

K

A Program for the Statistical Evaluation of Point Source Dispersion Models Using ASTM D 6589

EPA-454/R-03-006

A Program for the Statistical Evaluation of Point Source Dispersion Models Using ASTM D 6589

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division Research Triangle Park, North Carolina 27711

August 2003

DISCLAIMER

The information in this document is being reviewed in its entirety by the U.S. Environmental Protection Agency (EPA), for approval for publication as an EPA document. Mention of trade names, products, or services does not convey, and should not be interpreted as conveying official EPA approval, endorsement, or recommendation.

PREFACE

The American Society for Testing and Materials (ASTM) has published a Standard Guide D 6589 for Statistical Evaluation of Atmospheric Dispersion Model Performance. Within the Annex to this ASTM Guide, a procedure is outlined for assessing the performance of atmospheric transport and diffusion models to predict the average maximum "centerline" concentration values of a chemical species that has been released from a point source.

The EPA has developed a FORTRAN program called "Design 2" that implements the procedure documented within the Annex to ASTM Standard Guide D 6589, for the statistical evaluation of the performance of transport and diffusion models to simulate the average "centerline" concentration values.

This report describes the input files and formats of these input files for running Design 2. The report describes the information provided by the various output files created by Design 2. The report does not describe the actual statistical procedures of Standard Guide D 6589, as these are documented in detail within this Guide's Annex.

ACKNOWLEDGMENTS

This research described in this report was funded wholly or in part by the United States Environmental Protection Agency (EPA) through EPA Contract NO. 68-D-98-006, Work Assignment NO. 4-02 with EC/R Inc., who subcontracted with the Pacific Environmental Services, Inc, a MACTEC Company (PES). The EPA Work Assignment Officer was John S. Irwin. The EC/R Project Leader was Steve Fudge. The PES Project Leader was James Paumier.

TABLE OF CONTENTS

 $(\cdot;$

		Page
	Preface	iii
	Acknowledgments	. iv
1.	INTRODUCTION	1
2.	OBSERVED CONCENTRATION DATA	4
3.	MODELED CONCENTRATION DATA	8
4.	REGIMES	10
5.	CONTROL FILE	13
6.	RESULTS	. 17
7.	REFERENCES	. 23
	APPENDIX - DIRECTORY STRUCTURE OF DISTRIBUTION CD	24

INTRODUCTION

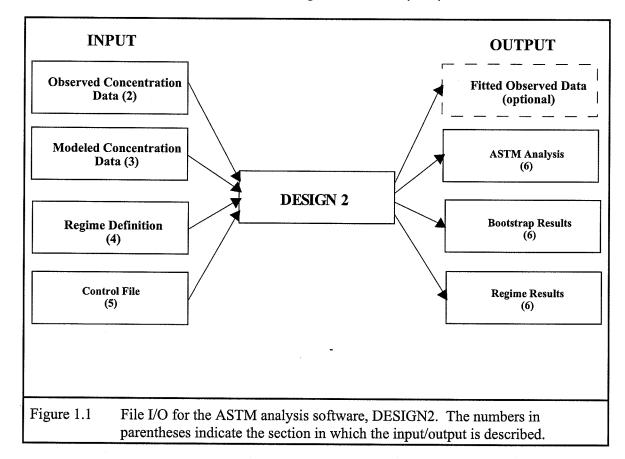
Air quality transport and diffusion models have been in use for several decades to estimate the impacts of pollutants released from point sources. Some of the simpler models are steady-state, Gaussian plume models that include little or no chemical transformation. During the model development phase and in subsequent upgrades, model performance is constantly evaluated.

In the past, the emphasis of the statistical evaluation comparisons has been on the "intended use." For instance, one of the uses for modeling results is to estimate the highest concentration values to be expected over a 5-year period, resulting from the operation of a proposed new power plant (Cox and Tikvart, 1990). Other statistical measures have also been employed to compare the concentration (or dose) values of "intended use," such as number of values within a factor of two, linear least-square fits to scatter plots of observed and predicted values, and normalized meansquared errors of observed and predicted values (Fox, 1981). Implicit in such statistical comparisons is an assumption that the predicted and observed distributions of concentration values are from the same population, which may not be a well-founded assumption (Oreskes et al., 1994). Work is underway to develop a new generation of evaluation metrics that takes into account the statistical differences (in error distributions) between model predictions and observations. As a result, a shift in philosophy is occurring as to how models of environmental processes can be acceptably evaluated. Most models provide estimates of the first moment of conditions to be expected for each ensemble (e.g., average time-space variation of the meteorological conditions, average time-space variation of the surface-level concentration values). The key to the next-generation evaluation metrics is that they will no longer assume that the modeled and observed values come from the same statistical population of values. They will assume that they "share" certain fundamental properties, but are inherently different.

To fill a part of this void, the U.S. Environmental Protection Agency (EPA) has participated within the American Society for Testing and Materials (ASTM) to develop a consensus on a philosophical basis that could be used in developing new statistical methods for model evaluation. In doing this, a statistical procedure was drafted and documented within the Annex to Standard Guide D 6589 for Statistical Evaluation of Atmospheric Dispersion Model Performance (ASTM, 2000). This procedure implements the idea that the distributions of model predictions and observations "share" certain fundamental properties, but are inherently different. The procedure assesses the performance of transport and diffusion models to simulate the average "centerline" concentration values from a point source release.

The EPA has developed a FORTRAN program called "Design 2" that implements the

procedure described in the Annex to D 6589. This report describes the input files and formats of these input files for running Design 2. The report describes the information provided by the various output files created by Design 2. The report does not describe the actual statistical procedures of Standard Guide D 6589, as these are documented in detail within this Guide's Annex.


As noted in the ASTM standard, many practical problems must be resolved before the software can be run (see Section X1.4), including how to group the data into regimes. If we consider each observation period as an experiment and groups of monitors/receptors (nearly) equidistant downwind as an arc, then we can define an experiment-arc as a single experiment and single arc combination. An experiment-arc pair can then be included in a regime and the software can connect observed data to modeled data. Some regime definition strategies are mentioned in Section 4.

The purpose of this document is to provide guidance on the procedures to prepare the data and run the evaluation software. Figure 1.1 shows a flow chart of the process. The first input file required is the observed concentration data. The structure of this file is described in Section 2. The second file is the modeled concentration data. Since this software determines a best performing model, results from at least two models should appear in this file. The structure of this file is described in Section 3. The third file defines ranges of conditions, or regimes, based on one or more parameters that subdivide the results. In defining regimes, the behavior of the dispersion should be similar within each subdivision. A more complete discussion of regimes and the structure of this file is described in Section 4. For the software to function, a control file is required that has the names of the input and output file, file formats, and processing options. This file is short (less than 20 lines) and the structure of this file is described in Section 5. Once the software is run, several output files are produced: 1) the primary file with the information on the best performing model (the ASTM analysis), 2) a file of the bootstrap results, and 3) a file of results by regime. An optional output file is the fitted observed data. The analysis and structure of these files is discussed in Section 5. In Section 6, the results from the evaluation software are presented.

The software was coded in FORTRAN. Although a FORTRAN 95 compiler was used to create the executable, attempts were made to keep the code backward compatible with FORTRAN 77 standards. In several places, the user is required to provide a format for the data to be read by the program. These formats must follow FORTRAN conventions and MUST be enclosed in parentheses; for example, (1X, I5, I5, 3F12.0). The characters in the FORTRAN statement can be upper or lower case; the spaces after the commas are not necessary and are shown here only to provide better legibility.

The example used throughout this documentation is from the 1985 Indianapolis field experiment (Murray and Bowne, 1988). The field experiment was performed in a flat, urban to suburban environment. A tracer, SF_6 , was injected into the buoyant gases exiting from an 86-meter point source. Data were collected for approximately 170 hours over a five-week period. Monitors were located in arcs from about 250 meters to 12 kilometers downwind.

Meteorological data were collected from a 94-meter and 10-meter tower in the urban environment, a 10-meter tower in a suburban location, and 10-meter tower in a rural location. National Weather Service meteorological data were from Indianapolis, IN (hourly weather observations) and Dayton, OH (upper air data). For the dispersion modeling, receptors were placed along a single line due east of the release point. To obtain centerline concentrations the wind directions were all modified to be blowing from the west (270°).

OBSERVED CONCENTRATION DATA

The observed concentration data are required to be in a specific format for the analysis software to correctly read and process the data. The general structure is shown in Table 2.1. The first record in the file is Header 1 and contains a title that can be up to 40 characters long and only appears once. Note that this title must be enclosed in single quotation marks. Headers 2 and 3 appear before each arc of observations. These arc header records are followed by the x-and y-coordinates and observed concentration, for the number of receptors on the arc (the first field on Header 3). The coordinates and concentration must be specified as x-coordinate, y-coordinate and then concentration value. The FORTRAN format for this information must remain fixed for all values in the file. This FORTRAN format is defined by the user as part of the control file information (see Section 5). Currently, the number of observed concentration records per experiment-arc is limited to 250 records. An example of the observed concentration file is shown in Figure 2.1.

Header records 2 and 3 are read 'free' format, i.e., without a format statement. This means that a comma or at least one space (or a combination of the two, as seen in Figure 2.1) must separate each entry on each record. Since the date and time are the only character variables in these two records, they must be enclosed in single quotation marks.

The header 2 records provide general information on the field experiment period and arc combination. The experiment and arc (or traverse) pair identify an observation period and arc of data. The pair must be unique. Usually, the experiment numbers are unique (possibly a simple sequential numbering), but the arc numbers likely repeat from field experiment period to field experiment period. The important thing to remember is that these two parameters are used to connect the observed data with the modeled concentration data and the grouping into regimes, so the pair must be unique. The date, start and stop time, and nominal distance to the arc are not used in the program, but provide additional identifying information within the archive.

The header 3 records contain information on how to process this experiment-arc combination. The first three values define the total number of receptors on the arc and which receptors to use in the analysis. Receptors can be included or excluded from the analysis by varying the starting and ending point for the analysis.

The location of the receptors must be entered in the same coordinate system used in defining the receptor locations, namely Cartesian (x,y) or polar coordinates (r,θ) . The type of coordinate system in use is defined by the value of IXYARC, which is the fourth parameter of

-4-

Header 3. If the receptor locations are entered as polar coordinates, then the program converts them to Cartesian coordinates internally. The program works with coordinates expressed in meters, so if the units are other than meters, a conversion factor from the user's units to meters must be applied. This factor is provided as the fifth parameter on header 3 records.

The sixth and seventh parameters identify the location of the source. If the x- and ycoordinates are entered as polar coordinates, then the source is likely to be located at an origin, i.e., (0,0). If the x- and y-coordinates are entered as Cartesian coordinates (e.g., UTM coordinates), then the source is likely to be located at something other than (0,0). The software translates the source and receptors to a (0,0)-based system internally to perform its analysis.

The tracer release rate is specified next and is used to normalize the fitted observed concentrations. The tracer height and the height of the receptors are not used in this version of the software, but may provide useful information possibly interpreting the results, and serve as a check on the source and receptor heights specified in the dispersion modeling.

The last parameter on this record converts the tracer concentration from user's units to micrograms per cubic meter (μ g/m³). Since this value is applied to every tracer concentration without regard to meteorology, careful consideration should be used as to the appropriate value to enter. For example, converting from parts per trillion to μ g/m³ requires atmospheric pressure and ambient temperature.

The header records are followed by the location and observed concentration for the number of receptors on the arc (defined by the first value on header type 3). At a minimum there are three values on these records. However, since the format is specified in the control file (see Section 5), any amount of information can be included and skipped with the format statement the user provides. For example, if the coordinate location is in polar coordinates, Cartesian coordinates can be included on the record but skipped with the appropriate format statement (as is done in Figure 2.1). During the fitting process, the concentrations are divided by the emission release rate (eighth parameter in Header 3).

Record Type	Data	Data Type	Description
Header 1	Title (up to 40 characters)	С	Appears only once, as the first record in the file, in single quotation marks
Header 2	Experiment number	I	Field experiment period
	Traverse number	I	Identifier for the arc
	Date	С	10 characters, in single quotes ' MM-DD-YY '
	Time (Start & Stop)	С	10 characters, in single quotes ' HHMM-HHMM'
	Nominal distance to arc	R	(not used)
Header 3	Number of receptors on the arc	I	Total number of receptors that will be read by the program
	Starting data point for integration	Ι	Receptors prior to this point are omitted from analysis
	Ending data point for integration	Ι	Receptors after this point are omitted from analysis
	How x- and y-coordinates are entered: polar or Cartesian (IXYARC)	I	<= 0, cartesian > 0, polar
	Conversion from user units to meters	R	Converts user units to meters, e.g., for kilometers to meters, enter 1000.
	X-coordinate of source	R	Coordinate in base system
	Y-coordinate of source	R	Coordinate in base system
	Tracer release rate	R	Release rate in grams/second
	Tracer release height	R	Height of release in meters (not used)
	Altitude of airborne traverse	R	Height of receptors in meters (not used)
	Constant multiplier to convert tracer concentration from user's units to $\mu g/m^3$	R	Enter 1.0 if no conversion is needed, otherwise enter the multiplier that will be applied to all observed concentrations
Observa- tion	X-coordinate	R	If IXYARC <= 0, x is in meters If IXYARC > 0, x is in degrees
	Y-coordinate	R	If IXYARC <= 0, y is in meters If IXYARC > 0, y is radial distance to arc
	Observed Concentration	R	Concentration in user units

TABLE 2.1 STRUCTURE OF THE OBSERVED CONCENTRATION DATA FILE.

6.

.

Data Types: C=character, I=integer, R=real

IND SF6	09-16-85		-1200'	0.2				
, 1,	1, 1,	1000.000.	0.0.	0.0.	4.94000,	83 80	1 50	1 000
24.71	.31	.13	.28	7.0	1191000,	00.00,	1.307	1.000
, 2,1	09-16-85	',' 1100	-1200',	0.5				
, 1,	8, I,	1000.000,	0.Ó,	0.0,	4.94000,	83.80,	1.50,	1.000
5.10	.47	.04	.47	155.0		•		
21.13	.47	.17	.44	9.0 .0				
34.63	.40	.17 .23 .38 .42	.44 .33 .24	.0				
57.90	.45	.38	.24	.0				
73.93	.43	.42 39	.12 .32	.0				
309.61	.50	39	.32	.0				
325.45 347.88	.55	31 10	.45	142.0				
241.00	.40	10 ',' 1100-	.4/	143.0				
, J, 1	09-10-05 4 1	1000 000	-1200.,	0.7	4 04000		1 50	1 000
, <u>+</u> , 38.25	≠, ⊥ , 66	1000.000,	5.0,	0.0,	4.94000, 8	83.80,	1.50,	1.000
32.79	.00	- 32	.52	.0				
338.05	.68	32 25	.03	25 0				
356 90	72	_ 04		04 0				
, 4, '	09-16-85	'.' 1100-	-1200.	1 0				
, 1,	6, 1 ,	1000.000,	0.0.	0.0.	4.94000, 8	83 80.	1 50	1 000
250.85	1.43	-1.35	47	.0	1.91000, 0	55.00,	1.50,	1.000
290.40	1.03	-1.35 97	.36	.0				
298.74	.94	82 60	.45	.0				
323.61	.94 1.01	60	.81	6.0				
335.41	1.01	42	.92	116.0				
344.65	1.02	27	.98	206.0				
, 5,'	09-16-85	',' 1100-	1200',	1.5				
1, 1,	11, 1 ,	, 1100-, 1000.0000, .15 .41 -1.46 -1.46 -1.38 -1.78 -1.45	0.0	, 0.0,	4.94000,	83.80,	1.50,	1.000
6.07	1.41	.15	1.40	225.0				
15.99	1.48	.41	1.42	59.0				
257.66	1.50	-1.46	32	.0				
263.77	1.47	-1.46	16	.0				
269.59	1.38 1.81	-1.38	01	9.0				
280.49 287.25	1.81	-1./8	.33	.0				
293.21	1.52	-1.45	.45 .61 .96	.0 .0 9.0 .0 .0				
302.81		-1.42 -1.49	.61	.0 .0				
341.93	1.47	-1.49	1.40	.0				
358.25	1.47	46 05	1.40					
6.1	09-16-85		12001	2 0				
7, 1,	17.1.	1000.000.	0.0		4.94000,	83 80	1 50	1 000
10.43				55.0	11910007	00.00,	1.50,	1,000
27.36	1.93 1.92 1.95 1.92	.88 1.34 1.52 1.79	1.71	.0				
44.34	1.92	1.34	1.37	.0				
51.53	1.95	1.52	1.21	.0				
68.32	1.92	1.79 -1.94 -1.93	.71	.0				
250.99	2.06 1.97 1.79	-1.94	67	.0				
257.43	1.97	-1.93	43	.0				
68.08	1.79	-1.79	06	.0				
274.44	2.20	-2.19	.17	.0				
82.63	1.97	-1.92	.43	.0				
90.17	2.03	-1.91	.70	.0				
97.51	2.01	-1.79	.93	.0				
05.40	2.07	-1.69	1.20	.0				
13.61	2.04	-1.48	1.41	.0				
23.38	2.13	-1.27	1.71	6.0				
32.62 340.45	1.95	90	1.73	15.0				
-0.40	1.96	66	1.85	40.0				

Figure 2.1. Sample of the observed concentration file.

MODELED CONCENTRATION DATA

The second component required to perform the analysis is a file of modeled concentration data. This file contains the concentration estimates from two or more dispersion models. Results from as many model runs can be included (within DOS or compiler limitations) in this file since the user must specify in the control file the number of model runs to include in the analysis and the format to read the data. However, only results from up to 15 models can be included in a single analysis. The structure of the file is shown in Table 3.1 and an example is shown in Figure 3.1.

The format of these data is contained in the control file (described in Section 5). Specifying the format in this manner allows the user to identify which model estimates to include in the analysis.

It should be mentioned that the units of the modeled concentration estimates MUST match those in the fitted observed data, otherwise the results will be completely unreliable. It may be necessary to develop an external program that converts the modeled concentrations to the units in the observed concentration file, as was done for the example used in this documentation.

Record	Description
1	Header record; can be any descriptive language; the information in this record is not used in the program
2	Header record; can be any descriptive language; the information in this record is not used in the program
3 # of experiment- arc periods	Modeled concentration data; multiple columns of data; repeated for as many arc-experiment periods to be included in the analysis
	Required data on each record for N model runs (N is specified in the control file): Experiment period, Arc number, Concentration 1,, Concentration N

TABLE 3.1 STRUCT	URE OF MODELED	CONCENTRATION DATA FILE.

-8-

(3x,2i5,	f11.3,2	x,i6.6,i4.	4,5f12.5)					
EXP	TRAV	X	DATETIME	ADMS	AER02161	HPDM	ISCST3	AMODNoObsZi
1	1	0.200	8509161100	13.52654	15.88650	20.58027	0.00000	22,98427
1		0.500	8509161100	124.19214	62.27761	120.69160	11.44278	67.62427
1	3	0.700	8509161100	129.02158	62.43041	115.09613	51.72357	65.56213
1	4	1.000	8509161100	106.83546	51.13265	88.37265	76.59892	51.24015
1	5	1.500	8509161100	72.80358	35.57238	55.99589	68.48630	32.48832
1	6	2.000	8509161100	52.18434	27.28770	40.92309	57.06482	22.16314
1	7	3.000	8509161100	31.09959	18.67307	27.57795	42.60660	13.06510
1	8	4.000	8509161100	21.46810	14.77599	21.56590	34.89255	9.14368
1	9	6.000	8509161100	13.23311	11.21865	16.25815	26.69948	5.99775
1	10	8.000	8509161100	9.56996	9.23732	13.34078	22.29126	4.77061
1	11	10.000	8509161100	7.39425	7.90674	11.56248	19.47426	
1	12	12.000	8509161100	5.92507	6.94058	10.34749		4.03602
2	1	0.200	8509161200	9.67782	17.32178		17.48786	3.52151
2	2	0.500	8509161200	116.65285		16.85009	0.00000	19.70494
2	3	0.700	8509161200	122.54763	67.36076	117.75447	10.78590	67.53592
2	4	1.000	8509161200		67.21519	112.84499	48.39931	66.77747
2	5	1.500	8509161200	101.43091	53.96894	85.90490	70.07381	52.49763
2	6	2.000	8509161200	68.40762	35.32141	52.63741	54.24477	33.22327
2	7	3.000		48.55746	24.98616	34.97790	41.89233	22.42547
2	8		8509161200	28.52670	15.65525	20.92225	30.92515	12.81057
2	° 9	4.000	8509161200	19.32401	11.41748	15.39928	25.32321	8.82312
2	10	6.000	8509161200	11.43619	8.05074	11.10693	19.37537	5.54923
2	10	8.000	8509161200	8.15481	6.53249	9.14303	16.17562	4.33742
2		10.000	8509161200	6.31754	5.56385	7.83048	14.13122	3.65312
2	12	12.000	8509161200	5.09892	4.87275	6.94412	12.68949	3.18173
3	1	0.200	8509161300	6.93544	16.03329	11.07608	0.00000	17.17133
3	2 3	0.500	8509161300	110.24163	69.93465	102.03912	11.46303	68.71230
3		0.700	8509161300	120.36591	70.52279	103.26080	48.85902	69.20486
3	4	1.000	8509161300	99.47187	56.41741	81.77794	68.63754	54.65300
	5	1.500	8509161300	66.36179	36.37708	51.53038	50.91323	34.47306
3	6	2.000	8509161300	46.57782	24.99461	34.29897	37.08468	23.10219
3 3	7	3.000	8509161300	26.95085	14.90788	19.38106	26.71908	12.85674
	8	4.000	8509161300	18.02947	10.54413	13.86609	21.87267	8.71999
3	9	6.000	8509161300	10.29495	7.00644	9.48170	16.73271	5.30995
3	10	8.000	8509161300	7.16038	5.59702	7.80348	13.96850	4.06644
3	11	10.000	8509161300	5.51101	4.74401	6.67414	12.20238	3.40525
3	12	12.000	8509161300	4.45420	4.14563	5.88584	10.95750	2.95946
4	1	0.200	8509161400	6.02123	0.01478	3.08309	0.00000	0.01169
4	2	0.500	8509161400	109.91783	50.51303	76.51933	21.24328	48.07773
4	3	0.700	8509161400	122.56912	89.26309	92.48806	64.44592	86.99314
4	4	1.000	8509161400	102.79445	84.29244	82.91390	75.67673	83.30546
4	5	1.500	8509161400	67.80977	57.40505	56.95367	50.77602	56.88217
4	6	2.000	8509161400	47.12925	39.04949	39.30663	34.06233	38.64830
4	7	3.000	8509161400	26.90252	20.83178	21.43528	23.24096	20.55332
4	8	4.000	8509161400	17.84781	12.90603	14.23599	18.99567	12.70320
4	9	6.000	8509161400	9.99287	6.44580	8.91191	14.52074	6.32857
4	10	8.000	8509161400	6.80607	3.97508	6.91433	12.11810	3.90839
4	11	10.000	8509161400	5.18173	2.83168	5.94636	10.58417	2.79318
4	12	12.000	8509161400	4.17275	2.22595	5.25265	9.50299	2.20017

Figure 3.1. Example of modeled concentration file

The first two records can contain any information the user wants to include since neither record is used by the analysis software. In this example, the FORTRAN format of the data appears on the first record. The second record identifies the fields. In this example, there are two model runs with the AERMOD dispersion model: the first with the column header AER02161 and a second with the column header AMODNoObsZi. The former run utilized observed mixing heights, and the latter allowed AERMET to calculate the mixing heights.

-9-

REGIMES

The third file required to perform the ASTM analysis is a file of 'regime' definitions. This file groups the experiment-arc combinations into categories that the user feels are appropriate to answer the question(s) under investigation. Comparing separately averaged observed and modeled concentrations within grouped data "provides an empirical estimate of the combined deterministic error associated with input uncertainty and formulation errors" (ASTM, 2000). An extended discussion of establishing the regimes is provided in the ASTM standard guide (ASTM, 2000).

Regimes can be defined based on almost any property, such as atmospheric stability, type of air mass, or wind speed. The definitions of the regimes appearing in the example in this document were based on z_i/L , where z_i is the mixing height and L is the Monin-Obukhov length. Two additional restrictions were placed on the data to insure there were sufficient data to perform the analysis. The first was that a minimum of five nonzero observed concentrations must appear on an arc to be included in a regime and that there must be a minimum of five experiment-arcs per regime. Regimes, including the one presented here, are not hard and fast definitions, and in fact, may require modification if the initial results are ambiguous or the meteorology changes. Additionally, which model's meteorology (or other model-specific data) to use to define the regimes must be considered when developing the regimes.

The structure of the regime definition file is shown in Table 4.1. There are three record types, with the first type defining the number of regimes (and appearing only once, at the beginning of the file), and the second type defining the number of experiment-arc combinations in a regime. The third record type consists of the experiment-arc pairs within the regime. All required data are read as free format integers.

An example of the regime definition file is shown in Figure 4.1. Note that in the example, additional information follows the required data on each record. Only the first field is read on record types 1 and 2, so any descriptive language can follow these values. For example, the criteria for the data grouping can appear after the first field. In record type three, only the first two fields are required and are read free format. Additional information can appear after these two fields that may be useful in reviewing and understanding the results. In this particular example, z_i/L is used as the criterion to group the data. The first regime is defined for $z_i/L < -50.0$. The values that follow the experiment and arc number on each of the type 3 records is the number of nonzero observed concentrations.

Record Type	Description
1	Number of regimes to use; appears only once as the first record
2	Number of experiments-arc combinations in the regime; appears before each grouping of experiment-arcs
3	Experiment period and arc to include in this regime

TABLE 4.1 STRUCTURE OF THE REGIME DEFINITION FILE

29	Number of	Regime	es											
12	Number of	Exps	in	this	regime	Cases	where	e Zi/I	L is	s less	than:	-50.0		
2	3 6	-			2									
3	3 7													
19	3 8													
20	3 7													
21	3 6													
28	3 6													
32	3 9													
33	38													
34	3 13													
113	3													
114	3 10													
116	3 5													
12	Number of	Exps	in	this	regime									
2	4 9	~			5									
3	4 8													
19	4 6													
20	4 6													
21	4 7													
28	4 5													
32	4 9													
33	47													
34	4 13													
113	4													
114	4 15													
116	4 8													
•	• •													
· ·	• •													
. 9	Number of	Evne	in	thie	regime	Cadad	where	7 i /T.	ie	arest	ar tha	n50	D and	اححح
than:	-25.0	втра		CIILD	regrue	cases	where	27/17	10	great	si ciid.	II JU	.v anu	1632
22	3 9													
23	3 9													
24	3 7													
25	3 8													
29	3 7													
30	3 8													
31	3 10													
35	3 5													
55	3 5													
14	Number of	Exps	in	this	regime									
22	4 8													
· ·	• •													
•	• •													
•	• •													

Figure 4.1. Example of the regime definition file. The required fields and information are shown in bold and the information that is not required is shown in a lighter font.

CONTROL FILE

Once the data files are in place, the remaining file required to run the ASTM evaluation software is the control file. This file contains file names, data formats, and processing options. Table 5.1 shows the structure of the control file and Figure 5.1 shows an example. The output from the analysis software will be presented in Section 6.

The first six records in the control file pertain to the fitting of the observed concentration data. The fourth record is needed only if the results of the fit are to be retained in a file. Otherwise, the data are retained in memory for the remainder of the analysis and lost when the program terminates. The fifth record (IPHIY) indicates how σ_y is to be retained, either in user units or in degrees. The sixth record defines the minimum number of nonzero concentration values required to attempt a Gaussian fit of the observed data.

The remaining controls are relevant to the analysis of the modeled data and the actual evaluation analysis. Records 7-9 apply to the sampling scheme (NPAIR) and method (NWIDE), and the number of bootstrap samples (NBOOT). NPAIR defines whether to sample the data as pairs or individually; NWIDE defines whether to sample modeled and observed concentrations simultaneously or independently.

Record 10 defines the number of models or models runs (NMODEL) that are to be analyzed with this run. The analysis can be performed with up to 15 models in any single run. Note too that different runs of the same model or versions of a model can be included in an analysis. This record is followed by the names of the NMODEL models. The names are only used to identify the models in the output files. It is recommended to keep the identifying names to 10 characters or less. If the name is longer than 10 characters, only the first 10 characters will be used. The order of the names must match the order the modeling results are read in the modeled concentration file (Section 3).

The record following the model names is the random number seed and should be at least five digits. This value is used during the bootstrapping process. The seed value is followed by the filtering option. It is an integer value greater than or equal to zero and controls the maximum number of near-centerline concentrations to be considered that satisfy $-0.67 < y/\sigma_y < 0.67$. Entering a value of 0 selects all near-centerline concentrations that satisfy this criterion.

The last six records (shown in Table 5.1 as records 13+NMODEL through 18+NMODEL) in the control file are input and output file names and the format of the modeled concentration file. The names should follow the standard personal computer (PC) naming

conventions. The FORTRAN code and executable version accompanying this documentation accommodates filenames as long as 70 characters in length. The format specified on the fifth record from the end can be as long as 30 characters in length, must follow FORTRAN format statement rules for the data to be read correctly, and must include the initial and closing parentheses.

TABLE 5.1 STRUCTURE OF THE INPUT CONTROL FILE FOR THE ASTMEVALUATION SOFTWARE.

Record	Control*	Description
1	filename	File where arcs of observed data are stored
2	FRMXYC	Format to read the location (x- and y-coordinates) and observed concentration (can be up to 30 characters in length, including parenthetses).
3	ISPLUS	Option to save results from the PLTFIT routines in a file: = 0, do not save results to file ≠ 0, save results to file
4	output filename	File with fitted observed data - an optional record based on the value given on the 3^{rd} record
5	ІРНІҮ	σ_y output units: = 0, list output σ_y in user units, $\neq 0$, list σ_y in degrees
6	MINNOK	Minimum number of values required to attempt Gaussian fit
7	NPAIR	Sampling scheme: = 2, sample by pairs ≠ 2, do not sample by pairs
8	NWIDE	Sampling method = 2, sample simultaneously observation & modeled values ≠ 2, do not sample simultaneously
9	NBOOT	Number of bootstrap samples
10	NMODEL	Number of models for which values will be provided
11	model name	First model name
:	÷	:
10+NMODEL	model name	Last model name
11+NMODEL	ISEED	Random number seed value (make sure it is 5 or more digits)
12+NMODEL	NFILTER	Filtering option (if zero, then no limit; otherwise this is the max number of values to be selected)
13+NMODEL	input filename	File of modeled centerline concentration values for each model
14+NMODEL	data format	Format of the data of modeled centerline concentration values
15+NMODEL	input filename	File defining which experiment numbers and arcs are in each Regime
16+NMODEL	output filename	Name of output file for listing results - the primary listing for evaluating model results with the ASTM standard
17+NMODEL	output filename	File with bootstrap results
18+NMODEL	output filename	File with regime results

* Controls in capital letters show the variable name used in the source code, otherwise a generic 'name' is used.

INDARCS.DAT (1x,F8.0,F8.0,16x,F8.0) 1 INDSPLUS.DAT 2 2 3 2 2 500 5 ADMS AMOD02161 HPDM ISCST3 AMODNoObZi 12345 1 INDMODEL.DAT (3x,2i5,13x,10x,5f12.0) INDREGM.DAT INDASTM.OUT INDBOOT.PLT INDREGIM.OUT

Figure 5.1 Sample control file.

RESULTS

In the earlier sections, portions of the various input files were shown. In this section, the results from the analysis software are presented based on the example files presented in the previous sections. Due to the size of the files, not all sections of the output files will be shown. A brief description of the general layout of the files will be provided.

The output filenames are specified by the user, as shown in Table 5.1 and Figure 5.1. The last two files in the control file are results from the bootstrap method and information by regime. The third file from the end (identified as 16+NMODEL in Table 5.1, INDASTM.OUT in Figure 6.1) contains the listing of results used to apply the ASTM standard. The first part of this file has the following structure:

1) Run summary of the information provided in the control file;

2) Results for each regime, including the number of nonzero values for each experimental period and the number of centerline values that satisfy the following -0.67 $< y/\sigma_y < 0.67$, where y is the receptor distance from centerline and s_y is the standard deviation of the distances for all nonzero concentration estimates;

3) Average and standard deviation of Ci, and the geometric average and standard deviation of Ci/Cavg, where the near-centerline concentrations and averages use only the values resulting from the filtering process (i.e., limit on number of near-centerline concentrations).

Items 2) and 3) are repeated for all regimes. Figure 6.1 shows an example of these initial records in the output file.

Isee Npair	d (rand r (0=in	dividua	er seed valu 1,2=pair sam	pling):	12345	;	
Nwide	e (0=in	dividua	L,2=concurre	nt):	2		
			<pre>bootstrap sa models):</pre>	mpies): 5	00 5		
	odel 1				5		
	odel 2		DD02161				
	odel 3						
	odel 4 odel 5		CST3 DDNoObZi				
		1=degre			1		
			number selec	ted):	1		
	l file:				indmodel		
	it file	: nition H	zilo.		indASTM. indregm.		
Regin	ue Dell	III CI OII I	TTG.		maregia.	ual	
D		G	1				
Resu. N	Exp	Group: Arc	1 NumValues	NumCen	terline	NumMode	ls
1	2	3	13	1,0110,011	1	5	
2	3	3	14		1	5	
3	19	3	17		1	5	
4 5	20 21	3 3	19 18		1 1	5 5	
6	28	3	15		1	5	
7	32	3	18		1	5	
8	33	3	18		1	5	
9 10	34 113	3 3	18 10		1 1	5 5	
11	114	3	10		1	5	
12	116	3	10		1	5	
Total	l numbe	r of val	Lues:	180			
Compu	ited Gr	oup Sy:		19.10(deg)			
			Avg	Std	Num	GeoAvg	GeoStd
-OBS		Num 12	Ci 5.86E+01	Ci 4.49E+01	>0 11	Ci/Cavg 6.30E-01	Ci/Cavg
DMS		12	1.28E+01	4.49E+01 4.63E+01	12	7.41E-01	3.31E+00 3.37E+00
MOD021	61	12	7.41E+01	1.77E+01	12	9.63E-01	1.34E+00
PDM		12	1.20E+02	3.64E+01	12	9.26E-01	1.58E+00
SCST3		12	7.17E+01	3.94E+01	10	1.14E+00	
MODNoC	JOZI	12	6.09E+01	3.73E+01	12	4.17E-01	9.58E+00

Figure 6.1. The initial records in the output file used to determine the best performing model (associated with record NMODEL+16 in the control file).

These statistics by regime are followed by the statistical measures over all regimes for each model and maximum observed value. Currently, there are 12 statistical measures calculated in the software: fractional bias, absolute fractional bias, normalized mean squared error (NMSE), mean squared error (MSE), slope, intercept, r², (unsystematic MSE)/MSE, (systematic MSE)/MSE, Willmott-d, average observed value, and average modeled value. For each statistical measure, an abreviated description is provided of the distribution of values generated during the bootstrap: average, standard deviation, minimum, low hinge (25-th percentile), median, high hinge (75-th percentile), and maximum value. It is these statistics that are used to determine the "best performing model." An example of the summary information provided for each statistical measure is shown in Figure 6.2.

For each statistical measure, the "best performing model" is indicated by an asterisk or an excalamation point after the model name (and before the column labeled Avg). An asterisk is used for those measures for which the smallest (absolute) average value identifies the best performing model. The exclamation point is used for those measures for which a value closest to 1.0 is appropriate, such as the correlation coefficient and the slope. Note that the first three and the last three statistical measures are shown in the figure; there are another six measures not shown.

	Summary Over A							
	nverse Variance							
	ractional Bias					M 2		Mar
odel AX	Avg 0.11905		oots 500	Min 0.06918	HL 0.10212	Med 0.11892	НН 0.13289	Max 0.20091
DMS *	0.00008		500	-0.18474	-0.04431	-0.00080	0.04321	0.22366
4OD02161	-0.29222	0.06333	500	-0.52664	-0.33212	-0.29712	-0.25111	-0.09162
PDM	-0.03237		500	-0.22245	-0.08129	-0.03377	0.01350	0.17498
SCST3 MODNoObZi	0.03411 -0.22308		500 500	-0.17623 -0.40081	-0.00250 -0.26444	0.03322 -0.22674	0.07034 -0.17864	0.21014 -0.02809
	red to the base		500	0.40001	0.20111	0122071	0.11001	0102005
2 AMOD02161	5.7244							
3 HPDM 4 ISCST3	0.8565 0.8028							
5 AMODNoObZi								
	eedom (DF): 28							
	onfidence level							
significant (difference in t	he metrics bet	ween th	e base model a	and the model)	being tested)		
Absolute F	ractional Bias H	Results						
odel	Avg		oots	Min	HL	Med	HH	Max
AX SMC	0.11905		500 500	0.06918 0.43668	0.10212 0.52596	0.11892 0.55828	0.13289 0.58757	0.20091 0.68484
MS IOD02161	0.55608 0.60549		500	0.43668	0.52596	0.60523	0.63789	0.74218
PDM *	0.46838	0.04687	500	0.30258	0.43679	0.47103	0.50124	0.62682
CST3	0.48538		500	0.32799	0.45442	0.48618	0.51749	0.66683
ODNoObZi	0.54344 red to the base		500	0.40345	0.51097	0.54504	0.57555	0.67938
1 ADMS	2.0452	mouer. Hrom						
2 AMOD02161	3.0677							
4 ISCST3	0.3725							
5 AMODNoObZi	1.6021 eedom (DF): 28							
	onfidence level	a value > 1.7	01 indi	cates that th	ere is a			
	difference in t					peing tested)		
rmalized Mean	Squared Error	Results						
odel	Squared Error 1 Avg	Std Nb	oots	Min	HL	Med	нн	Max
odel AX	Avg 0.02203	Std Nb 0.00956	500	0.00478	0.01491	0.02013	0.02714	0.06065
odel AX DMS	Avg 0.02203 0.51363	Std Nb 0.00956 0.06581	500 500	0.00478 0.33369	0.01491 0.46615	0.02013 0.51186	0.02714 0.55525	0.06065 0.72839
odel AX DMS MOD02161	Avg 0.02203	Std Nb 0.00956 0.06581 0.09301	500	0.00478	0.01491	0.02013	0.02714	0.06065
odel AX DMS MOD02161 PDM * SCST3	Avg 0.02203 0.51363 0.45289 0.34060 0.42333	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.11733	500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697	0.01491 0.46615 0.38521 0.29104 0.34874	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MOD02161 PDM * SCST3 MODNoObZi	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067	500 500 500 500	0.00478 0.33369 0.24901 0.10480	0.01491 0.46615 0.38521 0.29104	0.02013 0.51186 0.44552 0.33899	0.02714 0.55525 0.51077 0.38767	0.06065 0.72839 0.84992 0.63089
odel AX MS MOD02161 PDM * SCST3 MODNoObZi t-value compa	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067	500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697	0.01491 0.46615 0.38521 0.29104 0.34874	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MOD02161 PDM * SCST3 MODNoObZi	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067	500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697	0.01491 0.46615 0.38521 0.29104 0.34874	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MS 40D02161 PDM * SCST3 40DNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067	500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697	0.01491 0.46615 0.38521 0.29104 0.34874	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MMS VOD02161 PDM * SCST3 VODNoobZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoobZi	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067	500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697	0.01491 0.46615 0.38521 0.29104 0.34874	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MOS VOD02161 PDM * SCST3 40DNo0bZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNc0bZi Degrees of fr	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391	Std Nbb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM	500 500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160	0.02013 0.51186 0.44552 0.33899 0.40906	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
del XX MS MS CODV02161 CCST3 MODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.422698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 difference in t	Std Nbb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet	500 500 500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.10480 0.22267 0.22267	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
del XX MS MS CODV02161 CCST3 MODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM	500 500 500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
del XX MS MS CODV02161 CCST3 MODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.422698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 difference in t	Std Nbb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet	500 500 500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.10480 0.22267 0.22267	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129	0.02714 0.55525 0.51077 0.38767 0.48065	0.06065 0.72839 0.84992 0.63089 1.04803
odel AX MODO2161 PDM * SCST3 40DNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi 5 AMODNoObZi Degrees of fr (at the 90% c significant of bodel	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 edom (DF): 28 onfidence level difference in t Willmott - d f Avg	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb	500 500 500 500 500 500 01 indi ween th oots	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested)	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
odel AX VOD02161 PDM * SCST3 VODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of Dodel AX	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.97037	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428	500 500 500 500 500 500 01 indi ween th oots 500	0.00478 0.33369 0.24901 0.10480 0.10480 0.22267 0.22267 	0.01491 0.46615 0.38521 0.29104 0.38160 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del VX MS VDD2161 PDM * SCST3 VODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of Dedel XX MS	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in ti	Std Nb 0.009581 0.06581 0.09301 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730	500 500 500 500 500 500 01 indi ween th oots 500 500	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026	0.02714 0.5525 0.51077 0.38767 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX MS MSD02161 PDM * CST3 CODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNObZi Degrees of fr (at the 90% c significant of MOD02161 XX MS MS	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.97037	Std Nbb 0.00956 0.06581 0.09301 0.07401 0.07401 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730 0.06593	500 500 500 500 500 500 01 indi ween th oots 500	0.00478 0.33369 0.24901 0.10480 0.10480 0.22267 0.22267 	0.01491 0.46615 0.38521 0.29104 0.38160 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX MS MS MS MS MS MS MS MS MS MS	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 confidence level difference in ti Willmott - di Avg 0.97037 0.59000 0.61483 0.64662 0.59026	Std Nbb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730 0.06993 0.07320 0.08255	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del X SOD02161 PDM * SCST3 SODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNObZi Degrees of fr (at the 90% c significant of SOD02161 PDM ! SCST3 SODNOObZi	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t : Willmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428 0.05730 0.06593 0.07320 0.06255 0.07067	500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853	0.02714 0.55525 0.51077 0.38767 0.48465 0.48415	0.06065 0.72839 0.84992 0.63089 1.04803 0.79317 Max 0.99403 0.76611 0.80535
del XX MDS XDD2161 PDM * SCST3 XODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi table NOD2161 PDM ! SCST3 XODNoObZi t-value compa	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in ti	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428 0.05730 0.06593 0.07320 0.06255 0.07067	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX MS MSD02161 PDM * SCST3 KODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of Dedel XX MS MSD02161 PDM ! SCST3 KODNOObZi	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in tt	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428 0.05730 0.06593 0.07320 0.06255 0.07067	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
<pre>>del xx >MS COD02161 PDM * CCST3 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNObZi Degrees of fr (at the 90% cc significant of oddel XX >MS AOD02161 PDM ! CCST3 AODNobZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3</pre>	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 confidence level difference in t Wilmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428 0.05730 0.06593 0.07320 0.06255 0.07067	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX MS MS MOD02161 PDM * SCST3 MODNoODZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoODZi 1 Compa Degrees of fr (at the 90% cc significant MS MS MS MS MS MS MS MS MS MS	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.59000 0.61483 0.64662 0.59026 0.59026 0.60632 red to the base 1.011 0.5605 0.7755 0.6283	Std ND 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std ND 0.01428 0.05730 0.06593 0.07320 0.06255 0.07067	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
<pre>>del xx >MS >MS COD02061 >DM * CCST3 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of >del XX >MS 40D02161 PDM ! CCST3 40DNoObZi 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNOD2161 4 ISCST3 5 AMODNOD2161 5 Degrees of fr Degrees of fr</pre>	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 confidence level difference in t Wilmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755	Std Nbb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 0.01428 0.05730 0.06993 0.07320 0.06993 0.07320 0.06255 0.07067 model: HPDM	500 500 500 500 500 500 01 indi ween th 00ts 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267 0.22267 Min 0.91508 0.41442 0.42199 0.46643 0.33910 0.42730	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX DMS COD02161 PDM * CCST3 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNObZi Degrees of fr (at the 90% cc significant DMS COD02161 PDM ! CCST3 4 ISCST3 COD02161 PDM ! CCST3 4 ISCST3 5 AMODNObZi t-Value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNObZi 5 AMODNObZi 5 AMODNObZi 1 ADMS 2 AMOD02161 9 CST3 5 AMODNObZi 1 CST3 5 AMODNObZi Degrees of fr (at the 90% c	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42268 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 willmott - di Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 seedom (DF): 28	Std Nbb 0.00956 0.06581 0.07401 0.07401 0.07401 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730 0.06293 0.07320 0.06255 0.07067 model: HPDM	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500 500 500	0.00478 0.3369 0.24901 0.10480 0.16697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del XX MS MS MS MS MS MS MOD02061 t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNobZi Degrees of fr (at the 90% c significant MS MOD02161 PDM ! CST3 MODNobZi t-value compa 1 ADMS 2 AMOD02161 PDM ! CST3 5 AMODNobZi t-value compa 1 ADMS 2 AMOD02161 Degrees of fr (at the 90% c significant	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 sonfidence level difference in t	Std Nbb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Std Nb 0.01428 0.05730 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.07067 model: HPDM	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500 500 500	0.00478 0.3369 0.24901 0.10480 0.16697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del AX VOD02161 PDM * SCST3 VODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant AX MMS VOD02161 PDM ! SCST3 4 ODDNoDZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoDZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNODZi Degrees of fr (at the 90% c significant Average of 0	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.57037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.6283 eedom (DF): 28 0.6283 eedom (DF): 28 0.6283 0.6283 0.6283 0.6283 0.6283 0.6283 0.6	Std Nb 0.00956 0.06581 0.07401 0.07401 0.07401 0.07401 0.09067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 0.01428 0.05730 0.06933 0.07320 0.06255 0.07067 model: HPDM a value > 1.7 he metrics bet Results	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500 500 500	0.00478 0.3369 0.24901 0.10480 0.16697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583	0.02714 0.55525 0.51077 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
del AX VODO2161 PDM * SCST3 VODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of VOD02161 PDM ! SCST3 VODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of Average of O odel AX	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 sonfidence level difference in t	Std Nbb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730 0.06255 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 0.06255 0.07067 model: HPDM	500 500 500 500 500 500 500 500 500 500	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.96186 0.55072 0.59056 0.53556 0.55701 ere is a and the model 1	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583 being tested) Med 49.72298	0.02714 0.5525 0.51077 0.38767 0.484055 0.48415	0.06065 0.72839 0.84992 0.63089 1.04803 0.79317
del AX DMS MODO2161 PDM * SCST3 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of DMS MOD02161 PDM ! SCST3 MODNoObZi 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNODZi 1 -value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNODZi 5 AMODNODZi 1 -value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNODZi 5 Compa 5 AMODNODZi 1 Compa 5 AMODNODZI 5 AMODNODZI 1 Compa 5 AMODNODZI 5 AMODNOD	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42268 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in ti Avg 0.57037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 seedom (DF): 28 onfidence level difference in ti bserved Values Avg 49.65137	Std Nb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : : Results Std Nb 0.01428 0.05730 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.08255 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 2.83214 2.83214	500 500 500 500 500 01 indi ween th 00ts 500 500 01 indi ween th 00ts 500 500 500 500 500 500 500 50	0.00478 0.33369 0.24901 0.10480 0.18697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.96186 0.55072 0.59056 0.55701 ere is a and the model 1 HL 47.59573 47.59573	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.6453 0.59158 0.60583 being tested) Med 45,72298 49,72298	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	0.06065 0.72839 0.64992 0.63089 1.04803 0.79317
odel AX MODO2161 PDM * SCST3 MODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of MOD02161 PDM ! SCST3 4 MOD02161 PDM ! SCST3 5 AMODNoDZi t-value compa 1 ADMS 2 AMOD02161 Degrees of fr (at the 90% c significant of Average of O odel AX MOSMOODZI	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42268 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in ti Willmott - d Avg 0.97037 0.55000 0.61483 0.64662 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 sonfidence level difference in ti bserved Values Avg 49.65137 49.65137	Std Nbb 0.00956 0.06581 0.07401 0.07401 0.07401 0.07401 0.07401 0.09067 model: HPDM a value > 1.7 he metrics bet Std Nb 0.01428 0.05730 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.08255 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 2.83214 2.83214	500 500 500 500 500 500 01 indi ween th 00ts 500 500 500 500 500 500 500 50	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.96186 0.55072 0.56497 0.59056 0.557701 ere is a and the model 1 HL 47,59573 47,59573	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.60583 being tested) Med 49.72298 49.72298	0.02714 0.5525 0.51077 0.38767 0.48465 0.48415	0.06065 0.72839 0.84992 0.63089 1.04803 0.79317
odel AX DMS DMS SCST3 MODNobZi t-value compa 1 ADMS 2 AMODOZI 4 ISCST3 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 6 AX DMS 2 CST3 8 CST3 8 CST3 4 ISCST3 9 COMPACT 2 AMOD02161 7 (at the 90% c 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 5 AMODNobZi 1 PDM 2 AMOD02161 PDM AX DMS MOD02161 PDM	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 eedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.97037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 eedom (DF): 28 onfidence level difference in t bserved Values Avg 49.65137 49.65137 49.65137	Std Nbb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : Results Std Nb 0.01428 0.05730 0.06255 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 0.01428 0.07320 0.06255 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 2.83214 2.83214 2.83214	500 500 500 500 500 500 01 indi ween th oots 500 500 500 500 01 indi ween th oots 500 500 500 500 500 500 500 50	0.00478 0.33369 0.24901 0.10480 0.10480 0.18697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.55072 0.59056 0.55701 ere is a and the model 1 HL 47.59573 47.59573 47.59573 47.59573	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583 being tested) Med 49.72298 49.72298 49.72298	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	 0.6065 0.72839 0.84992 0.63089 1.04803 0.79317 . .<!--</td-->
odel AX MODO2161 PDM * SCST3 MODNoObZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNoObZi Degrees of fr (at the 90% c significant of MOD02161 PDM ! SCST3 4 MOD02161 PDM ! SCST3 5 AMODNoDZi t-value compa 1 ADMS 2 AMOD02161 Degrees of fr (at the 90% c significant of Average of O odel AX MOSMOODZI	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42268 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in ti Willmott - d Avg 0.97037 0.55000 0.61483 0.64662 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 sonfidence level difference in ti bserved Values Avg 49.65137 49.65137	Std Nb 0.00956 0.06581 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet : : Results Std Nb 0.01428 0.05730 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07320 0.06993 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 2.83214 2.83214 2.83214 2.83214	500 500 500 500 500 500 01 indi ween th 00ts 500 500 500 500 500 500 500 50	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.96186 0.55072 0.56497 0.59056 0.557701 ere is a and the model 1 HL 47,59573 47,59573	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.60583 being tested) Med 49.72298 49.72298	0.02714 0.5525 0.51077 0.38767 0.48465 0.48415	0.06065 0.72839 0.84992 0.63089 1.04803 0.79317
del AX MODO2161 PDM * SCST3 MODNo0bZi t-value compa 1 ADMS 2 AMOD02161 4 ISCST3 5 AMODNo0bZi Degrees of fr (at the 90% c significant of MODNo0bZi t-value compa 1 ADMS 2 AMOD02161 PDM ! SCST3 5 AMODNo0bZi t-value compa 1 ADMS 2 AMOD02161 Degrees of fr (at the 90% c significant of Average of O odel AX Degrees of fr (at the 90% c significant of Average of O odel AX DMS MOD02161 PDM S SCST3	Avg 0.02203 0.51363 0.45289 0.34060 0.42333 0.42698 red to the base 2.7531 1.4852 0.7391 1.0565 seedom (DF): 28 onfidence level difference in t Willmott - d Avg 0.57037 0.59000 0.61483 0.64662 0.59026 0.60632 red to the base 1.1011 0.5605 0.7755 0.6283 eodm (DF): 28 onfidence level difference in t bserved Values Avg 49.65137 49.65137 49.65137	Std Nb 0.00956 0.06581 0.09301 0.07401 0.11733 0.09067 model: HPDM a value > 1.7 he metrics bet Std Nb 0.01428 0.05730 0.06933 0.07320 0.06933 0.07320 0.06933 0.07320 0.06933 0.07320 0.06933 0.07320 0.06933 0.07067 model: HPDM a value > 1.7 he metrics bet Results Std Nb 2.83214 2.83214 2.83214 2.83214 2.83214	500 500 500 500 500 500 01 indi ween th 00ts 500 500 500 500 500 500 500 50	0.00478 0.33369 0.24901 0.10480 0.16697 0.22267 	0.01491 0.46615 0.38521 0.29104 0.34874 0.36160 ere is a and the model 1 HL 0.96186 0.55072 0.56497 0.59056 0.53556 0.55701 ere is a and the model 1 HL 47.59573 47.59573 47.59573 47.59573	0.02013 0.51186 0.44552 0.33899 0.40906 0.42129 being tested) Med 0.97311 0.59026 0.61813 0.64853 0.59158 0.60583 being tested) Med 49.72298 49.72298 49.72298	0.02714 0.55525 0.51077 0.38767 0.48065 0.48415	0.06065 0.7839 0.64992 0.63089 1.04080 0.79317

6-

Figure 6.2. A portion of the output file with the statistical measures for the ASTM analysis. The "best performing model" is indicated by an asterisk or exclamation point for each statistical measure. To assess whether or not there is a significant difference in the statistical measure between the "best performing model" and the other models, the bootstrap results for the statistical measure are used to compute the t-value(s). The null hypothesis that the average of the model bootstrap differences is greater than 0 can be tested for a given confidence level (ASTM, 2000). The t-values are shown immediately below the statistical measures in Figure 6.2. Examining the Normalized Mean Square Error in Figure 6.2, HPDM is the "best performing model," but there is no statistical difference at the 90% confidence level between HPDM and both versions of AERMOD and ISCST3. However, there is a significant difference between HPDM and ADMS.

The other two output files are a file of bootstrap results and results by regime. Each contains different information that may be useful in interpreting the results. The data used to compute the t-value(s) come from the bootstrap file.

The file of bootstrap results is divided into five parts:

1) Run summary of the information provided in the control file;

2) Averages and standard deviations of observed and modeled concentrations by regime;

3) Averages and standard deviations of the fractional bias and absolute fractional bias for each regime. The definitions of fractional bias can be found in the discussion of the ASTM standard (ASTM, 2000);

4) Averages computed for each boot and regime;

5) Comparison statistics for each boot; for each statistical measure.

In this example, there are nearly 21,000 records in the output file. Due to the length of the initial records and the number of records in the file, a sample is not shown here.

Figure 6.3 shows a sample of the information by regime. The standard deviation of the concentration values along the arc is listed first. Then for each experiment-arc combination an analysis is provided of the observed concentration values satisfying the criterion of being within $-0.67 < y/\sigma_y < 0.67$. Ci is a concentration value for this arc that satisfies the requirements of NFILTER and Cavg is the average of all N values with zero values excluded for this regime. The asterisk next to a Ci value indicates this value is the maximum observed concerntation found anywhere along the arc. There can be multiple occurrences for an experiment-arc pair depending on the value of NFILTER and the number values that are within $\pm 0.67y/\sigma_y$. Some additional statistics appear below this grouping and are based on the nonzero values. These statistics are followed by similar results where NFILTER was applied in the modeling. In this example, NFILTER was set to one, so only one near-centerline concentration is selected for analysis.

eg): 19.10201 i of N Exp Arc Ci Cavg Ci/Cavg 0.8320 2 27 2 3 92.7125* 58.3952 0.8320 3 27 2 3 35.4251 58.3952 0.6066 4 27 3 3 78.5425* 58.3952 0.516 6 27 19 3 34.5494* 58.3952 0.4594 7 27 19 3 30.2575 58.3952 0.4594 7 27 20 3 108.7983* 58.3952 1.2494 11 27 20 3 72.9614 58.3952 1.2494 11 27 21 3 148.1799* 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 0.0000 58.3952 0.5229 16 27 32 3 60.6452* 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.0327 22 27 34 3 13.7634 58.3952 0.0327 23 27 113 3 5.794 58.3952 0.0327 24 27 113 3 5.794 58.3952 0.0351 26 27 116 3 64.8069 58.3952 0.0992 25 27 114 3 3.2189 58.3952 0.0992 25 27 114 3 3.2189 58.3952 0.0992 25 27 116 3 64.8069 58.3952 1.3241 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg .0696 41.220 3 100.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7038 6 12 28 3 0.0000 63.9209 0.0308 6 12 28 3 0.0000 63.9209 0.0338 6 12 33 3 109.6774* 63.9209 1.7038 8 12 33 3 109.6774* 63.9209 1.7038 8 12 33 3 109.6774* 63.9209 1.7038 8 12 33 3 109.6774* 63.9209 0.3388 6 12 34 321.7204 63.9209 0.3388 6 12 34 321.7204 63.9209 0.3388 6 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3388 10 12 114 3 64.8069 63.9209 0.0504 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 27 20 3 72.9614 58.3952 1.2494 11 27 21 3 148.1799* 58.3952 2.5375 12 27 21 3 134.4754 58.3952 2.3029 13 27 28 3 0.0000 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0200 15 27 28 3 0.5376* 58.3952 0.5229 16 27 32 3 60.6452* 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.2711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 $81.3305*$ 58.3952 0.0952 25 27 114 3 3.2189 58.3952 0.0952 26 27 116 3 64.8069 58.3952 0.0952 27 116 3 64.8069 58.3952 0.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg 0.4196 4 12 20 3 108.7983* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.4196 1 12 13 3 5.5794 63.9209 0.4196 1 12 13 3 5.5794 63.9209 0.6000 7 1 2 32 3 56.7742 63.9209 0.6000 7 1 2 32 3 56.7742 63.9209 0.6000 7 1 2 32 3 56.7742 63.9209 0.7105 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.050
11 27 21 3 148.1799* 58.3952 2.5375 12 27 21 3 134.4754 58.3952 2.3029 13 27 28 3 0.0000 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 $0.5376*$ 58.3952 0.5229 16 27 32 3 56.7742 58.3952 1.0385 17 27 32 3 56.7742 58.3952 1.2411 19 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 $109.6774*$ 58.3952 1.2411 19 27 34 3 21.7204 22 27 34 3 13.7634 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 $81.3305*$ 58.3952 0.0955 26 27 116 3 $81.3305*$ 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg 0.4196 4 12 20 3 108.7983* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0574 10 07 Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Ci Cavg Ci/Cavg 1.2144 2 30 2 4 66.1943* 54.5058 0.7688
12 27 21 3 134.4754 58.3952 2.3029 13 27 28 3 0.0000 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 0.5376* 58.3952 0.5229 16 27 32 3 $60.6452*$ 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.8782 20 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 $81.3305*$ 58.3952 0.0922 25 27 116 3 $81.3305*$ 58.3952 0.0551 26 27 116 3 $81.3305*$ 58.3952 0.0551 26 27 116 3 64.8069 58.3952 0.0551 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg 3 12 19 3 26.8240 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.4504 2 12 3 134.4754 63.9209 1.4504 2 12 3 134.4754 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7015 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.3988 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.3988 10 12 113 3 5.5794 63.9209 0.3988 10 12 113 3 5.5794 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0073 11 12 114 3 3.2189 63.9209 0.0073 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0073 13 12 19.13367 1 07 N Exp Arc Ci Cavg Ci/Cavg Ci Ci Ci/Cavg Ci/Cavg Ci Ci Ci/Cavg Ci/Cavg Ci Ci Ci/Cavg Ci/Cavg 1 30 2 4 41.9028 54.5058 0.7688
13 27 28 3 0.0000 58.3952 0.0000 14 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 $30.5376*$ 58.3952 0.5229 16 27 32 3 56.7742 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 $109.6774*$ 58.3952 1.2711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 $81.3305*$ 58.3952 0.0955 24 27 116 3 64.8069 58.3952 0.0955 25 27 114 3 3.2189 58.3952 0.0955 26 27 116 3 64.8069 58.3952 0.0955 27 27 116 3 64.8069 58.3952 0.0955 28 27 116 3 64.8069 58.3952 0.0955 29 27 116 3 64.8069 58.3952 0.0928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci Ci/Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.2287 3 12 19 3 2 6.8240 63.9209 1.701 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0504 12 12 12 116 3 64.8069 63.9209 0.0504 12 12 12 12 12 12 12 12 12 12 12 12 12 1
14 27 28 3 0.0000 58.3952 0.0000 15 27 28 3 $30.5376*$ 58.3952 0.5229 16 27 32 3 $60.6452*$ 58.3952 1.0385 17 27 32 3 56.7742 58.3952 1.0372 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 $109.6774*$ 58.3952 1.2711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 $81.3305*$ 58.3952 0.0955 26 27 116 3 $81.3305*$ 58.3952 0.0951 26 27 116 3 $81.3305*$ 58.3952 0.0951 27 27 116 3 64.8069 58.3952 0.0951 26 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 7 $8.5425*$ 63.9209 1.2287 3 12 19 3 2 6.8240 63.9209 1.2287 3 12 19 3 2 6.8240 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.21038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0397 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0514 12 12 116 3 64.8069 63.9209 0.0514 12 12 116 3 64.8069 63.9209 0.0514 12 12 116 3 64.8069 63.9209 0.0504 12 1
15 27 28 3 30.5376* 58.3952 0.5229 16 27 32 3 60.6452* 58.3952 1.0385 17 27 32 3 56.7742 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 0.3720 20 27 34 3 21.7204 58.3952 0.2357 21 27 34 3 21.7204 58.3952 0.0955 24 27 113 3 5.794 58.3952 0.0955 24 27 113 3 5.794 58.3952 0.0951 26 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.4504 2 12 3 78.5425* 63.9209 1.2287
16 27 32 3 60.6452* 58.3952 1.0385 17 27 32 3 56.7742 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.8782 20 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.0955 23 27 113 3 5.794 58.3952 0.0955 24 27 113 3 5.794 58.3952 0.0955 24 27 116 3 81.3305* 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.4504 2 12 3 78.5425* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.4504 2 1
17 27 32 3 56.7742 58.3952 0.9722 18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.8782 20 27 33 3 68.3871 58.3952 1.711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0951 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 3 12 19 3 26.8240 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 23 56.7742 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 12 116 3 64.8069 63.9209 0.0504 2 12 12 126 66.1943* 54.5058 1.2144 2 30 2 4 66.1943* 54.5058 0.7688
18 27 33 3 72.4731 58.3952 1.2411 19 27 33 3 109.6774* 58.3952 1.8782 20 27 33 3 68.3871 58.3952 1.1711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.0955 23 27 113 3 5.7940 58.3952 0.0955 24 27 116 3 81.3305* 58.3952 0.0992 25 27 116 3 81.3305* 58.3952 1.3928 26 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.4504 21 2 3 92.7125* 63.9209 1.4504 212 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.6000 4 12
19 27 33 3 109.6774* 58.3952 1.8782 20 27 33 3 68.3871 58.3952 0.3720 21 27 34 3 21.7204 58.3952 0.2357 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0992 24 27 113 3 5.7940 58.3952 0.0992 25 27 114 3 .2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.4504 2 12 3 78.5425* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.7021 3 12 19 26.8240 63.9209 1.7021 5 12 2
20 27 33 3 68.3871 58.3952 1.1711 21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0992 25 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.4196 5 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 114 3 3.2189 63.9209 0.3398 10 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
21 27 34 3 21.7204 58.3952 0.3720 22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0551 26 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.4504 2 12 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3388 10 12 113 3 5.5794 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3388 10 12 113 3 5.5794 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0398 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .04394 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
22 27 34 3 13.7634 58.3952 0.2357 23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0955 25 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.4504 2 12 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111
23 27 113 3 5.5794 58.3952 0.0955 24 27 113 3 5.7940 58.3952 0.0992 25 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.4196 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
24 27 113 3 5.7940 58.3952 0.0992 25 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.2287 3 12 19 3 26.8240 63.9209 1.7021 5 12 21 3 134.4754 63.9209 1.7021 5 12 28 3 0.0000 63.9209 0.4196 6 12 28 3 0.0000 63.9209 0.4196 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111
25 27 114 3 3.2189 58.3952 0.0551 26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
26 27 116 3 81.3305* 58.3952 1.3928 27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg 1.1098 Avg Std GeoAvg Ci/Cavg 1.1098 Avg Std For Ci Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 78.5425* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.8182 6 12 28 3 0.0000 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209
27 27 116 3 64.8069 58.3952 1.1098 Avg Std GeoAvg GeoAvg Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.0000 7 12 32 3 6.7742 63.9209 0.3388 6 12 28 3 0.0000 63.9209 0.3388 9 12 34 3 21.7204 63.9209 0.3388 10 12 113 3 5.5794 63.9209 0.0504 12 12
Avg Std GeoAvg GeoAvg Ci/Cavg Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.4504 2 12 3 78.5425* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0873 11 12 113 3 5.5794 63.9209 0.0873 12 12 116 3 64.8069 63.9209 1.0139
Ci Ci Ci/Cavg Ci/Cavg .0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
.0696 40.2394 0.7105 2.6809 Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg GeoAvg GeoAvg Ci Ci Ci/Cavg
Results from Subroutine Filter i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.8873 11 12 114 3 3.2189 63.9209 0.0873 11 12 114 3 3.2189 63.9209 1.0139 Avg Std GeoAvg GeoAvg GeoAvg 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg
i of N Exp Arc Ci Cavg Ci/Cavg 1 12 2 3 92.7125* 63.9209 1.4504 2 12 3 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 12 3 3 78.5425* 63.9209 1.2287 3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.8882 8 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
3 12 19 3 26.8240 63.9209 0.4196 4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.8000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 109.6774* 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0504 12 12 116 3 64.8069 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg Std GeoAvg Ci/Cavg 1.913367 i 0f N Exp Arc Ci Cavg Ci/Cavg 1.30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 66.1943* 54.5058 0.7688
4 12 20 3 108.7983* 63.9209 1.7021 5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 eg): 19.13367 2 2 66.1943* 54.5058 1.2144 2 30 2 4 66.1943* 54.5058 1.2144
5 12 21 3 134.4754 63.9209 2.1038 6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.3398 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 2 2 66.1943* 54.5058 1.2144 30 2 4 66.1943* 54.5058 0.7688
6 12 28 3 0.0000 63.9209 0.0000 7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 0.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 2 2 66.1943* 54.5058 1.2144 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
7 12 32 3 56.7742 63.9209 0.8882 8 12 33 3 109.6774* 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 2 eg): 19.13367 .62.928 3.3111 ess Regime: 2 2 2 66.1943* 54.5058 1.2144 2 30 2 4 66.1943* 54.5058 0.7688
8 12 33 3 109.6774* 63.9209 1.7158 9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg .5942 .5942 44.8805 0.6298 3.3111 .5942 ess Regime: 2 2 .9113367 .19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1.2144 2 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
9 12 34 3 21.7204 63.9209 0.3398 10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg 1.0139 ess Regime: 2 2 2 2 2 2 eg): 19.13367 1.913367 1.2144 2 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
10 12 113 3 5.5794 63.9209 0.0873 11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg Ci/Cavg Ci/Cavg Ci Ci Ci/Cavg Ci/Cavg 3.3111 ess Regime: 2 2 2 2 eg): 19.13367 1 Ci/Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
11 12 114 3 3.2189 63.9209 0.0504 12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg GeoAvg 1.0139 Avg Std GeoAvg GeoAvg 1.0139 Avg Std GeoAvg GeoAvg 1.0139 System Ci Ci/Cavg 0.6298 3.3111 ess Regime: 2 2 2 2 eg): 19.13367 1 1.0139 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
12 12 116 3 64.8069 63.9209 1.0139 Avg Std GeoAvg GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 1 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
Avg Std GeoAvg GeoAvg Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4
Ci Ci Ci/Cavg Ci/Cavg .5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
.5942 44.8805 0.6298 3.3111 ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
ess Regime: 2 eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
eg): 19.13367 i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
i of N Exp Arc Ci Cavg Ci/Cavg 1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
1 30 2 4 66.1943* 54.5058 1.2144 2 30 2 4 41.9028 54.5058 0.7688
2 30 2 4 41.9028 54.5058 0.7688
· · ·

Figure 6.3. Sample of the output by regime.

REFERENCES

ASTM, 2000: Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance. D 6589-00. American Society for Testing and Materials, West Conshohocken, PA.

Cox, W. M. and J. A. Tikvart, 1990: A Statistical Procedure for Determining the Best Performing Air Quality Model, *Atmospheric Environment*, **24A**, 2387-2395.

Fox, D. G., 1981: Judging Air Quality Model Performance, *Bulletin of the American Meteorological Society*, **62**, 599-609.

Murray, D. R. and N. E. Bowne, 1988: Urban Power Plant Plume Studies. EPRI Report No. EA-5468, Research Project 2736-1, Electric Power Research Institute, Palo Alto, CA.

Oreskes, N., K. Shrader-Frechette and K. Belitz (1994): Verification, validation, and confirmation of numerical models in the earth sciences. *Science*, 263: 641-646.

APPENDIX

DIRECTORY STRUCTURE OF DISTRIBUTION CD

ASTM Root Directory Indianapolis ASTM Evaluation **Dispersion Modeling** ADMS AERMOD AERMOD_NoObZi HPDM ISCST3 Meteorology ADMS AERMOD AERMOD_NoObZi HPDM ISCST3 Kincaid **ASTM Evaluation Dispersion Modeling** ADMS AERMOD AERMOD_Turb HPDM ISCST3 Meteorology ADMS AERMOD AERMOD_Turb HPDM ISCST3 MixHts

PrairieGrass ASTM Evaluation Dispersion Modeling ADMS AERMOD HPDM ISCST3 Meteorology ADMS AERMOD HPDM ISCST3 MixHts

Documentation Software

TECHNICAL REPORT DATA (Please read Instructions on reverse before completing)				
1. REPORT NO. EPA-454/R-03-006	2.	3. RECIPIENT'S ACCESSION NO.		
^{4. TITLE AND SUBTITLE} A Program for the Statistical Evaluation Of Point Source Dispersion Models Using ASTM D 6589		5. REPORT DATE August 2003		
		6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Pacific Environmental Services, Inc, a MACTEC		10. PROGRAM ELEMENT NO.		
Company Research Triangle Park, NC		11. CONTRACT/GRANT NO.		
12. SPONSORING AGENCY NAME AND ADDRESS Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division U.S. Environmental Protection Agency Research Triangle Park, NC 27711		13. TYPE OF REPORT AND PERIOD COVERED Technical Report		
		14. SPONSORING AGENCY CODE		
15. SUPPLEMENTARY NOTES		•		
16. ABSTRACT				
	Standard Guide D 6589 for Statisti mance, which provides a procedur			

atmospheric transport and diffusion models to predict the "average centerline" concentration values of a chemical released from a point source. The EPA has developed a FORTRAN program entitled "Design 2" that implements this procedure. This report describes the input files and formats of these input files for running Design 2. The report describes the information provided by the various output files created by Design 2. The report does not describe the actual statistical procedures of Standard Guide D 6589, as these are documented in detail within this Guide's Annex.

17. KEY WORDS AND DOCUMENT ANALYSIS				
a.	DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
Meteorological Data Air Dispersion Models		Statistical Model Evaluation		
18. DISTRIE	BUTION STATEMENT	19. SECURITY CLASS (Report) Unclassified	21. NO. OF PAGES 34	
Relea	se Unlimited	20. SECURITY CLASS (Page) Unclassified	22. PRICE	

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

 \bigcirc

United States Environmental Protection Agency Office of Air Quality Planning and Standards Planning and Standards Research Triangle Park, NC 27711

Publication No. EPA-454/R-03-006 August 2003