fs (ND=0, EMPC=EMPC) |                              |            |      |      |           |      |      |
| Other TCDD                      | 0                            | o          | 148  | 106  | 114       | 84.8 | 101  |
| Other PeCDD                     | 0                            | 0          | 103  | 62.2 | 81.8      | 96.2 | 91.2 |
| Other HxCDD                     | 0                            | 13.1       | 79.5 | 41.9 | 98.4      | 127  | 99.3 |
| Other HpCDD                     | 0                            | 12.1       | 32.4 | 29.6 | 78.4      | 101  | 95.2 |
| Other TCDF                      | 0                            | o          | 84.8 | 71.3 | 62.6      | 42.8 | 0    |
| Other PeCDF                     | 0                            | 0          | 71.3 | 56.4 | 55.5      | 34.2 | 0    |
| Other HxCDF                     | 0                            | 14.8       | 44.1 | 35.9 | 35.2      | 19.3 | 10.2 |
| Other HpCDF                     | 0                            | 0          | 12.4 | 12.9 | 14.3      | 0    | 0    |

Reviewer Date

<sup>( ) =</sup> DL [ ] = EMPC

#### ITEF-TEQ Project ID: 110249.2.001.04 P3290

☑ ND=0; EMPC=0
☑ ND=0; EMPC=EMPC
□ ND=DL/2; EMPC=0
■ ND=DL/2; EMPC=EMPC
☑ ND=DL; EMPC=EMPC



Totals
Project ID: 110249.2.001.04
P3290

☑ Total PCDD/Fs (ND=0; EMPC=0)

☐ Total PCDD/Fs (ND=0; EMPC=EMPC)

■ Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC)



## Mean Recoveries of Extraction Standards (N=7) Project ID: 110249.2.001.04 P3290



# Mean Recoveries of Sampling Standards (N=7) Project ID: 110249.2.001.04 P3290

☑Mean □Std. Dev.



| Sample ID:          | 0_1551_MB       | 001            |        | *****           |              | N                          | lethod 23  |
|---------------------|-----------------|----------------|--------|-----------------|--------------|----------------------------|------------|
| Client Data         |                 | Sample Data    |        | Laboratory Data | 3            |                            |            |
| Name:               | MRI             | Matrix:        | Air    | Project No.:    | -<br>P3290   | Date Received:             | n/a        |
| Project ID:         | 110249.2.001.04 | Weight/Volume: | 1      | Sample ID:      | 0 1551 MB001 | Date Extracted:            | 28 Aug 03  |
| Date Collected:     | n/a             |                |        | QC Batch No.:   | 1551         | Date Analyzed:             | 08 Sep 03  |
| Analyte             | Conc.           | DL             | EMPC   | Qualifier       |              | Recoveries                 | •          |
|                     | pg              | pg             | pg     |                 | ES           | SS                         | AS         |
| 2,3,7,8-TCDD        | ND              | 1.82           |        |                 | 74.1         | 98.8                       | 79.9       |
| 1,2,3,7,8-PeCDD     | ND              | 4.38           |        |                 | 75.4         | 101                        | 79.9       |
| 1,2,3,4,7,8-HxCDD   | ND              | 4.7            |        |                 | 79.2         | 98.2                       | 79.9       |
| 1,2,3,6,7,8-HxCDD   | ND              | 4.31           |        |                 | 79.2         | 98.2                       | 79.9       |
| 1,2,3,7,8,9-HxCDD   | ND              | 4.3            |        |                 | 79.2         | 98.2                       | 79.9       |
| 1,2,3,4,6,7,8-HpCDD | ND              | 2.8            |        |                 | 82.3         | 98                         | 79.9       |
| OCDD                | 12.1            |                |        | A               | 79.6         | 98                         | 79.9       |
| 2,3,7,8-TCDF        | ND              | 1.37           |        |                 | 87.2         | 98.8                       | 79.9       |
| 1,2,3,7,8-PeCDF     | ND              | 2.11           |        |                 | 76.2         | 101                        | 79.9       |
| 2,3,4,7,8-PeCDF     | ND              | 1.95           |        |                 | 76.2         | 101                        | 79.9       |
| 1,2,3,4,7,8-HxCDF   | ND              | 0.64           |        |                 | 76.7         | 102                        | 79.9       |
| 1,2,3,6,7,8-HxCDF   | ND              | 0.562          |        |                 | 76.7         | 102                        | 79.9       |
| 2,3,4,6,7,8-HxCDF   | ND              | 0.591          |        |                 | 76.7         | 102                        | 79.9       |
| 1,2,3,7,8,9-HxCDF   | ND              | 0.725          |        |                 | 76.7         | 102                        | 79.9       |
| 1,2,3,4,6,7,8-HpCDF | ND              | 1.02           |        |                 | 81.7         | 98                         | 79.9       |
| 1,2,3,4,7,8,9-HpCDF | ND              | 1.27           |        |                 | 81.7         | 98                         | 79.9       |
| OCDF                | ND              | 3.19           |        |                 | 80.8         | 98                         | 79.9       |
| Totals & TEQs       |                 |                |        |                 |              |                            |            |
| TCDDs               | ND              | 1.82           |        |                 | ALTA         | ANALYTICAL PE              | RSPECTIVES |
| PeCDDs              | ND              | 4.38           |        |                 |              |                            |            |
| HxCDDs              | ND              | 4.43           |        |                 | 2            | 714 Exchange Driv          | ve         |
| HpCDDs              | ND              | 2.8            |        |                 |              | Wilmington                 |            |
| TCDFs               | ND              | 1.37           |        |                 | 1            | lorth Carolina 2840<br>USA | 15         |
| PeCDFs              | ND              | 2.03           |        |                 |              |                            |            |
| HxCDFs              | ND              | 0.624          |        |                 |              | Tel: 910 794-1613          | 3          |
| HpCDFs ·            | ND              | 1.13           |        |                 |              | Fax: 910 794-3919          |            |
| Total PCDD/Fs       | 12.1            |                | 12.1   |                 | 1            | nail: yt@ultratrace.       |            |
| TEQ (ND=0)          | 0.0121          |                | 0.0121 | ITEF            |              | b: www.ultratrace.d        |            |
| TEQ (ND=DL/2)       | 3.44            |                | 3.44   | ITEF            |              |                            |            |

Reviewer Date

| Sample ID:          | 1015 BLAN       | <b>(</b>       |       |                 |       | N                          | lethod 23   |
|---------------------|-----------------|----------------|-------|-----------------|-------|----------------------------|-------------|
| Client Data         |                 | Sample Data    |       | Laboratory Data | 1     |                            |             |
| Name:               | MRI             | Matrix:        | Air   | Project No.:    | P3290 | Date Received:             | 22 Aug 03   |
| Project ID:         | 110249.2.001.04 | Weight/Volume: | 1     | Sample ID:      |       | 1 Date Extracted:          | 28 Aug 03   |
| Date Collected:     | 20 Aug 03       | ,              |       | QC Batch No.:   | 1551  | Date Analyzed:             | 08 Sep 03   |
| Analyte             | Conc.           | DL             | EMPC  | Qualifier       |       | Recoveries                 | •           |
| _                   | pg              | pg             | pg    |                 | ES    | SS                         | AS          |
| 2,3,7,8-TCDD        | ND              | 1.78           |       |                 | 82.2  | 99.1                       | 87.8        |
| 1,2,3,7,8-PeCDD     | ND              | 3.05           |       |                 | 85.8  | 100                        | 87.8        |
| 1,2,3,4,7,8-HxCDD   | ND              | 3.09           |       |                 | 88.7  | 96.7                       | 87.8        |
| 1,2,3,6,7,8-HxCDD   | ND              | 2.83           |       |                 | 88.7  | 96.7                       | 87.8        |
| 1,2,3,7,8,9-HxCDD   | ND              | 2.82           |       |                 | 88.7  | 96.7                       | 87.8        |
| 1,2,3,4,6,7,8-HpCDD | 11.5            |                |       | Α               | 88.3  | 97.7                       | 87.8        |
| OCDD                | 90.5            |                |       | A               | 87.7  | 97.7                       | 87.8        |
| 2,3,7,8-TCDF        | ND              | 1.59           |       |                 | 82.1  | 99.1                       | 87.8        |
| 1,2,3,7,8-PeCDF     | ND              | 2.6            |       |                 | 86.1  | 100                        | 87.8        |
| 2,3,4,7,8-PeCDF     | ND              | 2.39           |       | -               | 86.1  | 100                        | 87.8        |
| 1,2,3,4,7,8-HxCDF   | ND              | <5             |       |                 | 88.4  | 98.9                       | 87.8        |
| 1,2,3,6,7,8-HxCDF   | ND              | <5             |       |                 | 88.4  | 98.9                       | 87.8        |
| 2,3,4,6,7,8-HxCDF   | ND              | <5             |       | 1               | 88.4  | 98.9                       | 87.8        |
| 1,2,3,7,8,9-HxCDF   | ND              | 0.934          |       |                 | 88.4  | 98.9                       | 87.8        |
| 1,2,3,4,6,7,8-HpCDF | 9.92            |                |       | A               | 87.2  | 97.7                       | 87.8        |
| 1,2,3,4,7,8,9-HpCDF | ND              | 0.924          |       |                 | 87.2  | 97.7                       | 87.8        |
| OCDF                | ND              | <10            |       |                 | 88.6  | 97.7                       | 87.8        |
| Totals & TEQs       |                 |                |       |                 |       | - 10                       |             |
| TCDDs               | ND              | 1.78           |       |                 | ALTA  | ANALYTICAL PE              | ERSPECTIVES |
| PeCDDs              | ND              | 3.05           |       |                 |       |                            |             |
| HxCDDs              | 9.52            |                | 13.1  |                 |       | 2714 Exchange Dri          | ve          |
| HpCDDs              | 23.5            | 1              |       | 1               |       | Wilmington                 |             |
| TCDFs               | ND              | 1.59           |       |                 |       | North Carolina 2840<br>USA | 05          |
| PeCDFs              | ND              | 2.49           |       |                 |       | 30/4                       |             |
| HxCDFs              | 27.6            | 2.70           |       |                 |       | Tel: 910 794-1613          | 1           |
| HpCDFs              | 9.92            |                |       |                 |       | Fax: 910 794-3919          |             |
| Total PCDD/Fs       | 167             |                | 171   |                 |       | mail: yt@ultratrace.       |             |
| TEQ (ND=0)          | 0.305           |                | 0.305 | ITEF            | 1     | eb: www.ultratrace.        |             |
| TEQ (ND=DL/2)       | 3.94            |                | 3.94  | ITEF            |       | Jo                         | JUII        |

Reviewer 711/03

| Sample ID:          | 2009            |                |      |                 |                | N                                | lethod 23   |
|---------------------|-----------------|----------------|------|-----------------|----------------|----------------------------------|-------------|
| Client Data         |                 | Sample Data    |      | Laboratory Data |                |                                  |             |
| Name:               | MRI             | Matrix:        | Air  | Project No.:    | P3290          | Date Received:                   | 22 Aug 03   |
| Project ID:         | 110249.2.001.04 | Weight/Volume: | 1    | Sample ID:      | P3290_1551_002 | Date Extracted:                  | 28 Aug 03   |
| Date Collected:     | 14 Aug 03       |                |      | QC Batch No.:   | 1551           | Date Analyzed:                   | 08 Sep 03   |
| Analyte             | Conc.           | DL             | EMPC | Qualifier       |                | Recoveries                       |             |
|                     | pg              | pg             | pg   |                 | ES             | SS                               | AS          |
| 2,3,7,8-TCDD        | 8.17            | [Ra=0.864]     |      | Α               | 84.7           | 97.9                             | 90.3        |
| 1,2,3,7,8-PeCDD     | 5.24            |                |      | Α               | 87.5           | 99.7                             | 90.3        |
| 1,2,3,4,7,8-HxCDD   | ND              | 3.02           |      |                 | 88.6           | 97                               | 90.3        |
| 1,2,3,6,7,8-HxCDD   | ND              | <5             |      |                 | 88.6           | 97                               | 90.3        |
| 1,2,3,7,8,9-HxCDD   | 6.1             |                |      | A               | 88.6           | 97                               | 90.3        |
| 1,2,3,4,6,7,8-HpCDD | 28              |                |      | A               | 90.9           | 98.1                             | 90.3        |
| OCDD                | 164             |                |      |                 | 90.6           | 98.1                             | 90.3        |
| 2,3,7,8-TCDF        | 4.21            |                |      | A               | 86.2           | 97.9                             | 90.3        |
| 1,2,3,7,8-PeCDF     | EMPC            |                | 6.02 | A               | 86.3           | 99.7                             | 90.3        |
| 2,3,4,7,8-PeCDF     | 8.18            |                |      | A               | 86.3           | 99.7                             | 90.3        |
| 1,2,3,4,7,8-HxCDF   | 9.91            |                |      | A               | 88.2           | 98.7                             | 90.3        |
| 1,2,3,6,7,8-HxCDF   | 8.89            |                |      | A               | 88.2           | 98.7                             | 90.3        |
| 2,3,4,6,7,8-HxCDF   | EMPC            |                | 8.95 | A               | 88.2           | 98.7                             | 90.3        |
| 1,2,3,7,8,9-HxCDF   | ND              | 0.627          |      | 1               | 88.2           | 98.7                             | 90.3        |
| 1,2,3,4,6,7,8-HpCDF | 26.6            |                |      | A               | 89.6           | 98.1                             | 90.3        |
| 1,2,3,4,7,8,9-HpCDF | ND              | 1.27           |      |                 | 89.6           | 98.1                             | 90.3        |
| OCDF                | 11.2            |                |      | Α               | 89.3           | 98.1                             | 90.3        |
| Totals & TEQs       |                 |                |      |                 |                |                                  |             |
| TCDDs               | 149             |                | 156  |                 | ALTA           | ANALYTICAL PI                    | ERSPECTIVES |
| PeCDDs              | 104             |                | 109  |                 |                |                                  |             |
| HxCDDs              | 90.3            |                |      |                 | 2              | 2714 Exchange Dri                | ve          |
| HpCDDs              | 60.3            |                |      | 1               | ١.             | Wilmington<br>North Carolina 284 | 05          |
| TCDFs               | 83.8            |                | 89   |                 | 1              | νοπη Carolina 264<br>USA         | 00          |
| PeCDFs              | 69.5            |                | 85.5 |                 |                |                                  |             |
| HxCDFs              | 59.9            |                | 71.9 |                 | 1              | Tel: 910 794-1613                | 3           |
| HpCDFs              | 38.9            |                |      |                 |                | Fax: 910 794-391                 |             |
| Total PCDD/Fs       | 831             |                | 876  |                 | e-r            | nail: yt@ultratrace.             |             |
| TEQ (ND=0)          | 18.5            |                | 19.7 | ITEF            | 1              | eb: www.ultratrace.              |             |
| TEQ (ND=DL/2)       | 19              |                | 20.1 | ITEF            | 1              |                                  |             |

Reviewer Date

| Sample ID:          | 1009  | -              |      |                 | -              | N                         | lethod 23   |
|---------------------|-------|----------------|------|-----------------|----------------|---------------------------|-------------|
| Client Data         |       | Sample Data    |      | Laboratory Data | <u> </u>       |                           |             |
| Name:               | MRI   | Matrix:        | Air  | Project No.:    | P3265          | Date Received:            | 14 Aug 03   |
| Project ID:         | MRI   | Weight/Volume: | 1    | Sample ID:      | P3265_1529_001 | Date Extracted:           | 14 Aug 03   |
| Date Collected:     | n/a   |                |      | QC Batch No.:   | 1529           | Date Analyzed:            | 15 Aug 03   |
| Analyte             | Conc. | DL             | EMPC | Qualifier       |                | Recoveries                |             |
|                     | pg    | pg             | pg   |                 | ES             | SS                        | AS          |
| 2,3,7,8-TCDD        | 11.6  | [Ra=0.831]     |      |                 | 139            | 75.7                      | 112         |
| 1,2,3,7,8-PeCDD     | 5.75  | -              |      | A               | 143            | 73.4                      | 112         |
| 1,2,3,4,7,8-HxCDD   | ND    | 3.32           |      |                 | 138            | 75                        | 112         |
| 1,2,3,6,7,8-HxCDD   | ND    | <5             |      |                 | 138            | 75                        | 112         |
| 1,2,3,7,8,9-HxCDD   | 5.44  |                |      | A               | 138            | 75                        | 112         |
| 1,2,3,4,6,7,8-HpCDD | 32.3  |                |      | Α               | 147            | 70.3                      | 112         |
| OCDD                | 302   |                |      |                 | 133            | 70.3                      | 112         |
| 2,3,7,8-TCDF        | 2.68  |                |      | A               | 152            | 75.7                      | 112         |
| 1,2,3,7,8-PeCDF     | ND    | 0.938          |      |                 | 146            | 73.4                      | 112         |
| 2,3,4,7,8-PeCDF     | ND    | <5             |      |                 | 146            | 73.4                      | 112         |
| 1,2,3,4,7,8-HxCDF   | ND    | <5             |      | 1               | 132            | 75.8                      | 112         |
| 1,2,3,6,7,8-HxCDF   | ND    | <5             |      |                 | 132            | 75.8                      | 112         |
| 2,3,4,6,7,8-HxCDF   | ND    | <5             |      |                 | 132            | 75.8                      | 112         |
| 1,2,3,7,8,9-HxCDF   | ND    | 1.19           |      |                 | 132            | 75.8                      | 112         |
| 1,2,3,4,6,7,8-HpCDF | 10.6  |                |      | A               | 147            | 70.3                      | 112         |
| 1,2,3,4,7,8,9-HpCDF | ND    | 1.58           |      |                 | 147            | 70.3                      | 112         |
| OCDF                | 12.8  |                |      | A               | 127            | 70.3                      | 112         |
| Totals & TEQs       |       |                |      |                 |                |                           |             |
| TCDDs               | 161   | •              | 188  |                 | ALTA           | ANALYTICAL P              | ERSPECTIVES |
| PeCDDs              | 98.7  |                |      |                 |                |                           |             |
| HxCDDs              | 63.5  | 1              |      |                 | 2              | 714 Exchange Dr           | ve          |
| HpCDDs              | 71.9  |                |      |                 | 1              | Wilmington                | 05          |
| TCDFs               | 28.9  |                |      |                 | ļ r            | North Carolina 284<br>USA | 05          |
| PeCDFs              | 17.7  |                |      |                 |                |                           |             |
| HxCDFs              | 21.1  | ·              | 23.3 |                 |                | Tel: 910 794-161          | 3           |
| HpCDFs              | 16.3  |                | 20.0 |                 |                | Fax: 910 794-391          |             |
| Total PCDD/Fs       | 794   |                | 823  |                 | 1              | nail: yt@ultratrace       |             |
| TEQ (ND=0)          | 16.1  |                | 16.1 | ITEF            |                | b: www.ultratrace.        |             |
| TEQ (ND=0)          | 18.6  |                | 18.6 | ITEF            | 1              |                           | · · · · ·   |

Reviewer 6AG Date 16Aug 03

| ,                                                                      | MRI                                                                 | Sample Data Matrix: Weight/Volume:  DL  pg  [Ra=0.787]  <5 3.84 | Air<br>1<br><b>EMPC</b><br>pg | Laboratory Data Project No.: Sample ID: QC Batch No.: Qualifier | P3290<br>P3290_1551_003<br>1551<br>ES | Date Received: Date Extracted: Date Analyzed: Recoveries SS | 22 Aug 03<br>28 Aug 03<br>08 Sep 03 |
|------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-------------------------------------|
| Project ID: 110 Date Collected:  Analyte  2,3,7,8-TCDD 1,2,3,7,8-PeCDD | 0249.2.001.04<br>15 Aug 03<br>Conc.<br>pg<br>6.39<br>ND<br>ND<br>ND | DL pg  [Ra=0.787] <5                                            | 1<br>EMPC                     | Sample ID:<br>QC Batch No.:<br>Qualifier                        | P3290_1551_003<br>1551<br>ES          | Date Extracted:<br>Date Analyzed:<br>Recoveries             | 28 Aug 03<br>08 Sep 03              |
| Date Collected: Analyte  2,3,7,8-TCDD 1,2,3,7,8-PeCDD                  | 15 Aug 03  Conc.  Pg  6.39  ND  ND  ND  ND                          | DL<br>pg<br>[Ra=0.787]<br><5                                    | EMPC                          | QC Batch No.: Qualifier                                         | 1551<br>ES                            | Date Analyzed:<br>Recoveries                                | 08 Sep 03                           |
| Analyte<br>2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD                             | Conc. pg 6.39 ND ND ND                                              | pg<br>[Ra=0.787]<br><5                                          |                               | Qualifier                                                       | ES                                    | Recoveries                                                  |                                     |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD                                        | Pg<br>6.39<br>ND<br>ND<br>ND                                        | pg<br>[Ra=0.787]<br><5                                          |                               |                                                                 |                                       |                                                             | AS                                  |
| 1,2,3,7,8-PeCDD                                                        | 6.39<br>ND<br>ND<br>ND                                              | [Ra=0.787]<br><5                                                | pg                            | A                                                               |                                       | SS                                                          | AS                                  |
| 1,2,3,7,8-PeCDD                                                        | ND<br>ND<br>ND                                                      | <5                                                              |                               | A                                                               |                                       |                                                             |                                     |
| I                                                                      | ND<br>ND                                                            |                                                                 |                               |                                                                 | 82.4                                  | 102                                                         | 87.3                                |
| 11224784                                                               | ND                                                                  | 3.84                                                            |                               |                                                                 | 82.9                                  | 106                                                         | 87.3                                |
| 1,2,3,4,7,0-DXCDD                                                      |                                                                     | 0.07                                                            |                               |                                                                 | 86.9                                  | 100                                                         | 87.3                                |
| 1,2,3,6,7,8-HxCDD                                                      | ND I                                                                | <5                                                              |                               |                                                                 | 86.9                                  | 100                                                         | 87.3                                |
| 1,2,3,7,8,9-HxCDD                                                      | 110                                                                 | <5                                                              |                               |                                                                 | 86.9                                  | 100                                                         | 87.3                                |
| 1,2,3,4,6,7,8-HpCDD                                                    | 23.9                                                                |                                                                 |                               | A                                                               | 91.9                                  | 103                                                         | 87.3                                |
| OCDD                                                                   | 172                                                                 | 1                                                               |                               |                                                                 | 90.9                                  | 103                                                         | 87.3                                |
| 2,3,7,8-TCDF                                                           | 9.11                                                                | İ                                                               |                               | . A                                                             | 83.9                                  | 102                                                         | 87.3                                |
| 1,2,3,7,8-PeCDF                                                        | ND                                                                  | <5                                                              |                               |                                                                 | 83.6                                  | 106                                                         | 87.3                                |
| 2,3,4,7,8-PeCDF                                                        | 10.3                                                                |                                                                 |                               | A                                                               | 83.6                                  | 106                                                         | 87.3                                |
| 1,2,3,4,7,8-HxCDF                                                      | 9.58                                                                |                                                                 |                               | A                                                               | 84.7                                  | 104                                                         | 87.3                                |
| 1,2,3,6,7,8-HxCDF                                                      | 8.01                                                                | 1                                                               |                               | A                                                               | 84.7                                  | 104                                                         | 87.3                                |
| 2,3,4,6,7,8-HxCDF                                                      | 8.18                                                                |                                                                 |                               | A                                                               | 84.7                                  | 104                                                         | 87.3                                |
| 1,2,3,7,8,9-HxCDF                                                      | ND .                                                                | 0.733                                                           |                               |                                                                 | 84.7                                  | 104                                                         | 87.3                                |
| 1,2,3,4,6,7,8-HpCDF                                                    | 24.9                                                                |                                                                 |                               | A                                                               | 90.3                                  | 103                                                         | 87.3                                |
| 1,2,3,4,7,8,9-HpCDF                                                    | 5.12                                                                |                                                                 |                               | A                                                               | 90.3                                  | 103                                                         | 87.3                                |
| OCDF                                                                   | 18.7                                                                |                                                                 |                               | Α                                                               | 90.1                                  | 103                                                         | 87.3                                |
| Totals & TEQs                                                          |                                                                     |                                                                 |                               |                                                                 |                                       |                                                             |                                     |
| TCDDs                                                                  | 104                                                                 |                                                                 | 113                           |                                                                 | ALTA                                  | ANALYTICAL PE                                               | RSPECTIVES                          |
| PeCDDs                                                                 | 54.5                                                                |                                                                 | 66.1                          |                                                                 |                                       |                                                             |                                     |
| HxCDDs                                                                 | 29.3                                                                |                                                                 | 49.2                          |                                                                 | 2                                     | 714 Exchange Driv                                           | ve .                                |
| HpCDDs                                                                 | 53.5                                                                |                                                                 |                               |                                                                 |                                       | Wilmington                                                  |                                     |
| TCDFs                                                                  | 61.2                                                                |                                                                 | 80.4                          |                                                                 | 1                                     | Iorth Carolina 2840<br>USA                                  | )5                                  |
| PeCDFs                                                                 | 60.8                                                                |                                                                 | 71.1                          |                                                                 |                                       | JUA                                                         |                                     |
| HxCDFs                                                                 | 59.6                                                                |                                                                 | 61.6                          |                                                                 |                                       | Tel: 910 794-1613                                           |                                     |
| HpCDFs                                                                 | 42.9                                                                |                                                                 | 0.10                          |                                                                 | 1                                     | Fax: 910 794-3919                                           |                                     |
| Total PCDD/Fs                                                          | 657                                                                 |                                                                 | 728                           |                                                                 | I                                     | nail: yt@ultratrace.                                        |                                     |
| TEQ (ND=0)                                                             | 15.7                                                                |                                                                 | 15.7                          | ITEF                                                            |                                       | b: www.ultratrace.                                          |                                     |
| TEQ (ND=DL/2)                                                          | 17.8                                                                |                                                                 | 17.8                          | ITEF                                                            |                                       | D. WWW.uitiatiace.t                                         | ,,,,,,,                             |

| Sample ID:                          | 4004                   |                                          |          |                                               |                         | N                                 | lethod 23              |
|-------------------------------------|------------------------|------------------------------------------|----------|-----------------------------------------------|-------------------------|-----------------------------------|------------------------|
| Client Data<br>Name:<br>Project ID: | MRI<br>110249.2.001.04 | Sample Data<br>Matrix:<br>Weight/Volume: | Air<br>1 | Laboratory Data<br>Project No.:<br>Sample ID: | P3290<br>P3290_1551_004 | Date Received:<br>Date Extracted: | 22 Aug 03<br>28 Aug 03 |
| Date Collected:                     | 18 Aug 03              |                                          |          | QC Batch No.:                                 | 1551                    | Date Analyzed:                    | 08 Sep 03              |
| Analyte                             | Conc.                  | DL                                       | EMPC     | Qualifier                                     |                         | Recoveries                        |                        |
|                                     | pg                     | pg                                       | pg       |                                               | ES                      | SS                                | AS                     |
| 2,3,7,8-TCDD                        | 5.78                   | [Ra=0.691]                               |          | Α                                             | 87                      | 97.9                              | 91.8                   |
| 1,2,3,7,8-PeCDD                     | 6.1                    |                                          |          | Α                                             | 90                      | 99.4                              | 91.8                   |
| 1,2,3,4,7,8-HxCDD                   | ND                     | 3.49                                     |          |                                               | 92.2                    | 98.9                              | 91.8                   |
| 1,2,3,6,7,8-HxCDD                   | ND                     | <5                                       |          |                                               | 92.2                    | 98.9                              | 91.8                   |
| 1,2,3,7,8,9-HxCDD                   | 13.2                   |                                          |          | Α                                             | 92.2                    | 98.9                              | 91.8                   |
| 1,2,3,4,6,7,8-HpCDD                 | 58.9                   |                                          |          |                                               | 96.3                    | 97.7                              | 91.8                   |
| OCDD                                | 811                    |                                          |          |                                               | 99.9                    | 97.7                              | 91.8                   |
| 2,3,7,8-TCDF                        | EMPC                   |                                          | 3.89     | A                                             | 87.6                    | 97.9                              | 91.8                   |
| 1,2,3,7,8-PeCDF                     | 5.59                   |                                          |          | Α                                             | 89.1                    | 99.4                              | 91.8                   |
| 2,3,4,7,8-PeCDF                     | 8.85                   |                                          |          | A                                             | 89.1                    | 99.4                              | 91.8                   |
| 1,2,3,4,7,8-HxCDF                   | 9.47                   |                                          |          | Α                                             | 92.2                    | 99.4                              | 91.8                   |
| 1,2,3,6,7,8-HxCDF                   | 8.41                   |                                          |          | Α                                             | 92.2                    | 99.4                              | 91.8                   |
| 2,3,4,6,7,8-HxCDF                   | 8.38                   |                                          |          | A                                             | 92.2                    | 99.4                              | 91.8                   |
| 1,2,3,7,8,9-HxCDF                   | ND                     | <5                                       |          |                                               | 92.2                    | 99.4                              | 91.8                   |
| 1,2,3,4,6,7,8-HpCDF                 | 24.4                   |                                          |          | Α                                             | 95.5                    | 97.7                              | 91.8                   |
| 1,2,3,4,7,8,9-HpCDF                 | 5.91                   |                                          |          | Α                                             | 95.5                    | 97.7                              | 91.8                   |
| OCDF                                | 18.5                   | · '                                      |          | Α                                             | 98.9                    | 97.7                              | 91.8                   |
| Totals & TEQs                       |                        |                                          |          |                                               |                         |                                   |                        |
| TCDDs                               | 103                    |                                          | 120      | 1                                             | ALTA                    | ANALYTICAL PE                     | RSPECTIVES             |
| PeCDDs                              | 83.6                   |                                          | 87.9     |                                               |                         | <del></del>                       |                        |
| HxCDDs                              | 116                    |                                          |          |                                               | 1 2                     | 714 Exchange Driv                 | ve                     |
| HpCDDs                              | 137                    |                                          |          |                                               |                         | Wilmington                        |                        |
| TCDFs                               | 55.6                   |                                          | 66.5     |                                               | ,                       | lorth Carolina 2840<br>USA        | Jo                     |
| PeCDFs                              | 57.9                   |                                          | 69.9     | 1                                             |                         |                                   |                        |
| HxCDFs                              | 60.6                   |                                          | 64.6     |                                               |                         | Tel: 910 794-1613                 | 1                      |
| HpCDFs                              | 44.6                   |                                          | 3        |                                               |                         | Fax: 910 794-3919                 |                        |
| Total PCDD/Fs                       | 1,490                  |                                          | 1,540    |                                               |                         | nail: yt@ultratrace.              |                        |
| TEQ (ND=0)                          | 19.2                   |                                          | 19.6     | ITEF                                          |                         | b: www.ultratrace.d               |                        |
| TEQ (ND=DL/2)                       | 19.9                   |                                          | 20.3     | ITEF                                          |                         |                                   |                        |



| Sample ID:                                                                                                                                                                                                                                                                                                                  | 5004                                                                                                            |                                          |                                                                     |                                                                |                                                                                                                                    | M                                                                                                                         | lethod 23                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Client Data Name: Project ID: Date Collected:                                                                                                                                                                                                                                                                               | MRI<br>110249.2.001.04<br>19 Aug 03                                                                             | Sample Data<br>Matrix:<br>Weight/Volume: | Air<br>1                                                            | Laboratory Data<br>Project No.:<br>Sample ID:<br>QC Batch No.: | P3290<br>P3290_1551_005<br>1551                                                                                                    | Date Received:<br>Date Extracted:<br>Date Analyzed:                                                                       | 22 Aug 03<br>28 Aug 03<br>09 Sep 03                          |
| Analyte                                                                                                                                                                                                                                                                                                                     | Conc.                                                                                                           | DL                                       | EMPC                                                                | Qualifier                                                      |                                                                                                                                    | Recoveries                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                             | pg                                                                                                              | pg                                       | pg                                                                  |                                                                | ES                                                                                                                                 | SS                                                                                                                        | AS                                                           |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,4,6,7,8-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD<br>2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF | EMPC<br>6.78<br>ND<br>8.89<br>EMPC<br>77.1<br>1,220<br>5.3<br>ND<br>7<br>EMPC<br>ND<br>EMPC<br>ND<br>12.9<br>ND | [Ra=0.97] 3.83 4.45 <5 1.16 2.78 <10     | 4.36<br>15.4<br>6.32<br>5.41                                        | A<br>A<br>A<br>A<br>A                                          | 60.8<br>63.5<br>64.5<br>64.5<br>64.5<br>67.6<br>68<br>62.2<br>63.7<br>63.7<br>62.9<br>62.9<br>62.9<br>62.9<br>66.9<br>66.9<br>67.4 | 100<br>102<br>102<br>102<br>102<br>99.2<br>99.2<br>100<br>102<br>104<br>104<br>104<br>104<br>99.2<br>99.2<br>99.2         | 65.8<br>65.8<br>65.8<br>65.8<br>65.8<br>65.8<br>65.8<br>65.8 |
| Totals & TEQs  TCDDs PeCDDs HxCDDs HpCDDs  TCDFs PeCDFs HxCDFs TCDFs Total PCDD/Fs TEQ (ND=0) TEQ (ND=DL/2)                                                                                                                                                                                                                 | 62.5<br>99.3<br>136<br>179<br>44.6<br>34.8<br>19.2<br>12.9<br>1,820<br>10.4<br>11.1                             |                                          | 89.2<br>103<br>151<br>48.1<br>41.2<br>35.6<br>1,890<br>17.5<br>18.1 | ITEF<br>ITEF                                                   | L ALTA                                                                                                                             | ANALYTICAL PI 2714 Exchange Dri Wilmington North Carolina 284 USA Tel: 910 794-1613 Fax: 910 794-391 mail: yt@ultratrace. | ve 05 3 9 com                                                |

Reviewer 7

| Sample ID:          | 6004            |                |       |                 |                | TV                               | lethod 23   |
|---------------------|-----------------|----------------|-------|-----------------|----------------|----------------------------------|-------------|
| Client Data         |                 | Sample Data    |       | Laboratory Data | <u>a</u>       |                                  |             |
| Name:               | MRI             | Matrix:        | Air   | Project No.:    | P3290          | Date Received:                   | 22 Aug 03   |
| Project ID:         | 110249.2.001.04 | Weight/Volume: | 1     | Sample ID:      | P3290_1551_006 | Date Extracted:                  | 28 Aug 03   |
| Date Collected:     | 20 Aug 03       |                |       | QC Batch No.:   | 1551           | Date Analyzed:                   | 09 Sep 03   |
| Analyte             | Conc.           | DL             | EMPC  | Qualifier       |                | Recoveries                       |             |
|                     | pg              | pg             | pg    |                 | ES             | SS                               | AS          |
| 2,3,7,8-TCDD        | 5.51            | [Ra=0.858]     |       | A               | 51.9           | 103                              | 51.7        |
| 1,2,3,7,8-PeCDD     | 7.43            |                |       | A               | 53.8           | 102                              | 51.7        |
| 1,2,3,4,7,8-HxCDD   | ND              | 2.81           |       | 1               | 54.4           | 103                              | 51.7        |
| 1,2,3,6,7,8-HxCDD   | 5.86            |                |       | A               | 54.4           | 103                              | 51.7        |
| 1,2,3,7,8,9-HxCDD   | 12.3            | ,              |       | A               | 54.4           | 103                              | 51.7        |
| 1,2,3,4,6,7,8-HpCDD | 64.6            |                |       |                 | 57.8           | 104                              | 51.7        |
| OCDD                | 1,350           |                |       |                 | 57.4           | 104                              | 51.7        |
| 2,3,7,8-TCDF        | ND              | 2.34           |       |                 | 49.9           | 103                              | 51.7        |
| 1,2,3,7,8-PeCDF     | ND              | 5.08           |       |                 | 52             | 102                              | 51.7        |
| 2,3,4,7,8-PeCDF     | ND              | 4.68           |       |                 | 52             | 102                              | 51.7        |
| 1,2,3,4,7,8-HxCDF   | ND              | <5             |       |                 | 52.3           | 106                              | 51.7        |
| 1,2,3,6,7,8-HxCDF   | ND              | <5             |       |                 | 52.3           | 106                              | 51.7        |
| 2,3,4,6,7,8-HxCDF   | ND              | <5             |       |                 | 52.3           | 106                              | 51.7        |
| 1,2,3,7,8,9-HxCDF   | ND              | 1.49           |       |                 | 52.3           | 106                              | 51.7        |
| 1,2,3,4,6,7,8-HpCDF | 7.56            |                |       | Α               | 56.6           | 104                              | 51.7        |
| 1,2,3,4,7,8,9-HpCDF | ND              | 1.36           |       |                 | 56.6           | 104                              | 51.7        |
| OCDF                | ND              | <10            |       |                 | 56.2           | 104                              | 51.7        |
| Totals & TEQs       |                 |                |       |                 | _              |                                  |             |
| TCDDs               | 88              |                | 107   | ļ               | ALTA           | ANALYTICAL PI                    | ERSPECTIVES |
| PeCDDs              | 94.6            |                | 98.7  |                 |                | -                                |             |
| HxCDDs              | 117             |                |       |                 | :              | 2714 Exchange Dri                | ve          |
| HpCDDs              | 160             |                |       | ·               |                | Wilmington<br>North Carolina 284 | 05          |
| TCDFs               | ND              | 2.34           |       |                 |                | USA                              | 00          |
| PeCDFs              | ND              | 4.87           |       |                 |                |                                  |             |
| HxCDFs              | 21.6            |                |       |                 |                | Tel: 910 794-161                 | 3           |
| HpCDFs              | 7.56            |                |       |                 |                | Fax: 910 794-391                 | 9           |
| Total PCDD/Fs       | 1,840           |                | 1,870 |                 | e-             | mail: yt@ultratrace              | .com        |
| TEQ (ND=0)          | 13.1            |                | 13.1  | ITEF            | , we           | eb: www.ultratrace.              | com         |
| TEQ (ND=DL/2)       | 15.5            |                | 15.5  | ITEF            |                |                                  |             |

Reviewer Date

## **Appendix D-3**

## Runs 1 Through 6 Clay Feed and Product Samples

(CBI data removed. See confidential version of document.)

## Appendix E

## Batch Control Spikes (BCS<sub>3</sub>)

#### 9.3.1 Batch CS3

#### 9.3.1.1 Definition:

- A QC sample used for true-stable isotope-dilution GC/MS methodologies to ensure the reliability and accuracy (bias and precision) of the determinations.
- It is a new concept introduced to, not only, enhance the accuracy of the measurements, but to provide a basis for assigning an uncertainty to each measurements (NOTE: this is limited to the measurement step because it does not directly address the sampling errors), and abridge the level of effort involved in the documentation of the system's performance (i.e., what used to require three separate analyses are now combined into one).
- It is prepared—inside the same type of vial used for the GC/MS analysis—in stages at the same time as the batch of field samples; i.e., at each phase involving the addition of the ES, CS, JS to the samples. For air matrices, the Batch CS3 is initiated at the same instant as the XAD/PUF cartridges are prepared for sampling.

One Batch CS3 per batch of 20 samples or less—regardless of the matrix type—is going through the same spiking scheme with the same spiking solutions, same analyst, same delivery system, and at the same time as the field samples. It is the laboratory's responsibility to ensure sufficient Batch CS3's are prepared to provide front- and backend calibration verifications for all the samples as well as reinjections when necessary. The Batch CS3 is then analyzed at the beginning and at the end of a 12-H analytical sequence during which samples are analyzed. For an example of BCS<sub>3</sub> (M8290B), click here.

- In order to use the front- and back-end Batch CS3s averaged RRFs to process the samples, the individual front- and back-end RRFs need to meet a number of requirements (independent verification, RPD, and PD or bias):
- 9.3.1.1.1 The NS solution should be verified against an independent source. The maximum allowable difference for the "intra-source product area" ratios (vide infra) for the unlabeled compound's RRFs is ±20 percent (from the <u>laboratory normal source</u>) relative to the ES (from an <u>independent source</u>). This verification should be performed every time a new set of ICAL solutions and new sets of spiking solutions

(ES, CS/SS, JS, NS) are prepared from new primary stock standards with a minimum of one verification per year.

- 9.3.1.1.2 The ES solution should be verified against an independent source. The maximum allowable difference for the "intra-source product area" ratios (vide infra) for the unlabeled compound's RRFs is ±20 percent (from an independent source) relative to the ES (from the laboratory normal source). This verification should be performed every time a new set of ICAL solutions and new sets of spiking solutions (ES, CS/SS, JS, NS) are prepared from new primary stock standards with a minimum of one verification per year.
- 9.3.1.1.3 More specifically, it is necessary for the "intra-source product area" ratio below to range from 0.8 to 1.20.

$$\alpha \times \frac{A_x^{-ls} \times A_{ES}^{-ls}}{A_x^{-is} \times A_{ES}^{-is}} \qquad \begin{array}{c} \longleftarrow & laboratory \ source \\ & \longleftarrow & independent \\ \end{array}$$

where:

 $A_x^{ls}$  = the area of the unlabeled analyte from the laboratory source

 $A_{ES}^{ls}$  = the area of the labeled extraction standard from the laboratory source

 $A_x^{is}$  = the area of the unlabeled analyte from the independent source

 $A_{ES}^{is}$  = the area of the labeled extraction standard from the independent source

 $\alpha$  is equal to 1 when the concentrations of the respective analytes are the same between the independent and laboratory sources; the appropriate factor should be applied for situations whereby the concentrations of the respective analytes are different.

NOTE: It is highly recommended that the above mixtures be prepared in the same solvent and analyzed under the same GC/MS conditions.

NOTE: Intra-source product area ratios only apply to analytes for which matching standards are available between the laboratory and independent sources.

9.3.1.1.4 Similarly, for air samples, it is necessary for the "intra-source product area" ratio below to range from 0.7 to 1.30.

$$\alpha \times \frac{A_{SS}^{ls} \times A_{ES}^{ls}}{A_{SS}^{is} \times A_{ES}^{is}} \qquad \qquad \text{laboratory source}$$

$$\longrightarrow \qquad \text{independent}$$

where:

 $A_{SS}^{ls}$  = the area of the sampling standard from the laboratory source

 $A_{ES}^{ls}$  = the area of the labeled extraction standard from the laboratory source

 $A_{SS}^{is}$  = the area of the sampling standard from the independent source

 $A_{ES}^{is}$  = the area of the labeled extraction standard from the independent source

α is equal to 1 when the concentrations of the respective analytes are the same between the independent and laboratory sources; the appropriate factor should be applied for situations whereby the concentrations of the respective analytes are different.

NOTE: When the SS are used as cleanup standards for non-air matrices, replace SS by CS and ES by JS in the expression above.

- 9.3.1.1.5 The RPDs between the front- and back-end Batch CS3s should remain within
  - 9.3.1.1.5.1 Ten percent for the unlabeled compounds
  - 9.3.1.1.5.2 Twenty percent for the labeled compounds
- 9.3.1.1.6 The RRFs Percent Differences (PD) relative to the ICAL should remain within
  - 9.3.1.1.6.1 Twenty percent for the unlabeled compounds
  - 9.3.1.1.6.2 Thirty-five percent for the non-air matrices labeled ES compounds
  - 9.3.1.1.6.3 Fifty percent for air matrices labeled ES compounds
  - 9.3.1.1.6.4 Twenty percent for air's labeled SS, and
  - 9.3.1.1.6.5 Thirty percent for non air's labeled CS compounds
  - 9.3.1.1.6.6 Other requirements are shown in Table Insert 1 and Table Insert 2.
- 9.3.1.1.7 The addition of both NS and ES should be performed using the same technique and the same volume. That way, any systematic error (within acceptable limits as defined herein) will "ratio out" when the two Batch CS3 calibration analyses are used to compute the analyte concentrations in the samples. By using this approach, the accuracy of the measurements is superior to the traditional approaches. It is also a benefit that flows directly from true stable isotope-dilution GC/MS, which until now was regrettably ignored.
- 9.3.1.1.8 For air samples where a split factor is involved, i.e., the sample extract is split and a portion is archived as backup, the Batch CS3 is not subjected to an actual physical division. The latter is simulated by the addition of an appropriate volume of the same solvent as for the ICAL and the samples (e.g., if the split factor is 2, then, the Batch CS3 needs to be diluted two fold before analysis to allow the analytes to be at the same concentration as for the ICAL CS3).
- 9.3.1.1.9 For air samples, the Batch CS3 is initiated at the same time as the preparation of the air sampling modules before the sampling session. To that effect, the same amount of the Sampling Standards is added to a vial, which is kept in the laboratory at room temperature and away from light. The corresponding Lab Method Blank prepared with the same batch of sorbent and spiking solution (i.e., 40 g XAD-2 resin, or PUF) is kept refrigerated.

- 9.3.1.2 At the beginning and end of each 12-hour period during which samples are analyzed, an aliquot of the Batch CS3 is analyzed to demonstrate adequate GC resolution and sensitivity, response factor reproducibility, to establish the PCDD/PCDF retention time windows and isomer-specificities, and to validate the ES standards and the spiking technique.
- 9.3.1.3 As defined above, the criteria for an acceptable Batch CS3 are summarized in the table inserts below. When the Batch CS3 fails, it is important to discern the following:
  - 9.3.1.3.1 The fundamental objective of the Batch CS3 is to "validate" the ES and the RRFs used to quantitatively characterize the analytes in the samples at the time the standards are used to prepare and analyze the samples. They are four types of standards involved in the preparation of the Batch CS3 that provide various probes into assessing this "validation" procedure. They are the NS (symbolized as A<sub>x</sub> in expressions or tables), ES, SS or CS, and JS. The question becomes how can one "extract" the information needed to complete the validation, or how does one "filter" out the irrelevant information to help with the distinction between a critical error and a minor one. A critical error means erroneous data resulting from a seriously flawed spiking technique (e.g., wrong amount of ES added) while other minor errors can provide useful information or feedback on the measurement step (e.g., instrumentation variation). The interpretation of the information obtained from the analysis of the Batch CS3 is best handled when done contextually. This analytical protocol does not claim that it offers a comprehensive analysis but merely puts forward guidelines to help the analyst in assessing the quality and reliability of the data.
  - A failure on the "PD" requirements may be indicative of 9.3.1.3.2 an instrumentation difficulty or spiking error. The latter can be of Level PD-1 (i.e., at the standard solution level) or Level PD-2 (i.e., at the spiking operation level). A third Level PD-3 is associated with instrumentation. An error at the standard solution level (Level PD-1) constitutes the most serious failure and requires that a new set of standard solutions be prepared, independently validated (vide infra, intra-source ratio study) before repeating the sample A new initial calibration is extraction and analysis. required before analyzing the Batch CS3 and the samples. However, if the error is a Level PD-2 error, a re-extraction and analysis is the most suitable action after correcting the flawed spiking technique. As customarily done, a new Batch CS3 is prepared with a Level PD-2 error. Distinction between Levels PD-1 and PD-2 can be accomplished contextually by examination of the initial

independent validation study and control charts (showing for instance a trend suggesting a degradation of the ES solution), and using the matrices shown in Table Inserts 3 or 4. The Level PD-3 error is associated with instrumentation when an out-of-calibration situation is present or a temporary or localized instrumentation variation is operative. Depending on the severity of the Level PD-3 error, a new calibration (either ICAL or rerunning the Batch CS3 and all the affected samples) following a new "tuning" of the instrumentation may be required.

- 9.3.1.3.3 A failure on the "RPD" requirements may be indicative of instrumentation instability or inability to sustain the instrumentation's performance over a 12-H period. Again, two levels are possible. Level RPD-1 is strictly associated with instrumentation difficulties that are unrelated to the samples under analysis. A re-analysis (i.e., re-injection) of the Batch CS3 and of the samples can be considered as a corrective action after correction of the source of the instrumentation's shortfall. If however, the re-analysis of the Batch CS3 fails again, and there are indications that the spiking procedure is questionable (Level PD-1 or PD-2), the associated extraction batch must undergo re-extraction and analysis with the preparation of a new associated Batch CS3 as discussed above for the Batch CS3 PD deviations. A Level RPD-2 Batch CS3 failure may be found with the analysis of samples presenting special challenges (i.e., highly complex matrices that do not cleanup well under the various options offered by this protocol). Depending on the severity of the deviation, additional cleanup or other appropriate actions may be required before re-analysis of the samples and associated Batch CS3. If such action proves to be ineffective, the data should be qualified accordingly.
- 9.3.1.3.4 A "PD" failure for 2,3,7,8-TCDD and/or 2,3,7,8-TCDF results in the inability to reliably quantify 2,3,7,8-TCDD/F until proper corrective action is implemented (e.g., following GC column maintenance). When the corrective action involves a different liquid phase, the correct Batch CS3 is used to demonstrate adequate performance. Note that the laboratory is encouraged to adopt a similar stance for 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF (or any other 2,3,7,8-substituted congeners, which significantly contributes to the TEQ).
- 9.3.1.3.5 The Batch CS3 "PD Requirements" are summarized in the four table inserts below. In addition to the traditional RRFs, another set of "pseudo-RRFs" is computed from the Batch CS3 data to help with the validation of the ES and

RRFs used to report the sample analytes. The pseudo-RRFs are used to further differentiate the various "A" to "C" types PD Requirements. Use Table Insert 3 (non air) or Table Insert 4 (air) for departing-from-the-norm groups of analytes (e.g., all 17  $A_x$  or the five SS show a deviation similar in "sign" and "amplitude"). It is also recommended to examine the data contextually (e.g., using QC charts).

#### Table Insert 1: Batch CS<sub>3</sub> PD Requirements Based on Traditional RRFs

("A" to "C" Types)

| Туре           | Analytes             | Requirement                               | Failure Possible Cause <sup>a,b</sup> | Failure Level            | Suggested<br>Corrective Action                                                     |
|----------------|----------------------|-------------------------------------------|---------------------------------------|--------------------------|------------------------------------------------------------------------------------|
| Α              | A <sub>x</sub> vs ES | ±20%                                      | Calibration out     Spiking error     | 1. PD-3<br>2. PD-1/PD -2 | New Calibration     New Standards/New     Extraction                               |
| В              | ES vs. JS            | ±35% non air<br>±50% for air <sup>c</sup> | Calibration out     Spiking error     | 1. PD-3<br>2. PD-1/PD-2  | New Calibration     New Standards/New     Extraction                               |
| C <sub>1</sub> | CS vs. JS (non air)  | ±35%                                      | Calibration out     Spiking error     | 1. PD-3<br>2             | New Calibration     Affects other Types                                            |
| C <sub>2</sub> | SS vs. ES (air)      | ±20%                                      | Calibration out     Spiking error     | 1. PD-3<br>2. PD-1/PD -2 | New Calibration     New Standards/New     Extraction/New     Sampling <sup>d</sup> |

- a) Calibration out = usually when one (localized) or several/all analytes are affected; instrumental source.
- b) Spiking error = when all analytes are affected with the same "sign" and "amplitude"; must be considered contextually; i.e., using historical data or other information on the set of standards such as the "pseudo-RRFs". Situations when selected analytes degrade are rare but should not be excluded from consideration.
- c) This wider tolerance recognizes the fact that, by design for air matrices, the amounts of ES and JS added during the preparation of the Batch CS3 are different. Thus, an additional error is introduced, which can deceive the analyst's interpretation. In this case, the QC emphasis is shifted towards the "C2" type PD requirement.
- d) Because of the nature of an "air" sample, there is no additional sample volume available to repeat the extraction. The laboratory is required to qualify the data by estimating and documenting accordingly the "error" associated with the reported measurements. If such documentation is not possible, and/or the information points toward a seriously flawed ES addition (as opposed to a spiking error associated with the SS), the data can be rejected and re-sampling efforts may be necessary. See the "Air Spiking Related Error Matrix" tables for an alternative approach whereby the A<sub>x</sub> vs. SS RRFs are used to determine the analyte's concentrations (Table Insert 4).

Table Insert 2: Batch CS3 PD Requirements Based on Pseudo-RRFs ("D" to "G" Types)

| Туре           | Analytes <sup>a</sup>                  | Requirement |
|----------------|----------------------------------------|-------------|
| D              | A <sub>x</sub> vs. CS/SS               | ±25%        |
|                |                                        |             |
| E <sub>1</sub> | A <sub>x</sub> vs. <b>JS</b> (non air) | ±35%        |
| E <sub>2</sub> | A <sub>x</sub> vs. <b>JS</b> (air)     | ±50%        |
|                |                                        |             |
| F <sub>1</sub> | ES vs. CS (non air)                    | ±20%        |
|                |                                        |             |
| G <sub>2</sub> | SS vs. JS (air)                        | ±50%        |

- a) Pseudo-RRFs are limited to analytes, for which an analogous/homologous standard is available:
- 2,3,7,8-TCDD ( $A_x$ ) vs.  $^{13}C_{12}$ -1,2,3,4-TCDD (JS)
- 2,3,4,7,8-PeCDF (A<sub>x</sub>) vs. <sup>13</sup>C<sub>12</sub>-1,2,3,4,6-PeCDF (CS)
- <sup>13</sup>C<sub>12</sub>-1,2,3,7,8-PeCDD (ES) vs. <sup>13</sup>C<sub>12</sub>-1,2,3,4,7-PeCDD (CS)
- Do not consider pairs such as OCDD  $(A_x)$  vs.  $^{13}C_{12}$ -1,2,3,4,6,8,9-HpCDF (SS) or  $^{13}C_{12}$ -1,2,3,4,7-PeCDD (CS or SS) vs.  $^{13}C_{12}$ -1,2,3,4,6,7-HxCDD (JS)

## Table Insert 3: "Non-Air" Spiking Related PD Errors

(departing-from-the-norm group of analytes)

### "PD Requirements Decision Matrix"—Normal Configuration (use BCS<sub>3</sub> RRFs)

|                | A <sub>x</sub> | ES | CS | JS |
|----------------|----------------|----|----|----|
| A <sub>x</sub> | _              | Y  | Y  | Y  |
| ES             | _              | _  | Y  | Y  |
| CS             | _              | _  | _  | Y  |

### "PD Requirements Decision Matrix"—Defective A<sub>x</sub> Spiking (use ICAL RRFs)

|         | A <sub>x</sub> | ES | CS | JS |
|---------|----------------|----|----|----|
| $A_{x}$ | _              | N  | N  | N  |
| ES      | _              | _  | Y  | Y  |
| CS      | _              | _  | _  | Y  |

## "PD Requirements Decision Matrix" – Defective JS Spiking (use BCS<sub>3</sub> RRFs)

percent recovery measurements for CS & ES affected, not the analytes

| •  | A <sub>x</sub> | ES | CS | JS |
|----|----------------|----|----|----|
| Ax | _              | Y  | Y  | N  |
| ES | _              | _  | Y  | N  |
| CS | _              | _  | _  | N  |

## "PD Requirements Decision Matrix"—Defective CS Spiking (use BCS<sub>3</sub> RRFs)

percent recovery measurements for CS affected, not the analytes

|                | A <sub>x</sub> | ES | CS | JS |
|----------------|----------------|----|----|----|
| A <sub>x</sub> | _              | Y  | N  | Y  |
| ES             | _              | _  | N  | Y  |
| CS             | _              | _  | _  | N  |

## "PD Requirements Decision Matrix"—Defective ES Spiking (Levels PD-1 or PD-2)

|                | (Ectels I B I of I B 2) |    |    |    |  |  |  |
|----------------|-------------------------|----|----|----|--|--|--|
|                | A <sub>x</sub>          | ES | CS | JS |  |  |  |
| A <sub>x</sub> | _                       | N  | Y  | Y  |  |  |  |
| ES             | _                       | _  | N  | N  |  |  |  |
| CS             | _                       | _  | _  | Y  |  |  |  |

## Table Insert 4: "Air" Spiking Related PD Errors

(departing-from-the-norm group of analytes)

### "PD Requirements Decision Matrix"—Normal Configuration (use BCS<sub>3</sub> RRFs)

|                | A <sub>x</sub> | ES | SS | JS |
|----------------|----------------|----|----|----|
| A <sub>x</sub> | _              | Y  | Y  | Y  |
| ES             | _              | _  | Y  | Y  |
| SS             | _              | _  | _  | Y  |

### "PD Requirements Decision Matrix"—Defective A<sub>x</sub> Spiking (use ICAL RRFs)

|                | A <sub>x</sub> | ES | SS | JS |
|----------------|----------------|----|----|----|
| A <sub>x</sub> | _              | N  | N  | N  |
| ES             | _              | _  | Y  | Y  |
| SS             | _              | _  | _  | Y  |

## "PD Requirements Decision Matrix"—Defective JS Spiking (use BCS<sub>3</sub> RRFs)

percent recovery measurements for ES affected, not the analytes or the SS

| 1  | A <sub>x</sub> | ES | SS | JS |
|----|----------------|----|----|----|
| Ax | _              | Y  | Y  | N  |
| ES | _              | -  | Y  | N  |
| SS | _              | _  | _  | N  |

#### "PD Requirements Decision Matrix"—Defective SS Spiking (use BCS<sub>3</sub> RRFs)

percent recovery measurements for SS affected, not the analytes

|                | A <sub>x</sub> | ES | SS | JS |
|----------------|----------------|----|----|----|
| A <sub>x</sub> | _              | Y  | N  | Y  |
| ES             | _              | _  | N  | Y  |
| SS             | _              | _  | _  | N  |

### "PD Requirements Decision Matrix"—Defective ES Spiking (Levels PD-1 or PD-2; for air samples only, consider using the A<sub>x</sub> vs. SS RRFs)

| (ECT           | (Elevels 1 D 1 of 1 D 2; for all samples only; consider using the 11x vs. 85 feet s |    |    |    |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------|----|----|----|--|--|--|--|
|                | A <sub>x</sub>                                                                      | ES | SS | JS |  |  |  |  |
| A <sub>x</sub> | _                                                                                   | N  | Y  | Y  |  |  |  |  |
| ES             | _                                                                                   | _  | N  | N  |  |  |  |  |
| SS             | _                                                                                   | _  | _  | Y  |  |  |  |  |

# Appendix F BCS<sub>3</sub> Performance Criteria

#### ANALYTICAL PROCEDURE



#### PRIMARY HIGH-RESOLUTION CONCENTRATION CALIBRATION SOLUTIONS

(Regular Initial Calibration for 8290B)

| Concentrations in pg / μL                          | CS0  | CS1 | CS2               | CS3        | CS4                                   | CS5        | CS6        |
|----------------------------------------------------|------|-----|-------------------|------------|---------------------------------------|------------|------------|
| Unlabeled Analytes                                 |      |     | - 121 - 122 - 124 |            | · · · · · · · · · · · · · · · · · · · |            |            |
| 2,3,7,8-TCDD                                       | 0.25 | 0.5 | 2                 | 10         | 40                                    | 200        | 500        |
| 2,3,7,8-TCDF                                       | 0.25 | 0.5 | 2                 | 10         | 40                                    | 200        | 500        |
| 1,2,3,7,8-PeCDD                                    | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,7,8-PeCDF                                    | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 2,3,4,7,8-PeCDF                                    | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,4,7,8-HxCDD                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,6,7,8-HxCDD                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,7,8,9-HxCDD                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,4,7,8-HxCDF                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,6,7,8-HxCDF                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,7,8,9-HxCDF                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 2,3,4,6,7,8-HxCDF                                  | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,4,6,7,8-HpCDD                                | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,4,6,7,8-HpCDF                                | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| 1,2,3,4,7,8,9-HpCDF                                | 1.25 | 2.5 | 10                | 50         | 200                                   | 1000       | 2500       |
| OCDD                                               | 2.5  | 5   | 20                | 100        | 400                                   | 2000       | 5000       |
| OCDF                                               | 2.5  | 5   | 20                | 100        | 400                                   | 2000       | 5000       |
|                                                    |      |     |                   |            |                                       |            |            |
| Extraction Standards                               | ı    |     |                   |            |                                       |            |            |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 100  | 100 | 100               | 100        | 400                                   | 400        | 400        |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF        | 100  | 100 |                   | 1. 425-1   | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 100  | 100 | 100<br>100        | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 100  | 100 | 100               | 100<br>100 | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF     | 100  | 100 | 100               | 100        | 100<br>100                            | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD   | 100  | 100 | 100               | 100        | 100                                   | 100<br>100 | 100<br>100 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -OCDD                | 200  | 200 | 200               | 200        | 200                                   | 200        | 200        |
| <sup>13</sup> C <sub>12</sub> -OCDF                | 200  | 200 | 200               | 200        | 200                                   | 200        | 200        |
|                                                    |      | 200 | 200               |            | 200                                   | 200        | 200        |
| Cleanup/Sampling Standards                         | 1    |     |                   |            |                                       |            |            |
| <sup>37</sup> Cl₄-2,3,7,8-TCDD                     |      | 0.5 | 2                 | 10         | 40                                    | 200        |            |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7-PeCDD     | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6-PeCDF     | 100  | 100 | 100               | 100        |                                       |            |            |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,9-HxCDF   |      |     |                   |            | 100                                   | 100        | 100        |
|                                                    | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,8,9-HpCDF | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| Injection Standards                                |      |     |                   |            |                                       |            |            |
| 13C <sub>12</sub> -1,2,3,4-TCDD                    | 100  | 100 | 100               | 400        | 100                                   | 100        | 400        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDF        |      |     |                   | 100        | 100                                   | 100        | 100        |
|                                                    | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7-HxCDD   | 100  | 100 | 100               | 100        | 100                                   | 100        | 100        |

AP-CM-5, Page 1 of 3

#### ANALYTICAL PROCEDURE

#### ALTA ANALYTICAL PERSPECTIVES

#### Calibration Solutions for Method 23

| Compound PCDD/PCDF                                 |      |      | Calibration S | Solutions (pg/u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L)  |      |      |
|----------------------------------------------------|------|------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Calibration Standards                              | CS0  | CS1  | CS2           | CS3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CS4 | CS5  | CS6  |
| 2,3,7,8-TCDD                                       | 0.25 | 0.50 | 1.0           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50  | 100  | 500  |
| 2,3,7,8-TCDF                                       | 0.25 | 0.50 | 1.0           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50  | 100  | 500  |
| 1,2,3,7,8-PeCDD                                    | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,7,8-PeCDF                                    | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 2,3,4,7,8-PeCDF                                    | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,4,7,8-HxCDD                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,6,7,8-HxCDD                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,7,8,9-HxCDD                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,4,7,8-HxCDF                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,6,7,8-HxCDF                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,7,8,9-HxCDF                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 2,3,4,6,7,8-HxCDF                                  | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,4,6,7,8-HpCDD                                | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,4,6,7,8-HpCDF                                | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| 1,2,3,4,7,8,9-HpCDF                                | 1.25 | 2.5  | 5.0           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 | 500  | 2500 |
| OCDD                                               | 2.5  | 5.0  | 10            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500 | 1000 | 5000 |
| OCDF                                               | 2.5  | 5.0  | 10            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500 | 1000 | 5000 |
|                                                    |      | 0.0  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 1000 | 3000 |
| Internal Standards                                 |      |      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |      |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF        | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF   | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -OCDD                | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -OCDF                | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| Surrogate Standards                                |      |      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |      |
| <sup>37</sup> Cl <sub>4</sub> -2,3,7,8-TCDD        | 60   | 60   | 80            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 | 140  | 160  |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF     | 60   | 60   | 80            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 | 140  | 160  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD   | 60   | 60   | 80            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 | 140  | 160  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 60   | 60   | 80            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 | 140  | 160  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 60   | 60   | 80            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 | 140  | 160  |
| Recovery Standards                                 |      |      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |      |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD        | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDF        | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HxCDD | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |
| Alternate Standard                                 |      |      |               | A SPINE THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE |     |      |      |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 100  | 100  | 100           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 100  | 100  |

AP-CM-5, Page 2 of 3

#### ANALYTICAL PROCEDURE



#### List of First & Last Eluters present in the BCS3

| DD/PCDY RT Nindow                                          | & Incomer Specifi | icity Standards      | Alta Amalytical Persp                     | ectives (Form: C                             | PSM) /          |
|------------------------------------------------------------|-------------------|----------------------|-------------------------------------------|----------------------------------------------|-----------------|
| hient IO: 0_1393_<br>ab ID: 0_1393_<br>emple text: 0_1393_ | BC\$3_A           |                      | 0621P1 5:1 Vial:<br>0:40-5 [Cal: HM1_M23] | 31 Acq: 21-J7<br>_)1862_16APR> ME/Vol: 1.000 | 294-93 16:14:38 |
|                                                            | Window            | Defining Standards & | esulta                                    |                                              | Reviewer, MM    |
| First Il                                                   | uting Isomer      | PT                   | Last Eluting Isomet                       | 7.8                                          | - 2             |
|                                                            | 1.3,6,8-7000      | 23 153               | 1,2,8,9-1000                              | 28:40                                        | Date, 2) 3405   |
| 1.2                                                        | ,4,7,9-PeCDD      | 30:35                | 1,2,3,8,9-PeCDD                           | 33.36                                        |                 |
| 1,2,4                                                      | , 6, 7, 9-Recob   | 35 122               | 1,2,3,7,8,9-HeCDD                         | 37 :30 🖍                                     |                 |
| 1,2,3,4                                                    | , 6, 7, 9-Hpcts   | 40 :1500             | 1,2,3,4,6,7,8-BeCDD                       | 11:39                                        |                 |
|                                                            | 1,3,6,8-7007      | 21:42                | 1,2,8,9-TCDF                              | 28:51                                        |                 |
| 1,3                                                        | 4.6.8-PeCDP       | 29 : 45              | 1,2,3.8,9-PeCDF                           | 33:54                                        |                 |
| 1,2,3                                                      | , 4, 6, 8-HxCDF   | 36142                | 1,2,3,7,8,9-80000                         | 37 -54                                       |                 |
| 1,2,3,4                                                    | , 6, 7, 8-Hpcor   | 39:51,0              | 1,2,3,4,7,8,9-RpCDP                       | 42 +20                                       |                 |
| **********                                                 | *************     | ***************      | *****************                         | ***********                                  |                 |
|                                                            | Isomer Specis     | ficity Test Standard | Results                                   |                                              |                 |
| 2,3,7,9 Isomer                                             | KT /              | Closest Isomer       | RT /                                      |                                              |                 |
| 2,3,7,8-TCDD                                               | 27:39             | 1,2,3,9-TCDD         |                                           | Valley <= 104                                |                 |
| 2,3,7,0-TCD#                                               | 26:45             | 2,3,4,8-TCDF         | 26,39                                     | Valley <= 404                                |                 |
|                                                            |                   |                      |                                           |                                              |                 |
|                                                            |                   |                      |                                           |                                              | analyst, MI     |
|                                                            |                   |                      |                                           |                                              | Date: LI MA 37  |
|                                                            |                   |                      |                                           |                                              |                 |
|                                                            |                   |                      |                                           |                                              |                 |

AP-CM-5, Page 3 of 3

## **Process Data and Material Sampling Log Sheets**

(CBI data removed. See confidential version of document.)

| TECHNICAL REPORT DATA (Please read Instructions on reverse before completing)                                                                                                                              |                                                                              |                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|--|
| 1. REPORT NO. EPA-                                                                                                                                                                                         | 2.                                                                           | 3. RECIPIENT'S ACCESSION NO.                            |  |
| 4. TITLE AND SUBTITLE Characterization of Dioxin Emissions From Sources That Use Ball Clays Emission Test Report: Unimin Corporation, Gleason, TN                                                          |                                                                              | 5. REPORT DATE<br>March 2010                            |  |
|                                                                                                                                                                                                            |                                                                              | 6. PERFORMING ORGANIZATION CODE                         |  |
|                                                                                                                                                                                                            | ark B. Turner, RTI International<br>hn Hosenfeld, Midwest Research Institute | 8. PERFORMING ORGANIZATION REPORT NO.                   |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC 27711                                             |                                                                              | 10. PROGRAM ELEMENT NO.                                 |  |
|                                                                                                                                                                                                            |                                                                              | 11. CONTRACT/GRANT NO. 68-D-01-079                      |  |
| 12. SPONSORING AGENCY NAME AND ADDRESS Director Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 |                                                                              | 13. TYPE OF REPORT AND PERIOD COVERED Final; March 2010 |  |
|                                                                                                                                                                                                            |                                                                              | 14. SPONSORING AGENCY CODE EPA/200/04                   |  |

#### 15. SUPPLEMENTARY NOTES

16. ABSTRACT

This test report is part of a study designed to determine the magnitude of emissions of dibenzo-p-dioxins and dibenzofurans released from thermal processing of ball clay. In this test program, a heated ball clay mill and a dryer at a ball clay manufacturing facility were tested on consecutive weeks during the time period from August 21 through August 20, 2003.

| 17. KEY WORDS AND DOCUMENT ANALYSIS |                                    |                          |  |  |
|-------------------------------------|------------------------------------|--------------------------|--|--|
| a DESCRIPTORS                       | b. IDENTIFIERS/OPEN ENDED TERMS    | c. COSATI<br>Field/Group |  |  |
| Dioxins/furans<br>Ball Clay         | Air pollution control<br>Ball Clay |                          |  |  |
| 18. DISTRIBUTION STATEMENT          | 19. SECURITY CLASS (Report)        | 21. NO. OF PAGES         |  |  |
|                                     | 20. SECURITY CLASS (Page)          | 22. PRICE                |  |  |

EPA Form 2220-1 (Rev. 4-77)

| United States                   | Office of Air Quality Planning and | Publication No.   |
|---------------------------------|------------------------------------|-------------------|
| <b>Environmental Protection</b> | Standards                          | EPA- 453/R-10-001 |
| Agency                          | Sector Policies and Programs       | March, 2010       |
|                                 | Division                           |                   |
|                                 | Research Triangle Park, NC         |                   |