Arsenic Removal from Drinking Water by Iron Removal EPA Demonstration Project at Big Sauk Lake Mobile Home Park in Sauk Centre, MN Six-Month Evaluation Report

by

H. Tien Shiao Abraham S.C. Chen Wendy E. Condit Lili Wang

Battelle Columbus, OH 43201-2693

Contract No. 68-C-00-185 Task Order No. 0029

for

Thomas J. Sorg Task Order Manager

Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, Ohio 45268

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

DISCLAIMER

The work reported in this document was funded by the United States Environmental Protection Agency (EPA) under Task Order 0029 of Contract 68-C-00-185 to Battelle. It has been subjected to the Agency's peer and administrative reviews and has been approved for publication as an EPA document. Any opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA.

FOREWORD

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and sub-surface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and groundwater; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

> Sally Gutierrez, Director National Risk Management Research Laboratory

ABSTRACT

This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate the effectiveness of Kinetico's Macrolite[®] pressure filtration process in removing arsenic to meet the new arsenic maximum contaminant level (MCL) of 10 μ g/L, the reliability of the treatment system, the required system operation and maintenance (O&M) and operator skill levels, and the capital and O&M cost of the technology. The project also is characterizing water in the distribution system and process residuals produced by the treatment system.

The Macrolite[®] CP-213f arsenic removal system at BSLMHP consisted of two 36-in diameter by 57-in tall contact tanks (205 gal each) and four 13-in diameter by 54-in tall pressure tanks (two for each duplex unit), all configured in parallel. Each pressure tank contained 20 in (or 1.5 ft³) of Macrolite[®] filter media. The maximum design flowrate was 20 gpm, which yielded at least 20 min of contact time prior to pressure filtration and at least 5.4 gpm/ft² of hydraulic loading to the Macrolite[®] filters. Because the system operated in an on-demand configuration, the actual flowrates ranged from 1 to 15 gpm, corresponding to 27 to 410 min of contact time and 0.3 to 4.1 gpm/ft² of hydraulic loading. From July 13, 2005, through January 17, 2006, the system operated for a total of 617 hr at approximately 3.4 hr/day. Based on the totalizer readings, the system treated approximately 863,470 gal of water with an average daily demand of 4,617 gal during this time period.

Total arsenic concentrations in source water ranged from 20.6 to 36.6 μ g/L with As(III) being the predominating species at an average concentration of 23.0 μ g/L. Potassium permanganate (KMnO₄) was used to oxidize As(III) and Fe(II) prior to Macrolite[®] pressure filtration. KMnO₄ was selected as the oxidant because of the presence of elevated total organic carbon (TOC) levels (at 3.2 to 4.8 mg/L) in source water and high formation potential of disinfection byproducts with the use of chlorine.

After the contact tanks, As(III) concentrations were reduced to an average value of 1.9 μ g/L, suggesting effective oxidation of As(III) to As(V) with KMnO₄. Meanwhile, arsenic was present primarily in the particulate form at an average value of 22.9 μ g/L, presumably, by being bound to iron particles. During the first six months from July 13, 2005, through January 17, 2006, total arsenic levels in the treated water were reduced to 2.9 to 17.7 μ g/L (averaged 7.6 μ g/L). Out of 24 sampling occasions, arsenic concentrations exceeded the 10- μ g/L MCL for a total of eight times, with all but one due to particulate breakthrough. Two samples exceeded total arsenic concentrations of 10 μ g/L due to low KMnO₄ dosage, resulting in incomplete oxidation of As(III) and Fe(II). In order to address particulate arsenic breakthrough, the backwash frequency was increased from every 2,743 gal to every 1,714 gal of throughput during this time period.

Total iron concentrations averaged 2,760 μ g/L in source water, which is above the secondary MCL of 300 μ g/L. With an average soluble iron to soluble arsenic ratio of 100:1, there was sufficient natural iron present in source water for effective arsenic removal. After the contact tanks, iron was present primarily in the particulate form, suggesting effective oxidation even in the presence of elevated TOC levels. Total iron concentrations in the treated water ranged from <25 to 1,067 μ g/L and averaged 259 μ g/L. An increase in particulate iron correlated with an increase in particulate arsenic, indicating iron breakthrough from the Macrolite[®] filters.

Total manganese concentrations averaged 144 μ g/L in source water, existing primarily in the soluble form as Mn(II) at 132 μ g/L. After the addition of 2.6 to 3.8 mg/L of KMnO₄ and after the contact tanks, manganese was present primarily in the soluble form based on the use of 0.45- μ m disc filters, with levels

ranging from 337 to 946 μ g/L before November 15, 2005. The high levels of TOC in source water appeared to have inhibited the formation of filterable manganese solids. Based on the results of a series of jar tests, the KMnO₄ dosage applied to the treatment system was increased to 5.6 mg/L. The increased KMnO₄ dosage enabled most manganese to precipitate after the contact tanks, leaving only 108 to 166 μ g/L measured as soluble manganese. Further adjustments will be made to the KMnO₄ dosing in the next six-month period to further lower the soluble manganese levels.

During this time period, the backwash water production rates ranged from 2.8 to 7.2%. The control disc on top of each set of duplex units was changed out twice to increase the backwash frequency in order to address the particulate arsenic, iron, and manganese breakthrough. The backwash frequency was increased from the initial field setting of every 2,743 gal to every 1,714 gal. If needed, further adjustments will be made in the next six-month study period. After November 15, 2006, when the modified backwash procedure was implemented, total arsenic concentrations in the backwash water ranged from 114 to 417 μ g/L; total iron concentrations ranged from 14,069 to 77,641 μ g/L; and total manganese concentrations ranged from 1,595 to 16,178 μ g/L. Using 130 gal of backwash water produced, this equates to approximately 0.17 lb of solids, including 4.4 × 10⁻⁴ lb of arsenic, 0.08 lb of iron, and 0.01 lb manganese, generated per backwash event.

Comparison of the distribution system sampling results before and after system startup showed a significant decrease in arsenic and iron levels and a significant increase in manganese levels at all three sampling locations. The distribution water sampling results essentially mirrored the treatment results of the Macrolite[®] filters. Neither lead nor copper concentrations at the sample sites appear to have been affected by the operation of the system.

The capital investment cost was \$63,547, which included \$22,422 for equipment, \$20,227 for engineering, and \$20,898 for installation. Using the system's rated capacity of 20 gal/min (gpm) (28,800 gal/day [gpd]), the capital cost was \$3,177/gpm (\$2.21/gpd).

The O&M cost for the Macrolite[®] CP-213f system included only incremental cost associated with the chemical supply, electricity consumption, and labor. The O&M cost was estimated in this report at \$0.43/1,000 gal and will be refined at the end of the one-year evaluation period.

DISCLAIM	ER	ii
FOREWOR	D	.iii
ABSTRACT	Γ	.iv
FIGURES		vii
TABLES		vii
ABBREVIA	ATIONS AND ACRONYMS	.ix
ACKNOWL	LEDGMENTS	.xi
Section 1.0:	INTRODUCTION	1
1.1	Treatment Technologies for Arsenic Removal	2
1.2	Project Objectives	2
Section 2.0:	SUMMARY AND CONCLUSIONS	5
Section 3 0.	MATERIALS AND METHODS	7
3 1	General Project Approach	7
3.1	System $\Omega \& M$ and $Cost Data Collection$	/ 8
3.2	System Oktiv and Cost Data Concentric System Oktive Concentric Concentric System Oktive Concentric	8
5.5	3 3 1 Source Water	0
	3.3.2 Treatment Plant Water	11
	3.3.3 Special Study - KMnO. Jar Tests	11
	3.3.4 Backwash Water	11
	3.3.5 Residual Solids	12
	3.3.6 Distribution System Water	12
34	Sampling Logistics	12
5.4	3 4 1 Preparation of Arsenic Speciation Kits	12
	3.4.2 Preparation of Sampling Coolers	12
	3.4.3 Sample Shinning and Handling	12
3.5	Analytical Procedures	13
Section 4.0:	RESULTS AND DISCUSSION	14
4.1	Facility Description and Pre-Existing Treatment System Infrastructure	14
	4.1.1 Source Water Quality	14
	4.1.2 Distribution System and Treated Water Quality	16
4.2	Treatment Process Description	17
4.3	System Installation	22
	4.3.1 Permitting	22
	4.3.2 Building Construction	22
	4.3.3 System Installation, Shakedown, and Startup	22
4.4	System Operation	23
	4.4.1 Operational Parameters	23
	4.4.2 Backwash	23
	4.4.3 Residual Management	25
	4.4.4 System/Operation Reliability and Simplicity	25
4.5	System Performance	26
	4.5.1 Treatment Plant Sampling	26
	4.5.2 Backwash Water Sampling	37
	4.5.3 Distribution System Water Sampling	38

CONTENTS

4.6	Syster	n Cost	41
	4.6.1	Capital Cost	
	4.6.2	Operation and Maintenance Cost	42
Section 5.0:	REFE	RENCES	44
APPENDIX	A: OF	ERATIONAL DATA	A-1
APPENDIX	B: AN	ALYTICAL DATA	B-1

FIGURES

Figure 3-1.	Process Flow Diagram and Sampling Locations	10
Figure 4-1.	Pre-Existing Pump House at BSLMHP, MN Site	14
Figure 4-2.	Existing Well Piping and Pressure Tanks at BSLMHP, MN Site	15
Figure 4-3.	Process Schematic of Macrolite [®] Pressure Filtration System	
Figure 4-4.	Photograph of Macrolite [®] Pressure Filtration System	
Figure 4-5.	KMnO ₄ Feed System	20
Figure 4-6.	Kinetico's Mach 1250 Control Valve	
Figure 4-7.	Backwash Flow Path for One Duplex Unit with Control Disc No. 8 and a	
-	Throughput of 1,714 gal between Backwash Cycles	21
Figure 4-8.	Concentrations of Arsenic Species at IN, AC, and TT Sampling Locations	30
Figure 4-9.	Total Arsenic Concentrations at TA/TB, TC/TD, and TT Sampling Locations	
Figure 4-10.	Total Iron Concentrations at TA/TB, TC/TD, and TT Sampling Locations	
Figure 4-11.	Total and Soluble Manganese Concentrations at AC Sampling Location	33
Figure 4-12.	Total Manganese Concentrations at TA/TB, TC/TD, and TT Sampling Locations	
Figure 4-13.	Jar Test Setup	
Figure 4-14.	Total Phosphorous Concentrations at IN, AC, TA/TB, TC/TD and TT Sampling	
-	Locations	38

TABLES

Table 1-1.	Summary of Round 1 and Round 2 Arsenic Removal Demonstration Locations,	
	Technologies, and Source Water Quality	3
Table 3-1.	Predemonstration Study Activities and Completion Dates	7
Table 3-2.	Evaluation Objectives and Supporting Data Collection Activities	7
Table 3-3.	Sample Collection Schedule and Analyses	9
Table 3-4.	Summary of Jar Test Parameters	11
Table 4-1.	BSLMHP, MN Water Quality Data	16
Table 4-2.	Physical Properties of M2 Macrolite [®] Media	17
Table 4-3.	Design Specifications for Macrolite [®] CP-213f Pressure Filtration System	19
Table 4-4.	System Operation from July 13, 2005 to January 17, 2006	24
Table 4-5.	Control Disc Size and Throughput between Backwash Cycles	25
Table 4-6.	Summary of Arsenic, Iron, and Manganese Analytical Results	27
Table 4-7.	Summary of Other Water Quality Parameter Sampling Results	
Table 4-8.	Control Disc Sizes and Corresponding Occurrences with High Total Arsenic and	
	Iron Concentrations	32

Table 4-9.	Correlations Between Pump Stroke Length, KMnO ₄ Dosage, and Total and Soluble		
	Manganese Concentrations	33	
Table 4-10.	Jar Test Results for Macrolite [®] -Treated Water	35	
Table 4-11.	Backwash Water Sampling Results	39	
Table 4-12.	Distribution Sampling Results	40	
Table 4-13.	Summary of Capital Investment for BSLMHP Treatment System	42	
Table 4-14.	O&M Cost for BSLMHP, MN Treatment System	43	

ABBREVIATIONS AND ACRONYMS

AAL	American Analytical Laboratories
Al	aluminum
AM	adsorptive media
As	arsenic
BSLMHP	Big Sauk Lake Mobile Home Park
BTU-hr	British Thermal Units per hour
Ca	calcium
Cu	copper
DO	dissolved oxygen
DOM	dissolved organic matter
EPA	U.S. Environmental Protection Agency
F	fluoride
Fe	iron
FRP	fiberglass reinforced plastic
GFH	granular ferric hydroxide
gpd	gallons per day
gpm	gallons per minute
HDPE	high-density polyethylene
hp	horsepower
ICP-MS ID IX	inductively coupled plasma-mass spectrometry identification ion exchange
LCR	Lead and Copper Rule
MCL	maximum contaminant level
MDL	method detection limit
MDH	Minnesota Department of Health
Mg	magnesium
Mn	manganese
Mo	molybolenum
mV	millivolts
Na	sodium
NA	not applicable
NaOCl	sodium hypochlorite
NRMRL	National Risk Management Research Laboratory
NTU	nephelometric turbidity units
O&M	operation and maintenance

OIT	Oregon Institute of Technology
ORD	Office of Research and Development
ORP	oxidation-reduction potential
PE	professional engineer
P&ID	piping and instrumentation diagrams
POU	point-of-use
psi	pounds per square inch
PVC	polyvinyl chloride
QA	quality assurance
QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RO	reverse osmosis
RPD	relative percent difference
Sb	antimony
SDWA	Safe Drinking Water Act
SMCL	Secondary Maximum Contaminant Level
TBD	to be determined
TCLP	Toxicity Characteristic Leaching Procedure
TDS	total dissolved solids
TOC	total organic carbon
TSS	total suspended solids
TTHM	total trihalomethane
V	vanadium

ACKNOWLEDGMENTS

The authors wish to extend their sincere appreciation to the operator, Mr. Bill Tix of the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. Mr. Tix monitored the treatment system daily and collected samples from the treatment and distribution system on a regular schedule throughout this reporting period. This performance evaluation would not have been possible without his efforts.

1.0: INTRODUCTION

The Safe Drinking Water Act (SDWA) mandates that U.S. Environmental Protection Agency (EPA) identify and regulate drinking water contaminants that may have adverse human health effects and that are known or anticipated to occur in public water supply systems. In 1975 under the SDWA, EPA established a maximum contaminant level (MCL) for arsenic at 0.05 mg/L. Amended in 1996, the SDWA required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. On January 18, 2001, EPA finalized the arsenic MCL at 0.01 mg/L (EPA, 2001). In order to clarify the implementation of the original rule, EPA revised the rule on March 25, 2003 to express the MCL as 0.010 mg/L ($10 \mu g/L$) (EPA, 2003). The final rule requires all community and non-transient, non-community water systems to comply with the new standard by January 23, 2006.

In October 2001, EPA announced an initiative for additional research and development of cost-effective technologies to help small community water systems (<10,000 customers) meet the new arsenic standard and to provide technical assistance to operators of small systems in order to reduce compliance costs. As part of this Arsenic Rule Implementation Research Program, EPA's Office of Research and Development (ORD) proposed a project to conduct a series of full-scale, on-site demonstrations of arsenic removal technologies, process modifications, and engineering approaches applicable to small systems. Shortly thereafter, an announcement was published in the *Federal Register* requesting water utilities interested in participating in Round 1 of this EPA-sponsored demonstration program to provide information on their water systems. In June 2002, EPA selected 17 out of 115 sites to be the host sites for the demonstration studies.

In September 2002, EPA solicited proposals from engineering firms and vendors for cost-effective arsenic removal treatment technologies for the 17 host sites. EPA received 70 technical proposals for the 17 host sites, with each site receiving one to six proposals. In April 2003, an independent technical panel reviewed the proposals and provided its recommendations to EPA on the technologies that it determined were acceptable for the demonstration at each site. Because of funding limitations and other technical reasons, only 12 of the 17 sites were selected for the demonstration project. Using the information provided by the review panel, EPA, in cooperation with the host sites and the drinking water programs of the respective states, selected one technical proposal for each site. As of February 2007, 11 of the 12 systems have been operational and the performance evaluation of six systems has been completed.

In 2003, EPA initiated Round 2 arsenic technology demonstration projects that were partially funded with Congressional add-on funding to the EPA budget. In June 2003, EPA selected 32 potential demonstration sites and the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN was one of them.

In September 2003, EPA, again solicited proposals from engineering firms and vendors for arsenic removal technologies. EPA received 148 technical proposals for the 32 host sites, with each site receiving from two to eight proposals. In April 2004, another technical panel was convened by EPA to review the proposals and provide recommendations to EPA with the number of proposals per site ranging from none (for two sites) to a maximum of four. The final selection of the treatment technology at the sites that received at least one proposal was made, again through a joint effort by EPA, the state regulators, and the host site. Since then, four sites have withdrawn from the demonstration program, reducing the number of sites to 28. Kinetico's Macrolite[®] Arsenic Removal Technology was selected for demonstration at the BSLMHP site.

1.1 Treatment Technologies for Arsenic Removal

The technologies selected for the Round 1 and Round 2 demonstration host sites include 25 adsorptive media (AM) systems (the Oregon Institute of Technology [OIT] site has three AM systems), 13 coagulation/filtration (C/F) systems, two ion exchange (IX) systems, and 17 point-of-use (POU) units (including nine under-the-sink reverse osmosis [RO] units at the Sunset Ranch Development site and eight AM units at the OIT site), and one system modification. Table 1-1 summarizes the locations, technologies, vendors, system flowrates, and key source water quality parameters (including As, Fe, and pH) at the 40 demonstration sites. An overview of the technology selection and system design for the 12 Round 1 demonstration sites and the associated capital costs is provided in two EPA reports (Wang et al., 2004 and Chen et al., 2004), which are posted on the EPA website at http://www.epa.gov/ORD/NRMRL/wswrd/dw/arsenic/index.html.

1.2 Project Objectives

The objective of the Round 1 and Round 2 arsenic demonstration program is to conduct 40 full-scale arsenic treatment technology demonstration studies on the removal of arsenic from drinking water supplies. The specific objectives are to:

- Evaluate the performance of the arsenic removal technologies for use on small systems.
- Determine the required system operation and maintenance (O&M) and operator skill levels.
- Characterize process residuals produced by the technologies.
- Determine the capital and O&M cost of the technologies.

This report summarizes the performance of the Kinetico Macrolite[®] CP-213f arsenic removal system at BSLMHP in Sauk Centre, MN from July 13, 2005, through January 17, 2006. The types of data collected included system operation, water quality (both across the treatment train and in the distribution system), residuals, and capital and preliminary O&M cost.

				Design	Source Water Quality		
Demonstration				Flowrate	As	Fe	рН
Location	Site Name	Technology (Media)	Vendor	(gpm)	(µg/L)	(µg/L)	(S.U.)
		Northeast/Ohio					
Wales, ME	Springbrook Mobile Home Park	AM (A/I Complex)	ATS	14	38 ^(a)	<25	8.6
Bow, NH	White Rock Water Company	AM (G2)	ADI	70 ^(b)	39	<25	7.7
Goffstown, NH	Orchard Highlands Subdivision	AM (E33)	AdEdge	10	33	<25	6.9
Rollinsford, NH	Rollinsford Water and Sewer District	AM (E33)	AdEdge	100	36 ^(a)	46	8.2
Dummerston, VT	Charette Mobile Home Park	AM (A/I Complex)	ATS	22	30	<25	7.9
Felton, DE	Town of Felton	C/F (Macrolite)	Kinetico	375	30 ^(a)	48	8.2
Stevensville, MD	Queen Anne's County	AM (E33)	STS	300	19 ^(a)	270 ^(c)	7.3
Houghton, NY ^(d)	Town of Caneadea	C/F (Macrolite)	Kinetico	550	27 ^(a)	1,806 ^(c)	7.6
Newark, OH	Buckeye Lake Head Start Building	AM (ARM 200)	Kinetico	10	15 ^(a)	1,312 ^(c)	7.6
Springfield, OH	Chateau Estates Mobile Home Park	AM (E33)	AdEdge	250 ^(e)	25 ^(a)	1,615 ^(c)	7.3
		Great Lakes/Interior P	Plains				
Brown City, MI	City of Brown City	AM (E33)	STS	640	14 ^(a)	127 ^(c)	7.3
Pentwater, MI	Village of Pentwater	C/F (Macrolite)	Kinetico	400	13 ^(a)	466 ^(c)	6.9
Sandusky, MI	City of Sandusky	C/F (Aeralater)	Siemens	340 ^(e)	16 ^(a)	1,387 ^(c)	6.9
Delavan, WI	Vintage on the Ponds	C/F (Macrolite)	Kinetico	40	$20^{(a)}$	1,499 ^(c)	7.5
Greenville, WI	Town of Greenville	C/F (Macrolite)	Kinetico	375	17	7827 ^(c)	7.3
Climax, MN	City of Climax	C/F (Macrolite)	Kinetico	140	39 ^(a)	546 ^(c)	7.4
Sabin, MN	City of Sabin	C/F (Macrolite)	Kinetico	250	34	$1,470^{(c)}$	7.3
Sauk Centre, MN	Big Sauk Lake Mobile Home Park	C/F (Macrolite)	Kinetico	20	25 ^(a)	3,078 ^(c)	7.1
Stewart, MN	City of Stewart	C/F&AM (E33)	AdEdge	250	42 ^(a)	1,344 ^(c)	7.7
Lidgerwood, ND	City of Lidgerwood	Process Modification	Kinetico	250	146 ^(a)	1,325 ^(c)	7.2
		Midwest/Southwes	t				
Arnaudville, LA	United Water Systems	C/F (Macrolite)	Kinetico	770 ^(e)	35 ^(a)	2,068 ^(c)	7.0
Alvin, TX	Oak Manor Municipal Utility District	AM (E33)	STS	150	19 ^(a)	95	7.8
	Webb Consolidated Independent School						
Bruni, TX	District	AM (E33)	AdEdge	40	56 ^(a)	<25	8.0
Wellman, TX	City of Wellman	AM (E33)	AdEdge	100	45	<25	7.7
	Desert Sands Mutual Domestic Water						
Anthony, NM	Consumers Association	AM (E33)	STS	320	23 ^(a)	39	7.7
Nambe Pueblo, NM	Nambe Pueblo Reservation	AM (E33)	AdEdge	145	33	<25	8.5
Taos, NM	Town of Taos	AM (E33)	STS	450	14	59	9.5
Rimrock, AZ	Arizona Water Company	AM (E33)	AdEdge	90 ^(b)	50	170	7.2
Tohono O'odham							
Nation, AZ	Tohono O'odham Utility Authority	AM (E33)	AdEdge	50	32	<25	8.2
Valley Vista, AZ	Arizona Water Company	AM (AAFS50/ARM 200)	Kinetico	37	41	<25	7.8

Table 1-1. Summary of Round 1 and Round 2 Arsenic Removal Demonstration Locations, Technologies, and Source Water Quality

Table 1-1. Summary of Round 1 and Round 2 Arsenic Removal Demonstration Locations, Technologies, and Source Water Quality (Continued)

				Design	Source Water Quality		
Demonstration Location	Site Name	Technology (Media)	Vendor	Flowrate (gpm)	As (µg/L)	Fe (µg/L)	pН
		Far West					
Three Forks, MT	City of Three Forks	C/F (Macrolite)	Kinetico	250	64	<25	7.5
Fruitland, ID	City of Fruitland	IX (A300E)	Kinetico	250	44	<25	7.4
Homedale, ID	Sunset Ranch Development	POU RO ^(f)	Kinetico	75 gpd	52	134	7.5
Okanogan, WA	City of Okanogan	C/F (Electromedia-I)	Filtronics	750	18	69 ^(c)	8.0
Klamath Falls, OR	Oregon Institute of Technology	POE AM (Adsorbsia/ARM 200/ArsenX ^{np}) and POU AM (ARM 200) ^(g)	Kinetico	60/60/30	33	<25	7.9
Vale, OR	City of Vale	IX (Arsenex II)	Kinetico	525	17	<25	7.5
	South Truckee Meadows General						
Reno, NV	Improvement District	AM (GFH)	Siemens	350	39	<25	7.4
Susanville, CA	Richmond School District	AM (A/I Complex)	ATS	12	37 ^(a)	125	7.5
Lake Isabella, CA	Upper Bodfish Well CH2-A	AM (HIX)	VEETech	50	35	125	7.5
Tehachapi, CA	Golden Hills Community Service District	AM (Isolux)	MEI	150	15	<25	6.9

AM = adsorptive media process; C/F = coagulation/filtration; HIX = hybrid ion exchanger; IX = ion exchange process; RO = reverse osmosis

ATS = Aquatic Treatment Systems; MEI = Magnesium Elektron, Inc.; STS = Severn Trent Services

(a) Arsenic existing mostly as As(III).

4

(b) Design flowrate reduced by 50% due to system reconfiguration from parallel to series operation.

(c) Iron existing mostly as Fe(II).

(d) Replaced Village of Lyman, NE site which withdrew from program in June 2006.

(e) Facilities upgraded systems in Springfield, OH from 150 to 250 gpm, Sandusky, MI from 210 to 340 gpm, and Arnaudville, LA from 385 to 770 gpm.

(f) Including nine residential units.

(g) Including eight under-the-sink units.

Section 2.0: SUMMARY AND CONCLUSIONS

Based on the information collected during the first six months of system operation, the following conclusions were made relating to the overall objectives of the treatment technology demonstration study.

Performance of the arsenic removal technology for use on small systems:

- KMnO₄, selected over chlorine due to the presence of elevated total organic carbon (TOC) levels (i.e., 3.2 to 4.8 mg/L) and high formation potential of disinfection byproducts in source water, was effective in oxidizing As (III), reducing its concentrations from an average of 23 µg/L to an average of 1.9 µg/L after the contact tanks. Arsenic after the contact tanks was converted mostly to particulate arsenic, which was ready to be removed by the Macrolite[®] filters. KMnO₄ also was effective in oxidizing soluble iron despite the presence of high TOC levels in raw water.
- Even at significantly reduced loading rates of 0.3 to 4.1 gpm/ft², the Macrolite[®] filters did not consistently remove arsenic to the 10-µg/L level. The removal at the target level was achieved during only 16 of the 24 weekly sampling events. Breakthrough of particulate arsenic and iron at concentrations as high as 21.5 and 2,363 µg/L, respectively, from the Macrolite[®] filters was the main reason for not meeting the target arsenic MCL.
- Because of the observed particulate breakthrough, the filter backwash frequency had to be repeatedly increased from the initial field setting of once every 2,743 gal to once every 1,714 gal during the first six-month study period. As a result, the backwash water generation ratios were increased correspondingly from 5.5 to 7.2%. Further adjustments to the backwash frequency will have to be implemented during the next six-month study period because of continuing particulate breakthrough.
- Oxidation of Mn(II) with KMnO₄ was affected by the presence of dissolved organic matter (DOM) in raw water, forming fine colloidal particles not retainable by 0.45-μm disc filters. A dosage of at least 4.58 mg/L appeared to be needed to form filterable manganese solids, thus reducing the "soluble" manganese levels, as measured by using 0.45-μm disc filters, from as high as 946 μg/L to below 166 μg/L after the contact tanks.
- Elevated total phosphorous levels ranging from 0.4 to 0.6 mg/L (as P) were detected in raw water. Total phosphorous existed primarily as total hydrolysable phosphorous, including polyphosphorous and some organic phosphorous according to EPA Method 365.4. No organopesticides, however, were present in source water according the EPA Method 507. Potential sources of elevated phosphorous included non-point source discharge from septic systems, agriculture, and urban runoff.

The Macrolite[®] filtration process was able to remove about 80% of total phosphorous.

Simplicity of required system O&M and operator skill levels:

• The daily demand on the operator was about 5 min, which included performing O&M activities such as mixing the KMnO₄ solution, measuring the KMnO₄ consumption, installing the hour meter, and working with the vendor to troubleshoot and perform minor on-site repairs.

- The system experienced some operational issues, which were related primarily to the backwash frequency. The throughput between backwash cycles had to be reduced repeatedly by using different control discs installed on top of the duplex units.
- There was no significant downtime during the first six months of system operation. However, the primary well pump developed a leak on January 4, 2006, which was repaired within a day. Further, a backwash malfunction occurred on August 9, 2005, which necessitated repairs by the vendor.

Process residuals produced by the technology:

• Based on the average of samples taken during several backwash events, the amount of solids produced per backwash event was 0.17 lb, which was composed of approximately 0.08 lb of iron and 4.4x10⁻⁴ lb of arsenic.

Cost-effectiveness of the technology:

- Using the system's rated capacity of 20 gal/min (gpm) (or 28,800 gal/day [gpd]), the capital cost was \$3,177 per gpm (or \$2.21 per gpd). The unit capital cost was \$0.57/1,000 gal if the system operated at 100% utilization rate. The system's real unit cost was 3.47/1,000 gal, based on 3.4 hr/day of system operation and 863,470 of water production.
- The O&M cost was \$0.43/1000 gal, based on labor, chemical usage, and electricity consumption.

3.0: MATERIALS AND METHODS

3.1 General Project Approach

Following the pre-demonstration activities summarized in Table 3-1, the performance evaluation of the Macrolite[®] treatment system began on July 13, 2005. Table 3-2 summarizes the types of data collected and/or considered as part of the technology evaluation process. The overall system performance was evaluated based on its ability to consistently remove arsenic to below the target MCL of 10 μ g/L through the collection of water samples across the treatment train. The reliability of the system was evaluated by tracking the unscheduled system downtime and frequency and extent of repair and replacement. The unscheduled downtime and repair information were recorded by the plant operator on a Repair and Maintenance Log Sheet.

Activity	Date
Introductory Meeting Held	08/31/04
Request for Quotation Issued to Vendor	12/06/04
Vendor Quotation Received	02/17/05
Purchase Order Established	02/24/05
Letter of Understanding Issued	01/10/05
Letter Report Issued	03/09/05
Engineering Package Submitted to MDH	03/28/05
Permit Granted by MDH	06/14/05
Study Plan Issued	06/21/05
Macrolite [®] Unit Shipped	06/10/05
Macrolite [®] Unit Delivered	06/16/05
System Installation Completed	06/24/05
System Shakedown Completed	07/03/05
Performance Evaluation Begun	07/13/05

Table 3-1. Predemonstration Study Activities and Completion Dates

MDH = Minnesota Department of Health

Table 3-2. Evaluation Objectives and Supporting Data Collection Activities

Evaluation Objective	Data Collection
Performance	-Ability to consistently meet 10 µg/L of arsenic in treated water
Reliability	-Unscheduled system downtime
	-Frequency and extent of repairs including a description of problems, materials and supplies needed, and associated labor and cost
System O&M and Operator	-Pre- and post-treatment requirements
Skill Requirements	-Level of automation for system operation and data collection
	-Staffing requirements including number of operators and laborers
	-Task analysis of preventive maintenance including number, frequency, and complexity of tasks
	-Chemical handling and inventory requirements
	-General knowledge needed for relevant chemical processes and health and safety practices
Residual Management	-Quantity and characteristics of aqueous and solid residuals generated by
	system operation
Cost-Effectiveness	-Capital cost for equipment, engineering, and installation
	-O&M cost for chemical usage, electricity consumption, and labor

The O&M and operator skill requirements were evaluated based on a combination of quantitative data and qualitative considerations, including the need for pre- and/or post-treatment, level of system automation, extent of preventative maintenance activities, frequency of chemical and/or media handling and inventory, and general knowledge needed for relevant chemical processes and related health and safety practices. The staffing requirements for the system operation were recorded on an Operator Labor Hour Log Sheet.

The quantity of aqueous and solid residuals generated was estimated by tracking the volume of backwash water produced during each backwash cycle. Backwash water was sampled and analyzed for chemical characteristics.

The cost of the system was evaluated based on the capital cost per gal/min (gpm) (or gal/day [gpd]) of design capacity and the O&M cost per 1,000 gal of water treated. This task required tracking the capital cost for equipment, engineering, and installation, as well as the O&M cost for media replacement and disposal, chemical supply, electricity usage, and labor.

3.2 System O&M and Cost Data Collection

The plant operator performed daily, weekly and monthly system O&M and data collection according to instructions provided by the vendor and Battelle. On a daily basis, with the exception of Saturdays and Sundays, the plant operator recorded system operational data, such as pressure, flowrate, volume, and hour meter readings on a Daily System Operation Log Sheet; checked the potassium permanganate (KMnO₄) tank level; and conducted visual inspections to ensure normal system operations. If any problem occurred, the plant operator contacted the Battelle Study Lead, who determined if the vendor should be contacted for troubleshooting. The plant operator recorded all relevant information, including the problems encountered, corrective actions taken; materials and supplies used, and associated cost and labor required, on a Repair and Maintenance Log Sheet. On a weekly basis, the plant operator measured several water quality parameters on-site, including temperature, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and recorded the data on a Weekly Water Quality Parameters Log Sheet. During the six-month study period, the system was backwashed automatically, except during the monthly backwash sampling events when the system was backwashed manually to capture the required backwash samples. Monthly backwash data also were recorded on a Backwash Log Sheet.

The capital cost for the arsenic removal system consisted of the cost for equipment, site engineering, and system installation. The O&M cost consisted of the cost for chemical usage, electricity consumption, and labor. Consumption of KMnO₄ was tracked on the Daily System Operation Log Sheet. Electricity usage was estimated based on the hours of operation and the chemical feed pump motor size. Labor for various activities, such as routine system O&M, troubleshooting and repairs, and demonstration-related work, were tracked using an Operator Labor Hour Log Sheet. The routine system O&M included activities such as completing field logs, replenishing the KMnO₄ solution, ordering supplies, performing system inspections, and others as recommended by the vendor. The labor for demonstration-related work, including activities such as performing field measurements, collecting and shipping samples, and communicating with the Battelle Study Lead and the vendor, was recorded, but not used for the cost analysis.

3.3 Sample Collection Procedures and Schedules

To evaluate system performance, samples were collected at the wellhead, across the treatment system, during Macrolite[®] filter backwash, and from the distribution system. The sampling schedules and analytes measured during each sampling event are listed in Table 3-3. In addition, Figure 3-1 presents a flow diagram of the treatment system along with the analytes and schedules at each sampling location.

Sample		No. of			Date(s) Samples
Туре	Sample Locations ^(a)	Samples	Frequency	Analytes	Collected
Source Water	At Wellhead (IN)	1	Once (during initial site visit)	On-site: pH, temperature, DO, and ORP Off-site: As(III), As(V), As (total and soluble), Fe (total and soluble), Mn (total and soluble), U (total and soluble), V (total and soluble), V (total and soluble), Na, Ca, Mg, Cl, F, NO ₃ , NO ₂ , NH ₃ , SO ₄ , SiO ₂ , P, turbidity, alkalinity, TDS, and TOC	08/31/04
Treatment Plant Water	At Wellhead (IN), After Contact Tanks (AC), After Tanks A/B (TA/TB), After Tank C/D (TC/TD)	4	Weekly	On-site: pH, temperature, DO, and ORP Off-site: As(total), Fe(total), Mn(total), SiO ₂ , P, turbidity, and alkalinity	07/20/05, 07/26/05, 08/02/05, 08/24/05, 08/31/05, 09/07/05, 09/14/05, 09/27/05, 10/05/05, 10/12/05, 10/26/05, 11/02/05, 11/09/05, 11/29/05, 12/14/05, 01/10/06, 01/17/06
	At Wellhead (IN), After Contact Tanks (AC), After Tanks TA/TB and TC/TD Combined (TT)	3	Monthly	Same as weekly analytes shown above plus the following: Off-site: As (soluble), As(III), As(V), Fe (soluble), Mn (soluble), Ca, Mg, F, NO ₃ , SO ₄ , and TOC	07/13/05, 08/18/05, 09/20/05, 10/19/05, 11/15/05, 12/08/05, 01/05/06
Distribution Water	Three LCR Residences	3	Monthly	As (total), Fe (total), Mn (total), Cu, Pb, pH, and alkalinity	Baseline Sampling ^(b) 02/16/05, 03/23/05 04/19/05, 05/23/05 Monthly Sampling: 07/26/05, 09/07/05, 09/27/05, 11/02/05 11/29/05, 12/15/05, 01/17/06
Backwash Water	Backwash Discharge Line	2	Monthly	As (total and soluble), Fe (total and soluble), Mn (total and soluble), pH, turbidity, TDS, and TSS	09/08/05, 09/20/05, 10/12/05, 11/15/05, 12/08/05, 01/10/06
Residual Sludge	At Backwash Discharge Point	2-3	TBD	TCLP Metals	TBD

Table 3-3. Sample Collection Schedule and Analyses

(a) Abbreviation corresponding to sample location in Figure 3-1.
(b) Sampling events performed before system startup.
TBD = to be determined.

Figure 3-1. Process Flow Diagram and Sampling Locations

Specific sampling requirements for analytical methods, sample volumes, containers, preservation, and holding times are presented in Table 4-1 of the EPA- Quality Assurance Project Plan (QAPP) (Battelle, 2004). The procedure for arsenic speciation is described in Appendix A of the QAPP.

3.3.1 Source Water. During the initial visit to the site, one set of source water samples was collected and speciated using an arsenic speciation kit (see Section 3.4.1). The sample tap was flushed for several minutes before sampling; special care was taken to avoid agitation, which might cause unwanted oxidation. Analytes for the source water samples are listed in Table 3-3.

3.3.2 Treatment Plant Water. During the system performance evaluation study, the plant operator collected samples weekly, on a four-week cycle, for on- and off-site analyses. For the first week of each four-week cycle, samples taken at the wellhead (IN), afte the contact tanks (AC), and after Tanks A/B and Tanks C/D combined (TT), were speciated on-site and analyzed for the analytes listed in Table 3-3 for monthly treatment plant water. For the next three weeks, samples were collected at IN, AC, after Tanks A/B (TA/TB) and after Tanks C/D (TC/TD) and analyzed for the analytes listed in Table 3-3 for the weekly treatment plant water.

3.3.3 Special Study - KMnO₄ Jar Tests. Because significantly elevated soluble manganese concentrations were measured in the treated water after the Macrolite[®] filters, a series of jar tests were conducted at Battelle's laboratories on November 7, 2005, using the treated water taken at the TT location from the site to determine an appropriate KMnO₄ dosage for complete oxidation of Mn(II) and formation of filterable manganese solids.

The jar tests consisted of six 1-L jars of the treated water with increasing dosages of KMnO₄ ranging from 1.0 to 3.0 mg/L (Table 3-4). One jar was used as a control with no KMnO₄ addition. The jars were placed on a Phipps & Byrd overhead stirrer/jar tester with an illuminated base. The jars were mixed for a total of 31 min at various mixing speeds: 200 rpm for 1 min immediately after the KMnO₄ addition, followed by 100 rpm for 19 min and 28 rpm for 11 min. After the specified contact time, the supernatant in each jar was filtered with 0.20-µm disc filters and analyzed for arsenic, iron, and manganese using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The pH and ORP values of the content in each jar also were measured using a VWR Symphony SP90M5 Handheld Multimeter at the beginning and end of each jar test. The results of the jar tests are discussed in Section 4.5.1.

Parameter	Jar 1	Jar 2	Jar 3	Jar 4	Jar 5	Jar 6
Mix Time (min) ^(a)	31	31	31	31	31	31
KMnO ₄ (mg/L)	0	1.0	1.5	2.0	2.5	3.0

 Table 3-4.
 Summary of Jar Test Parameters

(a) Mixing Speeds: 1 min at 200 rpm, 19 min at 100 rpm, and 11 min at 28 rpm.

3.3.4 Backwash Water. Backwash samples were collected monthly by the plant operator. One backwash water sample was collected as one of the tanks in each duplex unit was backwashed during each of the first six monthly sampling events. For the first three sampling events, one grab sample was taken as the bulk of solids/water mixture was being discharged from the sample tap located on the backwash water discharge line but before the backwash totalizer. Unfiltered samples sent to American Analytical Laboratories (AAL) for pH, total dissolved solids (TDS), and turbidity measurements. Filtered samples using 0.45-µm disc filters were sent to Battelle's ICP-MS laboratory for soluble As, Fe, and Mn analyses. Starting from November 15, 2005, during the fourth sampling event, the sampling procedure

was modified to include the collection of composite samples for total As, Fe, and Mn as well as TSS analyses. This modified procedure involved diverting a portion of backwash water at approximately 1 gpm into a clean, 32-gal plastic container over the duration of the backwash for each set of duplex tanks. After the content in the container was thoroughly mixed, composite samples were collected and /or filtered on-site with a 0.45-µm filters. Analytes for the backwash samples are listed in Table 3-3.

3.3.5 Residual Solids. Residual solids produced by the treatment process included backwash solids, which were not collected during the initial six months of this demonstration.

3.3.6 Distribution System Water. Samples were collected from the distribution system to determine the impact of the arsenic treatment system on the water chemistry in the distribution system, specifically, the arsenic, lead, and copper levels. Prior to the system startup, from February to May 2005, four sets of baseline distribution water samples were collected from three residences within the disribution system. Following the system startup, distribution system sampling continued on a monthly basis at the same three locations.

The three homes selected for the sampling had been included in the Park's Lead and Copper Rule (LCR) sampling. The homeowners collected samples following an instruction sheet developed according to the *Lead and Copper Monitoring and Reporting Guidance for Public Water Systems* (EPA, 2002). First draw samples were collected from a cold-water faucet located upstream of the softener in each home. (Note that the samples thus collected were not from a frequently used kitchen or bathroom faucet nor from a faucet that was commonly used for human consumption.) To ensure collection of stagnant water, the faucet were not used for at least 6 hr. Dates and times of sample collection and last water usage were recorded for calculations of the stagnation time. Analytes for the distribution system water are listed in Table 3-3. Arsenic speciation was not performed for the distribution water samples.

3.4 Sampling Logistics

3.4.1 Preparation of Arsenic Speciation Kits. The arsenic field speciation method uses an anion exchange resin column to separate the soluble arsenic species, As(V) and As(III) (Edwards et al., 1998). Resin columns were prepared in batches at Battelle laboratories according to the procedures detailed in Appendix A of the EPA-endorsed QAPP (Battelle, 2004).

3.4.2 Preparation of Sample Coolers. For each sampling event, a sample cooler was prepared with the appropriate number and type of sample bottles, disc filters, and/or speciation kits. All sample bottles were new and contained appropriate preservatives. Each sample bottle was affixed with a preprinted, colored-coded label consisting of the sample identification (ID), date and time of sample collection, collector's name, site location, sample destination. analysis required, and preservative. The sample ID consisted of a two-letter code for a specific water facility, sampling date, a two-letter code for a specific sampling location, and a one-letter code designating the arsenic speciation bottle (if necessary). The sampling locations at the treatment plant were color-coded for easy identification. The labeled bottles for each sampling locations were placed in separate ZiplockTM bags and packed in the cooler.

In addition, all sampling-and shipping-related materials, such as disposable gloves, sampling instructions, chain-of-custody forms, prepaid/addressed FedEx air bills, and bubble wrap, was included. The chain-of-custody forms and air bills were complete except for the operator' signature and the sample dates and times. After preparation, the sample cooler was sent to the site via FedEx for the following week's sampling event.

3.4.3 Sample Shipping and Handling. After sample collection, samples for off-site analyses were packed carefully in the original coolers with wet ice and shipped to Battelle. Upon receipt, the sample

custodian verified that all samples indicated on the chain-of-custody forms were included and intact. Sample IDs were checked against the chain-of-custody forms and the samples were logged into the laboratory sample receipt log. Discrepancies noted by the sample custodian were addressed with the plant operator by the Battelle Study Lead.

Samples for metal analylses were stored at Battelle's ICP-MS Laboratory. Samples for other water quality analyses were packed in separate coolers and picked up by couriers from American Analytical Laboratories (AAL) in Columbus, OH and TCCI Laboratories (TCCI) in Lexington, OH, both of which were under contract with Battelle for this demonstration study. The chain-of-custody forms remained with the samples from the time of preparation through analysis and final disposition. All samples were archived by the appropriate laboratories for the respective duration of the required hold time and disposed of properly thereafter.

3.5 Analytical Procedures

The analytical procedures described in detail in Section 4.0 of the EPA-endorsed QAPP (Battelle, 2004) were followed by Battelle ICP-MS, AAL, and TCCI Laboratories. Laboratory quality assuarnce/quality control (QA/QC) of all methods followed the prescribed guidelines. Data quality in terms of precision, accuracy, method detection limits (MDL), and completeness met the criteria estrablished in the QAPP (i.e., relative percent difference [RPD] of 20%, percent recovery of 80-120%, and completeness of 80%). The quality assurance (QA) data associated with each analyte will be presented and evaluated in a QA/QC Summary Report to be prepared under separate cover upon completion of the Arsenic Demonstration Project.

Field measurements of pH, temperature, DO, and ORP were conducted by the plant operator using a VWR Symphony SP90M5 Handheld Multimeter, which was calibrated for pH and DO prior to use following the procedures provided in the user's manual. The ORP probe also was checked for accuracy by measuring the ORP of a standard solution and comparing it to the expected value. The plant operator collected a water sample in a clean, plastic beaker and placed the Symphony SP90M5 probe in the beaker until a stable value was obtained. The plant operator also performed free and total chlorine measurements using Hach chlorine test kits following the user's manual.

4.0: RESULTS AND DISCUSSION

4.1 Facility Description and Pre-Existing Treatment System Infrastructure

Located at 43987 County Road 24 in Sauk Centre, MN, BSLMHP had a water supply system sized for up to 50 mobile home connections or approximately 100 residents. There were 37 mobile homes in the park during the study period. Prior to the demonstration study, the facility reported the average daily demand of 7,500 gpd and the peak daily demand of 16,000 gpd. The system typically operated approximately 6 hr/day. Figure 4-1 shows the pre-existing well house at the facility.

The system was supplied intermittently by groundwater from two wells installed at a depth of approximately 90 ft below ground surface (bgs). The new well (Well No. 2) was used as the primary well and the old well (Well No. 1) used as a backup well. The new well was equipped with a $1\frac{1}{2}$ -horsepower (hp), 4-in submersible pump installed on a 60-ft drop pipe and rated for 25 gpm at 180 ft H₂O (or 78 psi). The pump installed in the backup well reportedly had a similar capacity, but records were no longer available. Figure 4-2 shows the existing piping and two 62-gal Champion pressure tanks in the wellhouse. There was no disinfection or other treatment at the wellheads, although most residents had water softeners in their homes.

4.1.1 Source Water Quality. Source water samples were collected on August 31, 2004, and subsequently analyzed for the analytes shown in Table 3-3. The results of source water analyses, along with those provided by the facility to EPA for the demonstration site selection and those independently collected and analyzed by EPA, MDH, and the vendor are presented in Table 4-1.

As shown in Table 4-1, total arsenic concentrations in source water extracted from both wells ranged from 17.0 to 32.0 μ g/L. Based on the August 31, 2004, speciation results, as much as 54% of the total arsenic, or 13.6 μ g/L, was found to exist as As(III) and 18% existed as particulate arsenic.

Figure 4-1. Pre-Existing Pump House at BSLMHP, MN Site

Figure 4-2. Existing Well Piping and Pressure Tanks at BSLMHP, MN Site

Iron concentrations in source water extracted from both wells ranged from 3,000 to 3,400 μ g/L, existing entirely as soluble iron based on August 31, 2004 results. A rule of thumb is that the soluble iron concentration, expressed in mg/L, should be at least 20 times the soluble arsenic concentration, also expressed in mg/L, for effective removal of arsenic onto iron solids (Sorg, 2002). Based on the best and worst case scenarios, the results indicate that iron levels are 94 to 200 times higher than total arsenic levels. As such, there is no need to supplement the natural iron for arsenic removal. The proposed treatment process is designed to reduce iron levels in the filtered water to below the secondary MCL of 300 μ g/L.

Manganese levels of 130 to 150 μ g/L were elevated above the secondary MCL of 50 μ g/L. The pH values ranged from 7.1 to 7.4, which were within the target range of 5.5 to 8.5 for the iron removal process. Total organic carbon (TOC) levels at 3.9 to 4.9 mg/L were high and because of the high levels, KMnO₄ was used to oxidize iron and arsenic. The use of KMnO₄ should help eliminate the formation potential of disinfection byproducts, which could occur if pre-chlorination was implemented. In April 2005, EPA conducted a disinfection byproduct formation test on source water and found that after 96 hr of maintaining a chlorine residual, the total trihalomethane (TTHM) level was 0.11 mg/L, existing almost completely as chloroform. Note that the MCL for TTHM is 0.080 mg/L. This further confirmed the need to use an alternate oxidant to chlorine. Ammonia levels at 1.2 mg/L also were elevated and could significantly increase the chlorine demand should chlorine be used as an oxidant. The turbidity of the water at 30 NTU was high, presumably caused by iron precipitation during sample collection and transit. Hardness ranged from 300 to 360 mg/L, silica from 21 to 25 mg/L, and sulfate from <4 to 5.4 mg/L. Based on the historical data provided by MDH, there was no apparent difference in water quality between Wells No. 1 and No. 2. Total arsenic concentrations ranged from 26.0 to 32.0 µg/L for Well No. 1 and from 26.0 to 28.0 µg/L for Well No. 2; total iron concentrations were 3,400 for Well No. 1 and 3,000 μ g/L for Well No. 2; and total manganese concentrations were 140 μ g/L for Well No. 1 and 130 μ g/L for Well No. 2.

							MDH
		Facility	Kinetico	Battelle	MDH	MDH	Distribution
Donomotor	Unit	Well 2 Dete	Well 2 Dete	Well 2 Dete	Well 1 Data	Well 2 Dete	Water Dete ^(a)
	Unit	Not	Data	Data	Data 01/25/01	Data 01/25/01	Data 01/25/01
Date		specified	10/14/03	08/31/04	01/23/01 - 08/10/04	-08/10/04	01/25/01- 08/10/04
pH	_	7.4	7.3	7.1	7.3	7.4	NS
Temperature	°C	NS	NS	NS	NS	NS	NS
DO	mg/L	NS	NS	1.48	NS	NS	NS
ORP	mV	NS	NS	-98	NS	NS	NS
Total Alkalinity (as CaCO ₃)	mg/L	355	364	363	350	360	NS
Hardness (as CaCO ₃)	mg/L	305	330	360	310	300	340
Turbidity	NTU	NS	NS	30	<1-22	<1-20	<1–22
TDS	mg/L	NS	NS	338	NS	NS	NS
TOC	mg/L	4.9	NS	3.9	NS	4.9	NS
Total N (Nitrite + Nitrate) (as N)	mg/L	NS	NS	NS	NS	NS	< 0.05-0.01
Nitrate (as N)	mg/L	NS	NS	< 0.04	NS	NS	NS
Nitrite (as N)	mg/L	NS	NS	< 0.01	NS	NS	NS
Ammonia (as N)	mg/L	NS	NS	1.2	NS	NS	NS
Chloride	mg/L	1.5	<1.0	<1.0	1.5	1.5	NS
Fluoride	mg/L	NS	0.46	< 0.1	NS	NS	0.29
Sulfate	mg/L	5.2	<4.0	<5.0	5.0	5.4	6.6
Silica (as SiO ₂)	mg/L	24	21.4	25	23	24	23.0-24.0
Orthophosphate (as P)	mg/L	0.02	< 0.5	< 0.1	NS	NS	NS
As (total)	μg/L	26	17	25.3	26.0-32.0	26.0-28.0	18.4-28.0
As (soluble)	μg/L	NS	NS	20.7	NS	NS	NS
As (particulate)	μg/L	NS	NS	4.6	NS	NS	NS
As(III)	μg/L	NS	NS	13.6	NS	NS	NS
As(V)	μg/L	NS	NS	7.1	NS	NS	NS
Fe (total)	μg/L	3,200	3,060	3,078	3,400	3,000	2,900
Fe (soluble)	μg/L	NS	NS	3,149	NS	NS	NS
Mn (total)	μg/L	140	150	150	140	130	140
Mn (soluble)	μg/L	NS	NS	154	NS	NS	NS
U (total)	μg/L	NS	NS	< 0.1	NS	NS	NS
U (soluble)	μg/L	NS	NS	< 0.1	NS	NS	NS
V (total)	μg/L	NS	NS	0.17	<2	<2	NS
V (soluble)	μg/L	NS	NS	< 0.1	NS	NS	NS
Na (total)	mg/L	14	13	17	15	14	13.6
Ca (soluble)	mg/L	72	81	87	72	72	80
Mg (total)	mg/L	30	32	35	31	29	33
Gross-Alpha	pCi/L	NS	NS	NS	NS	NS	<1.00-<1.5
Gross-Beta	pCi/L	NS	NS	NS	NS	NS	<0.40-<0.91
Radon	pCi/L	NS	NS	NS	NS	NS	50-470
Radium-228	pCi/L	NS	NS	NS	NS	NS	< 0.59

Table 4-1. BSLMHP, MN Water Quality Data

NS = not sampled.

(a) Samples taken from various residences.

4.1.2 Distribution System and Treated Water Quality. Water extracted from both wells blends within the pressure tanks and the distribution system. The park owner indicated that the distribution system is solely constructed of polyvinyl chloride (PVC). Prior to this demonstration project, the treatment system had no disinfection or other treatment at the wellheads, although most residents had water softeners in their homes. The historic arsenic levels detected within the distribution system at

several different sampling points, including residences and the wellhouse distribution entry piping, ranged from 18.4 to 28.0 μ g/L based on MDH treated water sampling data shown in Table 4-1.

4.2 Treatment Process Description

The treatment train for the BSLMHP system includes KMnO₄ oxidation, co-precipitation/adsorption, and Macrolite[®] pressure filtration. Macrolite[®] is an engineered ceramic filtration media manufactured by Kinetico and approved for use in drinking water applications under NSF International (NSF) Standard 61. Macrolite[®] is a low-density, spherical media, designed to allow for filtration rates, as claimed by the vendor, up to 10 gpm/ft², a hydraulic loading rate higher than that for most conventional filtration media. The physical properties of this media are summarized in Table 4-2. The vendor considers Macrolite[®] media chemically inert and compatible with chemicals such as oxidants and ferric chloride.

Property	Value
Color	Variable
Uniformity Coefficient	1.1
Sphere Size Range (mm) [mesh]	0.21 – 0.42 [40 × 70]
Nominal Size (mm)	0.3
Bulk Density (g/cm ³) [lb/ft ³]	0.86 [54]
Specific Gravity	2.05

Table 4-2. Physical Properties of M2 Macrolite[®] Media

Figure 4-3 is a schematic and Figure 4-4 a photograph of the Macrolite[®] CP-213f arsenic removal system. The treatment system was operated as an on-demand system and the volume of water treated was based on water usage. The well pump turned on when the pressure tank pressure reached 45 psi and shut off at 60 psi. The primary system components consisted of a KMnO₄ feed system (with the metering pump interlocked with a totalizer located after the pressure tanks and prior to the treatment system), two contact tanks, four pressure filtration tanks (two each within each duplex unit), and associated pressure and flow instrumentation. Various instruments were installed to track system performance, including the inlet and outlet pressure after each filter, flowrate to the distribution system, and backwash flowrate. All plumbing for the system was Schedule 80 PVC with the necessary valves, sampling ports, and other features. Table 4-3 summarizes the design features of the Macrolite[®] pressure filtration system. The major process steps and system components are presented as follows:

• **Potassium Permanganate Oxidation** – KMnO₄ was used to oxidize As(III), Fe(II), and Mn(II) in source water. KMnO₄ was selected to help reduce the formation potential of disinfection by-products due to the presence of high TOC levels in source water. The KMnO₄ addition system consisted of a 150-gal day tank, a Pulsatron metering pump, and an overhead mixer (Figure 4-5). The working solution was prepared by adding 0.75 gal (or 10 lb) of KMnO₄ crystals with 97% minimum purity into 40 gal of water to form a 3% KMnO₄ solution. During the six-month study period, the 21-in diameter and 31.5-in tall KMnO₄ tank was re-filled a total of four times when the tank level reached an average of 17.4 in. The KMnO₄ feed pump was sized with a maximum capacity of 44 gpd or 6.9 L/hr. However, the pump was flow-paced and the actual rate of KMnO₄ addition varied based on the influent

Figure 4-3. Process Schematic of Macrolite[®] Pressure Filtration System

Figure 4-4. Photograph of Macrolite[®] Pressure Filtration System (1. Duplex Units, 2. Contact Tanks, 3. Pressure Tanks,

4. Chemical Day Tank, and 5. Totalizer on Raw Water Line)

Parameter	Value	Remarks
Pretreatment		
KMnO ₄ Dosage (mg/L as [KMnO ₄])	3.3	Calculated KMnO ₄ demand based on arsenic, iron, and manganese in source water; actual demand higher due to presence of TOC in source water
Contact Tanks		
Tank Size (in)	36 D × 57 H	205 gal each tank
No. of Tanks	2	_
Configuration	Parallel	-
Contact Time (min/tank)	20	Based on peak flowrate of 20 gpm; actual contact time based on on-demand flowrate
Filtration Tanks		
Tank Size (in)	$13 \text{ D} \times 54 \text{ H}$	-
Cross-Sectional Area (ft ² /tank)	0.92	_
No. of Tanks	4	-
Configuration	Parallel	Between two duplex units and between two filtration tanks within each duplex unit.
Media Type	Macrolite®	40/60 mesh media
Media Quantity (ft ³ /tank)	1.5	20-in bed depth in each tank
Freeboard Measurements (in/tank)	28	Measurements taken by vendor's contractor on 12/07/05 from top of filtration tank to top of media bed
Filtration Rate (gpm/ft ²)	5.4	Based on a 5 gpm system flowrate through each filtration tank; actual filtration rate based on demand
Pressure Drop (psi)	15	Across a clean bed
Throughput before Backwash (gal)	2,743	Based on initial field design
Backwash Hydraulic Loading Rate (gpm/ft ²)	6.5	Based on a 6-gpm backwash flowrate through each filtration tank
Backwash Duration (min/tank)	20	-
Wastewater Production (gal)	130	For each tank
System Design Flowrate (gpm)	20	Peak flowrate; actual flowrate based on demand
Maximum Daily Production (gpd)	28,800	Based on peak flowrate, 24 hr/day
Hydraulic Utilization (%)	56	Estimated based on peak daily demand ^(a)

Table 4-3.	Design Sp	ecifications fo	r Macrolite [®]	CP-213f	Pressure	Filtration S	ystem
------------	------------------	-----------------	--------------------------	----------------	----------	---------------------	-------

(a) Based on historic peak daily demand of 16,000 gpd.

flowrate to the treatment system. During the first six months of system operation, $KMnO_4$ dosages varied from 2.1 to 6.1 mg/L. The operator indicated that the mixer was only turned on when the $KMnO_4$ crystals was mixed initially with water in the day tank.

- **Contact** Two 36-in by 57-in fiberglass reinforced plastic (FRP) contact tanks arranged in parallel provided at least 20 min of contact time when operating at the design (or peak) flowrate of 20 gpm. The longer retention time was designed to aid in the formation of manganese particles before Macrolite[®] filtration.
- **Pressure Filtration** The filtration system consisted of downflow filtration through two sets of dual-pressure filtration tanks arranged in parallel. Each duplex unit was comprised of two 13-in by 54-in FRP tanks and a control valve. Each filtration tank was filled with approximately 20-in (1.5 ft³) of 40/60 mesh Macrolite[®] media supported by 3-in (0.25 ft³) of garnet underbedding. The standard operation had both tanks of a pair online with each pressure tank treating a maximum of 5 gpm for a hydraulic loading rate

Figure 4-5. KMnO₄ Feed System

of 5.4 gpm/ft². With four tanks online, the maximum system flowrate was 20 gpm. However, as shown in Figure 4-3, the system had an on-demand configuration with two pressure tanks located ahead of the treatment system. The actual flowrate through the system varied based on water demand, but was limited to less than 20 gpm by flow restrictors located on the duplex units.

The control valve (Kinetico Mach 1250) located on top of each duplex unit (Figure 4-6) consisted of a gear stack, which determines the throughput between two consecutive backwash cycles. The control valve consisted of three chambers: inlet, outlet, and regeneration and only the influent water was measured/recorded by the gear stack.

Figure 4-6. Kinetico's Mach 1250 Control Valve

• **Backwash Operations** – Backwash was a fully automated process triggered by a pre-set volume throughput measured by the control valve located on top of each duplex unit. The spent filtration tank was backwashed with the treated water from the other tank within the duplex unit and the resulting wastewater was discharged to a sanitary sewer. The backwash duration for each tank was 20 min from start to finish including 15 min of backwash at a flowrate of 6 gpm and a 5 min filter-to-rinse cycle at 6 gpm. The backwash used about 130 gal of the treated water per tank. As discussed in section 4.4.2, it was necessary to increase the frequency of backwash from the initial field setting of every 2,743 gal to every 1,714 gal over the six-month study period. Figure 4-7 depicts the backwash flow paths for one duplex unit (labeled as Tank A and Tank B), which were backwashed on an alternating basis after a pre-set throughput of 1,714 gal. The major steps involved in the backwash process are discussed as follows:

Figure 4-7. Backwash Flow Path for One Duplex Unit with Control Disc No. 8 and a Throughput of 1,714 gal between Backwash Cycles

Again, both Tank A and Tank B provide the treated water in parallel. The backwash cycles were continuously repeated as shown in Steps 4 through 6 during the treatment system operation. One set of duplex tanks functioned as one unit and always had a filtration capacity between 25% (immediately after backwash of one tank at Step 4) and 75% (right before backwash of the other tank at Step 5).

4.3 System Installation

This section provides a summary of system installation activities including permitting, building construction, and system shakedown.

4.3.1 Permitting. Engineering plans for the system permit application were prepared by the vendor. The plans included diagrams and specifications for the Macrolite[®] CP-213f arsenic removal system, as well as drawings detailing the connections of the new unit to the pre-existing facility infrastructure. The plans were submitted to MDH on March 28, 2005, and MDH granted its approval of the application on June 14, 2005.

4.3.2 Building Construction. The existing well house had an adequate footprint to house the arsenic treatment system. The permit approval issued by MDH on June 14, 2005, indicated a need for an air gap two times the diameter of the filter-to-waste line and a need for all chemicals to be injected on the lower half of the influent pipe. Figure 4-6 shows the chemical injection line located on the top half of the influent pipe. In addition, MDH required the drain line and sewer connection to have at least a 50-ft distance from Well No. 1 and Well No. 2 wellheads and at a lower elevation.

4.3.3 System Installation, Shakedown, and Startup. The Macrolite[®] system was shipped on June 10, 2005 and delivered to the site on June 16, 2005. A subcontractor to the vendor off-loaded and installed the system, including piping connections to the existing entry and distribution system. The system installation was completed by June 24, 2005, and the system shakedown was completed by July 3, 2005.

Shakedown activities included disinfection of the contact and filtration tanks and backwash of Macrolite[®] filtration media. The bacteriological test was passed on July 1, 2005. During the startup trip in July, the vendor conducted operator training for system O&M. Battelle arrived on-site on July 13, 2005, to perform system inspections and conduct operator training for system sampling and data collection. The first set of samples for the one year performance evaluation study was taken on July 13, 2005. No major mechanical or installation issues were noted at system startup; however, several pieces of equipment shown in the vendor's June 16, 2005 piping and instrumental diagrams (P&ID) were missing and several installed items did not meet the permit requirements. A list of punch-list items was summarized as follows:

- Install an hour meter.
- Install one raw water sample tap.
- Install one backwash sample tap.
- Install one sample tap after duplex units TA/TB and after duplex units TC/TD.
- Install one pressure gauge after duplex units TA/TB and after duplex units TC/TD.
- Replace the defective pressure gauge beneath the left most pressure tank.
- Install a level sensor on the KMnO₄ day tank.
- Install a ¹/₂-inch ball valve on the KMnO₄ injection tube.
- Move the KMnO₄ injection port from the top half of the influent pipe to the lower half per permit requirements.

• Verify that the air gap was two times the filter-to-waste pipe between the drain and the filter-to-waste pipe.

All punch-list items were resolved by the vendor by September 30, 2005.

4.4 System Operation

4.4.1 Operational Parameters. Table 4-4 summarizes the operational parameters for the first six months of system operation, including operational time, throughput, flowrate, and pressure. Detailed daily operational information also is provided in Appendix A.

Between July 13, 2005, and January 17, 2006, the primary well pump operated for approximately 617 hr, with an average daily operating time of 3.4 hr/day (compared to 6 hr/day provided by the park owner prior to the demonstration study) based on the readings of an hour meter installed on the primary well on September 28, 2005. Prior to this time period, the operational time was estimated based on the wellhead totalizer readings and an average well pump flowrate of 25 gpm. The total system throughput during the first six months was approximately 863,470 gal based on the totalizer before entering the distribution system. The average daily demand was 4,617 gal (vs. 7,500 gal provided by the park owner) and the peak daily demand occurred on July 21, 2005, at 14,300 gal (compared to16,000 gpd provided by the park owner).

The flowrates through the CP-213f system varied due to the on-demand system configuration. Withdrawn from the two pressure tanks located upstream of the system, the on-demand flowrates ranged from 1 to 15 gpm and averaged 4.4 gpm, corresponding to a contact time of 27 to 410 min compared to a design value of 20 min. At these flowrates, the hydraulic loading rates to the filter ranged from 0.3 to 4.1 gpm/ft² compared to the design value of 5.4 gpm/ft². Note that Macrolite[®] filter media is rated for a maximum hydraulic loading rate of 10 gpm/ft².

At flowrates of 1 to 15 gpm, the inlet pressure to the system ranged from 40 to 60 psi (compared to the pressure tank set points from 45 to 60 psi) and the outlet pressure ranged from 22 to 55 psi. The total pressure differential (ΔP) readings across the system ranged from 0 to 25 psi depending on the flowrates. The ΔP across Tanks A and B ranged from 0 to 25 psi and across Tanks C and D from 2 to 16 psi based on inlet and outlet pressure gauge readings.

During this time period, a total number of 431 backwash cycles took place. The throughput values between two consecutive backwash cycles ranged from 1,714 to 6,857 gal depending on the settings of the control disc located on top of each set of duplex units. The backwash frequency ranged from 0 to 5 tanks backwashed per day. There was one outlier on August 9, 2005, when over 1,720 gal of backwash water was produced (equivalent to 13 backwash events in a single day). The vendor's contractor determined that sediment was lodged in the purge/control valve on one of the duplex units, preventing the valve from being closed; therefore, the duplex unit was stuck in the backwash mode before the operator bypassed the system.

4.4.2 Backwash. The backwash was initiated by throughput. The control disc located on top of each duplex unit determined the throughput before backwash. Table 4-5 summarizes the backwash frequency based on four control disc sizes installed over the six-month study period. The vendor switched out the control discs four times (although one was done in error) due to observations of particulate arsenic, iron, and manganese breakthrough through the Macrolite[®] filters. Control disc No. 5 geared to backwash after a throughput of 2,743 gal was used from system startup on July 13, 2005, through September 20, 2005. The actual throughput values between two consecutive backwash cycles averaged 2,449 gal based on the total volume of water treated and the total number of tanks

Parameter	Values
Primary Well Pump (Well No.	2)
Total Operating Time (hr)	617.3 ^(a)
Average Daily Operating Time (hr)	3.4 ^(a)
Range of Flowrates (gpm)	23–31 ^(b)
Average Flowrate (gpm)	25 ^(b)
System Throughput/Demand	!
Throughput to Distribution (gal)	863,470
Average Daily Demand (gpd)	4,617
Peak Daily Demand (gpd)	14,300
CP-213f System – Service Mod	le
Range of Flowrates (gpm)	1–15 ^(c)
Average Flowrate (gpm)	4.4 ^(c)
Range of Contact Times (min)	27–410
Average Contact Time (min)	114
Range of Hydraulic Loading Rates to Filters (gpm/ft ²)	0.3–4.1
Average Hydraulic Loading Rate to Filters (gpm/ft ²)	2.2
Range of System Inlet Pressure (psi)	40–60
Range of System Outlet Pressure (psi)	22–55
Range of Δp Readings across System (psi)	0–25
CP-213 System – Backwash Ma	ode
Number of Backwash Cycles	431 ^(d)
Throughput between Backwash Cycles (gal)	1,714–6,857 ^(e)
Number of Backwash Cycles Per Day	0–5

Table 4-4. System Operation from July 13, 2005 to January 17, 2006

(a) Hour meter installed on September 28, 2005. Run time before this period estimated based on wellhead totalizer readings and average well flowrate of 25 gpm.

(b) Based on totalizer on raw water line and hour meter readings; excluding data from September 29, October 5, and October 6, 2005.

- (c) Based on flow meter readings located on treated water line recorded starting September 28, 2005.
- (d) Based on totalizer readings on backwash water discharge line and 130 gal of wastewater produced during backwash of each tank.
- (e) Backwash triggered by volume of water treated based on settings of control discs located on top of each set of duplex filtration tanks.

backwashed. The number of tanks backwashed per day ranged from 0 to 5 except for the outlier on August 9, 2005, discussed in Section 4.4.1. Because breakthrough of particulate arsenic, iron, and manganese was observed, the vendor dispatched its contractor to the site to install a new control disc in an attempt to curb the particulate breakthrough. While a higher number disc should have been used, a disc with a lower number (i.e., No. 2 geared to backwash after a throughput of 6,857 gal) was inadvertently installed by the contractor between September 21 through 29, 2005. On September 30, 2005, No. 2 disc was replaced with a No. 7 disc, which was geared for a throughput of 1,957 gal. The average throughput for the No. 7 disc was 1,932 gal and the number of tanks backwashed per day ranged from 0 to 5. For this reason, control disc No. 8 was subsequently installed on December 7, 2005 to further reduce the throughput to 1,714 gal. The actual throughput was 1,684 gal and the number of tanks backwashed per day ranged from 1 to 5.

Duration	Control Disc	Design Throughput between Consecutive Backwash Cycles (gal)	Average Throughput between Consecutive Backwash Cycles (gal)	Number of Tanks Backwashed (No./day)	Backwash Water Generation Ratio (%)
07/13/05-09/20/05	No. 5	2,743	2,449	0–5	5.5
09/21/05-09/29/05	No. 2	6,857	3,469	0–3	2.8
09/30/05-12/06/05	No. 7	1,957	1,932	0–5	6.6
12/07/05-01/17/06	No. 8	1,714	1,684	1–5	7.2

Table 4-5. Control Disc Size and Throughput between Backwash Cycles

However, after the disc No. 8 changeout, particulate breakthrough continued to be observed. Except for disc No. 2, the ratios of backwash water generated ranged from 5.5% to 7.2% and averaged 6.4%.

4.4.3 Residual Management. Residuals produced by the operation of the Macrolite[®] system included backwash water and associated solids, which were discharged to a nearby septic system for disposal.

4.4.4 System/Operation Reliability and Simplicity. During the first six months of system operation, several instances of total arsenic and iron breakthrough were observed in service mode and the backwash frequency had to be increased twice by switching out the control valve on top of each set of duplex units. The required system O&M and operator skill levels are discussed according to pre- and post-treatment requirements, levels of system automation, operator skill requirements, preventive maintenance activities, and frequency of chemical/media handling and inventory requirements.

Pre- and Post-Treatment Requirements. Pre-treatment included KMnO₄ addition for the oxidation of arsenic and iron. Specific chemical handling requirements are further discussed below under chemical handling and inventory requirements. KMnO₄ was selected as an alternative oxidant due to the high TOC levels in source water and the potential to form disinfection byproducts should chlorine be used as an oxidant. However, as discussed in Section 4.5.1, it was determined that source water had a relatively elevated KMnO₄ demand, which resulted in some difficulty in controlling the effluent manganese levels (both particulate and soluble forms) and ensuring that the MnO₄⁻ added was completely reduced to form MnO₂ solids.

System Automation. All major functions of the treatment system were automated and would require only minimal operator oversight and intervention if all functions were operating as intended. Automated processes included system startup in service mode when the well energized, backwash cycling based on throughput, fast rinse cycling, and system shutdown when the well pump shut down. However, as noted in Section 4.4.1, an operational issue did arise with the automated system backwash on August 9, 2005. Due to the small size of the arsenic treatment system, the operational data was collected manually by the operator mentioned in the next paragraph.

Operator Skill Requirements. Under normal operating conditions, the skill set required to operate the Macrolite[®] system was limited to observation of the process equipment integrity and operating parameters such as pressure and flow. The daily demand on the operator was about 5 min to visually inspect the system and record operating parameters on the log sheets. Other skills needed including performing O&M activities such as replenishing the KMnO₄ solution in the chemical drum, monitoring backwash operational issues, and working with the vendor to troubleshoot and perform minor on-site repairs.

For the state of Minnesota, there are five water operator certificate class levels, i.e., A, B, C, D, and E, with Class A being highest. The certificate levels are based on education, experience, and system characteristics, such as water source, treatment processes, water storage volume, number of wells, and population affected. The operator for the BSLMHP system has a Class D certificate. Class D requires a high school diploma or equivalent with at least one year of experience in operating a Class A, B, C, or D system or a postsecondary degree from an accredited institution.

Preventive Maintenance Activities. Preventive maintenance tasks recommended by the vendor included daily to monthly visual inspection of the piping, valves, tanks, flow meters, and other system components. The pump on the primary well (Well No. 2) developed a leak and had to be shut down temporarily on January 4, 2006 for repairs. Meanwhile, Well No. 1 was turned on as the backup well. The leak on the Well No. 2 pump was repaired the next day and the primary well resumed its normal operation thereafter..

Chemical/Media Handling and Inventory Requirements. $KMnO_4$ addition was implemented since the system startup on July 13, 2005. The mixing of the $KMnO_4$ solution required only 10 min to complete, as reported by the operator. The chemical consumption was checked each day as part of the routine operational data collection. Several adjustments were made over time to optimize the $KMnO_4$ dosage for the oxidation of arsenic, iron, and manganese.

4.5 System Performance

The performance of the Macrolite[®] CP-213f arsenic removal system was evaluated based on analyses of water samples collected from the treatment plant, backwash lines, and distribution system.

4.5.1 Treatment Plant Sampling. Water samples were collected at five locations across the treatment train: at the wellhead (IN), after the contact tanks (AC), after the first set of duplex unit tanks A and B (TA/TB), after the second set of duplex tanks C and D (TC/TD), and after the two sets of duplex tanks combined (TT). Sampling was conducted on 26 occasions (including two duplicate sampling events) during the first six months of system operation, with field speciation performed on samples collected from the IN, AC, and TT locations for 7 of the 26 occasions. Table 4-6 summarizes the arsenic, iron, and manganese analytical results. Table 4-7 summarizes the results of the other water quality parameters. Appendix B contains a complete set of analytical results through the first six months of system operation. The results of the water treatment plant samples with the addition of a varying amount of KMnO₄ before and after the November 7, 2005, manganese jar tests are discussed below.

Arsenic and Iron Removal. Total arsenic concentrations in raw water ranged from 20.6 to 36.6 μ g/L and averaged 27.7 μ g/L. As(III) was the predominant species with concentrations ranging from 13.9 to 27.4 μ g/L and averaging 23.0 μ g/L (Table 4-6 and Figure 4-8). Only trace amounts of particulate As and As(V) existed in raw water, with concentrations averaging 2.1 and 4.0 μ g/L, respectively. The total arsenic concentrations measured during this six-month period were consistent with those of the historical source water sampling (Table 4-1), although the As(III) concentrations were significantly higher, representing over 83% of the total concentrations in source water (compared to 54% during the August 31, 2004, source water sampling). The existence of As(III) as the predominating arsenic species was consistent with the low DO concentrations (averaged 1.2 mg/L, Table 4-7) and low ORP values (ranged from -76 to -23 mV and averaged -46 mV) in source water.

As shown in Table 4-6, total iron concentrations in raw water ranged from 1,069 to 3,758 μ g/L and averaged 2,760 μ g/L. Iron in raw water existed almost entirely in the soluble form with an average value of 2,691 μ g/L. The presence of predominating soluble iron also was consistent with the presence of

	Sampling	Sample	Conc	centration (µg	g/L)	Standard
Parameter	Location	Count	Minimum	Maximum	Average	Deviation
	IN	26	20.6	36.6	27.7	4.0
	AC	26	5.6	36.1	26.3	5.5
As (total)	TA/TB	17	2.0	29.8	8.8	7.5
	TC/TD	17	2.1	17.5	7.3	4.4
	TT	9	2.9	17.7	7.6	5.7
	IN	7	24.4	30.3	27.0	2.1
As (soluble)	AC	7	2.7	8.7	4.4	2.1
	TT	7 ^(a)	2.0	6.2	3.5	1.5
	IN	7	0.1	6.1	2.1	2.6
As (particulate)	AC	7	18.4	26.3	22.9	2.6
	TT	7 ^(a)	0.1	10.9	2.2	3.9
	IN	7	13.9	27.4	23.0	4.5
As(III)	AC	7	0.3	5.4	1.9	1.8
	TT	7 ^(a)	0.4	4.4	1.8	1.5
	IN	7	< 0.1	16.5	4.0	5.7
As(V)	AC	7	1.7	3.3	2.6	0.6
	TT	7 ^(a)	1.3	2.4	1.7	0.3
	IN	26	1,069	3,758	2,760	441
	AC	26	247	3,173	2,598	521
Fe (total)	TA/TB	17	12	2,363	394	635
	TC/TD	17	<25	1,140	259	364
	TT	9	<25	1,067	308	361
	IN	7	2,263	2,954	2,691	255
Fe (soluble)	AC	7	<25	306	56.3	110
	TT	7 ^(a)	<25	40.7	<25	<25
	IN	26	110	430	144	59.7
	AC	26	416	1,506	955	235
Mn (total)	TA/TB	17	203	1,002	648	254
	TC/TD	17	187	971	650	257
	TT	9	331	1,091	644	256
	IN	7	110	145	132	12.2
Mn (soluble)	AC	7	108	946	492	317
	TT	7 ^(a)	138	1,062	565	363

Table 4-6. Summary of Arsenic, Iron, and Manganese Analytical Results

One-half of detection limit used for non-detect samples for calculations. Duplicate samples included calculations.

(a) On December 28, 2005, arsenic speciation results taken at IN, AC, TA/TB, and TC/TD locations. Average concentration used for TT location.

predominating As(III) as well as low DO concentrations and low ORP values. Given the average soluble iron and soluble arsenic levels in source water, this corresponded to an iron:arenic ratio of 100:1, which was well above the target ratio of 20:1 for effective removal of arsenic (Sorg, 2002).

After KMnO₄ addition and the contact tanks, As(III) concentrations ranged from 0.3 to 5.4 μ g/L and averaged 1.9 μ g/L (Table 4-6 and Figure 4-8), suggesting effective oxidation of As(III) to As(V) with KMnO₄. Particulate arsenic concentrations after the contact tanks ranged from 18.4 to 26.3 μ g/L and averaged 22.9 μ g/L, representing most of the total arsenic (averaged 26.3 μ g/L) after the contact tanks. After KMnO₄ addition and the contact tanks, total iron concentrations averaged 2,598 μ g/L, existing almost entirely in particulate form. This data suggested effective oxidation of arsenic and iron even in the

	Sampling		Sample	Cor	Concentration/Unit			
Parameter	Location	Unit	Count	Minimum	Movimum	Avorago	Deviation	
	INI	с III (26	252		Average	11	
-		mg/L	26	352	383	366	11	
Alkalinity	AC	mg/L	20	321	383	368	11	
(as CaCO ₃)		mg/L	17	352	3/8	369	8	
F	IC/ID	mg/L	1/	352	383	369	9	
	TT N	mg/L	9	361	383	3/1	7	
	IN	mg/L	7	0.2	0.2	0.2	0	
Fluoride	AC	mg/L	7 (a)	0.2	0.2	0.2	0	
	TT N	mg/L	7(4)	0.2	0.2	0.2	0	
0.16	IN	mg/L	7	<1	<1	<1	0	
Sulfate	AC	mg/L	(3)	<l< td=""><td><1</td><td><1</td><td>0</td></l<>	<1	<1	0	
	TT	mg/L	/(u) 	<1	<1	<1	0	
	IN	mg/L	7	< 0.05	0.06	0.03	0	
Nitrate (as N)	AC	mg/L	7	< 0.05	0.06	0.03	0	
	TT	mg/L	7 ^(a)	< 0.05	0.25	0.06	0.1	
	IN	mg/L	12	< 0.05	< 0.05	< 0.05	0	
Orthophosphate	AC	mg/L	12	< 0.05	< 0.05	< 0.05	0	
(as P)	TA/TB	mg/L	6	< 0.05	< 0.05	< 0.05	0	
(u) 1)	TC/TD	mg/L	6	< 0.05	< 0.05	< 0.05	0	
	TT	mg/L	6	< 0.05	< 0.05	< 0.05	0	
	IN	mg/L	15	0.4	0.6	0.5	0.04	
P (total)	AC	mg/L	15	0.1	0.5	0.4	0.1	
r (iotal)	TA/TB	mg/L	12	< 0.03	0.4	0.1	0.1	
(as 1)	TC/TD	mg/L	12	< 0.03	0.2	0.1	0.1	
	TT	mg/L	3	0.1	0.2	0.1	0.1	
	IN	mg/L	26	22.6	29.4	24.3	1.4	
Silion	AC	mg/L	26	22.5	28.6	24.4	1.3	
Sinca (as SiO)	TA/TB	mg/L	17	22.5	28.4	24.4	1.4	
$(as SIO_2)$	TC/TD	mg/L	17	22.7	28.2	24.6	1.3	
Γ	TT	mg/L	9	21.7	24.7	23.4	1.0	
	IN	NTU	26	13.0	35.0	30.0	5.0	
	AC	NTU	26	2.8	6.5	4.0	1.1	
Turbidity	TA/TB	NTU	17	< 0.1	14.0	1.5	3.4	
	TC/TD	NTU	17	< 0.1	14.0	2.0	3.4	
	TT	NTU	9	0.1	11.0	1.9	3.5	
	IN	mg/L	4	3.2	4.8	4.0	0.7	
TOC	AC	mg/L	4	3.1	4.6	3.7	0.7	
	TT	mg/L	4	3.0	4.8	3.9	0.7	
	IN	S.U.	23	7.2	7.5	7.3	0.1	
	AC	S.U.	23	7.2	7.6	7.4	0.1	
pН	TA/TB	S.U.	14	7.2	7.4	7.3	0.1	
	TC/TD	S.U.	14	7.2	7.5	7.4	0.1	
	TT	S.U.	9	7.2	7.7	7.3	0.2	
	IN	°C	23	9.3	14.9	10.7	1.4	
	AC	°C	23	9.4	14.1	10.9	1.5	
Temperature	TA/TB	°C	14	9,3	12.5	10.2	0.8	
	TC/TD	°C	14	9.2	12.8	10.3	0.9	
	TT	°C	0	9.5	13.8	11.6	1.5	

 Table 4-7. Summary of Other Water Quality Parameter Sampling Results

	Sampling		Sample	Co	Concentration/Unit			
Parameter	Location	Unit	Count	Minimum	Maximum	Average	Deviation	
	IN	mg/L	23	0.7	3.6	1.2	0.7	
	AC	mg/L	23	0.5	3.1	1.1	0.5	
DO	TA/TB	mg/L	14	0.5	1.6	0.9	0.3	
	TC/TD	mg/L	14	0.5	1.3	0.9	0.2	
	TT	mg/L	9	0.7	1.2	0.9	0.2	
	IN	mV	23	-76	-23	-46	14	
	AC	mV	23	-22	196	62	56	
ORP	TA/TB	mV	14	-9	177	67	51	
	TC/TD	mV	14	-12	183	72	55	
	TT	mV	9	5.8	219	106	78	
Total Hardness	IN	mg/L	7	296	383	319	28.8	
$(25 \text{ C}^2\text{C}^2\text{C}^2)$	AC	mg/L	7	295	330	315	10.9	
(as CaCO ₃)	TT	mg/L	7 ^(a)	305	338	319	12.0	
Co Hordnoss	IN	mg/L	7	177	228	191	16.6	
$(as CaCO_{2})$	AC	mg/L	7	178	197	189	6.8	
$(as CaCO_3)$	TT	mg/L	7 ^(a)	176	212	191	11.5	
	IN	mg/L	7	112	155	128	14.0	
Mg Hardness	AC	mg/L	7	114	133	126	6.4	
(as CaCO ₃)	TT	mg/L	7 ^(a)	120	136	128	5.3	

 Table 4-7. Summary of Other Water Quality Parameter Sampling Results (Continued)

One-half of detection limit used for non-detect samples for calculations.

Duplicate samples included calculations.

(a) On December 8, 2005, arsenic speciation results taken at IN, AC, TA/TB, and TC/TD locations.

presence of elevated TOC levels at 3.2 to 4.8 mg/L (Table 4-7) in raw water. Researchers have reported that Fe(II)-KMnO₄ reaction rates are more rapid than KMnO₄-DOC interactions (Knocke et al., 1994). Based on the presence of primarily particulate arsenic and iron after the contact tanks, it appears that the elevated TOC levels did not have a significant effect on As(III) and Fe(II) oxidation. Note that KMnO₄ dosages used during the six-month study period ranged from 2.1 to 6.1 mg/L (as KMnO₄) and averaged 4.8 mg/L. The effects of KMnO₄ dosage on Mn(II) oxidation are discussed in the next subsection.

From July 13, 2005, to January 17, 2006, total arsenic concentrations in the treated water ranged from 2.0 to 29.8 µg/L and averaged 7.9 µg/L (Table 4-6). Soluble arsenic concentrations in the treated water ranged from 2.0 to 6.2 μ g/L and averaged 3.5 μ g/L. Out of the 26 sampling occasions, total arsenic concentrations in the treated water exceeded the 10-µg/L MCL for a total of 8 times due to particulate breakthrough from the Macrolite[®] filters (Figure 4-9). As shown in Figure 4-10, the elevated total arsenic concentrations were accompanied by elevated total iron concentrations. The iron concentrations in the treated water ranged from <25 to 2,363 µg/L and averaged 323 µg/L, with most existing as particulate iron (Table 4-6). The soluble iron levels were below the method detection limit of $<25 \,\mu$ g/L as measured in water samples filtered with 0.45-um disc filters. On September 7, 2005, the total arsenic concentration in the treated water exceeded 10 μ g/L due to low KMnO₄ dosage, which can be seen by the negative ORP readings across the treatment train, resulting in incomplete oxidation of As(III) and Fe(II). A study has shown that Fe(II) complexed with dissolved organic matter (DOM) was very difficult to remove via oxidation and subsequent precipitation of $Fe(OH)_3(s)$. This was due to the formation of colloidal iron that had a size fraction small enough to pass through 0.2-µm disc filters. However, this phenomenon would be affected by the concentration and nature of the DOM in water (Knocke et al., 1994). The formation of colloidal iron did not appear to be an issue at BSLMHP with primarily particulate iron present after the

40.0 As(particulate) As(V) As(III) 35.0 30.0 (**1/6n**) 25.0 As Concentration (10.0 5.0 0.0 07/13/05 08/18/05 11/15/05 12/08/06 01/05/06 09/20/05 10/19/05 Date

Arsenic Species After Contact Tanks (AC)

Figure 4-8. Concentrations of Arsenic Species at IN, AC, and TT Sampling Locations

Figure 4-9. Total Arsenic Concentrations at TA/TB, TC/TD, and TT Sampling Locations

Figure 4-10. Total Iron Concentrations at TA/TB, TC/TD, and TT Sampling Locations

contact tanks and after the Macrolite[®] filters (e.g. a size fraction large enough to be retained by a 0.45 μ m disc filter). The increase in particulate iron also corresponded with an increase in particulate arsenic, indicating iron breakthrough from the Macrolite[®] filters.

In order to better control particulate breakthrough from the filtration tanks, the control discs located on top of the two duplex units were replaced twice from Discs No. 5 to No. 7 and, then, from Discs No. 7 to No. 8 during the six-month duration to allow for more frequent backwash. (Note that Disc No. 2 was erroneously installed for a short duration before the mistake was caught and corrected). Table 4-8 lists the disc number, operating duration, total arsenic concentrations exceeding 10 μ g/L, and total iron concentrations with arsenic exceeding 10 μ g/L. The use of Discs No. 5 and No. 7 resulted in three and four occurrences, respectively, with arsenic concentrations measured as high as 29.8 μ g/L and iron concentrations measured as high as 2,363 μ g/L. Disc No. 8 was installed on December 7, 2005, and the treated water samples collected during December 7, 2005, through January 17, 2006, contained an average of 4.0 and 194 μ g/L of total arsenic and iron, respectively, which were the lowest for the sixmonth period. However, due to particulate arsenic and iron breakthrough observed on December 14, 2005, control disc No. 8 will be switched out to allow even more frequent backwash during the next sixmonth period.

			To	otal Arseni	c	Total Ir	on Concen	tration
			Co	ncentratio	n	w	ith Arseni	С
	Control		Exce	eding 10 µ	g/L	Exce	eding 10 µ	g/L
Duration	Disc	Occurrence	TA/TB	TC/TD	TT	TA/TB	TC/TD	TT
07/13/05-09/20/05	No. 5	1	N/A	N/A	17.7	N/A	N/A	482
		2	13.8	12.3	N/A	571	465	N/A
		3	21.5	17.5	N/A	1,052	1,140	N/A
09/21/05-09/29/05	No. 2 ^(a)	N/A		N/A			N/A	
09/30/05-12/06/05	No. 7	4	N/A	10.1	N/A	N/A	547	N/A
		5	11.3	N/A	N/A	336	N/A	N/A
		6	N/A	N/A	17.1	N/A	N/A	1,067
		7	29.8	N/A	N/A	2,363	N/A	N/A
12/07/05-01/17/06	No. 8	8	12.1	12.6	None	983	1,001	None
			11.3 ^(b)	12.4 ^(b)		978 ^(b)	1,023 ^(b)	

 Table 4-8. Control Disc Sizes and Corresponding Occurrences with

 High Total Arsenic and Iron Concentrations

(a) Incorrect disc inadvertently installed and replaced soon after installation.

(b) Field duplicate.

N/A = data not available

Manganese. As shown in Table 4-6, total manganese concentrations in raw water ranged from 110 to 430 μ g/L and averaged 144 μ g/L, which existed primarily in the soluble form at levels ranging from 110 to 145 μ g/L and averaging 132 μ g/L. The manganese levels in raw water exceeded its secondary MCL of 50 μ g/L.

Figure 4-11 shows the concentrations of total and soluble manganese after $KMnO_4$ addition and after the contact tanks over time. Before November 15, 2005, total manganese levels after the contact tanks ranged from 416 to 1,126 µg/L, 38 to 94% of which was present in the soluble form based on the use of 0.45-µm disc filters. As noted in the figure and Table 4-9, the $KMnO_4$ dosage was incrementally decreased from the initial level of 3.8 mg/L to 1.4 mg/L, and then increased to 2.6 mg/L by adjusting the

Figure 4-11. Total and Soluble Manganese Concentrations at AC Sampling Location

Duration	Stroke Length (%)	Average KMnO ₄ Dosage (mg/L)	Total Mn at AC Location (mg/L)	Soluble Mn at AC Location (mg/L)	Total Mn at TA/TB, TC/TD, and TT Location (mg/L)	Soluble Mn at TA/TB, TC/TD, and TT Location (mg/L)
07/13/05 to 08/07/05	33	3.8	634–1,126	337	428-727	391
08/08/05 to 08/13/05	30	3.4	N	/A	N/A	
08/14/05 to 08/30/05	26	3.0	871-1,097	850	467-1,010	1,000
08/31/05 to 09/07/05	15	1.4	416-581	N/A	430–906	N/A
09/08/05 to 11/15/05	26	2.6	676–1,042	468–946	548-1,091	535-1,062
11/16/05 to 11/20/05	40	5.4	N	/A	N	[/A
11/21/05 to 12/04/05	38	3.1	1,123	N/A	432	N/A
12/05/05 to 01/17/06	40	5.6	1,031-1,506	108–166	201-673	138-202

Table 4-9. Correlations Between Pump Stroke Length, KMnO4 Dosage, andTotal and Soluble Manganese Concentrations

N/A = Data not available

stroke length of the paced-pump from 33 to 15%, then to 26%. The KMnO₄ dosage was decreased from the initial level of 3.8 mg/L because elevated total and soluble manganese levels at 996 (average) and 377 μ g/L, respectively, were measured after KMnO₄ addition and thought, at the time, to have been caused by overdosing of KMnO₄. Decreasing the KMnO₄ dosage from 3.8 to 3.4 and then to 3.0 mg/L did not appear to help reduce the manganese concentrations, with total and soluble levels measured, for example, at 1,097 and 850 μ g/L, respectively, on August 18, 2005. A further decrease in KMnO₄ dosage

to 1.4 mg/L helped reduce the total manganese levels, which, however, were still higher than those in raw water at 581 and 416 μ g/L, respectively, on August 31 and September 7, 2005. This low level of KMnO₄ addition also caused significantly elevated arsenic and iron concentrations in the treated water due to incomplete oxidation of As(III) and Fe(II) also discussed in Section 4.5.1. Resuming the KMnO₄ dosage at 2.6 mg/L returned the total manganese concentrations to 676 to 1,042 μ g/L, with most (i.e., 468 to 946 μ g/L) existing in the soluble form, as determined by the use of 0.45- μ m disc filters.

The addition of 1.4 mg/L to 3.8 mg/L of KMnO₄ during July 13 through November 15, 2005, resulted in significantly elevated manganese levels not only after the contact tanks, as discussed above, but also after the Macrolite[®] filters (ranging from 428 to 1,091 µg/L and averaging 722 µg/L, Figure 4-12). Further, manganese in the treated water existed almost entirely (i.e., 535 to 1,062 µg/L) in the soluble form based on the use of 0.45-µm filter discs for obtaining the soluble fractions.

Figure 4-12. Total Manganese Concentrations at TA/TB, TC/TD, and TT Sampling Locations

Mn(II) oxidation by KMnO₄ is dependent on the KMnO₄ dosage, pH, temperature, and DOM in raw water. The reaction of KMnO₄ with Mn(II) is typically rapid and complete at pH values ranging from 5.5 to 9.0. However, elevated DOM levels can increase the KMnO₄ demand due to competition between these species and resulting kinetic effects (Knocke et al., 1987). Some researchers suggest that DOM can interfere with the formation of MnO₂(s) solids by exerting KMnO₄ demand and, possibly, forming complexes with fractions of Mn(II), thus rendering it less likely to be oxidized (Gregory and Carson, 2003). When modeling the Mn(II) oxidation with KMnO₄, Carlson and co-workers (1999) determined that incorporating a term in the model to account for the DOM demand for MnO₄⁻ significantly improved the prediction of the MnO₄⁻ consumption. The incorporation of DOM into the oxidation term to account for complexation between DOM and Mn(II) also was postulated but no data was collected as part of that study. Further, high levels of DOM in source water also can form fine colloidal MnO₂ particles, which may not be filterable by conventional gravity or pressure filters. Knocke et al. (1991) defined colloidal particles as those passing through 0.20-μm filters and requiring ultrafiltration for removal.

The presence of significantly elevated soluble manganese levels after the contact tanks and after the Macrolite[®] filters, even with the use of insufficient KMnO₄, prompted the speculation that the soluble manganese measured might, in fact, be colloidal particles that had passed through the 0.45-µm disc filters. Therefore, jar tests were performed on November 7, 2005, to determine if higher KMnO₄ dosages might help overcome the DOM effect and form larger filterable MnO₂ solids in the treated water. Prior to the start of the jar tests, the additional KMnO₄ demand of a Macrolite[®]-treated water sample (to which 3.0 mg/L of KMnO₄ had been added based on the KMnO₄ consumption in the chemical day tank during the week of sampling) was pre-determined by titrating 1 L of the water with a 1-g/L KMnO₄ titrant. After 2.5 mL of the titrant was added, the water being titrated developed a dark yellow color, and was filtered, after about 10 min, with 0.20-µm disc filters to remove any suspended solids including MnO₂. The filtrate was observed to have a pink color, indicating the presence of KMnO₄ residual.

Five KMnO₄ dosages ranging from 1.0 to 3.0 mg/L were then selected for the jar tests using the same Macrolite[®]-treated water sample mentioned above. (These dosages would be in addition to the KMnO₄ already added to the water to be treated). After 31 min of mixing time (including 1 min at 200 rpm, 19 at 100 rpm, and 11 min at 28 rpm), the water in the jars was filtered separately with 0.20-µm disc filters and analyzed for soluble arsenic, iron, and manganese. Table 4-10 summarizes the results of the jar tests.

Parameter	1	2	3	4	5	6
Potassium Permanganate Added (mg/L) ^(a)	0	1.0	1.5	2.0	2.5	3.0
Mixing Time (min)	31	31	31	31	31	31
Initial pH ^(b)	7.70	7.80	7.81	7.71	7.74	7.76
Final pH ^(c) @16.8°C	7.68	7.67	7.70	7.62	7.60	7.61
Initial ORP ^(b) @16.8°C	283	292	400	440	509	521
Final ORP ^(c)	353	360	363	369	493	515
Residual KMnO ₄ (mg/L) ^(d)	0.04	0.01	0.05	0.07	0.35	0.63
As (soluble) ^(e) (μ g/L)	5.5	4.5	3.3	3.3	3.2	3.1
Fe (soluble) ^(e) (µg/L)	<25	<25	<25	<25	<25	<25
Mn (soluble) ^(e) ($\mu g/L$)	1,090	102	0.8	11.0	399	469

Table 4-10. Jar Test Results for Macrolite[®]-Treated Water

(a) Dosage on top of 3.0 mg/L already added to the water prior to jar tests.

(b) Taken approximately 15 min into jar test.

(c) Taken at end of 31 min jar test.

(d) CAIROX[®] Method 103 (DPD Spectrophotometry) for determination of KMnO₄ residual.

(e) Filtered with 0.20-µm filters.

During mixing, jars No. 2 to 4 formed large brown flocs in a pale to dark yellow solution (Figure 4-13). Jars No. 5 to 6 had smaller brown flocs in a dark copper solution. As shown in Table 4-10, the soluble iron levels in all jars were below the method detection limit of 25 μ g/L, suggesting that effective oxidation and removal of iron had already been achieved prior to the jar tests. Soluble arsenic levels decreased slightly from 5.5 μ g/L to 3.1 μ g/L in jar No. 6 (the one with the highest KMnO₄ dosage 3.0 mg/L). Only soluble manganese concentrations varied significantly, decreasing from 1,090 μ g/L in jar No. 1 to <1 μ g/L in jar No. 3 and then increasing to 469 μ g/L in jar No. 6. Knocke et al. (1990) reported that the kinetics for Fe(II) oxidation are faster than for Mn(II) oxidation when KMnO₄ is used as the oxidant. The relevant stoichiometric equations are shown as follows:

$$3Fe^{2+} + KMnO_4 + 7H_2O \rightarrow 3Fe(OH)_3(s) + MnO_2(s) + K^+ + 5H^+$$
$$3Mn^{2+} + 2KMnO_4 + 2H_2O \rightarrow 5 MnO_{2(s)} + 2K^+ + 4H^+$$

In the control sample, the soluble manganese level was high due to the slower Mn(II) oxidation kinetics and the presence of DOM as discussed above. The 1,090 μ g/L of "soluble" manganese in the control sample confirmed that the manganese most likely was present as colloidal particles since the sample analyzed had already been filtered with 0.2 μ m disc filters. Increasing the KMnO₄ dosage to 1.5 mg/L (on top of the 3.0 mg/L already added to the water prior to the jar tests) appeared to be sufficient to overcome the effects of DOM, allowing filterable manganese particles to form. As a result, only 0.8 μ g/L of manganese that passed through the 0.2- μ m filters was reported as "soluble" manganese. Further, increasing the KMnO₄ dosage up to 3 mg/L increased the soluble manganese level up to 469 μ g/L, suggesting that excess KMnO₄ was present in the treated water. The presence of KMnO₄ was supported by the elevated residual KMnO₄ levels and the elevated ORP readings (see results of jars No. 4 and 5).

Figure 4-13. Jar Test Setup

Based on the jar tests results, it was determined that an additional 1.5 mg/L of KMnO₄ was needed to attain filterable manganese solids. Therefore, the KMnO₄ dosage to the treatment system was increased on November 15, 2005 for a target dosage of 4.5 mg/L. The actual dosage after adjusting the stroke length from 26 to 40% was 5.4 mg/L (Table 4-9). After the increase in dosage, manganese was present primarily in the particulate form, with concentrations ranging from 1,031 to 1,506 μ g/L. The soluble manganese was decreased significantly to 108 to 166 μ g/L (Figure 4-11). (Note that as before, 0.45- μ m filters were used to obtain these treatment results). After November 15, 2005, the speciation results indicated that approximately 7 to 16% was present as soluble manganese in the Macrolite[®] treated water: the total manganese concentrations ranged from 201 to 673 μ g/L and the soluble manganese concentration of 177 μ g/L and total manganese concentration of 673 μ g/L, particulate manganese breakthrough of up to 496 μ g/L was experienced from the Macrolite[®] filters. In the next six-month period, further fine-tuning will be made to the KMnO₄ dosing to determine if soluble manganese may be further reduced to less than the Secondary Maximum Contaminant Level (SMCL) of 50 μ g/L.

TOC. TOC levels in raw water were elevated, ranging from 3.2 to 4.8 mg/L. KMnO₄ was used as the oxidant to prevent the formation of disinfection byproducts. Before November 15, 2005, the effluent TOC levels ranged from 3.8 to 4.8 mg/L and there was little or no TOC removal across the treatment train. After November 15, 2005, the influent TOC level was 3.2 mg/L (average) and the effluent TOC level was 3.0 mg/L (average) with approximately 6% removal. Research has shown that only minimal organic carbon removal occurs (at less than 10%) via KMnO₄ oxidation in source water containing Mn(II) and DOC (Salbu and Steinnes, 1995; Knocke et al., 1990). However, significant DOC removal with colloidal iron particles produced by Fe(II) oxidation was observed (Knocke et al., 1994). The complexation of iron with organic carbon does not appear to be a significant factor at the BSLMHP site as discussed previously.

Other Water Quality Parameters. DO levels remained low across the treatment train (with average values ranging from 1.2 to 0.9 mg/L), but ORP values increased across the treatment train (ranging from - 76 to -23 mV before versus 1 to 196 mV after KMnO₄ addition). There were two outliers on September 7 and October 26, 2005, where the ORP values after the contact tanks were negative. The ORP on September 7, 2005, was negative because the stroke on the KMnO₄ pump was turned down to 15% on August 30, 2005. The pH in raw water had an average value of 7.3 and the pH in the treated water had an average value of 7.3. Average alkalinity results ranged from 366 to 369 mg/L (as CaCO₃) across the treatment train. Average total hardness results ranged from 315 to 319 mg/L (as CaCO₃) across the treatment train (the total hardness is the sum of calcium hardness. Fluoride concentrations were 0.2 mg/L in raw water and after contact tanks and were not affected by the Macrolite[®] filtration. The average nitrate concentration was <0.05 mg/L (as N) across the treatment train. There was no detection of sulfate and the silica concentrations remained at approximately 24 mg/L (as SiO₂) across the treatment train.

Orthophosphate was analyzed between July 13, 2005, and October 5, 2005, and there was no detection. However, total phosphorous analyzed between October 12, 2005 and January 17, 2006, showed an elevated average of 0.5 mg/L (as P) in raw water and 0.1 mg/L (as P) in the treated water (Figure 4-14). This indicates a removal rate of approximately 80% most likely through adsorption onto iron solids. The elevated total phosphorous levels were further confirmed by analyzing a raw water sample taken on December 14, 2005, for the various phosphorous species according to EPA Method 365.3 by Sierra Environmental Monitoring, Inc. It was determined that the total phosphorous level in raw water was at 0.58 mg/L (as P), which was present primarily as total hydrolyzable phosphorous at 0.51 mg/L (as P). According to the EPA Method 365.3, total hydrolyzable phosphorous includes both polyphosphorous and some organic phosphorous. It also was later confirmed that no organopesticides were present in source water by EPA Method 507. There were other potential sources for elevated phosphorous in groundwater. Based on research conducted by the Sauk River Watershed District, the Sauk River and Big Sauk Lake have sediment, phosphorous, and nitrates caused by non-point source discharges from septic systems, agriculture, and urban runoff (Post, 2005). The historical monitoring data for the surface water of Big Sauk Lake shows a maximum total phosphorous level of 0.4 mg/L (as P) (Big Sauk Lake River Watershed District, 2006) and the Big Sauk Lake is located approximately 1000 ft from the BSLMHP wellhouse.

4.5.2 Backwash Water Sampling. Table 4-11 summarizes the analytical results from the six backwash water sampling events. For the first three sampling events, only pH, turbidity, TDS, and soluble As, Fe, and Mn were analyzed for the grab samples collected at the backwash water discharge line. Soluble arsenic concentrations in the backwash water ranged from 3.5 to 8.5 μ g/L; soluble iron concentrations ranged from <25 to 63 μ g/L; and soluble manganese concentrations ranged from 560 to 736 μ g/L based on the use of 0.45- μ m filters. Starting from November 15, 2005, TSS and total As, Fe, and Mn also were analyzed for the composite sample collected using the modified backwash procedure discussed in Section 3.3.4. After the modified backwash procedure was implemented, total arsenic

Figure 4-14. Total Phosphorous Concentrations at IN, AC, TA/TB, TC/TD and TT Sampling Locations

concentrations in the backwash water ranged from 114 to 417 μ g/L; total iron concentrations ranged from 14,069 to 77,641 μ g/L; and total manganese concentrations ranged from 1,595 to 16,178 μ g/L. Note that November 15, 2005, BW2 data had uncharacteristically high total and soluble As and Fe, and, therefore, were excluded from all calculations. TSS levels in the backwash water ranged from 102 to 210 mg/L and averaging 154 mg/L (excluding November 15, 2005 BW2 data that had uncharacteristically high As and Fe and the January 10, 2006, BW2 data that had uncharacteristically low TSS). Using 130 gal of backwash water produced, this equates to approximately 0.17 lb of solids generated per backwash event including 4.4 × 10⁻⁴ lb of arsenic, 0.08 lb of iron, and 0.01 lb manganese.

4.5.3 Distribution System Water Sampling. The results of the distribution system sampling are summarized in Table 4-12. The main differences observed before and after the operation of the system were decreases in arsenic, iron, and manganese concentrations at each of the three sampling locations. Arsenic concentrations in the baseline samples ranged from 15.3 to 26.3 µg/L. Since the treatment system started operation, arsenic levels in the distribution system samples ranged from 3.6 to $14.2 \,\mu g/L$ with an average of 6.6 µg/L. Arsenic concentrations mirrored the treatment results after the Macrolite[®] filters, except for an outlier at 24.1 μ g/L on January 17, 2006, when the homeowner did not sufficiently flush the tap the night before sampling. Total arsenic concentrations exceeded 10 μ g/L at all three sampling locations on September 7, 2005, due to particulate arsenic and iron breakthrough from the Macrolite[®] filters described in Section 4.4.2. Iron concentrations in the baseline samples were high, ranging from 2.1 to 5.0 mg/L. Since system startup, iron levels in the distributed water decreased significantly to an average value of 128 µg/L (not including the outlier at DS1 on January 17, 2006). Particulate breakthrough was observed on September 7, November 29, and December 15, 2005 with elevated iron concentrations ranging from 532 to 2,363 µg/L after the Macrolite[®] filters. Iron concentrations in the distribution system during those days ranged from <25 to 279 µg/L, indicating

								BW1												E	BW2				
							1	fank A	/ B											Tar	nk C/D				
San	npling Event	KMnO4 Dosage	Control Disc	Hq	Turbidity	SQT	SSL	Total As	Soluble As	Particulate As	Total Fe	Soluble Fe	Total Mn	Soluble Mn	Hq	Turbidity	SQT	SSL	Total As	Soluble As	Particulate As	Total Fe	Soluble Fe	Total Mn	Soluble Mn
No.	Date	mg/L	No.	S.U.	NTU	mş	g/L				μg/L			S.U.	NTU	mş	g/L				μg/L				
1	09/08/05	2.6	5	7.2	170	576	NS	NS	3.9	NS	NS	<25	NS	624	7.3	120	544	NS	NS	3.5	NS	NS	<25	NS	560
2	09/20/05	2.6	5	7.3	160	550	NS	NS	3.6	NS	NS	<25	NS	624	7.3	17	368	NS	NS	8.5	NS	NS	<25	NS	736
3	10/12/05 ^(a)	2.6	7	7.3	120	356	NS	NS	4.4	NS	NS	<25	NS	685	7.3	410	350	NS	NS	4.3	NS	NS	63	NS	656
4	11/15/05 ^(b, c)	2.6	7	7.5	NS	54	102	329	6.9	322	63,108	163	1,595	836	7.5	NS	346	348	1,325	206	1,119	214,211	29,992	3,835	1,175
5	12/08/05	5.6	8	7.4	NS	224	210	417	0.5	416	77,641	201	16,178	350	7.6	NS	334	175	397	2.9	394	75,485	39	14,159	348
6	01/10/06	5.6	8	7.4	NS	360	130	363	3.3	360	43,384	128	12,265	341	7.6	NS	326	16	114	5.3	109	14,069	304	4,016	376

 Table 4-11. Backwash Water Sampling Results

TDS = total dissolved solids; TSS = total suspended solids; NS = not sampled.

(a) Manual backwash performed after Tank A/B had just been backwashed; less particles visually observed

(b) Samples taken on November 15, 2005 re-analyzed with similar results for both samples on this date.

(c) Modified backwash procedures implemented starting November 15, 2005.

						DS	1							D	S2							D	S 3			
Sampl	ing Events	As at Entry Point	Stagnation Time	Hq	Alkalinity	As	Fe	Ш	qd	Cu	Stagnation Time	Hq	Alkalinity	SY	Fe	Ш	qd	Cu	Stagnation Time	Hq	Alkalinity	sy	Fe	Ш	qJ	Cu
No.	Date	μg/L	hr	S.U.	mg/L			μg/L			hr	S.U.	mg/L			μg/L			hr	S.U.	mg/L			µg/L		
BL1	02/16/05	NA	7.0	7.2	382	24.3	2,649	128	0.6	4.1	8.3	7.4	374	19.8	2,792	129	0.6	0.2	NS	NS	NS	NS	NS	NS	NS	NS
BL2	03/23/05	NA	6.0	7.3	362	21.9	2,175	130	0.4	2.2	8.3	7.4	367	26.2	4,986	147	0.3	2.5	7.3	7.5	376	26.3	2,590	128	< 0.1	1.9
BL3	04/19/05	NA	6.2	7.0	377	25.3	2,878	141	2.4	3.9	10.0	7.2	395	15.3	2,137	127	1.6	3.4	8.4	7.4	386	24.6	2,751	133	0.2	0.4
BL4	05/23/05	NA	5.8	7.3	384	25.7	2,578	124	0.5	0.7	7.3	7.3	370	24.2	2,639	123	< 0.1	0.4	8.8	7.3	379	22.6	2,649	119	0.1	0.9
1	07/26/05	5.5	7.3	7.2	365	5.1	73	722	0.5	0.4	9.3	7.3	374	5.4	84	617	0.4	0.2	9.3	7.3	370	6.3	162	612	0.4	0.6
2	09/07/05	21.5/ 17.5	8.5	7.4	356	14.2	52	438	0.3	0.2	9.0	7.5	352	12.7	<25	516	< 0.1	1.7	8.0	7.6	365	13.9	84	525	< 0.1	1.4
3	09/27/05	8.4/ 7.6	8.3	7.3	370	4.3	72	687	2.1	11.0	7.3	7.4	361	5.1	127	717	0.2	< 0.1	9.5	7.4	374	4.2	98	659	1.1	1.0
4	11/02/05	5.6/ 4.2	12.5	7.6	361	6.8	<25	976	0.2	8.8	7.0	7.6	352	7.9	142	950	<0.1	0.2	9.3	7.6	365	8.5	37	935	0.2	0.3
5	11/29/05	9.2	8.0	7.4	365	4.1	266	367	0.9	6.2	6.0	7.5	365	3.6	57	369	0.1	0.2	9.3	7.5	361	3.7	222	478	1.1	2.4
6	12/15/05	11.7/ 12.5	11.3	7.5	374	4.1	57	400	1.2	3.9	8.0	7.6	374	5.7	184	443	0.8	0.2	9.0	7.5	374	6.3	279	468	1.0	0.7
7	01/17/06	2.8/ 2.5	9.0	7.5	383	24.1	1,999	923	1.0	21.8	8.5	7.5	383	4.9	187	267	0.2	0.7	7.5	7.6	383	4.9	342	226	4.7	3.2

 Table 4-12. Distribution Sampling Results

NS = not sampled; NA = not analyzed/applicable.

settling of iron solids within the distribution system piping. On January 17, 2006, due to insufficient flushing of the sampling tap, the iron concentration at DS1 was 1,999 μ g/L while iron concentrations after the Macrolite[®] filters were very close to the detection limit of 25 μ g/L. Manganese levels in the distribution system baseline samples averaged 130 μ g/L and increased to an average of 569 μ g/L after the treatment system became operational. The manganese concentrations in the distribution system mirrored the results after the Macrolite[®] filters.

There was no major change in pH values in the distribution system, which ranged from 7.0 to 7.5 before system startup and 7.2 to 7.6 after startup. Alkalinity levels in the distribution system ranged from 362 to 395 mg/L (as $CaCO_3$) before and 352 to 383 (as $CaCO_3$) after.

Lead and copper levels in the distribution system did not appear to have been affected by the operation of the arsenic treatment system. Lead levels in the distribution system ranged from <0.1 to 4.7 μ g/L with no samples exceeding the action level of 15 μ g/L. Copper concentrations ranged from <0.1 to 21.8 μ g/L with no samples exceeding the 1,300 μ g/L action level.

4.6 System Cost

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. This required the tracking of the capital cost for equipment, engineering, and installation cost and the O&M cost for chemical supply, electrical power use, and labor. However, the cost associated with improvements to the building and any other discharge-related infrastructure were not included in the treatment system cost. While not included in the scope of the demonstration project, these activities were funded by the demonstration host site.

4.6.1 Capital Cost. The capital investment was \$63,547, which included \$22,422 for equipment, \$20,227 for site engineering, and \$20,898 for installation. Table 4-13 presents the breakdown of the capital cost as provided by the vendor in its proposal to Battelle dated February 17, 2005. The equipment cost was about 35% of the total capital investment, which included the CP-213f filtration tanks, Macrolite[®] media, contact tanks, process valves and piping, instrumentation and controls, a chemical feed system (including a storage tank with a secondary containment), additional sample taps and totalizer/meters, shipping, and equipment assembly labor.

The engineering cost included the cost for preparing a process design report and required engineering plans, including a general arrangement drawing, piping and instrumentation diagrams (P&IDs), interconnecting piping layouts, tank fill details, an electrical on-line diagram, and other associated drawings. After certification by a Minnesota-registered professional engineer (PE), the plans were submitted to the MDH for permit review and approval (Section 4.3.1). The engineering cost was \$20,227, which was 32% of the total capital investment.

The installation cost included the cost for labor and materials for system unloading and anchoring, plumbing, and mechanical and electrical connections (Section 4.3.3). The installation cost was \$20,898 or 33% of the total capital investment.

Using the system's rated capacity of 20 gpm (or 28,800 gpd), the capital cost was normalized to be \$3,177/gpm (or \$2.21/gpd). The capital cost of \$63,547 was converted to an annualized cost of \$5,998/year using a capital recovery factor of 0.09439 based on a 7% interest rate and a 20-year return. Assuming that the system was operated 24 hours a day, 7 days a week at the design flow rate of 20 gpm to produce 10,500,000 gal of water per year, the unit capital cost would be \$0.57/1,000 gal. However, since the system operated an average of 3.4 hr/day at just under 4.4 gpm (see Table 4-4), producing 863,470 gal of water during the six-month period, the unit capital cost was increased to \$3.47/1000 gal at this reduced rate of production.

			% of Capital
Description	Quantity	Cost	Investment Cost
	Equipment Co	st	
Media and Tanks	1	\$8,549	_
Process Valves and Piping	1	\$1,935	_
Chemical Feed	1	\$1,150	_
Chemical Storage and Secondary Containment	1	\$680	_
Instrumentation and Controls	1	\$1,079	-
Additional Flowmeter/Totalizers	1	\$359	-
Shipping	_	\$750	-
Labor	_	\$7,920	-
Equipment Total	—	\$22,422	35%
E	Ingineering Co	ost	
Labor	_	\$15,620	—
Travel	_	\$1,750	
Subcontractor	_	\$2,857	—
Engineering Total	—	\$20,227	32%
I	nstallation Co	ost	
Labor	_	\$5,000	—
Travel	_	\$2,913	_
Subcontractor	_	\$12,985	_
Installation Total	_	\$20,898	33%
Total Capital Investment	_	\$63,547	100%

 Table 4-13.
 Summary of Capital Investment for BSLMHP Treatment System

4.6.2 Operation and Maintenance Cost. The O&M cost primarily included cost associated with chemical supply, electricity consumption, and labor (Table 4-14). The usage rate for the KMnO₄ stock solution was approximately 7.5 gal or 100 lb/yr. Incremental electrical power consumption was calculated for the chemical feed pump. The power demand was calculated based on the total operational hours throughout the duration of the six-month study, the chemical feed pump horsepower, and the unit cost from the utility bills. The routine, non-demonstration related labor activities consumed about 5 min per day, 5 days a week, as noted in Section 4.4.4. Based on this time commitment and a labor rate of \$21/hr, the labor cost was \$0.27/1,000 gal of water treated. In sum, the total O&M cost was approximately \$0.43/1,000 gal. The O&M cost will be verified during the next reporting period.

Cost Category	Value	Assumption
Projected Volume Processed (gal)	863,470	From 07/13/05 through 01/17/06 (see Table 4-4)
	Chemico	al Usage
Chamical Unit Prize (\$/lb)	\$2.07	97% KMnO ₄ in a 55-lb pail (approximately 4
Chemical Onit Flice (\$/10)	\$2.07	gal)
Total Chemical Consumption (lb)	50	7.5 gal or 100 lb of $KMnO_4$ per year
Chemical Usage (lb/1,000 gal)	0.058	
Total Chemical Cost (\$)	\$103.5	
Unit Chemical Cost (\$/1,000 gal)	\$0.12	
	Elect	ricity
Electricity Unit Cost (\$/kwh)	0.067	
Estimated Electricity Usage (kwh)	515	Calculated based on 617 hr of operation of a
Estimated Electricity Usage (Kwii)	515	0.17-hp chemical feed pump
Estimated Electricity Cost (\$)	\$34.54	
Estimated Power Use (\$/1,000 gal)	\$0.04	
	La	bor
Average Weekly Labor (hr)	0.42	5 min/day; 5 days a week
Total Labor Hours (hr)	11	26 weeks
Total Labor Cost (\$)	\$231	Labor rate = $\frac{21}{hr}$
Labor Cost (\$/1,000 gal)	\$0.27	
Total O&M Cost/1,000 gal	\$0.43	_

Table 4-14. O&M Cost for BSLMHP, MN Treatment System

Section 5.0: REFERENCES

- Battelle. 2004. *Quality Assurance Project Plan for Evaluation of Arsenic Removal Technology*. Prepared under Contract No. 68-C-00-185, Task Order No. 0029, for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Carlson, Kenneth H., and William R. Knocke. 1999. "Modeling Manganese Oxidation with KMnO₄ for Drinking Water Treatment." *JAWWA 125(10):* 892-896.
- Chen, A.S.C., L. Wang, J. Oxenham, and W. Condit. 2004. Capital Costs of Arsenic Removal Technologies: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-04/201. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Edwards, M., S. Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, and H.E. Taylor. 1998. "Considerations in As Analysis and Speciation." *JAWWA 90(3)*: 103-113.
- EPA. 2001. National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Federal Register*, 40 CFR Part 9, 141, and 142.
- EPA. 2002. Lead and Copper Monitoring and Reporting Guidance for Public Water Systems. EPA/816/R-02/009. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- EPA. 2003. Minor Clarification of the National Primary Drinking Water Regulation for Arsenic. *Federal Register*, 40 CFR Part 141.
- Gregory, D., and K. Carlson. 2003. "Effect of Soluble Mn Concentration on Oxidation Kinetics." *JAWWA 95(1)*: 98-108.
- Knocke, William R., Hoehn, Robert C.; Sinsabaugh, Robert L. 1987. "Using Alternative Oxidants to Remove Dissolved Manganese from Waters Laden with Organics." *JAWWA*, *79*(*3*): 75-79.
- Knocke, William R., John E. Van Benschoten, Maureen J. Kearney, Andrew W. Soborski, and David A. Reckhow. 1990. Alternative Oxidants for the Remove of Soluble Iron and Manganese. Final report prepared for the AWWA Research Foundation, Denver, CO.
- Knocke, William R., John E. Van Venschoten, Maureen J. Kearney, Andrew W, Soborski, and David A. Reckhow. 1991. "Kinetics of Manganese and Iron Oxidation by Potassium Permanganate and Chlorine Dioxide." JAWWA 83(6): 80-87.
- Knocke, William R., Holly L. Shorney, and Julia D. Bellamy. 1994. "Examining the Reactions Between Soluble Iron, DOC, and Alternative Oxidants During Conventional Treatment." JAWWA 86(1): 117-127.
- Post, Tim. 2005. "Pollution Cleanup Cost is Hard to Comprehend." *Minnesota Public Radio*. Available at: <u>http://news.minnesota.publicradio.org/features/2005/10/10_postt_impairedcleanup/.</u>

Salbu, B. and E. Steinnes. 1995. Trace Elements in Natural Waters. CRC Press, Boca Raton, Florida.

- Sauk River Watershed District. 2006. "Monitoring Our Resources." Available at: http://www.srwdmn.org/monitoring/html.
- Sorg, T.J. 2002. "Iron Treatment for Arsenic Removal Neglected." Opflow, AWWA, 28(11): 15.
- Wang, L., W. Condit, and A.S.C. Chen. 2004. Technology Selection and System Design: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-05/001. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

APPENDIX A

OPERATIONAL DATA

					Volu	me to								Volu	me to				
			Nev	w Well	Trea	tment	Pressur	e Tanks		Pres	sure Fi	Itration		Distri	bution	Back	wash	KMnO₄ A	pplication
													4.5					KMnO	Avorago
				Deily	Deily	A	Dressure	Dressure							Deily		Westewater	Tank	KMnO
Wook			Hour	Dally	Dally	Average	Pressure	Pressure		TA /TD	толь	0 11T	Across	Floureto	Dally		wastewater	Tank	
No	Date	Time	(hr)	Operation	volume	riowrate	Tank 1	(noid)	IN (noig)	IA/IB (noid)	(noid)	(noid)	System	Flowrate	volume	No. of Tanks	Produced	Level (in)	Dose (mg/L)
110.	07/13/05	21.13	NM		(gai)	(gpin) NA	(psig) NM	(psig) NM	(psig) 42	(psig)	(psig)	(psig) 30	(psig)	(gpm) NM	(gai)	NM		(III) NM	(IIIG/L) N∆
	07/14/05	20.10	NM	NA	6.980	NΔ	NM	NM	54	NM	NM	37	17	NM	7 000	1	110	NM	NA
1	07/15/05	20:00	NM	NA	6,880	NA	NM	NM	40	NM	NM	30	10	NM	6 700	2	240	NM	NA
	07/16/05	20.00 NM	NIM	NA	0,000 NA	NA	NIM	NIM		NIM	NIM	NIM	NA	NIM	0,700 NA		240 NA	NIM	NA
	07/17/05	NIM	NM	NA	NA NA	NA	NM	NM	NM	NIM	NIM	NM	NA	NM	NA NA	NM	NA	NIM	NA NA
	07/10/05	10.45	NIM				NIM	NINA	50	NIM	NIN	45	40			NIM			
	07/18/05	18:45		NA NA	NA 0.425	NA NA	INIVI	INIVI	38	INIVI	INIVI	45	13	INIVI	NA 000		NA	INIVI	NA NA
	07/19/05	19:10		NA NA	9,120	NA NA			40	NIVI	NIVI	30	4	INIVI NIM	8,900	3	350	NIM	NA NA
2	07/20/05	19.00		NA NA	14 470	NA NA			45	NIM	NIM	22	23	NIM	14,200	3	440	NIM	NA NA
2	07/21/05	10.30		NA NA	7 690	NA NA			40	NIM	NIM	30	10	NIM	7 400	4	490	NIM	NA NA
	07/22/05	20.00		NA NA	7,000	NA NA			40 NIM	NIM	NIM	42		NIM	7,400		300	NIM	NA NA
	07/23/05	NIM		NA NA	NA NA	NA NA			NIM	NIM	NIM	NIM		NIM	NA NA	INIVI NIM	NA NA	NIM	NA NA
	07/24/05	10:20	NIM	NA NA	14.050	NA NA	INIVI	INIVI		NIVI	NIM				12.000		170		NA NA
	07/25/05	19:30	NIM	NA	14,250	NA NA	NIVI NIM	INIVI	47	NIVI	INIVI	45	2	INIVI NIM	13,900	4	470	NIM NIM	NA NA
	07/26/05	20:10		NA NA	4,020	NA NA	INIVI	INIVI	41	INIVI	INIVI	40		INIVI	3,900	1	130	INIVI	NA NA
2	07/28/05	23:15	NIVI	NA NA	4,030	NA NA			00 /1	NIVI	NIM	25	3	INIVI NIM	3,900	2	240	NIVI	NA NA
3	07/20/05	20.15		NA NA	4,100	NA NA			41 56	NIM	NIM	40 52	2	NIM	3,900	<u> </u>	240	NIM	NA NA
	07/29/05	10.10 NIM		NA NA	3,340 NA	NA NA				NIM	NIM	55		NIM	3,200 NIM	I NIM	120	NIM	NA NA
	07/30/05	NIM	NIM		NA NA	NA NA	NIM		NIM	NIM	NIM	NIM	NIM	NIM	NIM	NIM	NA NA	NIM	NA NA
	07/31/05	10:05	NIM		19.670	N/A N/A	E2	70		NIM	NIM	10	10		19 100	INIVI E	710	20.0	
	08/01/05	19:05	NIM	NA NA	18,070	NA NA	52	72	28	NIVI	NIVI	48	10	INIVI NIM	18,100	<u> </u>	240	30.0	NA
	08/02/05	20.30		NA NA	0,007	NA NA	40	72	42	NIM	NIM	40	2		5,900	<u> </u>	240	29.0	
4	08/03/05	23.00	NIM	NA NA	4,733	NA NA	40	72	41	NIM	NIM	30	3	NIM	4,500	1	120	29.3	
4	08/05/05	23.00	NIM		2,005		45	72	49	NIM	NIM	40	2	NIM	3,000	2	240	20.9	20
	08/06/05	22.00 NM	NIM		5,905 NA		45 NM		42 NM	NIM	NIM	40 NM		NIM	3,700 NIM		240	20.7 NM	5.0 NA
	08/07/05	NIM	NM	NA	NA NA	NA	NM	NM	NM	NIM	NIM	NM	NIM	NM	NIM	NM	NA	NIM	NA NA
	08/08/05	21.30	NIM	NA	12 020	NΔ	60	72	58	NM	NM	50	8	NM	11 600		/00	27.8	110
	00/00/05	21.00			7 405		55	70	50	4.4	20	40	40		F 400	40	430	27.0	
	08/09/05	21:30 NM	NIM	NA NA	7,195	NA NA	55 NM	/2 NM	55	44 NM	38 NM	4Z	13 NM	INIVI NIM	5,100 NM	13 NM	1,720	27.4 NM	
5	08/11/05 ^(C)	18.00	NM	NA	4 885	NA	50	46	42	40	34	40	2	NM	4 200	6	740	27.1	
	08/12/05	20:30	NM	NA	5.200	NA	56	50	48	38	30	37	11	NM	5.000	<u> </u>	150	26.8	3.4
	08/13/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	08/14/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	08/15/05	21:00	NM	NA	15,090	NA	54	49	46	42	34	40	6	NM	14,600	4	490	25.8	
	08/16/05	21:30	NM	NA	5,410	NA	45	40	43	38	30	39	4	NM	5,100	1	120	25.4	
<u> </u>	08/17/05	20:00	NM	NA	3,360	NA	55	54	55	30	22	30	25	NM	3,400	2	320	25.3	
0	08/10/05	20:30	NIM	NA NA	3,000	NA NA	49	40	42	42	38	30 43	0	NM	0,000 1 205	3	380	24.9	3.2
	08/20/05	20.30 NM	NM	NA	4,020 NA	NΔ	NM	NM	47 NM	4Z NM	NM	43 NM	- 4 ΝΔ	NM	4,205 NA	5 NM	 ΝΔ	24.0 NM	5.2 NA
	08/21/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	08/22/05	20:20	NM	NA	11,460	NA	54	51	48	45	40	42	6	NM	10,315	6	790	23.9	
	08/23/05	22:10	NM	NA	5,140	NA	60	59	50	46	40	47	3	NM	5,110	1	120	23.8	
	08/24/05	21:00	NM	NA	4,400	NA	46	44	42	40	34	40	2	NM	3,930	3	370	23.5	
7	08/25/05	21:15	NM	NA	3,680	NA	48	44	40	34	30	33	7	NM	3,640	0	0	23.4	0.5
	08/26/05	NM NA	NM	NA	2,970	NA	53	50	48	43	40	46	2		2,535	3	380	23.1	2.5
	08/28/05	NM	NM	NA	NA	NA	NIVI	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA

US EPA Arsenic Demonstration Project at BSLMHP, MN – Daily System Operation Log Sheet

					Volu	me to								Volu	me to				
			Nev	r Daily Daily Average P r Operation Volume Flowrate			Pressur	e Tanks		Pres	sure Fi	Itration		Distril	bution	Back	wash	KMnO₄ A	pplication
																		KMnO.	Average
			Hour	Daily	Daily	Average	Prossuro	Proceuro							Daily		Wastewater	Tank	KMnO.
Week			Meter	Operation	Volume	Flowrate	Tank 1	Tank 2	IN	та/тв	тс/тр	онт	System	Flowrate	Volume	No. of Tanks	Produced		Dose
No.	Date	Time	(hr)	(hr)	(gal)	(apm)	(psig)	(psig)	(psig)	(psig)	(psig)	(psia)	(psig)	(apm)	(gal)	Backwashed	(gal)	(in)	(mg/L)
	08/29/05	21:00	NM	NA	13,980	NA	50	48	44	40	32	40	4	NM	13,775	5	660	22.4	(
	08/30/05	21:00	NM	NA	7,290	NA	48	43	42	40	30	39	3	NM	5,900	4	520	22.0	
	08/31/05	22:30	NM	NA	4,530	NA	55	50	49	48	40	46	3	NM	4,095	2	250	21.9	
8	09/01/05	21:30	NM	NA	3,240	NA	48	46	43	40	32	40	3	NM	3,125	1	140	21.8	25
	09/02/05	21:15 NM	NM	NA NA	3,190 NA	NA NA	45 NM	42 NM	40 NM	38 NM	36 NM	38 NM	Z NA	NM	3,120 NA	∠ NM	200 NA	21.6 NM	2.5 NA
	09/04/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	09/05/05	20:00	NM	NA	15,955	NA	51	50	46	42	35	44	2	NM	14,625	7	850	21.4	
	09/06/05	21:30	NM	NA	5,155	NA	50	49	45	43	34	42	3	NM	4,725	3	390	21.2	
0	09/07/05	20:15	NM	NA	4,320	NA	50	46	40	40	32	40	0	NM	4,205	1	140	21.1	
9	09/08/05	21:15	NIVI	NA NA	4,750	NA NA	60 54	55 50	59	52	48	54	5	NIVI	4,275	3	390	20.9	21
	09/10/05	20.30 NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	20.0 NM	NA
	09/11/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	09/12/05	21:00	NM	NA	10,840	NA	46	44	41	36	30	38	3	NM	9,645	5	660	20.1	
	09/13/05	22:15	NM	NA	4,675	NA	45	43	45	40	35	44	1	NM	4,255	2	270	19.9	
10	09/14/05	23:50	NM	NA	4,990	NA	48	48	43	41	34	41	2	NM	4,435	3	390	19.6	
10	09/16/05	22.00	NM	NA	2 715	NA	55	53	52	52	40	52	2	NM	2,925	1	130	19.5	27
	09/17/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	09/18/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	09/19/05	20:00	NM	NA	13,405	NA	51	50	46	42	34	42	4	NM	12,265	6	770	18.7	
	09/20/05	17:30	NM	NA	4,860	NA	45	48	45	52	46	44	1	NM	4,095	5	660	18.5	
	09/21/05(%)	20:00	NM	NA	4,940	NA	62	60	55	46	43	52	3	NM	4,495	2	280	18.2	
11	09/22/05	20:15	INIVI	NA	4,665	NA NA	60	58	53	55	50	52	1	INIVI NIM	4,445	0	0	18.0	2.0
1	09/23/05	20:00		NA NA	2,890	NA NA	40	43 NM	43 NM	40		38	C NIA		3,000			17.9	2.0
1	09/24/05	NM	NM	NA	NΔ	NΔ	NM	NM	NM	NM	NM	NM		NM	NΔ	NM	NA	NM	NΔ
<u> </u>	09/26/05	21.15	NM	NA	12,350	NA	54	51	47	42	34	43	4	NM	11 670	4	480	31.8	19/3
	09/27/05	20:30	NM	NA	4 190	NA	50	47	45	43	40	43	2	NM	4 185	0	0	31.6	
	9/28/2005 ^(e)	10.15	0.3	NA	3 105	NΔ	60	60	55	50	14	51		6.0	2 755	0	0	31.5	
12	09/29/05	19:30	3.2	2.9	3,255	19	52	50	43	40	32	40	3	5.5	3.840	3	360	31.3	
1	09/30/05(1)	21:30	6.1	2.9	5,345	31	50	50	45	42	40	43	2	1.0	3,850	2	250	31.0	2.7
	10/01/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	10/02/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	10/03/05	21:30	15.8	9.7	14,010	24	60	57	54	50	50	52	2	0.0	12,880	7	890	30.3	
	10/04/05	21:30	18.9	3.1	4,493	24	55	52	50	46	44	49	1	3.0	4,060	3	390	30.1	
	10/05/05	23:30	21.0	2.1	4,377	35	65	60	57	56	52	55	2	1.0	4,175	1	170	29.9	
13	10/06/05	18:30	23.7	2.7	2,313	14	60	56	55	40	42	50	5	3.0	2,295	0	0	29.8	
	10/07/05	18:30	26.2	2.5	3,617	24	45	43	43	38	38	37	6	10.0	3,350	1	80	29.6	2.6
	10/08/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
<u> </u>	10/09/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NIVI	NM	NA	NM	NA	NM	NA	NM	NA
	10/10/05	NM 10:45	NM	NA	NA 17.050	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA 15.075	NM -	NA	NM	NA
	10/11/05	18:45	38.1	11.9	17,050	24	50	48	42	38	36	38	4	9.0	15,975	/	870	28.8	
14	10/12/05	20:00	40.9	2.0	3,900	23	04 50	47	57	20	20	20	3	2.5	3,503	3	380	20.0	
14	10/13/05	20.00	43.9	3.0	4,280	24	50	47	44	38	30	38	5	9.U 2.5	3,002	3	250	20.4 28.2	26
l	10/14/05	20.00 NM	47.2 NM	NA	-4,070 NA	NA	NM	43 NM	45 NM	40 NM	40 NM	40 NM	NA S	2.5 NM	4,500 NA	∠ NM	NA	20.2 NM	NA
1									1 1 1 1										

US EPA Arsenic Demonstration Project at BSLMHP, MN – Daily System Operation Log Sheet (continued)

					Volu	ime to								Volu	me to				
			Ne	w Well	Trea	tment	Pressur	re Tanks		Pres	sure Fi	Itration		Distri	bution	Back	wash	KMnO ₄ A	pplication
Week			Hour Meter	Daily Operation	Daily Volume	Average Flowrate	Pressure Tank 1	Pressure Tank 2	IN	ТА/ТВ	тс/тр	OUT	ΔP Across System	Flowrate	Daily Volume	No. of Tanks	Wastewater Produced	KMnO₄ Tank Level	Average KMnO ₄ Dose
NO.	Date	lime	(hr)	(hr)	(gal)	(gpm)	(psig)	(psig)	(psig)	(psig)	(psig)	(psig)	(psig)	(gpm)	(gal)	Backwashed	(gal)	(in)	(mg/L)
	10/17/05	20:30	59.3	12.1	NA	NA	55	52	48	45	44	45	3	3.0	16,780	10	1,260	27.3	
	10/18/05	20:15	62.5	3.2	NA	NA	58	54	51	43	42	45	6	7.5	4,390	2	260	27.0	
45	10/19/05	20:15	66.1	3.6	5,625	26	65	60	56	52	50	52	4	2.5	5,195	2	250	26.8	
15	10/20/05	21:30	70.5	4.4	6,975	26	50	48	52	48	45	46	6	NIM	6,335	3	360	26.4	0.0
	10/21/05	20:30	74.0	3.5	5,530	20	34	50		40	40	40	GI	INIVI NIM	5,055		250	20.2	2.0
	10/22/05	NIM		NA NA	NA NA	NA NA		NIVI		NIM	NIM	NIM	NA NA	NIM	NA NA	NIM			NA NA
	10/23/03	20,00	00.4	NA	12.000	11/4	INIVI CE			50	50	50			10.005		520		INA
	10/24/05	20:00	02.4 95.1	0.4	13,200	20	60 55	60 52	50	5Z 46	50	50 47	0	5.0	2 750	4	350	25.5	
	10/25/05	12.10	97.4	2.7	4,100	20	52	32	30	20	44 20	47	3 12	15.0	3,750	3	120	20.0	
16	10/27/05	18.30	80.0	2.5	3,370	20	60	49 55	53	45	30	/18	5	0.0	3,300	2	250	23.1	•
10	10/28/05	21:30	92.6	2.5	3,400	23	60	55	54	50	50	50	4	0.0	3,635	1	120	24.3	2.5
	10/29/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	10/30/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	10/31/05	18:30	100.5	79	11 440	24	55	50	48	45	44	46	2	0.0	10 480	5	610	24.3	
	11/01/05	18:30	103.1	2.6	4 793	31	64	60	58	54	52	53	5	1.0	3 643	1	120	24.0	•
	11/02/05	18:00	105.9	2.8	3.357	20	55	50	46	42	40	41	5	2.5	3.927	3	360	23.8	
17	11/03/05	16:30	108.0	2.1	3.080	24	65	60	57	52	52	53	4	2.5	2.930	1	120	23.7	İ
	11/04/05	19:00	111.0	3.0	4,760	26	56	54	51	44	44	45	6	2.5	4,315	2	240	23.4	3.0
	11/05/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	11/06/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	11/07/05	18:30	117.5	6.5	10,057	26	60	55	48	44	44	45	3	2.5	8,826	5	690	NM	
	11/08/05	17:00	120.8	3.3	4,836	24	54	50	46	38	38	40	6	6.0	4,749	1	140	22.6	
	11/09/05	19:30	124.4	3.6	5,449	25	65	60	57	48	48	50	7	8.0	5,050	3	360	22.3	
18	11/10/05	21:15	127.8	3.4	5,168	25	55	45	41	40	39	40	1	2.5	4,640	2	240	22.1	
	11/11/05	23:15	130.4	2.6	4,081	26	56	54	51	45	44	46	5	1.0	3,705	2	240	21.9	2.8
	11/12/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	11/13/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	11/14/05	17:00	138.0	7.6	10,986	24	55	53	48	33	32	35	13	2.5	10,081	6	820	21.3	
	11/15/05	18:00	141.0	3.0	4,743	26	55	50	47	42	42	40	/	6.0	4,209	2	240	20.9	
10	11/16/05	18:30	144.3	3.3	5,648	29	55	49	53	50	50	49	4	5.0	5,095	3	380	20.4	
19	11/17/05	17:20	140.0	2.5	3,762	20	63	60	56	54	54	55	3	1.0	3,470	1	130	20.0	5.0
	11/10/05	NM	149.5 NM	2.7	4,220 NA	20	NIM	NM	NM	54 NM	5Z NM	NM	I NA	0.0	3,000 NA		250	19.0 NM	5.0 NA
	11/20/05	NM	NM	NA		NΔ	NM	NM	NM	NM	NM	NM	NΔ	NM	NΔ	NM	NA	NM	NA
	11/21/05	10.15	159.5	10.0	14 983	25	62	60	60	55	54	55	5	7.5	13 405	9	1 160	18.3	11/4
	11/22/05	18:00	162.9	3.4	5,391	26	65	62	58	54	53	55	3	5.0	4.805	3	390	18.0	
	11/23/05	21:00	167.3	4.4	7.070	27	65	60	58	52	52	55	3	7.5	6.240	5	640	17.5	
20	11/24/05	17:30	169.8	2.5	3,665	24	58	60	52	50	48	50	2	1.0	3,250	2	260	17.3	
	11/25/05	18:30	173.4	3.6	5,928	27	55	50	42	40	40	38	4	1.5	5,330	2	250	NM	3.5
	11/26/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	11/27/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA

US EPA Arsenic Demonstration Project at BSLMHP, MN – Daily System Operation Log Sheet (continued)

					Volu	ime to								Volu	me to				
			Nev	Volume to Vell Treatment Press Daily Daily Average Pressu			Pressu	e Tanks		Pres	sure Fi	iltration		Distri	bution	Back	wash	KMnO₄ A	pplication
																		KMnO	Average
			Hour	Daily	Daily	Avorago	Drossuro	Proceuro							Daily		Wastowator	Tank	KMnO.
Week			Motor	Operation	Volumo	Flowroto	Topk 1	Topk 2		т л /т р	толь		Across	Flowrote	Volumo	No. of Tanka	Produced	Loval	Dece
No	Date	Time	(hr)	(hr)	(gal)	(apm)	(nsig)	(nsia)	(nsia)	(nsia)	(nsia)	(nsia)	(nsig)	(apm)	(cal)	Backwashed	(gal)	(in)	
	11/29/05	17:00	102.2	0.9	15 655	(gpiii) 27	(psig)	(psig) 50	46	(psig)	(psig) 40	(psig) 40	(psig)	(gpiii) 1.0	(gai)	o	(gai)	20.6	(ing/L)
	11/20/05	12:20	103.2	9.0	5 972	21	55	50	40	41	40	40	0	1.0	5 220	0	370	29.0	
	11/29/05	14.20	190.0	4.0	4 010	24	54	50	40	42	20	42	4	1.0	3,250	3	400	29.1	
21	12/01/05	14.30	109.9	2.7	4,010	20	54	50	44	40	39	40	4	7.5	5,300	4	490	20.0	ł
21	12/01/05	21:00	193.0	3.9	6 161	21	50	50	41	39	30	39	2	1.5	5,000	<u> </u>	230 510	20.3	19
	12/02/05	21.00 NM	197.9 NM	4.1 NA	0,101	2.3 NIA	NM	NM	NIM	40 NM	40 NIM	MIM	NIA	NIM	5,230 NA	4 NIM	NA	27.0 NM	4.0 NA
	12/03/05	NM	NM	NA	NA		NM	NIM	NIM	NM	NM	NIM	NA NA	NIM	NΔ	NIM	NA	NM	ΝA
	12/04/05	21.20	210.0	12.1	10.000	26	55	50	111	20	36	27	117	3.0	16.970	11	1 200	26.0	
	12/05/05	20:00	210.0	3.1	4 700	25	54	50	41	42	42	45	4	5.0	4 345	1	1,390	25.6	
	12/07/05	19:00	216.7	3.6	5,966	28	54	50	44	39	36	37	7	3.0	5 445	2	250	25.0	
22	12/08/05	13:00	219.0	2.3	4.068	29	65	60	57	52	50	52	5	3.0	3.220	4	480	24.7	ľ
	12/09/05	18:00	224.1	5.1	8,590	28	64	60	56	51	50	52	4	6.0	7,310	5	700	23.9	5.1
	12/10/05	NM	NM	NA	ŇA	NA	NM	NM	NM	NM	NM	NM	NA	NM	ŇA	NM	NA	NM	NA
	12/11/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	12/12/05	18:00	235.4	11.3	16,425	24	64	60	59	56	54	55	4	3.0	15,230	7	970	22.3	
	12/13/05	19:30	239.4	4.0	5,975	25	55	50	48	46	44	45	3	5.0	5,500	2	250	21.7	ĺ
	12/14/05	19:30	242.8	3.4	4,790	23	65	60	56	52	50	52	4	2.5	4,360	1	120	21.3	1
23	12/15/05	18:00	246.3	3.5	4,624	22	65	60	55	49	47	49	6	4.0	4,170	3	370	20.6	ļ
	12/16/05	07:12	249.4	3.1	4,651	25	55	50	40	30	30	30	10	10.0	4,200	2	210	20.4	5.4
	12/17/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	12/18/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	12/19/05	21:00	266.2	16.8	26,100	26	55	48	45	39	38	40	5	6.0	23,690	10	1,320	17.8	ł
	12/20/05	10:00	270.9	4.7	7,760	20	59	55	53	40	47	40	5	1.5	6,970	4	470	17.0	ł
24	12/21/05	19:00	211.3	0.4	9,970	20	60 60	00	50	40	47	40 54	5	4.0	5,900	2	350	30.0	54
24	12/22/05	19.30 NM	201.7 NM	4.4	0,230 NA	24 NA	NM	NIM	NIM			NIM	J NA	4.0 NM	5,090 NA	NIM	550 NA	50.0	5.4 NA
	12/23/05	NM	NM	NA	NΔ	NΔ	NM	NM	NM	NM	NM	NM	NΔ	NM	NΔ	NM	NA	NM	NA
	12/25/05	NM	NM	NA	NA	NA	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	12/26/05	18:30	300.8	19.1	29.172	25	54	50	42	37	36	37	5	5.0	25.740	14	1.770	27.4	
	12/27/05	18:00	304.9	4.1	6,770	28	65	60	55	43	42	45	10	5.0	4,900	4	470	26.8	İ .
	12/28/05	19:15	309.7	4.8	5,908	21	54	50	45	40	38	40	5	3.0	5,925	3	350	26.1	ľ
25	12/29/05	19:30	313.5	3.8	5,570	24	54	47	44	40	39	40	4	2.0	4,845	3	350	25.6	Í .
	12/30/05	19:00	316.9	3.4	4,650	23	55	45	42	40	40	40	2	3.0	2,320	1	140	25.2	6.1
	12/31/05	NM	NM	NA	NM	NM	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	01/01/06	NM	NM	NA	NM	NM	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	01/02/06	10:30	331.5	14.6	23,050	26	65	60	57	56	55	55	2	2.0	21,300	12	1,620	23.0	
1	01/03/06 ^(g)	12:30	336.2	4.7	NA	NA	60	55	58	53	52	52	6	2.0	6,080	4	470	22.4	ļ
	01/04/06	17:00	336.4	0.2	4,550	NA	65	59	55	52	50	50	5	3.0	3,940	3	350	21.9	ļ
26	01/05/06	10:00	341.2	4.8	7,365	26	56	53	50	44	44	45	5	2.5	6,130	4	460	21.1	5.0
	01/06/06	19:30	345.8	4.6	7,290	26	55	52	48	40	40	40	8	7.5 NIM	6,000	4	470	20.5	5.6
1	01/08/06	NM	NM	NA	NIM	NIM	NIM	NIM		NM			NA		NA NA		NA	NIM	NA
1	01/00/00				I NIVI	INIVI							11/1			INIVI			11/1

US EPA Arsenic Demonstration Project at BSLMHP, MN – Daily System Operation Log Sheet (continued)

US EPA Arsenic Demonstration Project at BSLMHP, MN – Daily System Operation Log Sheet (continued)

			Ne	w Well	Volu Trea	ime to itment	Pressur	e Tanks		Pres	sure Fi	Itration		Volu Distri	me to bution	Back	wash	KMnO₄ A	pplication
Week			Hour Meter	Daily	Daily Volume	Average	Pressure Tank 1	Pressure Tank 2	IN	TA/TB	тс/тр	онт	ΔP Across System	Flowrate	Daily Volume	No. of Tanks	Wastewater	KMnO₄ Tank Level	Average KMnO ₄ Dose
No.	Date	Time	(hr)	(hr)	(gal)	(gpm)	(psig)	(psig)	(psig)	(psig)	(psig)	(psig)	(psig)	(gpm)	(gal)	Backwashed	(gal)	(in)	(mg/L)
	01/09/06	18:00	362.3	16.5	25,483	26	55	50	45	40	38	40	5	4.0	21,500	12	1,520	17.9	
	01/10/06	17:00	366.4	4.1	6,060	25	65	60	55	51	52	53	2	1.0	4,835	5	690	17.3	
	01/11/06	17:00	370.5	4.1	6,400	26	65	60	59	52	50	52	7	12.0	5,495	2	250	31.0	
27	01/12/06	19:15	376.1	5.6	8,635	26	54	50	43	39	38	38	5	5.0	7,125	5	650	30.2	I
	01/13/06	19:00	380.5	4.4	6,385	24	55	50	45	38	36	38	7	3.0	5,465	3	380	29.6	5.5
	01/14/06	NM	NM	NA	NM	NM	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
	01/15/06	NM	NM	NA	NM	NM	NM	NM	NM	NM	NM	NM	NA	NM	NA	NM	NA	NM	NA
28	1/16/2006 ^(h)	17:00	394.7	14.2	21,965	26	65	60	59	52	50	52	7	8.0	NA	13	1,640	27.6	
20	01/17/06	21:00	399.8	5.1	7,757	25	65	60	57	50	50	52	5	12.5	6,280	5	620	26.9	5.9

Note:

(a) On 08/09/05, both sets of duplex filters stuck in backwash mode due to sediment dislodged in purge/control valve, preventing it from closing. System bypassed.

(b) On 08/09/06, a pressure gauge after each set of duplex filters installed.

(c) On 08/11/05, pressure gauge on pressure tank 2 replaced.

(d) On 09/21/05, two flow meters, one on treated water line and one on backwash discharge line, installed although readings not recorded until 09/28/05.

(e) On 09/28/05 hour meter installed.

(f) On 09/30/06, pressure gauge changed out for duplex units TC/TD.

(g) On 01/03/06, totalizer to treatment re-set.

(h) Totalizer to distribution re-set.

NM = not measured

NA = not available

APPENDIX B

ANALYTICAL DATA

Sampling Dat	e		07/13/05			07/20/05			07/26/05			08/02/05		C)8/18/05 ^{(a,}	b)		08/2	4/05	
Sampling Locat	ion	IN	AC	TT	IN	AC	TT	IN	AC	тт	IN	AC	TT	IN	AC	тт	IN	AC	TA/TB	TC/TD
Parameter	Unit											7.0								
Stroke Length	%		33			33			33			33			26			2	:6	
Alkalinity (as CaCO ₃)	mg/L	352	374	374	365	365	361	365	370	365	352	365	374	352	365	361	352	365	361	374
Fluoride	mg/L	0.2	0.2	0.2	-	-	-	-	-	-	-	-	-	0.2	0.2	0.2	-	-	-	-
Sulfate	mg/L	<1	<1	<1	-	-	-	-	-	-	-	-	-	<1	<1	<1	-	-	-	-
Nitrate (as N)	mg/L	0.1	0.1	0.3	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-
Orthophosphate (as PO ₄)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
P (total) (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO ₂)	mg/L	23.3	23.3	22.7	24.7	24.4	24.2	23.5	23.6	23.9	23.8	24.0	23.6	24.1	24.2	23.9	29.4	28.6	28.4	28.2
Turbidity	NTU	25.0	3.1	0.6	23.0	2.8	0.5	25.0	2.9	0.1	26.0	4.7	11.0	33.0	3.7	0.4	24.0	2.9	0.7	0.2
тос	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	4.1	3.9	4.0	-	-	-	-
pН	S.U.		7.5	7.7	7.3	7.2	7.2	7.4	7.3	7.2	7.4	7.3	7.3	7.2	7.3	7.3	7.3	7.4	7.3	7.4
Temperature	⁰ C	14.9	12.7	12.3	11.4	12.3	11.9	10.4	11.0	11.0	11.2	12.1	12.1	1.0	14.1	13.8	12.3	12.8	12.5	12.8
DO	mg/L	2.0	0.7	1.1	2.5	0.5	0.7	3.6	1.7	0.9	3.5	1.0	1.2	0.9	0.9	0.7	10.4	0.8	0.7	1.1
ORP	mV	-23	196	219	-29	85	144	-40	144	173	-35	154	196	-76	2	43	-48	138	159	181
Total Hardness (as CaCO ₃)	mg/L	383	330	329	-	-	-	-	-	-	-	-	-	320	317	323	-	-	-	-
Ca Hardness (as CaCO ₃)	mg/L	228	197	197	-	-	-	-	-	-	-	-	-	188	190	187	-	-	-	-
Mg Hardness (as CaCO ₃)	mg/L	155	133	132	-	-	-	-	-	-	-	-	-	131	128	137	-	-	-	-
As (total)	µg/L	36.4	29.6	4.3	34.7	26.7	17.7	26.6	24.8	5.5	25.7	23.0	8.0	26.4	23.2	5.1	30.4	31.5	3.5	3.3
As (soluble)	µg/L	30.3	3.3	3.0	-	-	-	-	-	-	-	-	-	26.2	4.8	4.8	-	-	-	-
As (particulate)	µg/L	6.1	26.3	1.3	-	-	-	-	-	-	-	-	-	0.2	18.4	0.3	-	-	-	-
As (III)	µg/L	13.9	1.6	1.7	-	-	-	-	-	-	-	-	-	24.1	2.6	3.4	-	-	-	-
As (V)	µg/L	16.5	1.7	1.3	-	-	-	-	-	-	-	-	-	2.1	2.2	1.4	-	-	-	-
Fe (total)	µg/L	3,315	3,173	157	2,786	2,766	482	2,864	2,704	45	2,964	2,578	666	2,895	2,773	<25	2,764	2,706	<25	<25
Fe (soluble)	μg/L	2,792	<25	<25	-	-	-	-	-	-	-	-	-	2,954	<25	<25	-	-	-	-
Mn (total)	µg/L	154	996	428	139	634	561	137	844	727	135	1,126	487	139	1,097	1,010	130	871	475	467
Mn (soluble)	µg/L	133	377	391	-	-	-	-	-	-	-	-	-	142	850	1,000	-	-	-	-

Analytical Results from Long Term Sampling at BSLMHP, MN

(a) Onsite water quality parameters taken on 08/17/05. (b) System bypassed on 08/09/05 and samples not collected that week.

Sampling Dat	e		08/3	1/05 ^(a)			09/07	7/05 ^(b)			09/1	14/05			09/20/05			09/27	/05 ^(c)	
Sampling Locat	IN	AC	ТА/ТВ	TC/TD	IN	AC	TA/TB	TC/TD	IN	AC	ТА/ТВ	TC/TD	IN	AC	тт	IN	AC	TA/TB	TC/TD	
Parameter	Unit																			
Stroke Length	%		1	15			1	5			2	26	-		26			2	6	
Alkalinity (as CaCO ₃)	mg/L	383	370	374	374	361	365	361	365	356	370	370	352	374	374	370	378	374	374	374
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.2	0.2	0.2	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-
Orthophosphate (as PO ₄)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
P (total) (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO ₂)	mg/L	25.8	25.6	25.8	25.8	24.1	24.3	24.0	24.2	22.6	22.9	22.5	22.7	22.6	22.5	22.2	25.7	25.7	25.6	25.3
Turbidity	NTU	32.0	5.3	4.2	4.2	13.0	6.0	14.0	14.0	32.0	3.4	0.2	0.3	31.0	3.4	0.5	32.0	4.1	<0.1	<0.1
тос	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	4.8	4.6	4.8	-	-	-	-
pН	S.U.	NA	NA	NA	NA	7.3	7.4	7.3	7.5	7.3	7.2	7.2	7.2	7.2	7.3	7.2	7.4	7.4	7.4	7.4
Temperature	⁰ C	NA	NA	NA	NA	10.8	11.3	10.7	11.5	11.5	10.9	11.2	10.7	10.7	13.4	13.6	9.5	9.8	9.9	10.0
DO	mg/L	NA	NA	NA	NA	0.9	0.5	0.9	0.7	1.5	0.7	0.5	0.5	0.7	1.0	0.9	0.8	1.6	0.7	0.7
ORP	mV	NA	NA	NA	NA	-63	-22	-9	-12	-49	101	96	101	-66	18	6	-54	1	6	8
Total Hardness (as CaCO ₃)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	307	307	306	-	-	-	-
Ca Hardness (as CaCO ₃)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	177	178	176	-	-	-	-
Mg Hardness (as CaCO ₃)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	131	129	130	-	-	-	-
As (total)	µg/L	27.0	27.9	13.8	12.3	20.6 ^(g)	28.8	21.5	17.5	23.7	24.8	2.8	4.7	27.4	27.1	2.9	26.7	25.4	8.4	7.6
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	27.6	4.7	3.2	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	22.4	<0.1	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	25.6	1.7	1.5	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	2.0	3.1	1.7	-	-	-	-
Fe (total)	µg/L	2,888	3,096	571	465	1069	2,619	1,052	1,140	2,716	2,795	<25	78	3,094	2,911	<25	2,934	2,796	<25	<25
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	2,883	<25	<25	-	-	-	-
Mn (total)	µg/L	133	581	906	865	430	416	447	430	131	1,042	651	897	149	883	616	141	676	802	841
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	145	533	634	-	-	-	-

Analytical Results from Long Term Sampling at BSLMHP, MN (continued)

(a) Operator not able to take onsite water quality parameters due to busy work schedule. (b) Onsite water quality parameters taken on 09/06/05. (c) Onsite water quality parameters taken on 09/28/05.

Sampling Date		10/05/05 ^(a)				10/12/05 ^(b)				10/19/05 ^(c)				10/20	6/05 ^(d)		11/02/05 ^(e)			
Sampling Locat	ion	IN	AC			IN	40		тслъ	INI	AC	тт	IN	A.C.	та/тв		IN	A.C.	TA/TB	тслъ
Parameter	Unit			IAID	10/10		70	170 ID	10/10	IIN	AC		IIN	70	1701D	10/10		70	IAID	10/10
Stroke Length	%	26			26				26				2	26		26				
Alkalinity (as CaCO ₃)	mg/L	356	321	352	374	365 365	374 370	374 374	365 365	383	378	383	352	365	361	361	361	352	356	352
Fluoride	mg/L	-	-	-	-	-	-	-	-	0.2	0.2	0.2	-	-	-	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	•	-	-	<1	<1	<1	-	-	-	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-
Orthophosphate (as PO ₄)	mg/L	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
P (total) (as P)	mg/L	0.5	0.5	0.02	0.02	0.5 0.5	0.4 0.5	0.1 0.03	0.03 0.1	0.5	0.5	0.1	0.5	0.5	0.03	0.03	0.5	0.1	0.04	0.04
Silica (as SiO ₂)	mg/L	23.1	22.6	23.6	25.6	23.2 23.3	23.6 23.6	23.2 23.3	23.2 23.0	23.0	23.2	21.7	24.5	25.1	24.1	24.5	24.7	24.5	24.0	23.9
Turbidity	NTU	28.0	4.6	1.2	<0.1	34.0 34.0	3.0 3.3	0.4 0.5	0.5 0.5	34.0	4.0	1.3	33.0	3.3	0.2	1.3	33.0	3.1	0.1	0.3
ТОС	mg/L	-	-	-	-	-	-	-	-	3.7	3.3	3.8	-	-	-	-	-	-	-	-
рН	S.U.	7.4	7.5	7.4	7.5	7.4	7.4	7.4	7.4	7.4	7.4	7.3	7.3	7.4	7.4	7.4	7.4	7.4	7.4	7.4
Temperature	⁰ C	10.0	10.0	10.0	10.0	10.5	10.2	10.3	10.3	10.8	10.8	10.8	10.6	10.5	10.5	10.6	10.0	10.1	10.1	10.2
DO	mg/L	0.9	1.5 ^(e)	1.2 ^(e)	1.3 ^(e)	0.7	1.1	0.8	0.8	0.8	1.0	0.7	1.1	1.3	1.1	1.0	0.7	0.7	1.0	0.8
ORP	mV	-64	175	177	183	-58	28	35	45	-56	23	29	-50	-1	28	33	-30	55	71	78
Total Hardness (as CaCO ₃)	mg/L	-	•	-	-	-	-	-	-	315	315	313	-	•	-	-	-	-	-	-
Ca Hardness (as CaCO ₃)	mg/L	-	-	-	-	-	-	-	-	188	189	184	-	-	-	-	-	-	-	-
Mg Hardness (as CaCO ₃)	mg/L	-	-	-	-	-	-	-	-	128	126	129	-	-	-	-	-	-	-	-
As (total)	µg/L	22.8	21.8	3.2	3.3	27.2 28.7	25.8 27.6	6.3 5.8	6.3 10.1	29.1	27.8	4.2	26.0	26.6	6.4	5.8	25.1	5.6	5.6	4.2
As (soluble)	µg/L	-	-	-	-	-	-	-	-	25.2	4.0	2.9	-	-	-	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	3.8	23.8	1.3	-	-	-	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	20.8	0.9	0.8	-	-	-	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	4.5	3.1	2.4	-	-	-	-	-	-	-	-
Fe (total)	µg/L	2,596	2,523	<25	<25	2,820 2,874	2,562 2,707	142 74	72 547	2,680	2,624	136	2,979	2,968	<25	67	3,758	247	62	48
Fe (soluble)	μg/L	-	-	-	-	-	-	-	-	2,594	<25	<25	-	-	-	-	-	-	-	-
Mn (total)	µg/L	119	760	600	628	128 130	791 827	687 694	794 838	128	953	548	134	888	852	846	176	984	988	952
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	132	468	535	-	-	-	-	-	-	-	-

Analytical Results from Long Term Sampling at BSLMHP, MN (continued)

(a) Onsite water quality parameters taken on 10/06/05. (b) Duplicate sampling week. (c) Onsite water quality parameters taken on 10/18/05. (d) Onsite water quality parameters taken on 10/27/05. (e) Onsite water quality parameters taken on 11/01/05.

Sampling Date		11/09/05				11/15/05 ^(a,b)			11/29/05 ^(c)					12/08	3/05 ^(d)		12/14/05 ^(e)			
Sampling Location		IN	AC	TA/TB	TC/TD	IN	AC	TT	IN	AC	TA/TB	TC/TD	IN	AC	TA/TB	TC/TD	IN	AC	TA/TB	TC/TD
Parameter	Unit		-							-										
Stroke Length	% 26			40			38					4	0		40					
Alkalinity (as CaCO ₃)	mg/L	370	370	365	370	352	365	370	352	370	361	356	374	374	370	370	374 378	365 374	378 378	378 378
Fluoride	mg/L	-	-	-	-	0.2	0.2	0.2	-	-	-	-	0.2	0.2	0.2	0.2	-	-	-	-
Sulfate	mg/L	-	-	-	-	<1	<1	<1	-	-	-	-	<1	<1	<1	<1	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-
Orthophosphate (as PO ₄)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P (total) (as P)	mg/L	0.5	0.5	0.1	0.1	0.5	0.5	0.2	0.5	0.5	0.4	0.1	0.4	0.4	0.02	0.02	0.5 0.6	0.5 0.6	0.2 0.2	0.2 0.2
Silica (as SiO ₂)	mg/L	23.9	23.6	24.0	24.0	23.5	23.7	23.7	24.3	24.6	24.7	25.0	23.5	23.9	23.9	23.8	25.4 26.1	25.6 26.4	25.1 25.5	25.8 24.9
Turbidity	NTU	33.0	3.2	0.1	0.7	34.0	3.2	0.9	32.0	4.2	1.3	0.5	26.0	3.9	0.1	0.5	34.0 35.0	5.1 5.2	0.7 0.8	1.9 1.2
тос	mg/L	-	-	-	-	NA	NA	NA	-	-	-	-	NA	NA	NA	NA	-	-	-	-
рН	S.U.	7.4	7.4	7.4	7.4	7.3	7.3	7.2	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
Temperature	°C	10.0	10.2	10.2	10.4	9.4	9.5	9.5	9.8	9.6	9.6	9.7	9.6	9.4	9.3	9.4	9.3	9.5	9.3	9.2
DO	mg/L	0.9	0.8	0.9	0.8	1.3	1.0	1.0	1.2	1.6	0.9	1.0	1.1	1.1	0.9	1.1	1.2	1.1	1.6	0.9
ORP	mV	-38	39	65	68	-39	62	76	-39	55	65	71	-42	54	65	68	-26	52	59	64
Total Hardness (as CaCO ₃)	mg/L	-	-	-	-	311	321	338	-	-	-	-	296	295	304	307	-	-	-	-
Ca Hardness (as CaCO ₃)	mg/L	-	-	-	-	186	192	212	-	-	-	-	184	182	185	185	-	-	-	-
Mg Hardness (as CaCO ₃)	mg/L	-	-	-	-	125	129	126	-	-	-	-	112	114	119	122	-	-	-	-
As (total)	µg/L	36.6	36.1	11.3	5.7	33.2	34.1	17.1	30.3	34.1	29.8	9.2	24.2	24.9	2.0	2.1	26.4 27.6	25.6 25.6	12.1 11.3	12.6 12.4
As (soluble)	µg/L	-	-	-	-	28.8	8.7	6.2	-	-	-	-	24.4	2.7	2.0	2.0	-	-	-	-
As (particulate)	µg/L	-	-	-	-	4.4	25.4	10.9	-	-	-	-	<0.1	22.2	<0.1	0.1	-	-	-	-
As (III)	µg/L	-	-	-	-	27.4	5.4	4.4	-	-	-	-	24.5	0.3	0.3	0.4	-	-	-	-
As (V)	µg/L	-	-	-	-	1.4	3.3	1.7	-	-	-	-	<0.1	2.4	1.6	1.6	-	-	-	-
Fe (total)	µg/L	2,549	2,425	336	68	2,774	2,830	1,067	2,793	2,761	2,363	532	2,258	2,247	<25	<25	2,655 2,832	2,564 2,558	983 978	1,001 1,023
Fe (soluble)	µg/L	-	-	-	-	2,873	306	41	-	-	-	-	2,263	<25	<25	<25	-	-	-	-
Mn (total)	µg/L	117	1,031	951	971	130	1,004	1,091	124	1,123	1,002	432	110	1,037	203	187	123 125	1,242 1,243	611 611	665 673
Mn (soluble)	µg/L	-	-	-	-	138	946	1,062	-	-	-	-	110	166	202	190	-	-	-	-

Analytical Results from Long Term Sampling at BSLMHP, MN (continued)

(a) TOC samples broke during transit to laboratory. (b) Onsite water quality parameters taken 11/16/06. (c) Onsite water quality parameters taken on 11/30/05. (d) TOC samples out of hold time. (e) Onsite water quality parameters taken on 12/15/05.

Sampling Dat		01/05/06 ^{(a})		01/10	0/06 ^(b)		01/17/06 ^(c)					
Sampling Locat	INI	AC	тт	IN	A.C.			IN	AC				
Parameter	Unit		2			AC	IAID	10/10		70	TATID	10/10	
Stroke Length		40			4	0		40					
Alkalinity (as CaCO ₃)	mg/L	378	383	378	374	378	378	383	383	378	378	378	
Fluoride	mg/L	0.2	0.2	0.2	-	-	-	-	-	-	-	-	
Sulfate	mg/L	<1	<1	<1	-	-	-	-	-	-	-	-	
Nitrate (as N)	mg/L	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	
Orthophosphate (as PO ₄)	mg/L	-	-	-	-	-	-	-	-	-	-	-	
P (total) (as P)	mg/L	0.5	0.4	0.1	0.4	0.4	<0.01	<0.01	0.5	0.5	0.03	0.03	
Silica (as SiO ₂)	mg/L	24.9	25.3	24.7	24.4	24.2	23.8	24.2	25.3	25.4	24.1	24.7	
Turbidity	NTU	31.0	5.8	1.4	31.0	4.3	0.2	4.6	32.0	6.5	0.3	3.3	
тос	mg/L	3.2	3.1	3.0	-	-	-	-	3.1	2.9	2.8	2.8	
рН	S.U.	7.3	7.4	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	
Temperature	°C	9.7	10.0	9.8	9.8	9.6	10.0	9.8	9.6	9.8	9.8	10.1	
DO	mg/L	0.9	1.0	1.0	0.9	1.2	0.9	1.0	1.0	1.1	1.0	0.9	
ORP	mV	-42	58	68	-38	62	57	61	-45	59	55	57	
Total Hardness (as CaCO ₃)	mg/L	305	316	318	-	-	-	-	-	-	-	-	
Ca Hardness (as CaCO ₃)	mg/L	190	195	193	-	-	-	-	-	-	-	-	
Mg Hardness (as CaCO ₃)	mg/L	114	121	125	-	•	1	-	-	-	-	-	
As (total)	µg/L	25.9	24.9	3.9	24.6	24.0	3.0	4.8	25.6	25.9	2.8	2.5	
As (soluble)	µg/L	26.2	2.8	2.2	-	-	-	-	-	-	-	-	
As (particulate)	µg/L	<0.1	22.1	1.7	-	-	-	-	-	-	-	-	
As (III)	µg/L	25.0	0.4	0.4	-	-	-	-	-	-	-	-	
As (V)	µg/L	1.2	2.4	1.7	-	-	-	-	-	-	-	-	
Fe (total)	µg/L	2,737	2,566	194	2,581	2,629	28	307	2,593	2,427	27	<25	
Fe (soluble)	µg/L	2,474	<25	<25	-	-	-	-	-	-	-	-	
Mn (total)	µg/L	125	1,506	331	135	1,235	324	366	130	1,031	220	201	
Mn (soluble)	µg/L	121	108	138	-	-	-	-	-	-	-	-	

Analytical Results from Long Term Sampling at BSLMHP, MN (continued)

(a) Onsite water quality parameters taken on 01/04/06. (b) Onsite water quality parameters taken on 01/11/06. (c) Onsite water quality parameters taken on 01/17/06.