
 

 
 

 

SCIENCE 

Approaches to Identify Exceedances  
of Water Quality Thresholds Associated  
with Ocean Conditions 

 Office of  
Research & Development 

 
National Health and 
Environmental Effects  
Research Laboratory 

United States 
Environmental Protection 
Agency 

EPA/600/R-10/128 
September 2010 



EPA/600/R-10/128 
September 2010 

 
 
 

Approaches to Identify Exceedances 
of Water Quality Thresholds 

Associated with Ocean Conditions 
 
 
 

Cheryl A. Brown and Walter G. Nelson 
National Health and Environmental Effects Research Laboratory 

Western Ecology Division 
Pacific Coastal Ecology Branch 

2111 SE Marine Science Dr. 
Newport, OR 97366 

 

 
 

 



 

 
 

 

SCIENCE 

Approaches to Identify Exceedances  
of Water Quality Thresholds Associated  
with Ocean Conditions 

 Office of  
Research & Development 

 
National Health and 
Environmental Effects  
Research Laboratory 

United States 
Environmental Protection 
Agency 

EPA/600/R-10/128 
September 2010 



 2

 

Abstract 
 Estuaries along the west coast of the United States periodically have high nutrient, 

high chlorophyll a, and low dissolved oxygen levels due to the intrusion of oceanic water 

into the estuaries.  This oceanic water often has water quality conditions which exceed 

water quality standards and indicators of eutrophication status.  Tools are needed to 

distinguish such exceedances of water quality thresholds related to import of oceanic 

water from other causes.  In this report, we present an application of logistic regression 

models to predict the probability of exceedance of water quality thresholds using flood-

tide nutrient and dissolved oxygen data from the Yaquina Estuary.  Models including 

water temperature and salinity correctly classified exceedances of dissolved inorganic 

nitrogen and phosphorous thresholds about 90% of the time, and for dissolved oxygen 

about 80% of the time.  Inclusion of in situ fluorescence in the logistic regression model 

for dissolved oxygen improved the model performance and reduced the rate of false 

positives.   
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1. Introduction/Background 
In response to the Clean Water Act requirements to protect and restore the quality 

of surface waters of the nation, EPA has developed a strategy of assisting the States to 

develop numeric nutrient criteria as part of water quality standards designed to protect the 

designated uses of State waters. EPA has provided guidance to the States and Tribes for 

developing nutrient criteria for estuarine and coastal waters (US EPA, 2002).  The Office 

of Research and Development, National Health and Environmental Effects Laboratory 

(NHEERL) has been conducting research to support improvements to the scientific basis 

for estuarine, numeric nutrient criteria.  In the Pacific Northwest (PNW) region, 

NHEERL scientists have previously synthesized the research results of field sampling, 

trend analyses, and modeling approaches to produce a case study for development of 

numeric nutrient targets for Yaquina Estuary, Oregon (Brown et al., 2007).   

 Due to the seasonal variability in water quality conditions within the Yaquina 

Estuary, Brown et al. (2007) recommended that separate criteria be developed for wet 

(November – April) and dry seasons (May – October).  Since there is little biological 

utilization of nutrients during the wet season, development of dry season criteria was 

suggested as a higher priority.  In addition, it was recommended that the estuary be 

divided into two zones and separate criteria be developed for the ocean-dominated (Zone 

1) and watershed and point source dominated (Zone 2) regions (see Figure 1).  Using in 

situ observation within the Yaquina Estuary as a basis for determining an Estuarine 

Reference Condition, median values were suggested as potential dry season criteria for 

dissolved inorganic nitrogen (DIN) and phosphate.  In the present report, the potential 

numeric criteria are termed “water quality thresholds.” 

 During April through September along the Pacific Northwest coast of the U.S., 

seasonal, wind-driven coastal upwelling advects relatively cool, nutrient rich water to the 

surface, which is then advected into the estuaries during flood tides.  Previous studies 

have demonstrated that water quality conditions within PNW estuaries during the 

summer are influenced by intrusions of upwelled oceanic water into the estuaries, 

affecting nutrients (Haertel et al., 1969; de Angelis and Gordon, 1985; Brown and 

Ozretich, 2009), phytoplankton (Roegner and Shanks, 2001; Roegner et al., 2002; Brown 

and Ozretich, 2009), and dissolved oxygen (Pearson and Holt, 1960; Haertel et al., 1969; 
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Brown and Power, in review) levels.  The coupling of water quality conditions between 

the coastal ocean and the adjacent estuaries can be problematic in assessing compliance 

of water quality standards and for evaluating eutrophication status for estuarine systems 

in the region. 

 The objective of this report is to provide a set of simple, statistical approaches that 

may be used to distinguish exceedances of water quality thresholds resulting from natural 

conditions in the near coastal ocean as distinct from other causes of exceedances. We 

used the physical characteristics of upwelled water, namely temperature and salinity, as 

indicators of upwelled water within the estuary.  Statistical methods were then applied in 

order to develop a probability estimate that observations of water quality parameters such 

as nutrient or dissolved oxygen may have been strongly influenced by conditions in the 

near shore water and exceedances were associated with ocean conditions at time of 

sampling.  An additional approach is presented where observed nutrient levels are 

compared to modeled values based on temperature-nutrient relationships developed using 

data from outside the estuary on the adjacent continental shelf.   
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2.  Methods 

2.1 Data Used in the Analyses 
 
 We assembled data primarily from a variety of research projects conducted by the 

Pacific Coastal Ecology Branch (U.S. EPA) to serve as the basis for development of 

statistical methods to detect the influence of near coast ocean waters on estuarine water 

quality conditions.  EPA data were supplemented with additional data sources described 

below.  Due to the multiple data sources, there is considerable interannual variability in 

sampling locations and sampling frequency.  Although the studies used were not 

specifically designed to address issues of exceedances of water quality thresholds, they 

do allow us to examine the importance of variability of ocean conditions on water quality 

measurements within the estuary.  All of the data used in the analyses was for the dry 

season, which is defined as the months of May through October.  

 
 
Figure 1.  Map showing the location of flood-tide nutrient sampling and continuous 
monitoring station (Y1) inside Yaquina Estuary, and inner continental shelf stations (NH-
1 and NH-5) from Wetz et al. (2005).  Meteorological data are available from NOAA 
station NWP03 and flood-tide water temperature data from station SBEO3.  The 
boundary delineating Zone 1 and Zone 2 is also presented.   



 10

2.1.1 Yaquina Estuary Flood-tide Nutrient Data  
 During the period of May through October of 2002, 2003, and 2004, once daily 

water samples were collected during flood tides at an approximate depth of 0.5 m at the 

Oregon State University Dock (Y1,Figure 1), which is located inside Yaquina Estuary 4 

km from the seaward end of the inlet jetties.  Water samples were immediately filtered 

using GF/F filters and frozen for storage until analysis.  Dissolved inorganic nutrients 

(NO3
-
+ NO2

-
, NH4

+
, and PO4

-3
) were analyzed by MSI Analytical Laboratory (University 

of California-Santa Barbara, CA) using Lachat flow injection instrumentation (Zellweger 

Analytics, Milwaukee WI).  Dissolved inorganic nitrogen (DIN) is composed of NO3
-
, 

NO2
-
, and NH4

+
, and dissolved inorganic phosphorous (DIP) represents PO4

-3
.  

Commencing on August 28 2002 and continuing through September 2004, an automated 

sampler (ISCO®, Model 3700FR, Lincoln, NE, USA), programmed using the predicted 

time of each high tide, was used to collect water samples for each flood tide.  Samples 

were held in a dark, refrigerated compartment and were collected daily, filtered and 

frozen for nutrient analysis. 

2.1.2 Yaquina Estuary Continuous Data 
 During 2002-2009, time-series data (temperature, salinity and dissolved oxygen) 

were collected every 15 minutes at station Y1 in the Yaquina Estuary using water quality 

monitoring sondes (YSI 6600, YSI, Inc., Yellow Springs, OH, USA).  Beginning in 2004, 

in situ fluorescence was also measured.  The sondes were calibrated prior to use 

following the manufacturer’s recommendations.  Temperature sensors were factory 

calibrated by the manufacturer and their performance was checked prior to and 

subsequent to deployment.  Conductivity was calibrated with a one-point calibration.  

The dissolved oxygen sensor was calibrated using the saturated air-in-water method.  In 

situ fluorescence was calibrated with a two-point calibration, using reverse osmosis water 

and a rhodamine WT solution with data reported as µg l-1.  Sonde performance was 

checked in a flow-through seawater bath in the laboratory immediately before and after 

deployment.  Several techniques were used to identify time periods of significant 

biological fouling of the sensors.  These techniques included post-deployment calibration 

checks, comparison of results from adjacent stations, comparison to independent discrete 

measurements (if available), and comparison of the last few readings of a deployment to 
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the first few readings of the newly deployed sonde.  If there was evidence of biofouling 

or sensor drift, these data were excluded from the analyses.  Flood-tide values were 

identified and extracted from the 15-min data record using the maximum salinity data 

that occurred closest to the time of predicted high tides.  During 2002-2004, two sondes 

were deployed at station Y1, one deployed about 1 m below the water surface and the 

second deployed about 2.5 m below the water surface. During 2007-2009, only one sonde 

was deployed at 2.5 m.  Data from the 2.5- m depth sonde were utilized, with data from 

the 1-m depth sonde substituted to fill data gaps.  During 2005 and 2006, there appeared 

to be a positive bias in salinity data; therefore, these data were excluded from analyses. 

2.1.3 Additional Yaquina Estuary Data 
 Additional data were collected by the Pacific Coastal Ecology Branch in Zone 1 

of the Yaquina Estuary during the months of May through October of 1998-2008 either 

from water quality cruises or the OSU dock.  Sampling stations extended from near the 

mouth to a distance of about 12 km up estuary.  Data compiled included dissolved 

inorganic nutrients, dissolved oxygen, water temperature, and salinity.  The data collected 

from 1998-2006 were previously described in Brown et al. (2007).  During 2007, seven 

stations were sampled in the lower estuary approximately once per month from June 8th – 

September 25th.  During May through October of 2007 and 2008, nutrient samples were 

collected approximately weekly at station Y1.  This sampling was random with respect to 

tidal stage.   

2.1.4 Other Sources of Data 
 
Classification Dataset 
 As part of a study to classify estuaries with regard to their susceptibility to 

nutrient enrichment (Lee and Brown, 2009), we have conducted short-term deployments 

of instruments to measure temperature, salinity and dissolved oxygen levels in several 

Oregon estuaries.   Data sondes were deployed near the mouths of the Siletz (June 23-25, 

2008), Tillamook (July 19-25, 2005), and Umpqua (June 21-26, 2005) estuaries during 

the summers of 2005 and 2008.  Length of deployments varied from 2 to 7 days and the 

same calibration procedures described above were used for these deployments.   
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Coos Bay Dataset 

 Continuous sonde data were also available for a station near the mouth of Coos 

Bay (Charleston Bridge Station at Latitude:  43° 20’ 15.72” N, Longitude 124° 19’ 

13.92” W) from the South Slough National Estuarine Research Reserve 

(http://nerrs.noaa.gov/SouthSlough/).   

Nearshore Data 

 Additionally, we compared the flood-tide data collected at station Y1 to 

temperature, salinity and nutrient data from 1997 through 2004 that were available from 

Wetz et al. (2005) for two stations on the inner continental shelf off Newport, Oregon 

(NH-5,NH-15 , Figure 1).  Data from the months of May through October, which 

coincides with the period during which upwelling predominantly occurs, were extracted.  

Hourly wind speed and direction data were available from a near shore NOAA weather 

station adjacent to the Yaquina Estuary (NWP03, Figure 1; http://www.ndbc.noaa.gov/).  

Flood-tide nutrient, water temperature, and dissolved oxygen conditions at station Y1 

have previously been correlated with integrated alongshore wind stress (Brown and 

Ozretich, 2009; Brown and Power, in review).  Integrated alongshore wind stress (with a 

decay coefficient of 2 days) was calculated using wind data from station NWP03 during 

the years of 1998-2008.  Details on calculation of integrated alongshore wind stress are 

provided in Brown and Ozretich (2009).  In this report, a positive wind stress indicates 

upwelling favorable wind stress from the north.  Water temperature data were available 

from a NOAA station located inside the Yaquina Estuary (SBEO3, Figure 1; 

http://www.ndbc.noaa.gov/station_page.php?station=sbeo3).   

2.2 Data Analyses 
The first step in identifying exceedances of water quality thresholds associated 

with ocean input is to specify the target thresholds (Table 1).  Potential numeric targets 

for DIN and DIP have been previously identified by Brown et al. (2007).  These 

thresholds are based on dry season median values of DIN and DIP for Zone 1 in the 

Yaquina Estuary.  The threshold for dissolved oxygen is the state of Oregon criterion for 

estuarine waters (http://arcweb.sos.state.or.us/rules/OARs_300/OAR_340/340_041.html). 
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Table 1.  Water quality thresholds used in development of logistic regression models.  

Parameter Threshold Source 

DIN 14 µM Brown et al. (2007) 

DIP 1.3 µM Brown et al. (2007) 

Dissolved Oxygen 6.5 mg l-1 State of Oregon Criterion for Estuaries 

 

2.2.1 Logistic Regression 
 To develop indicators that can be used to determine whether ocean conditions are 

responsible for exceedances of water quality thresholds, we used logistic regression 

models.  Logistic models can be used to predict the probability of an event when the 

dependent variable is dichotomous.  Logistic regression models have the form of  

∑
=

+=
k

j
jj x

1
0 logit(p) ββ  (Eq. 1) 

where in our application p is the probability of exceedance of a water quality threshold 

and β0 is a constant, β1, β2, …, βk are the regression coefficients of variables x1, x2, … xk, 

respectively.  The probability of an event occurring can be calculated as 

logit(p)-1

1

e
p

+
=   (Eq. 2) 

 The logistic regression models were used to predict the probabilities that water 

quality thresholds were exceeded due to ocean conditions at the time of sampling.  

Logistic regression equations were generated for DIN, DIP, and dissolved oxygen water 

quality thresholds (Table 1).  To create a dichotomous outcome for each dependent 

variable, a threshold value which is indicative of a potential water quality objective or 

threshold was specified.  For DIN and DIP, if nutrient levels exceeded the threshold of 

either 14 µM or 1.3 µM, respectively, then a value of 1 was assigned (i.e., water quality 

objective not met), otherwise it was assigned a value of 0.  For dissolved oxygen, if 

concentrations were below the threshold of 6.5 mg l-1, a value of 1 was assigned; 

otherwise it was assigned a 0.  All logistic regression models were generated using R 

(version 2.8.1; R Development Core Team, 2008). 
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 Logistic regression models were generated using the following explanatory 

variables: 1) water temperature, 2) water temperature and salinity, and 3) sigma-t 

(calculated from water temperature and salinity).  For dissolved oxygen, an additional 

logistic regression model was developed using water temperature, salinity, and in situ 

fluorescence as explanatory variables.  All models were developed using flood-tide data, 

since this is representative of oceanic water advected into the estuary.   

 To validate the logistic regression models, we randomly selected 20% (108 data 

points) of the 2002-2004 flood-tide nutrient data and reserved it for model validation.  

These reserved observations were randomly selected for DIN and DIP independently.  

For the dissolved oxygen logistic regression model, we used flood-tide dissolved oxygen 

data collected at station Y1 in May to September 2009 for model validation.  Since water 

temperature and salinity were not measured at the time of nutrient sample collection, we 

used the continuous data described in the previous section for these parameters.   

3.  Results and Discussion 

3.1  Role of Oceanic Conditions in Causing Exceedances of Water Quality 
Thresholds 
 Numerous studies have found that there is considerable interannual variability in 

oceanic conditions on the shelf in the California Current Region resulting in variability in 

nutrient, chlorophyll a, and dissolved oxygen levels (Corwith and Wheeler, 2002; 

Thomas et al., 2003;  Wheeler et al., 2003; Grantham et al., 2004; Barth et al., 2007).  In 

addition, it has been demonstrated that conditions on the shelf influence water quality 

conditions within PNW estuaries (Roegner and Shanks, 2001; Roegner et al., 2002; 

Brown and Ozretich, 2009).  Upwelling conditions typically result in high concentrations 

of DIN and DIP and lower concentrations of dissolved oxygen in surface waters that get 

advected into PNW estuaries.  The magnitudes of increased nutrient or decreased oxygen 

concentrations vary with the year- to-year strength of upwelling.  Therefore, it follows 

that non-attainments of estuarine water quality criteria may be related to interannual 

variability in ocean conditions.   
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3.1.1 Nutrients 
 To examine the importance of interannual variability in ocean conditions on 

nutrient levels within the estuary, we used the lower estuary (Zone 1) dry season nutrient 

threshold values presented in Table 1.  We then calculated the number of exceedances of 

these thresholds for each year over the period 1998-2008 based on nutrient-cruise data.  It 

is important to note that the data used to examine interannual variability in exceedances 

includes the data used to generate the criteria for the years of 1998-2006.  The 90% 

confidence intervals for the percent of observations constituting exceedances of the 

nutrient thresholds were calculated following the method of Donohue and van Looij 

(2001).  An annual exceedance of the nutrient threshold is determined if the lower 90% 

confidence interval falls above the level of 50% of observations as exceedances.   

 Based on this technique, the criterion for DIN (based on median values) would be 

exceeded during 2001 and 2002 (Figure 2a) and the DIP criterion would be exceeded in 

2002 (Figure 2b).  For an additional comparison, we used the flood-tide nutrient samples 

collected as the OSU dock in 2002, 2003, and 2004.  The percent of observations 

exceeding the DIN threshold was similar to that for the cruise data in each year 

(Figure 2a).  There was a significant correlation between the annual percent of 

observations exceeding the DIN and DIP thresholds (r = 0.87, p = 0.001, Pearson Product 

Moment Correlation), because the ocean is the primary source of both of these nutrients 

in the lower estuary.   

 In the dry season, there is also a significant correlation between interannual 

variability in exceedances and median flood-tide water temperature (Figure 3), which is 

an indicator of the relative strength of coastal upwelling (Brown and Ozretich, 2009).  

The rate of exceedances of the DIN threshold was lowest in 1998, concurrent with El 

Niño conditions on the Oregon shelf, and an associated reduction in coastal upwelling.  

El Niño conditions occurred on the Oregon shelf from August 1997 through July 1998, 

and as a result, nutrient conditions were low on the inner shelf (Peterson et al., 2002).  

The highest rate of exceedances of the DIN threshold occurred in 2002, which coincided 

with anomalous conditions on the Oregon shelf.  There was an intrusion of a subarctic 

water mass (Kosro, 2003) onto the Oregon shelf, and as a result the shelf water was 

cooler than usual and had higher than normal nutrient levels (Wheeler et al., 2003).  
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Interestingly, the rate of exceedances is not correlated with the Bakun upwelling index 

(daily values for latitude 45 ºN, longitude 125ºW averaged over the interval of May to 

October for each year).  Menge et al. (2009) suggested that the Bakun index does not 

adequately reflect the magnitude of upwelling conditions occurring in the nearshore 

region.        

 

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

0

20

40

60

80

100

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

0

20

40

60

80

100

(21)(57)

 Cruise
 Flood-tide

 

 

P
er

ce
nt

 o
f O

bs
er

va
tio

ns
 W

ith
 

D
IN

 >
 1

4 
µM

a)

(66) (95) (141) (336) (268) (43) (38)

 

P
er

ce
nt

 o
f O

bs
er

va
tio

ns
 W

ith
D

IP
 >

 1
.3

 µ
M

 

 Year

b)

(164)

 
Figure 2.  Interannual variability in the percent of dry season observations with a) DIN > 
14 µM (filled symbols are cruise data and open symbols are flood-tide OSU dock 
samples) and b) DIP > 1.3 µM in Zone 1.  The sample size of the cruise data is presented 
in parentheses below each year in panel b.  The error bars represent 90% confidence 
intervals.     
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Figure 3.  a) Percent of dry season observations with DIN > 14 µM in the lower estuary 
and median flood-tide water temperatures for each year.  b) Linear regression of the two 
variables (Percent observations exceeding threshold = 224.3 – 17.27 * water temperature, 
r2 = 0.61, p < 0.01).  Median water temperatures were calculated using flood-tide values 
from station Y1 for 2001 and 2003-2008, other years were calculated using water 
temperature data from SBEO3. 

3.1.2  Dissolved Oxygen 
 There is considerable interannual variability in the percent of flood-tide 

observations with dissolved oxygen levels less than 6.5 mg l-1 at station Y1 (Figure 4a).  

During 2006, 56% of the flood tides had dissolved oxygen < 6.5 mg l-1, which coincided 

with strong upwelling conditions near Newport, Oregon.  The lowest percentage 

occurrence of dissolved oxygen < 6.5 mg l-1 occurred in 2005.  There was a delay in the 

onset of upwelling on the Oregon coast during 2005 (Barth et al., 2007).  Previously, we 

have demonstrated that there is a significant correlation between integrated alongshore 
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wind stress and flood-tide dissolved oxygen values in the Yaquina Estuary (Brown and 

Power, in review).  Figure 4b shows that there is also a significant correlation between 

percent of flood-tide observations with dissolved oxygen below the criterion and median, 

integrated alongshore wind stress for May through October (p < 0.05).    
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Figure 4.  a) Percent of dry season observations of flood-tide dissolved oxygen < 6.5 mg 
l-1 at station Y1 for each year.  b) Linear regression of exceedances versus median 
integrated wind stress at station NWP03, with positive values indicating upwelling 
conditions.  Years with the highest percentage occurrence of dissolved oxygen < 6.5 mg l-

1 coincide with strong upwelling conditions (Percent observations exceeding threshold  = 
15.59 – 8.308 * wind stress, r2 = 0.54, p < 0.05).   

3.2 Development of Indicators of Ocean Influence 

3.2.1  Nutrients 
 In the previous section, it was shown that ocean conditions can influence water 

quality conditions within the Yaquina Estuary.  Consequently, it is desirable to develop 

indicators which will allow us to distinguish exceedances of water quality thresholds that 
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are related to ocean conditions from other causes.  Previously, we have demonstrated that 

flood-tide water temperatures are strongly correlated with inner shelf water temperature 

(Brown and Power, in review) and alongshore wind stress (Brown and Ozretich, 2009).  

In addition, Nelson and Brown (2008) demonstrated that nitrate and phosphate levels in 

flood-tide water samples collected in the Yaquina Estuary can be modeled using flood-

tide water temperatures.  Figures 5 and 6 show DIN and DIP as a function of water 

temperature and salinity generated using either data from the inner shelf or flood-tide 

samples from the Yaquina Estuary.  Water density (sigma-t values) contours are also 

presented.  High DIN and DIP concentrations occur at high salinities (>33 psu), cold 

water temperatures (< 10 ºC), and high water densities (sigma-t > 26 kg m-3) both on the 

shelf and within the estuary.  Peak DIN and DIP concentrations associated with coastal 

upwelling in the PNW are equivalent to concentrations defined as representing medium 

and high categories of eutrophication status when DIN and DIP are used as water quality 

indicators (Bricker et al., 2003).  The DIN and DIP thresholds presented in Table 1 are 

exceeded in 45% and 48% of the flood-tide observations at station Y1 (Figures 5b and 

6b), respectively. 

 
Logistic Regression 
 We used the flood-tide DIN and DIP data (Figure 5) to generate logistic 

regression models, which can be used to predict the probability of DIN and DIP 

exceeding the thresholds of 14 µM and 1.3 µM, respectively.  Logistic regression models 

were generated for three sets of explanatory variables: 1) water temperature, 2) water 

temperature and salinity, and 3) water density (sigma-t).   

 The intercepts and coefficients (including standard errors and p-values) of each of 

the logistic regression models generated for DIN and DIP are presented in Table 2.  To 

use a logistic regression model to predict the probability of an occurrence of an event 

being modeled, the user needs to specify the prediction point.  If the modeled probability 

exceeds the prediction point, then the model predicts that the event being modeled has 

occurred (in this case the nutrient threshold has been exceeded).  The selection of the 

prediction point represents a trade off between type I (false positive) and type II (false 

negative) errors.  Examples of classification tables for the DIN and DIP logistic  
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Figure 5.  DIN as a function of temperature and salinity generated using dry season data 
from a) the inner shelf off of Newport, Oregon (Stations NH-5 and NH-15 from Wetz et 
al., 2005) and b) flood-tide samples from station Y1 in the Yaquina Estuary.   The color 
of the symbol indicates DIN concentration (µM) and the contours indicate sigma-t values.    
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Figure 6.  DIP as a function of temperature and salinity generated using dry season data 
from a) the inner shelf off of Newport, Oregon (Stations NH-5 and NH-15 from Wetz et 
al., 2005) and b) flood-tide samples from station Y1 in the Yaquina Estuary.   The color 
of the symbol indicates DIP concentration (µM) and the contours indicate sigma-t values.   
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regression models using water temperature and salinity as explanatory variables are 

presented in Tables A1 and A2.  These classification tables show the number of 

observations correctly and incorrectly classified as exceeding the DIN and DIP thresholds 

as a function of prediction point generated with the data used to create the models. 

A false positive is when the logistic model predicts that the nutrient threshold will 

be exceeded but the observed value does not exceed the threshold.  A false negative is 

when the logistic model predicts that the threshold will not be exceeded, but the observed 

value exceeds the threshold.  The false positive rate is the total number of false positives 

divided by the number of observations below the threshold.  The false negative rate is the 

total number of false negatives divided by the number of observations that exceed the 

threshold.  Selection of a lower prediction point (i.e., lowering the probability threshold 

that needs to be exceeded) results in an increase in sensitivity (number of times the model 

correctly predicts an exceedance of the threshold compared to the total number of 

observations that exceed the threshold) at the cost of increasing the occurrence of false 

positives.  To evaluate the optimal prediction point, the false positive and false negative 

rates are plotted versus prediction point (Figure 7).  The optimal prediction point is where 

the false positive and false negative rates are equal (or the intersection of the two curves).  

The optimal prediction points for each of the nutrient models are presented in Table 3.   

The logistic regression models can be used to develop cutpoints for identification 

of exceedances associated with ocean input.  Development of such cutpoints would allow 

users to simply compare their observed temperature or density to these values to discern 

whether exceedances are related to ocean input.  Combining the optimal prediction points 

and the equations for the logistic regression using only water temperature as the 

explanatory variable results in a water temperature cutpoint for DIN and DIP 

exceedances of 10.6 °C.  Thus, these logistic regression models predict that exceedances 

of DIN and DIP thresholds are related to ocean input when the water temperature is less 

than 10.6 ºC.  The water density cutpoints for DIN and DIP exceedances are sigma-t 

values of 25.67 and 25.59 kg m-3, respectively (see Figures 5 and 6).   

Receiver operating characteristic (ROC) curves are often used to evaluate the 

predictive capabilities of models (Figure 8).  ROC curves are generated by plotting true 

positive rate or sensitivity (ratio of the number of times the model correctly predicts an 
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exceedance of the threshold compared to the total number of observations that exceed the 

threshold) versus false positive rate (ratio of the number of times the model incorrectly 

predicts an exceedance of the threshold compared to the total number of observations less 

than the threshold) for prediction points ranging from 0 to 1.  The values plotted in ROC 

curves are expressed as ratios rather than the percentages presented in the Appendix 

tables.  An example of an ROC curve for the DIN > 14 µM model using water 

temperature and salinity as explanatory variables is presented in Figure 8. 

 

Table 2.  Intercepts and coefficients for logistic regression models for exceedances of 
DIN and DIP thresholds  
 Parameter Standard error p value 
DIN using water temperature 
Intercept 14.729 1.390 p < 0.001 
Water temperature -1.417 0.133 p < 0.001 
DIN using water temperature and salinity 
Intercept -56.5829 11.4365 p < 0.001 
Water temperature -0.9373 0.1345 p < 0.001 
Salinity 1.9937 0.3333 p < 0.001 
DIN using sigma-t 
Intercept -88.9207 9.3790 p < 0.001 
Sigma-t 3.4799 0.3648 p < 0.001 
DIP using water temperature 
Intercept 14.4256 1.3796 p < 0.001 
Water temperature -1.3656 0.1306 p < 0.001 
DIP using water temperature and salinity 
Intercept -91.6108 14.8188 p < 0.001 
Water temperature -0.8167 0.1333 p < 0.001 
Salinity 3.0139 0.4374 p < 0.001 
DIP using sigma-t 
Intercept -106.5114 11.1929 p < 0.001 
Sigma-t 4.1778 0.4362 p < 0.001 
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Table 3.  Sample size and area under the receiver operating characteristic curve (AUC) 
for DIN and DIP models.  The optimal prediction points (false negative = false positive 
rates) are presented for each model.   
Model N AUC Optimal Prediction Point 
DIN using water 
temperature 

431 0.91 0.45 

DIN using water 
temperature and salinity 

431 0.94 0.55 

DIN using sigma-t 431 0.94 0.55 
DIP using water 
temperature 

431 0.90 0.49 

DIP using water 
temperature and salinity 

431 0.96 0.60 

DIP using sigma-t 431 0.96 0.60 
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Figure 7.  False positive and false negative rates as a function of prediction point for the 
logistic regression model for DIN > 14 µM using water temperature and salinity.  
Optimal prediction point (0.55) is where overall failure rate is minimized and is located at 
the intersection of the two curves.   
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Models with high predictive capacity have curves that rise rapidly and have larger 

areas under the curve (AUC).  An ideal model would have an AUC value of 1.  Hosmer 

and Lemeshow (2000) suggest that if the area under the ROC curve is ≥ 0.9 the model 

has ‘outstanding’ discrimination; for AUC values between 0.8 and 0.9, the model has 

‘excellent’ discrimination capability; for AUC values between 0.7 and 0.8, the model has 

‘acceptable’ discrimination; and if the AUC = 0.5, the model has no discrimination 

capability.  All of the models computed for the nutrient thresholds had ‘outstanding’ 

discrimination capability (Table 3); however, the models which included salinity 

consistently had higher AUC values than those models which omitted salinity.   
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Figure 8.  ROC curve for logistic regression model for DIN > 14 µM using water 
temperature and salinity with an AUC value of 0.94.  The dashed line indicates the line of 
no discrimination capability (i.e., random guess).  
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Model Validation 
The predictive capability of the models was tested using the data which were 

reserved for model validation.  For model validation, we used the models with water 

temperature and salinity as explanatory variables which had the highest AUC values and 

used the optimal prediction points of 0.55 and 0.60 for DIN and DIP, respectively.  For 

each observation, the probability of exceeding the threshold was predicted using the 

logistic regression model, and if the probability was greater than the optimal prediction 

point, then the observation was predicted to exceed the threshold.  Because the data used 

to generate the logistic regression models were exclusively flood-tide values, then a 

modeled exceedance of a water quality threshold represents the effect of ocean conditions 

at the time of sampling.   

Prediction accuracies of the models for the reserved data are presented in 2x2 

classification tables (Tables 4 and 5).  The logistic regression models had an overall 

accuracy of 88.9% and 90% for DIN and DIP, respectively.  Sensitivity is ratio of the 

number of times the model correctly predicts an exceedance to total number of observed 

exceedances.  Specificity is defined as the ratio of correctly classified occurrences of 

nutrients less than the threshold to total number of observed occurrences less than the 

threshold.  The sensitivity of the models was 89.8% and 89.3% for DIN and DIP, 

respectively.  The specificity of the models was 88.1% and 92.3% for DIN and DIP, 

respectively.   

 

Table 4.  Classification table showing accuracy of the water temperature and salinity 
logistic regression equation at predicting the occurrence of DIN > 14 µM using the 
reserved data.  Prediction point = 0.55.   
 Predicted Occurrence of DIN 

Total 
 ≤ 14 µM > 14 µM 

Observed  
DIN ≤ 14 µM 

52 7 59 

Observed  
DIN > 14 µM 

5 44 49 

Total 57 51 108 
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Table 5.  Classification table showing accuracy of the water temperature and salinity 
logistic regression equation for predicting the occurrence of DIP > 1.3 µM using the 
reserved data.  Prediction point = 0.60.   
 Predicted Occurrence of DIP 

Total 
≤ 1.3 µM  > 1.3 µM 

Observed  
DIP  ≤ 1.3 µM 

48 4 52 

Observed  
DIP  > 1.3 µM 

6 50 56 

Total 54 54 108 
 
Demonstration of Application of Logistic Regression Model 

We applied the logistic regression models for DIN and DIP to water temperature 

and salinity data collected concurrently with nutrient data during the dry seasons of 1998-

2008 in the marine-dominated portion (Zone 1) of the Yaquina Estuary.  The temperature 

and salinity of DIN observations that either exceeded the 14 µM threshold (filled circles) 

or fell below the threshold (open circles), together with the probability contours of the 

logistic regression model are presented in Figure 9.  Fifty percent of the DIN 

observations exceeded the 14 µM threshold, which is to be expected since it was based on 

the median value of dry season data from 1998-2006.  The logistic regression model 

predicts that 46% of the DIN exceedances of the 14 µM threshold are associated with 

ocean input (these data points are indicated with a green “x” in Figure 9).  There is also 

evidence of a riverine DIN source, which the logistic regression model does not identify 

as ocean input.  We, therefore, examined mixing diagrams (i.e., salinity versus DIN 

graphs) to identify observations where the exceedance of the DIN threshold can be 

attributed to a riverine source (red “x”, Figure 9).  Figure 10 shows an example of a 

mixing diagram which indicates a riverine source for DIN.   

The temperature and salinity of DIP observations that either exceeded the 1.3 µM 

threshold (filled circles) or fell below the threshold (open circles), together with the 

probability contours of the logistic regression model are presented in Figure 11.  Forty 

seven percent of the DIP observations exceeded the 1.3 µM threshold and the model 

predicts that 44% of these exceedances are associated with ocean input (indicated by a 

green “x” in Figure 11).  There are fewer observations exceeding the DIP threshold at 

relatively low salinities (< 27 psu), than there are for the DIN observations, this is 
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Figure 9.  Temperature and salinity of cruise data measured in the Yaquina Estuary during the dry seasons of 1998-2008 with DIN ≤ 
14 µM (open circles) and DIN > 14  µM (filled circles), and contours of probability of DIN > 14 µM generated from logistic 
regression model with water temperature and salinity as explanatory variables.  The green “x” symbols are observations of DIN > 14 
µM identified as ocean input from the logistic regression model with a prediction point of 0.55 the red “x” symbols are those that 
appear to have a riverine DIN source, as determined from mixing diagrams.  The white arrow indicates a heating and mixing line.  
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Figure 10.  Example of a mixing diagram showing a riverine DIN source (generated 
using cruise data from May 6, 2003).  
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Figure 11.  Temperature and salinity of cruise data measured in the Yaquina Estuary during the dry seasons of 1998-2008 with DIP ≤ 
1.3 µM (open circles) and DIP > 1.3 µM (filled circles), and contours of probability of DIP > 1.3 µM generated from logistic 
regression model with water temperature and salinity as explanatory variables.  The green “x” symbols are observations of DIP > 1.3 
µM identified as ocean input from the logistic regression model with a prediction point of 0.60.  The white arrow indicates a heating 
and mixing line.   
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because the ocean is the primary source of DIP.   

One of the limitations of using logistic regression models to calculate the probability of 

an exceedance being due to ocean conditions is that the cool, high nutrient oceanic water warms 

up and mixes with low salinity and warm water both inside the estuary and on the shelf, reducing 

the distinctive thermohaline signature.  Studies from the Oregon shelf off of Newport have 

demonstrated that most of the water that upwells is Subarctic water, which has salinity ranging 

from 32.5 to 33.8 psu and similar peak nutrients as those entering the estuary (Wheeler, et al. 

2003; Huyer et al., 2005).  In addition, the Columbia river plume influences shelf water off of 

Newport, with plume water having salinity < 32.5 psu.  Offshore of Newport (80 km), the mean 

summer time water temperature is about 17ºC and water temperatures off of Newport are 

strongly influenced by mixing, upwelling and advection (Huyer et al., 2005).  Those samples 

identified as being associated with ocean input are a conservative estimate, and other observed 

exceedances that fall along the white arrows in Figures 9 and 11 are probably associated with 

upwelled ocean water that has heated and mixed with lower salinity water.  Along this line, there 

is relatively large change in temperature (~ 8 ºC) , and a relatively small change in salinity (2 

psu), suggesting that heating dominates.  A portion of this heating and mixing is occurring on the 

shelf and some is occurring inside the estuary.   

 

Alternate Approach – Using lagged flood tide data 

 An alternate approach to identify exceedances associated with ocean input is to calculate 

the probability using water temperature and salinity from the previous flood tide.  Values for 

temperature and salinity at the time of nutrient sampling are compared to those from the previous 

flood tide for May- October 2008 (Table 6), together with the probabilities calculated from the 

logistic regression using conditions at time of sampling and for the previous flood tide.  As an 

example the sampling on May 15, 2008 shows an event where the nitrogen and phosphorous 

water quality thresholds were exceeded.  However, the logistic regression model calculated using 

the water temperature and salinity at time of sampling would not classify this sampling event as 

an exceedance associated with ocean conditions. In contrast, the use of data from the previous 

flood-tide would identify the event as an exceedance associated with ocean input.   

Of the 8 observed exceedances of the DIN threshold during May – September 2008, the logistic 

regression model using temperature and salinity at time of sampling identified 4 as being 
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associated with ocean input, while by using the temperature and salinity from the previous flood 

tide, an additional 3 of the exceedances would be identified as being associated with ocean input 

(Table 6).  Of the 9 exceedances of the DIP threshold, using temperature and salinity at time of 

sampling identified 5 as being associated with ocean input, while by using data from the previous 

flood tide, an additional 2 would be identified as being related to ocean input.  However, using 

the previous flood-tide temperature and salinity combined with the logistic regression model 

would incorrectly indicate that 6 of the DIN and DIP observations less than threshold would be 

expected to exceed the threshold. 
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Table 6.  Observed DIN and DIP, water temperature and salinity, and probability of exceeding nutrient thresholds calculated using 
water temperature and salinity at time of sampling and previous flood tide.  The shaded observed nutrient cells identify those that 
exceeded the nutrient threshold, and the shaded probability cells are those that exceeded the optimal prediction point.  
Sampling 
Date 

Observed Time of Sampling Previous Flood Tide Probability of Exceeding Nutrient Threshold 
Calculated Using Conditions from: 

Time of Sampling Previous Flood Tide 

DIN 
(µM) 

DIP 
(µM) 

Temperature 
(deg C) 

Salinity 
(psu) 

Temperature 
(deg C) 

Salinity 
(psu) 

DIN DIP DIN DIP 

5/1/2008 1.6 0.22 9.8 30.7 9.8 30.9 0.01 0.00 0.02 0.00 
5/9/2008 32.0 1.80 8.6 33.6 8.6 33.6 0.92 0.94 0.92 0.94 

5/15/2008 22.2 1.56 12.4 31.2 9.0 33.5 0.00 0.00 0.85 0.87 
5/21/2008 21.5 1.62 9.8 33.1 9.8 33.0 0.53 0.50 0.52 0.49 
6/9/2008 14.5 0.81 13.4 26.3 10.1 33.3 0.00 0.00 0.58 0.61 

6/26/2008 10.1 1.20 14.5 30.0 8.1 34.1 0.00 0.00 0.98 0.99 
6/27/2008 10.3 1.29 14.7 30.5 8.5 34.2 0.00 0.00 0.97 0.99 
6/30/2008 9.4 0.94 11.6 32.6 10.8 33.8 0.08 0.06 0.66 0.81 
7/2/2008 10.5 1.12 13.7 31.9 12.1 33.6 0.00 0.00 0.27 0.41 

7/16/2008 29.8 2.13 8.9 33.7 8.7 33.8 0.90 0.93 0.93 0.95 
7/24/2008 25.6 1.88 9.2 33.4 8.7 34.5 0.79 0.81 0.98 0.99 
7/31/2008 6.3 0.69 10.3 34.2 10.3 34.3 0.89 0.96 0.89 0.96 
8/7/2008 13.9 1.47 10.7 33.9 9.8 34.2 0.72 0.85 0.91 0.97 

8/12/2008 9.3 0.99 12.0 34.1 13.0 34.0 0.53 0.78 0.26 0.54 
8/22/2008 10.8 1.42 13.9 32.4 14.0 32.5 0.01 0.01 0.01 0.01 
8/26/2008 6.7 1.13 15.1 32.3 14.3 32.5 0.00 0.00 0.01 0.00 
9/5/2008 16.5 1.96 12.0 31.0 9.4 33.5 0.00 0.00 0.78 0.82 

9/10/2008 33.5 2.65 8.9 33.5 8.9 33.5 0.86 0.88 0.87 0.90 
9/18/2008 5.6 0.74 10.6 34.1 10.4 34.2 0.82 0.92 0.85 0.94 
9/23/2008 9.1 1.06 10.8 34.1 10.6 34.1 0.01 0.00 0.02 0.00 
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Alternate Approach - Using Modeled Flood-Tide Nutrients  

Nelson and Brown (2008) present equations to model NO3
-
 +NO2

-
 and PO4

-3
 levels using 

water temperature (generated using inner shelf data from Wetz et al. (2005)).  Presented in 

Table 7 are observed and modeled median values for NO3
-
 +NO2

-
 and PO4

-3
 calculated using 

water temperature at time of nutrient sampling and water temperature during the flood tide 

previous to the nutrient sampling for data collected at station Y1 during May to October 2008.  

The observed nutrients are significantly higher than those modeled using water temperature at 

time of sampling (Mann Whitney Rank Sum, p = 0.05), but there is not a significant difference 

between observed values and those modeled using flood-tide water temperatures, suggesting that 

observed nutrients are a result of ocean input.  This analysis suggests that comparing observed 

nutrients to those modeled using flood-tide water temperatures may be an alternate approach to 

determine if observed nutrient levels are consistent with ocean input. 

 

Table 7.  Observed median NO3
-
 +NO2

- and PO4
-3

 for May – September 2008 and 

modeled using water temperature at time of sampling and water temperature during 

flood tide previous to sampling.  Modeled values are calculated using the equations in 

Nelson and Brown (2008).  N=20. 

Nutrient 
Observed Median 

(µM) 

Modeled Median (µM) Calculated Using 

Temperature at 

Time of Sampling 

Flood Tide 

Temperature 

NO3
-
 +NO2

-
 7.9 3.7 9.1 

PO4
-3
 1.3 0.9 1.3 



 

 35

3.2.2 Dissolved Oxygen 
Dissolved oxygen levels in the lower portion of Yaquina Estuary are also 

influenced by upwelling conditions on the inner shelf.  Figure 12 shows flood-tide 

dissolved oxygen levels at station Y1 as a function of a) temperature and salinity and b) 

density and in situ fluorescence.  Low dissolved oxygen levels (< 5 mg l-1) tend to occur 

at cool water temperatures (8-10 deg C), high salinities (32.5-34.5 psu), high water 

densities (sigma-t values > 25 kg m-3), and are associated with low in situ fluorescence (< 

5 µg l-1), all of which are characteristics of recently upwelled water (Pearson and Holt, 

1960; Park et al., 1962; Bourke and Pattulo, 1975; Brown and Power, in review).  

Occurrences of relatively high dissolved oxygen levels (> 6.5 mg l-1) that occur at high 

water densities (sigma-t > 25 kg m-3) also tend to have relatively high in situ fluorescence 

(an indicator of phytoplankton chlorophyll a levels).  In this dataset, flood-tide dissolved 

oxygen was less than 6.5 mg l-1 (State of Oregon criterion for estuarine waters) 38% of 

the time at station Y1.   

Logistic Regression 
We used flood-tide dissolved oxygen data collected at station Y1 in the Yaquina 

Estuary (Figure 12) to generate logistic regression models, which predict the probability 

of dissolved oxygen levels < 6.5 mg l-1.  Logistic regression models were generated for 

four sets of explanatory variables: 1) water temperature, 2) water temperature and 

salinity, 3) sigma-t, and 4) water temperature, salinity and in situ fluorescence.  Due to 

diel fluctuations in dissolved oxygen levels, time of day is usually included in regression 

models of dissolved oxygen; however, our analysis did not indicate that time of day was a 

significant explanatory variable in these logistic models.  The logistic regression models, 

standard errors and p-values are presented in Table 8.   

The AUC values and optimal prediction points for the logistic regression models 

generated for the dissolved oxygen threshold are presented in Table 9.  All of the models 

developed for dissolved oxygen had ‘excellent’ discrimination capability; however, there 

was improvement in model performance with the addition of in situ fluorescence.  In situ 

fluorescence data were not available in 2002 and 2003; therefore, there is a large 

difference in sample size between the models that include fluorescence and those that 

exclude it (Table 9).  The water temperature and water temperature and salinity models 

were re-calculated using the subset of data used for the model which includes in situ   
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Figure 12.  Flood-tide dissolved oxygen at station Y1 in the Yaquina Estuary plotted 
versus a) temperature and salinity, and b) sigma-t and in situ fluorescence.  The upper 
panel included flood-tide data from May-October of 2002, 2003, 2004, 2007, and 2008.  
The lower panel includes data from May-October of 2004, 2007, and 2008.    
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fluorescence.   These re-calculated values resulted in AUC values of 0.85 similar to those 

obtained for the full dataset indicating that sample size was not producing the difference 

in AUC values presented in Table 9. The false negative and false positive rates as a 

function of prediction point for the water temperature and salinity logistic regression 

model are presented in Figure 13 and the classification table is presented in Table A3. 

Combining the optimal prediction points and the equation for the dissolved 

oxygen logistic regression, using only water temperature as the explanatory variable, 

results in a cutpoint of 10.3 ºC for occurrences of dissolved oxygen < 6.5 mg l-1as 

predictive of ocean input.  A sigma-t value of 25.4 kg m-3 represents the density cutpoint 

for the occurrence of dissolved oxygen level< 6.5 mg l-1 consistent with ocean input.   
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Figure 13.  False positive and false negative rates as a function of prediction point for the 

logistic regression model for dissolved oxygen < 6.5 mg l-1 using water temperature and 

salinity as explanatory variables.  Optimal prediction point (0.43) is where overall failure 

rate is minimized and is located at the intersection of the two curves.   
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Table 8.  Intercepts and coefficients for logistic regression models for occurrences of 
dissolved oxygen <6.5 mg l-1. 
 Parameter Standard error p value 
Dissolved oxygen < 6.5 mg l-1 using water temperature 
Intercept 10.47223 0.72229 p < 0.001 
Water temperature -1.03563 0.06999 p < 0.001 
Dissolved oxygen < 6.5 mg l-1  using water temperature and salinity 
Intercept -13.08966 3.95360 p < 0.001 
Water temperature -0.84449 0.07281 p < 0.001 
Salinity 0.65113 0.10986 p < 0.001 
Dissolved oxygen < 6.5 mg l-1  using sigma-t 
Intercept -42.5248 2.8411 p < 0.001 
Sigma-t 1.6589 0.1114 p < 0.001 
Dissolved oxygen < 6.5 mg l-1  using water temperature, salinity, and in situ 
fluorescence 
Intercept -23.59785 6.25981 p < 0.001 
Water temperature -0.84656 0.09254 p < 0.001 
Salinity 1.00692 0.17905 P < 0.001 
In situ fluorescence -0.47812 0.05780 p < 0.001 
 
 
Table 9.  Sample size and area under the receiver operating characteristic curve (AUC) 
for the dissolved oxygen models.  The optimal prediction points where false negative and 
false positive rates are equal are presented for each model.   
Model N AUC Optimal Prediction Point 
Dissolved oxygen < 6.5 mg l-1 
using water temperature 

1126 0.84 0.44 

Dissolved oxygen < 6.5 mg l-1 
using water temperature and 
salinity 

1126 0.85 0.43 

Dissolved oxygen < 6.5 mg l-1 
using sigma-t 

1126 0.82 0.41 

Dissolved oxygen < 6.5 mg l-1 
using water temperature, 
salinity, and in situ 
fluorescence 

760 0.90 0.47 
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Model Validation 
The predictive capability of each of the dissolved oxygen models was tested using 

flood-tide dissolved oxygen, temperature, salinity, and in situ fluorescence data collected 

at station Y1 from May-September 2009.  For model validation, we used the water 

temperature and salinity model as well as the one that included in situ fluorescence.  For 

this analysis, we used the optimal prediction point where the false positive and the false 

negative rates were equal.  Tables 10 and 11 show the number of times the logistic 

regression model correctly and incorrectly predicted flood-tide dissolved oxygen falling 

below 6.5 mg l-1 for the 2009 dataset.  The logistic regression model including 

temperature and salinity had an overall accuracy of 79.8%, while the one including these 

variables and in situ fluorescence had an accuracy of 88.9%.  Including in situ 

fluorescence in the logistic regression model resulted in a reduction of false positives by 

almost a factor of 2.  The sensitivity and specificity of the logistic regression model 

including temperature and salinity were 90.3% and 75%, respectively.  Inclusion of in 

situ fluorescence increased the sensitivity and specificity to 93.5% and 86.8%, 

respectively.  

 
Table 10.  Classification table showing accuracy of the water temperature and salinity 
logistic regression equation for predicting the occurrence of flood-tide dissolved oxygen 
< 6.5 mg l-1 using data collected during May – September 2009 at station Y1.  Prediction 
point  = 0.43.   
 Predicted Occurrence of Dissolved Oxygen 

Total 
≥ 6.5 mg l-1 < 6.5 mg l-1 
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≥ 6.5 mg l-1 51 17 68 

< 6.5 mg l-1 3 28 31 

Total 54 45 99 
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Table 11.  Classification table showing accuracy of the water temperature, salinity, and in 
situ fluorescence logistic regression equation for predicting the occurrence of flood-tide 
dissolved oxygen < 6.5 mg l-1 using data collected during May – September 2009 at 
station Y1.  Prediction point = 0.47.   
 Predicted Occurrence of Dissolved Oxygen 

Total 
≥ 6.5 mg l-1 < 6.5 mg l-1 
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≥ 6.5 mg l-1 59 9 68 

< 6.5 mg l-1 2 29 31 

Total 61 38 99 

 
Demonstration of Application of Logistic Regression Model 
 We used additional datasets obtained from the Yaquina, Coos, Umpqua, 

Tillamook and Siletz estuaries to see how effective the logistic regression models were at 

identifying occurrences of dissolved oxygen less than 6.5 mg l-1 associated with ocean 

input. 

Yaquina Estuary 

The water temperature and salinity logistic regression presented in Table 8 was 

applied to cruise data collected in the lower portion of Yaquina Estuary during the dry 

seasons of 2006 and 2007.  If the probability calculated from the logistic regression 

exceeded the prediction point of 0.43, then the model predicted that dissolved oxygen 

would be less 6.5 mg l-1 due to ocean conditions.  

The logistic regression model identified 35 (or 73%) of the 48 occurrences of 

dissolved oxygen less than 6.5 mg l-1 as being associated with ocean input (Figure 14).  

The median dissolved oxygen of the entire 2006 and 2007 cruise dataset was 6.9 mg l-1 (n 

= 159).  Removing the observations which the logistic model predicts would have a 

dissolved oxygen less than 6.5 mg l-1 results in a median value of 7.4 mg l-1 (n = 110).    

The logistic model should not identify all of the occurrences of dissolved oxygen less 

than the threshold because there may be other causes of low dissolved oxygen conditions.  

There are some events of dissolved oxygen < 6.5 mg l-1 which the model does not  
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Figure 14.  Temperature and salinity of cruise data measured in the Yaquina Estuary during May to October of 2006 and 2007 with 
dissolved oxygen ≥ 6.5 mg l-1 (open circles) and dissolved oxygen < 6.5 mg l-1 (filled symbols), and contours of probability of 
dissolved oxygen < 6.5 mg l-1 generated from the logistic regression model with water temperature and salinity as explanatory 
variables.  The  “x” symbols are those identified as ocean input from the logistic regression model with a prediction point of 0.43.     
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attribute to ocean input (filled symbols outside of the colored region); however, mixing 

diagrams (salinity versus dissolved oxygen plots) demonstrate that there was also an up 

estuary source of low dissolved oxygen during this period.   

Coos Bay  
As an additional test of the logistic regression model at predicting events of 

dissolved oxygen <6.5 mg l-1, we applied the water temperature and salinity logistic 

regression to continuous data from the South Slough National Estuarine Research 

Reserve for a location near the entrance of Coos Bay during the period of June-

September, 2006.  Flood-tide temperature, salinity and dissolved oxygen values were 

identified and extracted from this dataset.  The flood-tide data from Coos Bay exhibited 

similar patterns to the flood-tide data from Yaquina Estuary, with low dissolved oxygen 

levels occurring at cool water temperatures and high salinities (similar to Figure 12).  

Flood-tide dissolved oxygen levels were <6.5 mg l-1 about 39% of the time.  The logistic 

regression model (developed using water temperature and salinity generated using flood-

tide data from the Yaquina Estuary) identified 45% of these events in Coos Bay as being 

associated with ocean input.   

Classification Dataset 
The classification dataset was used to determine if the logistic regressions 

generated using data from the Yaquina Estuary would be applicable to other estuaries in 

the region.  During a deployment near the entrance of the Siletz Estuary, 40% of the 

observations had dissolved oxygen values of < 6.5 mg l-1, and 93% of these observations 

were predicted to be associated with ocean input.  During a deployment near the entrance 

of the Umpqua Estuary, 29% of the observations had dissolved oxygen values of 

< 6.5 mg l-1, and 60% of these observations were predicted by the logistic regression 

model to be related to ocean input.  During a deployment near the mouth of Tillamook 

Estuary, 43% of the observations had dissolved oxygen values < 6.5 mg l-1, and 49% of 

these observations were predicted to be associated with ocean input.  Based on these 

results, we believe that the logistic models developed in this report may be applicable to 

other estuaries in the region.     
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4. Summary 
 Observations from the Yaquina and other estuaries in the Pacific Northwest show 

that intrusions of coastal ocean water into the estuaries can result in high nitrogen 

(~32 µM), phosphorous (~3 µM),  and chlorophyll a levels (up to 50 µg l-1), and low 

dissolved oxygen (at times < 2 mg l-1) conditions.  These natural intrusions of oceanic 

water into PNW estuaries thus often have values of water quality parameters that exceed 

water quality criteria, or are greater than values for eutrophication indicators associated 

with highly eutrophic status (e.g., Bricker et al., 2003).  Many states, including 

Washington and Oregon, have a narrative criterion that specifies that if natural conditions 

are the cause of non-attainment of a water quality standard, then the natural conditions 

become the standard; thus, tools that identify natural events that will cause non-

attainment of water quality standards are needed. 

 This report demonstrates an approach for distinguishing exceedances of water 

quality thresholds associated with ocean conditions by using logistic regression models.  

These types of models have been variously used to forecast the occurrence of poor water 

quality conditions within streams, estuaries, and the coastal ocean.  For example, logistic 

regression models have been used to predict occurrences of toxic phytoplankton blooms 

in the coastal ocean (Lane et al., 2009), forecast non-attainments of water quality 

standards in an estuarine impoundment (Worrall et al., 1998), to predict the 

eutrophication status of estuaries (Lowery, 1998), to forecast the probability of 

exceedance of a turbidity criterion in streams (Towler et al., 2010), and to assess 

attainment of dissolved oxygen criteria in Chesapeake Bay (US EPA, 2003).  

 The logistic regression models presented in this report are simple tools, which 

provide the probability of an observation exceeding a water quality threshold due to 

ocean conditions based on water temperature, salinity, and in situ fluorescence (for 

dissolved oxygen) at time of sampling.  It is possible to distinguish oceanic inputs due to 

their distinctive thermal and saline signatures.  Typically, dissolved oxygen levels 

decrease with increasing temperature due to both reduced solubility of oxygen in water 

and due to increased respiration and decomposition (e.g., Lee and Lwiza, 2008; Verity et 

al., 2006).  However, in the marine-dominated portion of Pacific Northwest estuaries, 

minimum dissolved oxygen values often occur at cool water temperatures, which are 
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distinctive from the water temperatures associated with within estuary causes of low 

dissolved oxygen.  In addition, water masses with high nutrients associated with ocean 

input have temperatures and salinities which differ from those associated with riverine 

and point source inputs.  Based on the analysis presented in this report, we suggest that 

water temperature and salinity data always be collected at the same time as nutrient and 

dissolved oxygen concentrations are measured.  

 To apply these regression models, the user would need to substitute the 

parameters in Tables 2 and 8 into Equation 1.  The probability of exceedance being 

asscociated with ocean input is then calculated using Equation 2, and the value of 

Equation 1 calculated using the measured temperature, salinity and in situ fluorescence 

(for dissolved oxygen if available).  The user then will need to provide the prediction 

point either using the optimal prediction point presented in Tables 3 and 9 or specifying a 

different prediction point based on the needs of their application.  If the calculated 

probability is greater than the prediction point, then the exceedance is predicted to be 

associated with ocean input.  The regression models presented in this report were 

calculated using the water quality thresholds presented in Table 1.  If the user desired 

other water quality thresholds, then the logistic regression equations would need to be re-

calculated.   

 Occasionally, water masses with high chlorophyll a are advected into PNW 

estuaries from the coastal ocean (Brown and Ozretich, 2009).  However, these 

phytoplankton blooms do not have as distinctive of a temperature and salinity signature 

as high nutrients or low dissolved oxygen events.  This decrease in the distinctive 

signature occurs because peak chlorophyll a levels entering estuaries lag upwelling 

conditions by about 4 to 7 days (Brown and Ozretich, 2009).  Phytoplankton blooms 

develop while upwelled water with high nutrient concentrations is exposed to sunlight 

and warms up.  Therefore, we do not feel that this approach will be capable of 

distinguishing exceedances of chlorophyll a thresholds related to ocean input.  However, 

Newton and Horner (2003) demonstrated that phytoplankton species can be used to 

identify the origin of phytoplankton blooms inside PNW estuaries, including those 

advected from the ocean. 



 45

 Nutrient and dissolved oxygen observations identified as being due to ocean input 

should not be used in assessing compliance of water quality standards or for assessing 

eutrophication status (e.g., using the approach of Bricker et al. 2003).  By excluding 

observations associated with ocean input from water body assessments, type I errors in 

listings (i.e., falsely listing a segment as impaired when it isn’t) may be reduced.  Falsely 

declaring an estuarine reach as impaired results in unnecessary planning and costs (Smith 

et al., 2001).  Logistic regression models such as those presented in this report could also 

be used to remove the effect of ocean input in a water quality dataset, and then the 

remaining data could be used in the development of nutrient criteria (e.g., using the 

percentile approach presented in Brown et al. (2007).   

 For estuarine assessments, such as the EPA’s National Coastal Assessment (EPA, 

2004), water quality is assessed as “good”, “fair” or “poor” by comparing observed water 

quality indicators to thresholds established for each of these categories.  For example, for 

the west coast of the United States, the thresholds for DIP in the last National Coastal 

Assessment were as follows:  DIP < 0.32 µM were rated as “good”, 0.32 µM ≤ DIP ≤ 

3.2 µM  were rated as “fair”, and DIP > 3.2 µM were rated as “poor.”  In the most recent 

assessment of west coast estuaries, 86% of the sites had DIP levels in the “fair” category, 

and 10% in the “poor” category (EPA, 2004).  This report also states that coastal 

upwelling may have been an important contributing factor to the high DIP levels.  In the 

flood-tide dataset from the Yaquina Estuary, 91% of the DIP observations would be 

classified as “fair”, and 9% as “good” using the National Coastal Assessment threshold.  

In this report, we present logistic regression models for the thresholds presented in 

Table 1; however, additional logistic regressions could be developed for other water 

quality thresholds such as those used in EPA (2004) and Bricker et al. (2003).  An 

alternate approach would be to use flood-tide or inner shelf data to develop thresholds for 

the categories that are a function of water temperature and salinity.  Based on the data 

presented in this report, the nutrient thresholds for the water quality indicators would 

need to be increased and the dissolved oxygen threshold decreased at low water 

temperatures and high salinities due to the influence of coastal upwelling.                                                                                                             

 The logistic regression models developed in this report may be applicable at a 

regional scale for estuaries extending from northern California to outer coast estuaries 
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along the Washington coast.  If the models presented in this report were applied to other 

Oregon estuaries, this would require the assumption that the nutrient and dissolved 

oxygen levels and their distinctive thermal and saline signatures are uniform along the 

coast.  More extensive verification of the approach would be needed prior to applying 

these models to other estuaries.  In addition, this method also assumes that the nutrient 

and oxygen levels entering the Yaquina Estuary are related to coastal upwelling, rather 

than being influenced by plume effects or runoff from coastal watersheds.  The Columbia 

River plume has been shown to influence the coastal ocean along the Oregon shelf; 

however, Huyer et al (2005) found that there is no evidence that the plume supplies any 

nitrates to the region off of Newport.  In addition, peak flood tide nutrient concentrations 

entering the Yaquina during dry season flood tides are consistent with recently upwelled 

water on the shelf and strongly correlated with upwelling favorable wind stress (Brown 

and Ozretich, 2009).  Based on these lines of evidence, we feel that nutrient and dissolved 

oxygen level in flood tide water entering the Yaquina Estuary results from upwelling 

processes rather than plume effects.  For other estuaries that are in closer proximity 

Columbia River (such as Willapa Bay, WA), this may not be the case.  These models 

would be most useful for tide-dominated estuaries in the Pacific Northwest, such as Coos, 

Yaquina and Tillamook Bays (Lee and Brown, 2009).  This method may also be useful 

for distinguishing upwelling caused hypoxic events in other regions.  For example, Glenn 

et al. (2004) suggested that recurrent hypoxia on the inner shelf off the coast of New 

Jersey is related to coastal upwelling.     

 The models developed in this report will not capture all of the oceanic import 

events, because as the water heats up and mixes with low salinity and warm water in the 

estuary, the ocean signature becomes obscured.  Hence, exceedances identified as ocean 

input by the logistic regression models will be under-estimated.  More work is required to 

incorporate the heating of cool ocean water both inside and outside the estuary.  An 

alternate approach to deal with this limitation may be to use water temperature and 

salinity observations for the flood tide prior to observed sampling, or by comparing 

observed nutrients to modeled nutrient values using flood-tide water temperatures.  

Additionally, since both high nutrients and low dissolved oxygen conditions are 

characteristic of recently upwelled water, if there are exceedances of nitrogen, 
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phosphorous, and dissolved oxygen thresholds simultaneously during a sampling event, 

this may provide additional confidence in attributing these exceedances to ocean input.   

 The best predictor of dissolved oxygen events <6.5 mg l-1 included in situ 

fluorescence.  The models which excluded in situ fluorescence had more observations 

classified as false positives (i.e., modeled predicted dissolved oxygen  < 6.5 mg l-1, while 

observed values exceeded this threshold).  Worrall et al. (1998) found similar 

misclassification due to the presence of algal blooms when using a logistic regression 

model to predict exceedances of a dissolved oxygen criterion in an estuarine 

impoundment.  We included this parameter in the model to demonstrate that in situ 

fluorescence (a measure of phytoplankton chlorophyll a) improves model performance.  

However, we caution against applying this specific logistic model to other datasets due to 

instrumentation and calibration differences in the measurement of in situ fluorescence.  

The specific equation would only be applicable to datasets that use the same YSI 

chlorophyll a sensor and calibration methods described in this report.  

 The traditional method of identifying nutrient sources or causes of low dissolved 

oxygen within estuaries is the use of mixing diagrams, which requires that end members 

(ocean and river) remain relatively constant (Loder and Reichard, 1981).  Previous 

research has demonstrated high temporal variability in ocean conditions (Brown and 

Ozretich, 2009), with water quality conditions in the nearshore coastal ocean changing on 

the scales of hours to days, which prohibits creating mixing diagrams using data collected 

over multiple days.  The use of mixing diagrams requires sampling multiple stations 

along the axis of the estuary within a short period of time.  However, due to logistical 

constraints, water quality sampling is often random with respect to tidal stage, and often 

only a few locations are sampled within an estuary on a particular sampling date.  One 

advantage of the approach presented in this report is that it can be used even when only 

one location in the estuary is sampled on a given day.   

Many of the watersheds of PNW estuaries presently have relative low levels of 

development and human population density in their watersheds (Lee and Brown, 2009); 

however, populations are expected to increase.  Similar to other regions of the United 

States (e.g., Crossett et al., 2004), highest human populations are located along the coast 

and adjacent to many PNW estuaries (Lee and Brown, 2009); hence it is desirable to 
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develop an approach that identifies water quality conditions associated with the coastal 

ocean.  One can then remove those observations related to ocean conditions, and use the 

remaining data to assess the status of estuarine water quality conditions and to assess 

attainment of water quality standards.  In addition, filtering out oceanic conditions from 

estuarine water quality datasets may aid in identifying other sources of water quality 

degradation.  For example, often land uses in watersheds are correlated with water quality 

conditions within estuaries (e.g., Dauer et al., 2000; Kauppila et al., 2003).  Development 

and highest population densities are often co-located adjacent to the most seaward portion 

of estuaries, adjacent to the portion of the estuarine system where ocean conditions are 

most likely to cause high nutrient, low dissolved oxygen, and high chlorophyll a 

conditions.  If the influence of the coastal ocean is not removed from samples taken for 

compliance monitoring of water quality criteria, it may obscure anthropogenic effects and 

cause misinterpretation of results.  

 In order to make the application of the approach developed in this report as 

accessible as possible, we are presently developing a data exploration tool, which 

graphically displays user-provided data, and compares it to flood-tide data from Yaquina 

and the inner shelf, and identifies data points associated with ocean input using the 

logistic regression models presented in this report.   

Some studies have suggested that future climate change may lead to changes in 

seasonality or intensity of coastal wind-driven upwelling (Snyder et al., 2003).  It has 

recently been suggested that there has been an increase in the occurrence of severe 

hypoxic condition on the Oregon shelf (Chan et al., 2008).  If future studies demonstrate 

anthropogenic-related changes in the amount of coastal upwelling or in the occurrence of 

hypoxia on the inner shelf, then those exceedances identified as associated with ocean 

input may have some component related to anthropogenic activities, which will greatly 

complicate decisions with regard to compliance monitoring for water quality criteria.  

New approaches will doubtlessly be required.  
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Appendices  
 
Provided in the appendices are classification tables of the logistic regression models 
generated for DIN, DIP, and dissolved oxygen using water temperature and salinity. 
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Table A1.  Classification table for DIN logistic regression with water temperature and salinity as explanatory variables for probability 
prediction points ranging from 0 to 1.  The row that is shaded shows the optimal prediction point where false negative and false positive 
rates are approximately equal.  

Prediction 
Point 

Total Correct Total Incorrect Percent 

DIN > 14 µM DIN ≤14 µM DIN > 14 µM DIN ≤14 µM Correct Sensitivity Specificity 
False 

Positive 
False 

Negative 
0 194 0 0 237 45.0 100.0 0.0 100.0 0.0 

0.05 193 147 1 90 78.9 99.5 62.0 38.0 0.5 
0.10 193 159 1 78 81.7 99.5 67.1 32.9 0.5 
0.15 190 167 4 70 82.8 97.9 70.5 29.5 2.1 
0.20 189 173 5 64 84.0 97.4 73.0 27.0 2.6 
0.25 188 180 6 57 85.4 96.9 75.9 24.1 3.1 
0.30 185 186 9 51 86.1 95.4 78.5 21.5 4.6 
0.35 181 188 13 49 85.6 93.3 79.3 20.7 6.7 
0.40 176 191 18 46 85.2 90.7 80.6 19.4 9.3 
0.45 173 193 21 44 84.9 89.2 81.4 18.6 10.8 
0.50 169 198 25 39 85.2 87.1 83.5 16.5 12.9 
0.55 163 200 31 37 84.2 84.0 84.4 15.6 16.0 
0.60 161 204 33 33 84.7 83.0 86.1 13.9 17.0 
0.65 156 209 38 28 84.7 80.4 88.2 11.8 19.6 
0.70 148 214 46 23 84.0 76.3 90.3 9.7 23.7 
0.75 143 221 51 16 84.5 73.7 93.2 6.8 26.3 
0.80 133 224 61 13 82.8 68.6 94.5 5.5 31.4 
0.85 112 228 82 9 78.9 57.7 96.2 3.8 42.3 
0.90 78 237 116 0 73.1 40.2 100.0 0.0 59.8 
0.95 40 237 154 0 64.3 20.6 100.0 0.0 79.4 
1.00 0 237 194 0 55.0 0.0 100.0 0.0 100.0 
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Table A2.  Classification table for DIP logistic regression with water temperature and salinity as explanatory variables for probability 
prediction points ranging from 0 to 1.  The row that is shaded shows the optimal prediction point where false negative and false positive 
rates are approximately equal.   

Predition 
Point 

Total Correct Total Incorrect Percent 

DIP > 1.3 µM DIP ≤1.3 µM DIP > 1.3 µM DIP ≤1.3 µM Correct Sensitivity Specificity 
False 
Positive 

False 
Negative 

0 204 0 0 227 47.3 100.0 0.0 100.0 0.0 
0.05 203 154 1 73 82.8 99.5 67.8 32.2 0.5 
0.10 202 166 2 61 85.4 99.0 73.1 26.9 1.0 
0.15 200 170 4 57 85.8 98.0 74.9 25.1 2.0 
0.20 199 175 5 52 86.8 97.5 77.1 22.9 2.5 
0.25 198 180 6 47 87.7 97.1 79.3 20.7 2.9 
0.30 197 187 7 40 89.1 96.6 82.4 17.6 3.4 
0.35 195 188 9 39 88.9 95.6 82.8 17.2 4.4 
0.40 193 191 11 36 89.1 94.6 84.1 15.9 5.4 
0.45 191 194 13 33 89.3 93.6 85.5 14.5 6.4 
0.50 188 195 16 32 88.9 92.2 85.9 14.1 7.8 
0.55 185 197 19 30 88.6 90.7 86.8 13.2 9.3 
0.60 181 200 23 27 88.4 88.7 88.1 11.9 11.3 
0.65 176 203 28 24 87.9 86.3 89.4 10.6 13.7 
0.70 169 205 35 22 86.8 82.8 90.3 9.7 17.2 
0.75 158 207 46 20 84.7 77.5 91.2 8.8 22.5 
0.80 149 212 55 15 83.8 73.0 93.4 6.6 27.0 
0.85 142 215 62 12 82.8 69.6 94.7 5.3 30.4 
0.90 118 225 86 2 79.6 57.8 99.1 0.9 42.2 
0.95 62 227 142 0 67.1 30.4 100.0 0.0 69.6 
1.00 0 227 204 0 52.7 0.0 100.0 0.0 100.0 
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Table A3.  Classification table for dissolved oxygen logistic regression with water temperature and salinity as explanatory variables for 
probability prediction points ranging from 0 to 1.  The row that is shaded shows the optimal prediction point where false negative and false 
positive rates are approximately equal.  

Prediction 
Points 

Total Correct Total Incorrect Percent 

< 6.5 mg l-1 ≥ 6.5 mg l-1 < 6.5 mg l-1 ≥ 6.5 mg l-1 Correct Sensitivity Specificity 
False 
Positive 

False 
Negative 

0 432 0 0 694 38.4 100.0 0.0 100.0 0.0 
0.05 427 183 5 511 54.2 98.8 26.4 73.6 1.2 
0.1 419 265 13 429 60.7 97.0 38.2 61.8 3.0 
0.15 415 329 17 365 66.1 96.1 47.4 52.6 3.9 
0.2 403 366 29 328 68.3 93.3 52.7 47.3 6.7 
0.25 389 408 43 286 70.8 90.0 58.8 41.2 10.0 
0.3 379 446 53 248 73.3 87.7 64.3 35.7 12.3 
0.35 365 484 67 210 75.4 84.5 69.7 30.3 15.5 
0.4 347 514 85 180 76.5 80.3 74.1 25.9 19.7 
0.43 332 534 100 160 76.9 76.9 76.9 23.1 23.1 
0.45 322 544 110 150 76.9 74.5 78.4 21.6 25.5 
0.5 304 568 128 126 77.4 70.4 81.8 18.2 29.6 
0.55 278 593 154 101 77.4 64.4 85.4 14.6 35.6 
0.6 255 614 177 80 77.2 59.0 88.5 11.5 41.0 
0.65 229 632 203 62 76.5 53.0 91.1 8.9 47.0 
0.7 183 647 249 47 73.7 42.4 93.2 6.8 57.6 
0.75 124 669 308 25 70.4 28.7 96.4 3.6 71.3 
0.8 62 680 370 14 65.9 14.4 98.0 2.0 85.6 
0.85 34 688 398 6 64.1 7.9 99.1 0.9 92.1 
0.9 5 694 427 0 62.1 1.2 100.0 0.0 98.8 
0.95 0 694 432 0 61.6 0.0 100.0 0.0 100.0 

1 0 694 432 0 61.6 0.0 100.0 0.0 100.0 
 


