United States Environmental Protection Agency Solid Waste and Emergency Response (OS-305)

EPA/530-SW-91-075 October 1991

SEPA National Survey Of Hazardous Waste Generators and Treatment, Storage, Disposal, and Recycling Facilities in 1986

Hazardous Waste Generation and Management)272-101

,

AEFORT DOCUMENTATION 1. REPORT NO. 2. PAGE EPA/530-5W-91-075	3 PB92-123325
Title and Subtitle NATIONAL SURVEY OF HAZARDOUS WASTE GENERATORS AND TREATMENT, STORAGE, DISPOSAL, AND RECYCLING FACILITIES IN 1986: HAZARDOUS WASTE GENERATION AND MANAGEMENT	5. Report Date OCTOBER 1991 6.
7. Author(s)	8. Performing Organization Rept. No
 Performing Organization Name and Address 	10. Project/Task/Work Unit No.
U.S. EPA Office of Solid Waste 401 M. Street SW Washington, DC 20460	<pre>(1. Contract(C) or Grant(G) No. (C) (G)</pre>
2. Spensoring Organization Name and Address	13. Type of Report & Period Covereo SURVEY
	14.

. Abstract (Limit: 200 words)

is report presents comprehensive information describing the entire universe of hazarous waste management activities, cluding detailed information about each major category of hazardous waste management operations. This report also presses the significant quantities of hazardous wastes that are managed in treatment and recovery units that qualify at qualify for exemptions from RCRA-permitting requirements.

Document Analysis a. Descriptors

b. Identifiers/Open-Ended Terms

c. COSATï Field/Group

Availability Statement	19. Security Llass (This Report)) 21. No. of Pages
	UNCLASSIFIED	0
ELEASE UNLIMITED	20. Security Class (This Page)	22. Price
	UNCLASSIFIED	0
NSI-Z39.18)	, OPT	10NAL FORM 272 (4-77)
	(Fo	mmerly NTIS-35)
	ð .	•
	ų.	

National Survey Of Hazardous Waste Generators and Treatment, Storage, Disposal, and Recycling Facilities in 1986

Hazardous Waste Generation and Management

October 1991

Office of Solid Waste U.S. Environmental Protection Agency Washington, DC 20460 · •

.

~

CONTENTS

`

1	INTR	ODUCTION AND EXECUTIVE SUMMARY	1
	1.1	Overview	1
	1.2	Background	3
	1.3	Hazardous Waste Generation and Management in 1986: Overview of Survey Findings	.4
2	SUR	VEY OVERVIEW	9
	2.1	Survey Objectives	9
	2.2	Survey Scope Sites Included	10 10 11
	2.3	Survey Methodology Phase I: Sample Design Phase II: Generator and TSDR Surveys Phase III: Data Management	11 11 12 13
	2.4	Statistical Issues Adjustments to the Weights Confidence Intervals	14 14 15
3	HAZ	ARDOUS WASTE GENERATION IN 1986: SUMMARY	17
	3.1	Number of Hazardous Waste Generators	17
	3.2	Quantities of Hazardous Waste Generated	20
4	ΤΥΡΙ	ES OF HAZARDOUS WASTE GENERATED	29
	4.1	RCRA and Non-RCRA Hazardous Waste	29
	4.2	Hazardous Wastewater and Non-Wastewater	31
	4.3	Physical/Chemical Characteristics	33
	4.4	Hazardous Characteristics	.41
	4.5	RCRA Waste Codes	. 45

2

.

Iv 1986 Hazardous Waste Generation and Management

CONTENTS (continued)

. .

- 1.000 C - 5

5	SOL	JRCES OF HAZARDOUS WASTE GENERATED	
	5.1	Location of Hazardous Waste Generators	49
	5.2	Industries Generating Hazardous Waste	56
	5.3	Ownership Type	
	5.4	Activities Generating Hazardous Waste	71
6	HAZ	ARDOUS WASTE MANAGEMENT	
	6.1	Hazardous Waste Management by RCRA-Permitting Status	83
	6.2	Onsite, Captive, and Commercial Management of Hazardous Waste	
	6.3	Hazardous Waste Management by Location	90
	6.4	Types of Hazardous Waste Management	95
7	HAZ	ARDOUS WASTE MANAGEMENT METHODS: RECYCLING	97
	7.1	Solvents	97
	7. 2	Metals	103
	7.3	Reuse as Fuel	109
	7.4	Fuel Blending	115
	7.5	Other Recycling	120
8	HAZ	ARDOUS WASTE MANAGEMENT METHODS: TREATMENT	127
	8.1	Incineration	127
	8.2 :	Solicification	133
	8.3	Wastewater Treatment	139
	8.4	Other Treatment	146
9	HAZ	ARDOUS WASTE MANAGEMENT METHODS: STORAGE	151
	9.1	Geographic Distribution	151
	9.2	Types of Storage Units	156

ł

CONTENTS (continued)

.

10	HAZAI	RDOUS WASTE MANAGEMENT METHODS: DISPOSAL	
	10.1	Landfills157	
	10.2	Land Treatment	
	10.3	Disposal Impoundments	
	10.4	Injection Wells	
11	UNITS	SUBJECT TO THE LAND DISPOSAL RESTRICTION RULE	
	11.1	Waste Piles	
	11.2	Surface Impoundments	
1 2	CHAN MANA	GES SINCE 1986 AFFECTING HAZARDOUS WASTE GEMENT	
	12.1	Land Disposal Restriction Rules	
	12.2	Surface Impoundment Regulations191	
	12.3	Toxicity Characteristic Leaching Procedure (TCLP) 191	
	12.4	Boiler and Industrial Furnace Regulations	; .
	12.5	Pollution Prevention Policies	}

APPENDIXES

Α	Detailed	Outline	of the	Generator	and	TSDR	Surveys
---	----------	---------	--------	-----------	-----	------	---------

- В Definitions of Waste Codes
- С Generator and TSDR Survey Questions Referenced in This Report

:

CHARTS ··

1.1-1	Definition of Selected Terms Used in This Report 2
1.3-1	Estimated Number of Hazardous Waste Generators in 19865
1.3-2	Quantity of Hazardous Waste Generated in 1986 (million tons)5
1.3-3	Number of Hazardous Waste Generators in 1981, 1985, and 1986 6
1.3-4	Quantity of Hazardous Waste Generated in 1986, by RCRA- Permitting Status of Management Units
1.3-5	Quantity of Hazardous Waste Managed in RCRA TSDR Units in 1981, 1985, and 1986 (million tons)
3.1-1	Estimated Number of Hazardous Waste Generators in 1986
3.1-2	Number of Hazardous Waste Generators in 1981, 1985, and 1986 19
3.2-1	Quantity of Hazardous Waste Generated in 1986 (million tons)
3.2-2	Quantity of Hazardous Waste Generated in 1986, by RCRA- Permitting Status of Management Units
3.2-3	Quantity of Hazardous Waste Managed in RCRA TSDR Units in 1981, 1985, and 1986 (million tons)
3.2-4 a	Cumulative Distribution of the Quantity of Hazardous Waste Generated In 198624
3.2 -4b	Cumulative Distribution of the Quantity of Hazardous Waste Generated in 1986 for the Top 25 Percent of Generators
3.2 -5	Quantity of Hazardous Waste Generated by Generators: Key Statistics
3.2 -6	Quantity of Hazardous Waste Generated in 1986 by the Fifty Largest Generators
4.1-1	Quantity of RCRA Hazardous Waste in 1986
4.2-1	Quantity of Hazardous Wastewater Generated in 1986
4.2-2	Number of Facilities Generating Hazardous Wastewater in 1986

.

4.3-1	Quantity of Hazardous Waste Generated in 1986 by Physical/Chemical Characteristics	33
4.3-2	Industries Generating the Largest Quantities of Inorganic Liquid Hazardous Waste in 1986	34
4.3-3	Industries Generating the Largest Quantities of Organic Liquid Hazardous Waste in 1986	35
4.3-4	Industries Generating the Largest Quantities of Organic Solid/Sludge Hazardous Waste in 1986	35
4.3-5	Industries Generating the Largest Quantities of Inorganic Sludge Hazardous Waste in 1986	36
4.3-6	Industries Generating the Largest Quantities of Inorganic Solid Hazardous Waste in 1986	36
4.3-7	Number of Generators in 1986 by the Physical/Chemical Characteristics	37
4.3-8	Industries with the Largest Numbers of Facilities Generating Organic Liquid Hazardous Waste in 1986	38
4.3-9	Industries with the Largest Numbers of Facilities Generating Inorganic Liquid Hazardous Waste in 1986	39
4.3-10	Industries with the Largest Numbers of Facilities Generating Organic Solid/Sludge Hazardous Waste in 1986	3 9
4.3-11	Industries with the Largest Numbers of Facilities Generating Inorganic Solid Hazardous Waste in 1986	40
4.3-12	Industries with the Largest Numbers of Facilities Generating Inorganic Sludge Hazardous Waste in 1986	40
4.4-1	Quantity of Hazardous Waste Generated in 1986 by RCRA Hazard Characteristic	.42
4.4-2	Number of Hazardous Waste Generators in 1986 by RCRA Hazard Characteristic of Wastes Generated	.44

.

4.5-1	Quantity of Hazardous Waste Generated in 1986 by RCRA Waste Code	. 46
4.5-2	Quantity of Hazardous Waste Generated in 1986 by RCRA Waste Code Groups	47
5.1-1	Quantity of Hazardous Waste Generated per EPA Region in 1986 (in million tons)	. 50
5.1-2	Number of Hazardous Waste Generators per EPA Region in 1986	. 51
5.1-3	Quantity of Hazardous Waste Generated by State in 1986	52
5.1-4	Quantity of Hazardous Waste Generated by State in 1986, in Descending Order	53
5.1-5	Number of Hazardous Waste Conerators by State in 1986	. 54
5.1-6	Number of Hazardous Waste Generators by State in 1986, in Descending Order	55
5.2-1	Largest General Industries by the Quantity of Hazardous Waste Generated	56
5.2-2	Most Common Specific Industries in the Chemical Products Industry (SIC 28) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)	. 57
5. 2-3	Quantity of Hazardous Waste Generated by the Chemical Products Industry (SIC 28) in 1986 by Physical/Chemical Characteristics	57
5.2-4	Most Common Specific Industries in the Electronics Industry (SIC 36) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)	58
5.2-5	Quantity of Hazardous Waste Generated by the Electronics Industry (SIC 36) in 1986 by Physical/Chemical Characteristics	. 58
5.2-6	Most Common Specific Industries in the Petroleum and Coal Industry (SIC 29) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)	. 59
5.2-7	Quantity of Hazardous Waste Generated by the Petroleum and Coal Industry (SIC 29) in 1986 by Physical/Chemical Characteristics	59

÷

5.2-8	Most Common Specific Industries in the Primary Metals Industry (SIC 33) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)	60
5.2-9	Quantity of Hazardous Waste Generated by the Primary Metals Industry (SIC 33) in 1986 by Physical/Chemical Characteristics	60
5.2-10	Most Common Specific Industries in the Transportation Equipment Industry (SIC 37) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)	61
5.2-11	Quantity of Hazardous Waste Generated by the Transportation Equipment Industry (SIC 37) in 1986 by Physical/Chemical Characteristics	61
5.2-12	Largest General Industries by the Number of Hazardous Waste Generators in 1986	.62
5.2-13	Most Common Specific Industries in the Chemical Products Industry (SIC 28) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)	64
5.2-14	Number of Facilities in the Chemical Products Industry (SiC 28) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics	64
5.2-15	Most Common Specific Industries in the Metal Fabrication Industry (SIC 34) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)	65
5.2-16	Number of Facilities in the Metal Fabrications Industry (SIC 34) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics	65
5.2-17	Most Common Specific Industries in the Electronics Industry (SIC 36) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)	66
5.2-18	Number of Facilities in the Electronics Industry (SIC 36) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics	66
5.2-19	Most Common Specific Industries in the Transportation Equipment Industry (SIC 37) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)	. 67

÷

. -

5.2-20	Number of Facilities in the Transportation Equipment Industry (SIC 37) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics
5.2-21	Most Common Specific Industries in the Primary Metals Industry (SIC 33) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)
5.2-22	Number of Facilities in the Primary Metals Industry (SIC 33) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics
5.3-1	Quantity of Hazardous Waste Generated in 1986 by Ownership Type69
5.3-2	Number of Hazardous Waste Generators in 1986 by Ownership Type70
5.4-1	Quantity of Hazardous Waste Generated in 1986 by the Activity Generating the Waste (million tons)
5.4 -2	Most Common Sources of Primary/Routine Hazardous Waste Generation by Quantity Generated in 198672
5.4-3	Most Common Sources of Secondary/Routine Hazardous Waste Generation by the Quantity Generated in 1986
5.4-4	Most Common Sources of Primary/Non-Routine Hazardous Waste Generation by the Quantity Generated in 1986
5.4 -5	Most Common Sources of Secondary/Non-Routine Hazardous Waste Generation by the Quantity Generated in 1986
5.4-6	Most Common Unknown Sources of Non-Routine Hazardous Waste Generation by the Quantity Generated in 1986
5.4-7	Number of Generators in 1986 by the Source of their Hazardous Waster
5.4-8	Most Common Sources of Primary/Routine Hazardous Waste Generation by the Number of Generators per Source in 1986
5.4-9	Most Common Sources of Secondary/Routine Hazardous Waste Generation by the Number of Generators per Source in 1986
5.4-10	Most Common Sources of Primary/Non-Routine Hazardous Waste Generation by the Number of Generators per Source in 1986

:

5.4-11	Most Common Sources of Secondary/Non-Routine Hazardous Waste Generation by the Number of Generators per Source in 1986	31
5.4-12	Most Common Unknown Sources of Non-Routine Hazardous Waste Generation by the Number of Generators per Source in 1986	32
6.1-1	Quantity of Hazardous Waste Generated In 1986, by RCRA-Permitting Status of Management Units	84
6.1-2	Number of Hazardous Waste Management Facilities by RCRA Permit Status of Management Units in 1986	85
6.2-1	Quantity of Hazardous Waste that was Managed Onsite, Commercially, and Captively in 1986	86
6.2-2	Number of Hazardous Waste Management Facilities by the Origin of the Hazardous Waste Managed in 1986: Commercial, Captive, and Onsite-Only	87
6.2 -3a	Number of Generators by Location of Their Hazardous Waste Management in 1986	88
6.2-3b	Number of Generators by Location of Their Hazardous Waste Management in 1986: Onsite, Commercial, and Captive	89
6.3-1	Number of Hazardous Waste Management Facilities per EPA Region in 1986	91
6.3-2	Number of Hazardous Waste Management Facilities by State in 1986	93
6.3-3	Number of Hazardous Waste Management Facilities by State in 1986, in Descending Order	94
6.4-1	Number of Management Facilities Treating, Storing, Disposing of, and Recycling Hazardous Waste in 1986	.95
7.1-1	Quantity of Hazardous Waste Managed in Solvent Recovery Processes per EPA Region in 1986 (in million tons)	98
7.1-2	Number of Facilities Managing Hazardous Waste in Solvent Recovery Processes per EPA Region in 1986	99
7.1-3	Quantity of Hazardous Waste Managed in Solvent Recovery Processes by State in 1986	100

7.1-4	Number of Facilities Managing Hazardous Waste in Solvent Recovery Processes by State in 1986101	I
7.1-5	Types of Solvent Recovery Processes and Quantity Managed in 1986	2
7.1-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Solvent Recovery Processes in 1986	3
7.2-1	Quantity of Hazardous Waste Managed in Metal Recovery Processes per EPA Region in 1986 (in million tons)104	4
7.2-2	Number of Facilities Managing Hazardous Waste in Metal Recovery Processes per EPA Region in 1986105	5
7.2-3	Quantity of Hazardous Waste Managed in Metal Recovery Processes by State in 1986	6
7.2-4	Number of Facilities Managing Hazardous Waste in Metal Recovery Processes by State in 1986	7
7.2-5	Types of Metals Recovery Processes and Quantity of Hazardous Waste Managed in 1986	B
7.2-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Metal Recovery Processes in 1986	9
7.3-1	Quantity of Hazardous Waste Managed in Reuse-as-Fuel Processes per EPA Region in 1986 (in million tons)11	Ö
7.3-2	Number of Facilities Managing Hazardous Waste in Reuse-as-Fuel Processes per EPA Region in 198611	1
7.3-3	Quantity of Hazardous Waste Managed in Reuse-as-Fuel Processes by State in 198611	2
7.3-4	Number of Facilities Managing Hazardous Waste in Reuse-as-Fuel Processes by State in 198611	3
7.3-5	Types of Reuse-as-Fuel Processes and Quantity Managed in 1986	4

.

: .

7.3-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Reusing Hazardous Waste as Fuel in 1986	115
7.4-1	Quantity of Hazardous Waste Managed in Fuel Blending Processes per EPA Region in 1986 (in million tons)	116
7. 4-2	Number of Facilities Managing Hazardous Waste in Fuel Blending Processes per EPA Region in 1986	117
7.4-3	Quantity of Hazardous Waste Managed in Fuel Blending Processes by State in 1986	118
7.4-4	Number of Facilities Managing Hazardous Waste in Fuel Blending Processes by State in 1986	119
7.4-5	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Fuel Blending Processes in 1986	120
7.5-1	Quantity of Hazardous Waste Managed in Other Recycling Processes per EPA Region in 1986 (in million tons)	121
7.5-2	Number of Facilities Managing Hazardous Waste in Other Recycling Processes per EPA Region in 1986	122
7.5-3	Quantity of Hazardous Waste Managed in Other Recovery Processes by State in 1986	12 <u>3</u>
7.5-4	Number of Facilities Managing Hazardous Waste in Other Recovery Processes by State in 1986	. 124
7.5-5	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Other Recycling Processes in 1986	125
8.1-1	Quantity of Hazardous Waste Managed in Incinerators per EPA Region in 1986 (in million tons)	.128
8.1-2	Number of Facilities Managing Hazardous Waste in Incinerators per EPA Region in 1986	. 129
8.1-3	Quantity of Hazardous Waste Incinerated by State in 1986	. 130

:

.

• .

8.1-4	Number of Facilities Incinerating Hazardous Waste by State in 1986
8.1-5	Types of Incinerators and Quantity Managed in 1986
8.2-1	Quantity of Hazardous Waste Managed in Solidification Processes per EPA Region in 1986 (in million tons)
8.2-2	Number of Facilities Managing Hazardous Waste in Solidification Processes per EPA Region in 1986
8.2-3	Quantity of Hazardous Waste Managed in Solidification by State in 1986
8.2-4	Number of Facilities Managing Hazardous Waste in Solidification Processes by State in 1986
8.2-5	Types of Solidification Processes and Quantity Managed in 1986
8.3-1	Quantity of Hazardous Waste Managed in Wastewater Treatment Processes per EPA Region in 1986 (In million tons)
8.3-2	Number of Facilities Managing Hazardous Waste in Wastewater Treatment Processes per EPA Region in 1986141
8.3-3	Quantity of Hazardous Waste Managed in Wastewater Treatment Processes by State in 1986
8.3-4	Number of Facilities Managing Hazardous Waste in Wastewater Treatment Processes by State in 1986
8.3-5	Types of Wastewater Treatment Processes and Quantity Managed in 1986
8.3-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste In Wastewater Treatment Processes in 1986
8.3-7	Number of Facilities by Type of Unit Used for Wastewater Treatment

φ.

÷

ŧ

8.4-1	Quantity of Hazardous Waste Managed in Other Treatment Processes per EPA Region in 1986 (in million tons)
8.4-2	Number of Facilities Managing Hazardous Waste in Other Treatment Processes per EPA Region in 1986
8.4-3	Quantity of Hazardous Waste Managed in Other Treatment Processes by State in 1986149
8.4-4	Number of Facilities Managing Hazardous Waste in Other Treatment Processes by State in 1986
9.1-1	Quantity of Hazardous Waste Stored per EPA Region in 1986 (in million tons)
9.1-2	Number of Facilities Storing Hazardous Waste per EPA Region in 1986
9.1-3	Quantity of Hazardous Waste Stored per State in 1986
9.1-4	Number of Facilities Storing Hazardous Waste per State in 1986 155
9.2-1	Types of Storage Units and Quantity Stored in 1986 156
10.1-1	Quantity of Hazardous Waste Managed in Landfills per EPA Region in 1986 (in million tons)
10.1-2	Number of Facilities Managing Hazardous Waste in Landfills per EPA Region in 1986
10.1-3	Quantity of Hazardous Waste Managed in Landfills by State in 1986
10.1-4	Number of Facilities Managing Hazardous Waste in Landfills by State in 1986
1 0.2-1	Quantity of Hazardous Waste Managed in Land Treatment Areas per EPA Region in 1986 (in million tons)
10.2 -2	Number of Facilities Managing Hazardous Waste in Land Treatment Areas per EPA Region in 1986
10.2-3	Quantity of Hazardous Waste Managed in Land Treatment Areas by State in 1986
10.2-4	Number of Facilities Managing Hazardous Waste in Land Treatment Areas by State in 1986

ŧ

2

CHARTS (continued)

10. 3-1	Quantity of Hazardous Waste Managed in Disposal Impoundments per EPA Region in 1986 (in million tons)
10.3-2	Number of Facilities Managing Hazardous Waste in Disposal Impoundments per EPA Region in 1986
10.3-3	Quantity of Hazardous Waste Managed in Disposal Impoundments by State in 1986
10.3-4	Number of Facilities Managing Hazardous Waste in Disposal Impoundments by State in 1986
10.4-1	Quantity of Hazardous Waste Managed in Injection Wells per EPA Region in 1986 (in million tons)
10.4-2	Number of Facilities Managing Hazardous Waste in Injection Wells per EPA Region in 1986
1 0.4-3	Quantity of Hazardous Waste Managed In Injection Wells by State in 1986
10.4-4	Number of Facilities Managing Hazardous Waste in Injection Wells by State in 1986
11.1-1	Quantity of Hazardous Waste Managed in Waste Piles per EPA Region in 1986 (in million tons)
11.1-2	Number of Facilities Managing Hazardous Waste in Waste Piles per EPA Region in 1986
1 1.1-3	Quantity of Hazardous Waste Managed in Waste Piles by State in 1986
11.1-4	Number of Facilities Managing Hazardous Waste in Waste Piles by State in 1986
11.1-5	Types of Waste Management Conducted in Waste Piles in 1986, by Number of Facilities
11. 2-1	Quantity of Hazardous Waste Managed in Surface Impoundments per EPA Region in 1986 (in million tons)
11.2 -2	Number of Facilities Managing Hazardous Waste in Surface Impoundments per EPA Region in 1986

11.2-3	Quantity of Hazardous Waste Managed in Surface Impoundments by State in 1986	185
11.2-4	Number of Facilities Managing Hazardous Waste in Surface Impoundments by State in 1986	186
11.2-5	Types of Waste Management Conducted in Surface Impoundments in 1986, by Number of Facilities	187
12.1-1	Schedule for Hazardous Waste Land Disposal Restriction Rules Under HSWA	190

xvII

÷

ACRONYMS

BDAT	Best Demonstrated Available Technology
CBI	Confidential Business Information
EP	Extraction Procedure
EPA	U.S. Environmental Protection Agency
HSWA	Hazardous and Solid Waste Amendments of 1984
HWDMS	Hazardous Waste Data Management System
LDR	Land Disposal Restrictions
LQG	Large Quantity Generator
NPDES	National Pollutant Discharge Elimination System
osw	Office of Solid Waste
PCB	Polychlorinated Biphenyl
POTW	Publicly Owned Treatment Works
RCRA	Resource Conservation and Recovery Act
RIA	Regulatory Impact Analysis
SQG	Small Quantity Generator
TCLP	Toxicity Characteristic Leaching Procedure
TSDR	Treatment, Storage, Disposal, and Recycling Facilities

ł

٦

.

xvili___

INTRODUCTION AND EXECUTIVE SUMMARY

This report presents the findings of two extensive national surveys conducted by mail over a three-year period to obtain detailed information concerning hazardous waste generation and management practices occurring in calendar year 1986. The two surveys—the National Survey of Hazardous Waste Generators (Generator Survey) and the National Survey of Hazardous Waste Treatment, Storage, Disposal, and Recycling Facilities (TSDR Survey) focused on hazardous waste handlers regulated under Subtitle C of the Resource Conservation and Recovery Act, as amended in 1984 by the Hazardous and Solid Waste Amendments (hereafter referred to as RCRA).

1.1 OVERVIEW

Information developed through the Generator and TSDR Surveys is being released in two phases:

- The first report presented the surveys' major findings concerning the total quantity of hazardous waste generated in 1986 and a portion of the surveys' findings concerning 1986 hazardous waste management activities: management of hazardous wastes in treatment, storage, disposal, and recycling (TSDR) units that are subject to RCRA-permitting requirements. The report was released by EPA in July, 1991.
- This second report presents comprehensive information describing the entire universe of hazardous waste management activities, including detailed information about each major category of hazardous waste management operations. This report also addresses the significant quantities of hazardous wastes that are managed in treatment and recovery units that qualify for exemptions from RCRA-permitting requirements.

Chart 1.1-1 defines selected key terms used throughout these reports. Appendix A outlines the content of the Generator and TSDR Surveys.

The second s	
Generator	Facilities that generate in one month or accumulate at any one time more than 1,000 kg RCRA hazardous waste or more than 1 kg RCRA acutely hazardous waste (sometimes referred to as "large" quantity generators).
Facility	Facilities treating, recycling, disposing of, or storing hazardous waste, regardless of their permit status. Does not include accumulation exempt from RCRA-permitting requirements.
Hazardous waste	Wastes considered hazardous under RCRA (regardless of how they are managed), under other federal regulations, or by the state in which it is generated or managed.
RCRA TSDR units	Hazardous waste management units subject to RCRA-permitting requirements (sometimes referred to as RCRA units).
Non-RCRA TSDR units	Hazardous waste management units exempt from RCRA-permitting requirements (sometimes referred to as non-RCRA units).
RCRA TSDR facilities	Facilities that manage hazardous waste in RCRA TSDR units.
Non-RCRA TSDR facilities	Facilities that only manage hazardous waste in non-RCRA TSDR units.

Chart 1.1-1 Definition of Selected Terms Used in This Report

These data have been used extensively since their collection, and this report documents some of the findings. However, any data analysis must take into account the significant changes that have occurred in hazardous waste management practices since these data were collected. Among other actions, EPA has

- implemented restrictions on the land disposal of hazardous wastes,
- expanded the toxicity characteristic testing procedures and standards to capture an expanded universe of hazardous wastes under the RCRA Subtitle C regulatory umbrella, and
- implemented pollution prevention policies designed to reduce hazardous waste generation.

Chapter 12 describes these program changes in more detail.

1.2 BACKGROUND

The 1986 Generator and TSDR Surveys comprise EPA's third effort to develop reliable national information describing hazardous waste generation and management activities in the United States. EPA's April 1984 report, *National Survey of Hazardous Waste Generators and Treatment, Storage, and Disposal Facilities Regulated Under RCRA in 1981* (1981 Mail Survey), presented the first picture of the hazardous waste system that RCRA was enacted to control, based on an extensive mail survey conducted directly by EPA. EPA's March 1989 report, *1985 National Biennial Report of Hazardous Waste Generators and Treatment, Storage, and Disposal Facilities Regulated Under RCRA* (1985 National Biennial Report), updated the 1981 Mail Survey based on EPA's compilation of data reported by generators and facilities to states and EPA regional offices through the RCRA Biennial Reporting System.

The major finding of the 1981 Mail Survey was that annual hazardous waste generation was approximately six times greater than previously estimated, with slightly more than 14,000 generators producing approximately 290 million tons of hazardous waste in 1981. The 1981 Survey found for the first time that large quantities of RCRA hazardous wastes are managed outside the scope of the RCRA-permitting program in units that qualify for exemptions from RCRA-permitting requirements. Most prominent among such units are tank treatment systems used to treat hazardous wastewaters prior to discharge to surface waters under the National Pollutant Discharge Elimination System (NPDES). The 1981 Mail Survey was unable to estimate the total quantity generated of hazardous wastes that were managed outside the scope of the RCRA-permitting system.

In the 1985 National Biennial Report, EPA reported that in 1985 almost 22,000 generators generated 271 million tons of RCRA hazardous waste that were managed in RCRA-regulated TSDR units. In addition, data received by states and EPA regional offices in 1985 again indicated that additional large volumes of RCRA hazardous waste were being managed outside the scope of the RCRA-permitting system. Again, EPA was unable to develop a reliable estimate of the national quantities of these hazardous wastes.

The 1986 Generator and TSDR Surveys differ from the previous EPA hazardous waste data collections described above in that, in addition to data on wastes managed in RCRA TSDR units, they also include hazardous wastes managed in units that qualify for exemptions from RCRA-permitting requirements.

1.3 HAZARDOUS WASTE GENERATION AND MANAGEMENT IN 1986: OVERVIEW OF SURVEY FINDINGS

Based on the survey procedures and methodologies described in Chapter 2, EPA estimates that 12,478 generators generated 747.4 million tons of hazardous waste in 1986. The 747.4 million ton quantity of hazardous waste generated in 1986 is considerably greater than previous estimates for 1981 and 1985 because it includes the large volumes of hazardous waste that are managed outside the scope of the RCRA-permitting system in TSDR units that qualify for RCRA-permitting exemptions (non-RCRA TSDR units).

Charts 1.3-1 and 1.3-2 present these statistical estimates along with their confidence intervals, corresponding to the 95 percent confidence levels. The confidence interval is the range of values within which the actual number of generators and quantity of hazardous waste is likely to be, based on the statistical design of the survey and the response rates obtained. A 95 percent confidence level means that if a survey was conducted 100 times, the estimates would fall within the range 95 percent of the time. Chart 1.3-1 shows that the 95 percent confidence interval for the number of generators in 1986 is plus or minus 4.6 percent, or 575 generators. This means that there is a 95 percent certainty that the actual number of generators in 1986 was between 11,903 and 13,053. The 95 percent confidence interval for the quantity of hazardous waste generated in 1986 is plus or minus 75 million tons, or plus or minus 10 percent of the estimate.

Chart 1.3-3 compares the estimates of the number of hazardous waste generators for 1981, 1985, and 1986. EPA believes that the 1985 estimate of 21,700 provided by the RCRA Biennial Reporting System overstates the actual number of generators in that year because many states include small quantity generators (SQGs) in their reporting systems and were unable to remove them when reporting to EPA on the number of generators (i.e., "large" quantity generators) within their borders. When the overcounting factor is considered, the three estimates of hazardous waste generators shown in Chart 1.3-3 are thought to be similar.

Chart 1.3-1 Estimated Number of Hazardous Waste Generators in 1986

Source: (GA1, 2, 3, 4, 5, and 27) (The letters indicate the questionnaire and the numbers indicate the question on which the data are based.)

Chart 1.3-2 Quantity of Hazardous Waste Generated in 1986 (million tons)^a

^a For the purpose of this report, quantities reported in gallons have been converted to U.S. tons using the following standard conversion factor: 1 U.S. ton = 2,000 = 240 gallons.

Source: (GA27)

Chart 1.3-3 Number of Hazardous Waste Generators in 1981, 1985, and 1986

^a The 1985 Biennial Report System estimate overstates the actual population of hazardous waste generators because some states included small quantity generators.

Source: 1981 Mail Survey, 1985 Biennial Report, (GA1, 2, 3, 4, 5, and 27)

Chart 1.3-4 disaggregates the 1986 generation estimate of 747.4 million tons according to the RCRA-permitting status of the TSDR units in which these wastes were subsequently managed and according to the type of facility that managed the hazardous waste. The chart shows three categories of hazardous waste:

- waste managed in at least one RCRA TSDR unit,
- waste managed only in non-RCRA TSDR units at facilities that also manage hazardous wastes in RCRA TSDR units, and
- waste managed only in non-RCRA TSDR units at facilities that do not have any RCRA TSDR units.

Chart 1.3-4 Quantity of Hazardous Waste Generated In 1986, by RCRA-Permitting Status of Management Units

Source: (A3, A8, GA27)

An example of a RCRA TSDR facility that manages hazardous waste in RCRA and non-RCRA TSDR units is a facility that has a RCRA permit for hazardous waste storage tanks and also treats hazardous waste in a RCRAexempt wastewater treatment system governed by a National Pollutant Discharge Elimination System (NPDES) discharge permit under the Clean Water Act. An example of a non-RCRA TSDR facility that manages hazardous waste only in non-RCRA units is a RCRA large quantity generator that treats its hazardous waste in a RCRA-exempt wastewater treatment system and ships the hazardous sludge residual from the treatment system offsite every other month. (Generators are allowed to accumulate hazardous waste onsite for up to 90 days without obtaining a RCRA storage permit.) Only 289.5 million tons (39 percent) of the 747.4 million tons of hazardous waste generated in 1986 were managed in RCRA TSDR units. An additional 197.5 million tons (26 percent) of hazardous waste were managed in non-RCRA TSDR units at facilities with RCRA units. The remaining 260.4 million tons (35 percent) of hazardous waste generated in 1986 were managed in non-RCRA TSDR units at facilities with no RCRA units.

Disaggregating the 747.4 million tons of hazardous waste generated in 1986 according to the RCRA regulatory status of management units enables comparison of 1986 generation estimates with the previously described 1981 and 1985 estimates. Chart 1.3-5 presents hazardous waste generation estimates for all three years. The estimates for 1981 and 1985 are limited (as described in Section 1.2 above) to hazardous waste quantities that are subsequently managed in RCRA TSDR units. The estimates for 1981 and 1985 are very similar to the 1986 generation estimate of quantities subsequently managed in the RCRA-permitting system.

Source: 1981 Mail Survey, 1985 Biennial Report, (A3, GA27)

This chapter discusses the objectives of the 1986 Generator and TSDR Surveys and the approach used to develop and conduct the surveys. The information discussed in this chapter should help the reader understand the nature and application of survey data.

2.1 SURVEY OBJECTIVES

The Generator and TSDR Surveys were an effort to develop comprehensive hazardous waste information for use by the Office of Solid Waste (OSW) and other EPA offices, the regulated community, Congress, and the general public for rulemaking and related analyses. This section outlines the objectives of the Generator and TSDR Surveys.

The Generator and TSDR Surveys were conducted to support the development of a variety of regulations and analyses, including

- the land disposal restriction rules, including developing treatment standards based on Best Demonstrated Available Treatment (BDAT) technologies, and setting effective dates based on the capacity of BDAT technologies;
- regulations for corrective action for solid waste management units at facilities with RCRA permits;
- analyses of pollution prevention activities to support EPA pollution prevention outreach efforts;
- permitting standards for tanks used to treat, store, or recycle hazardous waste;
- Regulatory Impact Analyses (RIAs) for regulations associated with RCRA and HSWA;

- revisions of the organic toxicity characteristic and other additional waste characteristics used to classify wastes as "hazardous" under RCRA;
- the revised list of wastes considered hazardous under RCRA; and
- testing procedures for wastes with hazardous characteristics.

2.2 SURVEY SCOPE

This section describes the types of generators and facilities and the types of wastes included in the Generator and TSDR Surveys.

Sites Included

The facilities surveyed in the TSDR Survey include a census of facilities that treated, disposed of, or recycled hazardous waste onsite and a random sample of facilities that only stored hazardous waste and did not treat, dispose, or recycle any hazardous waste onsite. The findings presented in Chapter 3 address only those facilities with RCRA TSDR units that were operational (or temporarily idle) in 1986.

The data collected in the Generator Survey represent "large" quantity generators of hazardous wastes (referred to in this report as "generators"). A generator is a facility that generated in any one month more than 1,000 kg of hazardous waste or more than 1 kg of waste considered acutely hazardous under RCRA that was subsequently shipped offsite or managed onsite in RCRA TSDR units. Acutely hazardous wastes are wastes described by any of the following RCRA waste codes: F020, F021, F022, F023, F026, F027, and all of the codes beginning with P.

The Generator Survey employed a stratified sample. All facilities included in the TSDR Survey were also surveyed in the Generator Survey. The stratified sample design provided greater precision in the findings and produced statistically significant estimates at national, regional, and state levels.

It is important to note that both the Generator and TSDR Surveys are statistical samples. All the data presented in this report have been weighted to represent the total population of RCRA TSDR facilities and generators nationwide.

Wastes Included

RCRA defines a specific subset of solid wastes as "hazardous wastes"; these wastes are subject to RCRA regulations concerning hazardous wastes. Definitions of solid wastes and hazardous wastes are provided in the code of Federal Regulations (see 40 CFR 260-261). Many states regulate hazardous wastes in addition to those regulated under RCRA (e.g., waste oil). The Generator and TSDR Surveys include data on wastes considered hazardous under RCRA, other federal regulations, and state regulations.

The following wastes are included in the Generator and TSDR Surveys:

- Waste considered hazardous under RCRA. This includes hazardous wastewater pretreated prior to discharge under a NPDES permit or to a publicly owned treatment works (POTW); hazardous waste generated in a production process or a waste treatment process; and a hazardous waste that is a characteristic hazardous waste even though it may lose its hazardous characteristic through mixing with other waste or by treatment.
- Waste considered hazardous by the state in which it was generated or managed.
- Waste containing polychlorinated biphenyls (PCBs), asbestos, or dioxins/furans.
- · Hazardous waste mixed with radioactive waste.

2.3 SURVEY METHODOLOGY

The 1986 Generator and TSDR Surveys were designed and developed over a two-year period. Because of the size and complexity of this project and of the survey instruments themselves, this section briefly explains the methodology used to develop the surveys.

Phase I: Sample Design

The initial phase of the TSDR Survey development was the National Screening Survey conducted from January through November 1986. The Screening Survey identified and collected summary information from all facilities in the United States that had filed a Part A permit under RCRA and were listed in the Hazardous Waste Data Management System (HWDMS) as of November 1985. Because a large number of the facilities that filed a Part A permit did not ultimately manage RCRA hazardous waste in units that require a permit, one objective of the Screening Survey was to determine which facilities operated waste management units subject to RCRA-permitting requirements during 1986. Of the 5,600 facilities surveyed, approximately 3,000 were determined to be active TSDR facilities requiring or otherwise subject to permits under RCRA. A second objective of the Screening Survey was to gather information to determine the best method for surveying TSDR facilities in a more detailed follow-up survey.

In January and February of 1987, a computer-assisted telephone interview followed up the approximately 3,000 active TSDR facilities identified in the Screening Survey. These facilities were asked to verify and update the data they had provided for the Screening Survey. With this information, EPA determined the approximate number of waste management units for each waste management activity operated at each facility. This information served as the basis for distributing detailed questionnaires for the subsequent TSDR Survey.

For the Generator Survey, the population to be surveyed included all identified generators of hazardous waste. A population of 41,000 potential hazardous waste generators was identified using information from several sources:

- the 1985 Biennial Hazardous Waste Report,
- the 1986 National TSDR Screening Survey,
- the HWDMS,
- · state regulatory officials, and
- EPA regional offices.

From this population, a stratified random sample of approximately 10,000 facilities was selected and surveyed. The sample was stratified by state, by whether the facility was a TSDR facility, and by the quantity of hazardous waste generated.

Phase II: Generator and TSDR Surveys

The Generator and TSDR Survey instruments were developed over a two-year period in consultation with government officials and industry trade associations. Both survey instruments were evaluated in field pretests and revised based on the results of the pretests. The TSDR Survey was mailed in August 1987, and the Generator Survey was mailed in December 1987.

Approximately 99 percent of the TSDR Survey instruments and 90 percent of the Generator Survey instruments were completed and returned. After adjusting for nonresponses, the Generator and TSDR Survey samples reflect the complete populations of Generators and RCRA TSDR facilities, respectively.

Because of the highly technical nature of the Generator and TSDR Surveys, two services were provided to respondents to improve the accuracy and completeness of responses:

- A toll-free telephone Survey Helpline was established for respondents. The helpline handled more than 15,000 calls.
- A Survey Update newsletter was mailed periodically to all facilities that received the questionnaires. The Update provided additional information for completing complex questions, suggestions for easing the burden of completing the instruments, and any corrections to the questionnaires.

Phase III: Data Management

After receiving the completed questionnaires, selected portions of each questionnaire were reviewed for technical accuracy. If necessary, telephone follow-up calls were made to the facility. After editing, the data were entered into a dedicated, secure computer. To ensure accurate keying, data were keyed twice.

Information collected in the surveys was organized into two databases. The TSDR Survey database contained 61 distinct files, and the Generator Survey database contained 41 distinct files. In addition, each database included notes files for each facility, which contained explanatory comments submitted by facilities in their survey questionnaires.

Due to the nature of some of the data collected in the Generator and TSDR Surveys, some responses were claimed as EPA Confidential Business Information (CBI) by respondents. A separate set of stringent security requirements was followed for managing CBI data. Because it was determined that the CBI data did not significantly affect any of the information presented in this report, CBI data are not included in this report.

2.4 STATISTICAL ISSUES

Adjustments to the Weights

In the TSDR and Generator Surveys, weights are used to make estimates about the entire population of generators and TSDR facilities based on responses by facilities included in the sample. A weight is a factor used to escalate from a sample measurement to an estimate for the total population. For example, if one facility was sampled from a population of ten facilities, multiplying (or weighting) the responses of the facility surveyed by ten gives an estimate of the quantity for the total population.

÷

Initially, weights were defined based on the relative sizes of the total population and the sample of facilities that were surveyed. However, weights were statistically adjusted based on the results of the survey for two reasons: multiplicity and nonresponse.

First, weights had to be adjusted to correct for multiplicity in the sample frame (the list of facilities thought to be large quantity generators in 1986). Multiplicity occurs if a single facility is included more than once in the sample frame. In this case, a facility may have been included more than once under different EPA identification numbers if the owner or the name of the facility changed and a new number was assigned. Facilities surveyed were asked to indicate any identification numbers that had previously been assigned to that facility. This information was used to identify multiplicity in the sample frame, and weights were adjusted so that each facility is represented only once.

The second adjustment to the weights was due to nonresponse (facilities that received a survey but did not return a completed survey). Ninety percent of facilities receiving a Generator Survey questionnaire responded, and 98 percent of facilities receiving a TSDR Survey questionnaire responded. Weights for facilities that did respond to the Surveys were adjusted so that the responding facilities represent the total population of facilities.

All data presented in this report use these adjusted weights to obtain estimates for the total population of TSDR facilities and large quantity generators during 1986.
Confidence Intervals

By weighting the data from a sample survey, estimates can be made about the total population of facilities. Confidence intervals are used to measure the accuracy of these estimates. The confidence interval is the range of numbers within which the true value of an estimated number will fall with a certain known probability, based on the statistical design of the survey and the response rates obtained. A 95 percent confidence interval means that if a survey was conducted 100 times, the estimates would fall within the range 95 percent of the time.

For the Generator Survey, the 95 percent confidence interval for the total number of large quantity generators nationwide in 1986 is plus or minus 575 generators, or plus or minus 5 percent of the estimate of 12,478. This means that there is a 95 percent certainty that the actual number of generators was between 11,903 and 13,053.

Generally, regional- and state-level estimates are less certain than the national estimates (i.e., these estimates have larger confidence intervals in percentage terms). This is because, all else being equal, the confidence interval increases as the number of facilities surveyed decreases. The exception to this are estimates for North Dakota and South Dakota. These states were censused rather than sampled (i.e., every facility in these states received a survey) and a 100 percent response rate was achieved. Therefore, there is no sampling error for these states, and the totals for these states are not estimates but actual numbers reported.

(This page is intentionally blank)

HAZARDOUS WASTE GENERATION IN 1986: SUMMARY

The Generator Survey contains data on "large" quantity generators (generators) of RCRA hazardous waste in 1986. As described in Chapter 2, generators are facilities that generated in any one month or accumulated at any time more than 1,000 kg of RCRA hazardous waste or 1 kg of RCRA acutely hazardous waste that was subsequently shipped offsite or managed onsite in RCRA TSDR units. Although there are also large numbers of smaller generators of hazardous waste that generated less than these threshold quantities, in aggregate these small quantity generators typically account for less than one percent of all hazardous waste generated. Throughout this report, the term "generator" is used to refer to "large" quantity generators only, and the data represent only hazardous waste generated by these "large" quantity generators.

3.1 NUMBER OF HAZARDOUS WASTE GENERATORS

In 1986, 12,478 facilities generated quantities of hazardous waste over the thresholds specified above. Chart 3.1-1 shows the estimate of 12,478 generators and its confidence interval, corresponding to the 95 percent confidence level (see Section 2.4.2 for an explanation of confidence intervals). As the chart shows, the 95 percent confidence interval for the number of generators is plus or minus 575 generators, or plus or minus 4.6 percent of the estimate of 12,478 generators. This means that there is a 95 percent certainty that the actual number of generators in 1986 is between 11,903 and 13,053.

Chart 3.1-1 Estimated Number of Hazardous Waste Generators in 1986

Source: (GA1, 2, 3, 4, 5, and 27)

The 1986 Generator Survey, in combination with the TSDR Survey, comprise EPA's third effort to develop national estimates of hazardous waste generation. Chart 3.1-2 compares the 1986 estimate with the two previous estimates: the 1981 Mail Survey and the 1985 Biennial Report. In 1981, there were an estimated 14,100 generators and an estimated 21,700 generators in 1985. EPA believes that the 1985 estimate, provided by the RCRA Biennial Reporting System, overstates the actual number of generators in that year because many states include small quantity generators in their reporting systems and were unable to remove them when reporting to EPA on the number of generators (i.e., "large" quantity generators) within their borders. When the overcounting factor is considered, the three estimates of hazardous waste generators shown in Chart 3.1-2 are thought to be similar.

^a The 1985 Biennial Report System estimate overstates the actual population of hazardous waste generators because some states included small quantity generators.

Source: 1981 Mail Survey, 1985 Blennial Report, (GA1, 2, 3, 4, 5, and 27)

3.2 QUANTITIES OF HAZARDOUS WASTE GENERATED

Large quantity generators generated an estimated 747.4 million tons of hazardous waste in 1986. This quantity includes RCRA hazardous waste, waste considered hazardous under federal regulations other than RCRA, and waste considered hazardous in the state in which it was generated. Non-RCRA hazardous waste accounted for approximately 3 percent of the total quantity of hazardous waste generated.

Chart 3.2-1 shows the estimated total quantity of hazardous waste generated in 1986 and its associated 95 percent confidence interval. The 95 percent confidence interval for the quantity of hazardous waste generated is plus or minus 75 million tons, or plus or minus 10 percent of the estimate. Thus, there is a 95 percent certainty that the actual quantity of hazardous waste generated in 1986 is between 672 million and 822 million tons.

Source: (GA27)

20

Chart 3.2-2 depicts the total quantity of hazardous waste generated in 1986 divided according to the RCRA-permitting status of the TSDR units in which these wastes were subsequently managed and according to the type of facility that managed the hazardous waste. The chart shows three categories of hazardous waste:

- waste managed in at least one RCRA TSDR unit,
- waste managed only in non-RCRA TSDR units at facilities that also manage hazardous waste in RCRA TSDR units, and
- waste managed only in non-RCRA TSDR units at facilities that do not have any RCRA TSDR units.

An example of a RCRA TSDR facility that manages hazardous waste in RCRA and non-RCRA TSDR units is a facility that has a RCRA permit for hazardous waste storage tanks and also treats hazardous waste in a RCRA-exempt wastewater treatment system governed by a NPDES discharge permit under the Clean Water Act. An example of a non-RCRA TSDR facility that manages hazardous waste only in non-RCRA units is a RCRA large quantity generator that treats its hazardous waste in a RCRA-exempt wastewater treatment system and ships the hazardous sludge residual from the treatment system offsite every other month. (Generators are allowed to accumulate hazardous waste onsite for up to 90 days without obtaining a RCRA storage permit.)

Only 39 percent of the 747.4 million tons of hazardous waste generated in 1986 was managed in RCRA TSDR units. An additional 26 percent of the hazardous waste was managed in non-RCRA TSDR units at facilities with RCRA units. The remaining 35 percent of hazardous waste generated in 1986 was managed in non-RCRA TSDR units at facilities with no RCRA units.

. :

÷

Chart 3.2-2 Quantity of Hazardous Waste Generated in 1986, by RCRA-Permitting Status of Management Units

Source: (A3, A8, GA27)

22

Disaggregating the 747.4 million tons of hazardous waste generated in 1986 according to the RCRA regulatory status of management units enables comparison of 1986 generation estimates with the previously described 1981 and 1985 estimates. Both the 1981 and the 1985 estimates of the quantities of hazardous waste generated include only hazardous wastes that were subsequently managed in RCRA TSDR units. Chart 3.2-3 presents hazardous waste generation estimates for 1981, 1985, and 1986. The estimates for 1981 and 1985 are very similar to the 1986 generation estimate of quantities subsequently managed in the RCRA-permitting system.

Chart 3.2-3 Quantity of Hazardous Waste Managed in RCRA TSDR Units in 1981, 1985, and 1986 (million tons)

Source: 1981 Mail Survey, 1985 Biennial Report, (A3, GA27)

A small percentage of the 12,478 generators accounted for most of the hazardous waste generation in 1986. Chart 3.2-4a illustrates the highly skewed distribution of hazardous waste generation. The chart shows the cumulative distribution of the quantity of hazardous waste generated in 1986 and is constructed by ranking generators in descending order by the quantity of hazardous waste generated. As indicated in the chart, the top 10 percent of generators generated 96.1 percent of the total quantity of hazardous waste generated, or 718.2 million tons.

Chart 3.2-4a Cumulative Distribution of the Quantity of Hazardous Waste Generated in 1986

Source: (GA27)

Chart 3.2-4b shows a close-up of the top 25 percent of generators ranked in descending order by the quantity of hazardous waste generated, indicating the following:

- The top 3 percent of generators generated 83.4 percent of the hazardous waste (623.3 million tons).
- The top 5 percent of generators generated 89.7 percent of the hazardous waste (670.4 million tons).

Chart 3.2-4b Cumulative Distribution of the Quantity of Hazardous Waste Generated in 1986 for the Top 25 Percent of Generators⁴

^a This chart is an enlargement of the top 25 percent of generators from Chart 3.2-4a to provide greater detail. Source: (GA27) Chart 3.2-5 provides further detail of the skewness of hazardous waste generation. The largest generator of hazardous waste generated 48.9 million tons of hazardous waste, although the smallest generator generated less than one ton. One-fourth of generators each generated 33 tons or less, half of the generators generated 147 tons or less, and three-fourths generated 2,683 tons or less.

Chart 3.2-5 Quantity of Hazardous Waste Generated by Generators: Key Statistics

	Quantity Generated per Facility (tons)
Smallest	<1
First Quartile ^a	33
Median (Second Quartile) ^b	147
Third Quartile ^c	2,683
\verage	62,431
argest	48,941,295

^a 25 percent of generators each generated 33 tons or less.

^b 50 percent of generators each generated 147 tons or less.

^c 75 percent of generators each generated 2,683 tons or less. Source: GG-178 (GA27) Chart 3.2-6 shows the quantities of hazardous waste generated by the largest generators in 1986. As the chart illustrates, the top 10 generators ranked by the quantity of hazardous waste generated (less then 0.1 percent of all generators) generated over 25 percent of all hazardous waste. The top 50 facilities, representing only 0.4 percent of all generators, generated half of all the hazardous waste generated in 1986.

Chart 3.2-5 Quantity of Hazardous Waste Generated in 1986 by the Fifty Largest Generators

^a The top 50 generators represent the top 0.4 percent of the 12,478 generators. These 50 facilities generated 50 percent of the total quantity of hazardous waste generated in 1986.

Source: (GA27)

(This page is intentionally blank)

į

TYPES OF HAZARDOUS WASTE GENERATED

The Generator and TSDR Surveys contain data on the following types of hazardous waste:

- Waste considered hazardous under RCRA. This includes hazardous wastewater pretreated prior to discharge under a NPDES permit or to a POTW; hazardous waste generated in a production process or a waste treatment process; and a hazardous waste that is a characteristic hazardous waste even though it may lose its hazardous characteristic through mixing with other waste or by treatment.
- Waste considered hazardous by the state in which it was generated or managed.
- Waste containing PCBs, asbestos, or dioxins/furans.
- Hazardous waste mixed with radioactive waste.

This chapter characterizes the types of hazardous waste generated in 1986.

4.1 RCRA AND NON-RCRA HAZARDOUS WASTE

Generators generated 747.4 million tons of hazardous waste in 1986. This quantity includes both RCRA and non-RCRA hazardous wastes. Non-RCRA hazardous wastes are wastes considered hazardous under state laws or under federal laws other than RCRA. If a single hazardous waste stream has both RCRA and non-RCRA hazardous constituents, the entire waste stream is considered a RCRA hazardous waste and is subject to RCRA regulations (based on the "mixture rule" in effect in 1987 when the surveys were conducted).

Chart 4.1-1 shows the quantities of RCRA and non-RCRA hazardous waste generated in 1986. Only 3.2 percent of the total quantity of hazardous waste generated, or 23.9 million tons, is non-RCRA. An additional 3.4 percent of hazardous waste generated, or 25.8 million tons, could not be classified because no hazardous waste description codes were reported in the Generator Survey.

29

ż

Source: GG-186 (GB10)

4.2 HAZARDOUS WASTEWATER AND NON-WASTEWATER

According to RCRA regulations, whenever hazardous wastes are introduced into nonhazardous wastes or materials, the resulting mixture is to be managed as a hazardous waste. In many instances, the hazardous materials amount to extremely small portions when mixed with nonhazardous wastewaters. Nonetheless, release of these wastes into the environment is a concern prompting their regulation under the RCRA program.

Hazardous wastewater is water mixed with hazardous waste. Chart 4.2-1 shows that 684.4 million tons of hazardous wastewater were generated in 1986. Over 90 percent of all hazardous waste generated was wastewater. However, less than half of the generators (43.5 percent) generated hazardous wastewater in 1986 (see Chart 4.2-2).

Chart 4.2-1 Quantity of Hazardous Wastewater Generated In 1986

. .

Source: GG-196 (GA27, GB1, GB2)

.

Source: GG-178 (GA20)

4.3 PHYSICAL/CHEMICAL CHARACTERISTICS

Hazardous wastes can be characterized based on their physical characteristics (e.g., solid, liquid, or sludge) and chemical characteristics (organic or inorganic). Chart 4.3-1 shows the quantities of hazardous waste generated with different combinations of physical and chemical characteristics. Over 80 percent of the hazardous waste generated (608.2 million tons) was inorganic liquid. Inorganic liquids include caustic or acidic solutions, often containing metals. The next largest category (12 percent) of hazardous waste is organic liquids, which include organic solvents, waste oils, and petroleum products.

Chart 4.3-1 Quantity of Hazardous Waste Generated in 1986 by Physical/Chemical Characteristics

^aIncludes mixtures and gases.

Source: GG-195 (GB1, GB2, GB10)

÷

Charts 4.3-2 to 4.3-6 show the industries generating the largest quantities of each type of hazardous waste, based on the physical/chemical characteristics of the waste. The chemical products industry (Standard Industrial Classification [SIC] 28) generated the largest quantities of inorganic liquid, organic liquid, and organic solid/sludge waste. The metal fabrications industry (SIC 34) generated the largest quantity of inorganic sludge waste, and the water transportation industry (SIC 44) was the largest generator of inorganic solid waste.

- 1

Chart 4.3-2 Industries Generating the Largest Quantities of Inorganic Liquid Hazardous Waste In 1986

SIC Code	Description	Quantity Generated (million tons)	Percentage of Total Quantity of Inorganic Liquid Hazardous Waste Generated
28	Chemical Products	294.03	48.3
36	Electronics	67.88	11.2
29	Petroleum & Coal Products	62.09	10.2
33	Primary Metals	52.67	8.7
37	Transportation Equipment	42.85	7.0
	All Other Industries	88.71	14.6
	Total Inorganic Liquid	608.24	100.0

Source: GG-195 (GB1, GB2, GB10)

SIC Code	Description	Quantity Generated (million tons)	Percentage of Total Quantity of Organic Liquid Hazardous Waste Generated
28	Chemical Products	78.48	88.1
32	Stone, Clay, and Glass Products	3.9 7	4.5
34	Metal Fabrications	1.38	1.5
29	Petroleum & Coal Products	1.05	1.2
45	Air Transportation	0.89	1.0
	All Other Industries	3.36	3.8
	Total Organic Liquid	89.14	100.0

Chart 4.3-3 Industries Generating the Largest Quantities of Organic Liquid Hazardous Waste in 1986

Source: GG-195 (GB1, GB2, GB10)

	in 1986		
SIC Code	Description	Quantity Generated (million tons)	Percentage of Total Quantity of Organic Solid/Siudge Hazardous Waste Generated
28	Chemical Products	2.44	30.8
29	Petroleum & Coal Products	2.39	30.0
25	Furniture and Fixtures	2.30	29.0
38	Instruments	0.19	2.3
	Unknown	0.14	1.8
	All Other Industries	0.48	6.1
	Total Organic Solid/Sludge	7.94	100.0

Chart 4.3-4 Industries Generating the Largest Quantities of Organic Solid/Sludge Hazardous Waste

Source: GG-195 (GB1, GB2, GB10)

SIC Code	Description	Quantity Generated (million tons)	Percentage of Total Quantity of Inorganic Sludge Hazardous Waste Generated
34	Metal Fabrications	2.70	39.3
36	Electronics	1.21	17.6
28	Chemical Products	1.11	16.2
33	Primary Metals	0.82	11.9
37	Transportation Equipment	0.24	3.5
	All Other Industries	0.79	11.5
	Total Inorganic Sludge	6.87	100.0

2

Chart 4.3-5 Industries Generating the Largest Quantities of Inorganic Sludge Hazardous Waste In 1988:

Source: GG-195 (GB1, GB2, GB10)

Chart 4.3-6 Industries Generating the Largest Quantities of Inorganic Solid Hazardous Waste In 1986

SIC Code	Description	Quantity Generated (million tons)	Percentage of Total Quantity of Inorganic Solid Hazardous Waste Generated
44	Water Transportation	1.55	41.3
34	Metal Fabrications	0.84	22.5
33	Primary Metals	0.35	9.4
49	Electrical, Gas, and Sanitary Services	0.30	8.0
28	Chemical Products	0.22	5.8
	All Other Industries	0.49	13.0
	Total Inorganic Solid	3.75	100.0

Source: GG-195 (GB1, GB2, GB10)

Chart 4.3-7 shows the numbers of facilities generating different types of hazardous waste based on the physical/chemical characteristics of the waste. Over 75 percent of generators, or 9,600 facilities, generated organic liquid waste. Although inorganic liquid comprised over 80 percent of the total quantity of hazardous waste generated, less than 50 percent of generators (5,978 facilities) generated inorganic liquid waste.

Chart 4.3-7 Number of Generators in 1986 by the Physical/Chemical Characteristics

Note: A single facility may generate more than one type of hazardous waste. Adding the numbers of facilities shown results in multiple counting.

Source: GG-195 (GB1, GB2)

Charts 4.3-8 to 4.3-12 show the industries with the largest numbers of facilities generating each type of hazardous waste based on the waste's physical and chemical characteristics. The chemical products industry (SIC 28) had the largest number of facilities generating organic liquid, organic solid/sludge, and inorganic solid wastes. The metal fabrications industry (SIC 34) had the largest number of facilities generating inorganic liquid and inorganic sludge wastes in 1986.

.

Chart 4.3-8 Industries with the Largest Numbers of Facilities Generating Organic Liquid Hazardous Waste in 1986

SIC Code	Description	Number of Generators	Percentage of Total Generators of Organic Liquid Hazardous Waste
28	Chemical Products	1,683	17.5
34	Metal Fabrications	1,122	11.7
36	Electronics	1,027	10.7
37	Transportation Equipment	735	7.7
35	Nonelectrical Machinery	602	6.3
	All Other Industries	4,431	46.2
	Total	9,600	100.0

Source: GG-195 (GB1, GB2)

SIC Cod e	Description	Number of Generators	Percentage of Total Generators of inorganic Liquid Hazardous Waste
34	Metal Fabrications	1,008	16.9
28	Chemical Products	942	15.8
36	Electronics	875	14.6
37	Transportation Equipment	527	8.8
33	Primary Metals	448	7.5
	All Other Industries	4,970	83.1
	Total	5,978	100.0

Chart 4.3-9	Industries with the Largest Numbers of Facilities Generating Inorganic Liquid Hazardous
	Waste in 1986

Source: GG-195 (GB1, GB2)

Chart 4.3-10 Industries with the Largest Numbers of Facilities Generating Organic Solid/Sludge Hazardous Waste In 1986.

SIC Code	Description	Number of Generators	Percentage of Total Generators of Organic Solid/Sludge Hazardous Waste
28	Chemical Products	939	21.7
36	Electronics	359	8.3
34	Metal Fabrications	338	7.8
37	Transportation Equipment	284	6.6
35	Nonelectrical Machinery	263	6.1
	All Other Industries	2,136	49.5
	Total	4,319	100.0

Source: GG-195 (GB1, GB2)

2

2

SIC Code	Description	Number of Generators	Percentage of Total Generators of Inorganic Solid Hazardous Waste
28	Chemical Products	639	15.2
36	Electronics	50 8	12.1
34	Metal Fabrications	461	11.0
49	Electrical, Gas, and Sanitary Services	432	10.3
33	Primary Metals	270	6.4
	All Other Industries	1,899	45.1
	Total	4,209	100.0

2.1

Chart 4.3-11 Industries with the Largest Numbers of Facilities Generating Inorganic Solid Hazardous Waste in 1986

Source: GG-195 (GB1, GB2)

Chart 4.3-12 Industries with the Largest Numbers of Facilities Generating Inorganic Sludge Hazardous Waste in 1986

SIC Code	Description	Number of Generators	Percentage of Total Generators of Inorganic Sludge Hazardous Waste
34	Metal Fabrications	639	25.4
36	Electronics	418	16.6
33	Primary Metals	263	10.4
37	Transportation Equipment	221	8.8
28	Chemical Products	181	7.2
	All Other Industries	797	31.6
	Total	2,519	100.0

Source: GG-195 (GB1, GB2)

4.4 HAZARDOUS CHARACTERISTICS

RCRA regulations classified wastes as hazardous based on four hazard characteristics:

- toxic,
- ignitable,
- reactive, and
- corrosive.

A single waste can exhibit more than one hazard characteristic. For example, certain organic solvents regulated under RCRA are both toxic and ignitable.

Chart 4.4-1 shows the quantities of hazardous wastes generated in 1986 exhibiting each RCRA hazard characteristics. As the chart indicates, the largest quantities of hazardous waste are corrosive and toxic. Over 60 percent of hazardous wastes generated were corrosive, toxic, or corrosive and toxic.

ż

Chart 4.4-1 Quantity of Hazardous Waste Generated in 1986 by RCRA Hazard Characteristic

Note: Numbers next to bars indicate the quantity of hazardous waste generated in million tons. Source: GG-186 (GB1, GB10)

Chart 4.4-2 shows the numbers of generators by the hazard characteristics of their hazardous waste. Over 62 percent of generators generated toxic hazardous wastes. Ignitable wastes and wastes that are ignitable and toxic were also common, generated by 41 percent and 38 percent of generators, respectively.

2

Chart 4.4-2 Number of Hazardous Waste Generators In 1986 by RCRA Hazard Characteristic of Wastes Generated

Notes: A single facility may generate more than one type of hazardous waste. Adding the numbers of facilities shown results in multiple counting.

Numbers next to bars indicate the number of hazardous waste generators.

Source: GG-186 (GB1)

4.5 RCRA WASTE CODES

The RCRA regulations assign a four-digit code to each type of RCRA hazardous waste (40 CFR 261.3). A single hazardous waste can have more than one RCRA waste code if, for example, it contains more than one hazardous constituent or the waste is both specifically listed as hazardous and exhibits a hazard characteristic. Charts 4.5-1 and 4.5-2 show the quantities of hazardous waste generated in 1986 by these RCRA waste codes. Chart 4.5-1 highlights some of the largest categories of RCRA waste codes, including D002 (corrosive) and mixtures of D001, D002, and D003 (ignitable, corrosive, and reactive, respectively). Appendix B defines the RCRA waste codes used in the surveys.

.:

Chart 4.5-1 Quantity of Hazardous Waste Generated in 1986 by RCRA Waste Code^a

^a See Appendix B for a definition of RCRA waste codes.

Source: GG-193 (GB10)

Com 1	R 10 1 million ware (1 4%)
Minte one with 0001 and other wants evice	
Mixtures with D002 and other waste codes	187.1 milen tons (25.0%)
Doos	
Mixtures with D003 and other waste codes	1 32 million tone (C. my
D004-D011	
Mistures with D004-D011 and other waste codes	122.5 million tone (16.4%)
D012-D017	0.2 million tens (cl. 1%)
Mixtures with 0012-0017 and other waste codes	<0.1 million tons (<0.1%)
F001-F005	20.7 million tons (2.6%)
Mixtures with F001-F005 and other waste codes	81.5 million tone (10.3%)
Food	833 14.8 million tons (2.0%)
Mixtures with F008 and other waste codes	Security Set 1 million tons (7.9%)
F007-F012	4.9 million tons (0.7%)
Matures with F007-F012 and other waste codes	14.9 million tene (2.0%)
F020-F023; F026-F02/	- (c0.1%)
Mixtures with F020-F023; F020-F028; and other waste codes	<0.1 million sone (<0.1%)
F024; F019	13.7 million tons (1.8%)
Mixtures with F024; F019; and other waste codes	(0.8 million tone (0,1%)
Inorganio pigmente	cQ.1 million tane (cQ.11%)
Mixtures with inorganic pigments and other waste codes	4.2 million tons (0.8%)
	j 4.4 million tons (0.6%)
and a star a second star and a star star and a	
President	
Mixtures with posticides and other waste codes	
Espidelyae	io.2 milion tone («0.1%)
bilitares with explosives and other waste codes	IQ.1 million none (cd.1%)
Petrolaute refining	Transition from (1.1%)
Mixtures with petroleum refining and other waste codes	10.7 m Allon tarta (3.1%)
Lieuja	15.5 million tere (2.1%)
Middures with metals and other wates codes	1.4 million write (0.2%)
"K" wastes: other	9.1 million spra (<0.1%)
Mictures with other 14" wages	0.1 million tons (40.1%)
17 VIII01	(0.) million tens (<0.1%)
Matures with T waster	0.0 million tone (0.0%)
V vastet	C.A million term (0.3%)
Lizhes with "U" wastes	STORE SL& million turns (4.7%)
Unknown (instudies "X" westes)	117.7 million tons (15.7%)
	76 10% 20% 30% 40% 50%

Chart 4.5-2 Quantity of Hazardous Waste Generated in 1986 by RCRA Waste Code Groups

Notes: Sums of quantities and percentages exceed 747.4 million tons and 100 percent, respectively, due to multiple counting of wastes.

"K" waste code groups:

- waste code groupe: inorganic pigments: K002-K008 organic chemicals: K003-K011; K013-K030; K083, K085; K093-K096; K103-K105; K111-K118; K136 inorganic chemicals: K071; K073; K106 pesticides: K031-K043; K097-K099 explosives: K044-K047 petroleum refining: K048-K052 metals: K061; K062; K069; K100 other: all other K-coliv wastes

- other: all other K-only wastes

Waste codes listed above are defined in Section 261 of RCRA as hazardous wastes. Only wastes listed as of 1986 are included in this chart.

Source: GG-192 (GB1, GB10)

.

(This page is intentionally blank)

2

5 SOURCES OF HAZARDOUS WASTE GENERATED

In 1986, 12,478 generators were "large" quantity generators (generators) of hazardous waste. This chapter describes these generators, including their locations, the industries they represent, their ownership type, and their activities that generate hazardous waste.

5.1 LOCATION OF HAZARDOUS WASTE GENERATORS

Chart 5.1-2 shows the number of hazardous waste generators in each region in 1986. Region V had the largest concentration of generators with 2,727 generators, or over 20 percent of the total number of generators. Regions IV and IX had the next largest number of generators, each having about 14 percent of the total number of generators.

Charts 5.1-3 to 5.1-6 show the quantity of hazardous waste generated and the number of hazardous waste generators for each state in 1986. Texas generated the largest quantity of hazardous waste, generating 106.19 million tons or over 14 percent of the total quantity generated. California had the largest number of hazardous waste generators, with 1,672 generators or over 13 percent of the national total.

Chart 5.1-1 Quantity of Hazardous Waste Generated per EPA Region in 1986 (in million tons)

1986 Hazardous Waste Generation and Management

Charl 5.1-2 Number of Hazardous Waste Generators per EPA Region in 1986

Source: GG-184 (GA2, GA5, GA27, GB10)

5. Sources of Hazardous Waste Generated

٠..

State	Quantity Generated	Percentage of Total Quantity	State Bank
Alabama	9.10	1.2	18
Alaska	<0.01	<0.18	51
Arkansas	0.96	0.9	41
California	41.56	5.6	4
Colorado	1.80	0.2	36
Delaware	13./2 0.91	1.8	10
District of Columbia	<0.01	<0.10	52
Florida	6.81	0.9	21
Georgia	16.62	2.2	14
Hawaii	0.04	<0.0 <0.1 ^b	53 46
Idaho	1.78	0.2	37
Illinois	28.34	3.8	11
Indiana	16.55	22	15
Kansas	4 00	en ander de la companya de la compan Na companya de la comp	28
Kantucky	19.22	2.6	13
Louisiana	36.19	48	\mathbf{Z}
Mane	13.38	1.8	17
Massachusette	5.61	0.8	23
Michigan	62.99	8.4	3
Minnesota	2.90	0.4	32
MISSISSIPOI Minerent	4.31	0.6	27
Montana	0.01	4.1 >	49
Nebraska	0.58	0,1	44
Noveda	0.04	<0,1 P	.
New Hampshire	4.45	0.6	26
New Mexico	1.07	0.1	40
New York	33.60	4.5	9
North Carolina	2.13	0.3	35
	0.16	<0.1*	
Oklahoma	3.11	0.4	31
Oregon	1.19	0.2	39
Pennsylvania	39.32	53	
Pueno Hico Rhada lalaad	1.30	0.2	35
South Carolina	6.98	0.9	20
South Dakota	0.03	<0.1 ^b	48
Tennessee	28.33	3.8	12
lexas	106.19		
Vermont	6.€ ₹	B1	43
Virgin Island	0.00	0.0	54
Virginia	41.07	5.5 states - 5.5 s	di da di S ansa di
Washington Wort Virginia	3.33	0.4	30
Wisconsin	3,89		. 29
Wyoming	0.01	<0.15	50
Total	747.39	100.0	

÷

Chart 5.1-3	Quantity of Hazardous	Waste Generated b	y State in 1986
-------------	-----------------------	-------------------	-----------------

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: GG-184 (GA27)

State	Quantity Generated: (million tona)	Percentage of Total Quantity
Texas	106.19	14.2
New Jersey Nichings	87.36	11.7
California	41.56	5.6
Virginia	41.07	5.5
Pennsylvania	39.32	5.3
West Viroinia	36.19	4.7
New York	33.60	45
Ohio	91.35	42
Tennessee	28.34	3.8
Kentucky	19.22	2.6
Georgia	16.62	2.2
inciana Connecticut	16.55 13.72	2.2
Maine	13.38	j e
Alabama	9.10	12
Missouri South Camina	7.74 F 04	1.0
Florida	6.81	0.9
Arizona	6.69	0.9
Maryland	5.76	0.8 ~
Rhode Island	4.72	0.6
New Hampshire	4.48	0.6
Mississippi	4.31	0.6
Waconsin	3.69	03 03
Washington	3.33	0.4
Oklahoma	3.11	0.4
iowa	2.90	0.4
Utah	2.24	0.3
North Carolina	2.13	0.3
Colorado	130	02
Puerto Rico	130	02
Oregon	1:19	02
New Mexicos	1.07	01
Delaware	0.91	0.1
Vermont	0.68	0.1
Nebraska	0.58	0.1
North Dakota Marcafa	U.16 C D4	<0.1°
Havali	0.04	<u>ai</u> !
South Dakotawa and the	0.09	4 0.1 ⁸
Wyoming	0.01	0.1
Alaska	<0.01*	<0.1 ⁶
District of Columbia	<0.01■	<0.16
Guam	0.00	0.0
Virgin Island		0.0

Chart 5.1-4 Quantity of Hazardous Waste Generated by State in 1986, in Descending Order

)

^aLess than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: GG-184 (GA27)

÷

State	Number of Generators	Percentage of Total Number	State Bank
Alabama	162	1.3	23
Alaska Arizona	9	0.1	48
Arkansas	106	0.8	28
California	1,672	13.4	1
Colorado	68	0.5	35
Connecticut	315	25	13
District of Columbia	61 6	U.2 0 0	
Florida	244	20	15
Georgia	202	1.6	18
Guam	0	0.0	53
riawali Mabo	17	0.1	44
Illinois	685	5.5	40
Indiana	371	1	
lows	106	0.8	29
Калзая	95	0.8	32
Kentucky	167		22
Maine	69 (1997) (19 9 8) (1998) (59	Andred Structure (1997) 1-2 ,229,239,249,249,249 0,5	1993 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 30
Maryland	156	1.3	24
Massachusetta	678	5.4	6
Michigan	474	3.B	9
Minnesota	214	<u>1.7</u>	17
Mississippi	100	U.8 1 ¢	
Montana	110	01	47
Nebraska	50	0.4	40
Nevada	16		45
New Hampshire	88	0.7	34
New Jersey New Mexico	364	6.9	2
New York	24 540	4.3	42
North Carolina	406	3.3	10
North Dakota	7	0.1	50
Ohio	654	5.2	7
Oklahome	97	0.8	31
Papanhania	11 <i>6</i> 912	U.S 2 7	40
Puerto Rico	61	0.5	3 8
Rhode Island	112	0.9	27
South Caroline	173	1.4	20
South Dakota	8	0.1	49
	298 ************************************	2.4 No solution franksi a s aksi sutta to usi	14
i exas I tab	640 · · · · · · · · · · · · · · · · · · ·		
Vermont		0.3	
Virgin Island	0	0.0	54
Virginia	224		16 Section 16 Section 1
Washington	171	1.4	21
West Virginia Misenacia	65 220	0.5	37
Woming	J23 7	2.0 0 1	51
Total	12.478	100.0	

Chart 5.1-5 Number of Hazardous Waste Generators by State	in 198	6
---	--------	---

Source: GG-184 (GA2, GA5, GA27, GB10)

State	Number of	Percentage of
California	1,672	13.4
New Jersey Texas	8 64 848	6.9 6.8
Pennsylvania	638	6.7
	685 670	5.5
Ohio	078 554	52 52
New York	540	43
North Carolina	4/4	3.8 33
Indiana	371	3.0
Wisconsin	329 315	2.6
Tennessee	298	2.3
Florida	244	2.0
Minesota	214	3.8 1.7
Georgia	202	1.8
Missouri South Carolina	198 179	1.5 14
Washington	171	1.4
Alabama	167	1.3
Maryland	156	1.3
Louisiana	149	1.2
Rhode Island	112	0.9 0.9
Arkenses	106	0.8
lowe Missinging	106	0.8 C 5
Oklahoma	97	0.8
Kansas	95	0.8
New Hampshire	88	0.7
Colorado	69	0.5
West Vircinia	00 85**	0.5
Puerto Rico		0.5.
Maine Nobrastra	58	05
Vermont	34	0.3
Delaware	27	0.2
New Mexico Hawaii	24 17	0.2
Nevade	16	0.1
idaho	13	0.1
Alaska	9	0.1
South Dakota and	2	0.1
North Dakota	A CARACTER AND A	0.3 0 1
District of Columbia	ŝ	<0.1
Guam Vienia blood	0	0.0
Total	12.478	100.0

Chart 5.1-6 Number of Hazardous Waste Generators by State in 1986, in Descending Order:

Source: GG-184 (GA2, GA5, GA27, GB10)

···. }

į

5.2 INDUSTRIES GENERATING HAZARDOUS WASTE

Chart 5.2-1 shows the five industries (based on two-digit SIC codes) that generated the largest quantities of hazardous waste in 1986. The chemical products industry (SIC 28) generated 383 million tons of hazardous waste, over half of all hazardous waste generated in the U.S. in 1986. The other industries in Chart 5.2-1 (electronics, petroleum and coal products, primary metals, and transportation equipment) each generated between 7 and 9 percent of the total quantity of hazardous waste.

Chart 5.2-1 Largest General Industries by the Quantity of Hazardous Waste Generated

Note: Numbers following bars indicate the quantity of hazardous waste generated in million tons. Source: GG-190 (GA6, GA27)

Charts 5.2-2 to 5.2-11 provide greater detail on the quantities of hazardous waste generated by the five largest industries. Charts 5.2-2, 5.2-4, 5.2-6, 5.2-8, and 5.2-10 show the specific industries (defined by four-digit SIC code) generating the largest quantities of hazardous waste in each of the top five general industries (two-digit SIC codes) specified in Chart 5.2-1. These charts provide more specific information on the types of activities that generate hazardous waste.

Charts 5.2-3, 5.2-5, 5.2-7, 5.2-9, and 5.2-11 indicate the types of hazardous waste generated by the top five industries from Chart 5.2-1. The charts classify hazardous wastes based on their physical (i.e., liquid, solid, or sludge) and chemical (i.e., organic or inorganic) characteristics. For each of the top five industries, inorganic liquid waste was the largest quantity of hazardous waste generated.

Chart 5.2-2 Most Common Specific Industries in the Chemical Products Industry (SIC 28) by the Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)

SIC	Description	Quantity Generated (million tons)	Percentage of Total Quantity for Industry (SIC 28)	Number of Generators
2869	Organic Chemical	160.55	41.9	266
2821	Plastics and Resins	69.9 9	18.3	258
2892	Explosives	28.08	7.3	24
2865	Cyclic Crudes	27.98	7.3	63
2812	Alkalies and Chlorine Chemical Products	18.80	4.9	37
	All Other Chemical Products Industries	77.99	20.3	1,485
	Total Chemical Products Industry	383.3 9	100.0	2,133

Source: GG-190 (GA6, GA27)

Chart 5.2-3 Quantity of Hazardous Waste Generated by the Chemical Products Industry (SIC 28) In 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Quantity Generated (million tons)	Percentage of Total Quantity for SIC 28
Inorganic Liquid	294.03	76.7
Organic Liquid	78.48	20.5
Organic Solid/Sludge	2.44	0.6
Unknown	2.31	0.6
Inorganic Sludge	1.11	0.3
Inorganic Solid	0.22	0.1
Other ^a	0.01	<0.1
Total Chemical Products Industry	383.39	100.0

^aIncludes mixtures and gases. Source: GG-195 (GB1, GB2, GB10) 57

: -

SIC	Description	Quantity Generated (million tons)	Percentage of Total Quantity for Industry (SIC 36)	Number of Generators
3674	Semiconductors	34.20	50.2	168
367 9	Electronic Components	12.49	18.3	263
3639	Household Appliances	4.23	6.2	11
3672	TV Pictures Tubes	2.73	4.0	10
3661	Telephone Apparatus	2.23	3.3	34
	All Other Electronics Industries	12.25	18.0	715
	Total Electronics Industry	68.13	100.0	1,201

÷

Chart 5.2-4	Most Common Specific industries in the Electronics Industry (SIC 36) by the Quantity of
	Hazardous Waste Generated in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-5 Quantity of Hazardous Waste Generated by the Electronics industry (SIC 36) in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Quantity Generated (million tons)	Percentage of Total Quantity for SIC 38
Inorganic Liquid	67.88	99.6
Inorganic Sludge	1.21	1.8
Organic Liquid	0.49	0.7
Inorganic Solid	0.06	0.1
Unknown	0.03	0.1
Organic Solid/Siudge-	0.01	<0.1
Other	0.01	<0.1
Total Electronics Industry	68.13	100.0

^aIncludes mixtures and gases.

Source: GG-195 (GB1, GB2, GB10)

SIC	Description	Quantity Generated (million tons)	Percentage of Total Quantity for Industry (SIC 29)	Number of Generators
2911	Petroleum Refining	65.18	98.0	203
2999	Petroleum and Coal Products	1.25	1.9	30
2992	Lubricating Oils and Greases	0.10	0.2	24
	All Other Petroleum and Coal Industries	0.01	<0.1	4
	Total Petroleum and Coal Industry	66.54	100.0	261

Chart 5.2-6	Most Common Specific Industries in the Petroleum and Coal Industry (SIC 29) by the
	Quantity of Hazardous Waste Generated in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-7 Quantity of Hazardous Waste Generated by the Petroleum and Coal Industry (SIC 29) In 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Quantity Generated (million tons)	Percentage of Total Quantity for SIC 29
Inorganic Liquid	62.09	93.3
Organic Solid/Sludge	2.39	3.6
Organic Liquid	1.05	1.6
Other ^a	0.14	0.2
Inorganic Sludge	0.13	0.2
Inorganic Solid	0.09	0.1
Unknown	0.05	0.1
Total Petroleum and Coal Industry	66.54	100.0

^aIncludes mixtures and gases.

Source: GG-195 (GB1, GB2, GB10)

ł

SIC	Description	Quantity Generated (million tons)	Percentage of Total Quantity for Industry (SIC 33)	Number of Generators
3312	Blast Furnaces and Steel Mills	30.46	53.2	107
3321	Gray Iron Foundries	5.78	10.1	66
3361	Aluminum Foundries	5.44	9.5	5
3315	Steel Wire	3.04	5.3	57
3317	Steel Pipe and Tubes	2.20	3.8	48
	All Other Primary Metal Industries	10.35	18.1	448
-	Total Primary Metal Industries	57.27	100.0	731

.

Chart 5.2-8	Most Common Specific industries in the Primary Metals Industry (SIC 33) by the Quantity
	of Hazardous Waste Generated in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-9 Quantity of Hazardous Waste Generated by the Primary Metals Industry (SIC 33) in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Quantity Generated (million tons)	Percentage of Total Quantity for SIC 33
Inorganic Liquid	52.67	92.0
Unknown	0.95	1.7
Inorganic Sludge	0.82	1.4
Inorganic Solid	0.35	0.6
Organic Liquid	0.03	0.1
Organic Solid/Sludge	0.02	<0.1
Other ^a	<0.01	<0.1
Total Primary Metals Industry	57.27	100.0

^aIncludes mixtures and gases. Source: GG-195 (GB1, GB2, GB10)

SIC	Description	Quantity Generated (million tons)	Percentage of Total Quantity for Industry (SIC 37)	Number of Generators
3721	Aircraft	15.31	30.0	62
3711	Motor Vehicle Bodies	12.7 9	25.0	98
3714	Motor Vehicle Parts	9.92	19.4	256
3724	Aircraft Parts	5.49	10.7	52
	All Other Transportation Equipment Industries	7.57	14.9	320
	Total Transportation Equipment Industry	51.08	100.0	788

Chart 5.2-10	Most Common Specific industries in the Transportation Equipment Industry (SIC 37) by
	the Quantity of Hazardous Waste Generated In 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-11	Quantity of Hazardous Waste Generated by the Transportation Equipment industry
	(SIC 37) In 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Quantity Generated (million tons)	Percentage of Total Quantity for SIC 37
Inorganic Liquid	42.85	83.9
Unknown	1.81	3.5
Organic Liquid	0.64	1.3
Inorganic Studge	0.24	0.5
Inorganic Solid	0.07	0.1
Organic Solid/Sludge	0.03	0.1
Other ^a	0.01	<0.1
Total Transportation Equipment Industry	51.08	100.0

^aIncludes mixtures and gases.

Source: GG-195 (GB1, GB2, GB10)

Chart 5.2-12 indicates the industries with the largest numbers of hazardous

waste generators in 1986. The chemical products industry (SIC 28), which generated the largest quantity of hazardous waste in 1986 (see Chart 5.2-1) also had the largest number of hazardous waste generators. Although the chemical products industry generated over half of all hazardous waste, it included only 17 percent of all generators. Other industries with large numbers of generators include the metal fabrications (SIC 34) and electronics (SIC 36) industries, with 14 percent and 10 percent of all hazardous waste generators, respectively.

Chart 5.2-12 Largest General Industries by the Number of Hazardous Waste Generators in 1986

Note: Numbers following bars indicate number of hazardous waste generators. Source: GG-190 (GA6):- Charts 5.2-13, 5.2-15, 5.2-17, 5.2-19, and 5.2-21 provide additional information on industries with the largest numbers of hazardous waste generators. For each of the top five general industries (defined by two-digit SIC codes) from Chart 5.2-12, the specific industries (four-digit SIC codes) with the largest numbers of generators are shown.

Charts 5.2-14, 5.2-16, 5.2-18, and 5.2-20 indicate the types of hazardous waste generated by the top five industries from Chart 5.2-12. The charts classify hazardous wastes based on their physical (i.e., liquid, solid, or sludge) and chemical (i.e., organic or inorganic) characteristics. For the chemical products, metal fabrications, electronics, and transportation equipment industries, organic liquid waste was generated by the largest number of facilities. Inorganic liquid was generated by the largest number of facilities in the primary metals industry.

SIC	Description	Number of Generators	Percentage of Total Generators for Industry (SIC 28)	Quantity Managed (million tons)
2851	Paints	441	20.7	0.49
286 9	Industrial Organic Chemicale	266	12.5	160.55
2821	Plastics and Resins	25 8	12.1	69.99
28 99	Chemical Preparations	168	7.9	1.04
2893	Printing Ink	1 31	6.1	0.01
	All Other Chemical Products Industries	869	40.7	151.31
	Total Chemical Products Industry	2,133	100.0	383.39

Chart 5.2-13 Most Common Specific Industries In the Chemical Products Industry (SIC 28) by the Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-14 Number of Facilities in the Chemical Products Industry (SIC 28) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Number of Generators	Percentage of Total Generators for SIC 28
Organic Liquid	1,683	78.9
Inorganic Liquid	942	44.2
Organic Solid/Sludge	93 9	44.0
Inorganic Solid	639	30.0
Unknown	235	11.0
Inorganic Siudge	181	8.5
Other ^a	62	2.9

a includes mixtures and gases.

Note: A single facility can generate more than one type of hazardous wastes. Therefore, adding the numbers of generators results in multiple counting.

Source: GG-195 (GB1, GB2, GB10)

SIC	Description	Number of Generators	Percentage of Total Generators for Industry (SIC 34)	Quantity Managed (million tons)
3471	Plating and Polishing	427	25.2	14.72
349 9	Fabricated Metal Products	139	8.2	1.67
3479	Metal Coating	138	8.1	4.83
3451	Screw Machine Products	114	6.7	0.27
	All Other Metal Fabrication Industries	878	51.8	26.48
	Total Metal Fabrication Industry	1,696	100.0	47.97

Chart 5.2-15	Most Common Specific Industries in the Metal Fabrication Industry (SIC 34) by the
	Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-16 Number of Facilities in the Metal Fabrications industry (SIC 34) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Number of Generators	Percentage of Total Generators for SIC 34
Organic Liquid	1,122	66.2
Inorganic Liquid	1,008	59.4
Inorganic Studge	639	37.7
Inorganic Solid	461	27.2
Organic Solid/Sludge	338	19.9
Unknown	137	8.1
Other	9	0.5

^aincludes mixtures and gases.

Note: A single facility can generate more than one type of hazardous wastes. Therefore, adding the numbers of generators results in multiple counting.

Source: GG-195 (GB1, GB2, GB10)

ź

SIC	Description	Number of Generators	Percentage of Total Generators for industry (SIC 36)	Quantity Managed (million tons)
3679	Electronic Components	263	21.9	12.49
3674	Semiconductors	168	14.0	34.20
3629	Electrical Industrial Apparatus	90	7.5	0.16
3662	Radio and TV Equipment	66	5.5	1.40
3621	Motors and Generators	54	4.5	0.49
	All Other Electronics Industries	560	46.6	19.39
	Total Electronics Industry	1,201	100.0	68.13

:

Chart 5.2-17	Most Common Specific industries in the Electronics industry (SIC 36) by the N	umber of
	Hazardous Waste Generators in 1986 (by 4-Digit SIC)	•

Source: GG-190 (GA6, GA27)

Chart 5.2-18	Number of Facilities in the Electronics Industry (SIC 36) Generating Hazardous Waste in
	1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Number of Generators	Percentage of Total Generators for SIC 36
Organic Liquid	1,027	85.5
Inorganic Liquid	875	72.9
Inorganic Solid	508	42.3
Inorganic Sludge	418	34.8
Organic Solid/Sludge	359	29.9
Uniknown	122	10.2
Other ^a	34	2.8

^aIncludes mixtures and gases.

Note: A single facility can generate more than one type of hazardous wastes. Therefore, adding the numbers of generators results in multiple counting. Source: GG-195 (GB1, GB2 GB10)

SIC	Description	Number of Generators	Percentage of Total Generators for Industry (SIC 37)	Quantity Managed (million tons)
3714	Motor Vehicle Parts	256	32.5	9.92
3728	Aircraft Equipment	124	15.7	1.74
3711	Motor Vehicle Bodies	98	12.4	12.79
3721	Aircraft	62	7.9	15.31
3724	Aircraft Parts	52	6.6	0.00
	All Other Transportation Equipment Industries	. 196	24.9	11.32
	Total Transportation Equipment Industry	788	100.0	51.08

Chart 5.2-19	Most Common Specific Industries in the Transportation Equipment Industry (SIC 37) by
	the Number of Hazardous Waste Generators In 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-20 Number of Facilities in the Transportation Equipment Industry (SIC 37) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic	Number of Generators	Percentage of Total Generators for SIC 37
Organic Liquid	735	93.3
Inorganic Liquid	527	66.9
Organic Solid/Sludge	284	36.0
Inorganic Solid	267	33.9
inorganic Sludge	221	28.0
Unknown	79	10.0
Other ^a	11	1.4

^aIncludes mixtures and gases.

Note: A single facility can generate more than one type of hazardous wastes. Therefore, adding the numbers of generators results in multiple counting.

Source: GG-195 (GB1, GB2, GB10)

.

SIC	Description	Number of Generators	Percentage of Total Generators for Industry (SIC 33)	Quantity Managed (million tons)
3312	Blast Furnace and Steel Mills	107	14.6	30.46
3321	Gray Iron Foundries	66	9.0	5.78
3399	Primary Metal Products	62	8.5	1.62
3341	Secondary Nonferrous Metals	60	8.2	0.93
3315	Steel Wire	57	7.8	3.04
	All Other Primary Metals Industries	379	51.9	15.44
	Total Primary Metal Industry	731	100.0	57.27

÷

Chart 5.2-21 Most Common Specific Industries in the Primary Metals Industry (SIC 33) by the: Number of Hazardous Waste Generators in 1986 (by 4-Digit SIC)

Source: GG-190 (GA6, GA27)

Chart 5.2-22 Number of Facilities in the Primary Metals Industry (SIC 33) Generating Hazardous Waste in 1986 by Physical/Chemical Characteristics

Physical/Chemical Characteristic.	Number of Generators	Percentage of Total Generators for SIC 33
Inorganic Liquid	448	61.3
Organic Liquid	378	51.7
Inorganic Solid	270	36.9
inorganic Sludge	263	36.0
Organic Solid/Sludge	136	18.6
Unknown	71	9.7
Other ^a	5	0.7

^aIncludes mixtures and gases.

Note: A single facility can generate more than one type of hazardous wastes. Therefore, adding the numbers of generators results in multiple counting.

Source: GG-195 (GB1, GB2, GB10)

5.3 OWNERSHIP TYPE

Over 93 percent (11,662) of the generators of hazardous waste in 1986 were privately owned companies. These facilities generated 693.5 million tons of hazardous waste in 1986, 93 percent of all hazardous waste generated. Federally owned facilities was the the next most common type of generator. Over 300 federally owned facilities (2.6 percent of generators) generated 47 million tons of hazardous waste in 1986, or 6.3 percent of all hazardous waste. Charts 5.3-1 and 5.3-2 present these findings.

Chart 5.3-1 Quantity of Hazardous Waste Generated In 1986 by Ownership Type

Note: Numbers following bars indicate quantity of hazardous waste generated in million tons. Source: GG-188 (GA8, GA27)

Chart 5.3-2 Number of Hazardous Waste Generators In 1986 by Ownership Type:

Note: Numbers following bars indicate number of hazardous waste generators. Source: GG-188 (GA8)

5.4 ACTIVITIES GENERATING HAZARDOUS WASTE

Activities generating hazardous waste can be grouped as primary or secondary and as routine or nonroutine. Primary sources of hazardous waste include all production-related activities at a facility. Secondary sources are waste management activities (e.g., ash generated from incineration of hazardous waste). Routine sources are activities that occur regularly as part of business activity, including waste from process operations and routine cleaning and maintenance activities. Non-routine sources are activities that occur sporadically, such as a the closure of a tank or the discontinuation of a production line.

Chart 5.4-1 sorts the quantity of hazardous waste generated by the type of activity that generated the waste. Over 70 percent of all hazardous waste (528.8 million tons) was generated through primary/routine activities. Charts 5.4-2 to 5.4-6 show the most common waste-generating activities (by the quantity of hazardous waste generated) for each category of wastes in Chart 5.4-1.

Waste Source Category	Routine	Non-Routine	Unknown	Total
Primary	528. 8	11.1	0.0	539.9
Secondary	126.7	5.2	0.0	131.9
Unknown	0.0	4.1	71.5	75.6
Total	655.5	20.4	71.5	747.4

Chart 5.4-1 Quantity of Hazardous Waste Generated in 1986 by the Activity Generating the Waste (million tons)

Note: Primary sources of hazardous waste are production-related activities. Secondary sources are waste management activities. Routine sources are activities that occur regularly as part of business activity. Non-routine sources are activities that occur sporadically (e.g., spills, closure of a tank, etc.).

Chart 5.4-2 Most Common Sources of Primary/Routine[®] Hazardous Waste Generation by Quantity Generated in 1986

Note: Bars show the percentage of the total quantity of hazardous waste from primary/routine sources that was generated by the type of source indicated. Numbers following bars indicate quantity of hazardous waste generated in million tons.

^aPrimary/routine sources of hazardous waste are production-related activities that occur regularly as part of business activity.

Source: GG-187 (GB4, GB10)

Chart 5.4-3 Most Common Sources of Secondary/Routine^a Hazardous Waste Generation by the Quantity Generated In 1985

Note: Bars show the percentage of the total quantity of hazardous waste from secondary/routine sources that was generated by the type of source indicated. Numbers following bars indicate quantity of hazardous waste generated in million tons.

^aSecondary/routine sources of hazardous waste are waste management activities that occur routinely as part of business activity.

Chart 5.4-4 Most Common Sources of Primary/Non-Routine[®] Hazardous Waste Generation by the Quantity Generated in 1986

Note: Bars show the percentage of the total quantity of hazardous waste from primary/non-routine sources. that was generated by the type of source indicated. Numbers following bars indicate quantity of hazardous waste generated in million tons.

^aPrimary/non-routine sources of hazardous waste are production-related activities that occur sporadically (e.g., accidental or one-time activities).

Chart 5.4-5 Most Common Sources of Secondary/Non-Routine[®] Hazardous Waste Generation by the Quantity Generated in 1986

Note: Bars show the percentage of the total quantity of hazardous waste from secondary/non-routine sources that was generated by the type of source indicated. Numbers following bars indicate quantity of hazardous waste generated in million tons.

^aSecondary/non-routine sources of hazardous waste are waste management activities for wastes that occur sporadically (e.g., from accidental or one-time activities).

Chart 5.4-6 Most Common Unknown Sources of Non-Routine^a Hazardous Waste Generation by the Quantity Generated in 1986

Note: Bars show the percentage of the total quantity of hazardous waste from unknown/non-routine sources that was generated by the type of source indicated. Numbers following bars indicate quantity of hazardous waste generated in million tons.

^aUnknown/non-routine sources of hazardous waste are activities that occur sporadically and cannot be categorized as primary (production-related) or secondary (waste management).

Chart 5.4-7 shows the number of generators by the source of the hazardous waste they generated: primary or secondary and routine or non-routine. Over 80 percent of generators (10,221 facilities) generated hazardous waste from primary/routine sources. Charts 5.4-8 to 5.4-12 show the waste generating activities conducted by the largest numbers of generators for each category of generators in Chart 5.4-7.

Chart 5.4-7 Number of Generators In 1986 by the Source of their Hazardous Waste

Waste Source Category	Routine	Non-Routine	Unknown
Primary	10,221	3,842	0
Secondary	2,983	1,548	0
Unknown	0	1,993	2,191

Notes: Primary sources of hazardous waste are production-related activities. Secondary sources are waste management activities. Routine sources are activities that occur regularly as part of business activity. Non-routine sources are activities that occur sporadically (e.g., spills, closure of a tank, etc.).

A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

Chart 5.4-8 Most Common Sources of Primary/Routine[#] Hazardous Waste Generation by the Number of Generators per Source in 1986

Notes: Bars show the percentage of all facilities generating hazardous waste from primary/routine sources - that had the type of source indicated. Numbers following bars indicate number of generators.

A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

^aPrimary/routine sources of hazardous waste are production-related activities that occur regularly as part of business activity.

Chart 5.4-9 Most Common Sources of Secondary/Routine[®] Hazardous Waste Generation by the Number of Generators per Source in 1986

Notes: Bars show the percentage of all facilities generating hazardous waste from secondary/routine sources that had the type of source indicated. Numbers following bars indicate number of generators.

A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

^aSecondary/routine sources of hazardous waste are waste management activities that occur routinely as part of business activity.

Source: GG-187 (GB4)

Chart 5.4-10 Most Common Sources of Primary/Non-Routine® Hazardous Waste Generation by the Number of Generators per Source in 1986

Notes: Bars show the percentage of all facilities generating hazardous waste from primary/non-routine sources that had the type of source indicated. Numbers following bars indicate number of generators.

A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

^aPrimary/non-routine sources of hazardous waste are production-related activities that occur sporadically (e.g., from accidental or one-time activities).

Chart 5.4-11 Most Common Sources of Secondary/Non-Routine[®] Hazardous Waste Generation by the Number of Generators per Source in 1986

Notes: Bars show the percentage of all facilities generating hazardous waste from secondary/non-routine sources that had the type of source indicated. Numbers following bars indicate number of generators.

A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

^aSecondary/non-routine sources of hazardous waste are waste management activities for wastes that occur sporadically (e.g., from accidental or one-time activities).

2

Notes: Bars show the percentage of all facilities generating hazardous waste from unknown/non-routine sources that had the type of source indicated. Numbers following bars indicate number of generators. A single facility can generate hazardous waste from more than one source. Adding the numbers results in multiple counting.

^aUnknown/non-routine sources of hazardous waste are activities that occur sporadically and cannot be categorized as primary (production-related) or secondary (waste management).

6 HAZARDOUS WASTE MANAGEMENT

In 1986, 8,866 facilities treated, stored, disposed of, or recycled hazardous waste. This number includes facilities that treated or recycled hazardous waste in units exempt from RCRA-permitting requirements but does not include facilities that only accumulated hazardous waste for less than 90 days in RCRA-exempt units. Also, the number only includes waste management facilities that are also large quantity generators (and therefore included in the Generator Survey) or have a RCRA permit (and therefore are included in the TSDR Survey). This chapter describes waste management facilities, as defined by the above criteria, and their hazardous waste management in 1986.

6.1 HAZARDOUS WASTE MANAGEMENT BY RCRA PERMITTING STATUS

RCRA regulations require permits for most units used to treat or dispose of hazardous wastes. Units used for certain recycling and recovery activities and units used to treat hazardous wastewater subject to the Clean Water Act are generally exempt from RCRA-permitting requirements. Chart 6.1-1 shows the quantities of hazardous waste by the RCRA-permitting status of the TSDR units in which the waste was subsequently managed and the type of facility that managed the hazardous waste. If a hazardous waste was managed consecutively in a RCRA and a non-RCRA TSDR unit, the waste is included in the RCRA TSDR category of Chart 6.1-1. For further explanation of the chart, see Section 3.2 of this report.

; **-**

Chart 6.1-1 Quantity of Hazardous Waste Generated in 1986, by RCRA-Permitting Status of Management Units

Source: (A3, A8, GA27)

Chart 6.1-2 shows the number of hazardous waste management facilities by the regulatory status of their hazardous waste management units. Over 70 percent of the facilities (6,357 facilities) managed hazardous waste only in non-RCRA TSDR units. The remaining 28 percent of facilities had RCRA TSDR units, although about half of these facilities also managed hazardous waste in non-RCRA TSDR units.

Chart 6.1-2 Number of Hazardous Waste Management Facilities by RCRA Permit Status of Management Units in 1986

Source: TG-048, TG-043, TG-044

6.2 ONSITE, CAPTIVE, AND COMMERCIAL MANAGEMENT OF HAZARDOUS WASTE

Hazardous waste can be managed by three types of facilities:

- onsite: at the facility where the waste was generated,
- offsite/captive: at a facility other than where the waste was generated by a company under the same ownership as the generator, or
- offsite/commercial: at a facility other than where the waste was generated by a company under different ownership than the generator.

Chart 6.2-1 shows the quantity of hazardous waste managed onsite, offsite/captively, and offsite/commercially. Over 96 percent of all hazardous waste generated (719 million tons) was managed onsite by the generator of the waste. Of the 28.4 million tons of hazardous waste managed offsite, roughly half was managed by commercial facilities and half by captive facilities.

Notes: Hazardous waste managed onsite was managed by the generator of the waste.

Hazardous waste managed commercially was managed offsite by a company under different ownership than the generator of the waste.

Hazardous waste managed captively was managed offsite by a company under the same ownership as the generator of the waste.

Source: TG-048 (A8, GA27)
Chart 6.2-2 shows the numbers of hazardous waste management facilities by the origin of the hazardous waste they managed. Over 90 percent of hazardous waste management facilities managed only hazardous waste that was generated onsite. Approximately 6 percent of the facilities managed hazardous waste generated offsite by another company and 3.5 percent managed hazardous waste generated offsite but only by the same company.

Chart 6.2-2 Number of Hazardous Waste Management Facilities by the Origin of the Hazardous Waste Managed in 1986: Commercial, Captive, and Onsite-Only

Notes: Onsite-only management facilities managed only hazardous waste that was generated onsite.

Captive management facilities managed hazardous waste generated by other facilities under the same ownership in addition to managing hazardous waste generated onsite.

Commercial management facilities managed hazardous waste generated by other facilities under different ownership in addition to waste from other sources.

Source: TG-048 (A8)

Chart 6.2-3a shows where generators managed their hazardous waste. Almost 63 percent of generators (7,817 facilities) managed their hazardous waste onsite and offsite. Thirty-four percent of generators (4,268 facilities) sent all their hazardous waste offsite for management, and only 3 percent of generators (393 facilities) managed all their hazardous waste onsite.

÷

Chart 6.2-3a Number of Generators by Location of Their Hazardous Waste Management in 1986

Notes: Hazardous waste managed onsite was managed by the generator.

Hazardous waste managed offsite was shipped to another facility for management.

Source: TG-049 (GA23, GB18, A11)

Chart 6.2-3b provides greater detail on where generators manage their hazardous waste. For generators sending their hazardous waste offsite for management, the chart indicates whether the generator sent its waste to a facility under the same ownership (captive) or different ownership (commercial). Most generators sending their hazardous waste offsite sent their waste to a commercial facility. Over half of the generators managed part of their hazardous waste onsite and sent the rest to a commercial facility.

Chart 6.2-3b Number of Generators by Location of Their Hazardous Waste Management in 1986: Onsite, Commercial, and Captive

Type of Management	Number of Generators	Percentage of Generators
Onsite Only	393	3.1
Onsite and Offsite		
Captive Only	188	1.5
Captive and Commercial	366	2.9
Commercial Only	6,822	54.7
Unknown	440	3.5
Offsite Only		
Captive Only	128	1.0
Captive and Commercial	115	0.9
Commercial Only	3,560	28.5
Unknown	465	3.7
Total	12,478	100.0

Notes: Hazardous waste managed onsite was managed by the generator of the waste.

Hazardous waste managed captively was managed offsite by a company under the same ownership as the generator of the waste.

Hazardous waste managed commercially was managed offsite by a company under different ownership than the generator of the waste.

Source: TG-049 (GA23, GB18, A11)

6.3 HAZARDOUS WASTE MANAGEMENT BY LOCATION

In general, the geographic distribution of hazardous waste management facilities is similar to the distribution of hazardous waste generators (see Section 5.1). This is due in part to the high cost of transporting hazardous waste and in part to the large number of generators managing their own hazardous waste onsite (see Section 6.2).

Chart 6.3-1 shows the numbers of hazardous waste management facilities in each EPA region in 1986. Region V had the largest number of management facilities, with 2,029 facilities or 22.9 percent of all hazardous waste management facilities. Other regions with large numbers of hazardous waste management facilities include Region IV and Region IX, with 13.9 and 13.1 percent of hazardous waste management facilities, respectively.

Source: TG-048

191

٠,

Charts 6.3-2 and 6.3-3 show the number of hazardous waste management facilities in each state (in alphabetical order and descending order, respectively). California had the largest number of hazardous waste management facilities, with 1,046 facilities. Texas and Pennsylvania also had large numbers of facilities, with 622 and 547 facilities, respectively.

State	Number of Facilities	Percentage of Hazardous Waste Management Facilities	State Bank
Alabama Alaska	127	1.4	20
Arizona	89	1.0	27
Arkansas California	84 1.046	0.9 11.8	29 1
Colorado	81	0.9	31
Delaware	266 18	3.0 0.2	11 43
District of Columbia	1	≪0.1	52
Georgia	162	bertadakes telesistete eretti €. Garis kasakara in uururter 1.8	5.58948.014. 19 368.0144.114 19
Guam Hawaii	1	⊲0.1	53
klaho	8	0.1	48
Illinois Indiana	490 287	5.5 1971 - State State State (State State St	6 - 10-251 - 10-251 - 10
lowa	86	1.0	28
Kansas Kentucky	70 123	1871 - Carlos Angeleria († 0.6 88) - Carlos Angeleria 1971 - Carlos Angeleria († 1 488) - Carlos Angeleria († 1900)	35 22
Louisiana	108	nen de la 1995 de la 1997 de la 1 Constante en la 1997 de la desta de la 1997 de	25
Maryland	110	1.2	24
Massachusetts Michigan	431	4.9	7
Minnesota	177	2.0	16
Missisaippi Missouri	91 179	1.0	2 8
Montana	10	01	48
Neoraska Nevada	40 11	0.5 0 1	39 45
New Hampshire	_ 79	0.9	32
New Jersey New Mexico	500 19	5.6 0.2	5 42
New York	411	4.6	8
North Dakota	224 6 0 0 0 0	2.5 0 :1	12 Sign (197) 50 (1971)
Ohio Olio	505	57	
Oregori	84	0.9	30
Pennsylvania Puerto Rico	547 70		3884000 28
Rhode Island	76	0.9	33
South Caroline South Dakote	126	1.4	21
Tennessee	198	2.2	13
Texas I Itab	622 43	7.0 0 5 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	2
Vermont	26	0.3	41
Virgin Island Virginia	0 167	0.0 1 9	19-14-26-3 54 85.27.35 2013-361-3 18 1-36-32
Washington	116		23
West Virginia Wisconsin	65 195	0.7 2.2	37 14
Wyoming	7	0.1	49
Total	8 868	100.0	

Chart 6.3-2 Number of Hazardous Waste Management Facilities by State in 1986

Source: TG-048

.

:

State	Number of Facilities	Percentage of Hazardous Waste Management Facilities
California Texas	1,046	11.8
Pennsylvania	547	6.2
Ohio Nam Joseph	505	5.7
Illinois	200 490	5.0 5.6
Massachusette	431	4.9
New Tork Michigan	411 975	4.0
Indiana	287	32
Connecticut	266	3.0
	224	2.5
Wiscansin	195	2.2
Florida	177	2.0
Minnesota		
Virginia	167	
Georgia	162	
South Caroline	127. 127. 128. 128. 128. 128. 128. 128. 128. 128	anna dheit th' bhat tha tai 🖓 🛔 ia ac 10 aithe bhio.
Kentucky	123	1.4
Washington	116	1.3
Louisbane	110	1.2
Mississippi	81	1-6 10
Arizone	89	1.0
10WE Arkanese	88 o a	10
Oregon	84	6 .0
Colorado	<u>8</u> 1	0.9
New Hampshire Rhode leland	79 78	0.9
Oklahoma	78 73	0.8
Kansas	70	0.8
Puerto Fuco West Viminia	70	0.B
Utah	43	05
Nebrzska	40	0.5
Maine		
New Mexico	40 19	0.3
Delaware	18	0.2
Hawali	13	0.1
Montane	11 10	
Alaska	9	Ö.İ
kiaho		<u>e.</u> 1
North Daiota	7	U.7
South Dakota		
District of Columbia	1	<0.1
Gu am Virgio leterat	1	<0.1
Total	U	100 0
I VIGI	41444	

Chart 6.3-3 Number of Hazardous Waste Management Facilities by State in 1986, in Descending Order

÷

Source: TG-048

<u>94</u>

6.4 TYPES OF HAZARDOUS WASTE MANAGEMENT

Chart 6.4-1 shows the types of hazardous waste management activities conducted by waste management facilities in 1986. It is important to note that a single facility could conduct more than one type of waste management activity. Over half of the waste management facilities (5,176 facilities) treated hazardous waste in 1986.

Chart 6.4-1 Number of Management Facilities Treating, Storing, Disposing of, and Recycling Hazardous Waste in 1986

Note: A single management facility can have more than one waste management activity. Therefore, adding the numbers of facilities results in multiple counting.

Source: TG-050

. .

(This page is intentionally blank)

. .:

.

7 HAZARDOUS WASTE MANAGEMENT METHODS: RECYCLING

EPA has established a pollution prevention hierarchy that encourages reducing or eliminating the generation of waste and recycling wastes that are generated. This chapter summarizes Generator and TSDR Survey data on hazardous waste recycling. Units used to recycle hazardous wastes are generally exempt from RCRA-permitting requirements. This chapter includes data on all hazardous waste recycling activities regardless of permitting status.

Much of the data on recycling activities are process-specific—that is, facilities reported recycling information for each recovery process they operated. Because a single hazardous waste is often managed sequentially in several recycling processes, aggregating process-specific data presented in this chapter is not appropriate.

7.1 SOLVENT AND LIQUID ORGANIC RECOVERY

Solvent and liquid organic recovery (solvent recovery) is the most common type of recycling in terms of the number of facilities engaged in recycling. Seventeen percent of all hazardous waste management facilities, or 1,470 facilities, managed 1.18 million tons of hazardous waste in solvent recovery processes in 1986.

Charts 7.1-1 and 7.1-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in solvent recovery processes in each EPA region in 1986. Charts 7.1-3 and 7.1-4 show the same information for each state or territory.

١

14.

Chart 7.1-1 Quantity of Hazardous Waste Managed in Solvent Recovery Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (F3), GG-170 (GG3), TT-140II (F3)

1988 Hazardous Waste Generation and Management

Chart 7.1-2 Number of Facilities Managing Hazardous Waste in Solvent Recovery Processes per EPA Region in 1986

Source: TT-140 (F3), GG-170 (GG3), TT-140II (F3)

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Alabama	0.08	6.4	5
Alaska	0.00	0.0	46
Arizona Arizonaa	<0.01	0.1	37
California	0.08	7.0	4
Colorado	< 0.01 [#]	<0.1 ⁰	43
Connecticut	0.01	0.5	28
District of Columbia	<0.01=	<0.1°	40
Florida	-0.01	0.0	*/ 80
Georgia	0.02	1.4	18
Guam	0.00	0.0	48
Hawali	<0.01	0.1	38
Illisoin	<0.01=	<0.1	45
Indiana	0.04		
lowa	0.01	0.8	24
Kanses	<0.01 [®]	0.1	35
Kentucky	0.04	3.3	13
Louisiana	-0 018	6.9	3
Marviand	0.01	1.2	22
Massachusetts	0.06	5.0	7
Michigan	0.11	9.2	2
Minnesota	<0.01 ⁸	0.2	34
	d.01	0.2	33
Montana	0.00	3. 4 0.0	16
Nebraska	<0.01*	<u>ũ</u> 1	56
Nevada	0.00	0.0	51
New Hampshire	0.02	1.3	20
New Jersey	0.06	4.9	В
New York	0.07	<u. 1*<br="">6.3</u.>	44 R
North Carolina	<0.01	0.3	32
North Dakota	0.00	0,0	50
Ohlo	0.12	- 10.3	
OKANOME	<	C.4	3
Pennevivenia	0.03	48 19	20
Puerto Rico	0.02	1.4	19
Rhode Island	0.01	0.5	29
South Carolina	0.03	2.4	16
South Dakota	0.00	0.0	52
lennessee Truce	0.01	0.5	27 20
i tab	-0.01	A10	17
Vermont	2.01°	ai	
Virgin Island	0.00	0.0	200 53 80 80 80
Virginia	0.01	0.8	2
Washington	0.02	1.7	17
	0.05	3.9 A A	11
Wyoming	0.00	0.0	54
Total	1.18	100.0	

Chart 7.1-3 Quantity of Hazardous Waste Managed in Solvent Recovery Processes by State in 1986

÷

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (F3), GG-170 (GG3), TT-140II (F3)

State	Number of BCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Bank
Alabama Alaska Arizona	17 0 9	1.2 0.0 0.6	27 46 36
Arkansas California Colorado Connecticut Delaware District of Columbia Fiorida Georgia Guam	21 111 9 41 3 0 38 24 0	1.4 7.6 0.8 2.8 0.2 0.0 2.8 1.6 0.0	24 2 37 15 42 47 21 48
Hawaii Idaho Illinois Indiana Iowa Kansas Kansas Kentucky Louisiana Maine Marviand	2 2 45 67 14 14 20 13 4 40	0.1 0.1 3.1 4.6 1.0 1.0 1.4 0.9 0.3 2 7	44 45 13 6 28 29 25 31 41 16
Massachusette Michigan Minnesota Mississippi Missouri Montana Nebrasiu Nevada Nevada New Hampshire	85 30 46 6 42 0 14 0 22	5.8 2.0 3.1 0.4 2.9 0.0 1.0 0.0 1.5	3 20 12 39 14 49 30 51 23
New Jersey New Mexico New York North Carolina North Dakotas Ohio Oklahoma Oregon Pennsylvania Puerto Rico	60 3 76 55 0 77 11 11 11 122 10	4.1 0.2 5.2 3.7 0.0 5.2 0.7 0.7 0.7 8.3 0.7	8 43 5 10 50 4 32 33 33 1 34
Rhode Island South Carolina South Dakota Tennessee Taxas Utah Vermont Virgin Island Virginia	24 19 0 48 60 10 8 0 31	1.8 1.3 0.0 3.3 4.1 0.7 0.4 0.0	22 26 52 11 9 35 40 53 19
Washington West Virginia Wisconsin Wyoming Total	33 7 67 0 1.470	22 0.5 4.8 0.0 100.0	18 38 7 54

Chart 7.1-4 Number of Facilities Managing Hazardous Waste in Solvent Recovery Processes by State in 1986

Source: TT-140 (F3), GG-170 (GG3), TT-140II (F3)

÷

Chart 7.1-5 shows the types of solvent recovery processes operated in 1986. For each type of process, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of process.

Process Type	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilities	Percentage of Facilities
Batch Still Distillation	0.39	33.3	1,209	82.2
Phase Separation	0.35	29.7	107	7.3
Thin Film Evaporation	0.34	28.6	98	6.7
Fractionation	0.28	23.3	102	6.9
Missing	0.17	14.6	14	1.0
Other	0.17	14.5	95	6.5
Filtration	0.11	9.4	61	4.1
Desiccation	0.02	1.4	9	0.6
Solvent Extraction	0.02	1.3	39	2.7
Total	1.18 ^ª	100.04	1,470 ^b	100.0 ^b

Chart 7.1-5 Types of Solvent Recovery Processes and Quantity Managed In 1986

^a A single waste may be managed in more than one solvent recovery process. Therefore, adding the quantities managed in each type of process results in double-counting. The number shown is the total quantity managed in solvent recovery processes *without* double-counting.

^b A single facility may have more than one type of solvent recovery process. Therefore, adding the number of facilities with each type of process results in double-counting. The number shown is the total number of facilities with solvent recovery processes without double-counting.

Source: TT-141, GG-171, TT-141II (GG4, GG21, F4, F25a)

Chart 7.1-6 shows the regulatory status of facilities that recover solvents. The chart shows the numbers of facilities that recovered solvents and were subject to RCRA-permitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' recovery operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRA-permitting requirements.

Chart 7.1-6 RCRA-Permitting Status of Facilities Managing Hazardous Waste in Solvent Recovery Processes in 1986

RCRA-Permitting Status	Numb er of Faciliti es	Quantity Managed In Solvent Recovery (million tons)
Exempt from permitting requirements ^a	1,152	0.19
Subject to permitting requirements ^b	318	0.99
Total	1,470	1.18

^a Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements. ^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements. Source: TT-140 (F3), GG-170 (GG3), TT-140II (F3)

7.2 METAL RECOVERY

Metal recovery is the most common type of recycling in terms of the quantity of hazardous waste recycled. Approximately 1.44 million tons of hazardous waste was managed in metal recovery processes by 330 facilities in 1986.

Charts 7.2-1 and 7.2-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in metal recovery processes in each EPA region in 1986. Charts 7.2-3 and 7.2-4 show the same information for each state or territory.

Chart 7.2-1 Quantity of Hazardous Waste Managed in Metal Recovery Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (G3), GG-170 (GF3), TT-140II (G3)

ž

· .

Chart 7.2-2 Number of Facilities Managing Hazardous Waste in Metal Recovery Processes per EPA Region in 1986

Source: TT-140 (G3), GG-170 (GF3), TT-140II (G3)

South Side

7. Hazardous Waste Management Methods: Recycling

State	Quantity Managed	Percentage of Total Quantity Managed	State
Alabama	0.14	9.9	5
Alaska Arizona	<0.01= 0.05	<0.1° . 3.3	42
Arkansas	0.01	0.5	21
California Colorado	0.11	8.0 A (B)	7
Connecticut	<0.01ª	-1.0> 0.3	23
Delaware	<0.01ª	<0.1 ⁶	39
District of Columbia Florida	<0.01*	<0.1P	32
Georgia	0.02	1.2	15
Guam	0.00	0.0	47
Hawaii idaho	0.00	0.0	48
Illinois	0.15	10.6	3
Indiana	<0.01	02	24
iowa Kanaas	0.02 ∡0.01 [●]	1.4 -0.10	10 16
Kentucky	<0.01ª	-0.1 6	30
Louisiana	0.02	13	14
Manuand	0.03	1.9	37 12
Massachusetta	0.01	0.6	19
Michigan Minneeota	<0.01	0.1	26
Missiesippi	d.01ª		36
Missouri	0.01	0.9	18
Nabraska	00.0	0.0	49
Neveda	d.01*		41
New Hampshire	<0.01	<0.15	35
New Mexico	<0.01 ^a	0.0 ≪0.1 ^b	43
New York	0.15	10.7	2
North Caroline North Clatote	<0.01*	<0.19	46 50
Ohio	0.03		13
Oklahoma	<0.01 ^e	a18	33
Oregon Recusylvania	0.00	173	51
Puerto Rico	<0.01	0.2	25
Rhode Island	0.01	0.4	22
South Carolina South Dakota	0.01	1.0	17 52
Tennessee	<0.01ª	<0.1	34
Texas	0.15	10.3	
Vernoat	-0.01*	a19	40 29
Virgin Island	0.00	0.0	53
Virginia	d.01	≪0.1 °	31
Washington West Vintinia	<0.01- 0.04	3.0	27
Wisconsin	0.14	9.7	6
Wyoming	0.00	0.0	54
Total	1.44	100.0	

÷

Chart 7.2-3 Quantity of Hazardous Waste Managed in Metal Recovery Processes by State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (G3), GG-170 (GF3), TT-140II (G3)

State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Bank
Alabama Alaska Arizona Arkansas California	5 2 6 3 43	1.5 0.6 1.8 0.9 13.0	16 35 12 29 1
Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawail Idaho	22 1 1 6 4 0 0 0	0.6 6.7 0.3 1.8 1.2 0.0 0.0 0.0 0.3	36 3 41 40 13 22 47 48 42
Illinois Indiana Iowa Kansas Kentucky Louisians Maine Maryland Massachusetts Michigan Minicarte	17 5 5 4 4 4 5 14	5.2 0.9 1.5 1.2 1.2 1.2 1.2 1.5 4.2	4 30 17 31 28 25 24 19 5
Missiasippi Missouri Montana Nebraska Newada New Hampshire New Jersey New Mexico New York	2 5 0 4 1 1 6 3 12	2.7 0.8 1.5 0.0 1.2 0.3 0.3 1.8 0.9 3.6	37 20 49 28 45 44 14 32 9
North Carolina North Dakota Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota	1 13 3 10 10 2 2 14 0 3	0.3 50 39 10 0.9 0.9 0.9 0.0 0.0 0.8 0.8 0.8 0.8 0.8 0.8	43 50 7 33 51 10 38 39 6 52 34
Texas Utah Vermont Virgin Island Virginia Washington West Virginia Wisconsin Wyoming Total	42 4 1 0 4 8 5 13 0 330	12.7 1.2 0.3 0.0 1.2 1.8 1.5 3.9 0.0 100.0	2 27 48 53 28 15 21 8 54

Chart 7.2-4 Number of Facilities Managing Hazardous Waste In Metal Recovery Processes by State In 1986

Source: TT-140 (G3), GG-170 (GF3), TT-140II (G3)

÷

Chart 7.2-5 shows the types of metal recovery processes operated in 1986. For each type of process, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of process.

Ргосеза Туре	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilities	Percentage of Facilities
Other	0.63	43.9	102	30.9
Secondary Smelting	0.38	26.6	26	7.9
Filtration	0.22	15.0	22	6.7
Electrolytic	0.16	10.9	140	42.4
lon Exchange	0.16	10.8	64	19.4
Evaporation	0.15	10.3	31	9.4
Reverse Osmosis	0.02	1.6	6	1.8
Solvent Extraction	<0.01	0.1	4	1.2
Sodium Borohydride	<0.01	0.1	6	1.8
Missing	<0.01	0.1	4	1.2
Liming	<0.01	<0.1	3	0.9
Total	1.44 ⁸	100.0 ^a	330 ^b	100.0 ^b

Chart 7.2-5 Types of Metals Recover	y Processes and Quantity	y of Hazardous Waste Mana	ged in 1986
-------------------------------------	--------------------------	---------------------------	-------------

^a A single waste may be managed in more than one metals recovery process. Therefore, adding the quantities managed in each type of process results in double-counting. The number shown is the total quantity managed in metals recovery processes *without* double-counting.

^b A single facility may have more than one type of metals recovery process. Therefore, adding the number of facilities with each type of process results in double-counting. The number shown is the total number of facilities with metals recovery processes *without* double-counting.

Source: TT-141, GG-171, TT-141II (G4, G25a, GF4, GF21)

Chart 7.2-6 shows the regulatory status of facilities that recover metals. The chart shows the numbers of facilities that recovered metals and were subject to RCRA-permitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' recovery operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRA-permitting requirements.

Chart 7.2-6 RCRA-Permitting Status of Facilities Managing Hazardous Waste in Metal Recovery Processes in 1986

RCRA-Permitting Status	Number of Facilities	Quantity Managed in Metal Recovery (million tons)
Exempt from permitting requirements ^a	207	0.78
Subject to permitting requirements ^b	123	0.65
Total	330	1.44

⁸ Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements.

^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements. Source: TT-140 (G3), GG-170, TT-140II (G3)

7.3 REUSE AS FUEL

Reusing hazardous waste as fuel involves the burning of hazardous waste as an energy source. In 1986, 1.44 million tons of hazardous waste were reused as fuel by 295 facilities. The quantity of hazardous waste reused as fuel is only slightly less than the quantity managed in metals recovery processes, making reusing hazardous waste as fuel the second most common type of recycling (in terms of the quantity of hazardous waste managed).

Charts 7.3-1 and 7.3-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in reuse as fuel processes in each EPA region in 1986. Charts 7.3-3 and 7.3-4 show the same information for each state or territory.

Chart 7.3-1 Quantity of Hazardous Waste Managed In Reuse-as-Fuel Processes per EPA Region In 1986 (in million tons)

Source: TT-140 (C3), GG-170 (GD3), TT-140il (C3)

1. . 1. **.** . .

17.

١

1986 Hazardous Waste Generation and Management

Chart 7.3-2 Number of Facilities Managing Hazardous Waste in Reuse-as-Fuel Processes per EPA Region in 1986

Source: TT-140 (C3), GG-170 (GD3), TT-140II (C3)

Stata	Quantity Managed	Percentage of	State. Back
Alabama	0.02	1.1	18
Alaska	<0.01	<0.1⁵	34
Arkansas	0.03	0.0	43
California	0.04	2.6	9
Colorado	<0.01 [#]	0.1	32
Connecticut	0.01 _0.014	0.8 A th	21
District of Columbia	0.00	60	37 44
Florida	0.03	1.9	15
Georgia	<0.01*	0.1	31
Guam Hawaii	0.00	0.0	45 48
Idaho	0.00	0.0	47
Illinois	<0.01*	0.2	25
Indiana Ioma	0.02		16
Kansaa	<0.01- 0.04		33 - 33 - 33 - 33 - 33 - 33 - 33 - 33
Kentucky	0.03		10
Louisiana	0.12	83	3
Manlend	0.03	21	14
Massachusette	<0.01	0.2	24 28
Michigan	<0.01*	<0.1 ^b	38
Minnesota	0.01	0.4	22
Mississippi	<0.01*	<0.18	35
Montana	<0.01*	-0.1 4	4
Nebraska	<0.01ª	4 .1*	40
Nevada	0.00	0.0	50
New Jampsnire New Jamey	<0.01	<0.1	39
New Mexico	0.00	0.0	49
New York	0.05	3.3	6
North Carolina	0.03	2.4	11 1 Martin - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19
Chie	0.00	9.0 6 7	1 1 1 1 1 1 1 1 4 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Oklahoma	<0.01ª	ã.i•	36
Oragon States	0.00	0.0	51
Pennsylvania	0.10	6.8	
Rhode Island	0.01 -0.01ª	0.4	23
South Carolina	0.01	0.7	20
South Dakota	0.00	0.0	52
Tennessee	0.14	9.4	2
l tab	0.53 -0.018	30.¥	1 30
Vermont	C.DO	0.0	42
Virgin Island	0.00	0.0	53
Virginia	0.04	30	7
wasnington West Viminia	0.02	1.3 2 1	17
Wisconsin	<0.01	0.2	26
Wyoming	0.00	0.0	54
Total	1.44	100.0	

:

Chart 7.3-3 Quantity of Hazardous Waste Managed in Reuse-as-Fuei Processes by State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (C3), GG-170 (GD3), TT-140II (C3)

State	Number of	Percentage of RCRA	State
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida	<u>ACRA ISUR PECINIES</u> 4 1 0 4 6 1 1 1 1 2 0	1.4 0.3 0.0 1.4 2.0 6.3 3.7 0.7 0.0 1.4	
Georgia Guam Hawaii kdaho Illinois Indlanä Iowa Kansas Kansas Kentucky Louisiana	2 0 0 7 7 4 1 1 5	0.7 0.0 0.0 2.4 1.4 0.3 2.4 1.7 3.7	35 45 46 47 15 28 40 16 19 7
Maine Maryland Massachusetts Michigan Minnesota Missiasippi Missouri Montana Nebraska Nevada	8 7 5 3 8 4 2 1 3 3 9 3 3 9 3	2.7 24 1.7 1.0 2.7 1.4 0.7 0.3 1.0 0.0 1.0	11 17 20 30 12 27 36 41 31 50 32
New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico	30 0 8 18 0 10 2 3 6 0 10 2 4	10.2 0.0 2.7 6.1 0.0 3.4 1.0 0.0 3.4 1.4	1 49 13 3 48 9 33 51 51 10 28
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Island Virginia Washington West Virginia	4 14 0 11 30 5 1 1 0 17 2 8	1.4 4.7 0.0 3.7 10.2 1.7 0.3 0.0 5.8 0.7 2.7	29 5 52 8 21 42 53 42 53 53 14
Wisconsin Wyoming	5 0 295	1.7 0.0	22 54

Chart 7.3-4	Number of Facilities Managing Hazardous Waste in Reuse-as-Fuel Processes by State in
	1986

Source: TT-140 (C3), GG-170 (GD3), TT-140II (C3)

:

Chart 7.3-5 shows the types of reuse as fuel processes operated in 1986. For each type of process, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of process.

.:

Process Type	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilities	Percentage of Facilities
Industrial Boiler	0.86	59.8	195	66.1
Cement Kiln	0.23	1 5.8	18	6.1
Other Industrial Furnace	0.13	9.1	5	1.7
Aggregate Klin	0.13	9.0	9	3.1
Process Heater	0.06	3.9	18	6.1
Sulfur Recovery Furnace	0.02	1.2	3	1.0
Utility Boiler	0.01	0.3	34	11.5
Other	0.01	0.3	15	5.1
Coke Oven	<0.01	0.2	1	0.3
Smelting Furnace	<0.01	0.1	3	1.0
Blast Furnace	<0.01	0.1	1	0.3
Asphalt Klin	<0.01	0.1	1	0.3
Oth er Kiln	0.00	0.0	2	0.7
Unknown	0.12	0.1		
Total	1.44	100.0	295 *	100.0 [®]

Chart 7.3-5 Types of Reuse-as-Fuel Processes and Quantity Managed In 1986

^a A single facility may have more than one type of reuse-as-fuel process. Therefore, adding the number of facilities with each type of process results in double-counting. The number shown is the total number of facilities with reuse-as-fuel processes without double-counting.

Source: TT-141, GG-171, TT-141II (C4, C17a, GD4, GD17)

Chart 7.3-6 shows the regulatory status of facilities that reuse hazardous waste as fuel. The chart shows the numbers of facilities that reused hazardous waste as fuel and were subject to RCRA-permitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' recovery operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRA-permitting requirements.

Chart 7.3-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Reusing Hazardo	JUS
	Waste as Fuel in 1986	

RCRA-Permitting Status	Number Of Facilities	Quantity Managed In Reuse as Fuel (million tons)
Exempt from permitting requirements ^a	102	0.04
Subject to permitting requirements ^b	193	1.41
Total	295	1.44

^a Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements.
 ^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements.
 Source: TT-140 (C3), GG-170, TT-140II (C3)

7.4 FUEL BLENDING

Prior to reusing hazardous wastes as fuel, facilities can blend the hazardous waste with other types of fuel (e.g., nonhazardous waste or petroleum) to obtain the desired characteristics. In 1986, 177 facilities managed 0.75 million tons of hazardous waste in fuel blending processes.

Charts 7.4-1 and 7.4-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in fuel blending processes in each EPA region in 1986. Charts 7.4-3 and 7.4-4 show the same information for each state or territory.

Chart 7.4-1 Quantity of Hazardous Waste Managed In Fuel Blending Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (D10A), GG-170 (GC10), TT-140II (D10A)

Chart 7.4-2 Number of Facilities Managing Hazardous Waste in Fuel Blending Processes per EPA Region in 1986

Source: TT-140 (D10A), GG-170 (GC10), TT-140II (D10A)

117

* . .

•

State	Quantity Managed	Percentage of Total Quantity Managed	State Bank
Alabama	0.02	2.2	16
Alaska Arizona	0.00 0.00	0.0	36 37
Arkansas	<0.01*	0.4	26
California Colorado	0.03 -0.01	3.8 A 1	11 30
Connecticut	0.04	5.0	7
Delaware District of Columbia	0.00	0.0	38 39
Florida	0.02	25	14
Georgia Guam	0.01	0.9	21 40
Hawail	0.00	0.0	41
ldaho Illinois	0.00	0.0	42
Indiana	0.03		
lowe Kanene	0.00	0.0 (1999) 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19	43
Kentucky	0.03		12
Louisiana	0.05 et di 10.05 et di 10.05		6 (1997) 44
Maryland	0.03	3.6	13
Massachusetts Michiaea	<0.01ª	<0.10	35
Minnesota	<0.01*	<0.1 ^b	33
Mississippi	<0.01 [#]	01	31
Montane	0.00	0,0	21 45
Nebraska	-0.01 [#]	-0,1 ⁸	34
New Hampshire	0.00	0.0	40 47
New Jersey	0.07	9.9	2
New York	0.06	7.5	48
North Carolina	0.03	4.3	10
Ohio	0.00 Q.10	135	4 7 1
Oklahoma	<0.01°	0.4	25
Peonsylvania	0.00	0.D 24	50 15
Puerto Rico	0.01	0.7	23
Rhode Island South Carolina	0.01	0.7 1.5	22 19
South Dakota	0.00	0.0	51
Tennessee	<0.01*	0.5 6 6 5 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	24
Utah	<0.01€	0.2	29
Vermont Viceia latent	0.00	0.0 % and a sub-	52 (Sec. 1997)
Virginia	0.04	50	8
Washington	<0.01 ⁸	0.3	28
West Virginia Wisconsin	0.01	1.0	20
Wyoming	0.00	0.0	54
Total	0.75	100.0	

÷

Chart 7.4-3 Q	uantity of Hazardous	Waste Managed In F	Fuel Blending	1 Processes b	y State in 1986
---------------	----------------------	--------------------	---------------	---------------	-----------------

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (D10A), GG-170 (GC10), TT-140II (D10A)

,

	State	Number of BCRA TSDR Exclition	Percentage of RCRA	State
F	Alabama	3	1.7	23
	Alaska	0	0.0	36
	Arizona Arizona	2	0.0	3/
	California	5	2.8	13
	Colorado		0.6	
	Connecticut	10	5.6	5
	District of Columbia	Ŭ	0.0	
	Florida	ŝ	4.5	
	Georgia	5	2.8	14
	Hawaii	0	0.0	40
	idaho	ō	0.0	43
<i></i>	llinols	8	4.5	8
		4	23	16
	Kansas	2	1.1.	27
	Kentucky	3	17	22
Ŀ	Louisiana	atural dun ba lt harden eikere	B2	daranan merindi kala bila birkuta
	Mane Marviand	0	0.0	44
	Massachusetts	1	0.6	35
	Michigan	4	2.3	15
	Minnesota Mississi	1 	0.6	33
	Miscouri		23	3≤ 3≤ 19
2	Montana	Ò	0.0	45
÷.	Nebraska		0.6	34 (1997) 2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	New Hampshire	adolar diddine y Mileta die osalatie O		498880 (1997) 47
	New Jersey	8	4.5	6
	New Mexico	0	0.0	48
	New Tork North Camiloa	17	9.6	17
	North Dakota	ale se de come a com	0.0	46
	Ohio	12	6.8	3
	Oklahoma		0.6	30
ł	Pennevivania		23	*************************************
ŕ	Puerto Rico	1	0.6	29
	Rhode Island	8	4.5	10
	South Carolina South Dakota	· 8	4.5	9 51
	Tennessee	7	4.0	12
	Texas	13	7.3	2
	Utah		23	27
	Virgin Island	0		52
	Virginia	a dharach 🙎 ar tharach		24
	Washington	4	2.3	20
	west virginia Wisconsin	2	U.D 1.1	25
_	Wyoming	<u> </u>	0.0	54
	Total	177	100.0	

Chart 7.4-4 Number of Facilities Managing Hazardous Waste in Fuel Blending Processes by State in 1986.

Source: TT-140 (D10A), GG-170 (GC10), TT-14011 (D10A)

÷

Chart 7.4-5 shows the regulatory status of facilities that blend hazardous waste for fuel. The chart shows the numbers of facilities that managed hazardous waste in fuel blending processes and were subject to RCRA-permitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' recovery operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRApermitting requirements.

Chart 7.4-5 RCRA-Permitting Status of Facilities Managing Hazardous Waste in Fuel Blending Processes in 1986

RCRA-Permitting Status	Number of Facilities	Quantity Managed in Fuel Blending (million tons)
Exempt from permitting requirements ^a	49	0.02
Subject to permitting requirements ^b	128	0.73
Total	177	0.75

^a Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements.

^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements. Source: TT-140 (D10A), GG-170, TT-140II (D10A)

7.5 OTHER RECYCLING

Respondents to the Generator and TSDR Surveys reported data on any recycling activities in 1986 other than those specifically mentioned in the surveys (i.e., solvent recovery, metals recovery, reusing hazardous waste as fuel, and fuel blending). In 1986, 243 facilities managed 0.96 million tons of hazardous waste in other recycling processes.

Charts 7.5-1 and 7.5-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in other recovery processes in each EPA region in 1986. Charts 7.5-3 and 7.5-4 show the same information for each state or territory.

Chart 7.5-1 Quantity of Hazardous Waste Managed in Other Recycling Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (I26), GG-170 (GH3), TT-140II (I26)

121

· . .

· • .

Chart 7.5-2 Number of Facilities Managing Hazardous Waste in Other Recycling Processes per EPA Region in 1986

Source: TT-140 (126), GG-170 (GH3), TT-14011 (126)

1986 Hazardous Waste Generation and Management
State	Quantity Managed	Percentage of Total Quantity Managed	State
Alabama	0.00	0.0	34
Alaska	0.00	0.0	37
Arizona	<0.01*	0.3	23
Arkansas	<0.01	<0.1°	29
California	0.07 Frielis Bluck market Hellist market	7.5 Venta ave framera 44 ione, a statut a view	Anterior pulation and
Connecticut	0.11 -0 D1		30.000
Delaware	0.00	0.0	39
District of Columbia	0.00	0.0	38
Florida	<0.01 ®	0:5	22
Georgia	0.01	1.1	19
Guam	0.00	0.0	40
Hawali Idaba	0.00	0.0	41
	0.00	0.0	43
Indiana	0.04	101	nega yanta tu ta et
Iowa	0.00	0.0	42
Kansas	0.03	28	12
Kentucky	0.05	5.2	8
Louislana	0.02	1 .9	14
Maine	<0.01ª	<0.1	27
Maryland	<0.01	<0.1°	33
Massachusens	0.01	0.6	21
Michigan Minnesota	0.03	2.0	13
	0.03		
Missouri	0.04	40	
Montana	0.00	8.0	44
Nebraska	0.01	13	16
Neveda	0.00	0.0	47
New Hampshire	0.00	0.0	35
New Jersey	0.05	5.3	7
New Maxico New York	-0.01	0.0	40
North Carolina	<0.01	-0.1 -0.19	25
North Dakola	0.00	0.0	45
Ohio	0.08	63	8
Oklahoma	<0.01	0.1	28
Oregon	0.00	0.0	48
Pennsylvania	0.06	6.7	5
Puerto Rico	0.00	0.0	49
Knode Island	0.01	1.1	17
South Carolina South Dokete	0.01	1.1	18
Tennesse	0.00	-0.1b	31
Tayas	0.01 0.19	19.6	51
Utah	0.00	0.0	36
Vermont	0.00	0.0	53
Virgin Island	0.00	0.0	52
Virginie	0.00	0.0	51
Washington	0.01	0.9	20
West Virginia	<0.01	0.2	24
Wisconsin	0.01	1.3	15
	0.00	<u> </u>	54

Chart 7.5-3 Quantity of Hazardous Waste Managed In Other Recovery Processes by State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (I26), GG-170 (GH3), TT-140II (I26)

.

State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Rank
Alabama Alaska Arizona Arkansas California	2 0 3 1 45	0.8 0.0 1.2 0.4 18.5	23 37 20 29 1
Colorado Connecticut Delaware District of Columbia Florida Georgia Guern	1 10 0 0 1 3	0.4 4.1 0.0 0.0 0.4 1.2 0.0	30 6 39 38 31 21 40
Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky	0 4 2 2 8	0.0 0.0 1.6 0.8 0.0 0.8 0.0 0.8 2.5	41 43 16 24 42 25 12
Louisians Maine Maryland Massachusetts Michigan Minnesota Mississing	4 3 1 6 9 2	1.6 1.2 0.4 2.5 3.7 0.8	17 22 32 13 7 26
Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico	4 0 2 1 8 0	1.8 0.0 0.8 0.0 0.4 3.3 0.0	27 19 44 27 47 35 9 48
New York North Carolina North Dekota Ohio Oklahoma Oregon Pennsylvania	7 1 22 4 4 34*	2.9 0.4 9.1 1.8 0.0 14.0	10 34 45 3 19 48 2
Puerto Rico Rhode Island South Carolina South Dakota Tennessee Taxas Utah	0 5 9 0 5 7	0.0 2.1 3.7 0.0 2.1 29 0.4	49 14 8 50 15 11 36
Vermont Virgin Island Virginis Washington West Virginia Wisconsin Wooming	0 0 11 2 11 0	0.0 0.0 0.0 4.5 0.8 4.5 0.0	53 52 51 4 28 5 5
Total	243	100.0	

Chart 7.5-4 Number of Facilities Managing Hazardous Waste in Other Recovery Processes by State in 1985

ź

Source: TT-140 (126), GG-170 (GH3), TT-14011 (126)

124____

Chart 7.5-5 shows the regulatory status of facilities that operated other recovery processes. The chart shows the numbers of facilities that managed hazardous waste in other recovery processes and were subject to RCRApermitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' recovery operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRA-permitting requirements.

Chart 7.5-5	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Other Recycling
	Processes in 1986

RCRA-Permitting Status	Number of Facilities	Quantity Managed In Other Recycling (million tons)
Exempt from permitting requirements ^a	173	0.22
Subject to permitting requirements ^b	70	0.75
Total	243	0.96

^a Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements.

^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements. Source: TT-140 (I26), GG-170, TT-140II (I26)

.

(This page is intentionally blank)

.

8 HAZARDOUS WASTE MANAGEMENT METHODS: TREATMENT

Regulations promulgated under RCRA, the Clean Water Act, and the Toxic Substances Control Act prescribe treatment standards that must be met prior to disposal or release of a hazardous waste into the environment. This chapter summarizes data on hazardous waste treatment activities. As with recycling (Chapter 7), some of the data reported in the Generator and TSDR Surveys are process-specific. For waste treatment activities that are typically sequential (i.e., a single waste is treated sequentially in several different processes), aggregating process-specific data is not appropriate.

8.1 INCINERATION

Hazardous wastes are sometimes incinerated to break down hazardous constituents into less hazardous components. In 1986, 197 facilities incinerated 1.09 million tons of hazardous waste.

Charts 8.1-1 and 8.1-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in incinerators in each EPA region in 1986. Charts 8.1-3 and 8.1-4 show the same information for each state or territory.

11 8

· · .

÷.

Chart 8.1-1 Quantity of Hazardous Waste Managed in Incinerators per EPA Region in 1986 (in million tons)

Source: TT-140 (B3)

1986 Hazardous Waste Generation and Management

Chart 8.1-2 Number of Facilities Managing Hazardous Waste in Incinerators per EPA Region in 1986

129

· · .

State	Quantity Managed	Percentage of	State
Alabama			25
Alaska	0.00	0.0	41
Arizona	<0.01*	<0.1 ^b	37
Arkansas	0.08	7.2	4
California	0.01	0.7	21
Colorado	c0 .01*	<0.1 ⁹	40
Connecticut	0.02	1.7	19
	<0.01	⊲ 0 .1°	31
	0.00	0.0	42
Georgia	<0.01-	1.2	17 17
Guam	0.01	1,5	42
Hawaii	0.00	6.0	72
klaho	<0.01	<0.1 ^b	35
Illinois	0.04	3.9	6
Indiana	0.17	15.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
lowa	~0.01 *	02	28
Kansas	<0.01ª	0.3	27
Kentucky	0.01	0.7	22
	0.05	/ .	AE
Manlend	0.00	0.0	43
Massachusatte	0.01	0.6	24
Michigan	0.01	1.3	16
Minnesota	0.03	2.4	12
Miasiasipol	-0.01*	<u>a</u> .14	38
Missouri	0.03	25	11
Montana	0.00	0.0	46
Nobraska	0.00	0.0	47
Novada	d.01	<0.1 ^e	36
New Hampshire	0.00	0.0	48
New Jersey	0.03	3.0	8
New Wextee	0.00		49
North Camilina	0.05		19
North Dakota	-0.01	0.0 0.1	30.000
Ohio	0.02	17	
Oklahoma	-0.01*	-0.1Þ	32
Oregon	⊲0.01*	<0.1¢	39
Pennsylvania	0.01	L I	18
Puerto Rico	0.03	2.6	10
Rhode Island	0.00	0.0	50
South Carolina	0.04	3.3	7
South Dakota	0.00	0.0	51
	U.U3	2.7	9 Na sa
I UXEE	U.34	30.8	
Vermont	KUUI	₩,37 0 0	
Vinia laind	6.00	6 0	· · · · · · · · · · · · · · · · · · ·
Viminia	0.04	07	20
Washington	<0.01€		33 Statement of Party Statements
West Virginia	0.01	1.3	15
Wisconsin	<0.01*	0.4	26
Wyoming	0.00	0.0	54
Total	1 09	100.0	

Chart 8.1-3 Quantity of Hazardous Waste Incinerated by State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (B3)

State	Number of BCRA TSDB Facilities	Percentage of RCRA TSDR Facilities	State Bank
Alabama	7	3.6	13
Alaska Arizona	0 1	0.0	42 38
Arkansas	5	2.5	16
Colorado	8 1	4.1 ************************************	7 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Connecticut	1	0.5	35
District of Columbia	2	1.0	28 43
Florida	Ż	10	27
Georgia Guam	2	1.0	24
Hawaii	0	0.0	45
llinois	2 7	1.0 3.6	32 10
Indiana		3.6	
lowa Kanasa	3	1.5 4 c	21 20
Kentucky	Ö	4.1	8
Louisiana Maine	126.0000.0000.0000.0000.00000.00000.000000		2 46
Maryland	3	1.5	19
Massachusetts Michigan	2	1.0	26
Minnesota	1	0.5	34
Mississippi Missouri		05	39
Mortana	õ	0.0	47
Nebraska	9	0.0	48 97
New Hampshire	0	0.0	49
New Jersey	8	4.1	5
New York	10	5.1	4
North Carolina	6 	3.0	15.
Ohio	1	5.8	
Oklahoma	2	10	29
Pennsvivania			33
Puerto Rico	7	3.6	12
South Carolina	7	0.0 3.6	50 11
South Dakota	0	0.0	51
Teras	2 31	1.0 157	22
Utah	2	10	31
Vermont Vertic Island	0	0.0	53 52
Virginia		1.0	25
Washington West Viminia	2	1.0	30 17
Wisconsin	4	2.0	18
Wyoming	0	0.0	54
Total	197	100.0	

Chart 8.1-4 Number of Facilities Incinerating Hazardous Waste by State in 1986

Source: TT-140 (83)

.

Chart 8.1-5 shows the types of incinerators that were operated in 1986. For each type of incinerator, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of incinerator.

ź

Type of Incinerator	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilities	Percentage of Facilitie s
Liquid Injection	0.65	59.4	99	50.3
Rotary Kiln with Liquid Injection	0.30	28 0	21	10.7
Multiple Hearth	0.03	3.1	6	3.0
Undisclosed	0.02	2.2	11	5.6
Rotary Kiln	0.02	1.9	23	11.7
Fixed Hearth	0.02	1.7	17	8.6
Pyrolytic Destructor	0.02	1.7	7	3.6
Fluidized Bed	0.01	1.3	7	3.6
Other	0.01	1.1	15	7.6
Two Stage	<0.01	0.1	17	8.6
Fume/Vapor	<0.01	<0.1	2	1.0
Total	1.09	100.0	197	100.0

Chart 8.1-5 Types of incinerators and Quantity Managed in 1986

Source: TT-141 (B4, B17A)

8.2 SOLIDIFICATION

Hazardous wastes are often solidified or encapsulated to prevent hazardous constituents from entering the environment during land disposal. In 1986, 122 facilities solidified 0.77 million tons of hazardous waste.

Charts 8.2-1 and 8.2-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in solidification processes in each EPA region in 1986. Charts 8.2-3 and 8.2-4 show the same information for each state or territory.

÷

1986 Hazardous Waste Generation and Management

134

••..

Source: TT-140 (E3)

Chart 8.2-2 Number of Facilities Managing Hazardous Waste in Solidification Processes per EPA Region in 1986

Source: TT-140 (E3)

8. Hazardous Waste Management Methods: Treatment

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Alabama	0.05	6.2	6
Alaska	0.00	0.0	33
Anzona	0.00	0.0	34
Arkansas Colifornia	0.02	2.2	11
Coloredo			
Connecticut	CO.U	42	23 14
Defawate	0.01	ά	
District of Columbia	0.00	00	35
Florida	0.00	0.0	37
Georgia	0.02	2.2	10
Guan	0.00	0.0	38
Hawaii	0.00	0.0	39
klaho	<0.01	<0.1 ^b	32
Illinois	0.13	16.3	2
Indiana	<0.01ª	<0.1 ^B	영양 방법 등 31 5월 2007
bwa	0.00	0.0	40
Kansas	0.00	0.0	
Kentucky	<0.01-	<0.1*	SQ.
Maioo	-0.018	4. A	
Marviend	~0.01	0.1-	10
Massachunette	0.00	0.0	42
Michigan	0.10	13.2	3
Minnesota	<0.01	0.1	27
Mississippi	<0.01	0.2	25
Missour	0.00	0,0	43
Montana	0.00	0.0	44
Nebraska	0,00	0.0*	48
Nevada	0.00	0.0	48
New Hampshire	<0.01	0.5	20
New Jersey	0.02	2.6	9
New Mexico	0.00	0.0	47
New York	0.01	1.3	14
	<0.01=		21 • • • • • • • • • • • • • • • • • • •
	V.00	0.0	**************************************
Otleheme	9.00 A At	· · · · · · · · · · · · · · · · · · ·	1997 - 1997 -
Oreana	-0.018	14 n 1	98
Peonedrania	004	10	4 7
Puerto Rico	0.00	0.0	49
Rhode Island	0.00	0.0	50
South Carolina	0.13	16.8	1
South Dakota	0.00	0.0	51
Tennessee	<0.01	<0.1 ^b	28
Texes	0.09	115	
Utah .	0.01	1.1	18
Vermont	0.00	0.0	53
Virgin Island	0.00	0.0	52
Virginia	d.Q1	0.3	24
Washington	0.01	1.0	17
West Virginia	0.00	0.0	54
Wisconsin	<0.01	0.3	22
Wyoming	0.01	0.7	18
Total	0.77	100.0	

2

Chart 8.2-3 Quantity of Hazardous Waste Managed in Solidification by State In 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states; Source: TT-140 (E3)

<u>136</u>

	State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Bank
	Alabama Alaska	2	1.6	17 35
	Arizona Arkansas	0	0.0	36
	California Colorada	.	5.7 5.7	20 5 ************
	Connecticut	4	3.3	10
	District of Columbia	0	0.0 0.0	38 37
Ń	Florida Georgia	0 3	0.0 2.5	39 13
	Guam	Ō	Ú.O	40
	klano	2	1.6	24
	indian a	6 2	4.9 1.68883334335	23 - E T
	lowa Kansaa	0 C	0.0 0.0	42 43
	Kentucky Louisians	3 5	25 41	16
	Maine Manland	1	0.8	32 8
	Massachusette	0	4. 9 0.0	8 44
	Michigan Minnesota	3 2	2.5 1.6	12 22
	Missiasippi Missouri	1 6	0.8 0 0	31
	Montana	ō	0.0	46
	Nevade	ŏ	0.0	49
	New Hampshire New Jersey	10 2	8.2 1.6	3 18
	New Mexico New York	1 3	0.8 2.5	33 14
	North Carolina North Datate	1	0.8	29 47
	Ohio	12	9.8	2
	Oregon	2	u.a 1.6	20 21
:	Pennsylvania Puerto Rico	2	5.7 0.8	34
	Rhode Island	0	0.0	50
	South Dakota	ő	0.0	51
• •	Texas		2.5 11 .5	
	Utah Vermont	1	8.0 0.0	27 53
÷	Virgin Island	0	0.0 1.8	52 20
	Washington	an in an	5.7	6 6
	Wisconsin	1	0.8	- 54 30
	Wyoming	1	0.8	28

Chart 8.2-4 Number of Facilities Managing Hazardous Waste In Solidification Processes by State in 1988:

÷

Source: TT-140 (E3)

÷'

Chart 8.2-5 shows the types of solidification processes operated in 1986. For each type of solidification process, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of solidification process.

Solidification Type	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilitie s	Percentage of Facilities
Pozzolonic	0.45	59.0	53	43.4
Cement or Cement/Silicate	0.12	16.0	65	53.3
Other	0.03	4.0	10	8.2
Jacketing	<0.01	0.4	4	3.3
Undisclosed	<0.01	0.1	5	4.1
Organic Polymer	<0.01	<0.1	2	1.6
Asphaltic	0.00	0.0	1	0.8
Thermoplastic	0.00	0.0	1	0.8
Unknown	0.17	20.5		-
Total	0.77	100.0	122 ª	100.0 ^a

Chart 8.2-5	Types of	Solidification	Processes and	Quantit	y Managed In	1986
-------------	----------	----------------	---------------	---------	--------------	------

^a A single facility may have more than one type of solidification process. Therefore, adding the number of facilities with each type of process results in double-counting. The number shown is the total number of facilities with solidification processes without double-counting.

Source: TT-141 (E4, E21a)

8.3 WASTEWATER TREATMENT

Wastewater treatment is the most common hazardous waste treatment activity. Generally, wastewater treatment is regulated by the Clean Water Act and does not require a RCRA permit. In 1986, 4,399 facilities managed 731.98 million tons of hazardous waste (98 percent of all hazardous waste generated) in wastewater treatment processes.

Charts 8.3-1 and 8.3-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in wastewater treatment processes in each EPA region in 1986. Charts 8.3-3 and 8.3-4 show the same information for each state or territory.

12.5

Chart 8.3-1 Quantity of Hazardous Waste Managed in Wastewater Treatment Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (H3), GG-170 (GE3), TT-140II (H3)

1986 Hazardous Waste Generation and Management

Chart 8.3-2 Number of Facilities Managing Hazardous Waste in Wastewater Treatment Processes per EPA Region in 1986

Source: TT-140 (H3), GG-170 (GE3), TT-140II (H3)

141

· · .

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Alabama	9.18	1.3	18
Alaska Arizona	<0.01= 7.12	<0.1 ⁰ 1.0	20
Arkansas	1.99	0.3	35
California Colorado	70.29 1 86	9.6 • • • • • • • • • • • • • • • • • • •	3 2011-01-020-020-020-020-020-020-020-020-
Connecticut	14.14	1.9	15
Delaware District of Columbia	1.43	0.2	40
Florida	5.14	0.7	52 25
Georgia	16.92	2.3	13
Guam Hawaii	0.00	0.0 ⊲0 1 ⁶	53 48
Idaho	1.98	0.3	37
lilinois Iodiana	35.71 18 04	4.9 • • • • • • • • • • • • • • • • • • •	8 11. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14
lowa	2.11	0.3	34
Kansaş	1.86	0.3	38
Louisians	16.63	23 17	14 17
Maine	13.32	1.8	16
Maryland Massachusette	3.95	0.5	28
Massacrusetta Michigan	53.90	7.4	4
Minnesota	3.36	0.5	30
Missouri	4.59 8 30	0.6	27 ÷
Montana	-0.01	<0.1 [#]	48
Nebraska	0.77	0.1	44
New Hampshire	4.77	0.7	4 4 26
New Jersey	83.12	11.4	2
New Mexico New York	0.80	0.1 4 9	43 7
North Carolina	3.07	0.4	31
North Dakota	0.09	40.1	45
Okiahoma	3238	6.4 03	33
Oregan	0.89	0.1 . · · · ·	42
Pennsylvania Runda Rica	49.51	6.8	6
Rhode Island	5.79	0.8	23
South Carolina	6.12	0.8	21
South Dakota	<0.01= 24.80	<0.1° 3 4	49 11
Texas	88.44	12.1	
Utah	2.94		32
Vermont Vimio kland	0.96		419 (1997) 54 (1997)
Virginia	37.59	51	
Washington	3.57	0.5	29
west virginia Wisconsin	31.10 5.25	4.3 0.7	10 24
Wyoming	0.00	0.0	51
Total	731.98	100.0	

÷

Chart 8.3-3 Quantity of Hazardous Waste Managed in Wastewater Treatment Processes by State in 1986

^aLess than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1988 was generated in these states. Source: TT-140 (H3), GG-170 (GE3), TT-140II (H3)

Alabana 0 18 18 17 Alabana 1 0.0 49 Atasta 61 1.4 23 Arkanas 32 0.7 32 Calfornia 625 14.2 33 Connecticut 187 0.3 42 Delaware 11 0.3 42 Connecticut 187 0.3 42 Delaware 0 0.3 42 Connecticut 187 0.3 42 Delaware 0 0.3 42 Connecticut 11 0.3 42 Delaware 0 0.3 42 Georgia 234 0.3 53 Gauma 0 0.3 42 Indiana 11 28 11 Jowara 49 1.3 34 Indiana 11 28 11 Jowara 49 1.3 37 Jayard 47 1.1 28 Kanase 11 28 </th <th>State</th> <th>Number of RCRA TSDR Facilities</th> <th>Percentage of BCBA TSDR Facilities</th> <th>State Bank</th>	State	Number of RCRA TSDR Facilities	Percentage of BCBA TSDR Facilities	State Bank
Alaska 1 0.0 49 Arizona 61 1.4 23 Arizona 62 0.7 32 Calfornia 625 14.2 1 Connectort 127 0.3 33 Delaware 11 0.3 42 Disfret of Columbia 0 0.0 52 Porida 66 1.5 21 Gaorgia 66 1.5 21 Gaum 0 0.0 53 Hawaii 3 0.1 46 Ilinois 234 5.3 5 Indiana 114 2.6 11 Kansas 27 0.6 36 Kansas 27 0.6 36 Kansas 27 0.6 36 Kansas 27 0.6 36 Kansas 21 1.1 28 Maisachusetts 215 4.9 6 Minecota 95 22 15 Massachusetts 215 4.9	Alabama	81	1.8	17
Automas 02 1.4 02 California 625 14.2 13 Colorado 21 147 4.3 .4 Distavina 625 14.2 13 Connecticut 107 4.3 .4 Distavina 0 0.0 52 Ponda 0 0.0 52 Georgia 66 1.5 21 Gaum 0 0.0 53 Hawail 3 0.1 44 Ilinois 234 5.3 5 Indiana 114 2.8 11 Kansas 27 0.6 36 Kansas 27 0.6 36 Kentucky 67 1.5 19 Louisiane 21 0.5 37 Maine 22 0.6 <	Alaska	1	0.0	49
Galifornia 625 142 1 Colorado 197 0 33 Connecticut 197 0 0 District of Columbia 0 0 0 Conrado 22 0 52 Piorida 66 1.5 21 Gauran 0 0.0 53 Hawail 3 0.1 46 Itabo 6 0.1 46 Itaba 24 5.3 5 Indiana 14 2.8 11 Indiana 14 2.8 11 Kansas 27 0.6 36 Kansas 27 0.6 36 Kansas 27 0.5 37 Maire 22 0.5 37 Marine 22 0.5 37 Marine 22 0.5 37 Marine 22 1.5 4.9 Masachusetts 215 4.9 6 Minesoit 23 3.5 10 </th <th>Arkansas</th> <th>32</th> <th>0.7</th> <th>23</th>	Arkansas	32	0.7	23
Coloradoi 21 U.5. 39 Connacticut 187. 4.3 8 Delsvist of Columbia 0 0.00 52 Forifa 108 2.5 12 Georgia 66 1.5 21 Guam 0 0.0 53 Hawaii 3 0.1 46 Haho 6 0.1 46 Hawaii 3 0.1 46 Habo 6 0.1 46 Hawaii 3 0.1 46 Habo 6 0.1 46 Kansas 67 0.5 36 Colistanc 49 11 28 Marine 22 0.5 37 Marine 210 4.8 7 Michigan 210 4.8 7 Missiacippi 33 12 26 Missiacippi 33 12 26 New Jors <t< th=""><th>California</th><th>625</th><th>14.2</th><th>1</th></t<>	California	625	14.2	1
Connecticut 187 4.3 6 Distivation 0 0.0 52 Forida 0 0.0 52 Gaorgia 66 1.5 21 Gaorgia 66 1.5 21 Gaorgia 0 0.0 53 Hawail 3 0.1 46 Itabo 6 0.1 44 Illinois 224 5.3 5 Indiana 114 2.8 11 lows 64 1.1 28 Kanzusky 67 1.5 18 Louislanc 49 1.1 27 Maire 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Minneacta 95 2.2 15 Massachusetts 23 0.0 48 New Janza 2 0.0 47 New Jansethis	Colorado	21	0.5	·
District of Columbia 0 0.3 52 Piorida 108 12 12 Gaergia 66 11 46 Hawail 3 0.1 46 Hawail 22 5 11 Indiana 114 28 11 Iowa 48 11 28 Kansas 27 0.6 36 Louislang 49 1.1 29 Marjand 47 1.1 29 Marjan 210 4.8 7 Minneona 95 22 15 Missiasippi 33 3.5 10 Missiasippi 53 1.2 28 New Hampshine 53 1.2 28 New York	Delaware	147	4.3	8
Fondse 22 22 22 Georgia 68 1.5 21 Guam 0 0.0 53 Havail 3 0.1 44 Illinois 234 5.3 5 Indiana 114 26 11 lowa 44 1.1 28 Kansas 27 0.6 33 Kansas 27 0.6 37 Kansas 28 37 39 Kansas 215 4.9 6 Maine 22 0.5 37 Massachusetts 215 4.9 6 Minneaota 95 22 15 Mississipp 33 1.2 0.3 Mississipp 33 1.2 26 New Jarsaka 22 0.5 38 New Jarsaka 22 0.5 38 New Jarsaka 23 9 33 New Jarsaka	District of Columbia	11 0	0.0	6 6 6 6
Georgia 66 1.5 21 Guam 0 0.0 53 Havaii 3 0.1 48 Indiana 114 2.6 11 Indiana 114 2.6 11 Indiana 114 2.6 11 Indiana 114 2.6 11 Kawa 48 1.1 28 Kartucky; 67 1.5 19; Louisiana 49 1.1 28 Maine 22 0.5 37 Mayland 47 1.1 29 Massachusets 215 4.9 6 Michigan 210 4.8 7 Massachusets 215 4.9 6 Michigan 210 4.8 18 Massachusets 22 15 18 Massachusets 22 0.6 38 New Marsay 153 35 10 New J	Florida	108	2.5	12
Guann 0 0.0 53 Hawaii 3 0.1 46 Idaho 6 0.1 44 Ilinois 234 53 5 Indiana 114 2,8 11 twa 48 1.1 28 Karsas 27 0.6 36 Karsas 27 1.5 19 Louislana 49 1.1 27 Mariane 22 0.5 37 Mariane 22 0.5 37 Mariane 22 0.5 37 Massachusetts 215 4.9 6 Minneexita 95 22 15 Massinsippi 33 0.3 38 38 Netraste 2 0.05 39 39 Nevata 6 0.1 45 39 Nevatas 6 0.1 45 39 Nevatas 6 0.1	Georgia	66	1.5	21
riawali 3 0.1 45 Itaho 6 0.1 44 Illinois 234 5.3 5 Indiana 114 26 11 lowa 48 1.1 28 Kansas 27 0.8 36 Kansas 22 0.5 37 Louisiana 49 1.1 27 Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Minnesota 95 22 15 Mississippe 33 0.8 38 Montaria 20 0.0 47 Newata 22 0.6 38 Newata 22 0.6 38 Montaria 22 0.0 47 Newata 22 0.6 38 Newata 22 0.6 38 Newata 22 0.6 47 Newata 22 0.6 47 Newata 22 0.6 47 Newata 23 35 10 New Jarsey 13 35 10 <tr< th=""><th>Guam</th><th>0</th><th>0.0</th><th>53</th></tr<>	Guam	0	0.0	53
linois 234 53 5 Indiana: 114 2.6 11 kwa 44 1.1 28 Kansas 27 0.6 36 Kantucky: 67 1.5 19 Louisiana: 49 1.1 27 Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Michigan 210 4.8 7 Minseenta 95 2.2 15 Missachippe 33 0.8 31 Missachippe 33 1.2 26 New tarse 2 0.6 38 New tarse 2 0.6 38 New tarse 2 0.6 38 New tarse 2 0.0 445 New tarse 2 0.0 448 New tarse 2 0.0 448 New	ktabo	Б	0.1	40 44
Indiane 114 2.6 11 lowa 49 1.1 28 Kansas 27 0.6 36 Kansas 27 0.6 36 Louistana 49 1.1 27 Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Minnesota 95 2.2 15 Missourt 80 1.8 7 Montania 2 0.6 38 Nevatias 9 6 45 Nevatias 9 0.1 45 New Jersey 153 3.5 10 New Vork 187 4.3 9 Neth Datota 2 0.0 445 New York 187 4.3 9 Neth Datota 2 0.0 445 New York 187 4.3 9 Neth Datota 2 0.0 445 New York 187 4.3	Illinois	234	5.3	5
lows 46 1.1 28 Kansas 27 0.6 36 Kentucky 67 1.5 19 Louisiana 49 1.1 27 Maine 22 0.5 37 Massachusetts 215 4.9 6 Minneaota 95 2.2 15 Missasippi 33 0.3 31 Minneaota 95 2.2 15 Missasippi 33 0.3 31 Missasippi 33 0.3 31 Missasippi 33 0.3 31 Mostrasta 22 0.6 38 Nevraia 2 0.0 47 Nevraia 2 0.0 47 Nev Jarse 33 1.2 26 New Jarsey 153 3.5 10 New Vark 167 4.3 9 North Carolina 105 2.4 13	Indiana	14	2.6	
Arrasas 27 0.6 36 Kentucky 67 1.5 19 Louisianas 49 1.1 27 Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Michigan 210 4.8 7 Minneaota 95 2.2 15 Missauppi 33 0.8 31 Missauini 80 1.8 31 Missauini 20 0.6 47 Nabrasta 22 0.6 38 Newtara 2 0.6 34 Newtara 2 0.6 45 New Hampshire 5.3 1.2 26 New Vark 167 4.3 9 New Vark 167 4.3 9 New Vark 167 4.3 9 Netrasta 2 0.0 48 New Vark 167 4.3 9 Nethampshire 3.3	lowa	48	11	28
Numery 01 12 14 Louisiana 49 11 27 Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetts 215 4.9 6 Michigan 210 4.8 7 Minneecta 95 2.2 15 Missasippi 33 0.8 31 Missasippi 33 0.8 31 Montaria 2 0.0 47 Nevraita 2 0.6 47 Netrasta 22 0.6 38 Nevraita 2 0.0 47 Nevraita 2 0.0 47 New Jersey 153 1.2 26 New Vark 187 4.3 9 North Carolina 105 2.4 13 New York 187 4.3 9 North Carolina 105 2.4 13	Kontunine	27 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	0.6	36
Maine 22 0.5 37 Maryland 47 1.1 29 Massachusetis 215 4.9 6 Michigan 210 4.8 7 Minnesota 95 2.2 15 Mississippi 33 0.3 31 Mississouri 80 1.9 18 Montaria 2 0.0 47 Nebraska 22 0.6 38 Nev Hampshire 53 1.2 26 New Jersey 153 3.5 10 New Maxico 7 0.2 43 North Carolina 105 2.4 13 Oridatama 253 5.4 3 Oridatama 302 6.9 2	Louisiana			27
Maryland 47 1.1 29 Massachusetts 215 4.9 6 Michigan 210 4.8 7 Minneeota 95 2.2 15 Missiasippi 33 0.8 31 Missouri 80 1.8 18 Montaria 2 0.0 47 Nevada 6 0.1 45 Nevada 6 0.1 45 New Hampshire 53 1.2 26 New Mexico 7 0.2 43 New York 187 4.3 9 North Caolina 105 2.4 13 North Datota 2 0.0 48 Ohio 253 5.8 3 Oragon 31 0.7 34 Pennaytvaria 302 6.9 2 Pento Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 Vermont 14 <th>Maine</th> <th>22</th> <th>0.5</th> <th>37</th>	Maine	22	0.5	37
Massachusetts 215 4.9 6 Michigan 210 4.8 7 Minneexta 95 2.2 15 Missisaippi 33 0.8 31 Missisaippi 33 0.8 31 Missisaippi 33 0.8 31 Missisaippi 33 0.8 31 Montaria 2 0.0 47 Nebraska 22 0.6 38 Nevata 8 0.1 45 New Hampshire 53 1.2 26 New Jersey 153 3.5 10 New Maxico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Datota 25 5.8 33 Oklahoma 31 0.7 33 Oklahoma 31 0.7 34 Peunsykrania 302 6.9 2 Puento Rico 31 0.7 35 Rinde Island </th <th>Maryland</th> <th>47</th> <th>1.1</th> <th>29</th>	Maryland	47	1.1	29
Minnesota 95 22 15 Mississippi 33 0.8 31 Montaria 2 0.0 47 Nebraskæ 22 0.6 38 Newata 6 0.1 45 New Hansehire 53 1.2 26 New Jersey 153 3.5 10 New Mexico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Datota 25 5.8 3 Okia corolina 105 2.4 13 Oragon 31 0.7 33 Oragon 31 0.7 35 Puento Rico 31 0.7 35 <	Massachusetts	215	4.9	6
Mississippi 33 22 13 Mississippi 33 0.8 31 Mississippi 33 0.8 31 Mississippi 33 0.8 31 Montana 2 0.6 38 Montana 2 0.6 38 Nevrais 2 0.6 38 New Jarsey 53 1.2 26 New Marsey 153 3.5 10 New Mexico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Carolina 105 2.4 13 Ohio 253 5.8 3 Oragon 31 0.7 33 Orkio 253 5.8 3 Okiahoma 31 0.7 34 Pennsylvania 302 6.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Virginia	Michigan Minnerota	210	4.8	7
Missouri 80 1.8 18 Montaria 2 0.0 47 Nebrasica 22 0.5 38 New Jarsey 23 1.2 26 New Hampshire 53 1.2 26 New Jersey 153 3.5 10 New Mextoo 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Dakota 25 5.8 3 Ohio 253 5.8 3 Ohio 253 5.8 3 Ortic arolina 302 8.3 2 Puerto Rico 31 0.7 35 Puerto Rico 31 0.7 35 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 67 2.1 16 Texus 247 5.8 4	Mississipol	33		3
Montaria 2 0.0 47 Nebraska 22 0.6 38 Nevalia 6 0.1 45 New Jersey 153 3.5 10 New Mexico 7 0.2 43 New Mexico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Carolina 105 2.4 13 Ohio 253 5.8 3 Okahoma 253 5.8 3 Okahoma 31 0.7 33 Oregon 31 0.7 35 Puento Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 16 Texus 247 5.5 4	Missouri	80	1.8	18
Nevratia 22 0.5 38 New dampshire 53 1.2 26 New Jersey 153 3.5 10 New Maxico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Carolina 105 2.4 13 North Carolina 31 0.7 33 Ohio 253 5.8 3 Ohio 253 5.8 3 Oregon 31 0.7 34 Pennsylvaria 302 6.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 16 Texta 14 0.3 41 Virgin Island 0 0.9 30	Montaria	2	0.0	47
New Hampshire 53 1.2 45 New Jersey 153 3.5 10 New Mexico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Dakota 2 0.0 48 Ohio 253 5.8 3 Okahoma 31 0.7 34 Pennsylvaria 302 6.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Texts 247 5.6 4 Utah 19 0.4 40 Vermont 14 0.3 24 Virginia 67 1.5 20 <th>Nebrasica</th> <th>22</th> <th>0.6</th> <th>38</th>	Nebrasica	22	0.6	38
New Hearbor 55 12 25 New Mexico 7 0.2 43 New York 187 4.3 9 North Carolina 105 2.4 13 North Carolina 105 2.4 13 North Carolina 2 0.0 48 Ohlo 253 5.8 3 Oklahoma 2 0.0 48 Ohlo 253 5.8 3 Oklahoma 2 0.0 48 Oklahoma 31 0.7 33 Oregon 31 0.7 35 Puento Rico 31 0.7 35 Puento Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 19 0.4 40 Vermont 14 0.3 41	New Hernebire	59 59	0.1 1 2	45
New Mexico 7 0.2 43 New York 167 4.3 9 North Carolina 105 2.4 13 North Dakota 2 0.0 48 Ohio 253 5.8 3 Oklahoma 31 0.7 33 Oragon 33 0.7 34 Pennsylvania 302 8.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Texas 247 5.5 4 Vermont 14 0.3 41 Virgin Island 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14	New Jersev	153	3.5	10
New York 187 4.3 9 North Carolina 105 2.4 13 North Datota 2 0.0 48 Ohio 253 5.8 3 Oklahoma 31 0.7 33 Oragon 31 0.7 34 Pennayhvania 302 6.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 1 0.0 50 Tennessee 91 2.1 16 Texas 247 5.8 4 Utah 19 0.4 40 Virgin Island 0 0 54 Virginia 67 1.5 20 Washington 58 1.3 25	New Mexico	7	0.2	43
North Carolina 105 2.4 13 North Dakota 2 0.0 48 Ohio 253 5.8 3 Oklahoma 31 0.7 33 Oregon 31 0.7 34 Pennsylvania 302 6.9 2 Puento Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 16 Taxas 247 5.8 4 Utah 19 0.4 40 Vermont 14 0.3 24 Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30	New York	187	4.3	9
North Dato 2 0.0 48 Ohio 253 5.8 3 Oklahoma 31 0.7 33 Oregon 31 0.7 34 Parnay/vania 302 8.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Textas 247 5.6 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virgin Island 67 1.5 20 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	North Carolina North Carolina	105	2.4	13 Final - Constant - Cons
Oklahoma 31 0.7 33 Oragon 31 0.7 34 Pernasylvania 302 8.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Textas 247 5.8 4 Utah 19 0.4 40 Virgin Island 0 0.3 41 Virgin Island 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Obio	253	U.U 5.A	(1995년) 2월 1993년 1994년 1998년 1997년 199 1998년 1997년 199
Oragon 31 0.7 34 Pernasylvania 302 8.9 2 Puerto Rico 31 0.7 35 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Texas 247 5.8 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Oklahoma	31	0.7	2
Pennsylvania 302 8.9 2 Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Texes 247 5.8 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Oragon	31	0.7	34
Puerto Rico 31 0.7 35 Rhode Island 61 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Texas 247 5.5 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Pennsylvania	302	6.9	2000
Impose of 1.4 24 South Carolina 65 1.5 22 South Dakota 1 0.0 50 Tennessee 91 2.1 18 Textas 247 5.5 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Puerto Rico Diada Jaland	31	0.7	35
South Dakota 1 0.0 50 Tennessee 91 2.1 18 Textas 247 5.5 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 87 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	South Carolina	01 85	1.4	24
Tennessee 91 2.1 16 Texas 247 5.5 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 87 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	South Dakota	1	0.0	50
Texas 247 5.6 4 Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 87 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Tennessee	91	2.1	16
Utah 19 0.4 40 Vermont 14 0.3 41 Virgin Island 0 0.0 54 Virginia 87 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Texas	247	5.6	
Vermon: 14 0.3 41 Virgin Island 0 0.0 54 Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Utah	19	0.4	40
Virginia 67 1.5 20 Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Vermont Vimin Jeland		U.3	4
Washington 58 1.3 25 West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Vicinia	87	STATES STATES	20
West Virginia 40 0.9 30 Wisconsin 104 2.4 14 Wyoming 1 0.0 51	Washington	58	1.3	25
Wisconsin 104 2.4 14 Wyoming 1 0.0 51	West Virginia	40	0.9	30
vyyoming 1 0.0 51	Wisconsin	104	2.4	14
		4 200	100.0	51

Chart 8.3-4 Number of Facilities Managing Hazardous Waste in Wastewater Treatment Processes by State in 1986

Source: TT-140 (H3), GG-170 (GE3), TT-140II (H3)

÷

Chart 8.3-5 shows the types of wastewater treatment processes operated in 1986. For each type of process, the chart shows the quantity of hazardous waste managed and the number of facilities operating that type of process.

Type of Wastewater Treatment Process	Quantity Managed (million tons)	Percentage of Total Quantity Managed	Number of Facilit ies	Percentage of Facilities
Chemical Precipitation	329.94	45.1	2,121	48.2
Equalization	238.33	32.6	971	22.1
Biological Treatment	200.60	27.4	173	3.9
Filtration	133.97	18.3	709	16.1
Oil Skimming	119.49	16.3	585	13.3
Adsorption	77.26	10.6	292	6.6
Sludge Dewatering	73.23	10.0	1,929	43.9
Chromium Reduction	52.47	7.2	1,354	30. 8
Air Flotation	30.34	4.1	111	2.5
General Oxidation	25.76	3.5	202	4.6
Unknown	20.53	2.8	197	4.5
Stripping	13. 93	1.9	127	2.9
Cynide Oxidation	12.56	1.7	707	16.1
Complexed Metals Treatment	9.35	1.3	275	6.2
Other Liquid Phase Separation	8.64	1.2	309	7.0
Emulsion Breaking	8.32	1.1	188	4.3
Evaporation	7.04	1.0	195	4.4
Total	731.98ª	100.0 ^ª	4,399 ^b	100.0 ^b

Chart 8.3-5 1	ypes of Wastewater	Treatment Processes and Quantil	y Managed In 1986
---------------	--------------------	---------------------------------	-------------------

^a A single waste may be managed in more than one wastewater treatment process. Therefore, adding the quantities managed in each type of process results in double-counting. The number shown is the total quantity managed in wastewater treatment processes without double-counting.

^b A single facility may have more than one type of wastewater treatment process. Therefore, adding the number of facilities with each type of process results in double-counting. The number shown is the total number of facilities with wastewater treatment processes without double-counting.

Source: TG-045 (H4, H21, GE4, GE17)

Chart 8.3-6 shows the regulatory status of facilities that manage hazardous waste in wastewater treatment processes. The chart shows the numbers of facilities that operated wastewater treatment processes and were subject to RCRA-permitting requirements or exempt from RCRA-permitting requirements. The chart does *not* refer to the permitting status of the facilities' wastewater treatment operations. Instead, the chart indicates whether *any* operation at the facility is subject to RCRA-permitting requirements.

Chart 8.3-6	RCRA-Permitting Status of Facilities Managing Hazardous Waste in Wastewater	
	Treatment Processes in 1986	

RCRA-Permitting Status	Number of Facilities	Quantity Managed In Wastewater Treatment (million tons)
Exempt from permitting requirements ^a	3,323	266.21
Subject to permitting requirements ^b	1,076	465.77
Total	4,399	731.98

^a Facilities managing hazardous waste only in units exempt from RCRA-permitting requirements.
 ^b Facilities managing hazardous waste in at least one unit subject to RCRA-permitting requirements.
 Source: TT-140 (H3), GG-170, TT-140II (H3)

Facilities can conduct wastewater treatment in tanks, surface impoundments, or both. Generally, surface impoundments are subject to RCRA-permitting requirements but tanks can be subject to or exempt from RCRA-permitting requirements. Chart 8.3-7 shows the types of units that facilities used to conduct wastewater treatment in 1986. Over 92 percent of facilities used only tanks to conduct wastewater treatment.

Source: (H14)

8.4 OTHER TREATMENT

Respondents to the Generator and TSDR Surveys also reported data on any treatment activities in 1986 other than those specifically mentioned in the surveys (i.e., incineration, solidification, and wastewater treatment). In 1986, 128 facilities managed 1.98 million tons of hazardous waste in other recycling processes.

Charts 8.4-1 and 8.4-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in other treatment processes in each EPA region in 1986. Charts 8.4-3 and 8.4-4 show the same information for each state or territory.

Chart 8.4-1 Quantity of Hazardous Waste Managed in Other Treatment Processes per EPA Region in 1986 (in million tons)

Source: TT-140 (126), TT-14011 (126)

Hazardous Waste Management Methods: Treatment

œ

15.2

Chart 8.4-2 Number of Facilities Managing Hazardous Waste in Other Treatment Processes per EPA Region in 1986

Source: TT-140 (126), TT-14011 (126)

149

. .

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State
Alabama	<0.01	0.2	17
Alaska	0.00	0.0	38
Arkansas	0.05	2.7	5
California	<0.01ª	0.1	21
Colorado	<0.01	0.2	14
nalawara	<uui ⊿n ∩1#</uui 	-018 -018	35
District of Columbia	0.00	0.0	4t
Florida	<0.01*	-0.1 ^b	37
Georgia	<0.01*	<0.10	36
Guam Hawaii	0.00	0.U 1Þ	42
ldaho	0.00	0.0	43
Illinois	0.02	0.8	10
Indiana	0.01	0.3	<u>13</u>
	<0.01*	<0.1*	
Kantuning	0.00	2-3 1.1	10
Louisians	1.21	61:1	4
Maine	0.00	0.0	44
Maryland	<0.01	<0.1	32
Massacnuseus Michinan	<0.01- 0.02	<0.1° 1 1	4
Minnesota	<0.01■	0.2	18
Missiaalppi	-10.D1*	02	16
Missouri	<0.01 ⁸	<0-1 ⁸	23
Moriana	0.00	00	40
Nevada	0.00	0.000	40
New Hampshire	0.00	0.0	47
New Jersey	0.01	0.4	12
New Mexico	0.00	0.0	48
New Tork North Carolina	<0.02 <0.01 ⁸	0.2	15
North Dakota	0.00	0.0	45
Ohio	0.03	14	7
Oklahome	<0.01		25
Ulegun. Pannashrania	6143- 0.05	40	49
Puerto Rico	0.00	0.0	50
Rhode Island	0.00	0.0	51
South Carolina	<0.01	<0.1 ^b	29
South Dakota	0.00	0.0	52
I ONROSSOC	<u.u1-< th=""><th><u.1"< th=""><th>23</th></u.1"<></th></u.u1-<>	<u.1"< th=""><th>23</th></u.1"<>	23
Litzh	4.01	Q1****	27
Vermont.	0.00	0.9	54
Virgin Islandia	0.00	0.0	53
Virginia	0.02	0. 0	
Washington	0.40	20.0	2
West Virginia Wisconsin	<0.01 ^e	0.1	20
Wyoming	<0.01*	<0.1 ^b	33
Total	1 98	100.0	

Chart 8.4-3 Quantity of Hazardous Waste Managed in Other Treatment Processes by State in 1986

^aLess than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (I26), TT-140II (I26)

State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Rank
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delovrara	3 1 1 3 11 2 2	2.3 0.8 0.8 2.3 8.6 1.6 1.6 0 #	12 26 27 13 1 19 20
District of Columbia Florida Georgia Guam Hawaii Idaho Illinois	0 1 2 0 1 0 8	0.0 0.8 1.6 0.0 0.8 0.0 0.8 0.0 6.3	41 29 21 42 30 43 4
Ingrana lowa Kansas Kentucky Louisiana Maine Maryland Massachusette Michigan	2 3 1 1 1 0 3 1 5	1.8 2.3 0.8 0.8 0.8 0.0 2.3 0.0 2.3 0.8 3.9	22 14 31 32 33 44 15 34 7
Minnesota Missiasippi Missouti Moriana Nebrasta Nebrasta Nevada Nevada New Hampshire New Hampshire New Hampshire New Mexico New Mexico New York	1 3 3 1 9 9 9 9 5 9 7	0.8 0.8 2.3 0.8 0.0 0.0 0.0 3.9 0.0 5.5	35 36 18 37 46 40 47 9 48 5
North Carolina North Dakota Ohio Oklahoma Oregori Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota	5 0 11 3 1 8 0 0 2 0	3.9 0.03 8.8 2.3 0.4 4.7 0.0 0.0 1.6 0.0	8 45 2 17 38 50 51 23 52
Tennessee Texas Utah Vermont Virgin Island Virginia Washington West Virginia	3 11 2 0 0 5 2 1	2.3 8.6 1.8 0.0 0.0 3.9 1.6 0.8	18 3 24 54 53 10 25 39
Wisconsin Wyoming Total	4 1 128	3.1 0.8 100.0	11 40

Chart 8.4-4 Number of Facilities Managing Hazardous Waste in Other Treatment Processes by State in 1985

Source: TT-140 (126), TT-14011 (126)

1<u>50</u>

HAZARDOUS WASTE MANAGEMENT METHODS: STORAGE

Under RCRA regulations, hazardous waste generally can be accumulated by the generator for less than 90 days without a RCRA permit. Hazardous waste stored by the generator over 90 days or by a facility other than the generator of the waste is generally subject to RCRA-permitting requirements. This chapter describes this latter type of storage-storage subject to RCRA-permitting requirements. Throughout this chapter, the term "storage" is used to refer to storage activities subject to RCRA-permitting requirements ("accumulation" refers to exempt storage). In 1986, 1,785 facilities stored 188.8 million tons of hazardous waste in units subject to RCRA-permitting requirements.

GEOGRAPHIC DISTRIBUTION 9.1

Chart 9.1-1 shows the quantity of hazardous waste stored in each EPA region in 1986. Region II stored the largest quantity of hazardous waste-56.82 million tons, or approximately 30 percent of all hazardous waste stored. Chart 9.1-2 shows the number of facilities storing hazardous waste in each EPA region in 1986. Region V had the largest number of facilities storing hazardous waste, with 474 facilities or over one-fourth of all facilities storing hazardous waste.

Charts 9.1-3 and 9.1-4 show, respectively, the quantity of hazardous waste stored and the number of facilities storing hazardous waste in each state in 1986. The largest quantity of hazardous waste stored was in New Jersey, with almost 55 million tons of hazardous waste stored, or 29 percent of all hazardous waste stored. California had the largest number of facilities storing hazardous waste-158 facilities or 8.9 percent of all facilities storing hazardous waste.

Ŋ

. . .

1986 Hazardous Waste Generation and Management

Chart 9.1-1 Quantity of Hazardous Waste Stored per EPA Region in 1986 (in million tons)

Source: TT-148 (J29, K49, O8)

Chart 9.1-2 Number of Facilities Storing Hazardous Waste per EPA Region in 1986

Source: TT-148 (J29, K49, O8)

Hazardous Waste Management Methods: Storage

9

154

State	Quantity Stored	Percentage of Total Quantity Stored	State Bank
Alabama	0.21	0.1	21
Alaska	<0.01	<0.10	45
Anzona	0.01	<0.1	36
California	3.53	1.9	20
Colorado	0.83	0.4	16 4 4 4 4 4 4
Connecticut	0.32	0.2	20
District of Columbia	0.10 n.non	91. A A	28
Florida	0.18	n (1997) Na sana ang ang ang ang ang ang ang ang ang	22
Georgia	21.35	11.3	4
Guam	0.000	0.0	51
Hawaii	<0.01	<0.19	44
Minoie	<0.01	<0.1	38
Indiana	0.48	A CHARTER CONTRACTOR CONTRACTOR	· · · · · · · · · · · · · · · · · · ·
lows	0.04	-0.1 ^b	32
Kansas	D.13	0.1	24
Kentucky	0.15	0.1	23
Maine	دون المداد عن 0.04 0.01 ⁴	<0.19	41
Maryland	1.43	0.8	12
Massachusetts	0.07	<0.1 ^b	30
Michigan	34.75	18.4 0.1b	2
Minnesota	0.02 A BB	<0.1" 0 E	34
Missouri	0.10	0.1	27
Montana	<0.01°	41 9	42
Nebraska	0.000	0.0_	52
Neveda	-0.01 -	A.1	48
New Hampshru New Jersey	54.79	29.0	48 1
New Mexico	<0.01*	<0.1 ^b	47
New York	2.00	1.1	9
North Carolina	0.42	0.2	19
North Lakota	<0.01* 1 OF	<0.1************************************	
Oldaboma	1.54	0.6	
Oregon	-0.01ª	A 1 ⁸	43
Pennsylvania	0.90	0.5	14
Puerto Rico Desde island	0.03	<0.19	33
South Camilian	0.01	<u.1* 0.1</u.1* 	35
South Dakota	0.000	0.0	53
Tennessee	1.38	0.7	13
Texas	15.28	8.1	
Utah	<0.01ª	41 7	37
Vermoni Virgin Island	<u.u)* 0.000</u.u)* 	n n.	
Virginia	31.73	16.B	3.
Washington	0.09	<0.1 ^b	29
West Virginia	4.47	24	7
Wisconsin	0.04	<0.1	- 31
	100.01		40
IOTAL	100.00	100.0	

Chart 9.1-3 Quantity of Hazardous Waste Stored per State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-148 (J29, K49, O8)

State	4 4 1 ⁴⁷ 1	Number of	Percentage of Total Number	State
Alabama		42	2.4	12
Alaska		4	0.2	43
Arizona		27	1.5	22
Arkansas		19	1.1	31
Calorada		901 Alian ang 201	8.9 • • • • • • • • • • • • • • • • • • •	
Connecticut		23 59	1.3 4 9	29 18
Delaware		4	D.2	40
District of Co	aidmulo	0	0.0	51
Fiorida		29	1.6	23
Georgia		50	2.8	· 11
Guan		0	0.0	52
Idabo		4	0.2	42
llinois		QR.	55	5
Indiana		82	ĂĞ.	an a
lowe		22	1.2	30
Kansas		12	0.7	38
Kentucky		26	1.5	25
Louisians			2.2	13
Manyland		3	0.2	45
Massachuse	atta	24	1.7	28
Michigan		83	4.6	7 5
Minnesota		38	21	15
Mississippi		. 12	0.7	35
Missouri		39	22	14
Montana		3	02	
Neoraska		2	0.1	49
New Hampe	hire	12	07	40
New Jersev		83	4.6	57 8
New Mexico		6	0.3	39
New York		99	5.5	4
North Caroli		25	1.4	26
North Dakol	# . *	3	0.1	50
		139	7.5	3
Crean		4		2/
Penneviveni		RS	38	
Puerto Rico		16	0.9	32
Rhode Islan	d	13	0.7	33
South Caroli	ina	34	1.9	17
South Dakot		0	0.0	53
Tennessee		35	20	16
IOXES		149	13	_2
Van		13		34
Vinio selece		6	4.1×	2
Virginia		26	1.5	2
Washington	***************************************	29	1.6	21
West Virgini	4	26	1.5	24
Wisconsin		34	1.9	16
Wyoming	······	4	0.2	44
Total		1,785	100.0	

Chart 9.1-4 Number of Facilities Storing Hazardous Waste per State in 1986

Source: TT-148 (J29, K49, O8)

. 1

١

.

.. :

9.2 TYPE OF STORAGE UNITS

Hazardous waste can be stored in tank systems, surface impoundments, or waste piles. Chart 9.2-1 shows the quantity of hazardous waste stored and the number of facilities storing hazardous waste in each type of facility. Tank systems were used most often for storage. Over 97 percent of all facilities storing hazardous waste did so in tank systems. These facilities stored 109.07 million tons of hazardous waste in tanks.

State	Quantity Stored (million tons)	Percentage of Total Quantity	Number of Facilities	Percentage of Facilities
Tank Systems	109.07	57.8	1,740	97.5
Surface Impoundments	79.30	42.0	141	7.9
Waste Piles	0.43	0.2	. 55	3.1
Total	188.80	100.0	1,785 ^a	100.0ª

Chart 9.2-1 Types of Storage Units and Quantity Stored in 1986

^aA single facility can have more than one type of storage. The totals shown are without double-counting. Source: TT-148 (J29, K49, O8)

10 HAZARDOUS WASTE MANAGEMENT METHODS: DISPOSAL

Hazardous waste can be permanently disposed of in landfills, land treatment areas, underground injection wells, or disposal impoundments. This chapter describes hazardous waste disposal operations in these units in 1986. Each of these units is subject to the land disposal restriction rules under HSWA. Chapter 12 discusses the effects these rules may have on the hazardous waste disposal activities described in this chapter.

10.1 LANDFILLS

Landfilling was the disposal method used by the largest number of facilities in 1986. During that year, 118 facilities disposed of 3.17 million tons of hazardous waste in landfills.

Charts 10.1-1 and 10.1-2 show the quantity of hazardous waste disposed of and the number of facilities disposing of hazardous waste in landfills in each EPA region in 1986. Charts 10.1-3 and 10.1-4 show the same information for each state or territory.

Ν

1.4.4

Chart 10.1-1 Quantity of Hazardous Waste Managed in Landfills per EPA Region in 1986 (in million tons)

Source: TT-140 (L3)

Source: TT-140 (L3)

159

·**-** · -

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Alabama	<0.01	0.1	20
Alaska Arizona	<0.01* <0.01*	<0.1° <0.1°	35 31
Arkansas	0.06	2.0	14
	0.25	7.8	6
Consecticut	-0.01* 0.01	<0.1= 0 2	36 18
Delaware	<0.01*	-0.1°	30
District of Columbia	0.00	0.0	37
Flonda	0.00	0.0	38
Guam	0.00	0.0	40
Hawali	0.00	0.0	41
ldaho Illiada	0.01	0.4	17
Indiane	0.30	9.4 1 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
lowa	0.00	0.0	42
Kansas	<0.01*	-0.1 ^b	29
Kentucky	0.13 n 28	4.1 B B	10
Maine	0.00	0.0	£18;998899999999999999999999999999999 44
Maryland	<0.01	0.1	24
Massachusetts	0.00	0.0	43
Minnesota	0.04 <0.01ª	20-3 -0 1 ⁶	2 7
Mississippi	0.00	0.0	
Missouri	<0.01	02	19
Normann	0.00	0.0	45
Nevada	0.05	1.5	15
New Hampshire	0.00	0.0	50
New Jersey	0.07	2.2	13
New Mexico New York	<0.01-	<0.1° B.1	33 7
North Caroline	0.00	0.0	47
North Dakota	0.00	0.0	40
Ohio	U.28 A A4	8.7 + 4	
Oregon	0.09	27	
Pennsylvania	d.01*		25
Puerto Rico	<0.01	<0.1 ^b	28
rungge Islang South Carolio#	0.00	U.U 4 1	51
South Dakota	0.00	0.0	52
Tennessee	<0.01 ^a	0.1	23
Texts	0.19	62	8
Vermont	U.U0 11 /10	2. 4	
Virgin Island	0.00	0.6	5
Virginia	- 0.01	4 .1 **	26
Washington West Visciaia	<0.01	0.1	22
Wisconsin	<0.01€	0.1 ∞0.1b	21
Wyoming	<0.01	<0.1 ^b	32
Total	3.17	100.0	

÷

Chart 10.1-3 Quantity of Hazardous Waste Managed in Landfills by State in 1986

^aLess than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (L3)

State	Number o RCRA TSDR Fa	f Percentag cilities RCRA TSDR	se of Sta Facilities Ra	ite nk
Alabama Alaska Arizona Arkansas California Colorado	4 1 1 2 8 	3.4 0.8 0.8 1.7 6.8 0.8	3 3 1	8 5 2 6 3 6
Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho	3 1 0 0 0 0 2	2.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7	3 3 4 4 4 4 4 1	1 9 1 2 7 7
Indiana Iowa Kansas Kentucky Louislana Maine Maryland Massachusetts Michicao	0 2 4 7 0 2 0 2 0	4.2 6.8 0.0 1.7 3.4 5.9 0.0 1.7 0.0		5 2 3 4 7 4 5 0 4
Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico	9 2 2 0 2 2 2	0.8 0.8 1.7 0.0 0.0 0.8 0.0 1.7 1.7		9 6 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
New York North Carolina North Dakots Ohio Okiahoma Oregon Pennsytvania Puerto Rico Rhode Island South Carolina South Carolina	5 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.2 0.0 2.5 0.8 0.8 0.8 2.5 0.0 1.7		6 47 48 27 27 24 24 29 29 30 51 51
Tennessee Texas Utah Vermont Virgin Island Virginia Washington West Virginia Wisconsin Woomina	0 28 1 0 2 1 3 1 1	0.0 1.7 23.7 0.8 0.0 0.0 1.7 0.8 2.5 0.8		22 19 25 54 53 21 28 12 12 34 33
Total	118	100.0)	

Chart 10.1-4 Number of Facilities Managing Hazardous Waste in Landfills by State in 1986

Source: TT-140 (L3)

10.2 LAND TREATMENT

A land treatment area is a section of land in which hazardous waste is applied to or incorporated into the soil surface for disposal. Facilities commonly use this method to manage petroleum wastes. The wastes are spread over the surface and then tilled under the soil, where microorganisms help to break down the petroleum residues. During 1986, 58 facilities operated 98 land treatment areas. These land treatment areas received 0.38 million tons of hazardous waste during that year.

Charts 10.2-1 and 10.2-2 show the quantity of hazardous waste disposed of and the number of facilities disposing of hazardous waste in land treatment areas in each EPA region in 1986. Charts 10.2-3 and 10.2-4 show the same information for each state or territory. :

Chart 10.2-1 Quantity of Hazardous Waste Managed in Land Treatment Areas per EPA Region in 1986 (in million tons)

Source: TT-140 (M3)

163

Source: TT-140 (M3)

1988 Hazardous Waste Generation and Management

ž

۱,

4.0.000

• • •

St	late	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Al	abama	<0.01ª	0.2	19
	aska rizona	0.00	0.0	23 24
Ar	kansas	<0.01*	0.6	12
Ça	alifornia Norma de Secondo de Contra de C	0.02	5.7	4 meneral meneral second second
	nnacticut	0.00	оло са селото со селото се Селото селото	25 26
De	laware	<0.01■	0.6	13
Di	strict of Columbia	0.00	0.0	27
∷ Fk	orida eorgia	0.00		28
G	uam	0.00	0.0	30
Ha	awail	<0.01*	<0.1 ^b	22
ida III:	aho	0.00	0.0	32
	nois diana	0.01	1.9 Metersiye in User k e engineeriji juli juli	8 99,95,97,97 , 97,97,97,97,97,97,97,97,97,97,97,97,97,9
		0.00	0.0	31
Ka	nsas	<0.01	0.4	16
Ke	MIUCKY	0.00	0.0	33
Ma	n nga kana sa		1a s111 (114 (1489) ∧ ♥•♥/(1688) s (1188) s (1188) 0.0	36
Ma	aryland	0.00	0.0	35
Ma	assachusetts	0.00	0.0	34
M	ioneeota	0.00	0.0	37
Mi	seissiopi	0.04	2.3 108	
Mi	ssouri	0.00	0.0	38
M	ontane	<0.01 *	10	10
NG Na	oraska Wada	0.00	0.0	41 43
Ne	w Hampshire	0.00		42
Ne	w Jersey	<0.01	0.1	21
Ne	W Mexico	<0.01■	0.5	14
No	orth Carolina	0.00	0.0	44 39
No	orth Dakole	0.00	0.0	40
· Of	lio	0.01	2.9	0
OK A	(lahoma	0.06	14.9	2 · · · · · · · · · · · · · · · · · · ·
Pe	nosvivania	-0.00 •0.00	0.0	47 18
[©] Pu	ierto Rico	0.00	0.0	46
Rh	ode Island	0.00	0.0	47
So	buth Carolina	0.00	0.0	48
Te	Innessee	0.00	0.0	50
Te	xas	0.19	50.6	
Uu	an	<0.01		9
Ve Vi-	monte la la contra de la contra	0.00		52 st
Vir		a.n•	02	20
Wa	ashington	≪0.01ª	0.9	e nationadur da asa≕nte de adde uir aur a n 11
We	est Virginia	0.00	0.0	54
We	sconsin	0.00	0.0	53
 To:	tal	0.38	100.0	

Chart 10.2-3 Quantity of Hazardou	s Waste Managed In Land Treatm	nent Areas by State in 1986
-----------------------------------	--------------------------------	-----------------------------

^aLess than 10,000 tons of hazardous waste were generated in these states in 1988. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (M3)

State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Rank
Alabama Alaska Arizona Arkansas California	1 0 0 1 2	1.7 0.0 0.0 1.7 3.4	19 23 24 15 8
Connecticut Delaware District of Columbia Floridia Georgia	9 0 1 0 0	0,0 0,0 1,7 0,0 0,0 0,0	25 26 16 27 28 29
Guam Hawali Idaho Illinois Indians Iowe	0 1 0 1 1 5	0.0 1.7 0.0 1.7 1.7 0.0	30 22 32 13 17 31
Kansas Kentucky Louisiana Maine Maryland Massachusetts	2 0 7 0 0 0 0	3.4 0.0 12.1 0.0 0.0 0.0 0.0	11 33 3 36 35 34
Michigan Minesota Missouri Montene Nebrasta Nebrasta	0 1 2 0 3 0	0.0 1.7 3.4 0.0 5.2 0.0	37 12 7 38 6 41
New Hampshire New Jersey New Mexico New York North Carolina	Constant and Ball of Party and a second s 0 1 2 0 0 0	0.0 1.7 3.4 0.0 0.0	42 21 9 44 39
North Dekota Ohio Oklahoma Oregon Pennsylvenia Puerto Rico	0_ 4 7 2 0 1 0	60 69 121 0.0% 1.7 0.0	40 4 2 45 18 46
Rhode Island South Carolina South Dakota Tennessee Taxas Utah	0 0 0 12 12	0.0 0.0 0.0 20.7 1.7	47 48 49 50 1
Vermont Virgin Island Virginis Washington West Virginia Wiscomin	0 0 0 1 0 0	0.0 0.0 1.7* 6.9 0.0	52 51 20 5 54 52
Wyoming Total	2 58	<u> </u>	10

Chart 10.2-4 Number of Facilities Managing Hazardous Waste in Land Treatment Areas by State in 1986

Source: TT-140 (M3)

10.3 DISPOSAL IMPOUNDMENTS

Disposal impoundments are surface impoundments used to permanently dispose of hazardous waste, generally liquid waste or waste containing free liquids. In 1986, 4.61 million tons of hazardous waste entered surface impoundments for permanent disposal. Seventy facilities operated these disposal impoundments in 1986.

Charts 10.3-1 and 10.3-2 show the quantity of hazardous waste disposed of and the number of facilities disposing of hazardous waste in disposal impoundments in each EPA region in 1986. Charts 10.3-3 and 10.3-4 show the same information for each state or territory.

Source: TT-140 (K43)

2 . Care

÷.,

١.

1986 Hazardous Waste Generation and Management

Chart 10.3-2 Number of Facilities Managing Hazardous Waste in Disposal Impoundments per EPA Region in 1986

Source: TT-140 (K43)

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Rank
Alabama	0.00	0.0	19
Alaska Arizona	0.00	0.0	18
Arkansas	0.00	0.1	13
California	0.04	0.9	9
Colorado	0.00	0.0	21
Confiecticut	0.00	0.0	22
District of Columbia	0.00	0.0	23
Florida	0.00	0.0	24
Georgia	1.57	33.9	1
Guam Heweil	0.00	0.0	25
idaho	0.00	0.0	20
Illinois	0.69	15.0	4
Indiana	0.00	0.0	28
lowa Kanana	<0.01	<0.1*	15
Kentucky	0.00	Ú.U Ú.S	43 10
Louisiana	<0.01	0.1	14
Maine	0.00	0.0	32
Maryland	0.00	0.0	31
Massacriuseus Michigan	0.00	0.0	30
Minnesota	0.00	0.0	34
Miselesippi	0.08	iž	, Ż
Missouri	<0.01*	<0.1 ⁸	. 17
Montana	0.00	0.0	35
Neutrance	0.00	0.0	
New Hampshire	0.00	0.0	39
New Jersey	0.00	0.0	40
	0.00	0.0	41
New Tork North Carolina	0.00	0.0	43 38
North Dalota	0.00	0.0	37
Ohio	0.80	17.3 *	3
Oidahoma	0.05	12	•
Oregon	0.00	0.0	44
Puerto Rico	0.00	16,0	45
Rhode Island	0.00	0.0	46
South Carolina	<0.01 [®]	<0.1 ^b	16
South Dakota	0.00	0.0	47
	0.00	0.0	45 8. 38. 480 - 81 - 81 - 81 - 81 - 81 - 81 - 81 -
Utah	0.00	0.0	44
Vermont	0.00	0.0	51
Virgin Island	0.00	0.0	50
Virginia	0.03	0.8	an i k ata di kata di kata kata kata kata kata kata kata kat
Washington	0.00	0.0	52
wisconsin	0.06	0.0	53
Wyoming	0.00	0.0	54
Total	4.61	100.0	

.-

Chart 10.3-3 Quantity of Hazardous Waste Managed in Disposal Impoundments by State in 1986

^aLess than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (K43)

	State RCR	Number of A TSDR Facilities	Percentage of RCRA TSDR Facilities	State Bank
	Alabama	3	4.3	10
	Alaska Arizona	0	0.0	25 26
	Arkansas	1	1.4	18
		7. 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11.	10.0	3
	Connecticut	usian U sian sana sana sana sana sana sana sana	1997 (1997) - Maria (1997) 1997 - Maria Alia, 1997 (1997) - Maria (1997) 1997 - Maria Alia, 1997 (1997) - Maria (1997)	27 21
	Delaware			17
	District of Columbia	0	0.0	28
	Georgia	2000 0 0 200 100 200 100	7 1	29
	Guam	0	0.0	4 30
	Hawail	0	0.0	31
	kiaho Illinoin	0	0.0	32
	indiana		2.9 	
1	lowa	e 🖡 🕯 👘		19
	Kansas	0	0.0	34
	Louisiana		1448년 전 11988년 149 8일 전 1718년 14 1917년 - 1917년 - 191 8년 7 8년 24년 14년 18일	· () · · · · · · · · · · · · · · · · · ·
•••	Maine	ovisi 70 si so escuese O	sassi dali se t uri settas i sub issi 0.0	addividus addaedti - Boreniair addaeda 37
	Maryland	0	0.0	36
	Massachusetts Mishinan	0	0.0	35
	Minnesota	2	2.9	38
	Mississippi		1.4	14 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1
· .	Missouri	1	14	20
	Montana	0	0.0	39.44
	Nevade	ů.	66	
•	New Hampshire	0	0.0	43
	New Jersey	0	0.0	44
	New York	1	1.4 1.4	22
	North Carolina	ò	0.0	40
	North Dakota	0	0.0	4. State 1
	Ohio Chiabana	8		
	Oracon	6		12 46
	Pennsylvania	3	43	7
	Puerto Rico	1	1.4	24
	Rhode Island South Camilian	0	0.0	47
	South Dakota	0	4.5	3 48
	Tennessee	Ō	0.0	49
	Texas	13	18.6	
•	Utan	4	5.7	u statu seta (6 50) en seta (a statu seta seta (6 50) en seta (seta seta seta seta seta seta seta seta
	Virgin Island	· · ·	0.0	51
	Virginia	1	1.4	16
	Washington	0	0.0	52
	West Virginia Wisconsin	· 3	4.3	8
	Wyoming	0	0.0	53 54
	Total	70	100.0	

Chart 10.3-4 Number of Facilities Managing Hazardous Waste in Disposal impoundments by State in 1986

Source: TT-140 (K43)

10.4 INJECTION WELLS

Underground injection of hazardous waste is a land disposal method whereby hazardous waste is introduced into the subsurface through drilled deep wells. Underground injection wells were operated by 63 facilities in 1986 and received 28.73 million tons of hazardous waste for disposal. Underground injection was the most common method of hazardous waste disposal in 1986 based on the quantity of hazardous waste disposed of.

Charts 10.4-1 and 10.4-2 show the quantity of hazardous waste disposed of and the number of facilities disposing of hazardous waste in injection wells in each EPA region in 1986. Charts 10.4-3 and 10.4-4 show the same information for each state or territory.

Chart 10.4-1 Quantity of Hazardous Waste Managed in Injection Wells per EPA Region in 1986 (in million tons)

Source: TT-140 (N3)

173

١

Source: TT-140 (N3)

1988 Hazardous Waste Generation and Management

Ŕ

174

1:

State	Quantity Managed (million tons)	Percentage of Total Quantity Managed	State Bank
Alabama	0.00	0.0	13
Alaska	0.00	0.0	12
Arizona	0.00	0. 0	14
Arkansas	0.03	0.1	11
	0.00	0.0	15
	D.DO	0.0	1688 (1888) (1888) (1888) (1888) (1888) (1888) (1888) (1888) (1888)
Delayor	0.00		
District of Columbia	0.00	сана сталия с С.С	
Florida	0.11		
Georgia	0.00	0.0	20
Guam	0.00	0.0	21
Hawaii	0.00	0.0	22
i daho	0.00	0.0	24
Illinois	0.61	2.1	.
Indiana	0.89	3.1	6
BWO	0.00	0.0	- 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 194 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -
Kant. mar			
Louisians	U.23 10 67	U.C.	
Maine		00 00	23. Sec. Stearn 16 algert i bar 97
Marvland	0.00	0.0	26
Massachusetts	0.00	0.0	25
Michigan	0.10	0.4	10
Minnesota	0.00	0.0	28
Mississippi	0.00	0.0	30
Missouri	0.00	G.O	29
Montana	0.00	0.0	31
Nebraska	0.00	0.0	34
Nevada	0.00	0.0	38 Carriel - 1
New lampsnire	0.00	0.0	35
New Mexico	0.00	0.0	30
New York	0.00	0.0	39
North Carolina	0.00	0.0	32
North Dakola	0.00	0.0	33 (1997)
Ohio	1.64	5.7	3 - 1923 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 -
Okiahoma	1.42	4.9	4
Oregon	0.00	0.0	40
Pennsytvanie	0.00	0.0	
Puerto Rico	0.00	0.0	42
Hhode Island	0.00	0.0	43
South Carolina	0.00	0.0	44
	0.00	0.0	45
Tavas			
litah		· 이상 사가로 가장 및 가지 가용하는 것을 받았다. 이 사가 모두 아이는 것 같은 것 같	A
Vermont	0.00	00	50 50
Virgin Island	0.00		49
Viroinia	0.00	<u>0</u> 6	48
Washington	0.00	0.0	51
West Virginia	0.00	0.0	53
Wisconsin	0.00	0.0	52
Wyoming	0.00	0.0	54
Total	28.73	100.0	

Chart 10.4-3 Quantity of Hazardous Waste Managed in Injection Wells by State In 1986

^aLess than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-140 (N3)

Alabaria 0 00 13 Alaska 0 0.0 12 Arizona 0 0.0 12 Arizona 0 0.0 14 Arizona 0 0.0 15 Colorado: 0 0.0 15 Connectout 0 0.0 17 Dalawaie 0 0.0 18 Connectout 0 0.0 17 Dalawaie 0 0.0 18 Gaorgia 0 0.0 22 Idato 0 0.0 22 Idato 0 0.0 23 Kansae 1 16 10 Kansae 1 15 10 Kansae 1 15 11 Louisane 0 0.0 25 Maine 0 0.0 26 Maine 0 0.0 26 Maine 0 0.0	State	Number of RCRA TSDR Facilities	Percentage of RCRA TSDR Facilities	State Rank
Arizona 0 00 14 Arizona 0 0.0 14 Arizona 0 0.0 15 Colorindo 0 0.0 15 Connection: 0 0.0 15 Connection: 0 0.0 17 District of Columbia 0 0.0 18 Findat 0 0.0 20 Gaorgia 0 0.0 20 Guan 0 0.0 22 Idaho 0 0.0 22 Kansae 1.6 10 10 Maine 0 0.0 22 Kansae 1.5 10 10 Kansae 0 0.0 26 Maine 0 0.0 26 Maine 0 0.0 30	Alabama	0	0.0	13
Arkanses 2 3.2 6 California 0 0.0 15 Connecticute 0 0.0 17 Delawrate 0 0.0 19 District of Columbia 0 0.0 19 District of Columbia 0 0.0 20 Guarn 0 0.0 21 Hawaii 0 0.0 22 Kaho 0 0.0 22 Kaho 0 0.0 24 Illinois 3 4.8 7 Indiana 6.3 3 6.3 Kansas 1 1.6 10 Kansas 1 1.6 11 Louisiane 16 25.4 2 Maine 0 0.0 26 Masschusetts 0 0.0	Arizona	0	0.0	14
Colonaction Colonaction <thcolonaction< th=""> <thcolonactionaction< th=""></thcolonactionaction<></thcolonaction<>	Arkansas California	2	3.2	8
Connection: Connection: Fords	Colorado	ŏ	0.0	13
District of Columbia C Col 18 Florida 1.8 9 Georgia 0 0.0 21 Hawaii 0 0.0 22 Idaho 0 0.0 22 Idaho 0 0.0 22 Idaho 0 0.0 22 Idaho 0 0.0 23 Indiana 4 6.3 3 Kansas 1 1.6 10 Kansas 1 1.4 11 Louisiana 1 1.4 11 Louisiana 1 1.4 11 Louisiana 0 0.0 25 Maine 0 0.0 25 Minestra 0 0.0 28 Minestra 0 0.0 28 Minestra 0 0.0 34 New Jana 0 0.0 35 Mastastra 0 0.0	Connecticut:	0 G	0,0 0.0	17
Partida 1 1.8 9 Georgia 0 0.00 20 Guam 0 0.0 21 Hawai 0 0.0 21 Hawai 0 0.0 22 Idano 0 0.0 24 Illinois 3 4.8 7 Indiana 4 6.3 3 Kansas 0 0.0 23 Kansas 1 1.6 10 Kansas 1 1.6 10 Kansas 1 1.6 10 Kansaschusetts 0 0.0 27 Massachusetts 0 0.0 28 Mineesta 0 0.0 28 Missaschus 0 0.0 31 Newides 0 0.0 34 Newides 0 0.0 32 Newides 0 0.0 32 New Hampahne 0	District of Columbia	Ğ	0.0	18
Guan 0 0.0 20 Havaii 0 0.0 21 Havaii 0 0.0 22 Idaho 0 0.0 24 Ilinois 3 4.8 7 Indiana 6 8.3 3 Kansas 1 1.6 10 Kantucky 1 7.6 11 Louisiana 16 25.4 2 Maryiand 0 0.0 26 Massachusetts 0 0.0 26 Massachusetts 0 0.0 28 Maksingpt 0 0.0 29 Michigan 4 6.3 4 Mineecta 0 0.0 30 Masscrift 0 0.0 34 New desize 0 0.0 35 New desize 0 0.0 35 New desize 0 0.0 39 New Hampshine	Florida	1	1. B	9
Haveii 0 0.0 22 Idaho 0 0.0 24 Ilinois 3 4.8 7 Indiana 4 8.3 3 Idwa 6.3 3 Kantasaa 1 1.6 10 Maryland 0 0.0 25 Michigan 4 6.3 4 Mineeota 0 0.0 28 Misacuth 0 0.0 28 Misacuth 0 0.0 31 Natrasta 0 0.0 35 New Jarsey 0 0.0 35 New Jarsey 0 0.0 32 New Maxico 0 0.0 32 New Maxico 0 0.0 32 Neth Datotin 0 0.0 32 North Datotin 0 0.0 32 No	Guam	Ö,	0.0	20
Mark C OD 22 Infisina 4 8.3 3 Iowa 0 0.00 23 Kansaa 1 1.6 10 Kansaa 1 1.6 10 Kansaa 1 1.6 10 Kansaa 1 1.8 10 Louisiana 16 25.4 2 Maine 0 0.0 26 Massachusetts 0 0.0 25 Minnesota 0 0.0 28 Minnesota 0 0.0 28 Missachusetts 0 0.0 28 Missachus 0 0.0 31 Newlassippf 0 0.0 34 Newda 0 0.0 35 New Jersey 0 0.0 32 New Jessey 0 0.0 32 New Jessey 0 0.0 32 New Jesse	Hawaii	0	0.0	22
Indiana 4 6.3.2 3 Iowa 0 0.0 23 Kansas 1 1.6 10 Kansas 1 1.6 11 Louisiana 16 25.4 2 Maine 0 0.0 27 Maryland 0 0.0 26 Massachusetts 0 0.0 25 Michigan 4 6.3 4 Minnesota 0 0.0 28 Missacuris 0 0.0 29 Morterate 0 0.0 30 Massachusetts 0 0.0 30 Missacuris 0 0.0 36 Morterate 0 0.0 35 New Hampshire 0 0.0 36 New Verk 0 0.0 32 North Datotina 0 0.0 32 North Ostona 0 0.0 4 Orboin 0 0.0 32 New Kibo 0 0.0 33 New Kibo 0 0.0 32 North Datotas 0 0.0 33 Otas 4 6.3	Illinois	3	4.8	7
Verses 0 00 23 Kansas 1 1.6 10 Kansas 1 1.6 10 Maine 0 0.0 27 Maine 0 0.0 26 Massachusetts 0 0.0 25 Michigan 4 6.3 4 Minsecta 0 0.0 28 Missouris 0 0.0 28 Missouris 0 0.0 29 Mitsingel 0 0.0 29 Missouris 0 0.0 31 New das 0 0.0 34 New das 0 0.0 35 New Hampshire 0 0.0 36 New Maxico 0 0.0 32 New Maxico 0 0.0 32 North Carolina 0 0.0 32 North Distotas 0 0.0 33 Ohob	indiana Ioura	4	8.3	3
Kantucity 1 16 16 1 Louisiana 16 25.4 2 Maine 0 0.0 27 Maryland 0 0.0 26 Massachusetts 0 0.0 25 Michigan 4 6.3 4 Minneeota 0 0.0 28 Missessippit 0 0.0 29 Montana 0 0.0 31 Netrank 0 0.0 31 Netrank 0 0.0 36 Newaites 0 0.0 35 New Jersey 0 0.0 36 New Vork 0 0.0 37 New Vork 0 0.0 32 North Dakota 0 0.0 32 Ohio 4 6.3 5 Otidhorins 4 6.3 6 Oregon 0 0.0 32 North Dakota 0 0.0 4 Oregon 0 0.0	Kansas	ч 1	1.6	دع 10
Maine 0 2.4 2 Maryland 0 0.0 26 Massachusetts 0 0.0 25 Michigan 4 6.3 4 Minneacta 0 0.0 28 Missourch 0 0.0 28 Missourch 0 0.0 28 Missourch 0 0.0 29 Montanace 0 0.0 31 Netwaka 0 0.0 34 Newtaka 0 0.0 35 New Hampshire 0 0.0 35 New Hampshire 0 0.0 35 New Hampshire 0 0.0 37 New York 0 0.0 32 North Datota 0 0.0 33 Ohios 4 6.3 6 Oregon 0 0.0 33 Ohios 4 6.3 6 Oregon	Kentucky	1	1.6 75 4	ារ
Maryland 0 0.0 26 Massachusetts 0 0.0 25 Michigan 4 6.3 4 Minnesota 0 0.0 28 Massinsippt 0 0.0 28 Missouritie 0 0.0 29 Mortanae 0 0.0 31 Nobrasignes 0 0.0 31 Newatia 0 0.0 34 New Hampshire 0 0.0 35 New Jersey 0 0.0 36 New York 0 0.0 33 New York 0 0.0 32 North Carolina 0 0.0 33 Ohlo 0 0.0 32 Ohlo 0.0 0.0 32 Ohlo 0.0 0.0 32 Ohlo 4 6.3 6 Oragon 0 0.0 40 Puento Rico	Maine	0	0.0	4 27
Michigan 4 6.3 4 Minnesota 0 0.0 28 Mississippi 0 0.0 30 Mississippi 0 0.0 29 Mississippi 0 0.0 29 Mississippi 0 0.0 29 Montanue 0 0.0 29 Montanue 0 0.0 31 Nobrasitiges 0 0.0 35 New Hampshire 0 0.0 35 New Hampshire 0 0.0 35 New Vork 0 0.0 32 North Carolina 0 0.0 32 North Distota 4 6.3 6 Oregon 4 6.3 6 Oregon 0 0.0 40 Puento Rico 0 0.0 41 Puento Rico 0 0.0 42 Puento Rico 0 0.0 42 Puento Rico 0 0.0 43 South Carolina 0<	Maryland Massachusotte	0	0.0	26
Minnesota 0 0.0 28 Mississippi 0 0.0 30 Mississippi 0 0.0 29 Mentaria: 0 0.0 31 Mexistia: 0 0.0 31 Nebrasita: 0 0.0 34 Newidia: 0 0.0 35 New Hampshire 0 0.0 35 New Maxico 0 0.0 37 New York 0 0.0 32 North Carolina 0 0.0 32 Ohio 4 53 5 Okiahoms 4 63 6 Oregon 0 0.0 40 Pennsylvariss 0 0.0 42 Rhode Island 0 0.0 44	Michigan	4	6.3	4
Missouria 0 0.0 29 Missouria 0 0.0 31 Netrasices 0 0.0 31 Netrasices 0 0.0 34 New Varia 0 0.0 35 New Hampshire 0 0.0 35 New Jensey 0 0.0 35 New Jensey 0 0.0 37 New Maxico 0 0.0 37 New York 0 0.0 32 North Carolina 0 0.0 32 North Carolina 0 0.0 32 Ohio 4 6.3 5 Oregon 0 0.0 40 Pentsylvarias 0 0.0 40 Pentsylvarias 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 44 South Carolina 0 0.0 44	Minnesota	0	0.0	28
Montania 0 0.02 31 Nebraskips 0 0.0 34 New Hampshire 0 0.0 35 New Jensey 0 0.0 36 New Jensey 0 0.0 36 New Jensey 0 0.0 36 New York 0 0.0 37 New York 0 0.0 32 North Datotitie 0 0.0 32 North Datotitie 0 0.0 33 Ohios 4 6.3 5 Oregon 0 0.0 40 Pennsylvanis 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 43 South Dakota 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 45	Misacuri	U D	0.0	30 29
Normalization 0 0.0 34 New Hampshire 0 0.0 35 New Jensey 0 0.0 36 New Mexico 0 0.0 36 New Mexico 0 0.0 37 New York 0 0.0 39 North Carolina 0 0.0 32 North Dakotas 0 0.0 33 Ohios 4 6.33 5 Oklahonna 4 6.33 6 Oregon 0 0.0 40 Pennsylvanias 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 44 South Carolina 0 0.0 44 South Carolina 0 0.0 44 South Carolina 0 0.0 45 Tennessee 0 0.0 47	Montane	<u>o</u>	0.03	31
New Hampshire 0 0.0 35 New Jersey 0 0.0 36 New Mexico 0 0.0 37 New York 0 0.0 39 North Carolina 0 0.0 32 North Dakotas 0 0.0 33 Ohio 4 53 5 Oklahoma 4 6.3 6 Oregon 0 0.0 40 Pennsylvania 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 44 South Carolina 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 46 Vermonti 0 0.0 47 Virgin Island 0 0.0 49 Virginia 0 0.0 49 <th>Novada</th> <th>U 0</th> <th>0.0</th> <th>34 38</th>	Novada	U 0	0.0	34 38
New Vertary 0 0.0 36 New Mexico 0 0.0 37 New York 0 0.0 39 North Carolina 0 0.0 32 North Carolina 0 0.0 32 North Dakota 0 0.0 32 Ohio 4 6.3 5 Okiahorna 0 0.0 32 Ohio 4 6.3 6 Oregon 0 0.0 40 Pennsylvania 0 0.0 42 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 45 Utah 0 0.0 47 Vermont 0 0.0 49 Vingin istand 0 0.0 49	New Hampshire	0	0.0	35
New York 0 0.0 39 North Carolina 0 0.0 32 North Dakota 0 0.0 33 Ohio 4 6.3 5 Okiahorta 4 6.3 6 Oregon 0 0.0 40 Pennsylvania: 0 0.0 42 Pennsylvania: 0 0.0 42 Puento Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 43 South Carolina 0 0.0 45 Tennessee 0 0.0 48 Texas: 23 36.5 1 Virgin Island 0 0.0 48 Vermont 0 0.0 48 Virgin Island 0 0.0 48	New Mexico	0	0.0	36
North Carolina 0 0.0 32 North Datota 0 0.0 33 Ohio 4 6.3 5 Oklahoma 4 6.3 6 Oregon 6 0.0 40 Pennsylvania 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 45 Tennessee 0 0.0 45 Tennessee 0 0.0 47 Virgin Island 0 0.0 47 Virgin Island 0 0.0 48	New York	0	0.0	39
Ohio 4 6.3: 5 Oklahoma 4 6.3: 6 Oregon 0 0.0: 40 Pennsylvania: 0 0.0: 40 Puerto Rico 0 0.0: 41 Puerto Rico 0 0.0: 42 Rhode Island 0 0.0: 43 South Carolina 0 0.0: 44 South Carolina 0 0.0: 45 Tennessee 0 0.0: 45 Tennessee 0 0.0: 47 Vermont 0 0.0: 47 Vermont 0 0.0: 48 Virginia: 0 0.0: 48	North Carolina North Dakota	O B	0.0 n.e	32 33
Oxforming 4 6.3 6 Oregon 0 0.0 40 Pennsylvania: 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 42 South Carolina 0 0.0 43 South Carolina 0 0.0 45 Tennessee 0 0.0 48 Texas: 23 36.5 1 Utah 0 0.0 49 Virgin Island 0 0.0 48	Ohio	4	63	6
Pennsylvania: 0 0.0 41 Puerto Rico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 46 Texas 23 36.5 1 Utah 0 0.0 47 Vermoni 0 0.0 48 Virgin Island 0 0.0 48	Oracon	4	6.3 0.0	40
Puerto Fico 0 0.0 42 Rhode Island 0 0.0 43 South Carolina 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 46 Texas: 23 36.5 1 Utah 0 0.0 47 Vermont 0 0.0 49 Virginia 0 0.0 48	Pennsylvania	<u> </u>	0.012	41
South Carolina 0 0.0 44 South Dakota 0 0.0 45 Tennessee 0 0.0 48 Texas 23 36.5 1 Utah 0 0.0 47 Vermont 0 0.0 49 Virgin leland 0 0.0 48	Puerto Rico Rhode Jaland	0	0.0 0.0	42 43
South Dakota 0 0.0 45 Tennessee 0 0.0 48 Texas 23 36,5 1 Utah 0 0.8 47 Vermoni 0 0.0 50 Virgin Island 0 0.0 48 Virgina 0 0.0 48	South Carolina	õ	0.0	44
Texas 25 36.5 1 Utah 0 0.0 47 Vermont 0 0.0 50 Virgin Island 0 0.0 49 Virginia 0 0.0 48	South Dakota	0	0.0	45 48
Utah 0 0.02 47 Vermont 0 0.0 50 Virgin leland 0 0.0 49 Virginia 0 0.0 49	Texas	a a a a a a a a a a a a a a a a a a a	36.5	i i i i i i i i i i i i i i i i i i i
Virgin Island Virginia Virginia	Utah Vermont	0	0.0	47 En
Virginia: 0 48	Virgin Island	Š. Š. , , O	0.9	49
	Virginia	<u> </u>	0.0	48 51
Washington U 0.0 51 West Virginia 0 0.0 53	Washington West Virginia	0	0.0	53
Wisconsin 0 0.0 52	Wisconsin	Ō	0.0	52
Wyoming 0 0.0 54 Tetal 63 100.0 54	Wyoming	63	0.0	54

ż

Chart 10.4-4 Number of Facilities Managing Hazardous Waste in Injection Wells by State in 1986

Source: TT-140 (N3)

UNITS SUBJECT TO THE LAND DISPOSAL RESTRICTION RULE

Regulations authorized by HSWA and promulgated by EPA since 1986 prohibit the land disposal of hazardous waste unless hazardous chemicals and characteristics have been removed, reduced, or stabilized to the greatest extent possible or unless EPA determines on a site-specific basis that there will be no migration of hazardous constituents from the land disposal unit. Land disposal units covered by these restrictions include landfills, land treatment areas, surface impoundments, waste piles, and underground injection wells. The regulations apply to all waste management activities (including storage and treatment) conducted in these units.

Chapter 10 included a discussion of land disposal in landfills, land treatment areas, surface impoundments used for disposal, and underground injection wells during 1986. This chapter describes the remaining units subject to the land disposal restrictions—waste piles and surface impoundments (including those used for treatment or storage). Section 12.1 describes the potential effects of the land disposal restrictions, using the 1986 data as a baseline by which to evaluate these effects.

11.1 WASTE PILES

A waste pile is an uncontained accumulation of solid or nonflowing hazardous waste. In 1986, 71 facilities managed 0.677 million tons of hazardous waste in waste piles.

Charts 11.1-1 and 11.1-2 show the quantity of hazardous waste managed and the number of facilities managing hazardous waste in waste piles in each EPA region in 1986. Charts 11.1-3 and 11.1-4 show the same information for each state or territory.

٠..

Chart 11.1-1 Quantity of Hazardous Waste Managed in Waste Piles per EPA Region in 1986 (in million tons)

Source: TT-149 (J3)

Chart 11.1-2 Number of Facilities Managing Hazardous Waste in Waste Piles per EPA Region in 1986

Source: TT-149 (J3)

179

• • •

180

.

State	Quantity Managed	Percentage of Total Quantity	State Bank
Alabama	0.046	6.8	4
Alaska	0.000	0.0	27
Arizona	0.000	0.0	28
Arkansas	0.006	0.9	16
Colorada			29
Connecticut	0.007	10	
Delaware	0.000	0.0	30
District of Columbia	0.000	0.0	31
Florida	0.030	4 4	5
Georgia	0.002	0.3	20
Guam Hawaii	0.000	0.0	32
Idaho	0.000	0.0	34
Illinois	0.014	2.0	9
Indiana	0.000	0.0	35
lowa	0.000	6.0	36
Kansas	0.000	0.0	37
Kentucky	<0.001		26
Maino	0.000	0.0	
Marviand	0.001	0.2	22
Massachusetts	0.000	0.0	40
Michigan	0.181	26.8	2
Minnesota	0.010	1.5	10
Mississippi	0.004 *	0.5	18
Montana	0.001		24
Nebraska	0.000	ũõ	41
Nevada	0.000	0.0	42
New Hampshire	0.000	0.0	43
New Jersey	0.001	0.2	21
New Mexico	0.000	0.0	44
North Carolina	0.007	1.0	15
North Dakota	0.000	0.0	
Ohio	0.027	40	6
Oklahoma	0.016	23	7
Oregon	0.000	0.0	47
Pennsylvania Buode Rise	0.222	32.8	
Rhode Island	0.000	0.0	48
South Carolina	0.010	1.5	11
South Dakota	0.000	0.0	50
Tennessee	0.000	0.0	51
Texas	0.052	L.	
Utah	0.000	0.0	52
	U.000	LQ	53
Vininia	1 01 6	UU 92	04
Washington	0.002	0.3	*************************************
West Virginia	0.007	1.0	13
Wisconsin	<0.001*	<0.1*	25
Wyoming	0.005	0.8	
Total	0.677	100.0	

Chart 11.1-3 Quantity of Hazardous Waste Managed in Waste Piles by State in 1985

^aLess than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1988 was generated in these states. Source: TT-149 (J3)

State	Number of Facilities	Percentage of Total Number	State Rank
Alabama	2	2.8	9
Alaska	0	0.0	29
Arkansas	0	1.4	10
California	ò	0.0	31
Colorado	2	2.8	12
Connecticut	2	2.8	13
Delaware	0	0.0	32
		0.0	33
Georgia	ti dan Badia Madan Danisa dari da Dal O	-nisini (), sani 44 katawatiki kini 20	1947 - 1958 - 1958 - 1959 -
Guam	0	2.0	34
Hawaii	ŏ	0.0	35
ldaho 🛛	Ō	0.0	36
Illinois	2	2.8	11
Indiana	0	0.0	37
lowa	0	0.0	38
Kansas	0	0.0	39
louisiana		14 A D	26 A A A A A A A A A A A A A A A A A A A
Maine		0 0	8.6387258376361732 49 28217623111331 A1
Maryland	1	1.4	22
Massachusetta	Ō	0.0	42
Michigan	4	5.6	5
Minnesota	3	4.2	7
Mississippi			21
MISSOUT			24 - Contractor
Nobreeks			43 12
Nevade	in an	00	44
New Hampshire	una, duta em les es procesións ♥ al, una procesión este especial. O	0.0	45
New Jersey	2	2.8	16
New Mexico	0	0.0	46
New York	3	4.2	8
North Carolina			47
	a haga sa sa sa 🗸 🖓 sa		· · · · · · · · · · · · · · · · · · ·
Orlehome	10 		
Oracon	l e Martelle (1995 e 1997) Secondario de Statelle de Carlos de La composition	in an	27
Pennsylvania	Barbara (Barbara) (Barbara) (Barbara)	12.7	
Puerto Rico	0	0.0	49
Rhode Island	0	0.0	50
South Carolina	1	1.4	17
South Dakota	0	0.0	51
	ana ana ang ang ang ang ang ang ang ang	1.4 No 11 10 10 10 10 10 10 10 10 10 10 10 10	28
I Hah	ar - Seren I. D'' - L' - L'' - L'' - L'		3 57
Vermont	a di seconda	under son der sternen der son d Einen son der so	52
Virgin island	ō	0.0	54
Vrginia	5	7.0	4
Washington	2	2.8	14
West Virginia	1	1.4	18
Wisconsin	1	1.4	25
Wyoming	1	1.4	20
Tatal	71	100 0	

Chart 11.1-4 Number of Facilities Managing Hazardous Waste in Waste Piles by State In 1986

Source: TT-149 (J3)

ł

Chart 11.1-5 shows the hazardous waste management activities conducted in waste piles in 1986. Over 70 percent of facilities with waste piles used the units to store hazardous waste in 1986.

Chart 11.1-5 Types of Waste Management Conducted in Waste Piles in 1986, by Number of Facilities

Source: TT-149 (J3, J27, J29)

11.2 SURFACE IMPOUNDMENTS

Surface impoundments are pits, ponds, or lagoons designed to hold liquid wastes or wastes containing free liquids. Surface impoundments can be used to accumulate, store, treat, recycle, or dispose of hazardous waste. In 1986, 298 facilities managed 231.7 million tons of hazardous waste in surface impoundments.

Charts 11.2-1 and 11.2-2 show the quantity of hazardous waste managed in and the number of facilities managing hazardous waste in surface impoundments in each EPA region in 1986. Charts 11.2-3 and 11.2-4 show the same information for each state or territory.

Chart 11.2-1 Quantity of Hazardous Waste Managed in Surface Impoundments per EPA Region in 1986 (in million tons)

Source: TT-150 (K3)

11. Units Subject to the Land Disposal Restriction Rule

183

٠..

Chart 11.2-2 Number of Facilities Managing Hazardous Waste in Surface Impoundments per EPA Region in 1986

	State	Quantity Managed (million tona)	Percentage of Total Quantity	State
	Alabama	4.96	2.1	11
	Alaska	0.00	0.0	40
	Anzona Arkanese	0.02	<0.19	30
	California	2.67	1.2	13
5 7	Colorado	0.02	0. 1	
	Connecticut	0,10	40.1 ^b	27
×,	District of Columbia	<0.01= 0.00	<0.1*	35
	Florida	0.31	0.1	2
	Georgia	9.23	4.0	7
	Guam	0.00	0.0	42
	Hawaii	0.00	0.0	43
	Illinois	5.39	23	10
۰.	Indiana	0.47	19 - 19 19 1 0 2 19 19 4 4 4 5	serre 1955, 1 9 56, 1975, 197
	lowa	0.02	0 1 ⁹	32
	Kansas	<0.01	<0.1 [₽]	36
1	Kentucky	0.78	03	
• •		000		nti ul chiesnen skaze 🖉 zaslazaven 30 km AA
	Maryland	0.25	0.1	22
	Massachusetta	0.09	<0.1 ^b	28
	Michigan	36.81	15.9	3
•	Minnesota Miscipal ast		0.0	45
tan Us	Misemiti	n 01	-0 t ^b	10 Q1
	Montana	0.00	0.0	46
	Nebraska	0.00	0.0	47
	Nevade	0.00	0.0	48
	New Lampshire	0.00	0.0	49
	New Mexico	<0.01	<0.1 ^b	38
	New York	5.81	2.5	9
	North Carolina	0.36	0.2	20
	North Dakota	0.00	8.0	50
	Oklahama	3.21		12
5	Oracon	V.I. 0 18		29 27
	Pennsylvania	0.82	0.4	16
	Puerto Rico	0.12	0.1	24
	Rhode Island	0.00	0.0	51
	South Carolina South Dokete	2.62	1.1	14
	Tannassa	22.21	9.6	5
•	Texas	38.69	1.	
	Utah	0.11	<0.1 [*]	25
	Vermont	0.00	0.0	53
	Virgin Island.	0.00	0.0	1999 - 1997 - 54 - 1997 - 19
	Washington	12412) - Martin II. 0 54	u	10: haven bei sid is D ifferen in soort 10
	West Virginia	22.48	9.7	4
	Wisconsin	<0.01ª	<0.18	39
	Wyoming	<0.01	<0.18	37
	Total	231.70	100.0	

Chart 11.2-3 Quantity of Hazardous Waste Managed in Surface impoundments by State in 1986

⁴Less than 10,000 tons of hazardous waste were generated in these states in 1986. ^bLess than 0.1 percent of the total quantity of hazardous waste generated in 1986 was generated in these states. Source: TT-150 (K3)

÷

State	Number of Facilities	Percentage of Total Number	State Rank
Alabama Alaska Arizona Arkansas California	9 0 3 4 21	3.0 0.0 1.0 1.3 7.0	12 40 29 25 3
Colorado Connecticut Delaware District of Columbia Florida	2 12 1 0 14	0.7 4.0 0.3 0.8 4.7	32 10 35 41 5
Georgia Guam Hawaii Idaho Illinois	8 0 0 1 12	2.7 0.0 0.0 0.3 4.0	13 42 43 34 9
kansas Kansas Kentucky Louisiana Maine	8 1 8 21 0	27 0.7 0.3 2.7 7.0 0.0	15 33 38 14 2 44
Maryland Massachusetts Michigan Minnesota Mississippi	2 4 12 0	0.7 1.3 4.0 0.0 2.0	30 24 8 45 18
Nortana Nebrasia Nevada New Hampshire New Jersey	0 0 0 0 7	0,0 0,0 0,0 0,0 0,0 2,3	22 48 47 47 48 49 16
New Mexico New York North Carolina North Dakota Ohio	1 13 3 0 18	0.3 4.4 1.0 0.0 B.D	38 6 27 50
Oklahome Oregon Pennsylvania Puerto Rico Rhode Island	5 2 13 3 0	1.7 0.7 4.4 1.0 0.0	21 31 7 28 51
South Carolina South Dakota Tennessee Texas Utah	5 0 6 41	1.7 0.0 2.0 13.8 2.0	20 52 17 19
Vermon: Virgin island Virginia Washington West Virginia	6 4 3 10	U.0 0.0 1.2 1.0 3.4	53 54 23 26 11
Wyoming	1 1	0.3	39 37

Chart 11.2-4 Number of Facilities Managing Hazardous Waste in Surface Impoundments by State In 1986:

Source: TT-150 (K3)

<u>186</u>

Chart 11.2-5 shows the hazardous waste management activities conducted in surface impoundments in 1986. Most facilities (63 percent) used their surface impoundments to treat hazardous waste in 1986. Section 10.3 further describes hazardous waste disposal in surface impoundments.

Source: TT-150 (K3, K31, K46, K49)

. .

. •

(This page is intentionally blank).

• • • •

¢

12 CHANGES SINCE 1986 AFFECTING HAZARDOUS WASTE MANAGEMENT

The Generator and TSDR Survey data cover the calendar year 1986 and can be used as a baseline by which to evaluate changes in hazardous waste management activities since 1986. Several factors affect hazardous waste management activities. One important factor is the level and type of production or other business activity that facilities generate. These economic factors vary from year to year and industry to industry, and their effects are difficult to assess.

A second factor that affects hazardous waste management activities is changes in the regulatory environment. Because such changes apply uniformly to particular waste management activities, the overall effect of these changes can be assessed. Among the major regulatory changes affecting hazardous waste management activities since 1986 are the implementation of the following:

- · land disposal prohibitions authorized by HSWA,
- minimum technical requirements for surface impoundments authorized by HSWA,
- the toxicity characteristic leachate procedure (TCLP) test to determine if a waste is toxic and therefore hazardous under RCRA, and
- EPA and state activities to encourage industrial pollution prevention.

This chapter examines each of these changes in the regulatory environment since 1986 and suggests their probable effects on hazardous waste management activities.

12.1 LAND DISPOSAL RESTRICTION RULES

In enacting HSWA, Congress required EPA to develop regulations prohibiting the land disposal of hazardous waste unless hazardous chemicals and characteristics have been removed, reduced, or stabilized to the greatest extent possible, or unless EPA determines on a site-specific basis that there will be no migration of hazardous constituents from the land disposal unit for as long as the wastes remain hazardous. Concern for potential groundwater and soil contamination from hazardous waste disposed of in land-based activities prompted these legislative changes. Land disposal units covered by these prohibitions include landfills, land treatment areas, surface impoundments, waste piles, and underground injection wells. These restrictions apply to all waste management activities (including storage or treatment) conducted in these land disposal units.

HSWA imposes a schedule on EPA, including provisions for two-year delays in national implementation based on capacity shortfalls in BDAT technologies, for determining conditions under which a particular hazardous waste may be disposed of in land disposal units. This schedule is outlined in Chart 12.1-1. ;;

Date Effective	RCRA Hazardous Wastes Subject to Land Disposal Restriction
November 1986	Dioxins and solvents
July 1987	Hazardous wastes banned from land disposal in California ("California list") including liquids, metals, acids, PCBs, and halogenated organic compounds
August 1988	Most hazardous third of RCRA hazardous wastes ("1st third")
June 1990	Next most hazardous third of RCRA hazardous wastes ("2nd third")
May 1991	Final third of RCRA hazardous wastes ("3rd third")

Chart 12.1-1. Schedule for Hazardous Waste Land Disposal Restriction Rules Under HSWA

Effect of Land Disposal Restriction Rules. The land disposal restriction rules directly affect hazardous waste management activities. To meet Land Disposal Restrictions (LDR) treatment standards for land disposal, TSDR facilities are required to increase their treatment of hazardous waste prior to disposal. Land disposal restriction regulations will decrease the quantity of waste managed in land disposal units for some wastes, while increasing

disposal quantities for other wastes. For example, requirements to incinerate waste decrease disposal volume because only the residual incinerator ash will be landfilled. On the other hand, requiring wastes to be solidified to stabilize hazardous constituents will increase disposal volume due to the added quantities of stabilizing materials (e.g., cement).

Meeting BDAT standards and finding alternative methods of disposing of hazardous waste will increase the costs of hazardous waste management. To avoid these costs, facilities might attempt to reduce the quantity of hazardous waste generated and subsequently treated or disposed of. Such pollution prevention activities are described in greater detail below.

12.2 SURFACE IMPOUNDMENT REGULATIONS

Concern over groundwater contamination from hazardous waste also prompted the inclusion in HSWA of new requirements concerning surface impoundments. Under HSWA, EPA developed new minimum technical requirements for surface impoundments to prevent groundwater contamination. With limited exemptions, surface impoundments were required to be retrofitted to meet these minimum technical requirements by November 8, 1988. Minimum technical requirements include installing double liners, leachate collection systems, and groundwater monitoring.

Effect of Surface Impoundment Regulations. Because of the expense of retrofitting surface impoundments, many TSDR facilities chose instead to close surface impoundments that did not meet the minimum technical requirements. Closing surface impoundments is expected to temporarily increase the quantity of hazardous waste managed due to contaminated soils removed by the dredging of surface impoundments.

12.3 TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP)

Beginning September 25, 1990, facilities are required to use the TCLP test to determine if a waste is toxic and therefore subject to RCRA regulations. The test approximates the leaching of toxic constituents of waste from land disposal units. If the estimated concentration of the toxic constituent in the leachate is above regulatory thresholds established by EPA, the waste is considered hazardous under RCRA.

TCLP replaces the extraction procedure (EP) leaching test. The most notable distinction between these two is that the EP test estimates the leaching of metals only, whereas TCLP also tests the leaching of organic compounds.

Twenty-five organic chemicals will be added to the toxicity characteristic when the TCLP test becomes effective. Thirteen additional chemicals may be added to this list at a later date, and other organic chemicals are also under consideration for future inclusion under the TCLP test.

Effect of the Toxicity Characteristic Leaching Procedure. Implementing the TCLP test is expected to increase the number of wastes that fall under RCRA regulatory requirements. Facilities managing these wastes are required to obtain a permit or cease handling these hazardous wastes. Thus, implementation of the TCLP rules could increase the number of TSDR facilities with RCRA permits in addition to increasing the quantity and number of RCRA hazardous wastes managed.

12.4 BOILER AND INDUSTRIAL FURNACE REGULATIONS

Prior to 1991, burning hazardous waste as fuel was less stringently regulated than burning hazardous waste for destruction (incineration). Regulations promulgated by EPA in 1991 require boilers and industrial furnaces used to reuse hazardous waste as fuel to comply with essentially the same standards as hazardous waste incinerators. These new regulations will require operators of most boilers and industrial furnaces reusing hazardous waste as fuel to do the following:

- Meet destruction and removal efficiency standards.
- Use controls on products of incomplete combustion.
- Meet emission standards for heavy metals, hydrogen chloride, chlorine gas, and particulates.
- Obtain RCRA permits.

Effect of Boiler and Industrial Furnace Regulations. The requirement that boilers and industrial furnaces have RCRA permits will increase both the quantity of hazardous waste managed in RCRA-permitted units and the number of facilities with RCRA permits. To avoid the compliance costs of the regulations, some operators of boilers and industrial furnaces may choose to discontinue burning hazardous waste. The quantity of hazardous waste reused as fuel may therefore decline.

12.5 POLLUTION PREVENTION POLICIES

EPA has established a hierarchy of preferred waste management practices. Under this hierarchy, facilities are encouraged to use pollution prevention techniques to reduce the quantity or toxicity of the waste they generate. Pollution prevention techniques include using fewer hazardous materials in industrial processes (toxics use reduction) and reducing the quantity or toxicity of the waste those processes generate (source reduction). For those wastes that are generated, EPA encourages facilities to use environmentally sound recycling practices.

Both the federal and state governments have established programs to encourage the implementation of pollution prevention practices. HSWA includes provisions that require large quantity generators of hazardous waste to certify that the quantity and toxicity of any hazardous waste shipped offsite for waste management has been minimized to the extent economically and technically feasible. Waste minimization techniques that may be used to satisfy this requirement include pollution prevention and recycling. Other programs established to encourage pollution prevention include the following:

- EPA's Pollution Prevention Information Clearinghouse (PPIC), designed to educate facilities on pollution prevention techniques and their benefits;
- state technical assistance programs, also designed to educate facilities on pollution prevention opportunities; and
- state laws that require facilities to develop pollution prevention plans or to achieve some level of reduction in waste generation.

Effect of Pollution Prevention Policies. As facilities learn more about pollution prevention opportunities and as new pollution prevention techniques are developed, the quantity of hazardous waste generated should decline. Using pollution prevention techniques to reduce the quantity of hazardous waste generated will reduce the quantity of hazardous waste subsequently treated, stored, or disposed of. Also, increasing the recovery and reuse of hazardous waste will reduce the quantity of hazardous waste to be disposed of.

. .

·
APPENDIX A

DETAILED OUTLINE OF THE GENERATOR AND TSDR SURVEYS

.

·

.

DETAILED OUTLINE OF THE GENERATOR SURVEY

QUESTIONNAIRE GA: GENERAL FACILITY INFORMATION

- 1: GENERAL FACILITY DATA
- 2: HAZARDOUS WASTE GENERATION
- 3: WASTE MINIMIZATION (Facility-wide procedures)
- 4: HYDROGEOLOGIC AND EXPOSURE INFORMATION
- 5: SOLID WASTE MANAGEMENT UNITS (SWMUS)
- 6: CLOSURES
- 7: ACCUMULATION OF HAZARDOUS WASTE IN CONTAINERS REGULATED UNDER 90-DAY RULE
- 8: FACILITY-WIDE SCHEMATIC (155)

QUESTIONNAIRE GB: HAZARDOUS WASTE CHARACTERIZATION

- 1: DESCRIPTION CODES AND GENERATION
- 2: MANAGEMENT
- 3: PHYSICAL/CHEMICAL FORM, CHEMICAL CHARACTERISTICS, AND CONSTITUENTS
- 4: TESTING PROCEDURES
- 5: HAZARDOUS WASTE MINIMIZATION

QUESTIONNAIRE GC: FUEL BLENDING

- 1: IN-USE FUEL BLENDING ONSITE
- 2: PLANNED FUEL BLENDING ONSITE

QUESTIONNAIRE GD: REUSE AS FUEL

- 1: GENERAL FACILITY DATA
- 2: SPECIFIC DATA FOR EACH IN-USE UNIT
- 3: TYPE AND NUMBER OF PLANNED UNITS
- 4: SPECIFIC DATA FOR EACH PLANNED UNIT

QUESTIONNAIRE GE: WASTEWATER TREATMENT

- 1: GENERAL FACILITY DATA
- 2: SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3: TYPE AND NUMBER OF PLANNED PROCESSES (27)
- 4: SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE GF: METALS RECOVERY FOR REUSE

- 1: GENERAL FACILITY DATA
- 2: SPECIFIC DATA FOR EACH IN-USE PROCESS
- 4: SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE GG: SOLVENT AND LIQUID ORGANIC RECOVERY FOR REUSE

- 1: GENERAL FACILITY DATA
- 2: SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3: TYPE AND NUMBER OF PLANNED PROCESSES (32)
- 4: SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE GH: OTHER RECOVERY PROCESSES

- 1: GENERAL FACILITY DATA
- 2: SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3: TYPE AND NUMBER OF PLANNED PROCESSES

QUESTIONNAIRE GI: TANK SYSTEMS

- 1: GENERAL FACILITY DATA
- 2: TANKS REGULATED BY THE 90-DAY RULE
- 3: PIPING CONNECTED TO HAZARDOUS WASTE TANKS
- 4: TANK DESCRIPTIONS FOR EACH IN-USE TANK
- 5: TANK DESCRIPTIONS FOR EACH PLANNED TANK

DETAILED OUTLINE OF THE TSDR SURVEY

QUESTIONNAIRE A: GENERAL FACILITY INFORMATION

- 1. GENERAL FACILITY INFORMATION
- 2. WASTES MANAGED BY PERMIT STATUS
- 3. HAZARDOUS WASTES GENERATION ONSITE
- 4. WASTES RECEIVED FROM OFFSITE
- 5. MANAGEMENT OF CERTAIN SPECIAL TYPES OF WASTES
- 6. CONTAINER STORAGE AND ACCUMULATION OF HAZARDOUS WASTES
- 7. FACILITY SCHEMATIC

QUESTIONNAIRE B: INCINERATION

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE INCINERATOR
- 3. TYPE AND NUMBER OF PLANNED INCINERATORS
- 4. SPECIFIC DATA FOR EACH PLANNED INCINERATOR

QUESTIONNAIRE C: REUSE AS FUEL

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE UNIT
- 3. TYPE AND NUMBER OF PLANNED UNITS
- 4. SPECIFIC DATA FOR EACH PLANNED UNIT

QUESTIONNAIRE D: FUEL BLENDING

- 1. IN-USE FUEL BLENDING ONSITE
- 2. PLANNED FUEL BLENDING ONSITE

QUESTIONNAIRE E: SOLIDIFICATION/STABILIZATION

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3. TYPE AND NUMBER OF PLANNED SOLIDIFICATION PROCESSES
- 4. SPECIFIC DATA FOR EACH PLANNED PROCESS

A-4

QUESTIONNAIRE F: SOLVENT AND LIQUID ORGANIC RECOVERY FOR REUSE

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3. TYPE AND NUMBER OF PLANNED PROCESSES
- 4. SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE G: METALS RECOVERY FOR REUSE

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3. TYPE AND NUMBER OF PLANNED PROCESSES
- 4. SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE H: WASTEWATER TREATMENT

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3. TYPE AND NUMBER OF PLANNED PROCESSES
- 4. SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE I: OTHER PROCESSES (TREATMENT OR RECOVERY)

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE PROCESS
- 3. TYPE AND NUMBER OF PLANNED PROCESSES
- 4. SPECIFIC DATA FOR EACH PLANNED PROCESS

QUESTIONNAIRE J: WASTE PILES

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE WASTE PILE
- 3. HAZARDOUS WASTE TREATED IN WASTE PILES ONSITE
- 4. HAZARDOUS WASTE STORED ONLY IN WASTE PILES ONSITE
- 5. PLANNED WASTE PILES TO STORE OR TREAT HAZARDOUS

QUESTIONNAIRE K: SURFACE IMPOUNDMENTS

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE IMPOUNDMENT
- 3. HAZARDOUS WASTE TREATED IN SURFACE IMPOUNDMENTS ONSITE
- 4. HAZARDOUS WASTE DISPOSED OF IN SURFACE IMPOUNDMENTS ONSITE
- 5. HAZARDOUS WASTE STORED ONLY IN SURFACE IMPOUNDMENTS ONSITE
- 6. PLANNED SURFACE IMPOUNDMENTS TO STORE, TREAT, OR DISPOSE OF HAZARDOUS WASTE ONSITE

QUESTIONNAIRE L: LANDFILLS

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE LANDFILL
- 3. HAZARDOUS WASTE DISPOSED OF IN LANDFILLS ONSITE
- 4. PLANNED LANDFILLS TO DISPOSE OF HAZARDOUS WASTE ONSITE

QUESTIONNAIRE M: LAND TREATMENT

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE LAND TREATMENT AREA
- 3. HAZARDOUS WASTE DISPOSED OF IN LAND TREATMENT AREAS ONSITE
- 4. PLANNED LAND TREATMENT AREAS TO DISPOSE OF HAZARDOUS WASTE ONSITE

QUESTIONNAIRE N: UNDERGROUND INJECTION WELLS

- 1. GENERAL FACILITY DATA
- 2. SPECIFIC DATA FOR EACH IN-USE UNDERGROUND INJECTION WELL
- 3. HAZARDOUS WASTE DISPOSED OF IN UNDERGROUND INJECTION WELLS ONSITE
- 4. PLANNED UNDERGROUND INJECTION WELLS TO DISPOSE OF HAZARDOUS WASTE ONSITE

QUESTIONNAIRE O: TANK SYSTEMS

- 1. GENERAL FACILITY DATA
- 2. TANKS REGULATED BY THE 90-DAY RULE
- 3. STORAGE OR ACCUMULATION IN RCRA PERMITTED OR INTERIM STATUS TANKS

÷

- 4. PIPING CONNECTED TO HAZARDOUS WASTE TANKS
- 5. TANK DESCRIPTIONS FOR EACH IN-USE TANK
- 6. TANK DESCRIPTIONS FOR EACH PLANNED TANK

APPENDIX B

· .

DEFINITIONS OF WASTE CODES

÷

The following list of codes is provided to assist you in completing the questions which ask about the types of hazardous waste generated and managed onsite at your facility. This list of codes has two parts:

- A list of X waste codes which was developed specifically for this survey to describe (1) Waste that is considered hazardous by some state or federal regulations, but not now considered hazardous by RCRA regulations and (2) Hazardous waste residuals from onsite hazardous waste management operations.
- A list of codes for the waste considered hazardous by federal RCRA regulations—RCRA D, F, K, P, and U waste codes.

If you generated or managed a type of waste that is considered hazardous by regulations in your state and a waste code is not provided or if you have any questions about this list of waste codes, please call the Survey Helpline (1-800-635-8850).

X WASTE CODES

This list of X waste codes was developed specifically for this survey. These X codes are not official RCRA waste codes and should be used ONLY for this survey.

Code	Waste description				
Waste But No	Waste That is Considered Hazardous by Some State and Federal Regulations, But Not by RCRA Regulations				
XP81	Waste which has a concentration of polychlorinated biphenyls less than 50 parts per million				
XP 82	Waste which has a concentration of polychlorinated biphenyls greater than or equal to 50 parts per million but less than 500 parts per million				
XPB3	Waste which has a concentration of polychlorinated biphenyls greater than or equal to 500 parts per million				
XASB	Waste containing asbestos				
XOIL	Waste oil				
XDXN	Waste containing dioxins/furans (See Note 1)				
Hazardous Waste Residuals from Onsite Hazardous Waste Management Operations (See Note 2)					
XLEA	Leachate from hazardous waste landfills				
XASH	Hazardous incinerator, boiler, or furnace ash				
XSCR	Hazardous incinerator, boiler, or furnace scrubber water				
XWWS	Hazardous wastewater treatment sludge (See Note 3)				
XWWL	Hazardous wastewater treatment liquid (See Note 3)				

NOTES:

1. Do not use XDXN to denote dioxin-containing wastes described by RCRA waste codes.

- These waste codes were developed to describe hazardous waste residuals that result from the onsite management of many individual RCRA coded wastes which are no longer individually identifiable.
- Do not use XWWS or XWWL to denote hazardous wastewater treatment sludges or liquids that contain wastes
 described by RCRA waste codes beginning with the letter F or K. Instead, list F or K waste codes separately and use
 XWWS and/or XWWL to denote all other constituents.

RCRA WASTE CODES

Code	Wasts description		
Char 261.24	Characteristic Hazardous Waste (A description of the characteristic hazardous wastes can be found at 40 CFR 26 261.24, July 1, 1986. Listed in the box below is the maximum concentration of contaminants for the characteristic of EP toxic		
D001	Ignitable waste		
D002	Corrosive waste		
D003	Reactive waste		
D004	Arsenic		
D005	Barium		
D006	Cadmium		
D007	Chromium		
D008	Lead		
D009	Mercury		
D010	Selenium		
D011	Silver		
D012	Endrin(1,2,3,4,10,10-hexachloro-1,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo, endo-5,8-dimethano-naphthalene)		
D013	Lindane (1,2,3,4,5,6-hexe-chlorocyclohexane, y isomer)		
D014	Methoxychlor (1,1,1-inchloro-2,2-bis (p-methoxyphenyl]ethane)		
D015	Toxaphene (C10H10Clatechnical chlorinated camphene,57-69% chlorine)		
D016	2,4-D (2,4-dichlorophenoxyacetic acid)		
D017	24.5TP Silvex (2,4,5-trichlorophenoxypropionic acid)		

MAXIMUM CONCENTRATION OF CONTAMINANTS FOR CHARACTERISTIC OF EP TOXICI

RCRA Waste Code	Contaminant	Maxim concent (milligr per iii
D004	Arsenic	51
D005	Barlum	100(
D006	Cadmium	11
D007	Chromium	51
D008	Lost	54
D009	Mercury	0.:
D010	Selenium	11
D011	Silver	51
D012	Endrin(1,2,3,4,10,10-hexachioro-1,7-epoxy-1,4,4a,58,78,8a-octahydro-1,4-endo, endo-58-dimethano- naphthalene)	Q
D013	Lindane (1,2,3,4,5,8-hexa-chlorocyclohexane, y isomer)	0.
D014	Methoxychlor (1,1,1-trichloro-2,2-bis (p-methoxyphenyljethane)	101
D015	Taxaphene (C10H10Cle,technical chlorinated camphene.67-69% chlorine)	01
D016	2,4-D (2,4-dichlorophenaxyacetic acid)	10.'
D017	2.4.5TP Silvex (2.4.5-trichlorophenoxypropionic acid)	11

A solid waste exhibits the characteristic of EP toxicity if, using EP toxicity test methods, the extract from a representative sam the waste contains any of the contaminants listed below at a concentration equal to or greater than the value given.

Code	Waste description			
Haza	Hazardous Waste from Nonspecific Sources			
F001	The following spent halogenated solvents used in degreasing: tetrachloroethylene, trichlorethylene, methylene chlo- ride, 1,1,1-trichloroethane, carbon tetrachloride and chlorinated fluorocarbons and all spent solvent mixtures/blends used in degreasing containing, before use, a total of 10 percent or more (by volume) of one or more of the above halogenated solvents or those solvents listed in F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures			
F002	The following spent halogenated solvents: tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, chlorobenzene, 1,1,2-trichloro-1,2,2-triftluoroethane, ortho-dichlorobenzene, trich- lorofluoromethane, and 1,1,2, trichloroethane, ortho-dichlorobenzene, and trichlorofluoromethane; all spent solvent mixtures/blends containing, before use, a total of 10 percent or more (by volume) of one or more of the above halogenated solvents or those solvents listed in F001, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures			
F003	The following spent nonhalogenated solvents: xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, and methanol; all spent solvent mixtures/blends containing, before use, only the above spent nonhalogenated solvents; and all spent solvent mixtures/blends containing, before use, one or more of the above nonhalogenated solvents, and a total of 10 percent or more (by volume) of one or more of those solvents listed in F001, F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.			
F004	The following spent nonhalogenated solvents: cresols and cresylic acid, and nitrobenzene; and the still bottoms from the recovery of these solvents; all spent solvent mixtures/blends containing before use a total of 10% or more (by volume) of one or more of the above nonhalogenated solvents or those solvents listed in F001, F002, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures			
F0 05	The following spent nonhalogenated solvents: toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, benzene, 2-ethoxyethanol, and 2-nitropropane; all spent solvent mixtures/blends containing, before use, a total of 11 percent or more (by volume) of one or more of the above nonhalogenated solvents or those solvents listed in F001, F002, or F004; and still bottoms from the recovery of these spent solvents and spent solvent mixtures			
F006	Wastewater treatment sludges from certain electroplating operations except from the following processes: (1) Sulfur acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) ali minum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc, and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum			
F007	Spent cyanide plating bath solutions from electroplating operations			
F008	Residues from electroplating operations where cyanides are used in the process			
F009	Spent stripping and cleaning bath solutions from electroplating operations where cyanides are used in the process			
F010	Quenching bath residues and sludges from oil baths from metal heat treating operations where cyanides are used in the process			
F011	Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations (except for precious metals heat treating spent cyanide solutions from salt bath pot cleaning)			
F012	Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process (except for precious metals heat treating guenching wastewater treatment sludges)			
F019	Wastes from the chemical conversion coating of aluminum			
F020	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tri- or tetrachlorophenol or intermediates used to produce their pesticide derivatives. (This listing does not include wastes from the production in hexachlorophene from highly purified 2,4,5-trichlorophenol.)			
F021	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of pentachlorophenol, or of intermediates used to produce derivatives			
F022	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta- or hexachlorobenzenes under alkaline conditions			
F023	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials equipment previously used for the production or manufacturing use (as a reactant, chemical intermediate, or compr nent in a formulating process) of tri- and tetrachlorophenols. (This listing does not include wastes from equipment used only for the production or use of hexachlorophene from highly purified 2,4,5-trichlorophenol.)			

(conti

F022 Wastes, including but not limited to, distillation residues, heavy ends, tara, and reactor clean-out wastes from the catalyzed processes. (This listing does not include light ends, spent filters and filter ads, spent desiscants, wastewater, wastewater resument studges, spent catalysta, and wastes listed in § 261.32.) F022 Wastes (encept wastewater and spent carbon from hydrogen chickle purification) from the production of maternals actionment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of terms, previously, and use (as a reactant, chemical intermediate, or component in a formulating compounds derived from these chicrophenols. (This lighting does not include termulatione containing the tarchicrophenol as the sole component.) F027 2.4.5-Trichicrophenol F027 Pentachorophenol F027 Pentaclorophenol F027 Phenol.2.4.5-trichioro F027 Phenol.2.4.5-trichioro F027 Phenol.2.4.5-trichioro F027 Phenol.2.4.5-trichioro F027 Phenol.2.4.5-trichioro F027 Phenol.2.4.5-trichioro	Code	Waste description
 F028 Wastes (except wastewater and spent carbon from hydrogen chioride purification) from the production of maternals equipment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of terms, pents, or hexachlorobenzene under alkaline conditions. F027 Discarded unused formulations containing the listing does not include formulations containing thexachloropheno synthesized from prepunited 2.4.5-inchlorophenol as the sole component.) F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 Pentschlorophenol F027 Pentschlorophenol F027 Pentschlorophenol F027 Phenol.2.4.5-trichloro F027 Phenol.2.4.5-trichloro F027 Phenol.2.4.5-trichloro F027 Phenol.2.4.5-trichlorophenol F027 Phenol.2.4.5-trichloro F027 Phenol.2.4.5-trichlorophenol F027 Phenol.2.4.5-trichlorophenol F027 Phenol.2.4.5-trichlorophenol F027 Phenol.2.4.5-trichloro F027 Phenol.2.4.5-trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F028 Poil. F027, F022, F023, F024, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the production of chrome yellow and orange pigments K002 Wastewater treatment sludge from the production of chrome sellow and orange pigments K004 Wastewater treatment sludge from the production of chrome sellow and orange pigments K004 Wastewater treatment sludge from the production of chrome sellow and orange pigments K004 Wastewater treatment sludge from the production of	F024	Wastes, including but not limited to, distillation residues, heavy ends, tars, and reactor clean-out wastes from the production of chlorinated aliphatic hydrocarbons, having a carbon content from one to five, utilizing free radical catalyzed processes. (This listing does not include light ends, spent filters and filter aids, spent dessicants, wastewater, wastewater treatment sludges, spent catalysts, and wastes listed in § 261.32.)
 F027 Discarded unused formulations containing tor-, tetre, or pentachlorophenol or discarded unused formulations containing thexachlorophene synthesized from these chlorophenol. F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 Pentachlorophenol F027 Phenol, 2.4.5-Trichlorophenol F027 Propionic acid, 2-(2,4.5-trichlorophenoxy) F028 Residue resulting from the incineration or thermal treatment of soli contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F028, and F027 F020 Wastewater treatment sludge from the production of chrome yellow and orange pigmenta K001 Bottom sediment sludge from the production of chrome yellow and orange pigmenta K002 Wastewater treatment sludge from the production of chrome oxide green pigmenta K003 Wastewater treatment sludge from the production of chrome oxide green pigmenta K	F026	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials equipment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta-, or hexachlorobenzene under alkaline conditions.
F027 2.4.8-Trichlorophenol F027 2.3.4.6-Teirachlorophenol F027 Pentachlorophenol F027 Pentachlorophenol F027 Pentol, 2.4.5-Trichloro F027 Phenol, 2.4.5-Trichloro F027 Phenol, 2.3.4.5-teirachloro F027 Phenol, 2.3.4.5-teirachloro F027 Phenol, 2.4.6-Trichlorophenoxy) F027 Phenol, 2.4.6-Trichlorophenoxy) F027 Phenol, 2.4.5-Trichlorophenoxyacetic acid F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the production of chrome yellow and orange pigmenta K002 Wastewater treatment sludge from the production of chrome oxide green pigmenta K004 Wastewater treatment sludge from the production of chrome exide green pigmenta K005 </th <th>F027</th> <th>Discarded unused formulations containing tri-, letra-, or pentachlorophenol or discarded unused formulations containing compounds derived from these chlorophenols. (This listing does not include formulations containing hexachlorophene synthesized from prepurified 2,4,5-trichlorophenol as the sole component.)</th>	F027	Discarded unused formulations containing tri-, letra-, or pentachlorophenol or discarded unused formulations containing compounds derived from these chlorophenols. (This listing does not include formulations containing hexachlorophene synthesized from prepurified 2,4,5-trichlorophenol as the sole component.)
F027 2.3.4,6-Tetrachlorophenol F027 Pentachlorophenol F027 Phenol,2.4.5-Trichloro F027 Phenol,pentachloro F027 Phenol,2.3.4,5-tetrachloro F027 Phenol,2.4.6-trichloro F027 Phenol,2.4.6-trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F026, and F027 Hazardous Waste from Specific Sources K001 K001 Bottom sediment sludge from the production of chrome yellow and orange pigments K002 Wastewater treatment sludge from the production of chrome green pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome uside green pigment	F027	2,4,6-Trichlorophenol
F027 Pentachlorophenol F027 Phenol,2,4,5-trichloro F027 2,4,5-T F027 Silvex F027 Phenol,2,3,4,5-tetrachloro F027 Phenol,2,3,4,5-tetrachloro F027 Phenol,2,3,4,5-tetrachloro F027 Phenol,2,3,4,5-tetrachloro F027 Phenol,2,4,6-trichlorophenoxy) F027 Propionic acid, 2-(2,4,5-trichlorophenoxy) F027 2,4,5-Trichlorophenol F027 2,4,5-Trichlorophenol F027 2,4,5-Trichlorophenol F027 2,4,5-Trichlorophenol F027 2,4,5-Trichlorophenol F028 Residues resulting from the inclineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F026, and F027 Hazardous Waste from Specific Sources K001 K001 Bottom sediment sludge from the production of chrome yellow and orange pigments K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome green pigments	F027	2.3,4,6-Tetrachlorophenol
F027 Phenol.2.4.5-trichloro F027 2.4.5-T F027 Phenol.pentachloro F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.3.4.5-trichlorophenoxy F027 Phenol.2.3.4.5-trichlorophenoxy F027 Phenol.2.4.5-trichlorophenoxy F027 2.4.5-Trichlorophenoxy F027 2.4.5-Trichlorophenoxy F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F026, and F027 Hazardous Waste from Specific Sources K001 K001 Bottom sediment sludge from the production of chrome yellow and orange pigments K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of chrome green pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the produc	F027	Pentachlorophenol
F027 2.4.5-T F027 Phenol, pentachloro F027 Silvex F027 Silvex F027 Phenol, 2.4.5-tetrachloro F027 Phenol, 2.4.5-trichlorophenoxy F027 Phenol, 2.4.5-trichlorophenoxy F027 Propionic acid, 2-(2.4.5-trichlorophenoxy) F027 2.4.5-Trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 K001 Bottom sediment sludge from the production of chrome yellow and orange pigmenta K002 Wastewater treatment sludge from the production of chrome yellow and orange pigmenta K004 Wastewater treatment sludge from the production of chrome green pigmenta K005 Wastewater treatment sludge from the production of chrome green pigmenta K004 Wastewater treatment sludge from the production of chrome green pigmenta K005 Wastewater treatment sludge from the production of chrome solid green pigmenta K006 Oven residue from the production of actraidehyde from ehylene K005 Distiliation bottoms from the production of actraideh	F027	Phenol, 2.4, 5-trichloro
F027 Phenol. pentachloro F027 Silvex F027 Phenol. 2.3, 4,5-tetrachloro F027 Phenol. 2.4,5-trichlorophenoxy F027 Phenol. 2.4,5-trichlorophenoxy F027 2.4,5-Trichlorophenot F027 2.4,5-Trichlorophenoxyacetic acid F027 2.4,5-Trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F026, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pertachlorophenol K020 Wastewater treatment sludge from the production of chrome yellow and orange pigmenta K030 Wastewater treatment sludge from the production of chrome green pigmenta K040 Wastewater treatment sludge from the production of chrome oxide green pigmenta K050 Wastewater treatment sludge from the production of chrome oxide green pigmenta K061 Wastewater treatment sludge from the production of chrome oxide green pigmenta K062 Wastewater treatment sludge from the production of chrome oxide green pigmenta K063 Oven residue from the production of acrelakehyde from ethylene	F027	2,4,5-T
F027 Silvex F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.4.6-trichloro F027 Propionic acid, 2-(2,4.5-trichlorophenoxy) F027 2.4.5-Trichlorophenoxyacetic acid F027 2.4.5-Trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pertachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of chrome green pigments K004 Wastewater treatment sludge from the production of chrome oxide green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K009 Distillation bottoms from the production of activate from ethylene K010 Sottom stream from the ecstonitrile column in the production of acrylonitrile. K011 Bottom stream from the ecstonitrile column in the produ	F027	Phenol, pentachloro
F027 Phenol.2.3.4.5-tetrachloro F027 Phenol.2.4.6-trichloro F027 Propionic acid, 2-(2.4.5-trichlorophenoxy) F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenoxy F027 2.4.5-Trichlorophenoxy F027 2.4.5-Trichlorophenoxy F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020 F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c peritachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of achrome green pigments K004 Wastewater treatment sludge from the production of chrome oxide green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the production of acryonitrile K006 Distillation bottoms from the production of acetaldehyde from ethylene K006 <td< th=""><th>F027</th><th>Silvex</th></td<>	F027	Silvex
F027 Phenol.2.4.6-trichlorophenoxy) F027 Propionic acid, 2-(2,4,5-trichlorophenoxy) F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenol F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pentachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of zinc yellow pigmenta K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K004 Wastewater treatment sludge from the production of chrome oxide green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Westewater treatment sludge from the production of chrome oxide green pigments K006 Westewater treatment sludge from the production of actualdehyde from sthylene K006 Distillation bottoms from the production of acetaldehyde from sthylene K010<	F027	Phenol, 2, 3, 4, 5-tetrachloro
F027 Propionic acid, 2-(2,4,5-trichlorophenoxy) F027 2.4,5-Trichlorophenox F027 2.4,5-Trichlorophenoxyscetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Extrement sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pertachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of chrome green pigments K003 Wastewater treatment sludge from the production of chrome oxide green pigments K004 Wastewater treatment sludge from the production of ion blue pigments K005 Westewater treatment sludge from the production of ion blue pigments K004 Wastewater treatment sludge from the production of acetaldehyde from ethylene K005 Oven residue from the production of acetaldehyde from ethylene K004 Distillation bottoms from the production of acrylonitrile K015 Bottom stream from the exetonitrile column in the production of acrylonitrile	F027	Phenol, 2, 4, 6-trichloro
 F027 2.4.5-Trichlorophenol F027 2.4.5-Trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F026, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pertachlorophenoi K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K009 Wastewater treatment sludge from the production of ion blue pigments K000 Oven residue from the production of acetaldehyde from ethylene K010 Distillation bottoms from the production of acetaldehyde from ethylene K011 Bottom stream from the ecetonitrile column in the production of acryonitrile. K013 Bottoms from the acetonitrile purification column in the production of acryonitrile K014 Bottoms from the distillation residues from the production of carbon tetrachoride K015 Heavy ends (still bottoms) from the purification column in the production of acryonitrile K015 Heavy ends (still bottoms) from the purification column in the production of acryonitrile K015 Heavy ends (still bottoms) from the purification column in the production of acryonitrile K016 Heavy ends (still bottoms) from the purification column in the production of acryonitrile K015 Heavy ends (still bottoms) from the purification column in the production of acryonitrile K015 Heavy ends (still bottoms) from the purification column in the production of a	F027	Propionic acid, 2-(2,4,5-trichlorophenoxy)
 F027 2.4.5-Trichlorophenoxyacetic acid F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosole and/c pentachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of zinc yellow pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K008 Wastewater treatment sludge from the production of icon blue pigments K009 Wastewater treatment sludge from the production of icon blue pigments K009 Wastewater treatment sludge from the production of icon blue pigments K009 Oven residue from the production of actualehyde from ethylene K010 Distillation bottoms from the production of actualehyde from ethylene K011 Bottom stream from the exetonitrile column in the production of acrylonitrile K015 Sib bottoms from the distillation or benzyl choirde K016 Bottoms from the distillation or benzyl choirde K017 Heavy ends (still bottoms) from the purification column in the production of acrylonitrile K018 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K019 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in the production of epichlorohydrin 	F027	2.4.5-Trichlorophenol
F028 Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F028, and F027 Hazardous Waste from Specific Sources K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pentachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of chrome green pigments K005 Wastewater treatment sludge from the production of chrome green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K005 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments K006 Oven residue from the production of acreatidehyde from ethylene K010 Distillation botoms from the production of acreatidehyde from ethylene K011 Bottom stream from the exetonitrile column in the production of acryionitrile K018 Bottom stream from the acetonitrile purification column in the production of acryionitrile K019 Sitil bottoms from the distillation or benzyl chloride <th>F027</th> <th>2,4,5-Trichlorophenoxyacetic acid</th>	F027	2,4,5-Trichlorophenoxyacetic acid
Hazardous Waste from Specific Sources K001 Extrom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pentachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigmenta K003 Wastewater treatment sludge from the production of molybdate orange pigmenta K004 Wastewater treatment sludge from the production of zinc yellow pigmenta K005 Wastewater treatment sludge from the production of chrome green pigmenta K006 Wastewater treatment sludge from the production of chrome green pigmenta K007 Wastewater treatment sludge from the production of icn blue pigmenta K008 Wastewater treatment sludge from the production of icn blue pigmenta K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation bottoms from the production of acetaldehyde from ethylene K011 Bottom stream from the wastewater stripper in the production of acrylonitrile K018 Bottom stream from the acetonitrile column in the production of acrylonitrile K019 Sill bottoms from the distillation column in the production of acrylonitrile K018 Henvy ends or distillation residues from the production of carbon tetrachloride K019 Henvy ends (still bottoms) from the purification column in the pr	F028	Residues resulting from the incineration or thermal treatment of soil contaminated with EPA hazardous waste nos. F020, F021, F022, F023, F026, and F027
 K001 Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosole and/c pertachlorophenol K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of zinc yellow pigments K005 Wastewater treatment sludge from the production of chrome green pigments K006 Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of iron blue pigments K008 Oven residue from the production of actualdehyde from ethylene K009 Distillation bottoms from the production of acetaldehyde from ethylene K011 Bottom stream from the exotonitrile column in the production of acrytonitrile K013 Sottom stream from the distillation of benzyl chloride K014 Havy ends or distillation residues from the production of carbon tetrachloride K015 Havy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Havy ends from the fractionation column in ethyl chloride production of epichlorohydrin 	Hazard	ous Waste from Specific Sources
 K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of zinc yellow pigments K005 Wastewater treatment sludge from the production of chrome green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of iron blue pigments K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K011 Bottom stream from the production of acetaldehyde from ethylene K013 Bottom stream from the ecetonitrile column in the production of acrylonitrile K014 Bottoms from the distillation of benzyl chloride K015 Still bottoms from the distillation column in the production of aceton tetrachloride K016 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K019 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K016 Heavy ends from the fractionation column in ethyl chloride production 	K001	Bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/c pentachlorophenol
 K003 Wastewater treatment sludge from the production of molybdate orange pigments K004 Wastewater treatment sludge from the production of zinc yellow pigments K005 Wastewater treatment sludge from the production of chrome green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of iron blue pigments (anhydrous and hydrated) K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K011 Bottom stream from the production of acetaldehyde from ethylene K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottoms from the distillation of benzyl chloride K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production of epichlorohydrin 	K002	Wastewater treatment sludge from the production of chrome yellow and orange pigmenta
 K004 Wastewater treatment sludge from the production of zinc yellow pigments K005 Wastewater treatment sludge from the production of chrome green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated) K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the production of acetaldehyde from ethylene K013 Bottom stream from the ecotonitrile column in the production of acrylonitrile K014 Bottoms from the distillation column in the production of acrylonitrile K015 Still bottoms from the distillation residues from the production of carbon tetrachloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production of epichlorohydrin 	K003	Wastewater treatment sludge from the production of molybdate orange pigments
 K005 Wastewater treatment sludge from the production of chrome green pigments K007 Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of iron blue pigments K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the production of acetaldehyde from ethylene K013 Bottom stream from the ecetonitrile column in the production of acrylonitrile K014 Bottoms from the distillation column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrachloride K018 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production of epichlorohydrin 	K004	Wastewater treatment sludge from the production of zinc yellow pigments
 K008 Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated) K007 Wastewater treatment sludge from the production of iron blue pigments K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the vastewater stripper in the production of acrylonitrile- K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production of epichlorohydrin 	K005	Wastewater treatment sludge from the production of chrome green pigments
 K007 Wastewater treatment sludge from the production of iron blue pigments K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the production of acetaldehyde from ethylene K013 Bottom stream from the ecotonitrile column in the production of acrylonitrile K014 Bottoms from the acetonitrile column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrachloride K017 Heavy ends from the fractionation column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production 	K008	Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated)
K008 Oven residue from the production of chrome oxide green pigments K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the vastewater stripper in the production of acrylonitrile- K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrachlorider K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production of epichlorohydrin	K007	Wastewater treatment sludge from the production of iron blue pigments
K009 Distillation bottoms from the production of acetaldehyde from ethylene K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the wastewater stripper in the production of acrylonitrile- K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottom stream from the acetonitrile column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrachloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production	K008	Oven residue from the production of chrome oxide green pigments
K010 Distillation side cuts from the production of acetaldehyde from ethylene K011 Bottom stream from the wastewater stripper in the production of acrylonitrile K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrachloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production	K009	Distillation bottoms from the production of acetaldehyde from ethylene
K011 Bottom stream from the wastewater stripper in the production of acrylonitrile. K013 Bottom stream from the acetonitrile column in the production of acrylonitrile. K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile. K015 Still bottoms from the distillation of benzyl chloride. K016 Heavy ends or distillation residues from the production of carbon tetrachloride. K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin. K018 Heavy ends from the fractionation column in ethyl chloride production.	K010	Distillation side cuts from the production of acetaldehyde from ethylene
K013 Bottom stream from the acetonitrile column in the production of acrylonitrile K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K016 Heavy ends or distillation residues from the production of carbon tetrschloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production	K011	Bottom stream from the wastewater stripper in the production of acrylonitrile-
K014 Bottoms from the acetonitrile purification column in the production of acrylonitrile K015 Still bottoms from the distillation of benzyl chloride K015 Heavy ends or distillation residues from the production of carbon tetrachloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production	K013	Bottom stream from the acetonitrile column in the production of acrylonitrile
K015Still bottoms from the distillation of benzyl chlorideK015Heavy ends or distillation residues from the production of carbon tetrachlorideK017Heavy ends (still bottoms) from the purification column in the production of epichlorohydrinK018Heavy ends from the fractionation column in ethyl chloride production	K014	Bottoms from the acetonitrile purification column in the production of acrylonitrile
 K015 Heavy ends or distillation residues from the production of carbon tetrachloride K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in sthyl chloride production 	K015	Still bottoms from the distillation of benzyl chloride
K017 Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin K018 Heavy ends from the fractionation column in ethyl chloride production	K016	Heavy ends or distillation residues from the production of carbon tetrachloride
K018 Heavy ends from the fractionation column in ethyl chloride production	K017	Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin
	K018	Heavy ends from the fractionation column in ethyl chloride production

(cont.

Code	Waste description			
Haza	izardous Waste from Specific Sources			
K019	Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production			
K020	Heavy ends from the distillation of vinyl chloride in vinyl chloride monomer production			
K021	Aqueous spent antimony catalyst waste from fluoromethanes production			
K022	Distillation bottom tars from the production of phenol/acetone from cumene			
K023	Distillation light ends from the production of phthalic anhydride from naphthalene			
K024	Distillation bottoms from the production of phthalic anhydride from naphthalene			
K025	Distillation bottoms from the production of nitrobenzene by the nitration of benzene			
K026	Stripping still tails from the production of methyl ethyl pyridines			
K027	Centrifuge and distillation residues from toluene diisocyanate production			
K028	Spent catalyst from the hydrochlorinator reactor in the production of 1,1,1-trichloroethane			
K029	Waste from the product steam stripper in the production of 1,1,1-trichloroethane			
K030	Column bottoms or heavy ends from the combined production of trichloroethylene and perchloroethylene			
K031	By-product saits generated in the production of MSMA and cacodylic acid			
K032	Wastewater treatment sludge from the production of chlordane			
K033	Wastewater and scrub water from the chlorination of cyclopentadiene in the production of chlordane			
K034	Filter solids from the filtration of hexachlorocyclopentadiene in the production of chlordane			
K035	Wastewater treatment sludges generated in the production of creosote			
K036	Still bottoms from toluene reclamation distillation in the production of disulfoton			
K037	Wastewater treatment sludges from the production of disulfoton			
K038	Wastewater from the washing and stripping of phorate production			
K039	Filter cake from the filtration of diethylphosphorodithioic acid in the production of phorate.			
K040	Wastewater treatment sludge from the production of phorate			
K041	Wastewater treatment sludge from the production of toxaphene			
K042	Heavy ends or distillation residues from the distillation of tetrachlorobenzene in the production of 2.4.5-T			
K043	2.6-Dichlorophenol waste from the production of 2.4-D			
K044	Wastewater treatment sludges from the manufacturing and processing of explosives			
. K045	Spent carbon from the treatment of wastewater containing explosives			
K046	Wastewater treatment sludges from the manufacturing, formulation, and loading of lead-based initiating compounds			
K047	Pink/red water from TNT operations			
K048	Dissolved air flotation (DAF) float from the petroleum refining industry			
K049	Stop oil emulsion solids from the petroleum refining industry			
K0 50	Heat exchanger bundle cleaning sludge from the petroleum refining industry			
K051	API separator sludge from the petroleum refining industry			
K052	Tank bottoms (leaded) from the petroleum refining industry			
K060	Ammonia still lime sludge from coking operations			
K061	Emission control dust/sludge from the primary production of steel in electric furnaces.			
K062	Spent pickle liquor from steel finishing operations of plants that produce iron or steel			
K069	Emission control dust/sludge from secondary lead smelting			
K071	Brine purification muds from the mercury cell process in chlorine production, where separately prepurified brine is not used			
K073	Chlorinated hydrocarbon waste from the purification step of the diaphragm cell process using graphite anodes in chlorine production			
K083	Distillation bottoms from aniline production			
K084	Wastewater treatment sludges generated during the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds			

.

(continued)

- -

Code	Waste description		
K08	Distillation or fractionation column bottoms from the production of chlorobenzenes		
K086	Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and le		
K087	Decanter tank tar sludge from coking operations		
K093	Distillation light ends from the production of phthalic anhydride from ortho-xylene		
K094	Distillation bottoms from the production of phthalic anhydride from ortho-xylene		
K095	Distillation bottoms from the production of 1,1,1-trichloroethane		
K096	Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane		
K097	Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane		
K098	Untreated process wastewater from the production of toxaphene		
K099	Untreated wastewater from the production of 2,4-D		
K100	Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting		
K101	Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds		
K102	Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds		
K103	Process residues from aniline extraction from the production of aniline		
K104	Combined wastewater streams generated from nitrobenzene/aniline production		
K105	Separated aqueous stream from the reactor product washing step in the production of chlorobenzenea:		
K106	Wastewater treatment sludge from the mercury cell process in chlorine production		
K111	Product washwaters from the production of dinitrotoluene via nitration of toluene		
K112	Reaction byproduct water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene		
K113	Condensed liquid light ends from purification of toluenediamine in production of toluenediamine via hydrogenation dinitrotoluene.		
K114	Vicinals from the purification of toluenediamine in production of toluenediamine via hydrogenation of dinitrotoluene		
K115	Heavy ends from purification of totuenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene		
K116	Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation (toluenediamine		
K117	Wastewater from the reactor vent gas scrubber in the production of ethylene dibromide via bromination of ethene		
K118	Spent adsorbent solids from purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene.		
K136	Still bottoms from the purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene1		
Disca Resid	Discarded Commercial Chemical Products, Off-Specification Species, Container Residuals, and Spill Residues Thereol—Acute Hazardous Waste (An alphabetized listing can be found at 40 CFR 261.33, July 1, 1986.)		
P001	Wertanin, when present at concentrations greater than or equal to 0.3%		
P001	3-(a-Acetonyl-benzyl)-4-hydroxycournarin and saits, when present at concentrations greater than 0.3%		
P002	Acetamide, N-(aminothioxomethyl)		
P002	1-Acetyl-2-thiourse		
P003	2-Propenal		
P003	Acrolein		
P004	1.2,3,4,10,10-Hexachioro-1,4,4a,5.8,8a-hexahydro-1,4:5,8-endo,axo-dimethanonaphthalene		
P004	Aldrin		

B-6

Code	Waste description
P005	2-Propen-1-ol
P005	Allyi alcohot
P006	Aluminum phosphide (r,t)
P007	3(2H)-Isoxazolone,5-(aminomethyl)-
P007	5-(Aminomethyl)-3-isoxazolol
P008	4-a-Aminopyridine
P008	4-Pyridinamine
P008	4-Aminopyridine
P009	Phenol.2,4,6-trinitro-,ammonium salt (r)
P009	Ammonium picrate (r)
P010	Arsenic acid (t)
P011	Arsenic pentoxide (1)
POTT	Arsenic (V) oxide (I)
P012	Arsenic (III) oxide (1)
P012	Arsenic trioxide (1)
P013	Banum cyanide
P014	I hiophenol
PU14	Benzeneunkoi
PU15	Beryilum dust (1)
PU10	Methane.oxydis(chloro-
PUIG	
PU17	2-Propanone, 1-bromo- (1)
BAIR	Drombacetone (i)
DOTE	Sirychniain- iu-one,2,3-aimethoxy-
P010	
P020	Dincero Dinargi 9 A dinita 6 (4 methodosod)
P020	Calcium cyanide
P022	Carban Neutrice (1)
P022	Carbon disulfide (t)
P021	Acetaklehyde chlom.
P023	Chlorosostsidehude
P024	Benzenamine Achlorn-
P024	o-Chiomaniline
P026	Thiourae (2-chiorophenyi)-
P026	1-(p-Chiompheny)/thiourse
P027	Programminia 3-chioro-
P027	3-Chloroppionitrile
P028	Benzene. (chloromethyl)-
P028	Benzyl chloride
P029	Copper cyanides
P030	Cyanides (soluble cyanide salts), not elsewhere specified (t)
P031	Cyanogen
P033	Cyanopen chloride
P011	

-

.

۱

L

(continued

.

ļ	Code	Waste description	
I	P034	4,6-Dinitro-o-cyclohexylphenol (t)	
l	P034	Phenol,2-cyclohexyl-4,6-dinitro- (t)	
ļ	P036	Dichlorophenylarsine	
	P036	Phenyl dichloroarsine	
	P037	' Dieldrin	
	P037	1,2,3,4,10,10-Hexachloro-6,7-expoxy-1,4,4a,5,6,7,8,8a-octahydro-endo.exo-1,4:5,8-dimethanonaphthalene	
	P038	Diethylarsine (t)	
	P038	Arsine, diethyf- (t)	
	P039	0,0-Diethyl S-[2-(ethylthio)ethyl] phosphorodithioate (t)	
	P039	Disulfoton (t)	.÷
	P040	0,0-Diethyl 0-pyrazinyl phosphorothioate	
	P040	Phosphorothioic acid, 0.0-diethyl 0- pyrazinyl ester	
	P041	Diethyl-p-nitrophenyl phosphate	
	P041	Phosphoric acid, diethyl p-nitrophenyl ester	
	P042	Epinephrine	
	P042	1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-	
	P043	Disopropyi fluorophosphate	
	P043	Fluoridic acid, bis(1-methylethyl) ester	
	P043	Phosphorofiluoridic acid, bis(1-methylethyl) ester	
	P044		
	P044	Phosphorodithioic acid, 0,0-dimethyl S-[2-(methylamino)-2-oxoethyl]ester (t)	
	P045	3,3-Dimetry-1-(methylthio)-2-butanone, 0-((methylamino)carbonyljoxime	~
	P048	interanex - Dimethyleheasth-develop (t)	
	PU40	a, a-Dimethylphenethylamine (t)	
	PU40	Enanamine, I, I-oimeury2-phenyi- (I) 6 6: Dicitine o consol and color	
	PU47	Alexandre Cresci and Sales	
	P047	Phenoi 2'A disitra A methola and salts	
	POAR	2 4 Dinitrophenol	
	POAR	Phanol 2 Adinitm	
	P049		
	Pide	Thioimidadicectonic diamide	
	P050	Endosuitan	
	P050	S-Norbornene-2.3-dimethanol. 1.4.5.6.7.7-bexachiom.cvclic sulfite	
	P051	1.2.3.4.10.10-Hexachioro-6.7-exposy-1.4.4a.5.6.7.8.8a-oxtahydro-endo.endo-1.4:5.8-dimethanonaphthalene	
	P051	Endin	
	P054	Ethvianimine	
	P054	Azircine	
	P058	Fluorine	
	P057	Fluoroscetamide	
	P057	Acetamide,2-fluor-	
	P058	Fluorcacetic acid, sodium salt	
	P058	Acetic acid, fluoro-, sodium sait	
	P059	Heptachior	

P060 Hexachlorohexahydro-endo,endo-dimethanonapthalene P060 1.2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-endo, endo-dimethanonaphthalene P062 Hexaethyl tetrachosphate	
P060 1.2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-endo, endo-dimethanonaphthalene P062 Hexaethyl tetraphosphate	
P062 Hexaethyl tetraphosobate	
P062 Tetraphosphoric acid, hexaethyl ester	
P063 Hydrocyanic acid	
P063 Hydrogen cyanide	
P064 Methyl isocyanate	
P064 Isocyanic acid, methyl ester	
P065 Fulminic acid, mercury(II) salt (r,t)	
P065 Mercury fulminate (r,t)	2
P055 Methomyl	-
P055 Acetimidic acid, N-((methylcarbamoyi)oxy)thio-, methyl ester	
PUG7 2-Methylazingine	
Pust 1,2-Propytenimine	
Public Hydrazine, metnyl-	
Pusa Melnyi nyarazine	
Propenerulne, 2-methylog methylogia (Carthylogia) activities	
Poso Flopana, zanemyrzamemynnior, olimetnywinnojcznoonyjoxime	
P070 Added	
P071 Mathyl parathion	
P072 c-Naphthythiourea	
P072 Thiourse 1-naphthalenvi-	
P073 Nickel tetracerbond	
P073 Nickel carbonyl	
P074 Nickel(II)cvanide	
P074 Nickel cyanide	
P075 Nicotine and salts (I)	-
P075 Pyridine, (S)-3-(1-methyl-2-pyrrolidinyl)-, and saits	
P076 Nitrogen (II) oxide (t)	
P075 Nitric oxide (t)	
P077 p-Nitroaniline (t)	
P077 Benzenamine, 4-nitro-	
P078 Nitrogen (IV) oxide	
P078 Nitrogen diaxide	
P081 Nitrogiycarine (r.t)	
PO81 1,2,3-Propenetrial, trinitrate-(r)	
P082 Dimethylnitrosamine	
P082 N-Nitrosodimethylamine	
P084 Ethenamine.N-methyl-N-nitroso-	
P084 N-Nitrosomethylvinylamine	
P085 Diphosphoramide,octamethyl-	
P085 Octamethylpyrophosphoramide	

....

- -~

Code	Waste description
P087	Osmium tetroxide
· P087	Osmium oxide
P088	Endothail
P088	7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid
P089	Parathion (t)
P089	Phosphorothioic acid,0,0-diethyl 0-(p-nitrophenyl) ester (t)
P092	Mercury.(acetato-0)phenyi-
P092	Phenylmercuric acetate
P093	N-Phenyithiourea
P093	Thiourea, phenyi-
P094	Phosphorothioic acid, 0,0-diethyl S-(ethylthio)methyl ester (t)
P094	Phorate (t)
P095	Phosgene (t)
P095	Carbonvi chloride
P096	Hydrogen phosphide
P096	Phosphine
P097	Famphur
P097	Phosphorothioic acid: 0.0-dimethyl.0-(/dimethylamino)-sulfonyl)ohenyl)ester
Poss	Potassium cvanide
Pnee	Poteseium silver ovenide
P101	Ethul avanide
P101	Brongsenitrie
D103	Progeneritatie
D102	2.Dromm-1-Al
D102	Selenauma Selenauma
P103	Carbamimideeslensis said
P103	
P104	Sulver Cyantie
F103	Socium azioe Socium accorde
P100	
P107	Strontium suitide (t)
P108	Stryctinidin-10-one, and saits (1)
P108	Strychnine and saits (t)
P109	Dilhiopyrophosphonc acid, tetraethyl ester
P109	Tetraethyldithiopyrophosphate
P110	Plumbane, tetraethy4-
P110	Tetraethyl load
P111	Tetraethylpyrophosphate
P111	Pyrophosphoric acid, tetraethyl ester
P112	Hethane, tetranitro- (r)
P112	Tetranitromethane (r)
P113	Fhallium(III) oxide
P113	Fhallic oxide
P114	Fhallium(I) selenide
P115 3	Sulfuric acid, thallium(1) sait

.

(

Г	_	
	Code	Waste description
Ì	P116	Hydrazinecarbothioamide
	P116	Thiosemicarbazide
ł	P118	Methanethiol,trichloro-
	P118	Trichloromethanethiol
	P119	Vanadic acid, ammonium salt
L	P119	Ammonium vanadate
	P120	Vanadium pentoxide
ł	P120	Vanadium(V) oxide
	P121	Zinc cyanide
Ì	P122	Zinc phosphide (r,t)
	P122	Zinc phosphide, when present at concentrations greater than 10%
	P123	Toxaphene
ł	P123	Camphene, octachloro-
	Disca Resid	rded Commercial Chemical Products, Off-Specification Species, Container Residues, and Spill ues Thereof—Toxic Waste (An alphabetized listing can be found at 40 CFR 261.33, July 1, 1986.)
	100U	Ethanal (i)
	U001	Acetaldehyde (i)
ŀ	U002	2-Propanone (i)
	U002	Acetone (i)
	U003	Ethanenitrile (i,t)
	U003	Acetonitrile (i,t)
	U004	Ethanone.1-phenyi-
1	U004	Acetophenone
	U005	2-Acetylaminofluorene
	U005	Acetamide, N-9H-fluoren-2-yl-
	U006	Ethanoyi chloride (c,r,t)
	U006	Acetyl chloride (c,r,t)
	U 007	2-Propenamide
	U007	Acrylamide
	U008	2-Propenoic acid (i)
	U008	Acrylic scid (i)
	U009	2. Propenenitrile
	U009	Acrylonitrile
	U010	Mitomycin C
	U01 0	Azirino(2'3':34)pymolo(1,2-a)indole-4,7-dione, 6-amino-8-{((aminocarbonyl) oxy)methyl)-1,1a,2,8,8a,8b-hexahydro-8a- methoxy-5-methyl-,
	U011	1H-1,2,4-Triazol-3-amine
	U011	Amitrole
	U012	Benzenamine (i.t)
	U012	Aniline (i.t)
	U014	Auramine
	11014	Benzensmine 4.4'-carbonimidoulbie/N.N.dimethul-
	9414	naurévenune, 24. Jen nauranàireatra (rainariài

. .

.

(continue

Cod	e Waste description
U01!	5 L-Serine, diazoacetate (ester)
U01!	5 Azaserine
U016	Benz(c]acridine
U016	3.4-Benzacridine
U017	' Benzal chloride
U017	' Benezene, (dichloromethyl)-
U018	Benz(a)anthracene
U018	1,2-Benzanthracene
U019	Benzene (i,t)
U020	Benzenesulfonyl chloride (c.r)
U020	Benzenesulfonic acid chloride (c,r)
U021	Benzidine
U021	(1,1'-Biphenyi)-4,4'-diamine
U022	Benzo(a)pyrene
U022	3.4-Benzopyrene
U023	Benzotrichloride (c,r,t)
U023	Benzene, (trichloromethyl)-(c,r,t)
U024	Bis(2-chloroethoxy) methane
U024	Ethane,1,1'-{methylenebis(oxy)}bis[2-chloro-
U025	Dichloroethyl ether
U025	Ethane.1,1'-oxybis[2-chloro-
U026	2-Naphthylamine, N, N-bis(2-chloromethyl)-
U026	Chlomaphazine
U027	Propane, 2, 2'-cxybis(2-chloro-
U027	Bis(2-chloroisopropyl) ether
U028	Bis(2-ethylhexyl) phthalate
U028	1,2-Benzenedicarboxylic acid, (bis(2-ethylhexyl))ester
U029	Methane, bromo-
U029	Methyl bromide
U030	4-Bromophenyl phenyl ether
U030	Benzene, 1-bromo-4-phenoxy-
U031	1-Butanol (i)
U031	N-Butyl alchohol (i)
U032	Calcium chromate
U032	Chromic acid, calcium sait
U033	Carbonyl fluoride (r.t)
U033	Carbon caryfluoride (r.t)
U034	Chional
U034	Acataldehvde, trichloro-
U035	Butanoic acid, 4-(bis(2-chloroethyl)amino)benzene-
UO35	Chiprambucil
U036	4.7-Methanoindan, 1.2.4.5.6.7.8.8-octa-chloro-3a.4.7.7a-letrahydro-
U036	Chlordane. technical
U037	Chiprobenzene
U037	Berzene, chloro-

- ---

.

(com.

Code	Waste description
U038	Ethyl 4,4'-dichlorobenzilate
U038	Benzeneacetic acid, 4-chloro-a-(4-chloro-phenyl)-a-hydroxy, ethyl ester
0039	Phenol,4-chloro-3-methyl-
U039	4-Chloro-m-cresol
U041	Oxirane,2-(chloromethyl)-
U041	1-Chloro-2,3-expoxypropane
U042	Ethene.2-chloroethoxy-
U042	2-Chloroethyl vinyl ether
U043	Ethene.chioro
U043	Vinyl chloride
U044	Methane, trichloro-
U044	Chloroform
U045	Methane, chloro-(i,t)
U045	Methyl chloride (i,t)
U046	Methane, chloromethoxy-
U046	Chloromethyl methyl ether
U047	Naphthalene, 2-chloro-
U047	β-Chloronaphthalene
U048	Phenol,2-chloro-
U048	o-Chiorophenol
U049	4-Chloro-o-toluidine, hydrochloride
U049	Benzenamine, 4-chloro-2-methyl-
0050	1.2-Benzphenanthrene
0050	Chrysene
U051	Creosote
U052	Cresylic acid
U052	Cresols
0053	
0053	
0055	Cumene (i)
0055	Benzane, (1-methylethyl)-(1)
0056	Cyclonexane (I)
0056	Benzene, nexenyaro- (i)
0057	
0058	2H-1,3,2-Oxazaphosphonne, 2-{Dis(2-chloroethyl)aminoj-tetranydro-2 oxide
0058	Cyclophosphamide
0059	5,12-Naphinacenedione, (85-cis)-8-acety-10-[(3-amino-2,3,6-trideoxy-a-L-lyxohexopyranosyl)oxyl]-7,8,9,10 tetrahydro-6,8,11-trihydroxy-1-methoxy-
U059	Daunomycin
U0 60	Dichloro diphenyi dichloroethane.
U0 60	DOD
U061	DOT
U061	Dichloro diphenyl trichloroethane
U062	Diallate
U062	S-(2,3-Dichloroallyl) diisopropytthiocarbamate

(continuer

Cod	Waste description
U06:	B Dibenz(a,h)anthracene
U063	1,2:5,6-Dibenzanthracene
U064	Dibenz(a,i)pyrene
U064	1,2:7,8-Dibenzopyrene
0066	Propane, 1-2-dibromo-3-chloro-
0066	1,2-Dibromo-3-chloropropane
0067	
0067	Linane, 1,2-dibromo-
UU68	Methane, dipromo-
	Memylene promice
1069	Cibutyi primalate
	1,2-benzenedicarboxylic acid, didutyl ester
1070	
1071	Denzene, 1,2-alchioro-
1071	Bestere 1.2.dieblere
1072	
1072	Bearans 1 A-dichloro
U073	(1 1'-Binhenvil-4 4'-diamine 3 3'-dichlom
U073	33'-Dichlombenzyline
U074	2. Futere 1 Adjublion_(i t)
U074	1 4 Dichiom 2-buttene (i t)
U075	
U075	Dichloradifluoromethane
U076	Ethnidene dichloride
U076	Ethane 1.1-dichloro-
U077	Etwiene dichloride
U077	Ethane, 1.2-dichloro-
U078	Ethene. 1-1-dichloro-
U078	1,1-Dichlorosthviene
U079	Ethene, trans-1,2-dichloro-
U079	1,2-Dichloroethylene
U0 80	Methane, dichloro-
U0 80	Mathylene chloride
U081	Phenol, 2, 4-dichloro-
U081	2,4-Dichiorophenol
- U082	Phenol, 2, 8-dichloro-
U082	2,6-Dichlorophenol
U083	Propylene dichloride
U083	1,2-Dichloropropane
U084	Propene, 1,3-dichloro-
U084	1,3-Dichloropropene
U085	2,2°-Bloxinane (I,t)
U085	1,23,4-Diepoxybutane (i,I)

(con.

Code	Waste description
UOSE	Hydrazine, 1,2-diethyl-
Uoss	N,N-Diethylhydrazine
U087	Phosphorodithioic acid, 0, 0-diethyl-, S-methyl-ester
U087	0.0-Diethyl-S-methyl-dithiophosphate
U088	Diethyl phthalate
U088	1.2-Benzenedicarboxylic acid, diethyl ester
U089	4,4'-Stilbenediol,a,a'-diethyl-
U089	Diethylstilbestrol
U090	Dihydrosatrole
U090	Benzene, 1, 2-methylenediaxy-4-propyl-
U091	(1,1'-Biphenyl)-4,4'-diamine,3,3'-dimethoxy-
U091	3.3'-Dimethoxybenzidine
U092	Methanamine, N-methyl-(i)
U092	Dimethylamine (i)
U093	Dimethylaminoazobenzene
U093	Benzenamine, N.N-dimethyl-4-phenylazo-
U094	7,12-Dimethylbenz[a]anthracene
U094	1,2.Benzanthracene,7,12-dimethyl-
U095	(1,1'-Biphenyi)-4,4'-diamine,3,3'-dimethyl-
U095	3.3'-Dimethylbenzidine
U096	Hydroperaxide, 1-methyl-phenylethyl-(r)
U096	a.æDimethylbenzylhydroperaxide (r)
U097	Carbamoyl chloride.dimethyl-
U097	Dimethylcarbamoyl chloride
860U	Hydrazine, 1, 1-dimethyl-
U098	1,1-Dimethylhydrazine
U099	Hydrazine, 1,2-dimethyl-
U099	1,2-Dimethylhydrazine
U101	Phenol, 2, 4-dimethyi-
U101	2,4-Dimethylphenol
U102	Dimethyl phthalate
U102	1-2-Benzenedicarboxylic acid, dimethyl ester
U103	Sulfuric acid, dimethyl ester
U103	Dimethyl sulfate
U105	2,4-Dinitrotoluene
U105	Benzene, 1-methyl-2,4-dinktro-
U106	2,6-Dinitrolouene
U106	Benzene, 1-methyl-2,8-dinitro
U107	Di-n-octyl phthalate
U107	1-2-Benzenedicarboxylic acid, di-n-octyl ester
U108	1,4-Diethylene diaxide
U108	1,4-Dioxane
U109	Hydrazine, 1,2-diphenyl-
U109	1,2-Diphenylhydrazine
	-

Cod	• Waste description
U11) 1-Propanamine.N-propyl-(i)
U110) Dipropylamine (i)
U11	N-Nitroso-N-propylamine
U111	Di-N-propyInitrosamine
U112	t Ethyl acetate (i)
U112	Acetic acid, ethyl ester (i)
U113	2-Propenoic acid, ethyl ester (i)
U113	Ethyl acrylate (i)
U114	Ethylenebis(dithiocarbamic acid), salts and esters
U114	1,2-Ethanediy/biscarbamodithioic acid
U115	Oxirane (i,t)
U115	Ethylene oxide (i,t)
U116	Ethylene thiourea
U116	
U117	Ethyl ether (1)
U117	Ethane, 1, 1'-oxybis- (i)
U118	2-Propenoic acid. 2-methyl-, ethyl ester
U118	Ethyl methacrylate
	Einyi meinanesulionate
U119	Methanesultonic acid, ethyl ester
0120	
0120	Benzolj, Kimuorene
0121	
0121	Methane, Inchioronuoro-
U122	Formaldenyde
0122	Mernytene oxide
0123	Pormic acid (c,t)
0123	
0124	Furtan (i)
0124	Futuran (I)
0125	Furture (i)
0125	2-Funancarboxaldenyde (i)
0120	1-Propanol,2.3-Spoxy-
0128	
0127	
0127	Benzene, nextechioro-
	I J- CURRENTIN, I, I JAJA, 9, 9-1102 CTIOTO-
0123	nexactionocyclonexane (y isomer)
U129	
U130	Hexachiorocycloperitadine
0130	I.JUyciopentagiene,1,2,3,4,5,5-nexil- Chloro-
0131	
UTIT	Etname, 1, 1, 2, 2, 2-nexachioro-

(contir

Code	Weste description
U132	Hexachlorophene-
U132	2,2-Methylenebis(3,4,6-trichlorophenol)
U133	Hydrazine (r,t)
U133	Diamine (r,t)
U134	Hydrogen fluoride (c.t)
U134	Hydrofluoric acid (c,t)
U135	Sullur hydride
0135	Hydrogen sulfide
0136	Hydroxydimetnylarsine oxide
0130	
11127	1, 10-1, 2-Phenylene)pyrane
11178	Nethane inde
U138	Methyliodide
U139	Ferric devices
U139	
U140	1-Propanol 2-methyl- (i.t)
U140	Isobutyl alcohol (i.t)
U141	Isosafrole
U141	Benzene, 1.2-methylanedioxy-4-propenyl-
U142	Kapone
U142	Decachiorooctahydro-1,3,4-metheno-2H-cyclobuta[c,d]-pentalen-2-one
U143	Lasiocarpine
U144	Lead acetate
U144	Acetic acid, lead salt
U145	Phosphoric acid, lead salt
U145	Lead phosphate
U146	Lead subacstate
U147	2,5-Furancione
U147	Maleic anhydride
U148	Maleic hydrazide
U148	1,2-Dihydro-3,6-pyradizinedione
U149	Propanedinitrile
U149	Maiononitrile
U150	Melphalan
U150	Alanine, 3-{p-bls(2-chloroethyl)amino) phenyl-,L-
U151	
U152	Propenentitie,2-methyl- (1,1)
U152	
0153	I niometrianci (I, t)
0153	Metranetrikol (I,T)
11154	Methodalaabab (1)
U134	Melliyi alcunu (i) Buridine () //2 dimethideminetathid) 2 eherudamine
U 133	rynume, zqt/z-umeutyaminojeutyij-z-pnenyiamino- Methemolete
0135	

. . .

.

(continued)

Cod	Waste description
U150	3 Methyl chlorocarbonate (i,t)
U156	Carbonochloridic acid, methyl ester (i,t)
U157	7 3-Methylcholanthrene
U157	Benz(j)aceanthrytene, 1,2-dihydro-3-methyl-
U158	3 4,4'-Methylenebis(2-chloroaniline)
U158	Benzenamine,4,4'-methylenebis(2-chloro-
U159	Methyl ethyl ketone (i,t)
0159	
0160	Metnyi etnyi katone peroxide (r.t)
11161	4-metnyi-2-pentanone (i)
11162	Methyl isobutyl ketone (i) 2-Processic sold 2-methyl, castbyl ester (i i)
1142	Zerroperiold acid, zeriolitye, metry i oster (i,t)
11163	Guandina Natimeo Namathyl N'anima
U163	N.methyl.N'.nitm_N.nitrosoquanidine
11164	4/1HbPyrimidinone 2 3-dibydro.6-methyl.2-thiovo.
U164	Methylthiouracil
U165	Nachthalene
U166	1.4.Naphthoguinone
U168	1.4-Naphthalenedione
U167	1-Naphthylamine
U1 67	a Naphthylamine
U168	2-Naphthylamine
U168	β-Naphthylamine
U169	Nitrobenzene (i.t)
U169	Benzene, nitro- (i,t)
U170	Phenol,4-nitro-
U170	p-Nitrophenol
U171	Propane.2-nitro-(i,t)
U171	2-Nitropropane (i,t)
U172	N-Nitrosodi-N-butylamine
U172	1-Butanamine, N-butyi-N-nitroso-
0173	Ethanol,2,2-(ntrosoimino)bis-
0173	N-Nitrosodiethanolamine
0174	
01/4	Einanamane, N-emyi-N-nitroso-
0170	N°N BCBC-N-BUT YLLI BE
11177	
11177	
11179	var var men i vermen i ymeettii uaap N. Nitman, N. matheliuaatha na
1/178	Contemporational methylations, athyl actor
1/170	N.Nitraonineridine
21176	Durining have budge have been and the second s
41/8	

Code	Waste description	7
U180	Nitrosopymalidine	1
U180	Pyrrole, tetrahydro-N-nitroso-	
U181	5-Nitro-o-toluidine	
U181	Benzenamine,2-methyl-5-nitro	
U182	Paraldehyde	
U182	1,3,5-Trioxane.2,4,6-trimethyl-	
U183	Pentachlorobenzene	
U183	Benzene, pentachloro-	
U184	Pentachioroethane	
U184	Ethane, pentachioro-	
0185		
U185	Benzene, pentachloronitro-	
0100		i
0100		ļ
0107		
0187	Acetamide, N-(4-ethoxyphenyi)-	
0188	Phenor	
0188	Benzene, nydroxy-	
11100	Prosphorus suitide (r)	
	Sumur phosphice (r)	
11100	Printingic annyonge	
11101	1,2-Denzenedicarboxylic acid annydride	
11101	2-ricoline Braiding Constant	
11102	Protocido	
11102	2.5 Diablem M (4.4 dimethyl 0 menowski) have a side	
11102	3.3-Dichlorover(1, 1-cimethyl-2-propymyl) benzamice	
11103		
11194		
11104	N-Brondemine (i,t)	
11196	Purkine	
11197	n-Response	
U197	1.4-Cvciohexadienationa	
U200	Beenine	
U200	Yohimhan-18-carboxylic acid. 11.17-dimethory-18-//3.4.5-trimethory-benzov/oryl- methyl ester	
U201	Resording to the second s	
U201	1.3-Benzanariai	
U202	Saccharin and salts	
U202	1.2-Benzisothiazolin-3-one.1.1-dioxide, and salts	
U203	Safrole	
U203	Benzene, 1.2-methylenedioxy-4-allyl-	
U204	Selenious acid	
U204	Seleníum dioxide	
U205	Selenium disulfide (r.t)	
U205	Sulfur selenide (r.t)	

••

·

.

,

(continued

Code	Waste description
U206	i Streptozotocin
U206	D-Glucopyranose, 2-deoxy-2(3-methyl-3-nitrosoureido)-
U207	1.2.4.5-Tetrachlorobenzene
U207	Benzene, 1,2,4,5-letrachloro-
U208	1.1.1.2-Tetrachioroethane
U208	Ethane, 1, 1, 1, 2-tetrachioro-
U209	1,1,2.2-Tetrachioroethane
U209	Ethane, 1-1-2-2-tetrachloro-
U210	Tetrachioroethylene
U210	Ethene, 1, 1, 2, 2-tetrachioro
U211	Methane, tetrachloro-
U211	Carbon tetrachloride
U213	Tetrahydrofuran (i)
U213	Furan, tetrahydro- (i)
U214	Thallium(I) acetate
U214	Acetic acid, thallium(l) salt
U215	Thallium(I) carbonate
U215	Carbonic acid, dithallium(I) salt
U216	Thallium(I) chloride
U217	Thallium(I) nitrate
U218	Thioacetamide
U218	Ethanethioamide
U219	Thiourea
U219	Carbamide, thio-
U220	Toluene
U220	Benzene, methyl-
U221	Toluenediamine
U221	Diaminotoluene
U222	o-Toluidine hydrochloride
U222	Benzenamine, 2-methyl-, hydrochloride
U223	Toluene diisocyanate (r,t)
U223	Benzene, 1,3-diisocyanatomethyl- (r,t)
U225	Methane, tribromo-
U225	Bromotorm
U226	1,1,1-Trichloroethane
U226	Methylchloroform
U227	1,1,2-Trichloroethane
U227	Ethans. 1, 1, 2-trichloro-
U228	Trichloroathylene
U228	Trichloroethene
U232	2,4,5-Trichloracetic acid, salts, and esters
U233	2.4,5-Trichlorophenoxypropionic acid, salts, and esters
U234	sym-Trinitrobenzene (r,t)
U234	Benzene, 1, 3, 5-trinitro- (r, t)

(C.

Code	Waste description
U235	1-Propanot,2,3-dibromo-,phosphate (3:1)
U235	Tris(2,3-dibromopropyl) phosphate
U236	Trypan blue
U236	2.7-Naphthalenedisulfonic acid, 3.3'-{(3.3'-dimethyl-(1,1'-biphenyl)-4,4'-diyl)}-bis(azo)bis(5-amino-4-hydroxy), tetrasodium salt
U237	Uracil mustard
U237	Uracil, 5-(bis(2-chloroethyl)-amino)-
U238	Elhyi carbarmate (urethan)
U238	Carbamic acid, ethyl ester
U239	Xylene (i)
U239	Benzene, dimethyl- (i,t)
U240	2,4-D, saits and esters
U240	2.4-Dichlorophenoxyacetic acid, salts, and esters
U243	1-Propene,1,1,2,3,3,3-hexachloro-
U243	Hexachloropropene
U244	Thiram
U244	Bis(dimethylthiocarbamoyl) disulfide
U246	Bromine cyanide
U246	Cyanogen bromide
U247	Ethane, 1,1,1,trichloro-2-2-bis(p-methoxyphenyl)
U247	Methoxychior
U248	Warfarin, when present at concentrations of 0.3% or less
U248	3-(a-Acetonylbenzyl)-4-hydroxycoumann and salts, when present at concentrations of 0.3% or less
U249	Zinc prosphide, when present at concentrations of 10% or less
U328	2-Amino-L-methylbenzene
U328	
U353	4-Amino-L-methylbenzene
0353	p-totulaine A Sthere extransi
0398	z-cinoxyemenou:
0328	cinyiana giyooi monoarnyi arilar
	<i>.</i>
	·

.

N

.

.

.

.

, et

.

.

APPENDIX C

GENERATOR AND TSDR SURVEY QUESTIONS REFERENCED IN THIS REPORT

~

GENERATOR AND TSDR SURVEY QUESTIONS REFERENCED IN THIS REPORT

. '

Interpreting data from the Generator and TSDR Surveys often requires knowledge of how the data were reported by respondents. As a reference to readers, the survey questions from which data are derived are included in parenthesis in the source information at the bottom of all applicable charts.

This appendix illustrates representative Generator and TSDR Survey questions referenced in this report. Questions are presented in numerical order by the questionnaire from which the question originates. Questions repeated in the surveys for each waste management activity are shown only once in this appendix. *:* .

.
QUESTIONNAIRE A: GENERAL FACILITY INFORMATION

3. What quantity of hazardous waste was managed onsite during 1986 in UNITS REQUIRING A RCRA PERMIT? What percentage of this quantity was hazardous wastewater?

Report here the TOTAL quantity of hazardous waste that entered one or more of this facility's treatment, storage, accumulation, disposal, or recovery units during 1986. Include only hazardous waste that was managed in units for which you have a RCRA permit or interim status. Report hazardous waste that was accumulated ONLY if it was later stored, disposed, treated, or recovered for reuse onsite. COUNT ONLY ONCE any quantity of hazardous waste that entered more than one type of operation. For example, hazardous waste that was both treated and stored should be COUNTED ONLY ONCE. Similarly, hazardous waste that was treated more than once should be COUNTED ONLY ONCE.

Q N R	uantity of Hazardous Waste anaged Onsite in UNITS EQUIRING A RCRA PERMIT	ter waste quanti and waste quant w b. Indicate th zardous wastew	ties that need to be reported in tons on row ities that need to be reported in gallons on e percentage of each quantity that was vater.	
	Quantity		Unit of measure	Percentage of quantity that was hazardous wastewater
 а.			Tons	
' b.			Galions	

8. What quantity of hazardous waste in each of the following categories was managed onsite during 1986?

Report here the TOTAL quantity of hazardous waste that entered one or more of this facility's treatment, storage, accumulation, disposal, or recovery units during 1986—regardless of the permit status of the unit. Report hazardous waste that was accumulated ONLY if it was later stored, disposed, treated, or recovered for reuse. COUNT ONLY ONCE any quantity of hazardous waste that entered more than one type of operation. For example, hazardous waste that was both treated and stored should be COUNTED ONLY ONCE. Similarly, hazardous waste that was treated more than once should be COUNTED ONLY ONCE.

Quantities of Hazardous Enter waste quantities that need to be reported in tons on row a a quantities that need to be reported in gallons on row b. If none, e					
Quantity generated onsite and managed onsite	Quantity received from another facility under the same ownership and managed onsite	Quantity received from another facility NOT under the same ownership and managed onsite	Unit of measure		
a.			Tons		
b.			Gallons .		

NOTE: The sum of all the quantities entered in Question 8 is equal to the TOTAL quantity of hazardous waste' managed onsite during 1986.

Preceding page blank

11. Of the hazardous waste GENERATED ONSITE during 1986, what quantity was shipped offsite to be managed by another facility under the same ownership? What quantity was shipped offsite to be managed by a facility not under the same ownership?

Quantities of Hazardous Waste GENERATED ONSITE AND THEN SHIPPED OFFSITE			Enter waste quantities that need to be reported in tons on row a and waste quantities that need to be reported in gal- lons on row b. If none, enter zero.	•
		Quantity generated onsite and then shipped offsite to a facility under the same ownership	Quantity generated onsite and then shipped offsite to a facility NOT under the same ownership Unit of measu	Unit of measure
	a.			
:	ь.		Gallons .	

<u>C-4</u>

C-5_

QUESTIONNAIRE F: SOLVENT AND LIQUID ORGANIC RECOVERY FOR REUSE

3. What quantity of hazardous waste was managed onsite in solvent recovery processes during 1986?

Report here the TOTAL quantity of hazardous waste that entered one or more of this facility's solvent recovery processes during 1986. COUNT ONLY ONCE any quantity of hazardous waste that entered more than one type of process. For example, hazardous waste that underwent both filtration and fractionation would be COUNTED ONLY ONCE.

Quantity of Hazardous Waste Managed in Solvent Recovery Processes Onsite	Enter the quantity and circle a	unit of measure.
	Unit of measure	ure (Circle one)
Quantity	Ton	Gallon

	Question	Solvent Recovery Process No. 1	Solvent Recovery Process No. 2
4.	What type of solvent recovery process is this? (Circle one)		
	Fractionation		01 01
	Batch still distillation		02
	Solvent extraction		
	Thin-film evaporation	04	
	Filtration		05
	Phase separation		06
	Dessication		07
	Other (specify)		
		(specify)	(specify)

25.	What quantity of HAZARDOUS waste in each of the following categories entered this solvent recovery process for management during 1986? (Enter the quantities and circle a unit of measure; if none, enter zero. The sum of b, c, and d must equal a.)							
	a. TOTAL quantity managed onsite		ļ					 ;
	ii Unit of measure (Circle ope)	<u>i</u>		·	 11'		 <u> </u>	
	Tons		. 01				 01	
	Gallons		02				 02	

C-6 1986 Hazardous Waste Management in RCRA TSDR Units

Question	Solvent Recovery Process No. 1	Solvent Recovery Process No. 2
 26. What quantity of NONHAZARDOUS waste entered this solvent recovery process for management during 1986? (Enter the quantity and circle a unit of measure: if none, enter zero.) a. Quantity b. Unit of measure (Circle one) Tons Gallons 	01 	01

27.	What quantity of solvents and chemicals was recovered for reuse using this process during 1986? (Enter the quantity and circle a unit of measure; if none. enter zero.)	
	a. Quantity	
	Tons Galions	

30.	What quantity of residuals—solid, liquid, and sludge—was generated by this solvent recovery process during 1986? What percentage of these residuals was hazardous? (Include residuals from air pollution control devices [APCDs] as well as other treatment residuals. Do not include in your answer the recovered solvent or chemicals. Enter the quantities in the unit specified and indicate the percentage. If none, enter zero.)		
	 a. Solid Residuals Total quantity generated, pounds ii. Percentage of solid residuals that was hazardous 	· · · · · · · · · · · · · · · · · · ·	·····
	 b. Liquid Residuals (including scrubber water) i. Total quantity generated, gallons . ii. Percentage of liquid residuals that was hazardous 	%	
	 c. Sludge Residuals Total quantity generated, pounds Percentage of sludge residuals that was hazardous 	<u> </u>	·····

QUESTIONNAIRE GA: GENERAL FACILITY INFORMATION

1. Which of the following BEST DESCRIBES the status of the "hazardous waste generation activities" onsite at this facility? (Circle one)

Carefully read all options and circle only one. Do not base your answer on the quantity of hazardous waste generated onsite. Call the Survey Helpline (1-800-635-8850) if you are uncertain of the status of your facility.

- 01 Hazardous waste is currently generated onsite. (Go to next question)
- 02 Hazardous waste was generated onsite during 1986, but is no longer generated onsite. (Go to next question)
- 03 Hazardous waste was generated onsite prior to 1986, but not during 1986, and will not be generated onsite in the future. (*Skip to Question 156 on page 79*)
- 04 Hazardous waste was generated onsite in the past, but that hazardous waste has since been delisted and no other hazardous waste is generated onsite at this facility. (*Skip to Question 156 on page 79*)
- 05 No hazardous waste has ever been generated onsite at this facility. Notification of hazardous waste generation activities was submitted as a protective measure. Further evaluation showed that the waste generated onsite is not hazardous. (*Skip to Question 156 on page 79*)
- 2. Did this facility generate, in ANY month during 1986, more than 1,000 kilograms of hazardous waste (Circle cne)

01 Yes (Skip to Question 6) 02 No (Go to next question)

3. Did this facility accumulate, AT ANY TIME DURING 1986, more than 1,000 kilograms of hazardous waste? (Circle one)

Do not base your answer on when the hazardous waste was generated. For example, if 600 kilograms of hazardous waste were generated in one month and 500 kilograms of hazardous waste were generated in the next month, and this total quantity was onsite at any time, you would answer. 'Yes.''

01 Yes (Skip to Question 6)

02 No (Go to next question)

4. Did this facility generate, in ANY month during 1986, more than 100 kilograms of hazardous waste? (Circle one)

01 Yes (Skip to Question 6)

02 No (Go to next question)

5. Did this facility generate, in ANY month during 1986, more than one kilogram of acutely hazardous waste? (Circle one)

The following are acutely hazardous wastes: F020, F021, F022, F023, F026, F027, and all of the RCRA "P" wastes. See Appendix C of the Instructions booklet for a list of RCRA "P" wastes.

01 Yes (Go to next question)

02 No (Skip to Question 156 on page 79. DO NOT SKIP if your facility generated, in any month during 1986, more than 100 kilograms of hazardous waste)

6. What is the primary four-digit SIC code for this facility?

 <u> </u>	 	_

- 8. Who owns this facility? (Circle one)
 - 01 Federal government
 - 02 State government
 - 03 Local government
 - 04 Private owner-sole proprietor, partnership, or corporation
 - 05 Other owner

aescriber

20. Of the quantity reported in Question 19, estimate the amount that was hazardous wastewater. This amount should include hazardous wastewater pretreated prior to discharge under a NPDES permit c prior to discharge to a POTW; hazardous wastewater generated in a production process or waste treatment process; and hazardous wastewater that is a characteristic waste, even though it may lose its hazardous waste characteristic through mixing with other wastewater or by treatment.

5

Include in your answer the total quantity of wastewater, not just the quantity of hazardous material in the wattewater

Quantity of HAZARDOUS Wastewater Generated	Enter the qu	antity and circle a unit of meas	sure, if none, enter zero
		Unit of measu	ure (Circie one)
Quantity		Tons	Gailons
		01	02

NOTE: Report all hazardous wastewater in Questionnaire GB, "Hazardous Waste Characterization." Report any processes used to treat hazardous wastewater, including pretreatment processes, in Questionnaire GE, "Wastewater Treatment."

23. What quantity of hazardous waste was shipped offsite during 1986 to be managed by another facility under the same ownership? What quantity of hazardous waste was shipped offsite during 1986 to be managed by a facility NOT under the same ownership?

Qu Sh	antity of Hazardous Waste ipped Offsite	y of Hazardous WasteEnter waste quantities that need to be report a and waste quantities that need to be report a and waste quantities that need to be report in row b. If none, enter zero.			
	Quantity shipped offsite to a facility under the same ownership	Quantity shipped offsite to a facility NOT under the same ownership	Unit of measure		
a . i			Tons		
b			Gallons		

27. What quantity of hazardous waste was generated onsite during 1986?

Report here the TOTAL quantity of hazardous waste that was generated onsite during 1986. Include in your answer hazardous waste and hazardous wastewater treated using exempt processes. for example, wastewater treatment processes that discharge under a NPDES permit or discharge to a POTW and exempt recycling processes.

Quant Gener	ity of Hazardo ated Onsite	ous Waste	Enter was and wast row b. The the TOTAL 1986.	Enter waste quantities that need to be reported in tons in row a and waste quantities that need to be reported in gailons in row b. The sum of the two quantities reported in this question equal the TOTAL quantity of hazardous waste generated onsite during 1986.			
Quantity				Unit of measure			
a							
b				Gallons			

QUESTIONNAIRE GB: HAZARDOUS WASTE CHARACTERIZATION

Question_	Hazardous Waste No. 1	Hazardous Waste No. 2
 What RCRA waste code or codes best describe this hazardous waste? See Appendix C of the Instructions booklet for a list of RCRA and other waste codes. If you generate a waste that is considered hazardous by regulations in your state and a waste code is not provided, call the Survey Helpline (1-800-635-8850). 	a	a
Use the list of Waste Description Codes on the inside front cover of this questionnaire to answer Questions 2 and 3. If a code requires you to specify, do so in the space provided. 2. What Waste Description Code best describes this hazardous waste?		· · · · · · · · · · · · · · · · · · ·
	(specity)	(SDECITY)

Use the list of Waste Source Codes on the inside back cover of this duestionnaire to answer Questions 4 and 5. If a code requires you to specify, do so in the space provided.		
4. What Waste Source Code best describes the process(es) at this facility that generate this hazardous waste?	<u>, s</u>	<u>s</u>
	(specify)	(specity)

 10. What quantity of this hazardous waste was generated onsite DURING 1986? (Enter the quantity and circle a unit of measure) a. Quantity b. Unit of measure (Circle one) 	
Tons	
Gallons	

Questian	Hazardous Waste No. 1	Hazardous Waste No. 2			
18. Of the quantity of this hazardous waste that was generated onsite during 1986, how much was or will be shipped offsite for management? (Enter the quantity and circle a unit of measure: if none, enter zero and skip to the note on page 16 prior to Question 20 for this hazardous waste.)					
b. Unit of measure (Circle one) Tons Gallons	01	01			

QUESTIONNAIRE GG: SOLVENT AND LIQUID ORGANIC RECOVERY FOR REUSE

3. What quantity of hazardous waste was managed onsite in solvent recovery processes during 1986?

Report here the TOTAL quantity of hazardous waste that entered one or more of this facility's solvent recovery processes during 1986. COUNT ONLY ONCE any quantity of hazardous waste that entered more than one type of process. For example, hazardous waste that underwent both filtration and fractionation would be COUNTED ONLY ONCE.

Quantity of Hazardous Waste Managed in Solvent Recovery Processes Onsite	Enter the quantity and circle a unit of measure.				
	Unit of measure (Circle one)				
Quantity	Tons	Gallons			

Question		Solvent Recovery Process No. 1	Solvent Recovery Process No. 2			
4.	What type of solvent recovery process is this? (Circle one)					
	Fractionation	01	01			
	Batch still distillation					
	Solvent extraction		03			
	Thin-film evaporation	04				
	Filtration					
	Phase separation		06			
	Dessication					
	Other (specify)	08	08			
		(specify)	(specity)			

Question		Solvent Recovery Process No. 1	Solvent Recovery Process No. 2				
21.	What quantity of HAZARDOUS waste entered this solvent recovery process for management during 1986? (Enter the quantity and circle a unit of measure; if none, enter zero.) a. Quantity b. Unit of measure (Circle one) Tons Gallons	01 	01 02				
22.	What quantity of NONHAZARDOUS waste entered this solvent recovery process for management during 1986? (Enter the quantity and circle a unit of measure: if none, enter zero.) a. Quantity b. Unit of measure (Circle one) Tons Gallons	01 	01				
23.	What quantity of solvents and						

 23. What quantity of solvents and chemicals was recovered for reuse using this process during 1986? (Enter the quantity and circle a unit of measure; if none. enter zero.) a. Quantity		
Tons		
Gallons	· · · · · · · · · · · · 02 · · · · · · ·	

1986 Hazardous Waste Management in RCRA TSDR Units

.

Question	Solvent Recovery Process No. 1	Solvent Recovery Process No. 2
26. What quantity of residuals—solid, liquid, and sludge—was generated by this solvent recovery process during 1986? What percentage of these residuals was hazardous? (Include residuals from air pollution control devices [APCDs] as well as other treatment residuals. Do not include in your answer the recovered solvent or chemicals. If this process was not operational during 1986, estimate the quantity of residuals that would be generated if operated at full capacity. Enter the quantities in the unit specified and indicate the percentage. If none, enter zero.)		
 a. Solid Residuals Total quantity generated, pounds Percentage of solid residuals that was hazardous b. Liquid Residuals (including scrubber water) Total quantity generated, gallons Percentage of liquid residuals that was hazardous 	····· ··· ··· ··· ··· ··· ··· ··· ···	
 c. Sludge Residuals Total quantity generated, pounds Percentage of sludge residuals that was hazardous 	· · · · · · · · · · · · · · · · · · ·	·····

.

Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one)								
Yes (Go to next question)	0 [.]					01		
No (Circle 02 and skip to Question 29 for this solvent recovery process)	0:	C (Skip to () 29				02 (Skin	m () 291	
	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question) No (Circle 02 and skip to Question 29 for this solvent recovery process)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (<i>Circle one</i>) Yes (Go to next question)	Does this facility have plans to make any changes to this solvent recovery process before January 1992 that would increase/decrease its capacity to manage hazardous waste? (Circle one) Yes (Go to next question)

. .

<u>C-14</u>

QUESTIONNAIRE H: WASTEWATER TREATMENT

Question	Wastewater Treatment Process No. 1	Wastewater Treatment Process No. 2			
 14. Which onsite tanks and/or surface impoundments are used with this wastewater treatment process? (Identify the tanks and surface impoundments used with this process by listing the identification numbers that you entered on the schematic of your wastewater treatment process(es) that you arew for Ouestionnaire A. "General Facility Information.") a. Tank number 	i iv ii v iii v	i iv ii v iii v			
b. Surface impoundment number	······ i.	i.			

С

QUESTIONNAIRE J: WASTE PILES

3

.

	Question	Waste Pile No. 1	Waste Pile No. 2
27.	What quantity of hazardous and nonhazardous waste entered this waste pile for TREATMENT during 1986? (Include in your answer waste that entered this waste pile for treatment, regardless of whether it was also stored. Enter the quantities and circle a unit of measure; if none, enter zero.)		
	a. Hazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>)		
	Tons	01	01
	Cubic yards		
	 b. Nonhazardous waste i. Quantity ii. Unit of measure (Circle one) 		
	Tons Cubic yards	01 	01

29. What quantity of hazardous and nonhazardous waste entered this waste pile for STORAGE ONLY during 1986? (Do not include in your answer waste that was also treated in this waste pile. Enter the quantities and circle a unit of measure; if none, enter zero.)		
a. Hazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons Cubic yards	01	01
 b. Nonhazardous waste Quantity Quantity Unit of measure (Circle one) Tons 	01	01
Cubic yards		

QUESTIONNAIRE K: SURFACE IMPOUNDMENTS

	Question	Surface Impoundment No. 1	Surface Impoundment No. 2
31.	What quantity of hazardous and nonhazardous waste entered this surface impoundment for TREATMENT during 1986? (Include in your answer waste that entered this surface impoundment for treatment, regardless of whether it was also stored or disposed of. Enter the quantities and circle a unit of measure; if none, enter zero.)		
	a. Hazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons Gallons	01	01
	b. Nonhazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons Gallons	01	01

46. What quantity of hazardous and nonhazardous waste entered this surface impoundment for DISPOSAL but not for treatment during 1986? (Include in your answer waste that entered this surface impoundment for disposal including waste that was stored prior to disposal. DO NOT INCLUDE any waste that was treated in this surface impoundment prior to disposal. Enter the quantities and circle a unit of measure; if none, enter zero.)		
a. Hazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons Gallons	01	
b. Nonhazardous waste i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons Gallons	01 02	01

C-18 1986 Hazardous Waste Management in RCRA TSDR Units

	Question	Surface Impoundment No. 1	Surface Impoundmen No. 2
49.	What quantity of hazardous and nonhazardous waste entered this surface impoundment for STORAGE ONLY during 1986? (DO NOT INCLUDE in your answer waste that also entered this surface impoundment for treatment or disposal. Enter the quantities and circle a unit of measure; if none, enter zero.) a. Hazardous waste	- -	
	i. Quantity ii. Unit of measure (<i>Circle one</i>) Tons		
	b. Nonhazardous waste i. Quantity ii. Unit of measure (Circle one) Tons Gallons	01 02	01

.