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FOREWORD 

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting 
the Nation’s land, air, and water resources. Under a mandate of national environmental laws, 
the Agency strives to formulate and implement actions leading to a compatible balance 
between human activities and the ability of natural systems to support and nurture life. To 
meet this mandate, EPA’s research program is providing data and technical support for 
solving environmental problems today and building a science knowledge base necessary to 
manage our ecological resources wisely, understand how pollutants affect our health, and 
prevent or reduce environmental risks in the future. 

The National Risk Management Research Laboratory (NRMRL) is the Agency’s center for 
investigation of technological and management approaches for preventing and reducing risks 
from pollution that threaten human health and the environment. The focus of the 
Laboratory’s research program is on methods and their cost-effectiveness for prevention and 
control of pollution to air, land, water, and subsurface resources; protection of water quality 
in public water systems; remediation of contaminated sites, sediments and ground water; 
prevention and control of indoor air pollution; and restoration of ecosystems.  NRMRL 
collaborates with both public and private sector partners to foster technologies that reduce the 
cost of compliance and to anticipate emerging problems. NRMRL’s research provides 
solutions to environmental problems by: developing and promoting technologies that protect 
and improve the environment; advancing scientific and engineering information to support 
regulatory and policy decisions; and providing the technical support and information transfer 
to ensure implementation of environmental regulations and strategies at the national, state, 
and community levels. 

This publication has been produced as part of the Laboratory’s strategic long-term research 
plan. It is published and made available by EPA’s Office of Research and Development to 
assist the user community and to link researchers with their clients. 

Sally Gutierrez, Director 
National Risk Management Research Laboratory 
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ABSTRACT 

Distributed-parameter watershed models are often utilized for evaluating the effectiveness of 

sediment and nutrient abatement strategies through the traditional {calibrate→ validate→ 

predict} approach. The applicability of the method is limited due to modeling 

approximations. In this study, a computational method is presented to determine the 

significance of modeling uncertainties in assessing the effectiveness of best management 

practice (BMPs) in two small watersheds in Northeastern Indiana with the Soil and Water 

Assessment Tool (SWAT). The uncertainty analysis aims at (i) identifying the hydrologic 

and water quality processes that control the fate and transport of sediments and nutrients 

within watersheds, and (ii) establishing uncertainty bounds for model simulations as well as 

estimated effectiveness of BMPs. The SWAT model is integrated with a Monte-Carlo based 

methodology for addressing model uncertainties. The results suggested that fluvial processes 

within the channel network of the study watersheds control sediment yields at the outlets, and 

thus, BMPs that influence channel degradation or deposition are the more effective sediment 

control strategies. Conversely, implementation of BMPs that reduce nitrogen loadings from 

uplands areas such as parallel terraces and field borders appeared to be more crucial in 

reducing total N yield at the outlets. The uncertainty analysis also revealed that the BMPs 

implemented in the Dreisbach watershed reduced sediment, total P, and total N yields by 

nearly 57%, 33%, and 31%, respectively. Finally, a genetic algorithm (GA)-based 

optimization methodology is developed for selection and placement of BMPs within 

watersheds. The economic return of the selected BMPs through the optimization model was 

nearly three fold in comparison to random selection and placement of the BMPs. 
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SECTION 1. INTRODUCTION 

1.1. Rationale and Background 

Soil and water conservation practices are widely accepted as effective control measures for 

agricultural nonpoint sources of sediments and nutrients. The 2002 Farm Bill provided up to 

$13 billion for conservation programs aimed at protecting water quality from agricultural 

nonpoint source (NPS) pollution (USDA, 2003). In addition, under the Clean Water Act 

Section 319 Nonpoint Source National Monitoring Program and wetland protection 

programs, the EPA supports programs to reduce the negative impacts of runoff from 

agricultural, urban, and industrialized areas. Similarly, the Natural Resources Conservation 

Service (NRCS) provides hundreds of millions of dollars in federal funds to support 

agricultural conservation practices in an effort to reduce the movement of pollutants into our 

waterways. Success of such programs, however, is contingent upon availability of efficient 

watershed-scale planning tools. 

Watershed management plans are composed of individual structural and/or cultural soil and 

water conservation units that are often referred to as best management practices (BMPs). 

BMPs can substantially reduce transport of contaminants to surface water (Mostaghimi et al., 

1997; Arabi et al., 2004), but, their implementation bears additional costs to stakeholders and 

watershed managers. Assessment of watershed management plans is challenged by 

complexities in incorporation of conflicting environmental, economic, and institutional 

criteria. Environmental assessments in watersheds hinge on resolving social benefits such as 

achieving the goal of swimable and fishable water bodies under the US EPA’s total 

maximum daily load (TMDL) agenda. While BMPs facilitate achievement of such targets, 

their establishment bears additional cost for watershed management and/or agricultural 

producers. Since management practices are usually implemented under a limited budget, 

costs associated with unnecessary/redundant management actions may jeopardize 

attainability of designated water quality goals. Identifying optimal combinations of 
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watershed management practices requires systematic approaches that allow decision makers 

to quickly assess trade-offs among environmental and economic criteria. 

Implementation of BMPs is rarely followed by long-term monitoring and data collection 

efforts to assess their effectiveness in meeting their intended goals. Long-term data on flow 

and water quality within watersheds, before and after placement of BMPs, is not generally 

available. Therefore, cost-effective evaluation of BMPs (especially new ones that have had 

little or no history of use) needs to be conducted with the help of simulation models. The 

assessment of these economic and environmental metrics requires an integrated approach 

often involving social objectives and competing interests from various stakeholder groups.  

Arabi et al. (2004) developed a processed based methodology, using the Soil and Water 

Assessment Tool (SWAT), to numerically represent the impacts of four structural BMPs on 

hydrologic/water quality processes in two small agricultural watersheds in Indiana. Various 

processes that were considered included: infiltration; surface runoff (peak and volume); 

upland erosion (sheet and rill erosion); gully and channel erosion; nutrient loadings from 

upland areas; and within-channel processes. Based on the function of a BMP, specific SWAT 

parameters that represent the impacted hydrologic/water quality processes were altered. 

While similar approaches can be followed for other BMPs, an important question for 

evaluation of BMPs at the watershed scale arises: how can the tools of modeling and 

computational analysis be applied to identify the best configuration (type and location) of 

BMPs at the watershed scale? 

As stated earlier, this question calls for an integrated assessment involving process-based 

models, economics, and social considerations. Consequently, several models have to be 

utilized in conjunction to represent the various processes that will have a bearing on the 

modeling targets and the decision making process. Computational techniques can assist with 

quantification of modeling uncertainties, critical natural processes and key management 

actions, and optimal location of BMPs. 

Uncertainty Analysis 

Any modeling process will necessarily entail reducible and inherent uncertainty from data, 

model abstractions, and natural heterogeneity of watersheds. The National Research Council 
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report “Assessing the TMDL approach to water quality management; NRC, 2001) concluded 

that modeling uncertainty should be rigorously and explicitly addressed in development and 

application of models for environmental management, especially when stakeholders are 

affected by the decisions contingent upon model-supported analyses. The EPA’s guideline 

for TMDL development recommends accounting for the uncertainties embedded in model 

estimates by applying a margin of safety (MOS), i.e., TMDL=∑WLA+∑LA+MOS where 

TMDL=maximum pollutant load a water body can receive and still maintain water quality 

standards, ∑WLA=point source waste load allocation, and ∑LA= nonpoint source load 

allocation. Lack of systematic and efficient approaches for evaluation of uncertainties 

associated with cost-effectiveness of watershed plans has led to abandonment of explicit 

computation of the MOS (Dilks and Freedman, 2004).  

The uncertainty estimates (i.e., MOS values) associated with absolute estimates of design 

quantities of agricultural NPS pollution tend to be very high because of data sparsity and 

model limitations (Osidele et al., 2003; Benaman and Shoemaker, 2004). Although the 

literature is replete with sensitivity analysis and uncertainty analysis methods, implications of 

uncertainty associated with model predictions have not been widely endorsed in the decision 

making process mainly as a result of large uncertainty estimates. The magnitude of 

uncertainty itself is a key factor in its acceptance as the cost of implementation of 

management actions such as the TMDL program may significantly increase with larger 

uncertainty estimates (Dilks and Freedman, 2004). The basic thesis of this report is that if the 

goal of an integrated modeling study is to examine the impact of management scenarios on 

water quality of a study area, it may be neither practical nor necessary to incorporate large 

uncertainty of absolute predictions in the decision making process. It would be more 

feasible, and desirable, to communicate uncertainty of estimated effectiveness of management 

scenarios rather than uncertainty of absolute predictions. 

Identification of critical natural processes for selection of management actions 

The current US EPA’s “draft handbook for developing watershed plans to restore and protect 

our waters” (US EPA, 2005a) recommends implementation of management practices in 

portions of the watershed that are believed to contribute intensively to NPS pollution. 

Locating critical areas, however, is complicated because contaminants are carried along with 
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the flow, and water movement over a watershed tends to be fairly dynamic, behaving in a 

nonlinear fashion. Potential interactions among hydrologic, fluvial, and nutrient processes 

and NPS control measures should be identified and included in designing watershed 

management scenarios. Nearly a hundred BMPs for NPS pollution control are recommended 

by the USDA Natural Resources Conservation Service (USDA NRCS, 2006). Evaluation of 

impacts of all these practices, even within small watersheds, is infeasible. However, it is 

likely that only a few management actions largely control fate and transport of contaminants 

within a given watershed system (Arabi et al., 2006a). We hypothesize that the analysis of 

uncertainty of model simulations could highlight critical processes and key management 

actions that are key to control of NPS pollution in a given watershed system. 

Identification of optimal spatial configuration of management actions 

Management of limited and fragile environmental resources in the face of conflicting 

interests is a challenging problem. An appropriate balance needs to be struck between 

protecting the environment and allowing users to access the natural resource base and the 

environment to assure their livelihoods. For example, farmers need to be able to pursue 

avenues that increase agricultural productivity without creating adverse environmental 

consequences. This includes safeguarding their plants from pests, augmenting soil fertility to 

raise productivity to levels required in today’s modern agriculture, and accessing water. 

Systematic methods are required to assist policy makers in selecting strategies that lead to 

environmentally friendly solutions along with being cost-effective. To make informed 

decisions, policy makers should have the tools necessary for evaluation of alternatives and to 

assess trade-offs between environmental and socioeconomic criteria.  

Research to date indicates the promise of heuristic optimization for cost-effective allocation 

of watershed management practices (Srivastava et al., 2002; Veith et al., 2004; Muleta and 

Nicklow, 2005). Unlike gradient-based approaches, heuristic techniques do not require 

linearity, continuity, or differentiability either for objective/constraint functions or for input 

parameters. Thus, they are well-suited for cost-effective allocation of watershed management 

plans. We hypothesize that heuristic optimization techniques could facilitate spatial 

allocation of management actions in watersheds in a more cost-effective fashion than 

random and even more commonly used cost-sharing and targeting strategies. 
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1.2. Objectives 

The overall goal of this hypothesis-driven study is to develop a computational framework for 

selection and placement of BMPs in a cost-effective manner. Ultimately, the hope is that this 

tool will help watershed management programs, such as the TMDL program, attain the 

desired water quality goals for impaired water bodies. This goal is accomplished through the 

following specific objectives: 

1.	 Development of an uncertainty analysis method for establishing uncertainty bounds for 

the estimated effectiveness of BMPs for sediment and nutrient control. 

2.	 Development of a computational framework for identification of natural fluvial processes 

and BMPs that control fate and transport of sediments and nutrients at the watershed 

scale. 

3.	 Development of an optimization tool for cost-effective allocation of BMPs within 

watersheds. 

1.3. Impacts of the Study 

The impacts of the present work in management of watershed systems are three fold. First, 

the computational analysis presented here will increase the capabilities of watershed 

managers to quantify and integrate modeling uncertainties in the decision making process. 

The tool is likely to promote stakeholder involvement through cost- a language that they 

understand and are able to identify with. The additional cost of implementation of watershed 

management plans due to incorporation of modeling uncertainties is key to adoption of 

scientific uncertainty estimates in the planning process. The present work presents an 

effective framework for analysis of uncertainties and its communication to stakeholders. 

Second, the analysis will allow watershed managers to asses what it takes to reduce pollutant 

loads/concentrations to meet water quality standards. For example, the computational 

analysis can be used to identify key management actions to reduce average annual nitrate 

concentration below 10 ppm, the EPA’s drinking water standard. Third, the optimization 

framework presented herein could greatly increase the water quality benefits of dollars spent 

on conservation plans. Alternatively, the analysis could be used to attain the same level of 

5




water quality benefits currently received from watershed management plans for substantially 

less costs. 

1.4. Structure of the Report 

The remainder of this report is organized into five sections. Section 2 provides a description 

of the study watersheds and the choice of the watershed model. The hypotheses and 

objectives of this study will be tested in two small agricultural watersheds in northeastern 

Indiana within the Maumee River basin located in the Midwestern portion of the U.S. A 

review of the choice of the watershed model, Soil and Water Assessment Tool (SWAT) will 

also be presented. In Section 3, a 3-step computational analysis based on Latin Hypercube 

Sampling, the Morris’s One-at-A-Time sensitivity analysis and the Generalized Likelihood 

Uncertainty Estimation (GLUE) is developed and demonstrated for establishing uncertainty 

bounds associated with evaluation of BMPs. Application of multivariate multiobjective 

sensitivity analysis including Regionalized Sensitivity Analysis (RSA) and Tree-Structured 

Density Estimation (TSDE) for identification of critical natural processes and key 

management actions for sediment and nutrient control is presented in Section 4. This is 

followed in Section 5 by development and demonstration of a genetic algorithm (GA) search 

engine for identification of best location of management actions/BMPs at the watershed 

scale. Finally, major conclusions of the study and recommendations for future research are 

discussed in Section 6. 

The report is primarily based on three journal papers: Section3 is derived from Arabi et al. 

(2007a), Section 4 is derived from Arabi et al. (2007b), and Section 5 is derived from Arabi 

et al. (2006a). 
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SECTION 2.  CASE STUDY WATERSHEDS AND THE WATERSHED MODEL 

2.1. Case Study Watersheds 

The utility of the optimization framework was examined for two subwatersheds in the Black 

Creek basin. The Black Creek watershed (Figure 2.1) located in northeast Indiana is a typical 

watershed in the upper Maumee River basin in the Midwestern portion of the United States. 

In mid 1970’s and early 1980’s, several BMPs were implemented in the watershed and 

detailed water quality monitoring was carried out at various locations within the watershed to 

examine short-term water quality impacts of soil and water conservation techniques (Lake 

and Morrison, 1977; Lake and Morison, 1978). Data collected from automated samplers at 

the outlets of Dreisbach (6.23 km2) and Smith Fry (7.3 km2) within the Black Creek 

watershed were the most complete and were used in this study. Black Creek watershed has 

been listed as an impaired water body in Indiana with nutrients, algal growth, and impaired 

biotic communities as major concerns (EPA, 2005 b).  

The dominant hydrological soil group in the study watersheds is type C. Land use in 

Dreisbach is mostly pasture in the upper portion, while row crops are wide spread in the 

remainder of the watershed. Smith Fry is a predominantly agricultural watershed. Field 

borders, parallel terraces, grade stabilization structures, and grassed waterways were the 

structural BMPs installed in the watershed by targeting (see Figure 2.1). Table 2.1 

summarizes the number and area under influence of each type of BMP installed in the study 

watersheds as shown in Figure 2.1. Available data, land use distribution, and other 

information for the watersheds can be obtained from Lake and Morrison (1977), Lake and 

Morison (1978), and Morrison and Lake (1983), and have been more recently described in 

Arabi et al. (2004). 
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Table 2.1 BMPs installed in the Dreisbach and Smith Fry watersheds 

BMP 
Dreisbach Smith Fry 

Number Length/Area 
(unit) Number Length/Area 

(unit) 

Field Border 7 2600 (m) 1 1800 (m) 
Parallel Terrace 4 2130 (m) 2 480 (m) 
Grassed Waterway 5 3.50 (ha) 1 0.95 (ha) 
Grade Stabilization Structure 10 - 2 -

2.2. Choice of the Watershed Model: SWAT 

Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998; Arnold and Fohrer, 2005) is a 

process-based distributed-parameter simulation model, operating on a daily time step. The 

model was originally developed to quantify the impact of land management practices in 
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large, complex watersheds with varying soils, land use, and management conditions over a 

long period of time. SWAT uses readily available inputs and has the capability of routing 

runoff and chemicals through streams and reservoirs, and allows for addition of flows and 

inclusion of measured data from point sources. Moreover, SWAT has the capability to 

evaluate the relative effects of different management scenarios on water quality, sediment, 

and agricultural chemical yield in large, ungaged basins. Major components of the model 

include weather, surface runoff, return flow, percolation, evapotranspiration (ET), 

transmission losses, pond and reservoir storage, crop growth and irrigation, groundwater 

flow, reach routing, nutrient and pesticide loads, and water transfer. Table 2.2 provides a 

listing of important SWAT input parameters corresponding to the above-mentioned 

components. The lower and upper parameter bounds (LB and UP) were obtained from 

SWAT theoretical documentation (Neitsch et al., 2002) and similar studies in the literature 

(Lenhart et al., 2002; Benaman and Shoemaker, 2004; van Griensven et al., 2006).  

For simulation purposes, SWAT partitions the watershed into subunits including subbasins, 

reach/main channel segments, impoundments on main channel network, and point sources. 

Subbasins are divided into hydrologic response units (HRUs) that are portions of subbasins 

with unique land use, management, and soil attributes. SWAT uses a modification of the SCS 

curve number method (USDA Soil Conservation Service, 1972) or Green and Ampt 

infiltration method (Green and Ampt, 1911) to compute surface runoff volume for each 

HRU. Peak runoff rate is estimated using a modification of the Rational Method. Daily or 

sub-daily rainfall data is used for calculations. Flow is routed through the channel using a 

variable storage coefficient method developed by Williams (1969) or the Muskingum routing 

method. 

Erosion and sediment yield are estimated for each HRU with the Modified Universal Soil 

Loss Equation (MUSLE) (Williams, 1975). Sediment deposition and degradation are the two 

dominant channel processes that affect sediment yield at the outlet of the watershed. Whether 

channel deposition or channel degradation occurs depends on the sediment loads from upland 

areas and transport capacity of the channel network. If sediment load in a channel segment is 

larger than its sediment transport capacity, channel deposition will be the dominant process. 

Otherwise, channel degradation (i.e. channel erosion) occurs over the channel segment. 
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Table 2.2 Listing of SWAT parameters: LB and UB refer to lower and upper bounds of 
parameter vector, parameters identified by * were altered as a percentage of the default 
value, parameters identified by ** were considered in sensitivity analysis but not in 
uncertainty analysis. 

SWAT Symbol Description Units Range 
LB UB

 CN2*   SCS runoff curve number % -15 15
  SOL_AWC   available soil water capacity mm/mm 0.01 0.4
  ESCO   soil evaporation compensation factor 0 1
  OV_N   Manning’s “n” value for overland flow 0.1 0.3 
  SLOPE* , **   average slope steepness m/m 0 0.6 
  SLSUBBSN   average slope length m 0.15 1.2 
  GWQMN   minimum threshold depth of water in the shallow aquifer for return mm 0 5000
  REVAPMN   minimum threshold depth of water in the shallow aquifer for “revap”  mm 0 500 
  GW_REVAP   groundwater “revap” coefficient 0.02 2 
  GW_DELAY   groundwater delay days 0 500 
  ALPHA_BF   baseflow alpha factor for recession constant days 0 1 
  SURLAG   surface runoff lag time 1 12 

SFTMP   snowfall temperature oC -5 5 
  CH_S1* ,**   average slope for tributary channels m/m 0 10 
  CH_N1   Manning’s “n” value for tributary channels 0.008 0.065
  CH_K1   effective hydraulic conductivity in tributary channels mm/hr 0 150
  CH_S2* , **   average slope for the main channels m/m 0 10 
  CH_N2   Manning’s “n” value for the main channel 0.01 0.3 
  CH_K2   effective hydraulic conductivity in the main channel mm/hr 0 150
  CH_EROD   channel erodibility factor cm/hr/Pa 0 0.6
  CH_COV   channel cover factor 0 0.6 

PRF   peak rate adjustment factor for in-stream channel routing 0 2 
SPCON   Linear coefficient for in-stream channel routing 0 0.001

 SPEXP   exponent coefficient for in-stream channel routing 1 1.5 
  BIOMIX   biological mixing efficiency 0.01 1 
  BIOMIN   minimum plant biomass for grazing kg/ha 0 1 
  USLE_P   USLE equation support practice factor 0.1 1 
  USLE_C*   minimum value of USLE equation cover factor % 0.001 0.5
  USLE_K   USLE equation soil erodibility factor 0.01 0.65
  ORGP_AG   initial organic P in soils for agriculture land use mg/kg 1 1000
  ORGP_PAST   initial organic P in soils for pasture land use mg/kg 1 500
  LABP_AG   initial soluble P in soils for agriculture land use mg/kg 1 100
  LABP_PAST   initial soluble P in soils for pasture land use mg/kg 1 50
  ORGN_AG   initial organic N in soils for agriculture land use mg/kg 1 10000
  ORGN_PAST   initial organic N in soils for pasture land use mg/kg 1 5000
  SOLN_AG   initial NO3 in soils for agriculture land use mg/kg 0.1 5
  SOLN_PAST   initial NO3 in soils for pasture land use mg/kg 0.1 3 
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Movement and transformation of several forms of nitrogen and phosphorus over the 

watershed are accounted for within the SWAT model. Nutrients are introduced into the main 

channel through surface runoff and lateral subsurface flow, and transported downstream with 

channel flow. Major phosphorous sources in mineral soil include organic phosphorus 

available in humus and mineral phosphorus that is not soluble. Phosphorus may be added to 

the soil in the form of fertilizer, manure, and residue application. Surface runoff is deemed as 

the major mechanism of phosphorus removal from a field. Unlike phosphorus that has low 

solubility, nitrogen is highly mobile. Major nitrogen sources in mineral soil include organic 

nitrogen available in humus, mineral nitrogen in soil colloids, and mineral nitrogen in 

solution. Nitrogen may be added to the soil in the form of fertilizer, manure, or residue 

application. Plant uptake, denitrification, volatilization, leaching, and soil erosion are the 

major mechanisms of nitrogen removal from a field. 

It is worthwhile mentioning that the computational analyses proposed in this study do not 

necessarily require using the SWAT model as the NPS component. We have chosen SWAT 

because the case studies that will be performed will deal with sediments and nutrients. 

Soundness of mathematical representation of sediment, nutrient, and pesticide processes in 

SWAT has been validated in previous research (Santhi et al., 2001; Kirsch et al., 2002; Arabi 

et al, 2004; Vazquez-Amabile and Engel, 2006). Moreover, SWAT has been linked with 

optimization routines for automated calibration of the model (van Griensven and Bauwens, 

2003) and for evaluation of efficiency of nonpoint source pollution regulatory programs 

(Whittaker et al., 2003). The optimization framework herein can be easily integrated with 

other hydrologic/water quality models to develop management plans for other types of 

pollutants. 

2.2.1. Model calibration 

Arabi et al. (2004) utilized a procedure adopted from Santhi et al. (2001) to calibrate and 

validate the SWAT model for the Dreisbach and Smith Fry watersheds. The results from this 

previous study indicated acceptable agreement between observed and simulated baseflow, 

streamflow, sediment yield, and total P and total N loads at the outlet of the study 
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watersheds. In this study, the adjusted value of SWAT parameters from the manual 

calibration in Arabi et al. (2004) were used as default values.  

2.2.2. Representation of BMPs 

For this study, a method presented by Arabi et al. (2004) was utilized to evaluate the water 

quality impacts of grassed waterways, grade stabilization structures, field borders and 

parallel terraces. The method was developed based on published literature pertaining to BMP 

simulation in hydrological models and considering the hydrologic and water quality 

processes simulated in SWAT. Based on the function of the BMPs and hydrologic and water 

quality processes that are directly modified by their implementation, corresponding SWAT 

parameters were selected and altered. The impacts of the BMPs on other hydrologic/water 

quality processes were indirectly accounted for through their functional representation within 

the SWAT model. For example, implementation of grassed waterways prevents gully erosion 

due to concentrated flow. Thus, channel cover and erodibility factors were set to zero for 

channel segments with grassed waterways. Also, grassed waterways increase deposition of 

sorbed pollutant loads in the channel network ((Fiener and Auerswald, 2003). This impact is 

captured by increasing the channel Manning’s number to 0.3 (Fiener and Auerswald, 2006). 

For parallel terraces, Wischmeier and Smith (1978) recommended a USLE practice factor of 

0.1 for terraces on slopes less than 15% with graded channels sod outlets. Table 2.3 

summarizes SWAT parameters and their corresponding values for representation of the 

BMPs. More information on BMP representation procedure with SWAT model can be 

obtained from Arabi et al. (2004), and Arabi et al. (2006b).  

It is worthwhile to mention that the numerical representation of BMP performances as 

presented in Table 2.3 bears some degree of uncertainty. For example, Fiener and Auerswald 

(2006) assumed CH_N2 ranges between 0.3-0.4 s m-1/3 over the year for grassed waterways 

in case of dense grasses and herbs under non-submerged conditions. Assuming a fixed value 

for the representative parameters adds additional uncertainty in the BMP evaluation 

methodology. This uncertainty will perhaps be alleviated once precise numerical 

representation procedures are developed and validated with experimental data. We have 
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adopted the methodology provided by Arabi et al. (2004) without explicitly incorporating the 

uncertainty of BMP representation procedure. 

Table 2.3 Representation of BMPs with SWAT 

BMP Function 
Representing SWAT Parameter 

Parameter 
 (SWAT input file) Range value when BMP 

implemented 

Field Border increase sediment trapping FILTERW  
(.hru) 0-5 (m) 5 (m) 

Parallel 
Terrace 

reduce overland flow CN2
 (.mgt) 0-100 a 

reduce sheet erosion USLEP 
(.mgt) 0-1 0.1 

(terraced) 

reduce slope length SLSUBBSN
 (.hru) 10-150 b 

Grassed 
Waterway 

increase channel cover CH_COV 
(.rch) 0-1 0.0 

(fully protected) 

reduce channel erodibility CH_EROD 
(.rch) 0-1 0.0 

(non-erosive) 

increase channel roughness CH_N2 
(.rch) 0-0.3 0.24 

Grade 
Stabilization 
Structure 

reduce gully erosion CH_EROD 
(.rch) 0-1 0.0 

(non-erosive) 

reduce slope steepness CH_S2  
(.rch) - c 

a Estimated based on land use and hydrologic soil group of the HRU where it is installed for 
terraced condition.  

b Estimated for each parallel terrace based on its features and SWAT assigned overland 
slope of the HRU where it is installed: 

SLSUBBSN = (A×S+B) ×100/S 
where S is average slope of the HRU; A=0.21 and B=0.9 (ASAE, 2003). 

c Estimated for each grade stabilization structure based on its features and SWAT assigned 
slope, CH_S2old , and length of the channel segment where it is installed:  

CH_S2 new = CH_S2 old -D/CH_L2 
where D is height of the structure (1.2 m) and CH_L2 is length of the channel segment. 
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SECTION 3. PROBABILISTIC APPROACH FOR ANALYSIS OF UNCERTAINTY IN THE


EVALUATION OF WATERSHED MANAGEMENT PRACTICES


3.1. Abstract 

A computational framework is presented for analyzing the uncertainty in model estimates of 

water quality benefits of best management practices (BMPs) in two small (<10 km2) 

watersheds in Indiana. The analysis specifically recognizes the significance of the difference 

between the magnitude of uncertainty associated with absolute hydrologic and water quality 

predictions, and uncertainty in estimated benefits of BMPs. The Soil and Water Assessment 

Tool (SWAT) is integrated with Monte Carlo-based simulations, aiming at (1) adjusting the 

suggested range of model parameters to more realistic site-specific ranges based on observed 

data, and (2) computing a scaled distribution function to assess the effectiveness of BMPs. A 

three-step procedure based on Latin Hypercube Sampling (LHS), the Morris’s One-factor-

At-a-Time (OAT) sensitivity analysis and the Generalized Likelihood Uncertainty Estimation 

(GLUE) was implemented for the two study watersheds. Results indicate that the suggested 

range of some SWAT parameters, especially the ones that are used to determine the transport 

capacity of channel network and initial concentration of nutrients in soils, required site-

specific adjustment. It was evident that uncertainties associated with sediment and nutrient 

outputs of the model were too large, perhaps limiting its application for point estimates of 

design quantities. However, the estimated effectiveness of BMPs sampled at different points 

in the parameter space varied by less than 10% for all variables of interest. This suggested 

that BMP effectiveness could be ascertained with good confidence using models, thus 

making it suitable for use in watershed management plans such as the EPA’s Total Maximum 

Daily Load (TMDL) program. The potential impact of our analysis on utility of models and 

model uncertainties in decision making process is discussed. 
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3.2. Introduction 

The analysis of uncertainty associated with the utility of simulation models is an important 

consideration in the development of watershed management plans. Modeling uncertainty 

should be rigorously addressed in development and application of models, especially when 

stakeholders are affected by the decisions contingent upon model-supported analyses (NRC, 

2001). Watershed models are commonly utilized to investigate rainfall-runoff generation, and 

fate and transport of contaminants resulting from nonpoint source activities. Nonpoint source 

activities are perceived to be the most important source of pollution in the United States (Ice, 

2004). The evaluation of the success of best management practices (BMPs) in meeting their 

original goals has also been facilitated by watershed models (Griffin, 1995; Edwards et al., 

1996; Mostaghimi et al., 1997; Saleh et al., 2000; Santhi et al., 2001; Kirsch et al., 2002; 

Santhi et al., 2003; Arabi et al., 2006b). Uncertainty associated with absolute estimates of 

design quantities tends to be very high because of data sparsity and model limitations 

(Osidele et al., 2003; Benaman and Shoemaker, 2004). Thus, models are found to be more 

useful when making relative comparisons rather than making absolute predictions. It may be 

more meaningful to implement the uncertainty associated with effectiveness of BMPs in the 

planning process. 

The common modeling approach entails the {calibrate → validate → predict} process. The 

thrust of the calibration procedure is to identify a set of model parameters by optimizing a 

goodness-of-fit statistic between observed and predicted values such as the Nash-Sutcliff 

coefficient of efficiency. The calibrated model is then used to examine the impact of various 

management scenarios on the future behavior of the system. Such an analysis is subject to 

identifiability, and non-uniqueness of the optimal (calibrated) parameter set (Beck, 1987), i.e.  

there may be several sets of model parameters that fit the observed data equally (Beven and 

Binely, 1992). Calibration of a simulation model for a given watershed will reduce, but not 

totally remove, modeling uncertainties associated with both structure of the model and 

parameter estimates. Even with the best model structure, parameter estimation contains 

residual uncertainty (Beck, 1987) that propagates forward into model predictions and 

evaluation of effectiveness of management practices.  
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Although the literature is replete with sensitivity analysis and uncertainty analysis methods 

(Spear and Hornberger, 1980; Beven and Binely, 1992; Spear et al., 1994; Saltelli et al., 

2000), implications of uncertainty associated with model predictions have not been widely 

endorsed in the decision making process mainly as a result of large uncertainty estimates. 

The magnitude of uncertainty itself is a key factor in its acceptance as the cost of 

implementation of management actions such as the TMDL program may significantly 

increase with larger uncertainty estimates (Dilks and Freedman, 2004). In a case study in the 

Cannonsville Reservoir system watershed (1178 km2) located in upstate New York, Benaman 

and Shoemaker (2004) concluded that even in the presence of observed data it was not 

possible to reduce the uncertainty of absolute sediment predictions in their study to practical 

values for the TMDL program. The argument, however, is that if the goal of a modeling 

study is to examine the impact of management scenarios on water quality of a study area, it 

may be neither practical nor necessary to incorporate large uncertainty of absolute 

predictions in the decision making process. It would be perhaps more feasible (and more 

desirable) to communicate and implement uncertainty of estimated effectiveness of 

management scenarios rather than uncertainty of absolute predictions (Zhang and Yu, 2004). 

Moreover, the importance of such a formulation would be particularly appreciated when the 

reduction of a variable of concern (sediment, nutrients, etc) due to implementation of an 

abatement action is less than estimated uncertainty of absolute predictions. In such cases, 

evaluation of impact of management scenarios would not be inhibited by uncertainty of 

model outputs. 

The impact of modeling uncertainties on evaluation of management practices has not been 

addressed sufficiently, as studies have generally focused on uncertainty of point predictions. 

Specifically, a computational procedure than can be used to establish uncertainty bounds for 

the estimated effectiveness of BMPs has not been developed to the best of our knowledge. In 

this study, a Monte Carlo-based probabilistic approach is utilized (i) to develop a 

computational procedure for analysis of uncertainty; (ii) to examine the effect of modeling 

uncertainties on evaluation of long-term water quality impacts of BMPs using a distributed 

watershed model, SWAT; and (iii) to provide a comparison between magnitudes of 

uncertainties associated with absolute predictions versus effectiveness of BMPs. The analysis 
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is demonstrated for two small watersheds in Indiana where water quality data were collected 

and several structural BMPs were implemented. 

3.3. Theoretical Considerations 

3.3.1. Morris’s One-at A Time sensitivity analysis 

The OAT is a sensitivity analysis technique that falls under the category of screening 

methods (Saltelli et al. 2000). In the OAT, each model run involves perturbation of only one 

parameter in turn. This way, the variation of model output can be unambiguously attributed 

to the perturbation of the corresponding factor. For each input parameter, local sensitivities 

are computed at different points of the parameter space, and then the global (main) effect is 

obtained by taking their average. The elementary effect of a small perturbation Δ of the ith 

component of the p-dimensional parameter vector (αi) at a given point in the parameter space 

α = (α1,...,α i−1,α i ,α i+1,...,α p) ) is (Morris, 1991): 

where y(α ) corresponds to model output. The results are quantitative, elementary, and 

exclusive to the parameter αi. However, the elementary effect computed from Eq 3.1, 

i.e. d (α i |α ) , is only a partial effect and depends on the values chosen for the other elements 

of the parameter vector ( α j ). A finite distribution (Fi) of elementary effects of parameter αi 

is obtained by sampling at different points of the space, i.e. different choices of parameter set 

α. The mean of the distributions is indicative of the overall influence of the parameter on the 

output, while the variance demonstrates interactions with other parameters and nonlinearity 

effects. 

3.3.2. Generalized Likelihood Uncertainty Estimation (GLUE) 

The GLUE methodology is based on recognition of the importance of the set of parameters to 

produce the behavior of the system, not individual parameters. The acceptable model 

realizations (i.e. behavior set) obtained from Monte Carlo simulations are given a likelihood 
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weight according to observed data and a likelihood function. Several choices for an 

appropriate likelihood function can be obtained from Beven and Freer (2001). A likelihood 

measure based on Nash-Sutcliff efficiency criterion with shaping factor N is defined as (Freer 

et al., 1996): 

where L(α|y) is the likelihood of parameter set (α), given the observed data (y). The quantities 

σε 
2 and σ o 

2  refer to the error variance between model simulations and observed data, and the 

variance of the observed data, respectively. For N=1, L in Eq 3.2 is the well-known Nash-

Sutcliff efficiency coefficient that is often used for calibration of hydrologic and water 

quality models. A negative L value indicates that the corresponding model output is 

dissimilar to the behavior of the system under study, and the likelihood of such a simulation 

in mimicking the system behavior is zero. Therefore, the likelihood measure is rewritten as:  

For each simulation from a random parameter set, a likelihood weight is obtained from Eq 

3.3. Then, these weights are rescaled by dividing each of them by their total sum. The 

rescaled likelihood weights are used to construct a cumulative distribution for the output of 

interest, which can be used for estimation of uncertainty bounds associated with the output 

by computing its quantiles. The GLUE method is subjective not only to the choice of 

likelihood function, but also to the cutoff criterion used for classification of Monte-Carlo 

simulations to behavior and non-behavior sets. 

3.4. Methodology 

The computational framework utilized in this study is comprised of (1) a process-based 

watershed model (SWAT; Soil and Water Assessment Tool, Arnold et al., 1998) employed 

for simulating the fate and transport of sediment and nutrients in the study watersheds under 

two scenarios- before and after implementation of BMPs, (2) a BMP representation method 
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(adapted from Arabi et al., 2004) for incorporation of water quality impacts of BMPs, and (3) 

an uncertainty analysis methodology based on two sampling based methods: One-factor-At

a-Time (OAT) sensitivity analysis (Saltelli et al., 2000), and Generalized Likelihood 

Uncertainty Estimation (GLUE; Beven and Binely, 1992). A computational method was 

developed to reduce the “suggested” range of input parameters to site-specific “adjusted” 

ranges to be used in the GLUE analysis. The methodology was tested on two different 

watersheds located in northeast Indiana, one with significantly larger number of installed 

BMPs. This confirmed the versatility of the computational analysis to quantify modeling 

uncertainties associated with estimated effectiveness of BMPs in study watersheds under 

influence of a large number as well as a small number of BMPs. 

3.4.1. OAT sensitivity analysis 

Identifying the most sensitive input parameters is not an essential component of the 

framework for analysis of uncertainty that is proposed in this study. The results of such an 

analysis, however, provide useful information pertaining to model parameters with large 

uncertainties. The uncertainty associated with parameters that are determined based on 

topographic, land use, soil, and management attributes could perhaps be reduced by using 

better spatial resolution for these attributes. Conversely, uncertainty of parameters that are 

not determined from landscape attributes and are usually estimated through calibration 

procedure may be reduced only through a systematic site-specific range adjustment process.  

In this study, the following procedure was followed for the OAT sensitivity analysis. First, in 

the absence of any prior information with regard to the distribution of input parameters, a 

uniform distribution, with minima and maxima specified in Table 2.2, was considered for all 

parameters. The same approach was used by Beven and Freer (2001) and Benaman and 

Shoemaker (2004). Then, OAT sensitivity indices were computed. While a local sensitivity 

index (d) was computed by applying Eq 3.1 for each parameter, global sensitivities were 

determined by taking the average of these local sensitivities at 50 random points sampled 

across the entire parameter space. Finally, a rescaled sensitivity index (dn) was determined by 

dividing the global OAT sensitivity indices by their total sum. The dn values range from 

[0,1], with values closer to 1 indicating a more sensitive parameter. 
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3.4.2. Range adjustment 

Adjustment of “suggested” ranges of sensitive input parameters was found to be an essential 

step prior to quantifying uncertainty of model outputs. Use of unrealistically large parameter 

ranges may result in a large number of simulations with negative likelihoods (L in Eq 3.2) 

that renders the GLUE analysis inefficient and prohibitively expensive. Particularly, ranges 

of calibration parameters that are not determined from landscape attributes should be 

investigated. For example, consider the model parameters that are used to determine the 

transport capacity of the channel network (SPCON, SPEXP, and PRF in Table 2.2). These 

parameters are not identified based on topographic and/or soil characteristics of the channel 

segments, but typically determined based on similar research in the study area or through a 

calibration procedure. 

The range adjustment process for important model parameters entailed the following steps: 

1.	 Establish base-case values for input parameters: the base-case values for the input 

parameters in Table 2.2 could be selected by one the following approaches: (i) insights 

gained from the OAT sensitivity analysis; (ii) model calibration procedure; (iii) a 

suggested value obtained from literature, previous studies in the study area, or prior 

experience of the analyst. In this analysis, base-case values were selected from a manual 

calibration (Arabi et al., 2004). 

2.	 Perform interval-spaced simulations: the range of each parameter of concern was divided 

into 50 equal intervals. A SWAT model simulation was performed for a random 

realization of the parameter from each interval while other parameters were kept at their 

base-case values. The simulation timeline covered the 1974-1978 period when hydrologic 

and water quality data were collected at the outlets of the study watersheds.  

3.	 Adjust ranges of important parameters: A method based on a goodness-of-fit measure 

(Nash-Sutcliff coefficient) was developed to reduce the suggested ranges of important 

parameters to narrower adjusted ranges for the study watersheds. The acceptable ranges 

of parameters were determined by plotting the Nash-Sutcliff efficiency coefficients (EN-S; 

Nash and Sutcliff, 1970) computed for interval-spaced simulations. The EN-S is defined 

as: 
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where Oi and Pi  are observed and predicted monthly output variables, respectively, while 

O  is the average of monthly observed values. EN-S ranges from -∞ to 1, with higher 

values indicating a better 1:1 fit between the observed and simulated values. Model 

simulations with negative EN-S were considered “unacceptable” (Santhi et al., 2001), and 

subsequently, the range of the parameter was reduced to those that yielded non-negative 

EN-S values. 

3.4.3. Uncertainty computations 

Adjusted parameter ranges from previous step were used to probabilistically determine the 

effectiveness of BMP implementation. In the present uncertainty analysis, 5000 model 

simulations were performed for the 1974-1978 period when water quality data were 

collected. All model parameters in Table 2.2 were included in the analysis. For those 

parameters that required range reduction, adjusted ranges were selected from the range 

adjustment process. For each realization of the parameter space, the uncertainty analysis 

entailed the following steps: 

1.	 Select parameter values from their specified ranges in a random fashion;  

2.	 Perform model simulation with the selected values to compute model outputs for the 

scenario without BMPs; 

3.	 Compute likelihood of the simulation for monthly output variables by applying Eq 3.3; 

4.	 Represent BMPs by changing appropriate model parameters from Table 2.3; 

5.	 Compute model outputs for the scenario with BMPs in place; 

6.	 Using GLUE-likelihood weights computed at step (3), generate a cumulative density 

function for outputs of interest for both model simulations with and without BMPs.  

The main assumption in the numerical procedure described above is that the same cumulative 

likelihood can be used for the scenarios with BMPs and without BMPs. Water quality data 

utilized in this study were representative of the state of the watersheds before implementation 

21




of BMPs. Thus, the likelihood of a set of model parameters to mimic the behavior of the 

system was computed for the scenario without BMPs. When adequate hydrologic and water 

quality data are available for both scenarios with BMPs and without BMPs, the GLUE-

likelihood functions should be computed separately.   

It should be noted that likelihood functions associated with each set of model parameters in 

the GLUE analysis are likely to be approximately the same before and after implementation 

of BMPs, if other watershed characteristics remain the same. Representation of BMPs entails 

only modification of some model parameters for the fields and/or streams where BMPs are 

implemented. BMPs are implemented in a relatively small area within the watershed. For 

example, BMPs in Figure 2.1 cover less than 5% of total upland fields and the channel 

network in the Dreisbach and Smith Fry watersheds. Thus, in the absence of water quality 

data for computation of GLUE-likelihoods for the scenario with or without BMPs, it is 

suggested that the same likelihood be used for both scenarios. 

3.5. Results 

3.5.1. Range adjustment results 

The results of the range adjustment analysis indicated that none of hydrology-related 

parameters of the SWAT model needed range reduction. On the other hand, three sediment-

related parameters, one total P-related parameter, and one total N parameter required site 

specific adjustments. Table 3.1 provides a listing of top five sensitive SWAT parameters in a 

descending order for monthly streamflow, sediment, total P, and total N output variables. The 

term “min (EN-S)” in the table refers to the minimum of Nash-Sutcliff coefficients computed 

for 50 interval-spaced model simulations corresponding to each parameter. Shaded values 

indicate parameters with negative “min (EN-S)” value for which the range adjustment 

procedure was applied. 
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Table 3.1 Top five sensitive SWAT parameters for streamflow, 
sediment, total P, and total N computations: dn is the OAT sensitivity 
index, “min (EN-S)” refers to minimum of Nash-Sutcliff coefficient 
computed for each 50 simulations in the OAT analysis. Description 
of parameters can be found from Table 2.2. 

Variable SWAT Symbol dn 
min (EN-S) 

Dreisbach Smith Fry 

Streamflow 

SOL_AWC 0.30 0.19 0.13 
CN 0.20 0.38 0.13 

GW_REVAP 0.17 0.27 0.36 
ESCO 0.09 0.61 0.56 
CH_KI 0.09 0.40 0.60 

Sediment 

SPCON 0.30 -30.59 -4.9 
PRF 0.12 -0.31 -0.85 

SLOPE 0.09 -2.07 0.11 
CH_N2 0.06 -0.27 -0.2 

CN 0.06 0.60 0.01 

Total P 

SLOPE 0.43 -110.02 -10.66 
ORGP_AG 0.25 -1.69 -0.19 
LABP_AG 0.07 0.03 0.4 

CN 0.06 0.09 0.12 
USLE_K 0.05 0.12 0.05 

Total N 

SLOPE 0.51 -132.94 -11.77 
ORGN_AG 0.11 0.03 -0.5 
USLE_K 0.06 0.12 0.05 

CN 0.07 0.18 0.05 
SOL_AWC 0.06 0.14 0.34 

Figure 3.1 illustrates one dimensional response surface of model outputs at the outlets of the 

study watersheds to parameters with reduced ranges. The spider-plots (dashed lines) have 

been generated by varying one parameter at a time, while other parameters were kept 

constant at their base-case value. Each panel represents 50 model simulations, where the 

model output is shown on the left y-axis and the right y-axis displays the Nash-Sutcliff 

coefficient in Eq 3.4. The x-axis is the normalized value of each parameter αi , determined 

from its absolute value αi , and its respective upper (Ui ) and lower ( Li ) bounds summarized 

in Table 2.2: 
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Figure 3.1 Spider plots for the most sensitive input factors related to water quality 
computations in SWAT with adjusted ranges in Table 3.2. Each panel represents 50 model 
realizations. Subscript “AG” refers to agricultural land use. 
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Eq 3.5

Equation 3.5 can be used to back calculate the absolute parameter values corresponding to 

the normalized values shown in Figure 3.1. A negative “min (EN-S)” value indicated the 

necessity for range reduction. For each panel, a horizontal line was drawn at EN-S (right y-

axis) equal to zero. The range of the corresponding parameter vector was reduced to the 

portion that lies above this line. The top panel to the left in Figure 3.1 demonstrates how 

parameter ranges were adjusted. The new parameter ranges for the study watersheds are 

presented in Table 3.2. 

Table 3.2 Adjusted parameter ranges for the study watersheds: both suggested ranges and 
adjusted ranges are based on absolute parameter values. Description of the parameters can be 
found in Table 2.2. 

Parameter Units Limiting Variable Suggested Range Adjusted Range 
Dreisbach Smith Fry 

SPCON - sediment 0-0.001 0-0.0002 0-0.0005 
PRF - sediment 0-2 0.2-2 0.2-2 

CH_N2 - sediment 0.008-0.3 0.008-0.1 0.008-0.1 
ORGP_AG mg/kg total P 0-1000 0-500 0-950 
ORGN_AG mg/kg total N 0-10000 0-10000 2000-10000 

Sediment outputs were most sensitive to model parameters that are used to estimate the 

transport capacity of the channel network, usually determined through calibration procedure 

and not based on land and/soil/management characteristics. The slope of upland areas 

represented by parameter SLOPE was the most sensitive parameter for total P and total N 

simulations. However, the range of this parameter was not reduced, because it is directly 

estimated from Digital Elevation Model (DEM). In the absence of field measurements, the 

initial concentration of phosphorus and nitrogen in soils were reduced to the values reported 

in Table 3.2. 

Several issues should be considered in interpretation of the results from range adjustment 

analysis. First, the threshold value of Nash-Sutcliff coefficient that is used to reduce 
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parameter ranges significantly impacts the method. Obviously, a lower EN-S value would 

result in acceptance of wider parameter ranges. In this study, this threshold was set at zero 

because the likelihood of model simulations in GLUE uncertainty analysis with negative EN-S 

values is assumed to be zero (see Eq 3.3). Second, the number of intervals to be used in the 

range adjustment process should be selected such that the plot of the goodness-of-fit measure 

(EN-S) over the entire parameter range (e.g. Figure 3.1) forms a relatively smooth curve. Our 

experience from this study indicated that 20-50 intervals should be adequate. The results of 

the OAT sensitivity analysis and range adjustment process are site specific, and may be 

different if the watershed conditions are significantly different than those discussed here. We 

note that the results of the sensitivity analysis are in general agreement with previous studies 

such as Lenhart et al. (2002), Heuvelmans et al. (2004), Muleta and Nicklow (2005), and 

White and Chaubey (2005). 

3.5.2. Uncertainty analysis results 

The computational procedure described previously was performed to quantify the uncertainty 

associated with both model simulations and estimated effectiveness of BMPs. Figures 3.2 

and 3.3 depict the cumulative likelihood distribution of average monthly values for various 

output constituents at the outlet of the Dreisbach and Smith Fry watersheds, respectively. A 

likelihood weight from Eq 3.3 was assigned to each of 5000 model realizations resulting 

from Monte Carlo simulations. Each panel in the figures contains two cumulative probability 

distributions for the two scenarios. The dashed lines correspond to results from the GLUE 

method for the scenario without BMPs (scenario A), while the solid lines demonstrate the 

results for the scenario with BMPs represented in the model (scenario B). Two major trends 

are evident. First, the difference between GLUE-likelihoods for scenarios A and B was 

marginal for streamflow, but substantial for sediment, total P, and total N computations. 

Second, the trends were quite different in the two study watersheds.  
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Figure 3.2 Cumulative GLUE-likelihood for variables simulated at the outlet of the 
Dreisbach watershed, Indiana. Each panel represents 5000 model realizations. The top panel 
in the right demonstrates how various percentiles were determined. Variable ŷa is the 
expected value for scenario A (BMPs not represented), and ŷb is the expected value for 
scenario B (BMPs represented). 
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Figure 3.3 Cumulative GLUE-likelihood for variables simulated at the outlet of the Smith 
Fry watershed, Indiana. Each panel represents 5000 model realizations. 
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Following Figures 3.2 and 3.3, the results are summarized in Table 3.3 for further discussion. 

Lower and upper bounds in Table 3.3 refer to 5th and 95th percentiles of the cumulative 

likelihoods, respectively, while the median represents the 50th percentile. The top panel on 

the right in Figure 3.2 demonstrates how various percentiles were determined. For scenario 

A, comparison of median values to the average of monthly observed data, also presented in 

Table, indicate that averages of monthly observed values for streamflow were within ±15% 

of the median in both study watersheds, and fell well within the uncertainty ranges from 

GLUE. Sediment yield measurements at the outlet of the Dreisbach and Smith Fry 

watersheds were within ±20% of the median values, also well covered by the uncertainty 

bounds. The median values for total P appeared to adequately match the average of monthly 

observations as they underpredicted by only 27% and 20% in Dreisbach and Smith Fry, 

respectively. Moreover, the uncertainty bounds covered the data. The median for total N 

determined for Dreisbach watershed differed from the average of monthly observed values 

by only 7%, indicating satisfactory results from GLUE. Total N at the outlet of Smith Fry 

was the only case where the uncertainty bounds from GLUE did not contain the observed 

value. The corresponding median underpredicted total N yield by nearly 50%, perhaps 

because of structural uncertainties involved in simulations. In particular, a lack of proper 

linkage between fluvial channel processes and in-stream nutrient processes in SWAT could 

be responsible for these results. 

Table 3.3 Summary of the results from analysis of uncertainty: variable ŷ refers to 50th 

percentile (median) of output variables for 5000 Monte Carlo simulations of the SWAT 
model, ŕ is the 50th percentile (median) of estimated reduction of output variables due to 
implementation of BMPs computed by 3.3 for 5000 Monte Carlo simulations of the SWAT 
model, and “range” refers to the 5th and 95th percentile of the Monte Carlo simulations. 

Watershed Variable Units Observed 
Value 

Scenario A 
Without BMPs 

Scenario B 
With BMPs Reduction (%) 

ˆ ay range ŷb range r̂i range 

D
re

is
ba

ch
 Streamflow m3/s 0.039 0.041 [0.026,0.062] 0.037 [0.023,0.056] 9.8 [9.70,11.5] 

Sediment t/ha/month 0.031 0.035 [0.015,0.083] 0.015 [0.007,0.033] 57.1 [53.3,60.2] 
Total P kg/ha/month 0.095 0.069 [0.030,0.125] 0.046 [0.015,0.086] 33.3 [31.2.4,50] 
Total N kg/ha/month 1.228 1.145 [0.487,2.385] 0.788 [0.360,1.502] 31.2 [26.1,37.0] 

Sm
ith

 F
ry Streamflow m3/s 0.054 0.06 [0.045,0.086] 0.055 [0.042,0.077] 8.3 [6.70,10.5] 

Sediment t/ha/month 0.093 0.043 [0.021,0.107] 0.037 [0.018,0.090] 14 [12.8,15.9] 
Total P kg/ha/month 0.336 0.267 [0.115,0.551] 0.243 [0.098,0.502] 9 [8.90,14.8] 
Total N kg/ha/month 6.112 3.026 [1.552,5.838] 2.847 [1.450,5.560] 5.9 [4.70,6.60] 
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y , ŷ , ˆi a  − i b  ri = ×100 
ŷ ,i a  

These values may now be compared to corresponding quantities for scenario B listed in 

Table 3.3. Comparison of the expected values for scenarios A and B revealed the estimated 

effectiveness of BMPs, shown as a percent reduction. The percent reduction of each 

constituent as a result of implementation of BMPs was determined as: 

Eq 3.6 

where i is the constituent of interest, i.e., streamflow, sediment yield, total P load, or total N 

load, ri is percent reduction of constituent i, ŷi,a is the median of constituent i for scenario A, 

and ŷi,b is the median of constituent i for scenario B. The results indicated that 

implementation of BMPs as shown in Figure 2.1 would not reduce streamflows significantly. 

This did not come as a surprise because the BMPs implemented in the watersheds were 

mostly sediment control BMPs. Implementation of the 26 BMPs in the Dreisbach watershed 

would lower median sediment yield by nearly 57%, from 0.035 t/ha/month to 0.015 

t/ha/month. The estimated reduction rates for total P and total N at the Dreisbach outlet were 

33% and 31%, respectively. The estimated reduction rates at the outlet of Smith Fry were 

nearly 14%, 9%, and 6% for sediment yield, and total P and total N loads (Table 3.3). These 

rates suggested that implementation of the BMPs in Smith Fry was almost four times less 

effective than the ones in Dreisbach, which was anticipated because of smaller number of 

BMPs in the former. 

The uncertainty bounds associated with absolute predictions of the SWAT model were much 

larger than the ones corresponding to the estimated effectiveness of BMPs. For example, the 

uncertainty bound for monthly sediment yield at the outlet of Dreisbach for the simulation 

period under scenario A (scenario with no BMP represented) was determined to be 

[0.015,0.083] with a median value of 0.035 t/ha/month (Table 3.3). Incorporation of this 

large uncertainty in decision making and management may be extremely costly and not 

feasible. However, as is evident in Table 3.3, the estimated 5th and 95th uncertainty bounds 

for estimated effectiveness of BMPs in the Dreisbach watershed in reducing sediment yield 

at its outlet were [53%,60%] with a median (50th percentile) of 57%. Likewise, the estimated 
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effectiveness of BMPs in Smith Fry was estimated to range between [13%, 16%] with a 

median of 14%. Similar results were observed for streamflow, total P, and total N 

computations for the study watersheds. 

3.6. Discussion 

The conceptual simplicity is an attractive feature of the computational analysis developed in 

this study. The utilized likelihood measure, Nash-Sutcliff coefficient, is widely used by 

modelers for calibration and validation of watershed models. Also, the OAT-GLUE 

methodology will, more than likely, produce various sets of model parameters that 

adequately satisfy calibration criteria that are usually set based on Nash-Sutcliff coefficient. 

This helps modelers avoid the cumbersome practice of manual calibration. That the 

uncertainty bounds of various constituents encompassed the corresponding observed values 

(except for only one case for total N in the Smith Fry watershed) strongly supports this 

suggestion. It appears that for the Dreisbach and Smith Fry watersheds, sediment and nutrient 

outputs of the SWAT model bear more uncertainty than streamflow simulations.  

Consolidation of results in Tables 3.1 and 3.3 from the three-step procedure indicate that 

reducing the uncertainty associated with absolute sediment and nutrient outputs of the SWAT 

model to practical ranges may not be feasible. Sediment outputs of the model were found to 

be most sensitive to transport capacity of channel network. Some of the parameters that are 

used to determine the transport capacity of channel segments (SPCON, SPEXP, and PRF in 

Table 2.2) cannot be measured in the field and are usually calibrated from a broad 

“suggested” range. With availability of more data, the three-step procedure used in this study 

may result in more narrow uncertainty bounds for absolute predictions. Nevertheless, it may 

still not be adequate for reducing the uncertainty associated with these absolute model 

predictions to small enough ranges to be useful for practical management decisions. 

However, comparison of sediment and nutrient outputs from model simulations with and 

without representation of BMPs would not suffer from such limitations as demonstrated here. 

It is evident that incorporation of modeling uncertainty in informed decision making is more 

practical through communicating the uncertainty associated with evaluation of effectiveness 

of management actions. 
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The foregoing results indicate that the computational framework developed in this study 

could be endorsed by watershed management programs such as the TMDL as advocated in 

NRC (2001). Once the level of protection to be provided by the Margin of Safety (MOS) is 

specified by decision makers, the probabilistic framework presented in this study could be 

applied to verify the success of a particular management action in achieving its designated 

goals. Implementation of the estimated MOS is more feasible in this context, as opposed to 

the MOS computed from uncertainty analysis of absolute model predictions where the 

additional cost of implementation may render its consideration impractical. Finally, the 

methodology can be easily incorporated in watershed models such as SWAT that are 

commonly used for TMDL development. Land use in the study watershed has changed since 

data were collected. Thus, application of the results presented herein is limited to 

demonstration of the methodology. 

3.7. Conclusions 

A computational framework was developed in which investigation of uncertainty provides 

complementary quantitative and qualitative information to support management and decision 

making. The analysis focused specifically on two issues. First, ranges of some model 

parameters may require site-specific adjustments with available data. This was particularly 

evident for parameters that are not determined from landscape characteristics. Second, the 

uncertainty associated with estimated effectiveness of BMPs is substantially smaller than the 

uncertainty associated with absolute predictions. The computational procedure for analysis of 

uncertainty was performed for two Indiana watersheds with relatively similar spatial scale, 

and landscape characteristics, but different number of installed BMPs. It was demonstrated 

that the computational framework is capable of quantifying uncertainty of effectiveness of 

implemented BMPs in both watersheds. Future work will focus on investigation of the utility 

of the developed methodology in the TMDL process. Especially, the means for coping with 

the Margin of Safety (MOS) in the TMDL formula should be explored.  
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SECTION 4. SENSITIVITY ANALYSIS OF SEDIMENT AND NUTRIENT PROCESSES WITH A 

WATERSHED MODEL


4.1. Abstract 

This section presents a computational analysis for evaluating critical nonpoint source 

sediment and nutrient processes and management actions at the watershed scale. In the 

analysis, model parameters that bear key uncertainties are presumed to reflect the importance 

of natural processes and/or management actions that they represent. The Regionalized 

Sensitivity Analysis (RSA) and the Tree-Structured Density Estimation (TSDE) procedures 

were integrated with the Soil and Water Assessment Tool (SWAT) to investigate correlation 

structure in the parameter space while accounting for multiple objectives. The computational 

analysis was applied to the Dreisbach and Smith Fry watersheds in Indiana in the Midwestern 

portion of the United States. Results showed that incorporation of parameter interactions is 

essential to obtaining conclusive information about critical system processes and 

management actions. Interactions between surface runoff volume and within-channel 

processes were critical to describe transport of sediments in the study watershed. Key 

management actions for nutrient control were found to be fertilizer application and upland 

farming practices such as parallel terraces. The sensitivity analysis reported herein could be 

used to derive a list of key nonpoint source best management practices for development of 

watershed management plans. 

4.2. Introduction 

Identification of natural processes and management actions that control nonpoint source 

(NPS) pollution is essential for development of watershed management plans. The current 

handbook of the Environmental Protection Agency for developing watershed plans (EPA, 

2005a) recommends implementation of best management practices (BMPs) in portions of the 

watershed that are believed to contribute intensively to NPS pollution. Locating critical areas, 

however, is complicated because contaminants are carried along with the flow, and water 
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movement over a watershed tends to be fairly dynamic, behaving in a nonlinear fashion. 

Potential interactions among hydrologic, fluvial, and nutrient processes and NPS control 

measures should be identified and included in designing watershed management scenarios. 

Such information could be obtained by integration of computational techniques with 

hydrologic/water quality models. 

Previous studies have utilized optimization methods to design near optimal combination of 

BMPs (Srivastava et al., 2002; Veith et al., 2004). These methods search for the optimal 

location of selected management practices for NPS pollution control in a watershed system. 

As the number of selected BMPs increases, the number of model evaluations for identifying 

the optimal solution increases exponentially. Thus, these optimization studies have focused 

on spatial allocation of only a few BMPs. Nearly a hundred BMPs for NPS pollution control 

are recommended by the USDA Natural Resources Conservation Service (USDA NRCS, 

2006). Evaluation of impacts of all these practices, even within small watersheds, is 

infeasible. In this section, we present a novel approach to systematically abridge the list of 

key BMPs for sediment and nutrient control at the watershed scale. The methodology is 

based on the hypothesis that analysis of uncertainty of model simulations could underscore 

critical processes and key management actions for NPS control.  

Inverse modeling approaches based on sensitivity analysis (SA) have been used in the past to 

obtain information about important system processes in a variety of disciplines. Osidele et al. 

(2003) utilized a sensitivity analysis to investigate the importance of sediment and nutrient 

processes in a section of the Chattahoochee River (nearly 115 river miles) in Atlanta. The 

univariate regionalized sensitivity analysis (RSA; Spear et al., 1980) was used in conjunction 

with the multivariate tree structured density estimation (TSDE; Spear et al., 1994) to account 

for the correlation structure in the parameter space. The RSA was also utilized by Zheng and 

Keller (2006) for sensitivity analysis of the Watershed Analysis Risk Management 

Framework (WARMF) model and its management implications.  

The one-at-a time sensitivity analysis (Pitman, 1994), factorial design, and the Fourier 

amplitude sensitivity test (FAST) (Saltelli et al., 2000) are some other SA methods. These 

SA methods determine parameter sensitivities for a single model response (e.g. average 
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annual sediment yield). Bastidas (1998) developed a multiobjective generalized sensitivity 

analysis (MOGSA) based on RSA to consider the influence of multiple criteria on parameter 

sensitivities. Previous research studies based on MOGSA (Bastidas et al., 1999; Meixner et 

al., 1999; Liu et al., 2004, Demarty et al., 2005), while incorporating multiple criteria, were 

limited in revealing the multivariate correlation structure in the parameter space. Moreover, 

these studies have been applied only to models up to medium level of complexity (Zheng and 

Keller, 2006). 

The work of Osidele et al. (2003) and van Griensven et al. (2006) are examples of studies 

that applied multivariate approaches for sensitivity analysis of sediment and nutrient 

processes. However, they evaluated model sensitivities based on a single output or its 

trajectory, and did not explicitly address the interactions between flow, sediment, and 

nutrient criteria. To our knowledge, both multivariate interactions and multiple criteria have 

not been incorporated simultaneously for performing a sensitivity analysis with a complex 

watershed model such as SWAT (Arnold et al., 1998). Also, implications of sensitivity of 

NPS sediment and nutrient processes/BMPs in holistic watershed management have not been 

discussed. These shortcomings are addressed in the present work. 

In this section, we investigate the utility of computational approaches for identifying critical 

NPS processes and key BMPs that are likely to control fate and transport of sediments and 

nutrients in watershed systems. To this end, the RSA and TSDE procedures are linked with a 

comprehensive watershed model (SWAT) to (i) develop a new sensitivity analysis 

framework that can handle interactions in the parameter space as well as multiple trajectories 

of model outputs, and (ii) demonstrate the application of the computational analysis to 

highlight critical sediment and nutrient processes in an agricultural watershed in Indiana. 

With simultaneous incorporation of multicriteria and multivariate approaches, the developed 

framework provides a novel capability for dealing with important issues for holistic 

watershed management. Critical NPS sediment and nutrient processes, key agricultural 

BMPs, and their potential interactions can be evaluated. Watershed management programs 

such as the Total Maximum Daily Load (TMDL) and the USDA’s Environmental Quality 

Incentive Program (EQIP) would significantly benefit from such an analysis. Another feature 

of the present work is that real system response data are utilized in the analysis.   
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H0 : fm (αk | B) = fn (αk | B) 
H1 : fm (αk | B) ≠ fn (αk | B) 

Kolmogorov-Smirnov statistic: d , = sup Fm (αk | B) − Fn (αk | B)m n  
x 

4.3. Theoretical Considerations 

4.3.1. Regionalized Sensitivity Analysis (RSA) 

The Regionalized Sensitivity Analysis (RSA; Spear and Hornberger, 1980) aims at 

identification of critical uncertainties in order to evaluate the relative importance of 

individual parameters that exert the most influence on system behavior. The procedure 

utilizes a uniform sampling of the parameter space and involves (i) a qualitative definition of 

the behavior of the system under study (criterion function C), and (ii) a binary classification 

of the parameter space (S) into good (behavior B ) or bad (nonbehavior B ) regions. The 

strength of the method lies in the classification scheme, which facilitates the application of 

multivariate statistical methods to explore the level of significance that the posterior 

probability distribution function of each element of the parameter vectorα  in the behavior 

region f m (α | B)  deviates from the one in the nonbehavior region f n (α
 
| B ) . A Kolmogorov-

Smirnov two sample test is performed to test the hypothesis that for a given parameter 

αk ∈α
 , f m (α k | B) separates from f n (α k | B ) : 

Eq 4.1 

where Fm (αk | B)  and Fn (αk | B) are, respectively, the cumulative density functions 

corresponding to f m (α k | B) and f n (α k | B ) for m behavior and n nonbehavior model 

simulations. The sup  notation refers to the largest vertical separation between Fm (α k | B) 
x

and Fn (αk | B) . The d m,n statistic can be used to determine the relative importance of the 

uncertainty associated with each element of the parameter vector, with higher values 

indicating higher influence on model outputs.  

4.3.2. Tree Structured Density Estimation (TSDE) 

Spear et al. (1994) recognized that despite the conceptual simplicity of the RSA procedure, 

its applicability may be limited as a result of different correlation structures among 
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parameters. The tree structured density estimation (TSDE) methodology was developed to 

obtain information relevant to the interactions between model parameters in the complex 

non-uniform behavior region. The TSDE procedure is as follows. The m behavior parameter 

vectors are treated as independent samples from an unknown probability distribution 

function f (α 
| B) . To construct an adequate approximation of this unknown distribution, the 

behavior parameter space (SB) is partitioned into q sub-spaces ( S B = ∪q 
S B,i ). A local

i=1 

estimate of f for the ith sub-space (SB,i) with volume (Vi) can be defined as (Spear et al., 1994): 

 Eq 4.2 

where mi  is the number of behavior parameter vectors in SB,i. With p reflecting the number of 

individual model parameters, the [m × p]  parameter hypercube can be split into q sub-spaces 

in q × p  ways. The search algorithm for finding the optimal split involves minimizing a loss 

function (L) that mimics deviation of f̂ (α k | B)  from f (α k | B) and can be defined as (Spear et 

al., 1994): 

L = −∑
q 

( f̂  
i 
2 ×Vi ) 

i=1 
Eq 4.3 

If the parameters were uniformly distributed in the parameter space SB (i.e. no split was 

required), the first estimated density function ( f̂0 ) and the first loss function (L0) would be 

equal to 1/V  and −1/V , respectively, where V reflects the volume of the behavior space (B). 

The splitting process is performed successively, and begins with splitting the parameter space 

into two sub-spaces. While the loss function corresponding to the first split L1 is always less 

than L0, L0- L1 is a measure of accuracy of approximation of the density function. Therefore, 

maximizing L0- L1 is synonymous with minimizing the errors associated with density 

estimation. The parameter space is split on the axis of the parameter that produces the largest 

increase in the accuracy criterion (L0- L1). Likewise, in the second recursion, each of the two 

sub-spaces constructed in the first step is split into two new sub-spaces. This procedure is 
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repeated until either the accuracy of density estimate does not increase significantly or the 

density of each sub-space is less than some critical value.  

The TSDE procedure finally yields a tree structure that reveals the multivariate correlations 

among model parameters. The top (origin) node in the tree represents the original sample 

space with normalized relative density, defined as the volume of each sub-space to the 

volume of the original pace, equal to 1. The density of end (terminal) nodes indicates the 

relative importance of the corresponding intermediate parameters and their interactions for 

matching the behavior of the system under study. Beginning from the origin node and ending 

with a terminal node, each branch graphically depicts the interactions between model 

parameters. 

4.4. Methodology 

The computational analysis presented in this section was aimed at identification of 

hydrologic and water quality processes that are likely to control transport of sediments and 

nutrients. Model parameters served as surrogates for processes that they represent in the 

model’s mathematical structure. The resulting ranking and classification of the parameters 

based on the importance of their uncertainties indicated the relative importance of the system 

processes they represent. Inferences relevant to key management actions for sediment and 

nutrient control were drawn.  

The computational procedure shown in Figure 4.1 was implemented as follows. First, the 

natural process and/or management action represented by each input parameter of the SWAT 

model was identified. Model parameters and their suggested ranges are presented in Table 

2.2. For example, CH_N2 represents the impact of roughness of the channel network on 

sediment and nutrient transport. Likewise, USLE_P indicates the importance of upland 

farming practices such as parallel terraces (Renard et al., 1997). Next, 5000 parameter 

vectors were randomly generated with a Latin Hypercube Sampling (LHS; McKay et al., 

1979) strategy. The SWAT model was used to simulate monthly flow, sediment and nutrient 

outputs corresponding to each parameter vector. Model inputs and outputs were integrated 

with the RSA and the TSDE methods to investigate significance of input factors. 
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Figure 4.1 Computational framework for sensitivity analysis of sediment and nutrient 
processes. 

4.4.1. Behavior Definition 

The definition of the behavior of a given system refers to a combination of thresholds, 

extremes, and time scales derived from available or proposed information about the system 

conditions. This combination defines a corridor through which the model output trajectory 

must pass in order to qualify as a behavior simulation (Beck, 1987). Depending on the goals 

of the study, any of the following can define the system behavior: 

▪ analysis of observed data, 

▪ speculations with regard to future state of the system, 

▪ desired state of the system based on regulatory standards, and 

▪ target values for TMDL implementation. 

The definition of the behavior of a given watershed system depends on the goal of the 

problem at hand (Bastidas et al., 1999). In the present work, model simulations were 

compared to the observed data and classified as behavior or non-behavior based on the Nash-

Sutcliff efficiency coefficient EN-S. Available data for the watersheds can be obtained from 

Arabi et al. (2004). For streamflow, EN-S associated with streamflow output should be greater 
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than or equal to zero in order to classify the simulation as behavior.  For sediment yield, EN-S 

associated with both streamflow and sediment output should be greater than or equal to zero 

for a behavior simulation. A simulation was deemed behavior for the total N constituent only 

if the EN-S values associated with all three streamflow, sediment, and total N outputs were 

greater than or equal to zero. The Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970) that is 

commonly used for calibration of hydrologic models can be defined as: 

 Eq 4.4 

where y  and ŷ refer to measured and simulated output variables, respectively, and y is the 

average of the N measured values ( y = 
1 ∑ 

N 
yi ).N i=1 

It should be noted that in the current version of the SWAT model, the in-stream nutrient 

processes have not been linked with the model components that pertain to sediment routing 

in the channel network. This is problematic, particularly for total P computations, because 

phosphorus is typically bound to sediment and is carried out of most catchments with 

sediments. In this study, the results obtained for sediment yield are used for identification of 

control processes and critical management actions for control of total P yield.  

4.5. Results 

Figures 4.2-4.3 depict the cumulative marginal distributions for the sediment and total N 

related parameters with highest rank based on the Kolmogorov-Smirnov (dm,n) statistic for 

the system behavior. The dm,n test statistic was determined from largest vertical separation 

between the cumulative marginal distribution of behavior and non-behavior parameter 

distributions. Kolmogorov-Smirnov test statistic (dm,n) has been graphically illustrated on the 

first panel in Figure 4.2. Tables 4.1-4.4 summarize the results of the RSA procedure for 

sensitivity of input factors listed in Table 2.2. Figures 4.4-4.7 depict the TDSE diagram for 

sediment and total N at the outlet of the study watersheds, while Tables 4.5-4.8 provide a 

summary of the diagrams. 
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The top three ranks for sediment yield at the outlet of Dreisbach and Smith Fry watersheds 

were channel Manning’s number CH-N2, peak rate adjustment factor PRF, and average main 

channel slope CH-S2. The ranking indicated that fluvial processes within the main channel of 

the study watersheds were the control processes for meeting the specified behaviors.  Main 

channel sediment processes within the SWAT model include channel deposition and channel 

erosion (degradation). Whether a channel segment is undergoing erosion or deposition is 

determined by comparing its estimated transport capacity with the sediment concentration in 

the streamflow. The transport capacity of channel segments is estimated as a function of peak 

flow velocity. SWAT uses Manning’s equation for estimation of flow velocity in the channel 

network. Then, a peak rate adjustment factor is applied to determine the peak velocity in the 

segment. Channel Manning’s number CH-N2, peak rate adjustment factor PRF, and average 

slope of the channel segment CH-S2 interact directly in the mathematical expression of peak 

flow velocity of channel segments. Such formulation allows for a negative correlation 

between channel Manning’s number and peak rate adjustment factor. This negative 

correlation can be graphically identified by interpretation of their spider-plots in Figure 4.2. 

Sediment yield at the outlet of the study watersheds decreased with increasing CH-N2 value, 

while an inverse trend was observed for PRF. In the case of directly correlated model 

parameters, without desire for their true values, it is sufficient to adjust only one of the 

interacting parameters, and leave the others fixed. Nevertheless, the relative importance of 

these parameters leads to the same inferences about the control processes and management 

actions. Indirect correlations occur among state variables of the model such as surface runoff 

and sediment yield at the outlet. The RSA procedure is essentially a univariate analysis of 

system behavior and only suggests the main effects of input factors. Therefore, it is incapable 

of revealing any form of correlation structure among directly or indirectly correlated 

parameters. A multivariate analysis such as the TSDE procedure was utilized for such 

purposes. 

Figures 4.4-4.5 show the TSDE trees for sediment yield at the outlet of Dreisbach and Smith 

Fry for system behavior specified by the observed past. The summary of main attributes of 

the terminal nodes is provided in Tables 4.5-4.6, sorted in order of descending relative 

density. High Density Terminal Nodes (HDTN) were selected from the top of the list such 

that they contained at least 75% of the input parameter sets (points); i.e. the sum of their 
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corresponding percentage volumes was more than 75 (%). All three HDTNs for the 

Dreisbach watershed were defined by the sediment transport process parameters {CH-N2; 

PRF; CH-S2}. The factors related to percolation {SOL-AWC} and surface runoff {CN2} 

processes defined two HDTNs, but at a lower level in the tree. Likewise the sediment 

transport process parameters {CH-N2; PRF; CH-S2} defined both HDTNs identified for the 

Smith Fry watershed, while the percolation process parameter {SOL-AWC} defined only one 

of them at a lower level. All of these input factors appeared in the RSA classification tables 

(Tables 4.1-4.4), except for the available water capacity of the soil layer (SOL-AWC) for the 

observed-past behavior defined for Smith Fry. Thus, the multivariate TSDE analysis 

confirmed the rankings obtained from the univariate RSA method. Based on the RSA-TSDE 

procedure, it can be concluded that sediment transport processes were the control processes 

for sediment yield at the outlet of the study watersheds. Therefore, implementation of Best 

Management Practices (BMPs) that influence fluvial processes within the channel network 

such as grassed waterways and grade stabilization structures would be appropriate choices to 

reduce sediment yield at the outlet of the Dreisbach and Smith Fry watersheds. The same 

conclusions could possibly be drawn for total P yield because phosphorus is mainly 

transported as a sediment bound constituent. A similar analysis can be performed for total P, 

once the computation of phosphorus transport through the channel network in SWAT is 

linked with sediment transport components of the model.  

Average slope steepness of upland fields, parameter SLOPE, had the top RSA rank for total 

N load for observed-past behavior in the Dreisbach watershed (see Table 4.5). Variable 

SLOPE is a representative topographic attribute of upland areas in the watershed, and is used 

by SWAT to estimate the USLE topographic factor used for computation of sheet erosion 

from upland areas by Modified Universal Soil Estimation Equation (MUSLE). Other factors 

in the MUSLE equation including USLE support practice factor and USLE cover factor also 

appear in the list of top RSA ranks. Therefore, sheet erosion from upland areas could be 

deemed as the critical process that controls total N yield at the outlet of the Dreisbach 

watershed for the specified behavior. Another high ranking parameter was the initial 

concentration of organic nitrogen in the soil layer in agricultural areas, denoted by ORGN

AG. This indicated that the nitrogen loads generated at the agricultural fields were important 

to match system behavior. Although ORGN-AG refers to the initial concentration of N in the 
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soil layer, its importance reveals the prominence of anthropogenic agricultural activities such 

as fertilizer and manure application, which increase the amount of nitrogen susceptible to 

being transported by surface runoff in upland areas. Figure 4.6 depicts the TSDE tree for 

total N yield at the outlet of Dreisbach for the observed-past behavior, while Table 4.7 

summarizes the main attributes of the terminal nodes and three identifiable HDTNs. The 

topographic attribute of upland areas represented by parameter {SLOPE} defined  all 

HDTNs, suggesting that implementation of BMPs such as parallel terraces that reduce upland 

slope steepness would be critical management actions for control of total nitrogen yield at the 

outlet of Dreisbach watershed. The other sheet erosion process parameters {USLE-K}, and 

also parameters representing agricultural activities that increase concentration of nitrogen in 

the soils such as fertilizer application {ORGN-AG} defined two HDTNs in a lower tree level. 

Consolidation of the RSA and TSDE results suggest that management actions that focus on 

reduction of nitrogen loadings from upland areas are critical to meet the desired target values 

in the Dreisbach watershed.  

The results of the TSDE procedure for total N yield at the outlet of the Smith Fry watershed 

are shown in Figures 4.7 and Table 4.8. Suggestions similar to those made for the Dreisbach 

watershed can be inferred for the Smith Fry watershed. 

4.6. Discussion 

Consolidation of the RSA-TSDE results shows great promise for identification of critical 

processes and key management actions through analysis of uncertainty of model simulations. 

Particularly, evaluation of effectiveness of non-point source pollution control scenarios such 

as implementation of Best Management Practices (BMPs) could be achieved by applying this 

method. The common modeling approach is to rely on outputs of a calibrated process-based 

model to investigate the impact of management scenarios on pollutant transport within 

watersheds. However, this approach can be criticized as a result of its inability to identify a 

unique set of process parameters that describe the behavior of the system, often referred to as 

problems of identifiability and multiple optima. The success of the combined RSA-TSDE 

method is in its ability to identify the critical processes and management actions without 

being handicapped by limitations of common parameter estimation procedures. Model 
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realizations obtained from the Monte Carlo routine in the RSA-TSDE procedure can be 

further utilized for calculating the margin of safety (MOS) in development of total daily 

maximum loads (TMDLs) as suggested in NRC (2001) and Benaman and Shoemaker (2004).  

4.7. Conclusions 

The conventional utility of process-based watershed models {calibrate → validate → 

predict} for evaluating the impact of management scenarios on fate and transport of 

sediments and nutrients was demonstrated in previous sections. In this section, a 

computational framework was developed in which investigation of uncertainty provides 

complementary quantitative and qualitative information in support of management and 

decision making. The analysis focused specifically on two issues. First, the univariate 

Regionalized Sensitivity Analysis (RSA) ranking method was applied in conjunction with the 

multivariate Tree Structured Density Estimation (TSDE) analysis to identify critical 

hydrologic and water quality processes that control the ability to attain specified water 

quality conditions. The implications of such analysis provide benefits for watershed 

management programs such as TMDL. Under TMDL agenda, Best Management Practices 

(BMPs) should be implemented to reduce pollutant loads into the water bodies. Because 

BMPs are typically implemented under a restricted budget, identification of critical processes 

and management actions becomes highly desirable. Application of the RSA-TSDE procedure 

for two small watersheds in Indiana, Dreisbach (6.25 km2) and Smith Fry (7.3 km2), showed 

that fluvial channel processes appeared to control sediment yield at the outlet of the 

watersheds. Therefore, implementation of within-channel BMPs such as grassed waterways 

and grade stabilization structures are likely more effective for reducing sediment loads at the 

outlet of the study watersheds. However, total nitrogen yield at the outlets was controlled by 

upland nitrogen loading, indicating that implementation of parallel terraces or fertilizer 

application strategies would be more effective. Also, EPA has been advised to promote 

research on translating effectiveness needs into Use Attainability Analysis (UAA) 

implications (NRC, 2001). The adoption of UAA, which is applied for setting new water 

quality standards or revising the existing ones, has been restricted due to inadequate technical 

guidance from EPA. The results of the TSDE method can provide a numerical probability 
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value that can be utilized to answer pragmatic questions such as how feasible a target value is 

for a desired constituent. 

The developed methodology can be utilized to inform management about attainability of 

desired goals for a given watershed, and key management action(s) for sediment and nutrient 

non-point source control. Optimization techniques should be applied to determine the [near] 

optimal selection of these management actions based on cost-benefit analysis. For example, 

the results of the RSA-TSDE procedure indicated that within-channel BMPs such as grassed 

waterways and grade stabilization structures would be most effective for sediment control in 

both Dreisbach and Smith Fry watersheds. On the other hand, implementation of upland 

nitrogen control plans such as parallel terraces and field borders was deemed more effective 

for total nitrogen reduction. 
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 dm,n 

Figure 4.2 Posterior distributions of behavior and non-behavior sets of input factors 
along with their prior distribution (uniform distribution) for sediment at the outlet of 
Dreisbach and Smith Fry watersheds. 
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Figure 4.3 Posterior distributions of behavior and non-behavior sets of input factors 
along with their prior distribution (uniform distribution) for total N at the outlet of 
Dreisbach and Smith Fry watersheds. 
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Figure 4.4 TSDE diagram for sediment at the outlet of Dreisbach watershed:                       
1st line-terminal number, 2nd line-relative density of the node, 3rd line-input factor that splits 
the intermediate nodes, or percentage volume of terminal nodes. 

Intermediate node 
Low density terminal node 
High density terminal node 

LEGEND 

S1 
1.00 

CH-N2 

S2 
1.025 
PRF 

S7 

1.124 
CH-N2 

S3 
0.303 
PRF 

S8 
2.23 

SOL-AWC 

S5 
2.732 
75.51 

S4 
0.634 
7.65 

S9 
0.301 
2.05 

S10 
0.942 
1.32 

S6 
0.125 
4.26 

S11 
2.724 
9.19 
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Figure 4.6 TSDE diagram for total N at the outlet of Dreisbach watershed, description of 
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Figure 4.7 TSDE diagram for total N at the outlet of Smith Fry based on observed-past 
behavior definition, description of values in each line as in Figure 4.4. 
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Table 4.1 Regionalized Sensitivity Analysis ranking of input factors for sediment based on 
observed-past behavior definition at the outlet of Dreisbach watershed 

Symbol Short Description 
Rank 

dm,n 

CH-N2 Channel Manning’s number 0.4822 
PRF Peak rate adjustment factor 0.3090 
CH-S2 Average main channel slope 0.2189 
SOL-AWC Available water capacity of soil layer 0.1457 
CN2 SCS curve number 0.1346 
ESCO Soil evaporation compensation factor 0.1056 
SPEXP Exponent coefficient for sediment routing  0.0730 
ALPHA-BF Baseflow alpha factor 0.0532 
  Summary Statistics: 

  Number of Behavior Simulations (m) : 1010 
Total number of Simulation (m+n) : 5000 

Success rate : 20.2% 

Table 4.2 Regionalized Sensitivity Analysis ranking of input factors for sediment based on 
observed-past behavior definition at the outlet of Smith Fry watershed 

Symbol Short Description 
Rank 

dm,n 

CH-N2 Channel Manning’s number 0.5929 
PRF Peak rate adjustment factor 0.3616 
CH-S2 Average main channel slope 0.2010 
USLE-K USLE soil erodibility factor 0.1172 
USLE-P USLE support practice factor 0.0970
  Summary Statistics: 

Number of Behavior Simulations (m) : 1360 
Total number of Simulation (m+n) : 5000 

Success rate : 27.2% 
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Table 4.3 Regionalized Sensitivity Analysis ranking of input factors for total N based on 
observed-past behavior definition at the outlet of Dreisbach watershed 

Symbol Short Description 
Rank 

dm,n 

SLOPE Average slope steepness 0.2353 
ORGNAG Initial organic N in soil, agricultural land use 0.1755 
CN2 SCS curve number  0.1539 
USLE-K USLE soil erodibility factor 0.1345 
SOL-AWC Available water capacity of soil layer 0.1266 
USLE-P USLE support practice factor 0.1096 
ORGNPAST Initial organic N in soil, pasture land use 0.0877 
SLSUBBSN Average slope length 0.0593 
USLE-C Maximum value of USLE cover factor 0.0550
  Summary Statistics: 

Number of Behavior Simulations (m) : 1448 
Total number of Simulation (m+n) : 5000 

Success rate : 29.0% 

Table 4.4 Regionalized Sensitivity Analysis ranking of input factors for total N based on 
observed-past behavior definition at the outlet of Smith Fry watershed 

Symbol Short Description 
Rank 

dm,n 

ORGN_AG Initial organic N in soil, agricultural land use 0.4436 
USLE-K USLE soil erodibility factor 0.3848 
USLE-P USLE support practice factor 0.2514 
USLE-C Maximum value of USLE cover factor 0.0908 
CH-K2 Channel effective hydraulic conductivity 0.0518
  Summary Statistics: 

Number of Behavior Simulations (m) : 2039 
Total number of Simulation (m+n) : 5000 

Success rate : 40.8% 
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Table 4.5 Summary of TSDE terminal nodes for sediment related parameters based on 
observed-past behavior definition at the outlet of Dreisbach watershed 

Terminal 
Node 

Relative 
Density 

Tree level (root node = level 1) 
1 2 3 4 5 6 

S15 5.719 CH-N2 PRF CH-N2 CH-S2 SOL-AWC CN2 
S5 2.903 CH-N2 PRF 
S14 2.451 CH-N2 PRF CH-N2 CH-S2 SOL-AWC CN2 
S13 1.491 CH-N2 PRF CH-N2 CH-S2 SOL-AWC 
S4 0.723 CH-N2 PRF 
S9 0.414 CH-N2 PRF CH-N2 
S10 0.328 CH-N2 PRF CH-N2 CH-S2 
S6 5.18 CH-N2 PRF 
High Density Terminal Nodes (HDTNs): { S15; S5; S14; S13} 

Table 4.6 Summary of TSDE terminal nodes for sediment related parameters based on 
observed-past behavior definition at the outlet of Smith Fry watershed 

Terminal 
Node 

Relative 
Density 

Tree Level (root node = level 1) 
1 2 3 4 

S5 1.90 CH-N2 PRF 
S11 1.40 CH-N2 PRF CH-S2 SOL-AWC 
S10 0.942 CH-N2 PRF CH-S2 SOL-AWC 
S4 0.64 CH-N2 PRF 
S9 0.301 CH-N2 PRF CH-S2 
S6 0.125 CH-N2 PRF 
High Density Terminal Nodes (HDTNs): { S5; S11} 
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Table 4.7 Summary of TSDE terminal nodes for total N related parameters based on 
observed-past behavior definition at the outlet of Dreisbach watershed 

Terminal 
Node 

Relative 
Density 

Tree level (root node = level 1) 
1 2 3 4 

S8 1.90 SLOPE ORGNAG USLE-K SLOPE 
S2 1.40 SLOPE 
S4 1.30 SLOPE ORGNAG 

S9 0.90 SLOPE ORGNAG USLE-K SLOPE 
S7 0.3 SLOPE ORGNAG USLE-K 
High Density Terminal Nodes (HDTNs): { S8; S2} 

Table 4.8 Summary of TSDE terminal nodes for total N related parameters based on 
observed-past behavior definition at the outlet of Smith Fry watershed 

Terminal 
Node 

Relative 
Density 

Tree level (root node = level 1) 
1 2 

S5 1.836 ORGNAG USLE-K 
S4 0.410 ORGNAG USLE-K 
S2 0.231 ORGNAG 

High Density Terminal Nodes (HDTNs): { S5} 
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SECTION 5. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES 
USING A GENETIC ALGORITHM 

5.1. Abstract 

Implementation of conservation programs are perceived as being crucial for restoring and 

protecting waters and watersheds from nonpoint source pollution. Success of these programs 

depends to a great extent on planning tools that can assist the watershed management 

process. Herein, a novel optimization methodology is presented for deriving watershed-scale 

sediment and nutrient control plans that incorporate multiple, and often conflicting, 

objectives. The method combines the use of a watershed model (SWAT), representation of 

best management practices, an economic component, and a genetic algorithm-based spatial 

search procedure. For two small watersheds in Indiana located in the Midwestern portion of 

the United States, selection and placement of best management practices by optimization was 

found to be nearly three times more cost-effective than targeting strategies for the same level 

of protection specified in terms of maximum monthly sediment, phosphorus, and nitrogen 

loads. Conversely, for the same cost, the optimization plan reduced the maximum monthly 

loads by a factor of two when compared to the targeting plan. The optimization methodology 

developed in this study can facilitate attaining water quality goals at significantly lower costs 

than commonly used cost-share and targeting strategies. 

5.2. Introduction 

Best management practices (BMPs) are widely accepted as effective control measures for 

agricultural nonpoint sources of sediments and nutrients. The 2002 Farm Bill provided up to 

$13 billion for conservation programs aimed at protecting water quality from agricultural 

nonpoint source (NPS) pollution (USDA, 2003). In addition, under the Clean Water Act 

Section 319 Nonpoint Source National Monitoring Program and wetland protection 

programs, the EPA supports programs to reduce the negative impacts of runoff from 

agricultural, urban, and industrialized areas. Similarly, the Natural Resources Conservation 
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Service (NRCS) provides hundreds of millions of dollars in federal funds to support 

agricultural best management practices (BMPs) in an effort to reduce the movement of 

pollutants into our waterways. Success of such programs, however, is contingent upon 

availability of efficient watershed-scale planning tools. 

Implementation of BMPs is challenged by complexities in incorporation of conflicting 

environmental, economic, and institutional criteria. Environmental assessments in watersheds 

hinge on resolving social benefits such as achieving the goal of swimable and fishable water 

bodies under the EPA’s Total Maximum Daily Load (TMDL) agenda. While BMPs facilitate 

achievement of such targets, their establishment bears additional cost for watershed 

management and/or agricultural producers. Since management practices are usually 

implemented under a limited budget, costs associated with unnecessary/redundant 

management actions may jeopardize attainability of designated water quality goals. 

Identifying optimal combinations of watershed management practices requires systematic 

approaches that allow decision makers to quickly assess trade-offs among environmental and 

economic criteria.  

Cost-sharing with landowners is promoted by government agencies for BMP implementation 

in agricultural fields (EPA, 2003). BMPs are implemented through site investigation, 

monitoring, and field-scale modeling. While cost-share programs may improve water quality 

standards at a field scale, their impact at a watershed scale typically remains unknown for 

two main reasons. First, impact of BMPs may duplicate or overlap each other, thereby 

reducing the potential benefit for the watershed. Interactions between BMPs may also 

significantly affect their individual performances at a watershed scale. Second, water quality 

impacts of BMPs are site-specific, greatly influenced by landscape characteristics such as 

land use, soils, and management actions. Thus, the same BMP is likely to have varying 

efficacies at different locations within a watershed. The direction of many regulatory 

programs such as the EPA’s Clean Water Act (CWA) has now shifted from a source-by

source, pollutant-by pollutant approach to a more holistic watershed-scale strategy (EPA, 

2003). 
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An example of watershed scale approaches is targeting where pollution control measures are 

allocated to critical source areas. Critical sources are portions of the watershed that are 

believed to contribute intensively to nonpoint source pollution. Previous studies in the same 

watershed, watershed data (i.e. land use, soils, and management characteristics), physical 

characteristics such as topography and proximity to a stream, and instream monitoring data 

are typically analyzed to identify critical sources. This approach has been endorsed in the 

recent draft of EPA’s “Handbook for developing watershed plans to restore and protect our 

waters” (EPA, 2005a). However, identification of an optimal pollution control strategy 

through targeting becomes infeasible in large complex watersheds, because the number of 

possible scenarios increases exponentially with the number of fields. The search for an 

optimal watershed pollution control plan needs to be conducted in a more efficient manner.  

Development of increasingly powerful computers has facilitated application of mathematical 

programming heuristics for solving complex and computationally cumbersome problems. A 

few previous studies have used evolutionary algorithms (EA) to optimize placement of 

watershed management actions. Srivastava et al. (2002) linked a genetic algorithm (GA) with 

a continuous NPS model (AnnAGNPS) to optimize selection of crop rotation practices in a 

7.25 km2 USDA experimental watershed in Pennsylvania. The optimized crop management 

scheme obtained after 150 GA generations decreased pollution load by nearly 56% and 

increased net annual return by nearly 110% from a random selection of crop rotation 

scenarios. The objective function of the optimization procedure was formulated such that 

either pollution reduction or net return, but not both at the same time, was maximized. Veith 

et al. (2004) developed a GA-based optimization model for cost-effective allocation of land 

use and tillage practices to upland fields that minimized cost (economic criteria) while 

sediment load at the outlet of watershed was constrained to a predefined value. The model 

was tested in a 10.14 km2 case study watershed in Virginia. Results of the study showed that 

the optimization plan achieved the same sediment reduction as a targeting plan at a lower 

cost. The major setback with optimizing only one of the decision objectives (economic, 

environmental, and/or institutional) is that the procedure can not demonstrate the tradeoff 

between multiple objectives.  
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Incorporation of multiple objectives in the search for alternative agricultural landscapes was 

studied by Bekele and Nicklow (2005) and Muleta and Nicklow (2005). A mutiobjective 

evolutionary algorithm (SPEA; Strength Pareto Evolutionary Algorithm, Zitzler and Thiele., 

1999) was linked with a watershed model for selection of crop rotation and tillage operations 

in a 133 km2 watershed in southern Illinois. Multiple objectives included minimizing 

pollutant loads, and maximizing net profit. Though both studies showed the effectiveness of 

an integrated approach in providing tradeoff between multiple objectives, explicit 

incorporation of water quality and budget constraints was not examined. These two studies 

do not offer any clear guidance for selection of operating parameters and termination criteria 

as they rely on the previously developed SPEA. Moreover, neither optimization results were 

compared with the more commonly used targeting strategies, nor was convergence of 

pollutant loads/net profit tested. Hence, appraisal of efficiency of the optimization method in 

deriving solutions better than targeting strategies was curtailed.  

Research to date indicates the promise of heuristic optimization for cost-effective allocation 

of watershed management practices. Unlike gradient-based approaches, heuristic techniques 

do not require linearity, continuity, or differentiability either for objective/constraint 

functions or for input parameters. Thus, they are well-suited for cost-effective allocation of 

watershed management plans. However, several questions still defy answers. A decision 

making tool that can clearly accommodate economic, environmental and institutional criteria 

is still lacking. The means for imposing target values for pollutant loads, and total watershed 

cost of implementation of management plans needs to be explored. As discussed by 

Srivastava et al. (2002), a more versatile formulation is needed to maximize pollution 

reduction and minimize cost at the same time. Moreover, previous studies have only focused 

on alternative agricultural landscapes. Research on economic evaluation of structural BMPs 

that are installed both in upland areas and within the channel network is lacking. In such 

cases, the interaction between the BMPs could be critical to reach water quality goals. 

Finally, selection of GA’s operating parameters, and termination criteria need further study.  

The main goal of this section is to develop an optimization framework that enhances decision 

makers’ capacity to evaluate a range of agricultural and environmental management 

alternatives. The tool will be designed to identify near optimal watershed plans that reduce 
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pollutant loads at a watershed outlet to below regulatory or target values with minimum cost. 

We hypothesize that reductions of pollutants at watershed outlets can be attained at 

significantly lower cost by optimized implementation of conservation practices than by 

current cost-share and targeting approaches. This overall goal is achieved by the following 

specific steps: 

1.	 Development of a novel genetic algorithm-based spatial search model. This step will 

focus on formulating versatile objective and constraint functions for the optimization 

model that can handle multi-criteria and landscape characteristics.  

2.	 Integration of an NPS model (SWAT; Soil and Water Assessment Tool), a new BMP 

representation method, and a cost-benefit economic relationship with the GA-based 

spatial optimization model to identify optimal spatial allocation of best management 

practices;  

3.	 Provision of guidance for selection of GA operating parameters and termination criteria; 

4.	 Conducting case studies to determine how the optimization plan compares to plans from 

cost-share and targeting strategies. 

5.3. Theoretical Considerations 

5.3.1.  Genetic Algorithm (GA) 

Genetic algorithms belong to the evolutionary class of artificial intelligence (AI) techniques. 

GAs are based on natural selection of chromosomes from a population for mating, 

reproduction of offspring by crossover, and mutation to ascertain diversity- ideas borrowed 

from biology. Each chromosome string in the population corresponds to a solution for the 

problem at hand, with each variable being represented by a gene (a specific position in the 

string). The values of the genes, known as allele, can be binary, real-valued, or character-

valued. 

The GA begins with an initial population containing randomly generated chromosomes or 

strings, each representing a possible solution to the problem. The next population is 

generated by mating the fittest solutions (i.e. chromosomes) in the previous population. 
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Based on the principle of survival of the fittest, the higher the solution’s fitness, the more 

likely it will be chosen for reproduction. The search for the optimal solution continues until a 

predefined termination criterion is reached. 

The GA is essentially a search algorithm for solving difficult nonlinear optimization 

problems and is not intended to examine all possible solutions. Regardless of how long the 

algorithm searches, its convergence to an optimum can not be guaranteed. However, it has 

been shown that the GA converges to near optimal solutions for a variety of problems 

(Winston and Venkataramanan, 2003). Efficiency of the algorithm depends on the 

optimization’s operating parameters and the convergence criterion. The higher the number of 

individual evaluations for converging to the optimum, the less efficient is the procedure. The 

values of the operating parameters are problem dependent, and can be determined by 

performing a sensitivity analysis. 

The GA is a well-suited optimization technique for spatial allocation of BMPs, because 

unlike gradient-based methods it does not require linearity, continuity, or differentiability of 

either the objective function or the constraint function.  

5.4. Methodology 

The optimization model developed in this study is comprised of the SWAT model for 

simulating pollutant loads, a BMP representation tool, an economic component, and a GA-

based spatial optimization technique. A MATLAB (The Mathworks, Natick, MA) computer 

program was developed to provide the linkage among various components of the model as 

shown in Figure 5.1. The model was tested for optimization of the location of field borders, 

parallel terraces, grassed waterways, and grade stabilization structures in the Dreisbach and 

Smith Fry watersheds.  

SWAT simulations were performed for a 10-year period from January 1st, 2000 through 

December 31st, 2009. In the analysis, 1991-2000 precipitation data, 2000 USDA-National 

Agriculture Statistics Service (NASS) land use, and 2002 Soil Survey Geographical Database 

(SSURGO) were utilized to establish a base-case SWAT run. Parameter values in the base-

case run were selected from a manual calibration (Arabi et al., 2005). Portions of the 
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Figure 5.1 Schematic of the optimization procedure. 

watershed classified as urban and forested areas were not considered for implementation of 

BMPs. 

5.4.1. NPS Model 

The optimization tool developed here does not necessarily require using the SWAT model as 

the NPS component. The SWAT model was chosen because the case studies will deal with 

sediments, and nutrients. Soundness of mathematical representation of sediment, nutrient, 

and pesticide processes in SWAT has been validated in previous research (Santhi et al., 2001; 

Kirsch et al., 2002; Arabi, 2005; Vazquez-Amabile, 2005). Moreover, SWAT has been 

linked with optimization routines for automated calibration of the model (van Griensven and 

Bauwens, 2003) and for evaluation of efficiency of nonpoint source pollution regulatory 

programs (Whittaker et al., 2003). The optimization framework herein can be easily 

integrated with other hydrologic/water quality models to develop management plans for other 

types of pollutants, and for other watersheds as well. 
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5.4.2. BMP Representation 

In this study, a method presented by Arabi et al. (2004) and Bracmort et al. (2006) was 

utilized to evaluate the water quality impacts of grassed waterways, grade stabilization 

structures, field borders and parallel terraces. The method was developed based on published 

literature pertaining to BMP simulation in hydrological models and considering the 

hydrologic and water quality processes simulated in SWAT. Based on the function of the 

BMPs and hydrologic and water quality processes that are modified by their implementation, 

corresponding SWAT parameters were selected and altered. Table 2.3 summarizes the 

SWAT parameters and their corresponding values for representation of the BMPs. Arabi et 

al. (2004) provides a detailed description of the method used for representation of field 

borders, parallel teraces, grassed waterways, and grade stabilization structures. 

5.4.3. Economic Component 

An economic component was developed for the optimization model that is comprised of a 

cost function in addition to an economic return (benefit) function. Both cost and benefit are a 

function of watershed characteristics and time. The benefit function reflects the impact of 

BMPs on sediment and nutrient reductions. 

Cost Function 

The total cost of implementation of BMPs was evaluated by establishment, maintenance, and 

opportunity costs. Establishment costs included the cost of BMP installation, and technical 

and field assistance. Maintenance cost is usually evaluated as a percentage of establishment 

cost. The opportunity cost is a dollar value that would be produced over the BMP design life 

as a result of investing the establishment and maintenance costs by purchasing saving bonds. 

For each individual BMP, the total cost (ct) was evaluated by the following equation: 

td 

( , , ) = c0 (1+ s)td + c0 ⋅ [∑ (1+ s)( 1)  −ct x t td rm τ ] 
τ =1 

 Eq 5.1 

c0 = 0 ( , )  c  x t  Eq 5.2 
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where c0 is the establishment cost that is a function of state of the watershed (i.e. x, landscape 

and physical characteristics) at time t; s is the interest rate; td is BMP design life; and rm is 

the ratio of maintenance cost to establishment cost. Interest rate (s) of 6.5% was used in 

computations. The design life of a BMP is defined by Natural Resources Conservation 

Service (NRCS) as “the intended period of time that the practice will function successfully 

with only routine maintenance determined during design phase” (USDA-NRCS, 2005). 

Design life, establishment cost, and maintenance rate for BMPs in this study are summarized 

in Table 5.1. The table also provides information with regard to the number and area (i.e. 

quantity of each type of BMP) allocated within the study watersheds through targeting (see 

Figure 2.1). For each management plan, establishment cost (c0) of each type of BMP was 

obtained by multiplying its unit establishment cost (c) by its quantity (abmp). The total 

watershed cost of BMPs was computed by summing up individual costs from Eq 5.1. 

Table 5.1 Unit cost of establishment (c), maintenance rate (rm), and design life (td) of 
BMPs in the study along with number (nbmp) and quantity (abmp) of each type in the study 
watersheds as shown in Figure 2.1 (i.e. targeting strategy). 

BMP c a 

($) 
rm a 

(%) 
td 

(yr) 

Dreisbach Smith Fry 

nbmp abmp 
(unit) nbmp abmp 

(unit) 
Field Border 4.6 /m 1 10 7 2600 (m) 1 1800 (m) 
Parallel Terrace 26 /m 3 10 4 2130 (m) 2 480 (m) 
Grassed Waterway 6200 /ha 3 10 5 3.50 (ha) 1 0.95 (ha) 
Grade Stabilization 10,000 /structure 2 15 10 - 2 -
a Adapted from Indiana Environmental Quality Incentives Program (2004). 

Benefit Function 

The economic return of implementation of BMPs was determined by assigning monetary 

values to onsite and offsite benefits of sediment and nutrient reductions. Reduction of 

sediments and nutrients as a result of implementation of a management practice is a function 

of landscape characteristics. Likewise, benefits gained by BMP implementation vary with 

landscape properties of the site where the BMP is installed. While offsite benefit of BMPs 

were determined based on cost of offsite damage that would be caused by sediment and 

nutrient loads, onsite benefits were estimated based on the quantity of reduced nutrient loads 

from fields under the influence of BMPs.  
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Ribaudo et al. (1989) equated the benefit of reducing soil loss to offsite damage in $ per ton 

of eroded soil based on freshwater recreation, marine recreation, water storage, navigation 

flooding, roadside ditches, irrigation ditches, freshwater commercial fishing, marine 

commercial fishing, municipal water treatment, and municipal and industrial use. A $1.15/t 

damage cost estimate was suggested for the Corn-Belt region in the United States. 

Additionally, Cangelosi et al. (2001) evaluated the benefit of reducing soil erosion for 

dredging in the Maumee River basin to be $0.87 for a ton of eroded soil. In a study by Fang 

and Easter (2003), a social cost of $2.65/kg of removed phosphorous was used to quantify 

the cost-effectiveness of a water quality trade in southeastern Minnesota. Onsite water 

quality benefit of BMP implementation was evaluated by the monetary value of nutrient 

reduction from upland areas. Buckner (2001) estimated the benefit of reducing phosphorus 

from agricultural lands by the bulk rate cost of triple super phosphate (00-46-00) that, in 

2003, was $0.26/kg (Heartland Co-op, IN, personal communication). Table 5.2 summarizes 

the monetary benefits (bm) of unit reduction of sediment, phosphorus, and nitrogen deliveries 

expressed in 2000 dollars used for the Dreisbach and Smith Fry watersheds. The values used 

in this study are site specific and may vary for other regions. 

After on-site and off-site benefits of BMPs were quantified by monetary values from related 

literature, the total benefit (bt) was calculated for individual BMPs over their design life as: 

td 
τ −bt x t td ( , ,  ,α ) = ∑∑⎡⎣(Δyi ,τbm i ) (1  + s)( 1)  ⎤⎦ 

τ =1 i 

 Eq 5.3 

Δy y x t t= ( , , d ,α )  Eq 5.4 

where Δyi ,τ  is annual reduction of constituent i (i.e. sediment in t/yr, phosphorus in kg/yr, 

and nitrogen in kg/yr) for yearτ at the outlet of the study watershed, td (yr) is BMP design 

life, and bm is the monetary benefit of BMP as a result of reducing constituent i from Table 

5.2. In 5.3, x is the state of the watershed at any given time t,α  denotes the watershed 

management plan, and function y reflects mathematical relationships in the SWAT model 

that are used for representation of hydrologic and water quality processes.    
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Table 5.2 Monetary benefits of unit reduction of 
sediment and nutrient loads in 2000 dollars 

Variable Benefit (bm) 
($) 

Sediment 2.5 /t 
Phosphorus 2.86 /kg 
Nitrogen 3.5 /kg 

It is worthwhile noting that bmi serves as a weighting factor that incorporates the relative 

importance of reduction of pollutant constituent i in development of watershed management 

plans. A higher value indicates that larger benefits can be gained from unit reduction of the 

corresponding constituent. In the absence of regional and site-specific data for the sort of 

analysis that was used in this study, the term bm can be assigned by judgment of the analyst. 

If all constituents bear the same importance, bm should be 1 for all constituents of concern. 

5.4.4. Optimization Component 

A genetic algorithm (GA) was employed to optimize the spatial allocation of BMPs. In this 

GA component, each optimization string (vector α ij ) corresponds to a specific watershed 

management plan. Figure 5.2 is a demonstration of an optimization string for placement of 

BMPs. The length of each string (m) corresponds to the total number of genes, i.e., individual 

management actions ( α i
j ,l ) that are considered in the optimization. For example, in a 

watershed with 50 fields (i.e., nhru=50) considered for implementation of field borders 

and/or parallel terraces, and 20 reach segments (i.e., nch=20) considered for implementation 

of grassed waterways and/or grade stabilization structures, the total number of genes on each 

management string is equal to m= [2× 50+2× 20=] 140. The alleles are binary values, with 

“1” or “zero” indicating that the corresponding BMP “be” or “not be” implemented. The ith 

optimization generation (Pi) with nstr solution vectors is expressed as: 

⎡ i ⎤ ⎡ α i  α i ⎤α1 1,1 1, m
⎢ i ⎥ ⎢ i i ⎥ 

Pi = ⎢
α2 ⎥ = ⎢

⎢ α2,1  α2, m ⎥ 
⎢  ⎥   ⎥ 
⎢ ⎥ ⎢ ⎥ 
⎢α i ⎥ ⎢α i α i ⎥⎣ nstr ⎦ ⎣ nstr ,1 nstr m , ⎦ 

 Eq 5.5 
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A string (chromosome) 
gss gww pt fb 

1 0 0 … 1 1 0 0 1 … 0 0 1 1 1 … 0 1 1 1 0 … 1 0 

nch nch nhru nhru 

Figure 5.2 Schematic of an optimization string (chromosome) representing grade 
stabilization structures (gss), grassed waterways (gww), parallel terraces (pt), and field 
borders (fb). nch and nhru refer to the number of channel segments and fields (HRUs) in the 
watershed, respectively. 

where 

{1,2,..., nstr  }, l {1,2,..., }: α i 
, = 0 /1 ∀ ∈j ∀ ∈  m j l   Eq 5.6 

where α i
j denotes the jth management vector in Pi, and α i

j ,l reflects the lth gene (an individual 

management action) in α i
j . For a total of ngen optimization generations, the entire solution 

space (Α) is obtained from the union of solutions in optimization generations: 

Α =∪ngen Pi 
i=1 

 Eq 5.7 

Mathematical Formulation 

A general multiobjective optimization problem can be formally expressed as (Zitzler and 

Thiele, 1999): 

 Minimize/Maximize z( ) = f α = ( f ( ), f2 α f ( ) )α ( ) 1 α ( ),..., n α  Eq 5.8 

subject to 

α = (α α, ,..., α )∈Ω1 2 m  Eq 5.9 

z = ( z1, z2 ,..., zn )∈Z  Eq 5.10 
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td 
τ − 

bt ∑∑⎡⎣(Δy bm  i ,τ i ) (1+ s)( 1)  ⎤⎦ 
Maximize z = = τ =1 i 

max( ct,1) ⎛ td 
τ ⎞ max ⎜c0 (1 + s)td + c0 ⋅ rm  [∑ (1 + s)( 1)  − ],1 ⎟

⎝ τ =1 ⎠ 

where z denotes a vector function f that maps a set of m decision variables α to a set of n 

objectives; Ω and Z are, respectively, the decision parameter space and objective space (refer 

to Ringuest, 1992 for more information).  

Several common methods have been previously used for handling multiobjective 

optimization problems (Deb, 2001).  The most commonly used approach is the weighted sum 

approach. In this method, a set of objectives are aggregated into a single objective by 

multiplying each objective by a user-defined weight (w). These weights reflect the 

importance of each objective in the context of the optimization problem:  

n 
f ( )α = w f  ( )  z = ∑ i i  α 

i=1 
 Eq 5.11 

The BMP spatial allocation problem was formulated with an aggregate single-objective 

based on multiple criteria. The multiple criteria included minimizing implementation cost of 

BMPs and maximizing pollutant load reductions. Monetary benefits of unit reduction of 

sediment, phosphorus, and nitrogen loads (Table 5.2) were used to determine the weighted 

sum of onsite and offsite benefits gained by reducing pollutant loads (bt). Then, the objective 

function was evaluated with a benefit (bt) to cost (ct) ratio at the watershed level. Pollutant 

loads were constrained to ascertain that sediment and nutrient yields would not exceed 

allowable values and/or that total available budget is not exceeded by entailed costs. 

Allowable pollutant loads are typically specified by regulatory agencies. Since the available 

budget for implementation of BMPs is usually limited, an additional constraint was imposed 

to search for solutions that can be implemented with a cost less than the specified budget. 

The mathematical representation of the objective function used in this study was: 

 Eq 5.12 

subject to water quality constraints: 

66




Γ1 x t td  i x t td y  i ≤ 0 ( , ,  ,α ) = ymax  ( , ,  , ,α ) − yt   Eq 5.13 

and budget constraints: 

Γ2 ( , ,  x t  td  ,α ) = ct  x t td  ( , ,  ,α ) −wcos  t ≤ 0  Eq 5.14 

where ymaxi is maximum delivery of pollutant constituent i after implementation of BMP 

combination (α) estimated with SWAT simulations over period td; and yti is the allowable 

load of constituent i. Variable ct is the total cost of implementation of α estimated by 

applying Eq 5.1, and wcost is the total available budget for implementation of management 

plans. The denominator in 5.12 was designed such that it will never be zero. 

The optimization constraints in 5.13 and 5.14 are typically defined by regulatory and 

implementation agencies. For example, allowable sediment and nutrient loads (yti) may be 

obtained from a Total Maximum Daily Load (TMDL) for a given watershed. While yti and 

ymaxi can be expressed on a daily, monthly, or annual basis, as loads or concentrations, their 

units should be consistent. The cost constraint represents available budget for implementation 

of watershed management scenarios and may be specified by implementation agencies. 

The fitness score (fs) for each string was evaluated by the objective function (z) associated 

with the string from Eq 5.12. Infeasible solutions, i.e., solutions that do not satisfy the 

constraint functions Γ1 and Γ2 in 5.13 and 5.14, were penalized by applying a penalizing 

factor k as: 

fs = k × z; 

⎧10−5 ;Γ ∨Γ  >  0 
k = ⎨ 

1 2 

1 ;Γ ∧Γ  ≤  0⎩ 1 2 

 Eq 5.15 

Operating Parameters 

Selection of the size (nstr) of the optimization population (P) and their initial values ( α i
j ,l ) is 

complex and is likely to vary for different problems (Deb, 2001). A large population provides 

the GA with an adequate sampling of the search space. However, there are some trade-offs 
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fsi 

Fj
i = nstr 

j 

∑ fsi
j 

j=1 

between the population size and the number of generations needed for convergence. A small 

population size may cause the GA to become trapped in a local optimum, whereas a large 

size may be computationally inefficient and take too long to converge. Winston and 

Venkataramanan (2003) suggest that a population of 50 or 100 is typical for GAs. In this 

study, population size (nstr) was determined through a sensitivity analysis.   

The initial population (P0) was generated by assigning random binary values (i.e. 0 or 1) for 

management actions in each watershed plan as shown in Figure 5.2. Subsequent generations 

were produced through the following steps: 

1.	 Replacement: The strings of the previous population characterized by the best fitness 

scores were propagated to the next generation unchanged. The rest of the population was 

replaced by new chromosomes generated from mating. The replacement rate (rr) was 

determined through a sensitivity analysis.  

2.	 Selection: The parents from the previous generation were selected to reproduce the 

offspring through the principle of survival of the fittest. A probability score (F) was 

assigned to each string based on its fitness score (fs in Eq 5.15) as: 

 Eq 5.16 

where nstr is the population size. Then, the strings were sorted in descending order of the 

assigned probabilities, and their cumulative probabilities were determined. Two random 

numbers were generated for selection of two parent chromosomes for mating.  

3.	 Mating: The two selected parents were used for production of two offspring. A crossover 

point was selected randomly so that the offspring consists of a portion of each parent. In 

this study, a random crossover point was chosen for each type of BMP. One point was 

chosen to crossover the genes corresponding to parallel terraces, one point for field 

borders, one for grassed waterways, and another one for grade stabilization structures. 
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ngen = 
nmax	

nstr ⋅ rr 

4.	 Mutation: The genetic makeup of the offspring was altered randomly to avoid local 

optima. Typically 1% to 5% of the genes mutate per iteration. A 2% mutation rate (mr) 

was used here. The alleles for the randomly chosen genes changed from a “1” to “0”, or 

vice versa. 

5.	 Repeat: Previous steps were repeated until the algorithm converged. 

The optimization procedure was terminated once the convergence criteria, defined below, 

were met: (1) the fitness score of the best solution of ten consecutive generations did not 

vary; (2) the median fitness score of solutions in 10 consecutive generations did not vary 

more than 5%; and (3) values of constraint functions did not vary for ten consecutive 

generations. A minimum of 2000 individual model evaluations were considered.  

Efficiency of the optimization algorithm for various combinations of operation parameters 

was evaluated through a sensitivity analysis. Table 5.3 summarizes different combinations of 

operating parameters (labeled as setup 1 to setup 6) that were examined in the analysis. A 

total of 2000 individual model evaluations were performed for each combination of operating 

parameters. As a result, all setups had almost identical computational runtime. The number of 

generations (ngen) in Table 5.3 was determined as: 

 Eq 5.17 

where nmax, nstr, and rr refer to total number of model evaluations, population size, and 

replacement rate, respectively. The population size, and replacement rate with the highest 

efficiency was utilized to identify the optimal spatial allocation of BMPs in the study 

watersheds. The setup with the highest objective function value over all model simulations 

was appraised to be the most efficient. 

Table 5.3 Various combinations of GA operating parameters for sensitivity analysis 

Parameter Symbol Setup 
1 2 3 4 5 6 

Population Size nstr 100 100 50 50 20 20 
Replacement Rate (%) rr 70 90 70 90 70 90 
Number of Generations ngen 28 22 58 45 142 110 
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5.4.5. Optimization Cases 

BMPs depicted in Figure 2.1 were implemented in the Dreisbach and Smith Fry watersheds 

through targeting strategies. This provided the opportunity to compare the cost-effectiveness 

of BMP combination obtained from the optimization procedure with the combination 

allocated through targeting. Four cases (summarized in Table 5.4) were examined in this 

study. Case 1 represented the base-case simulation with no BMPs in place. Cost-

effectiveness of BMPs allocated by targeting was determined in case 2. The results of the 

optimization procedure were compared with targeting in two ways. In case 3, the 

optimization procedure was used to allocate BMPs such that maximum sediment, 

phosphorus, and nitrogen loads over the simulation period (2000-2009) (ymaxi in Eq 5.13) 

did not exceed the ones corresponding to the targeting plan. The purpose of comparing cases 

2 and 3 was to compare the total watershed cost (ct in Eq 5.14) of the two cases while 

providing the same level of water quality protection. For simulations in case 4, the 

optimization constraints consisted of only the cost constraint. This case aimed at 

investigating environmental benefits of BMPs from optimization and targeting plans limited 

to the same budget for implementation. Therefore, the optimization procedure was designed 

to terminate once the total watershed cost of the near optimal solution reached the cost of the 

targeting plan. 

Table 5.4 Description of cases compared in this study 

Case Strategy Description 

1 Base-case No BMP implemented in the watershed. 

2 Targeting BMPs spatially allocated as in Figure 2.1. 

3 Optimization 1 BMPs allocated such that maximum monthly sediment and nutrient 
loads did not exceed maximum monthly values from targeting 
strategy. No cost constraint was imposed. 

4 Optimization 2 BMPs allocated such that total watershed cost did not exceed cost of 
targeting strategy.  
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5.5. Results 

Results of sensitivity analysis for the GA operating parameters indicated that the algorithm is 

more efficient with smaller population size and replacement rate. Figure 5.3 shows sensitivity 

of the optimization procedure to combinations of operating parameters listed in Table 5.3. 

Model evaluations were performed for the Dreisbach watershed over the 2000-2009 period. 

The trend for each setup was determined based on a total number of 2000 individual model 

evaluations. The runtime corresponding to 2000 model evaluations for the study watersheds 

was nearly 15 hours on a 2.0 GHz PC. The corresponding number of generations for each 

setup was determined from Eq 5.17. A mutation rate of 2% was used for all setups. The 

results indicate that with the same number of model evaluations and computational cost, the 

setup with the highest number of generations (population size of 20 with 70% replacement 

rate, i.e. setup 5 in Table 5.3) outperformed the other combinations. Similar results were 

obtained for the Smith Fry Watershed. Therefore, these values were used for optimizing the 

location of grassed waterways, grade stabilization structures, parallel terraces, and field 

borders in the study watersheds. 

BMPs allocated with the optimization procedure were more cost-effective than randomly 

selected BMPs and BMPs allocated through targeting strategies. Table 5.5 summarizes 

results for base-case and targeting cases, case 1 and case 2. Estimated average and maximum 

Figure 5.3 Analysis of sensitivity of GA operating parameters. Table 5.3 shows values of 
operating parameters corresponding to each setup. 

71




Table 5.5 Results for base-case and targeting cases. Mean and maximum value of monthly 
sediment, phosphorus, and nitrogen loads were estimated from SWAT simulations.  

Watershed Variable Symbol Units Base-case 
(Case 1) 

Targeting 
(Case 2) 

D
re

is
ba

ch
 

Sediment  
Mean ys t/ha/m 0.074 0.022 
Max ymaxs t/ha/m 0.55 0.17 a 

Reduction rs % - 70 

Phosphorus 
Mean yp kg/ha/m 0.044 0.033 
Max ymaxp kg/ha/m 0.20 0.15 a 

Reduction rp % - 25 

Nitrogen 
Mean yn kg/ha/m 0.395 0.298 
Max ymaxn kg/ha/m 2.69 2.1 a 

Reduction rn % - 25 
objective function z $/$ - 0.12 
watershed cost ct $ - 414,690 b 

Sm
ith

 F
ry

 

Sediment  
Mean ys t/ha/m 0.116 0.105 
Max ymaxs t/ha/m 1.62 1.5 
Reduction rs % - 10 

Phosphorus 
Mean yp kg/ha/m 0.32 0.306 
Max ymaxp kg/ha/m 2.129 2.06 
Reduction rp % - 5 

Nitrogen 
Mean yn kg/ha/m 4.545 4.368 
Max ymaxn kg/ha/m 34.52 33.31 
Reduction rn % - 4 

objective function z $/$ - 1.4 
watershed cost ct $ - 60,610 b 

a Used as water quality constraint for case 3 summarized in Table 5.6. 
b Used as cost constraint for case 4 summarized in Table 5.6. 

monthly sediment and nutrient yields simulated by SWAT, and total watershed cost (ct) are 

provided for the study watersheds. Variable z in the table refers to the benefit-cost ratio as 

defined in Eq 5.12. Percent reduction of constituent i (ri) as a result of implementation of 

BMPs was determined as: 

ri = 
yi ,1 − yi ,2 ×100  Eq 5.18 

yi ,1 

where i is the constituent of interest (i.e., sediment, phosphorus , or nitrogen load), yi,1 is the 

average monthly load of constituent i for the base-case (case 1), and yi,2  is the average 
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monthly load of constituent i for the targeting case (case 2). In the Dreisbach watershed, 

implementation of the targeting plan (depicted in Figure 2.1) would cost $414,690 over the 

2000-2009 period, with a benefit-cost ratio (z in Eq 5.12) of 0.12. As a result, average 

monthly sediment, phosphorus, and nitrogen yields would be reduced from the base-case by 

nearly 70%, 25%, and 25%, respectively. Likewise, estimated maximum monthly sediment, 

phosphorus, and nitrogen yields at the outlet of the Dreisbach watershed would respectively 

reduce to 0.17 t/ha, 0.15 kg/ha, and 2.1 kg/ha. These values were used as the allowable 

sediment and nutrient loads (yti in Eq 5.13) for the first optimization case (case 3).  

A summary of results for optimization cases in the study watersheds is provided in Table 5.6. 

Highlighted values reflect optimization constraints in each case that were obtained from 

targeting results in Table 5.5. Comparison of the results reveals that in the Dreisbach 

watershed, BMPs selected and placed by optimization (case 3) would yield nearly three times 

better benefit-cost ratio and would cost 2.5 times less than the targeting combination, while 

providing the same level of protection against phosphorus and providing even higher 

protection against sediment and nitrogen pollution. 

Table 5.6 Results for optimization cases 

Watershed Variable Symbol Units Optimization 
case 3 case 4 

D
re

is
ba

ch
 

Sediment allowable yts t/ha/m 0.17 a -
maximum b ymaxs t/ha/m 0.06 0.085 

Phosphorus allowable ytp kg/ha/m 0.15 a -
maximum b ymaxp kg/ha/m 0.15 0.082 

Nitrogen allowable ytn kg/ha/m 2.10 a -
maximum b ymaxn kg/ha/m 1.55 1.00 

Objective function z $/$ 0.36 0.21 
Watershed cost ct $ 165,370 414,690 a 

Sm
ith

 F
ry

 

Sediment allowable yts t/ha/m

w
as

 n
ot

 in
ve

st
ig

at
ed -

maximum b ymaxs t/ha/m 0.48 

Phosphorus allowable ytp kg/ha/m -
maximum b ymaxp kg/ha/m 1.69 

Nitrogen allowable ytn kg/ha/m -
maximum b ymaxn kg/ha/m 26.3 

Objective function z $/$ 3.12 
Watershed cost ct $ 60,610 a 

a From targeting strategy summarized in Table 5.5. 
b Estimated from SWAT simulations. 
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Results for case 3 simulations in the Dreisbach watershed are shown in Figure 5.4(a). In this 

case, only maximum monthly sediment and nutrient loads were constrained to their allowable 

values obtained from the targeting strategy. A total number of 150 optimization generations 

each with a population of 20 strings, were computed. In the top panel in Figure 5.4(a), the 

left y-axis reflects benefit-cost ratio for all model evaluations (dots), and right y-axis is total 

cost of implementation of the best solution in each optimization generation (dashed line). The 

first generation represents a random selection and placement of BMPs, while the last 

generation shows the near optimum solution. It is evident that maximum and median fitness 

of generations improved as optimization progressed to future generations. This points to the 

efficiency of the developed algorithm. Accordingly, the total watershed cost associated with 

the best solutions of GA generations generally reduced in successive generations. The fitness 

of the best solution of GA generations did not improve once one of the pollutant constituents 

reached its allowable value. 

Figure 5.4 (a) Case3 optimization outputs for the Dreisbach watershed over 2000–2009 
period. (b) Case 4 optimization outputs for the Dreisbach watershed over 2000–2009 period. 
(c) Case 4 optimization outputs for the Smith Fry watershedover2000–2009period. 
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The bottom panel in Figure 5.4(a) demonstrates phosphorus and nitrogen constraints for the 

best solution of optimization generations. The values in the figure reflect maximum monthly 

pollutant loads simulated over the 2000-2009 period. At the near optimal solution (generation 

150), maximum monthly phosphorus load (ymaxp) approached its allowable value (0.15 

kg/ha). Estimated maximum monthly nitrogen load (1.55 kg/ha) and maximum monthly 

sediment load (0.12 t/ha) were well below allowable values. This indicated that the GA 

converged to a near optimal solution with phosphorus being the restricting pollutant. Note 

that exceedence of only one of the pollutant loads over its allowable value was sufficient to 

penalize a solution. Hence, once monthly phosphorus load approached its allowable value, 

regardless of sediment and nitrogen loads being below their allowable values, the fitness of 

subsequent optimization generations did not improve, indicating that a near optimal solution 

was identified. 

Figure 5.4(b) depicts the results of GA computations for case 4, where only the cost 

constraint of Eq 5.13 was imposed. The aim of this case was to derive an optimization plan 

that would cost the same as the targeting plan. Therefore, the algorithm was designed to 

terminate once the total cost of the optimization plan reached the total cost of the targeting 

plan ($414,690). A summary of the results for case 4 computations is provided in Table 5.6. 

It appeared that for the same watershed cost, the solution from optimization would yield 

nearly half the maximum monthly sediment and nutrient loads. Also, the benefit-cost ratio 

for near optimal solution obtained from case 4 computations was nearly two times higher 

than the one corresponding to the targeting solution.  

In the Smith Fry watershed, implementation of BMPs allocated by targeting as shown in 

Figure 2.1 would cost $60,610, while reducing average monthly sediment, phosphorus, and 

nitrogen loads by nearly 10%, 4.5%, and 3.9%, respectively (see Table 5.5). Since reduction 

of pollutant loads was not significant in comparison to the Dreisbach watershed, case 3 was 

not investigated for the Smith Fry watershed. The optimization tool was applied to 

investigate only case 4, for which only cost constraint was imposed. The analysis aimed at 

identification of near optimal combination of BMPs that would cost no more than $60,610, 

equal to the cost of implementation of the targeting plan.  
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Figure 5.4(c) shows the results of optimization evaluations for case 4 in the Smith Fry 

watershed. Results, also summarized in Table 5.6, indicate that the estimated reduction rate 

(Eq 5.18) of maximum monthly sediment, phosphorus, and nitrogen loads from the 

optimization procedure would be nearly 5 times higher than the ones estimated for the 

targeting plan. Similarly, the benefit-cost ratio would be more than two fold. 

A sample of spatial allocation of the optimally placed BMPs in the study watersheds is 

depicted in Figure 5.5. In Dreisbach, case 4 was more expensive than case 3 with stricter 

sediment and nutrient constraints that were met by allocating additional field borders and 

also a few parallel terraces. Field borders appeared to be more widely allocated in the 

optimization plans. This is perhaps the case because the cost of implementation of field 

borders is significantly less than other types of BMPs studied here (see Table 5.1). 

Conversely, grade stabilization structures that are relatively more expensive than the others 

were not prescribed in any of the plans. Interestingly, a grassed waterway was delineated at 

the very downstream segment of the channel network in all three optimization plans 

performed for the study watersheds. 

(a)  (b)  (c) 

Figure 5.5 Spatial allocation of BMPs from: (a) case 3 computations for Dreisbach 
watershed; (b) case 4 computations for Dreisbach; (c) case 4 computations for Smith Fry 
watershed. 
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5.6. Discussion 

The developed optimization model shows promise for developing watershed restoration and 

management plans. This watershed-scale model is well suited to establish relationships 

between agricultural practices (particularly structural BMPs), watershed health, and 

satisfying aggregate policy objectives. Figure 5.6 shows a sample of reduction of pollutant 

loads estimated for the best solution of optimization generations versus their associated 

watershed cost for the Dreisbach watershed. Reductions of sediment, phosphorus, and 

nitrogen loads at the outlet were weighted by applying weighting factors in Table 5.2 and 

were rescaled to [0,1] range such that the maximum value was 1.0. These results clearly 

illustrate the capacity of the optimization model to handle the tradeoff amongst 

environmental and economic criteria in the objective function. Generating several maps 

similar to those of Figure 5.5 enhances the capacity of local managers and any organization 

undertaking a watershed planning effort to evaluate attainability of designated water quality 

targets at various costs. The foregoing results indicate that the optimization model is likely to 

converge to near optimal watershed plans that would achieve the same level of protection 

against NPS as targeting strategies at significantly lower costs. 

The optimization model benefits from the ability to incorporate spatial heterogeneity in 

evaluation of both cost and benefit of BMPs. Critical source areas where BMPs yield utmost 

Figure 5.6 Tradeoff between economic criterion (cost) and environmental criteria (weighted 
pollutant load reduction) corresponding to case 3 optimization computations for Dreisbach 
watershed. Weighted pollutant loads were rescaled to [0,1] range such that the maximum 
value was 1. 
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benefits are implicitly identified as the GA progresses to the next generations. Therefore, 

benefits of BMPs implemented in critical areas are determined as a function of landscape 

characteristics. Although unit cost of implementation of BMPs is the same throughout the 

watershed, the total cost is also a function of topographic, soil and land use properties. 

Moreover, the optimization procedure handles the interaction between BMPs. The results of 

investigated cases in Figure 5.5 indicated that grassed waterways that are implemented 

within the channel network were prescribed in near optimal schemes. Conversely, grade 

stabilization structures, while very effective in reducing sediment loads (Arabi et al., 2004), 

were not allocated in the watersheds, perhaps because of relatively high unit cost of 

establishment (see Table 5.1). 

The optimization procedure can be performed on a daily, monthly, or annual basis for as 

many pollutant constituents as desired. This spatial optimization tool can be linked with other 

NPS models through a similar methodology to simulate for constituents that currently cannot 

be simulated by SWAT. 

The major concern with regard to practicality of the proposed optimization framework is the 

CPU time required for computations. The search for near optimal solutions is 

computationally demanding mainly because of recurring NPS model simulations. Although 

the experienced gained from this research provides guidance as to how select the GA 

operating parameters, future studies shall focus on exploring the means to expedite the 

procedure. Parallel computing techniques hold great promise in this regard. Also, 

improvements in the structure of NPS model(s) that simulates pollutant loads and BMP 

representation method would enhance the accuracy of near optimal management plans. 

5.7. Conclusions 

A GA-based optimization procedure was developed for selection and placement of BMPs. 

The sensitivity of the model to different combinations of GA operating parameters, including 

population size and replacement rate, was tested in order to identify the most efficient 

combination that converges rapidly for a given runtime. For two small watersheds in Indiana, 

a setup with a higher number of generations and lower population size was more efficient. 

78




However, these results may be site-specific and vary for watersheds with different spatial 

scale and characteristics. 

The cost effectiveness of the optimized BMPs was compared to that of BMPs prescribed 

through targeting strategies in the study watersheds. Targeting strategies are developed based 

on field and modeling studies and intend to allocate BMPs in portions of the watershed that 

are deemed to extensively contribute to pollutant loads. In the absence of systematic 

approaches, however, identifying such locations and also designing most effective BMP 

combinations become infeasible at the watershed scale. It was demonstrated that the BMPs 

from optimization would achieve the same level of sediment and nutrient reductions with 

nearly one third of the cost required for implementation of the targeting scenario. 

Conversely, it was shown that an optimized management scheme would likely provide nearly 

twice the protection against sediment and nutrient loads for the same amount of money that 

would be spent for implementation of the targeting plans in these watersheds.   

In all optimization plans, a grassed waterway was allocated to the very downstream of the 

channel network and immediately upstream of the watershed outlet where water quality 

standards were imposed. Field borders were the most commonly allocated BMPs, perhaps 

because of their relatively lower unit cost. Conversely, grade stabilization structures that cost 

significantly more than the other types of BMPs in this study were not included in any of the 

optimized plans.   
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SECTION 6. CONCLUSIONS 

A computational framework was developed and tested on two small watersheds in Indiana to 

help watershed management agencies identify effective management practices and their 

spatial allocations for sediment and nutrient control. The method utilized simulations of a 

distributed-parameter watershed model, Soil and Water Assessment Tool (SWAT), in 

conjunction with statistical and optimization techniques.  

In this study, the results of a previous study by Arabi et al. (2004) in the same study 

watersheds were adopted. First, the SWAT model was calibrated and validated for the study 

watersheds. The results indicated that SWAT streamflow, sediment, total P and total N 

simulations adequately represent observations. Two error statistics, coefficient of 

determination and Nash-Sutcliff efficiency coefficient, were used for calibration purposes. 

Model calibration was performed until a coefficient of determination greater than or equal to 

0.6 and a Nash-Sutcliff coefficient greater than or equal to 0.5 was obtained for each 

constituent. Second, SWAT model parameters were used to represent BMPs based on their 

functionality and hydrologic and water quality processes that are modified by their 

implementation. Field borders, parallel terraces, grassed waterways, and grade stabilization 

structures were the specific BMPs modeled in this study. It would appear that SWAT model 

is an appropriate model for representation of agricultural management scenarios. The 

effectiveness of BMPs was evaluated by comparing model simulations for two scenarios 

representing conditions with and without the presence of BMPs. It was observed that 

implementation of the BMPs in the Dreisbach watershed would result in a significant 

reduction of sediment and nutrient yields. These reductions would be mainly due to 

implementation of grade stabilization structures and grassed waterways that appreciably 

reduce the transport capacity of channel network.  

A systematic method based on the Generalized Likelihood Uncertainty Estimation (GLUE) 

methodology was developed for the estimation of uncertainty bounds for model predictions. 
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The procedure can be utilized for quantification of the margin of safety (MOS) in the TMDL 

allocation formula as an explicit uncertainty analysis method. In this study, the Generalized 

Likelihood Uncertainty Estimation method was utilized on the two Indiana watersheds. The 

forgoing results indicated that the GLUE methodology is suitable not only for determination 

of a numeric value for the MOS, but also for addressing the issues that render utility of the 

conventional approach for evaluation of BMPs subjective to the questions of uniqueness of 

calibrated parameter set, identifiably, and equifinality as described in Beven and Binely ( 

1992). 

Additionally, a computational framework was developed in which investigation of 

uncertainty provides complementary quantitative and qualitative information in support of 

management and decision making. The analysis focused specifically on two issues. First, the 

univariate Regionalized Sensitivity Analysis (RSA) ranking method was applied in 

conjunction with the multivariate Tree Structured Density Estimation (TSDE) analysis to 

identify critical hydrologic and water quality processes that control the ability to attain 

specified water quality conditions. The implications of such analysis provide benefits for 

watershed management programs such as TMDL. Application of the RSA-TSDE procedure 

for two small watersheds in Indiana, Dreisbach (6.25 km2) and Smith Fry (7.3 km2), showed 

that fluvial channel processes appeared to control sediment yield at the outlet of the 

watersheds. Therefore, implementation of within-channel BMPs such as grassed waterways 

and grade stabilization structures are likely more effective for reducing sediment loads at the 

outlet of the study watersheds. However, total nitrogen yield at the outlets was controlled by 

upland nitrogen loading, indicating that implementation of parallel terraces or fertilizer 

application strategies would be more effective. Also, EPA has been advised to promote 

research on translating effectiveness needs into Use Attainability Analysis (UAA) 

implications (NRC, 2001). The use of UAA, which is applied for setting new water quality 

standards or revising the existing ones, has been restricted due to inadequate technical 

guidance from EPA. The results of the TSDE method can provide a numerical probability 

value that can be utilized to answer pragmatic questions such as how feasible a target value is 

for a desired constituent. 
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Complementary to the RSA-TSDE approach that facilitates identification of effective 

management practices, a GA-based optimization model was developed for BMP placement 

within watersheds. The cost effectiveness of the optimized BMPs for the study watersheds 

was compared to a combination of BMPs that was implemented nearly 30 years ago through 

targeting. Results indicated that the benefit-cost ratio of the combination from optimization 

was more than two times higher than the one from targeting, providing the same sediment 

and nutrient reduction at the outlet. The optimization procedure can be utilized to produce a 

number of near optimal solutions, providing flexibility for management and decision making 

to meet water quality target values in an economic manner. Also, the sensitivity of the model 

to different combinations of operating parameters including population size and replacement 

rate was tested in order to identify the most efficient combination which converges faster for 

a given runtime. For two small watersheds in Indiana, it would appear that a setup with a 

higher number of generations and lower population size was more efficient.  

While the foregoing results may be site-specific and limited to watersheds with spatial scale 

and characteristics similar to the watersheds used in this study, the developed sensitivity 

analysis, uncertainty estimation, and optimization procedures can be applied to in other 

watershed studies. 
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