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EPA-SAB-EEC-COM-02-002
OFFICE OF THE ADMINISTRATOR

SCIENCE ADVISORY BOARD    

Honorable Christine Todd Whitman
Administrator
U.S. Environmental Protection Agency
1200 Pennsylvania Avenue, NW
Washington, DC 20460

Subject: Industrial Ecology: a Commentary by the EPA Science Advisory Board

Dear Governor Whitman:

At its November 1997 retreat, the EPA Science Advisory Board's Executive Committee
encouraged its standing committees to undertake more self-initiated efforts.  This commentary is
one of several Environmental Engineering Committee (EEC) initiatives undertaken in response
to that guidance.

This commentary addresses Industrial Ecology, a systems approach to environmental
analysis.  Industrial ecology seeks to address not just industrial emissions, and not just specific
products, but the complex networks of services, products, and activities that make up our
economy. It emphasizes opportunities for new technologies, new processes, and economically
beneficial efficiencies. 

The purpose of this Commentary is two-fold: first, to bring industrial ecology to the
attention of a wider audience within EPA and other agencies as an approach to meeting their
missions, and second, to articulate key research needs.  The SAB believes that industrial ecology
could help EPA to address some of the core challenges of environmental policy, from climate
change to waste management to land use policy.  Achieving this potential will require rigorous
research and a firm grounding in science and engineering. 

This identifies the need for better understanding of the potential and limitations of a
range of promising approaches including: 

a) technological innovation

b) voluntary and cooperative approaches to environmental management

c) substitution of services for products

d) recycling and reuse

e) reduction in the amounts of materials used in products
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f) substitution of scarce resources with those that are plentiful

We look forward to your written response to the ideas set forth in the commentary. Please
contact us if we may be of further assistance.

Sincerely,

/ Signed /

Dr. William Glaze, Chair
EPA Science Advisory Board

/ Signed /

Dr. Domenico Grasso, Chair
Environmental Engineering Committee
EPA Science Advisory Board

/ Signed /

Dr. Thomas Theis, Co-Chair
Subcommittee on Industrial Ecology and Environmental 

Systems Management
Environmental Engineering Committee
EPA Science Advisory Board

/ Signed /

Dr. Valerie Thomas, Co-Chair
Subcommittee on Industrial Ecology and Environmental 

Systems Management
Environmental Engineering Committee
EPA Science Advisory Board
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NOTICE

This report has been written as part of the activities of the EPA Science Advisory Board, a public
advisory group providing extramural scientific information and advice to the Administrator and
other officials of the Environmental Protection Agency.  The Board is structured to provide
balanced, expert assessment of scientific matters related to problems facing the Agency.  This
report has not been reviewed for approval by the Agency and, hence, the contents of this report
do not necessarily represent the views and policies of the Environmental Protection Agency, nor
of other agencies in the Executive Branch of the Federal government, nor does mention of trade
names or commercial products constitute a recommendation for use.

Distribution and Availability: This EPA Science Advisory Board report is provided to the EPA
Administrator, senior Agency management, appropriate program staff, interested members of the
public, and is posted on the SAB website (www.epa.gov/sab).  Information on its availability is
also provided in the SAB's monthly newsletter (Happenings at the Science Advisory Board).
Additional copies and further information are available from the SAB Staff [US EPA Science
Advisory Board (1400A), 1200 Pennsylvania Avenue, NW, Washington, DC 20460-0001; 202-
564-4533].
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Commentary on Industrial Ecology
EPA SAB Environmental Engineering Committee

1.  Introduction

Over the past decade, a new approach to environmental analysis has developed. 
Although the scope and definition are not yet completely fixed, the new field of “industrial
ecology” focuses on reducing the environmental impacts of goods and services, and on
innovations that can significantly improve environmental performance.  The scope of industrial
ecology includes the entire lifecycle of products and services, drawing on and extending a
variety of related approaches including systems analysis, materials flow analysis, pollution
prevention, design for environment, product stewardship, energy technology assessment, and
eco-industrial parks (Ausubel and Sladovich, 1989; Proc. Natl. Acad. Sciences, 1992; Allenby
and Richards, 1994; Socolow et al. 1994; Graedel and Allenby, 1995; Wernick and Ausubel,
1997; Kates et al. 2001). 

A report from the National Academy of Sciences identifies this area as one of the eight
Grand Challenges of Environmental Science (NAS, 2001). Recent reports from the Science
Advisory Board (SAB), including “Integrated Environmental Decision-making” and the EEC
Commentary, “Overcoming Barriers to Waste Utilization,” indicate increasing interest within
SAB in this type of approach (SAB 2000a, 2000b). 

The purpose of this Commentary is two-fold: first, to bring industrial ecology to the
attention of a wider audience within EPA and other agencies as an approach to meeting their
missions, and second, to articulate key research needs. We believe that industrial ecology offers
great potential for US environmental policy.  Achieving this potential will require rigorous
research and firm grounding in the physical and social sciences and engineering. 

Industrial ecology emphasizes innovation. It emphasizes the opportunities for new
technologies and new processes, and the opportunities for economically beneficial efficiencies. 
It provides a long-term perspective, encouraging consideration of the overall development of
both technologies and policies for sustainable resource utilization and environmental protection
into the future. 

Industrial ecology can complement and enhance the single-pollutant risk-based
framework of traditional environmental policy.  It could help EPA address some of the core
challenges of environmental policy, from climate change to waste management to land use
policy.

a) Climate Change: Technological innovation will be key to any number of
approaches to climate change, from renewable energy technologies to energy
efficiency to carbon sequestration. 

b) Waste Management: Innovations in industrial systems and processes have the
potential not only to reduce wastes, but also to make the remaining wastes more
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economically useful and environmentally benign.  With insights gained from
Industrial Ecology, the nation’s waste management program (RCRA, the
Resources Conservation and Recovery Act) could be redesigned as an innovative
program that actually fits its name: to conserve and recover resources through
closing loops in the lifecycle of materials and minimizing material use (Fagan et
al., 2000). 

c) Land Use: The interconnected issues of land use policy, transportation systems,
urban air quality, and economic and technological infrastructure require a long-
term strategic approach to environmental policy.  Industrial ecology seeks to
address not just industrial emissions, and not just specific products, but the
complex networks of services, products, and activities that make up our economy
(Powers and Chertow 1997; Stern et al. 1997).  

In the following sections we discuss related policy developments (section 2), research
needs for the foundations of industrial ecology (section 3), and research needs for applications of
industrial ecology (section 4). 

2.  Policy Applications of Industrial Ecology 

Historically, US environmental regulation of industry has emphasized point source
controls, especially of gaseous, liquid, and solid emissions from manufacturing plants. In the
past few years, the US EPA has initiated a number of innovative policies of the industrial
ecology type (US EPA, 2001).  Elsewhere in the developed world, however, these new
approaches have been adopted more quickly and more fully. In Europe, environmental policies
increasingly address the overall environmental impacts of a product over its entire life cycle (raw
materials extraction, product manufacturing, product use, and disposal or recycling). One
example is the European Union’s proposed Integrated Product Policy (IPP), which seeks to
stimulate demand for greener products and to promote greener design and production
(Commission of the European Communities, 2001).  In Japan, the emerging emphasis is on the
environmental design of products, driven both by concern over scarce resources and by business
strategy. The emphasis is on extensive recycling of products and environmental attributes such
as energy efficiency and use of non-toxic materials (National Academy of Engineering, 1994;
Life Cycle Assessment Society of Japan, 1998; Gutowski, 2001). 

These developments signal an international shift in emphasis from managing individual
manufacturing waste streams to managing the overall environmental impacts of a product over
its life cycle.  In response, global industrial firms, participating in commerce in the US, Europe,
and Japan, are beginning to apply these concepts to their products, manufacturing processes, and
environmental programs.

These developments pose opportunities for and challenges to US policy.  They challenge
US policy both because there is the possibility of inconsistent regulatory obligations across
national borders, and because the analytical and policy framework is different from the
traditional US approach. The growing diversity of environmental policies for products could
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raise trade issues; on-going activities in the European Union and other countries could place the
US in a reactive mode.  

US policy adaptations of industrial ecology might be somewhat different from the
approaches that have been taken in Europe and Japan.  With its often litigious and adversarial
approach to environmental policy, the US has developed an emphasis on quantification of
environmental risks in particular and on the scientific evaluation of environmental policy in
general.  This emphasis is likely to be reflected in US policy adaptations of industrial ecology as
well.  Moreover, as the importance of both information technology and the technological
infrastructure are increasingly recognized, application of industrial ecology may progress from
its initial emphasis on specific products and materials to a broader emphasis on infrastructure
and technological systems.  Thus the early policy adoptions of industrial ecology ideas in Europe
and Japan provide an opportunity for US policy.  They present a portfolio of strategies and
experiences from which the EPA can draw in its efforts to protect environmental quality in a
cost-effective manner. 

3.  Fundamental Research Needs

If industrial ecology is to provide a basis for environmental policy, it needs a well-
developed scientific foundation.  In the same way that fundamental scientific research supports
technological development, and fundamental economic research supports the development of
both economic policy and the economic system, fundamental research in industrial ecology is
needed to provide a robust framework for understanding the interaction of technological systems
and environmental protection. 

Fundamental research in industrial ecology focuses on the long-term relationships
between materials and energy use, the environment and human health, and economic well being. 
The examples below focus on materials and energy efficiency and substitution, the role of
innovation, and the role of the private sector. The emphasis is on economy-wide consumption of
materials and energy, and on how this will change in the future.  Concern over resource use
includes consideration of environmental impacts and ecosystem services as well as the narrower
issue of resource availability and longevity (Ayres 1993; Daily 1997).    

Materials and Energy Efficiency and Substitution
Since the 1970s a growing body of research has suggested that greater material

efficiency, use of better materials, and the growth of the service economy are contributing to the
“dematerialization” of the economy.   Yet the extent of this phenomenon remains unclear. 
Simon’s (1980) analysis of worldwide trends in natural resource use and the environment has
been widely criticized as overly optimistic (Holdren et al. 1980).  Undertaking a more limited
analysis, Larson, Ross and Williams (1986; Williams et al. 1987) argued that economic growth
in developed countries is no longer accompanied by increased consumption of basic materials. 
This dematerialization has been investigated for a range of materials, including steel, plastics,
paper, cement and a number of metals.  
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Despite these promising results, neither the extent of dematerialization nor its
implications are yet understood.  Wernick et al. (1996) pointed out that some products, such as
personal computers and beverage cans, have become lighter over the years, but use of other
materials, such as paper, have increased.  Although primary materials use is not rising as fast as
economic productivity, there are no signs of net dematerialization among consumers or of
saturation of individual material wants.   In a review of the dematerialization literature,
Cleveland and Ruth (1998) argued that knowledge of the extent and mechanisms behind the
patterns of material use are limited largely to individual materials or specific industries. 

A related body of research suggests that expensive, scarce, or environmentally harmful
resources can be substituted by resources that are cheap, abundant, and environmentally benign. 
For example, Goeller and Weinberg (1976) used a geologic and chemical analysis to argue that,
with the important exception of fossil fuels, the use of scarce minerals can be substituted with
other minerals that are essentially inexhaustible.  Their analysis refuted the “Limits to Growth”
report, which had argued that growing consumption would inevitably deplete basic materials
(Meadows et al. 1972).  “Substitution” can be seen in the changes in energy sources that have
occurred over the past century.  As the sources of energy have shifted from wood and coal to
petroleum and natural gas, the average amount of carbon per unit energy produced has fallen,
resulting in a “decarbonization” of world energy use (Nakicenovic, 1996).  Overall, however, the
potential for and limitations of substitutability remain unresolved (Tilton, 2001). 

It is often suggested that “loop closing” – the recycling and reuse of products, materials,
and wastes – has significant environmental potential.  Graedel and Allenby (1995) have
suggested that the goal of industrial ecology is to accomplish the evolution of manufacturing to a
system in which all wastes are recycled.  Understanding of the potential to reach this goal, and
the environmental risks and benefits, is needed.  

One strategy for reducing environmental impacts is the substitution of services for
products. The notion is that people seek not physical products, but rather the services provided
by those products.  For example, an integrated pest management service might provide crop
protection rather than selling pesticides per se.  By emphasizing the service instead of the
physical product, firms have an incentive to be more efficient with materials and energy. 
Product-to-service strategies hold potential for innovative environmental strategies and
considerable environmental gain, but they need further conceptual analysis and systematic
empirical testing (Stahel, 1994). 

Role of Innovation
Other researchers have used biological analogies to suggest that “industrial ecosystems”

have vast potential for improved efficiency through innovation and integration (Ayres, 1989). 
Frosch and Gallopoulos (1989) argued that 

 “the traditional model of industrial activity – in which individual manufacturing
processes take in raw materials and generate products to be sold plus waste to be
disposed of – should be transformed into a more integrated model: an industrial
ecosystem.  In such a system, the consumption of energy and materials is optimized,
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waste generation is minimized, and the effluents of one process  – whether they are spent
catalysts from petroleum refining, fly and bottom ash from electric-power generation or
discarded plastic containers from consumer products – serve as the raw material for
another process.”  

The biological, evolutionary analogy of industrial ecology suggests that the focus of
environmental policy should increasingly emphasize innovation, and the diffusion of innovations
into industry and society (SAB 2000c).  This also suggests an increasing research emphasis on
the development of environmentally beneficial technologies.  In addition, there is a need for
research on the innovation process itself and on the role of government in that process.  

The Role of the Private Sector
A number of researchers look to industrial firms to take a leading role in environmental

management and policy.  There are two dimensions to this premise:

a) optimism that voluntary approaches can be effective in bringing about
environmental improvement, and

b) reliance on industrial firms as the locus of technological expertise which in turn is
seen as crucial to strategies emphasizing design for environment (DfE).  

Industrial firms are clearly a locus of technological expertise.  But use of ecodesign by
businesses is both partial and uneven (Tukker, 2002). A more thorough understanding of the
factors that influence the adoption of ecodesign is needed.   In addition, clarity about what
constitutes a green product is needed so that companies that are inclined to use their
technological expertise to this end can have confidence that their efforts are well targeted.  

It is often argued that cooperative approaches are more cost effective, more conducive to
innovation, and better able to promote fundamental attitudinal change than traditional “command
and control” regulation.  On the other hand, skepticism about the effectiveness of voluntary
approaches remains.  The claim that there are extensive unexploited win-win opportunities in
environmental policy is similarly the subject of active research and debate (Esty and Porter,
1998). 

Incentive-based approaches to improved environmental management are also
controversial because of debate over which approaches are best for different applications and
because of disputes about their policy implications (WRI 2000; Tietenberg, 1997).  

Better understanding is needed of the potential and limitations of industry’s role and of
the specific circumstances which can encourage industry to be environmentally proactive. There
is a need to understand what motivates change. There is a need for greater attention to program
evaluation, and examination of the effectiveness of the new policy instruments in comparison
with traditional regulatory and market-based incentives (O’Rourke et al., 1996; Harrison, 1998;
Andrews et al. 2001). 
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4.  Applied Research Needs

Whereas the fundamental research needs address questions of how the industrial system
can evolve to reduce environmental impacts, the applied research needs focus on the methods
and data needed to assess specific products, facilities or industries.  The examples below
emphasize the need for critical evaluation and peer review of an ensemble of software,
databases, and metrics. 

Software and Databases for Life-cycle Assessment
A life-cycle assessment (LCA) evaluates the entire environmental impact of a product

through its life-cycle, including manufacturing, use and disposal. A great deal of work has been
done to develop the technical foundations for LCA of products and processes, and to develop the
databases necessary to support these assessments. The International Organization for
Standardization (ISO) is working to formalize LCA methods.  Efforts within the United States to
develop LCA methods are being led by the Society for Environmental Toxicology and
Chemistry (SETAC) and the US EPA (US EPA, 2000).  

There are now a large number of competing software packages for LCA and related
applications (de Caluwe, 1997).  Because of the wide range of tools, it is difficult for users even
to determine which tool is best suited to a particular situation (Wilgenbusch, 2000).  These
software tools are often complex, opaque in their technical assumptions, and use data that are
difficult to verify.  

Methods to validate LCA results have yet to be established (Hendrickson et al. 1998). 
Both conventional peer review of the LCA methods and software, and development of
standardized “test-beds” (data sets or protocols) could provide users with increased confidence
that actions based on the tools would indeed lead to overall environmental improvements.  One
of the main issues of LCA has been the validity of available life cycle inventory (LCI) databases,
which are the basis for any LCA studies but are neither standardized nor peer-reviewed.  There is
a need for a comprehensive, national-level LCI database that is open and peer-reviewed, and that
contains reliable industrial data.  Some efforts to address this need are currently underway;
continued support of work in this area is needed (NREL, 2001).  

Weighted Metrics 
Applied industrial ecology aims simultaneously to reduce a range of environmental

impacts, including not only the mass of emissions and wastes, but also impacts on human health
and ecosystems.  In order to integrate across diverse dimensions of environmental performance,
a number of weighted environmental metrics have been developed.  For example, a scoring
system called eco-indicator is a measure of overall environmental impact; human toxicity
potential has been developed as a measure of the toxicity of chemical compounds over a range of
human health endpoints; and the “triple bottom line” is a measure being used by some industrial
companies to combine business, environmental, and social accounts (National Academy of
Engineering, 1999; Huisman et al., 2001; Luo et al., 2001; Hertwich et al. 1997).  Some
weighted metrics are being considered in the European Union and elsewhere for use in
environmental legislation. 



1 These include the joint NSF/EPA programs on Technology for a Sustainable Environment, Decision
Making and Valuation for Environmental Policy, Green Chemistry, Design For the Environment and Green
Engineering, and Interagency Opportunities in Metabolic Engineering. In addition, the National Science
Foundation’s programs in Environmentally Benign Chemical Synthesis and Processing, Environmentally
Conscious Manufacturing, and New Technologies for the Environment also address industrial ecology
themes.
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The validity and limitations of such weighted metrics need to be clarified. The key
questions are the commensurability of the attributes that are being combined, and the validity of
the weighting scheme. For example, the toxicity of a chemical is a function of dose, the medium
of exposure, the duration of exposure, the state of the receptor (condition, characteristics and
activity level), the route of exposure and the chemical and physical state of the pollutant.  A
weighted measure of the toxicity of different compounds must make assumptions about all of
these factors, and indiscriminate application of such a metric may lead to non-representative
outcomes.  Hence there is a need for deeper understanding of how weighted metrics are
developed, of the impacts of uncertainty and variability, and of the limitations and benefits of
their application. 

Simplifying Assumptions
Industrial ecology has generated an ensemble of simplifying assumptions used in

calculations and analysis.  For example, lifecycle analyses (LCAs) are often simplified by 
assuming that mass is a reasonable proxy for environmental impact, or by only assessing
materials that comprise at least 5% of the product mass, or by not including some of the
upstream pre-manufacturing steps such as materials extraction and processing (Hertwich et al.
1997; Curran, 1996; ISO 14041, 1998).  The effects of these simplifications are not known, but it
is often assumed that streamlined LCA captures 70 to 80% of the opportunities for
environmental improvement (Graedel and Allenby, 1995). However, one recent evaluation
concluded that streamlined LCAs can have truncation errors as high as 50% (Lenzen 2001). 
Further quantitative evaluation of claims that underlie these assumptions could define both when
such assumptions provide reliable guidance and the type and extent of uncertainty that arises
when they are used (Sousa et al., 2001). 

Recommendations for Research

A rigorous scientific foundation will be essential for the development of an
environmental policy that may be increasingly linked to technology and economic policy.   The
US EPA and the National Science Foundation have already begun to support research related to
industrial ecology.1  Significant advances in industrial ecology will require new theoretical
developments, quantitative models, empirical research, and field-scale experiments.  Neither a
quantitative theoretical foundation nor a substantial body of experiment – in science or in policy
– have yet been developed for this new field.  The potential for scientific experiments has hardly
yet been conceived, with most efforts currently at very small scales.  The potential for policy
experiments is somewhat more developed, with state-level policy innovations increasingly
viewed as a venue for policy experimentation and adaptive learning. 
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Specific research needs are summarized in Table 1. 

Table 1: Research Needs in Industrial Ecology

Materials Efficiency and Substitution

Better understanding is needed of the potential for and limitations of
!  Dematerialization (reduction in the amount of material per product or activity), 
!  Substitution of scarce or harmful resources with those that are plentiful and benign, 
!  Recycling and reuse, and
!  Substitution of services for products. 

Innovation

! Research on a wide range of environmentally beneficial technologies should be
encouraged and supported. 

Better understanding is needed of 
! The innovation process and how government can encourage innovation and adoption. 

Role of the Private Sector

! Private sector design-for-environment activities should be encouraged. 

A better understanding is needed of the potential for and limitations of 
!  Voluntary approaches to environmental management. 

Life-Cycle Analysis and Related Environmental Evaluation Approaches

There is a need for
! Peer review of methods and software, 
! Standardized tests for methods and software, and 
! Development of a comprehensive life-cycle inventory database. 

Better understanding is needed of the validity and limitations of 
!  Metrics used to compare different environmental effects, and 
!  Common simplifying assumptions. 

To develop the scientific foundation for industrial ecology, the Agency should emphasize
quantitative and theoretical developments, empirical research, and experimental approaches
including pilot projects. Key topics include the impact and potential for all forms of resource
efficiency and substitution, and the potential for innovation, new technologies, and proactive
measures to achieve environmental goals.  To strengthen the ongoing applications of industrial



9

ecology, the Agency should support evaluation and technical review of the working assumptions,
metrics, and lifecycle assessment tools that are currently in use.  
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